WorldWideScience

Sample records for watershed modeling approach

  1. An approach to measure parameter sensitivity in watershed hydrologic modeling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Abstract Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier...

  2. Watershed models

    National Research Council Canada - National Science Library

    Singh, V.P; Frevert, D.K

    2006-01-01

    This book spans a variety of modeling areas, outlining 24 models that represent a variety of characteristics, such as physical bases, comprehensiveness, broad-based applicability, and use of modern tools...

  3. A multitemporal remote sensing approach to parsimonious streamflow modeling in a southcentral Texas watershed, USA

    Science.gov (United States)

    Weissling, B. P.; Xie, H.; Murray, K. E.

    2007-01-01

    Soil moisture condition plays a vital role in a watershed's hydrologic response to a precipitation event and is thus parameterized in most, if not all, rainfall-runoff models. Yet the soil moisture condition antecedent to an event has proven difficult to quantify both spatially and temporally. This study assesses the potential to parameterize a parsimonious streamflow prediction model solely utilizing precipitation records and multi-temporal remotely sensed biophysical variables (i.e.~from Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra satellite). This study is conducted on a 1420 km2 rural watershed in the Guadalupe River basin of southcentral Texas, a basin prone to catastrophic flooding from convective precipitation events. A multiple regression model, accounting for 78% of the variance of observed streamflow for calendar year 2004, was developed based on gauged precipitation, land surface temperature, and enhanced vegetation Index (EVI), on an 8-day interval. These results compared favorably with streamflow estimations utilizing the Natural Resources Conservation Service (NRCS) curve number method and the 5-day antecedent moisture model. This approach has great potential for developing near real-time predictive models for flood forecasting and can be used as a tool for flood management in any region for which similar remotely sensed data are available.

  4. Moving the Watershed Ecosystem Approach Beyond the Black Box with Sensor Technologies and New Conceptual Models

    Science.gov (United States)

    Bailey, S. W.; McGuire, K. J.; Ross, D. S.

    2015-12-01

    The small watershed ecosystem as a unit of experimental manipulation and analysis has been a hallmark of the Hubbard Brook Experimental Forest for 60 years. Water and nutrient budgets of headwater catchments have been instrumental in advancing our understanding of the response of forested ecosystems to disturbances such as air pollution and land management. A limitation in the practice of this approach is that point-scale measurements are compiled to create catchment scale estimates of fluxes and stores, thus losing process information that could be gained from spatial patterns that depend on position along hydrologic or biogeochemical pathways. Beginning in 2007, high frequency measurements of water table fluctuation, made possible by inexpensive sensor technology, highlighted the previously underappreciated role of groundwater in these steep headwater catchments. Hydropedologic units (HPUs), identified by morphological differences in soil profiles, and reflecting distinct groundwater regimes, were defined and arranged along a generalized toposequence to describe a conceptual model which partitions spatial variation into predictable, repeatable landscape units. Stratification of point scale measurements of soil and water quality elucidates spatial patterns of variation and allows identification of hot spots, or zones of the catchment where certain processes prevail. Specific HPUs are associated with high rates of dissolved organic matter production, nitrification, denitrification and delivery of mineral weathering products to the surface. Moving beyond the small watershed, contrasting spatial patterns in surface water chemistry at the basin scale suggest differing prevalence of various HPUs among headwater catchments. Comparison of water quality patterns with HPU distribution allows identification of catchment properties responsible for regulation of water quality at the point to the catchment to the basin scales.

  5. Modeling urban growth by the use of a multiobjective optimization approach: environmental and economic issues for the Yangtze watershed, China.

    Science.gov (United States)

    Zhang, Wenting; Wang, Haijun; Han, Fengxiang; Gao, Juan; Nguyen, Thuminh; Chen, Yarong; Huang, Bo; Zhan, F Benjamin; Zhou, Lequn; Hong, Song

    2014-11-01

    Urban growth is an unavoidable process caused by economic development and population growth. Traditional urban growth models represent the future urban growth pattern by repeating the historical urban growth regulations, which can lead to a lot of environmental problems. The Yangtze watershed is the largest and the most prosperous economic area in China, and it has been suffering from rapid urban growth from the 1970s. With the built-up area increasing from 23,238 to 31,054 km(2) during the period from 1980 to 2005, the watershed has suffered from serious nonpoint source (NPS) pollution problems, which have been mainly caused by the rapid urban growth. To protect the environment and at the same time maintain the economic development, a multiobjective optimization (MOP) is proposed to tradeoff the multiple objectives during the urban growth process of the Yangtze watershed. In particular, the four objectives of minimization of NPS pollution, maximization of GDP value, minimization of the spatial incompatibility between the land uses, and minimization of the cost of land-use change are considered by the MOP approach. Conventionally, a genetic algorithm (GA) is employed to search the Pareto solution set. In our MOP approach, a two-dimensional GA, rather than the traditional one-dimensional GA, is employed to assist with the search for the spatial optimization solution, where the land-use cells in the two-dimensional space act as genes in the GA. Furthermore, to confirm the superiority of the MOP approach over the traditional prediction approaches, a widely used urban growth prediction model, cellular automata (CA), is also carried out to allow a comparison with the Pareto solution of MOP. The results indicate that the MOP approach can make a tradeoff between the multiple objectives and can achieve an optimal urban growth pattern for Yangtze watershed, while the CA prediction model just represents the historical urban growth pattern as the future growth pattern

  6. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  7. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  8. Scaling Watershed Models: Modern Approaches to Science Computation with MapReduce, Parallelization, and Cloud Optimization

    Science.gov (United States)

    Environmental models are products of the computer architecture and software tools available at the time of development. Scientifically sound algorithms may persist in their original state even as system architectures and software development approaches evolve and progress. Dating...

  9. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  10. Modelling subsurface storm flow with the Representative Elementary Watershed (REW approach: application to the Alzette River Basin

    Directory of Open Access Journals (Sweden)

    G. P. Zhang

    2006-01-01

    Full Text Available A new domain, the macropore domain describing subsurface storm flow, has been introduced to the Representative Elementary Watershed (REW approach. The mass balance equations have been reformulated and the closure relations associated with subsurface storm flow have been developed. The model code, REWASH, has been revised accordingly. With the revised REWASH, a rainfall-runoff model has been built for the Hesperange catchment, a sub-catchment of the Alzette River Basin. This meso-scale catchment is characterised by fast catchment response to precipitation, and subsurface storm flow is one of the dominant runoff generation processes. The model has been evaluated by a multi-criteria approach using both discharge and groundwater table data measured at various locations in the study site. It is demonstrated that subsurface storm flow contributes considerably to stream flow in the study area. Simulation results show that discharges measured along the main river course are well simulated and groundwater dynamics is well captured, suggesting that the model is a useful tool for catchment-scale hydrological analysis.

  11. Wetland Restoration as a Tool for Peak Flow Mitigation: Combining Watershed Scale Modeling with a Genetic Algorithm Approach.

    Science.gov (United States)

    Dalzell, B. J.; Gassman, P. W.; Kling, C.

    2015-12-01

    In the Minnesota River Basin, sediments originating from failing stream banks and bluffs account for the majority of the riverine load and contribute to water quality impairments in the Minnesota River as well as portions of the Mississippi River upstream of Lake Pepin. One approach for mitigating this problem may be targeted wetland restoration in Minnesota River Basin tributaries in order to reduce the magnitude and duration of peak flow events which contribute to bluff and stream bank failures. In order to determine effective arrangements and properties of wetlands to achieve peak flow reduction, we are employing a genetic algorithm approach coupled with a SWAT model of the Cottonwood River, a tributary of the Minnesota River. The genetic algorithm approach will evaluate combinations of basic wetland features as represented by SWAT: surface area, volume, contributing area, and hydraulic conductivity of the wetland bottom. These wetland parameters will be weighed against economic considerations associated with land use trade-offs in this agriculturally productive landscape. Preliminary results show that the SWAT model is capable of simulating daily hydrology very well and genetic algorithm evaluation of wetland scenarios is ongoing. Anticipated results will include (1) combinations of wetland parameters that are most effective for reducing peak flows, and (2) evaluation of economic trade-offs between wetland restoration, water quality, and agricultural productivity in the Cottonwood River watershed.

  12. An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed

    Science.gov (United States)

    Burns, Douglas A.; Nystrom, Elizabeth A.; Wolock, David M.; Bradley, Paul M.; Riva-Murray, Karen

    2014-01-01

    Inverse empirical models can inform and improve more complex process-based models by quantifying the principal factors that control water quality variation. Here we developed a multiple regression model that explains 81% of the variation in filtered methylmercury (FMeHg) concentrations in Fishing Brook, a fourth-order stream in the Adirondack Mountains, New York, a known “hot spot” of Hg bioaccumulation. This model builds on previous observations that wetland-dominated riparian areas are the principal source of MeHg to this stream and were based on 43 samples collected during a 33 month period in 2007–2009. Explanatory variables include those that represent the effects of water temperature, streamflow, and modeled riparian water table depth on seasonal and annual patterns of FMeHg concentrations. An additional variable represents the effects of an upstream pond on decreasing FMeHg concentrations. Model results suggest that temperature-driven effects on net Hg methylation rates are the principal control on annual FMeHg concentration patterns. Additionally, streamflow dilutes FMeHg concentrations during the cold dormant season. The model further indicates that depth and persistence of the riparian water table as simulated by TOPMODEL are dominant controls on FMeHg concentration patterns during the warm growing season, especially evident when concentrations during the dry summer of 2007 were less than half of those in the wetter summers of 2008 and 2009. This modeling approach may help identify the principal factors that control variation in surface water FMeHg concentrations in other settings, which can guide the appropriate application of process-based models.

  13. Estimation of hydrological response of a small Mediterranean watershed to fire by data analysis and a modelling approach

    Directory of Open Access Journals (Sweden)

    L. Lebedeva

    2014-09-01

    Full Text Available Data analysis and amodelling approach were used to detect the changes in hydrological regime in the Rimbaud watershed (France after the fire in 1990. It was revealed that the increase of peak discharges was only observed during three years after the fire in the wet period of the year, at an hourly time scale. The Hydrograph model was applied for continuous runoff simulations at an hourly time step for the period 1967–2004. The parameters assessed for pre-fire conditions and used without change for the post-fire period satisfactorily fit the whole period of simulations with mean Nash-Sutcliffe efficiency 0.52. The set of model parameters representing the post-fire conditions of changing environment was developed. Based on newly estimated parameters, the efficiency of simulations of selected outstanding flood peaks was improved. However, overall model representation for the post-fire period (1990–1992 has declined. It is concluded that discernible fire impact is only localized on separate floods events and that it has a nonlinear character.

  14. Simulating Water and Nutrient Transport in an Urbanizing Agricultural Watershed with Lake-Level Regulation Using a Coupled Modeling Approach

    Science.gov (United States)

    Chen, X.; Motew, M.; Booth, E.; Carpenter, S. R.; Steven, L. I.; Kucharik, C. J.

    2015-12-01

    The Yahara River basin located in southern Wisconsin is a watershed with long-term eutrophication issues due largely to a thriving dairy industry upstream of the Madison chain of lakes. Steady phosphorus loading from manure production and other sources has contributed directly to blue-green algae blooms and poor water quality in the lakes and river system, and is often viewed as the most important environmental problem to solve in the region. In this study, the daily streamflow and monthly nitrogen (N), sediment and phosphorus (P) transport, as well as the lake levels in the Yahara River basin are simulated using a physically-based hydrologic routing model: the Terrestrial Hydrology Model with Biogeochemistry (THMB). The original model includes representation of water and nitrogen transport but as part of this work, P transport and lake regulation are added into the model. The modified THMB model is coupled with the AgroIBIS-VSF agroecosystem model to represent dynamic coupling between agricultural management in the watershed, and N, P, and sediment transport to lakes and streams. We will present model calibration and validation results that demonstrate the hydrologic routing capability of THMB for a spatial resolution of 220m, several orders of magnitude finer than attempted previously with THMB. The calibrated modeling system is being used to simulate the impacts of climate change and land management on biogeochemistry in the Yahara watershed under four different pathways of change to the year 2070 (Yahara 2070). These scenarios are Abandonment and Renewal, Accelerated Innovation, Connected Communities and Nested Watersheds, which are used to better understand how future decision-making influences the provisioning and trade-offs of ecosystem services.

  15. Boosted Regression Tree Models to Explain Watershed ...

    Science.gov (United States)

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed-use and heavily impacted watershed

  16. Integrated landscape/hydrologic modeling tool for semiarid watersheds

    Science.gov (United States)

    Mariano Hernandez; Scott N. Miller

    2000-01-01

    An integrated hydrologic modeling/watershed assessment tool is being developed to aid in determining the susceptibility of semiarid landscapes to natural and human-induced changes across a range of scales. Watershed processes are by definition spatially distributed and are highly variable through time, and this approach is designed to account for their spatial and...

  17. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  18. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  19. Achieving Peak Flow and Sediment Loading Reductions through Increased Water Storage in the Le Sueur Watershed, Minnesota: A Modeling Approach

    Science.gov (United States)

    Mitchell, N. A.; Gran, K. B.; Cho, S. J.; Dalzell, B. J.; Kumarasamy, K.

    2015-12-01

    A combination of factors including climate change, land clearing, and artificial drainage have increased many agricultural regions' stream flows and rates at which channel banks and bluffs are eroded. Increasing erosion rates within the Minnesota River Basin have contributed to higher sediment-loading rates, excess turbidity levels, and increases in sedimentation rates in Lake Pepin further downstream. Water storage sites (e.g., wetlands) have been discussed as a means to address these issues. This study uses the Soil and Water Assessment Tool (SWAT) to assess a range of water retention site (WRS) implementation scenarios in the Le Sueur watershed in south-central Minnesota, a subwatershed of the Minnesota River Basin. Sediment loading from bluffs was assessed through an empirical relationship developed from gauging data. Sites were delineated as topographic depressions with specific land uses, minimum areas (3000 m2), and high compound topographic index values. Contributing areas for the WRS were manually measured and used with different site characteristics to create 210 initial WRS scenarios. A generalized relationship between WRS area and contributing area was identified from measurements, and this relationship was used with different site characteristics (e.g., depth, hydraulic conductivity (K), and placement) to create 225 generalized WRS scenarios. Reductions in peak flow volumes and sediment-loading rates are generally maximized by placing site with high K values in the upper half of the watershed. High K values allow sites to lose more water through seepage, emptying their storages between precipitation events and preventing frequent overflowing. Reductions in peak flow volumes and sediment-loading rates also level off at high WRS extents due to the decreasing frequencies of high-magnitude events. The generalized WRS scenarios were also used to create a simplified empirical model capable of generating peak flows and sediment-loading rates from near

  20. Information Management for the Watershed Approach in the Pacific Northwest

    Science.gov (United States)

    A collection of interviews with leaders and key participants in the statewide watershed approach activities in the State of Washington. Additionally, there are reviews of Washington’s statewide watershed activities in a case study fashion.

  1. Challenges of Participatory Approach to Watershed Management in ...

    African Journals Online (AJOL)

    The study also showed that many of the communities had rules and regulations guiding the use of watersheds but could not apply the principle of participatory management approach to ensure sustainability of the watersheds. However, the rules and regulations merely emphasized environmental sanitation of the watershed ...

  2. Diagnostic Systems Approach to Watershed Management

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L

    2001-02-23

    The water quality of discharge from the surface water system is ultimately dictated by land use and climate within the watershed. Water quality has vastly improved from point source reduction measures, yet, non-point source pollutants continue to rise. 30 to 40% of rivers still do not meet water quality standards for reasons that include impact from urban storm water runoff, agricultural and livestock runoff, and loss of wetlands. Regulating non-point source pollutants proves to be difficult since specific dischargers are difficult to identify. However, parameters such as dissolved organic carbon (DOC) limit the amounts of chlorination due to simultaneous disinfection by-product formation. The concept of watershed management has gained much ground over the years as a means to resolve non-point source problems. Under this management scheme stakeholders in a watershed collectively agree to the nature and extent of non-point sources, determine water quality causes using sound scientific approaches, and together develop and implement a corrective plan. However, the ''science'' of watershed management currently has several shortcomings according to a recent National Research Council report. The scientific component of watershed management depends on acquiring knowledge that links water quality sources with geographic regions. However, there is an observational gap in this knowledge. In particular, almost all the water quality data that exists at a utility are of high frequency collected at a single point over a long period of time. Water quality data for utility purposes are rarely collected over an entire watershed. The potential is high, however, for various utilities in a single watershed to share and integrate water quality data, but no regulatory incentives exist at this point. The only other available water quality data originate from special scientific studies. Unfortunately these data rarely have long-term records and are usually tailored to

  3. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Science.gov (United States)

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be

  4. Multi-criteria assessment of the Representative Elementary Watershed approach on the Donga catchment (Benin using a downward approach of model complexity

    Directory of Open Access Journals (Sweden)

    N. Varado

    2006-01-01

    Full Text Available This study is part of the AMMA - African Multidisciplinary Monsoon Analysis- project and aims at a better understanding and modelling of the Donga catchment (580 km2, Benin behaviour in order to determine its spatially distributed water balance. For this purpose, we applied the REW concept proposed by Reggiani et al. (1998, 1999, which allows the description of the main local processes at the sub-watershed scale. Such distributed hydrological models, which represent hydrological processes at various scales, should be evaluated not only on the discharge at the outlet but also on each of the represented processes and in several points of the catchment. This multi-criteria approach is required in order to assess the global behaviour of hydrological models. We applied such multi-criteria strategy to the Donga catchment (586 km2, in Benin. The work was supported by an observation set up, undertaken since 1998 consisting in a network of 20 rain gauges, an automatic meteorological station, 6 discharge stations and 18 wells. The main goal of this study was to assess the model's ability to reproduce the discharge at the outlet, the water table dynamics in several points of the catchment and the vadose zone dynamics at the sub-catchment scale. We tested two spatial discretisations of increasing resolution. To test the internal structure of the model, we looked at its ability to represent also the discharge at intermediate stations. After adjustment of soil parameters, the model is shown to accurately represent discharge down to a drainage area of 100 km2, whereas poorer simulation is achieved on smaller catchments. We introduced the spatial variability of rainfall by distributing the daily rainfall over the REW and obtained a very low sensitivity of the model response to this variability. Simulation of groundwater levels was poor and our results, in conjunction with new data available at the local scale, suggest that the representation of the processes

  5. Developing Participatory Models of Watershed Management in the Sugar Creek Watershed (Ohio, USA

    Directory of Open Access Journals (Sweden)

    Jason Shaw Parker

    2009-02-01

    Full Text Available The US Environmental Protection Agency (USEPA has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershed in the State of Ohio. This article addresses an alternative approach to watershed management and that emphasises a partnership of farmers and researchers, using community participation in the Sugar Creek to establish a time-frame with goals for water quality remediation. Of interest are the collaborative efforts of a team of farmers, researchers, and agents from multiple levels of government who established this participatory, rather than expert-driven, programme. This new approach created an innovative and adaptive model of non-point source pollution remediation, incorporating strategies to address farmer needs and household decision making, while accounting for local and regional farm structures. In addition, this model has been adapted for point source pollution remediation that creates collaboration among local farmers and a discharge-permitted business that involves nutrient trading.

  6. Streamflow simulation by a watershed model using stochastically generated weather in New York City watersheds

    Science.gov (United States)

    Mukundan, R.; Acharya, N.; Gelda, R.; Owens, E. M.; Frei, A.; Schneiderman, E. M.

    2016-12-01

    Recent studies have reported increasing trends in total precipitation, and in the frequency and magnitude of extreme precipitation events in the West of Hudson (WOH) watersheds of the New York City (NYC) water supply. The potential effects of these changes may pose challenges for both water quality (such as increased sediment and nutrient loading) and quantity (such as reservoir storage and management). The NYC Dept. of Environmental Protection Climate Change Integrated Modeling Project (CCIMP) is using "bottom-up" or vulnerability based methods to explore climate impacts on water resources. Stochastic weather generators (SWGs) are an integral component of the bottom-up approach. Previous work has identified and evaluated the skill of alternative stochastic weather generators of varying complexity for simulating the statistical characteristics of observed minimum and maximum daily air temperature and occurrence and amount of precipitation. This evaluation focused on the skill in representing extreme streamflow event probabilities across NYC West of Hudson (WOH) watersheds. Synthetic weather time series from the selected (skewed normal) SWG were used to drive the Generalized Watershed Loading Function (GWLF) watershed model for a 600 year long period to simulate daily streamflows for WOH watersheds under a wide range of hydrologic conditions. Long-term average daily streamflows generated using the synthetic weather time series were comparable to values generated using observed long-term (1950-2009) weather time series. This study demonstrates the ability of the selected weather generator to adequately represent the hydrologic response in WOH watersheds with respect to the total, peak, and seasonality in streamflows. Future application of SWGs in NYC watersheds will include generating multiple scenarios of changing climate to evaluate water supply system vulnerability and selection of appropriate adaptation measures.

  7. Carbon exchange in Western Siberian watershed mires and implication for the greenhouse effect : A spatial temporal modeling approach

    NARCIS (Netherlands)

    Borren, W.

    2007-01-01

    The vast watershed mires of Western Siberia formed a significant sink of carbon during the Holocene. Because of their large area these mires might play an important role in the carbon exchange between terrestrial ecosystems and the atmosphere. However, estimation of the Holocene and future carbon

  8. A digraph permanent approach to evaluation and analysis of integrated watershed management system

    Science.gov (United States)

    Ratha, Dwarikanath; Agrawal, V. P.

    2015-06-01

    In the present study a deterministic quantitative model based on graph theory has been developed for the better development and management of watershed. Graph theory is an integrative systems approach to consider and model structural components of watershed management system along with the interrelationships between them concurrently and integratively. The factors responsible for the development of watershed system are identified. The degree of interaction between one subsystem with others are determined. The eigenvalue formulation is used to take care the inconsistencies arises due to inaccurate judgement in the degree of interaction between the subsystems. In this model the visual analysis is done to abstract the information using the directed graph or digraph. Then the matrix model is developed for computer processing. Variable permanent function in the form of multinomial represents the watershed system uniquely and completely by an index value. Different terms of the multinomial represent all possible subsystems of integrated watershed management system and thus different solutions for watershed management, leading to optimum solution. This index value is used to compare the suitability of the watershed with different alternatives available for its development. So the graph theory analysis presents a powerful tool to generate the optimum solutions for the decision maker for benefit of local people living in the watershed as well as the stakeholders. The proposed methodology is also demonstrated by a suitable example and is applied to the ecosystem and environment subsystem of the lake Qionghai watershed in China.

  9. Design of Water Discharge of Medewi Watershed Using Avswat Model

    Science.gov (United States)

    Pramana, Y. H.; Purwanto, B. P.

    2013-12-01

    Medewi watersheds is located in the southern of Bali Island and its estuary is located in Medewi Beach at Kabupaten Jembrana. The exact location of Medewi watersheds is between Desa Medewi and Desa Pulukan, Kecamatan Pekutatan, Kabupaten Jembrana. The watersheds itself, due to its strategic location is used as a territorial border between the two villages. Geographically, Medewi watersheds is between 114o48'00' - 114o50'00' east longitude and 08o20'00' - 08o26,5'00' south latitude. The main river of Medewi Watersheds is 25,64 km long and is classified as a continuous river, the width of the watersheds itself is measured 128,2 km2. Medewi watersheds have two tributaries which is Medaan watersheds and Pangliman watersheds, both watersheds' heads are located in Medewi Beach. Medewi watersheds is often flooded and brings heavy toll to its surrounding areas and citizen. Therefore, there is an urgent need to perform engineering techniques to overcome the aforementioned problem. However, there is a slight issue in the definition of water discharge plan in the location. The water discharge plan, which is used as a basis to prevent flooding, is often inaccurate. That is the reason why it is needed to build a model in order to accurately find out the amount of water discharge in the study location. Medewi watersheds' area usage is as follow: bushes (9,44%), forestation (77,10%), farm (7,76%), settlement (2,15%), irrigation field (1,64%), rainfed field (1,88%) and crops field (0,48%). The result of our modeling using ASVAT shows that the maximum water discharge is 149,9 m3/sec. The discharge is calibrated with the available water discharge data log. According to AWLR data, it is known that the largest discharge occurred on June 2nd, 2009 and measured at 147,9 m3/sec. Our conclusion is that the model used in this study managed to approach the field result with minimum error.

  10. Application of the ReNuMa model in the Sha He river watershed: tools for watershed environmental management.

    Science.gov (United States)

    Sha, Jian; Liu, Min; Wang, Dong; Swaney, Dennis P; Wang, Yuqiu

    2013-07-30

    Models and related analytical methods are critical tools for use in modern watershed management. A modeling approach for quantifying the source apportionment of dissolved nitrogen (DN) and associated tools for examining the sensitivity and uncertainty of the model estimates were assessed for the Sha He River (SHR) watershed in China. The Regional Nutrient Management model (ReNuMa) was used to infer the primary sources of DN in the SHR watershed. This model is based on the Generalized Watershed Loading Functions (GWLF) and the Net Anthropogenic Nutrient Input (NANI) framework, modified to improve the characterization of subsurface hydrology and septic system loads. Hydrochemical processes of the SHR watershed, including streamflow, DN load fluxes, and corresponding DN concentration responses, were simulated following calibrations against observations of streamflow and DN fluxes. Uncertainty analyses were conducted with a Monte Carlo analysis to vary model parameters for assessing the associated variations in model outputs. The model performed accurately at the watershed scale and provided estimates of monthly streamflows and nutrient loads as well as DN source apportionments. The simulations identified the dominant contribution of agricultural land use and significant monthly variations. These results provide valuable support for science-based watershed management decisions and indicate the utility of ReNuMa for such applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Developing Participatory Models of Watershed Management in the Sugar Creek Watershed (Ohio, USA)

    OpenAIRE

    Jason Shaw Parker; Richard Moore; Mark Weaver

    2009-01-01

    The US Environmental Protection Agency (USEPA) has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershe...

  12. Monitoring and modeling slope dynamics in an Alpine watershed - a combined approach of soil science, remote sensing and geomorphology

    Science.gov (United States)

    Neugirg, F.; Kaiser, A.; Schindewolf, M.; Becht, M.; Schmidt, J.; Haas, F.

    2015-06-01

    Steep and unvegetated slopes in mountainous areas play an important role in erosion research as they deliver large quantities of sediments to the lowlands. However, their complex hydrological process combinations are challenging for any modelling and forecasting intention. Due to its high morphodynamic activity the Lainbach valley in southern Bavaria, Germany, has repeatedly been subject to studies on erosional processes. We present a further developed approach of physically based erosion modelling on strongly inclined and heavily dissected slopes. Model parameters were spatially and temporally distributed and a statistical model was tested to compare both findings to a previous study in the same catchment on a different slope. High resolution surface models from laser scans served as validation for the modelling results and for monitoring soil loss. Especially an adjustment of hydraulic roughness values improved the results, whereas rill hydraulics demand further investigation for future model development. The study at hand focusses on the summer period and reveals adequate modelling results (98.4% agreement in volume loss) with regard to the slope's non-stationary behaviour but leaves room for improvement for the winter period.

  13. Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds

    Science.gov (United States)

    Nourani, Vahid; Andalib, Gholamreza; Dąbrowska, Dominika

    2017-05-01

    Accurate nitrate load predictions can elevate decision management of water quality of watersheds which affects to environment and drinking water. In this paper, two scenarios were considered for Multi-Station (MS) nitrate load modeling of the Little River watershed. In the first scenario, Markovian characteristics of streamflow-nitrate time series were proposed for the MS modeling. For this purpose, feature extraction criterion of Mutual Information (MI) was employed for input selection of artificial intelligence models (Feed Forward Neural Network, FFNN and least square support vector machine). In the second scenario for considering seasonality-based characteristics of the time series, wavelet transform was used to extract multi-scale features of streamflow-nitrate time series of the watershed's sub-basins to model MS nitrate loads. Self-Organizing Map (SOM) clustering technique which finds homogeneous sub-series clusters was also linked to MI for proper cluster agent choice to be imposed into the models for predicting the nitrate loads of the watershed's sub-basins. The proposed MS method not only considers the prediction of the outlet nitrate but also covers predictions of interior sub-basins nitrate load values. The results indicated that the proposed FFNN model coupled with the SOM-MI improved the performance of MS nitrate predictions compared to the Markovian-based models up to 39%. Overall, accurate selection of dominant inputs which consider seasonality-based characteristics of streamflow-nitrate process could enhance the efficiency of nitrate load predictions.

  14. Modeling global nutrient export from watersheds

    NARCIS (Netherlands)

    Kroeze, C.; Bouwman, A.F.; Seitzinger, S.

    2012-01-01

    We describe how global models can be used to analyze past and future trends in nutrient export from watersheds and how such models can be used to analyze causes and effects of coastal eutrophication. Future nutrient inputs to coastal waters may be higher than today, and nutrient ratios may depart

  15. An interval chance-constrained fuzzy modeling approach for supporting land-use planning and eco-environment planning at a watershed level.

    Science.gov (United States)

    Ou, Guoliang; Tan, Shukui; Zhou, Min; Lu, Shasha; Tao, Yinghui; Zhang, Zuo; Zhang, Lu; Yan, Danping; Guan, Xingliang; Wu, Gang

    2017-12-15

    An interval chance-constrained fuzzy land-use allocation (ICCF-LUA) model is proposed in this study to support solving land resource management problem associated with various environmental and ecological constraints at a watershed level. The ICCF-LUA model is based on the ICCF (interval chance-constrained fuzzy) model which is coupled with interval mathematical model, chance-constrained programming model and fuzzy linear programming model and can be used to deal with uncertainties expressed as intervals, probabilities and fuzzy sets. Therefore, the ICCF-LUA model can reflect the tradeoff between decision makers and land stakeholders, the tradeoff between the economical benefits and eco-environmental demands. The ICCF-LUA model has been applied to the land-use allocation of Wujiang watershed, Guizhou Province, China. The results indicate that under highly land suitable conditions, optimized area of cultivated land, forest land, grass land, construction land, water land, unused land and landfill in Wujiang watershed will be [5015, 5648] hm(2), [7841, 7965] hm(2), [1980, 2056] hm(2), [914, 1423] hm(2), [70, 90] hm(2), [50, 70] hm(2) and [3.2, 4.3] hm(2), the corresponding system economic benefit will be between 6831 and 7219 billion yuan. Consequently, the ICCF-LUA model can effectively support optimized land-use allocation problem in various complicated conditions which include uncertainties, risks, economic objective and eco-environmental constraints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Watershed modeling at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Vache, Kellie [Oregon State University

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  17. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  18. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China.

    Science.gov (United States)

    Wan, Rongrong; Cai, Shanshan; Li, Hengpeng; Yang, Guishan; Li, Zhaofu; Nie, Xiaofei

    2014-01-15

    Lake eutrophication has become a very serious environmental problem in China. If water pollution is to be controlled and ultimately eliminated, it is essential to understand how human activities affect surface water quality. A recently developed technique using the Bayesian hierarchical linear regression model revealed the effects of land use and land cover (LULC) on stream water quality at a watershed scale. Six LULC categories combined with watershed characteristics, including size, slope, and permeability were the variables that were studied. The pollutants of concern were nutrient concentrations of total nitrogen (TN) and total phosphorus (TP), common pollutants found in eutrophication. The monthly monitoring data at 41 sites in the Xitiaoxi Watershed, China during 2009-2010 were used for model demonstration. The results showed that the relationships between LULC and stream water quality are so complicated that the effects are varied over large areas. The models suggested that urban and agricultural land are important sources of TN and TP concentrations, while rural residential land is one of the major sources of TN. Certain agricultural practices (excessive fertilizer application) result in greater concentrations of nutrients in paddy fields, artificial grasslands, and artificial woodlands. This study suggests that Bayesian hierarchical modeling is a powerful tool for examining the complicated relationships between land use and water quality on different scales, and for developing land use and water management policies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. From plant to field: a novel mechanistic approach to modeling soil-plant-atmosphere interactions at the watershed scale

    DEFF Research Database (Denmark)

    Manoli, G.; Bonetti, S.; Scudiero, E.

    A numerical model of soil moisture dynamics is coupled with plant transpiration, photosynthesis and growth. Soil moisture dynamics is modeled by the 3-D Richards equation and plant uptake is described by an Ohm's law type model accounting for water potential gradients and root, xylem and stomatal...... conductances. The transpiration flux from soil to the atmosphere is driven by the leaf water potential which is controlled by both local soil moisture and atmospheric forcing. The hydraulic model is linked to the atmosphere by the calculation of the stomatal conductance which is optimized for maximum carbon...... gain considering Fickian mass transfer of CO2 and H2O through stomata and a biochemical model of photosynthesis. Dry matter accumulation is calculated from daily CO2 assimilation accounting for respiration costs and allocation of carbohydrates to the different plant organs. The toxicity of salt...

  20. The role of interior watershed processes in improving parameter estimation and performance of watershed models

    Science.gov (United States)

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the l...

  1. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  2. Hydrological modeling of the Jiaoyi watershed (China) using HSPF model.

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001-2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R (2)), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin.

  3. Watershed and Economic Data InterOperability (WEDO): Facilitating Discovery, Evaluation and Integration through the Sharing of Watershed Modeling Data

    Science.gov (United States)

    Watershed and Economic Data InterOperability (WEDO) is a system of information technologies designed to publish watershed modeling studies for reuse. WEDO facilitates three aspects of interoperability: discovery, evaluation and integration of data. This increased level of interop...

  4. Watershed Models for Predicting Nitrogen Loads from Artificially Drained Lands

    Science.gov (United States)

    R. Wayne Skaggs; George M. Chescheir; Glenn Fernandez; Devendra M. Amatya

    2003-01-01

    Non-point sources of pollutants originate at the field scale but water quality problems usually occur at the watershed or basin scale. This paper describes a series of models developed for poorly drained watersheds. The models use DRAINMOD to predict hydrology at the field scale and a range of methods to predict channel hydraulics and nitrogen transport. In-stream...

  5. Simulating non-point source pollution with an integrated surface-subsurface hydrologic approach in an agricultural watershed

    Science.gov (United States)

    Xiang, L.; Chen, L.; Yu, Z.

    2009-12-01

    The non-point source pollution is a major threat for water security in agricultural watersheds. A physically-based integrated hydrological model system is implemented in Meilin watershed, a small agricultural watershed in the southwest part of Tai Lake drainage system, China to study surface and subsurface hydrologic processes and to evaluate the solute (N, P) transport along various pathways at a watershed scale. Based on past and ongoing field studies, the watershed is reasonably well characterized and has been monitored on a regular base. Field observed data were used to assess the overland flow and infiltration processes and evaluate how different factors (i.e., soil texture, land use-land cover, and micro-topography) would affect these hydrologic processes. The model is driven by the observed precipitation to simulate surface water, soil moisture, groundwater and solute transport. The model calibration was conducted by using a multi-objective approach and the objectives include streamflow, soil moisture, groundwater level, solute concentration, etc. Numerical experiments were designed to elucidate the dynamics of watershed hydrologic processes as well as the interactive relationship on variables in land surface, unsaturated zone, and groundwater. The results illustrate how soil texture, land use-land cover, and topography would affect different hydrologic processes and their inter-relationship. The work will help better understand physically-coupled flow and solute transport in the watershed and enhance the quality of watershed flow and solute simulation.

  6. Modeling watershed-scale impacts of stormwater management with traditional versus low impact development design

    Science.gov (United States)

    Sparkman, Stephanie A.; Hogan, Dianna; Hopkins, Kristina G.; Loperfido, J. V.

    2017-01-01

    Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.

  7. A DEM-based approach for large-scale floodplain mapping in ungauged watersheds

    Science.gov (United States)

    Jafarzadegan, Keighobad; Merwade, Venkatesh

    2017-07-01

    Binary threshold classifiers are a simple form of supervised classification methods that can be used in floodplain mapping. In these methods, a given watershed is examined as a grid of cells with a particular morphologic value. A reference map is a grid of cells labeled as flood and non-flood from hydraulic modeling or remote sensing observations. By using the reference map, a threshold on morphologic feature is determined to label the unknown cells as flood and non-flood (binary classification). The main limitation of these methods is the threshold transferability assumption in which a homogenous geomorphological and hydrological behavior is assumed for the entire region and the same threshold derived from the reference map (training area) is used for other locations (ungauged watersheds) inside the study area. In order to overcome this limitation and consider the threshold variability inside a large region, regression modeling is used in this paper to predict the threshold by relating it to the watershed characteristics. Application of this approach for North Carolina shows that the threshold is related to main stream slope, average watershed elevation, and average watershed slope. By using the Fitness (F) and Correct (C) criteria of C > 0.9 and F > 0.6, results show the threshold prediction and the corresponding floodplain for 100-year design flow are comparable to that from Federal Emergency Management Agency's (FEMA) Flood Insurance Rate Maps (FIRMs) in the region. However, the floodplains from the proposed model are underpredicted and overpredicted in the flat (average watershed slope 20%). Overall, the proposed approach provides an alternative way of mapping floodplain in data-scarce regions.

  8. Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China

    Directory of Open Access Journals (Sweden)

    Yiping Hou

    2018-01-01

    Full Text Available Extensive studies on hydrological responses to forest change have been published for centuries, yet partitioning the hydrological effects of forest change, climate variability and other factors in a large watershed remains a challenge. In this study, we developed a single watershed approach combining the modified double mass curve (MDMC and the time series multivariate autoregressive integrated moving average model (ARIMAX to separate the impact of forest change, climate variability and other factors on dry season runoff variation in two large watersheds in China. The Zagunao watershed was examined for the deforestation effect, while the Meijiang watershed was examined to study the hydrological impact of reforestation. The key findings are: (1 both deforestation and reforestation led to significant reductions in dry season runoff, while climate variability yielded positive effects in the studied watersheds; (2 the hydrological response to forest change varied over time due to changes in soil infiltration and evapotranspiration after vegetation regeneration; (3 changes of subalpine natural forests produced greater impact on dry season runoff than alteration of planted forests. These findings are beneficial to water resource and forest management under climate change and highlight a better planning of forest operations and management incorporated trade-off between carbon and water in different forests.

  9. Continuous Hydrological Simulations with the NCUDWM Distributed Watershed Model

    Science.gov (United States)

    Sung, R.; Li, M.

    2009-12-01

    The object of this study is to investigate the responses with which temporal resolutions of rainfall inputs shape the character of continuous hydrological simulations of distributed watershed models. A fully distributed watershed model, NCUDWM, has been developed for resolving watershed hydrological responses in a variety of spatial and temporal scales. The model interactively coupled three modules of 1-D river flow, 2-D surface runoff, and 3-D variable-saturated subsurface flow. The river flow is simulated by the 1-D diffusive wave approach for each river segment with the conservation of mass and the continuity of stage for river junctions. The surface runoff is simulated by the 2-D diffusive wave approach and eight flow directions are allowed for runoff in/out of each surface grid. The interactions between river flow and surface runoff is determined by the continuity of stage and the conservation of mass when water of two regimes are connected and stage differences exist. Daily evapotranspiration is estimated by multiplying the potential evapotranspiration, either prescribed or computed, by the crop coefficient determined from land use. The subsurface flow is a quasi 3-D approach, including soil moisture movements in the vertical direction and groundwater flows in the horizontal direction described by the Darcy’s law. The interactions between subsurface water and surface water (river and surface runoff) is described by the direct connection approach that flux and head continuities are conserved. This study examines hourly and daily flow simulations by NCUDWM with observed daily precipitations embedded with hourly precipitations for extreme events. The study site is the Shihmen Reservoir watershed (catchment area: 736 km2; elevations: 135-3529 m) in northern Taiwan and a yearly long simulation was performed for 2001. The first run was performed by merely providing daily precipitations in 2001. The second run was conducted by considering hourly precipitations of

  10. Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook

    Science.gov (United States)

    Huning, L. S.; Margulis, S. A.

    2014-12-01

    Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated

  11. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds

    Science.gov (United States)

    Although defined hydrologically as a drainage basin, watersheds are systems that physically link the individual social and ecological attributes that comprise them. Hence the structure, function, and feedback systems of watersheds are dependent on interactions between these soci...

  12. Workshop to transfer VELMA watershed model results to ...

    Science.gov (United States)

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on streamflow, stream temperature, and other habitat characteristics affecting threatened salmon populations in the 100 square mile Tolt River watershed in Washington state. To date, the WED group has fully calibrated the watershed model to simulate Tolt River flows with a high degree of accuracy under current and historical conditions and practices, and is in the process of simulating long-term responses to specific watershed restoration practices conducted by the Snoqualmie Tribe and partners. On July 20-21 WED Researchers Bob McKane, Allen Brookes and ORISE Fellow Jonathan Halama will be attending a workshop at the Tolt River site in Carnation, WA, to present and discuss modeling results with the Snoqualmie Tribe and other Tolt River watershed stakeholders and land managers, including the Washington Departments of Ecology and Natural Resources, U.S. Forest Service, City of Seattle, King County, and representatives of the Northwest Indian Fisheries Commission. The workshop is being co-organized by the Snoqualmie Tribe, EPA Region 10 and WED. The purpose of this 2-day workshop is two-fold. First, on Day 1, the modeling team will perform its second site visit to the watershed, this time focus

  13. Watershed modeling tools and data for prognostic and diagnostic

    Science.gov (United States)

    Chambel-Leitao, P.; Brito, D.; Neves, R.

    2009-04-01

    -572 Borgvang, S-A. & Selvik, J.S., 2000, eds. Development of HARP Guidelines - Harmonised Quantification and Reporting Procedure for Nutrients. SFT Report 1759/2000. ISBN 82-7655-401-6. 179 pp. Chambel-Leitão P. (2008) Load and flow estimation: HARP-NUT guidelines and SWAT model description. In Perspectives on Integrated Coastal Zone Management in South America R Neves, J Baretta & M Mateus (eds.). IST Press, Lisbon, Portugal. (ISBN: 978-972-8469-74-0) Chambel-Leitão P. Sampaio. A., Almeida, P. (2008) Load and flow estimation in Santos watersheds. In Perspectives on Integrated Coastal Zone Management in South America R Neves, J Baretta & M Mateus (eds.). IST Press, Lisbon, Portugal. (ISBN: 978-972-8469-74-0) Chambel-Leitão P., F. Braunschweig, L. Fernandes, R. Neves, P. Galvão. (2007) Integration of MOHID model and tools with SWAT model, submitted to the Proceedings of the, 4th International SWAT Conference, July 2-6 2007. Coelho H., Silva A., P. Chambel-Leitão, Obermann M. (2008) On The Origin Of Cyanobacteria Blooms In The Enxoé Reservoir. 13th World Water Congress, Montpellier, France Galvão P., Chambel-Leitão, P., P. Leitão, R. Neves. (2004a) A different approach to the modified Picard method for water flow in variably saturated media. Computational Methods in Water Resources. Chapel Hill, North Carolina USA Galvão P., Neves R., Silva A., Chambel-Leitão P. & F. Braunchweig (2004b) Integrated Watershed Modeling. Proceedings of MERIS User Workshop ESA-ESRIN, Frascati, Italy May 2004. Neves R., Galvao P., Braunschewig F.Chambel-Leitão P. (2007) New Approaches to Integrated Watershed Modeling. Proceedings of SPS (NFA) 5th Workshop on Sustainable Use And Development Of Watersheds For Human Security And Peace October 22-26, 2007 Istanbul, TURKEY Schoumans, O.F. & Silgram, M. (eds.), 2003. Review and literature evaluation of Quantification Tools for the assessment of nutrient losses at catchment scale. EUROHARP report 1-2003, NIVA report SNO 4739-2003, ISBN 82

  14. Prioritizing Restoration in the Hangman Creek Watershed: Predicting Baseflow through Sub-basin Modeling

    Science.gov (United States)

    Navickis-Brasch, A. S.; Fiedler, F. R.

    2013-12-01

    Land use changes since European settlement have significantly impaired the beneficial uses of Coeur d'Alene (CDA) Tribe water bodies in the Hangman Creek watershed. The cumulative impacts have resulted in a 303 (d) designation by the Environmental Protection Agency (EPA), extirpated the only salmon run on the reservation, and reduced tributary connectivity by isolating many native fish populations. Considering salmon were an essential part of tribal identity and cultural activities, the tribe initiated a 100-year management plan to restore the 155,000-acre portion of the Hangman Creek watershed located on the CDA reservation. The restoration management plan focuses on sustaining subsistence and cultural activities by reestablishing stream connectivity and providing sustainable aquatic habitats as well as restoring watershed processes and improving water quality. Ultimately, the restoration goal is to improve the habitat suitability of Hangman Creek for the eventual return of salmon. To accomplish these goals, it is essential to prioritize and sequence activities that most effectively support restoration. While watershed modeling provides a commonly accepted holistic approach to simulating watershed responses, it appears the effectiveness of models in predicting restoration success, particularly with respect to the effects of restoration on baseflow, have not been well documented. In addition, creating a representative watershed model capable of accounting for a watershed scale spatial and temporal variability generally requires extensive field measurements. This presents a challenge for developing a model of Hangman Creek, since the watershed is mostly ungauged with only limited data available at a few monitoring sites. Our approach to developing a restoration prioritization plan is to first model a subbasin in the watershed with similar characteristics and restoration goals, then utilize the subbasin model to project future baseflow responses in the larger

  15. Uncertainty analysis for complex watershed water quality models: the parameter identifiability problem

    Science.gov (United States)

    Han, F.; Zheng, Y.

    2012-12-01

    Watershed-scale water quality simulation using distributed models like the Soil and Water Assessment Tool (SWAT) usually involves significant uncertainty. The uncertainty needs to be appropriately quantified if the simulation is used to support management practices. Many uncertainty analysis (UA) approaches have been developed for watershed hydrologic models, but their applicability to watershed water quality models, which are more complex, has not been well investigated. This study applied a Markov chain Monte Carlo (MCMC) approach, DiffeRential Evolution Adaptive Metropolis algorithm (DREAM), to the SWAT model. The sediment and total nitrogen pollution in the Newport Bay watershed (Southern California) was used as a case study. Different error assumptions were tested. The major findings include: 1) in the water quality simulation, many parameters are non-identifiable due to different causes; 2) the existence of identifiability seriously reduces the efficiency of the MCMC algorithm, and distorts the posterior distributions of the non-identifiable parameters, although the uncertainty band produced by the algorithm does not change much if enough samples are obtained. It was concluded that a sensitivity analysis (SA) followed by an identifiability analysis is necessary to reduce the non-identifiability, and enhances the applicability of a Bayesian UA approach to complex watershed water quality models. In addition, the analysis on the different causes of non-identifiablity provides insights into model tradeoffs between complexity and performance.

  16. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA.

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A; Kim, Joon Ha; Kim, Jung-Woo; Park, Mi-Hyun

    2012-10-01

    This study assessed fecal coliform contamination in the Wachusett Reservoir Watershed in Massachusetts, USA using Soil and Water Assessment Tool (SWAT) because bacteria are one of the major water quality parameters of concern. The bacteria subroutine in SWAT, considering in-stream bacteria die-off only, was modified in this study to include solar radiation-associated die-off and the contribution of wildlife. The result of sensitivity analysis demonstrates that solar radiation is one of the most significant fate factors of fecal coliform. A water temperature-associated function to represent the contribution of beaver activity in the watershed to fecal contamination improved prediction accuracy. The modified SWAT model provides an improved estimate of bacteria from the watershed. Our approach will be useful for simulating bacterial concentrations to provide predictive and reliable information of fecal contamination thus facilitating the implementation of effective watershed management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A modeling approach to evaluate impacts of changing irrigation and cropping systems on reducing groundwater depletion in the Calera watershed, Zacatecas, Mexico

    Science.gov (United States)

    Groundwater is the main source of water in the semi-arid Calera watershed, located in Zacatecas State, Mexico. Due to increasing population, industrial growth, and increased irrigation, groundwater extraction exceeds recharge rates, so evaluation of new policy, technology, and management options is ...

  18. Physically-Based Distributed-Parameter Hydrologic Modeling of the Bull Creek Watershed, Austin, Texas

    Science.gov (United States)

    Sparks, L. B.; Sharif, H. O.; French, R. H.

    2007-05-01

    Recent advances in computing power, data storage and the increased availability of spatially distributed data sets have encouraged research into the benefits and potential applications of physically-based, distributed hydrologic models. Physically-based, distributed parameter, structured grid models simulate watershed processes using physics-based equations, such as energy, momentum and continuity. Hydrologic parameters are specified for each grid cell within the model domain in an effort to best represent the spatial variability of watershed characteristics. The intent of this study is to contribute to the ongoing effort to evaluate the physically-based, distributing modeling approach for hydrologic study, flood forecasting and other applications. The hydrology of a partially urbanized watershed located in Austin, Texas is simulated using the physically-based, distributed parameter model Surface Subsurface Hydrologic Analysis (GSSHA). GIS-based data sets, collected from publicly available sources and the City of Austin Watershed Protection Division, were processed using ArcGIS version 9.1 and the Watershed Modeling System graphical modeling environment. NEXRAD precipitation data for three significant rain events were processed and quality-controlled using rain-gauge observations. Model-generated hydrographs for these events were compared to observed flow data at a USGS flow gage located at the basin outlet.

  19. Modeling rock weathering in small watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; van der Weijden, C.H.|info:eu-repo/dai/nl/06836816X

    2014-01-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and

  20. Pataha Creek Model Watershed : 1999 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2000-10-01

    The projects outlined in detail on the attached project reports are a summary of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. Up until last year, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and was the main focus of the implementation phase of the watershed plan. These practices are the main focus of the watershed plan to reduce the majority of the sediment entering the stream. However, the watershed stream evaluation team used in the watershed analysis determined that there were problems along the Pataha Creek that needed to be addressed that would add further protection to the banks and therefore a further reduction of sedimentation into the stream. 1999 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. In stream work was not addressed this year because of the costs associated with these projects and the low impact of the sediment issue concerning Pataha Creeks impact on Chinook Salmon in the Tucannon River.

  1. Bridging the gap between uncertainty analysis for complex watershed models and decision-making for watershed-scale water management

    Science.gov (United States)

    Zheng, Y.; Han, F.; Wu, B.

    2013-12-01

    Process-based, spatially distributed and dynamic models provide desirable resolutions to watershed-scale water management. However, their reliability in solving real management problems has been seriously questioned, since the model simulation usually involves significant uncertainty with complicated origins. Uncertainty analysis (UA) for complex hydrological models has been a hot topic in the past decade, and a variety of UA approaches have been developed, but mostly in a theoretical setting. Whether and how a UA could benefit real management decisions remains to be critical questions. We have conducted a series of studies to investigate the applicability of classic approaches, such as GLUE and Markov Chain Monte Carlo (MCMC) methods, in real management settings, unravel the difficulties encountered by such methods, and tailor the methods to better serve the management. Frameworks and new algorithms, such as Probabilistic Collocation Method (PCM)-based approaches, were also proposed for specific management issues. This presentation summarize our past and ongoing studies on the role of UA in real water management. Challenges and potential strategies to bridge the gap between UA for complex models and decision-making for management will be discussed. Future directions for the research in this field will also be suggested. Two common water management settings were examined. One is the Total Maximum Daily Loads (TMDLs) management for surface water quality protection. The other is integrated water resources management for watershed sustainability. For the first setting, nutrients and pesticides TMDLs in the Newport Bay Watershed (Orange Country, California, USA) were discussed. It is a highly urbanized region with a semi-arid Mediterranean climate, typical of the western U.S. For the second setting, the water resources management in the Zhangye Basin (the midstream part of Heihe Baisn, China), where the famous 'Silk Road' came through, was investigated. The Zhangye

  2. An Effective Parameter Screening Strategy for High Dimensional Watershed Models

    Science.gov (United States)

    Khare, Y. P.; Martinez, C. J.; Munoz-Carpena, R.

    2014-12-01

    Watershed simulation models can assess the impacts of natural and anthropogenic disturbances on natural systems. These models have become important tools for tackling a range of water resources problems through their implementation in the formulation and evaluation of Best Management Practices, Total Maximum Daily Loads, and Basin Management Action Plans. For accurate applications of watershed models they need to be thoroughly evaluated through global uncertainty and sensitivity analyses (UA/SA). However, due to the high dimensionality of these models such evaluation becomes extremely time- and resource-consuming. Parameter screening, the qualitative separation of important parameters, has been suggested as an essential step before applying rigorous evaluation techniques such as the Sobol' and Fourier Amplitude Sensitivity Test (FAST) methods in the UA/SA framework. The method of elementary effects (EE) (Morris, 1991) is one of the most widely used screening methodologies. Some of the common parameter sampling strategies for EE, e.g. Optimized Trajectories [OT] (Campolongo et al., 2007) and Modified Optimized Trajectories [MOT] (Ruano et al., 2012), suffer from inconsistencies in the generated parameter distributions, infeasible sample generation time, etc. In this work, we have formulated a new parameter sampling strategy - Sampling for Uniformity (SU) - for parameter screening which is based on the principles of the uniformity of the generated parameter distributions and the spread of the parameter sample. A rigorous multi-criteria evaluation (time, distribution, spread and screening efficiency) of OT, MOT, and SU indicated that SU is superior to other sampling strategies. Comparison of the EE-based parameter importance rankings with those of Sobol' helped to quantify the qualitativeness of the EE parameter screening approach, reinforcing the fact that one should use EE only to reduce the resource burden required by FAST/Sobol' analyses but not to replace it.

  3. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    Science.gov (United States)

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  4. Approaches to stream solute load estimation for solutes with varying dynamics from five diverse small watershed

    Science.gov (United States)

    Aulenbach, Brent T.; Burns, Douglas A.; Shanley, James B.; Yanai, Ruth D.; Bae, Kikang; Wild, Adam; Yang, Yang; Yi, Dong

    2016-01-01

    Estimating streamwater solute loads is a central objective of many water-quality monitoring and research studies, as loads are used to compare with atmospheric inputs, to infer biogeochemical processes, and to assess whether water quality is improving or degrading. In this study, we evaluate loads and associated errors to determine the best load estimation technique among three methods (a period-weighted approach, the regression-model method, and the composite method) based on a solute's concentration dynamics and sampling frequency. We evaluated a broad range of varying concentration dynamics with stream flow and season using four dissolved solutes (sulfate, silica, nitrate, and dissolved organic carbon) at five diverse small watersheds (Sleepers River Research Watershed, VT; Hubbard Brook Experimental Forest, NH; Biscuit Brook Watershed, NY; Panola Mountain Research Watershed, GA; and Río Mameyes Watershed, PR) with fairly high-frequency sampling during a 10- to 11-yr period. Data sets with three different sampling frequencies were derived from the full data set at each site (weekly plus storm/snowmelt events, weekly, and monthly) and errors in loads were assessed for the study period, annually, and monthly. For solutes that had a moderate to strong concentration–discharge relation, the composite method performed best, unless the autocorrelation of the model residuals was solutes that had a nonexistent or weak concentration–discharge relation (modelR2 solutes with the strongest concentration–discharge relations. Sample and regression model diagnostics could be used to approximate overall accuracies and annual precisions. For the period-weighed approach, errors were lower when the variance in concentrations was lower, the degree of autocorrelation in the concentrations was higher, and sampling frequency was higher. The period-weighted approach was most sensitive to sampling frequency. For the regression-model and composite methods, errors were lower when

  5. Watershed Modeling to Assess the Sensitivity of Streamflow ...

    Science.gov (United States)

    EPA has released for independent external peer review and public comment a draft report titled, Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds. This is a draft document that intends to characterize the sensitivity of streamflow, nutrient (nitrogen and phosphorus), and sediment loading in different regions of the nation to a range of plausible mid-21st Century climate change and urban development scenarios. Watershed modeling was conducted in 20 large, U.S. watersheds to assess the sensitivity of streamflow, nutrient (nitrogen and phosphorus), and sediment loading to a range of plausible mid-21st Century climate change and urban development scenarios in different regions of the nation. This draft report provides a summary of simulation results. The model simulations characterize the sensitivity of streamflow, nutrient (nitrogen and phosphorus), and sediment loading to a range of plausible mid-21st Century climate change and urban development. Results show a high degree of variability in the response throughout the nation. Results also provide an improved understanding of methodological challenges associated with integrating existing tools and datasets to address these scientific questions. This provides guidance for improving how existing models and datasets can be used for assessing climate change impacts on watersheds. Projected changes in cli

  6. A Sediment Budget Case Study: Comparing Watershed Scale Erosion Estimates to Modeled and Empirical Sediment Loads

    Science.gov (United States)

    McDavitt, B.; O'Connor, M.

    2003-12-01

    The Pacific Lumber Company Habitat Conservation Plan requires watershed analyses to be conducted on their property. This paper summarizes a portion of that analysis focusing on erosion and sedimentation processes and rates coupled with downstream sediment routing in the Freshwater Creek watershed in northwest California. Watershed scale erosion sources from hillslopes, roads, and channel banks were quantified using field surveys, aerial photo interpretation, and empirical modeling approaches for different elements of the study. Sediment transport rates for bedload were modeled, and sediment transport rates for suspended sediment were estimated based on size distribution of sediment inputs in relation to sizes transported in suspension. Recent short-term, high-quality estimates of suspended sediment yield that a community watershed group collected with technical assistance from the US Forest Service were used to validate the resulting sediment budget. Bedload yield data from an adjacent watershed, Jacoby Creek, provided another check on the sediment budget. The sediment budget techniques and bedload routing models used for this study generated sediment yield estimates that are in good agreement with available data. These results suggest that sediment budget techniques that require moderate levels of fieldwork can be used to provide relatively accurate technical assessments. Ongoing monitoring of sediment sources coupled with sediment routing models and reach scale field data allows for predictions to be made regarding in-channel sediment storage.

  7. Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds

    Science.gov (United States)

    Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.

    2009-01-01

    Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from

  8. Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China.

    Science.gov (United States)

    Hu, Maochuan; Sayama, Takahiro; Zhang, Xingqi; Tanaka, Kenji; Takara, Kaoru; Yang, Hong

    2017-05-15

    Low impact development (LID) has attracted growing attention as an important approach for urban flood mitigation. Most studies evaluating LID performance for mitigating floods focus on the changes of peak flow and runoff volume. This paper assessed the performance of LID practices for mitigating flood inundation hazards as retrofitting technologies in an urbanized watershed in Nanjing, China. The findings indicate that LID practices are effective for flood inundation mitigation at the watershed scale, and especially for reducing inundated areas with a high flood hazard risk. Various scenarios of LID implementation levels can reduce total inundated areas by 2%-17% and areas with a high flood hazard level by 6%-80%. Permeable pavement shows better performance than rainwater harvesting against mitigating urban waterlogging. The most efficient scenario is combined rainwater harvesting on rooftops with a cistern capacity of 78.5 mm and permeable pavement installed on 75% of non-busy roads and other impervious surfaces. Inundation modeling is an effective approach to obtaining the information necessary to guide decision-making for designing LID practices at watershed scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nitrate source apportionment in a subtropical watershed using Bayesian model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Han, Jiangpei; Xue, Jianlong; Zeng, Lingzao [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Shi, Jiachun, E-mail: jcshi@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Wu, Laosheng, E-mail: laowu@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Jiang, Yonghai [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012 (China)

    2013-10-01

    Nitrate (NO{sub 3}{sup −}) pollution in aquatic system is a worldwide problem. The temporal distribution pattern and sources of nitrate are of great concern for water quality. The nitrogen (N) cycling processes in a subtropical watershed located in Changxing County, Zhejiang Province, China were greatly influenced by the temporal variations of precipitation and temperature during the study period (September 2011 to July 2012). The highest NO{sub 3}{sup −} concentration in water was in May (wet season, mean ± SD = 17.45 ± 9.50 mg L{sup −1}) and the lowest concentration occurred in December (dry season, mean ± SD = 10.54 ± 6.28 mg L{sup −1}). Nevertheless, no water sample in the study area exceeds the WHO drinking water limit of 50 mg L{sup −1} NO{sub 3}{sup −}. Four sources of NO{sub 3}{sup −} (atmospheric deposition, AD; soil N, SN; synthetic fertilizer, SF; manure and sewage, M and S) were identified using both hydrochemical characteristics [Cl{sup −}, NO{sub 3}{sup −}, HCO{sub 3}{sup −}, SO{sub 4}{sup 2−}, Ca{sup 2+}, K{sup +}, Mg{sup 2+}, Na{sup +}, dissolved oxygen (DO)] and dual isotope approach (δ{sup 15}N–NO{sub 3}{sup −} and δ{sup 18}O–NO{sub 3}{sup −}). Both chemical and isotopic characteristics indicated that denitrification was not the main N cycling process in the study area. Using a Bayesian model (stable isotope analysis in R, SIAR), the contribution of each source was apportioned. Source apportionment results showed that source contributions differed significantly between the dry and wet season, AD and M and S contributed more in December than in May. In contrast, SN and SF contributed more NO{sub 3}{sup −} to water in May than that in December. M and S and SF were the major contributors in December and May, respectively. Moreover, the shortcomings and uncertainties of SIAR were discussed to provide implications for future works. With the assessment of temporal variation and sources of NO{sub 3}{sup −}, better

  10. Groundwater flow modeling of Kwa Ibo river watershed ...

    African Journals Online (AJOL)

    Potential aquifer zones earlier delineated using the geoelectrical resistivity soundings and well inventory in the area formed the basis for groundwater flow modeling. The watershed has been modeled with a grid of 65 rows x 43 columns and with two layers Lateral inflow from the north has been simulated with constant ...

  11. Pataha Creek Model Watershed : 1998 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    1999-12-01

    The projects outlined in detail on the attached project reports are a few of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. 1998 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek.

  12. A comparison of Gridded Quantile Mapping vs. Station Based Downscaling Approaches on Potential Hydrochemical Responses of Forested Watersheds to Climate Change Using a Dynamic Biogeochemical Model (PnET-BGC)

    Science.gov (United States)

    Pourmokhtarian, A.; Driscoll, C. T.; Campbell, J. L.; Hayhoe, K.

    2012-12-01

    Dynamic hydrochemical models are useful tools to understand and predict the interactive effects of climate change, atmospheric CO2, and atmospheric deposition on the hydrology and water quality of forested watersheds. Although application of these models for climate projections necessitates the use of climatic variables simulated by atmosphere-ocean general circulation models (AOGCMs) to determine inputs to drive model projections. Due to the coarse resolution of AOGCMs, outputs need to be downscaled to bridge the gap between coarse spatial resolution and higher resolution required for hydrochemical models. This research compares two different statistical downscaling approaches; Gridded Quantile Mapping (BCSD) and Station-based Daily Asynchronous Regression, and their effects on potential biogeochemical responses of forested watershed. In this study, we used the biogeochemical model, PnET-BGC, to assess, compare and contrast the effects of these two downscaling approaches on potential future changes in temperature, precipitation, solar radiation and atmospheric CO2 and their effects in projections of pools, concentrations, and fluxes of major elements at Hubbard Brook Experimental Forest in New Hampshire, U.S. Future emissions scenarios were developed from monthly output from three AOGCMs (HadCM3, GFDL, PCM) in conjunction with potential lower and upper bounds of projected atmospheric CO2 (550 and 970 ppm by 2099, respectively). The climate projections from both downscaling approaches indicate that over the 21st century, average air temperature will increase with simultaneous increases in annual average precipitation. The modeling results from both downscaling approaches suggest that climate change is projected to cause substantial temporal shifts in hydrologic and hydrochemistry patterns. The choice of downscaling approach had a major impact on the streamflow simulations, which was directly related to the ability of the downscaling approach to mimic observed

  13. A new watershed assessment framework for Nova Scotia: A high-level, integrated approach for regions without a dense network of monitoring stations

    Science.gov (United States)

    Sterling, Shannon M.; Garroway, Kevin; Guan, Yue; Ambrose, Sarah M.; Horne, Peter; Kennedy, Gavin W.

    2014-11-01

    High-level, integrated watershed assessments are a basic requirement for freshwater planning, as they create regional summaries of multiple environmental stressors for the prioritization of watershed conservation, restoration, monitoring, and mitigation. There is a heightened need for a high-level, integrated watershed assessment in Nova Scotia as it faces pressing watershed issues relating to acidification, soil erosion, acid rock drainage, eutrophication, and water withdrawals related to potential shale gas development. But because of the relative sparseness of the on-the-ground effects-based data, for example on water quality or fish assemblages, previously created approaches for integrated watershed assessment cannot be used. In a government/university collaboration, we developed a new approach that relies solely on easier-to-collect and more available exposure-based variables to perform the first high-level watershed assessment in Nova Scotia. In this assessment, a total of 295 watershed units were studied. We used Geographic Information Systems (GIS) to map and analyze 13 stressor variables that represent risks to aquatic environment (e.g., road/stream crossing density, acid rock drainage risk, surface water withdrawals, human land use, and dam density). We developed a model to link stressors with impacts to aquatic systems to serve as a basis for a watershed threat ranking system. Resource management activities performed by government and other stakeholders were also included in this analysis. Our assessment identifies the most threatened watersheds, enables informed comparisons among watersheds, and indicates where to focus resource management and monitoring efforts. Stakeholder communication tools produced by the NSWAP include a watershed atlas to communicate the assessment results to a broader audience, including policy makers and public stakeholders. This new framework for high-level watershed assessments provides a resource for other regions that also

  14. Improving model prediction reliability through enhanced representation of wetland soil processes and constrained model auto calibration - A paired watershed study

    Science.gov (United States)

    Sharifi, Amirreza; Lang, Megan W.; McCarty, Gregory W.; Sadeghi, Ali M.; Lee, Sangchul; Yen, Haw; Rabenhorst, Martin C.; Jeong, Jaehak; Yeo, In-Young

    2016-10-01

    Process based, distributed watershed models possess a large number of parameters that are not directly measured in field and need to be calibrated, in most cases through matching modeled in-stream fluxes with monitored data. Recently, concern has been raised regarding the reliability of this common calibration practice, because models that are deemed to be adequately calibrated based on commonly used metrics (e.g., Nash Sutcliffe efficiency) may not realistically represent intra-watershed responses or fluxes. Such shortcomings stem from the use of an evaluation criteria that only concerns the global in-stream responses of the model without investigating intra-watershed responses. In this study, we introduce a modification to the Soil and Water Assessment Tool (SWAT) model, and a new calibration technique that collectively reduce the chance of misrepresenting intra-watershed responses. The SWAT model was modified to better represent NO3 cycling in soils with various degrees of water holding capacity. The new calibration tool has the capacity to calibrate paired watersheds simultaneously within a single framework. It was found that when both proposed methodologies were applied jointly to two paired watersheds on the Delmarva Peninsula, the performance of the models as judged based on conventional metrics suffered, however, the intra-watershed responses (e.g., mass of NO3 lost to denitrification) in the two models automatically converged to realistic sums. This approach also demonstrates the capacity to spatially distinguish areas of high denitrification potential, an ability that has implications for improved management of prior converted wetlands under crop production and for identifying prominent areas for wetland restoration.

  15. Using Predictive Uncertainty Analysis to Assess Hydrologic Model Performance for a Watershed in Oregon

    Science.gov (United States)

    Brannan, K. M.; Somor, A.

    2016-12-01

    A variety of statistics are used to assess watershed model performance but these statistics do not directly answer the question: what is the uncertainty of my prediction. Understanding predictive uncertainty is important when using a watershed model to develop a Total Maximum Daily Load (TMDL). TMDLs are a key component of the US Clean Water Act and specify the amount of a pollutant that can enter a waterbody when the waterbody meets water quality criteria. TMDL developers use watershed models to estimate pollutant loads from nonpoint sources of pollution. We are developing a TMDL for bacteria impairments in a watershed in the Coastal Range of Oregon. We setup an HSPF model of the watershed and used the calibration software PEST to estimate HSPF hydrologic parameters and then perform predictive uncertainty analysis of stream flow. We used Monte-Carlo simulation to run the model with 1,000 different parameter sets and assess predictive uncertainty. In order to reduce the chance of specious parameter sets, we accounted for the relationships among parameter values by using mathematically-based regularization techniques and an estimate of the parameter covariance when generating random parameter sets. We used a novel approach to select flow data for predictive uncertainty analysis. We set aside flow data that occurred on days that bacteria samples were collected. We did not use these flows in the estimation of the model parameters. We calculated a percent uncertainty for each flow observation based 1,000 model runs. We also used several methods to visualize results with an emphasis on making the data accessible to both technical and general audiences. We will use the predictive uncertainty estimates in the next phase of our work, simulating bacteria fate and transport in the watershed.

  16. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales

    Science.gov (United States)

    Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher-resolution data sources are...

  17. Watershed Development in India : An Approach Evolving through Experience

    OpenAIRE

    Symle, Jim; Lobo, Crispino; Milne, Grant; Williams, Melissa

    2014-01-01

    This report analyses the experiences and lessons from three World Bank-Supported watershed development projects in the Indian states of Karnataka, Himachal Pradesh, and Uttarakhand.5 The primary reason for the analysis was to guide the development and execution of new watershed programs in India, including new Bank-supported state-level operations in Uttarakhand and Karnataka, and a propos...

  18. Mid-Holocene Hydrologic Model of the Shingobee Watershed, Minnesota

    Science.gov (United States)

    Filby, Sheryl K.; Locke, Sharon M.; Person, Mark A.; Winter, Thomas C.; Rosenberry, Donald O.; Nieber, John L.; Gutowski, William J.; Ito, Emi

    2002-11-01

    A hydrologic model of the Shingobee Watershed in north-central Minnesota was developed to reconstruct mid-Holocene paleo-lake levels for Williams Lake, a surface-water body located in the southern portion of the watershed. Hydrologic parameters for the model were first estimated in a calibration exercise using a 9-yr historical record (1990-1998) of climatic and hydrologic stresses. The model reproduced observed temporal and spatial trends in surface/groundwater levels across the watershed. Mid-Holocene aquifer and lake levels were then reconstructed using two paleoclimatic data sets: CCM1 atmospheric general circulation model output and pollen-transfer functions using sediment core data from Williams Lake. Calculated paleo-lake levels based on pollen-derived paleoclimatic reconstructions indicated a 3.5-m drop in simulated lake levels and were in good agreement with the position of mid-Holocene beach sands observed in a Williams Lake sediment core transect. However, calculated paleolake levels based on CCM1 climate forcing produced only a 0.05-m drop in lake levels. We found that decreases in winter precipitation rather than temperature increases had the largest effect on simulated mid-Holocene lake levels. The study illustrates how watershed models can be used to critically evaluate paleoclimatic reconstructions by integrating geologic, climatic, limnologic, and hydrogeologic data sets.

  19. A Workflow to Model Microbial Loadings in Watersheds

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  20. A Workflow to Model Microbial Loadings in Watersheds (proceedings)

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  1. Modelling and analyzing the watershed dynamics using Cellular ...

    Indian Academy of Sciences (India)

    Improper practices of land use and land cover (LULC) including deforestation, expansion of agriculture and infrastructure development are deteriorating watershed conditions. Here, we have utilized remote sensing and GIS tools to study LULC dynamics using Cellular Automata (CA)–Markov model and predicted the future ...

  2. Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; Weijden, C.H. van der

    2012-01-01

    Weathering rate models designed for watersheds combine chemical data of discharging waters with morphologic and hydrologic parameters of the catchments. At the spring watershed scale, evaluation of morphologic parameters is subjective due to difficulties in conceiving the catchment geometry.

  3. Kamchia watershed groundwater recharge assessment by the CLM3 model

    Directory of Open Access Journals (Sweden)

    Nitcheva Olga

    2018-01-01

    Full Text Available Estimating groundwater recharge is an important part of the water resources evaluation. In spite of the numerous existing methods it continues to be not easy value to quantify. This is due to its dependence on many meteorological, hydrogeological, soil type and cover conditions and the impossibility for direct measurement. Employment of hydrological models in fact directly calculates the influence of the above cited natural factors. The Community Land Model (CLM3 being loaded with all land featuring data in global scale, including an adequate soil filtration process simulation by the Richards equation, together with the possibility for input of NCEP/NCAR Reanalyses database, featuring the meteorological effect, gives an opportunity to avoid to great extent the difficulties in groundwater (GW recharge estimation. The paper presents the results from an experiment concerning GW recharge monthly estimation during 2013, worked out for the Kamchia river watershed in Bulgaria. The computed monthly and annual values are presented on GIS maps and are compared with existing assessments made by other methods. It is proved the good approach and the applicability of the method.

  4. USGS perspectives on an integrated approach to watershed and coastal management

    Science.gov (United States)

    Larsen, Matthew C.; Hamilton, Pixie A.; Haines, John W.; Mason, Jr., Robert R.

    2010-01-01

    The writers discuss three critically important steps necessary for achieving the goal for improved integrated approaches on watershed and coastal protection and management. These steps involve modernization of monitoring networks, creation of common data and web services infrastructures, and development of modeling, assessment, and research tools. Long-term monitoring is needed for tracking the effectiveness approaches for controlling land-based sources of nutrients, contaminants, and invasive species. The integration of mapping and monitoring with conceptual and mathematical models, and multidisciplinary assessments is important in making well-informed decisions. Moreover, a better integrated data network is essential for mapping, statistical, and modeling applications, and timely dissemination of data and information products to a broad community of users.

  5. Distributed modeling of radiocesium washoff from the experimental watershed plots of the Fukushima fallout zone

    Science.gov (United States)

    Kivva, Sergei; Zheleznyak, Mark; Konoplev, Alexei; Nanba, Kenji; Onda, Yuichi; Wakiyama Yoshifumi Wakiyama, Yoshifumi

    2015-04-01

    The distributed hydrological "rainfall- runoff" models provide possibilities of the physically based simulation of surface and subsurface flow on watersheds based on the GIS processed data. The success of such modeling approaches for the predictions of the runoff and soil erosion provides a basis for the implementation of the distributed models of the radionuclide washoff from the watersheds. The field studies provided on the Chernobyl and Fukushima catchments provides a unique data sets for the comparative testing and improvements of the modeling tools for the watersheds located in the areas of the very different geographical and hydro-meteorological condition The set of USLE experimental plots has been established by CRIED, University of Tsukuba after the Fukushima accident to study soil erosion and 137Cs wash off from the watersheds (Onda et al, 2014). The distributed watershed models of surface and subsurface flow, sediment and radionuclide transport has been used to simulate the radionuclide transport in the basin Dnieper River, Ukraine and the watersheds of Prefecture Fuksuhima. DHSVM-R is extension of the distributed hydrological model DHSVM (Lettenmayer, Wigmosta et al, 1996-2014) by the including into it the module of the watershed radionuclide transport. DHSVM is a physically based, distributed hydrology-vegetation model for complex terrain based on the numerical solution of the network of one-dimensional equations. The surface flow submodel of DHSMV has been modified: four-directions schematization for the model's cells has been replaced by the eight-directions scheme, more numerically efficient finite -differences scheme was implemented. The new module of radionuclide wash-off from catchment and transport via stream network in soluble phase and on suspended sediments including bottom-water exchange processes was developed for DHSMV-R. DHSVM-R was implemented recently within Swedish- Ukrainian ENSURE project for the modeling of 234U wash-off from the

  6. Applying Physically Representative Watershed Modelling to Assess Peak and Low Flow Response to Timber Harvest: Application for Watershed Assessments

    Science.gov (United States)

    MacDonald, R. J.; Anderson, A.; Silins, U.; Craig, J. R.

    2014-12-01

    Forest harvesting, insects, disease, wildfire, and other disturbances can combine with climate change to cause unknown changes to the amount and timing of streamflow from critical forested watersheds. Southern Alberta forest and alpine areas provide downstream water supply for agriculture and water utilities that supply approximately two thirds of the Alberta population. This project uses datasets from intensely monitored study watersheds and hydrological model platforms to extend our understanding of how disturbances and climate change may impact various aspects of the streamflow regime that are of importance to downstream users. The objectives are 1) to use the model output of watershed response to disturbances to inform assessments of forested watersheds in the region, and 2) to investigate the use of a new flexible modelling platform as a tool for detailed watershed assessments and hypothesis testing. Here we applied the RAVEN hydrological modelling framework to quantify changes in key hydrological processes driving peak and low flows in a headwater catchment along the eastern slopes of the Canadian Rocky Mountains. The model was applied to simulate the period from 2006 to 2011 using data from the Star Creek watershed in southwestern Alberta. The representation of relevant hydrological processes was verified using snow survey, meteorological, and vegetation data collected through the Southern Rockies Watershed Project. Timber harvest scenarios were developed to estimate the effects of cut levels ranging from 20 to 100% over a range of elevations, slopes, and aspects. We quantified changes in the timing and magnitude of low flow and high flow events during the 2006 to 2011 period. Future work will assess changes in the probability of low and high flow events using a long-term meteorological record. This modelling framework enables relevant processes at the watershed scale to be accounted in a physically robust and computational efficient manner. Hydrologic

  7. Using the HSPF and SWMM Models in a High Pervious Watershed and Estimating Their Parameter Sensitivity

    OpenAIRE

    Lin-Yi Tsai; Chi-Feng Chen; Chi-Hsuan Fan; Jen-Yang Lin

    2017-01-01

    Models are necessary tools for watershed management. However, applying watershed models is time consuming and requires technical knowledge, including model selection and validation. The objective of this study is to assess two commonly used watershed models and their parameter sensitivity to reduce model loadings and to gain a better understanding of the model performances. The Hydrological Simulation Program-Fortran (HSPF) model and Storm Water Management Model (SWMM) were applied to a mostl...

  8. On simulating non-point source pollution with a fully coupled model in the agricultural watershed

    Science.gov (United States)

    Xiang, L.; Yu, Z.; Chen, L.

    2012-04-01

    The non-point source pollution is a major threat for water security in agricultural watersheds. The physically-based coupled hydrologic model is used in this study to examine the hydrologic and solute (N, P) budget for the Meilin watershed, east China with an area of 0.737km2, and to evaluate the solute (N, P) transport along various pathways at a watershed scale. With the past and ongoing field studies, different factors (i.e., soil texture, land-use/land-cover, and micro-topography) affecting hydrologic processes were observed and estimated. Based on those analyses, the model calibration was conducted by using a multi-objective approach while the objectives include streamflow, soil moisture, groundwater level, solute concentration, etc. Numerical experiments were designed to elucidate the dynamics of watershed hydrologic processes as well as the interactive relationship on variables in land surface, unsaturated zone, and groundwater. Several scenes of storm events were simulated to further discuss the water budget and non-source pollution drainage responding to land-use, micro-topography variety and surface/subsurface interaction processes. Arising from the simulations, the observed and calculated subsurface hydraulic heads, base flow discharge and the spatial and temporal patterns of the surface drainage network are quantified. The soil texture, land cover, and topography affecting different hydrologic processes and their inter-relationship are demonstrated. The overflow of various saturate areas (VSA) contributing to the stream flow, exchange fluxes between surface and subsurface hydrologic regimes and solute drainage responding different land-use are quantified. This work will help better understand physically-coupled flow and solute transport in the watershed and enhance the quality of watershed flow and solute simulations.

  9. Nitrate source apportionment in a subtropical watershed using Bayesian model.

    Science.gov (United States)

    Yang, Liping; Han, Jiangpei; Xue, Jianlong; Zeng, Lingzao; Shi, Jiachun; Wu, Laosheng; Jiang, Yonghai

    2013-10-01

    Nitrate (NO3-) pollution in aquatic system is a worldwide problem. The temporal distribution pattern and sources of nitrate are of great concern for water quality. The nitrogen (N) cycling processes in a subtropical watershed located in Changxing County, Zhejiang Province, China were greatly influenced by the temporal variations of precipitation and temperature during the study period (September 2011 to July 2012). The highest NO3- concentration in water was in May (wet season, mean±SD=17.45±9.50 mg L(-1)) and the lowest concentration occurred in December (dry season, mean±SD=10.54±6.28 mg L(-1)). Nevertheless, no water sample in the study area exceeds the WHO drinking water limit of 50 mg L(-1) NO3-. Four sources of NO3(-) (atmospheric deposition, AD; soil N, SN; synthetic fertilizer, SF; manure & sewage, M&S) were identified using both hydrochemical characteristics [Cl-, NO3-, HCO3-, SO42-, Ca2+, K+, Mg2+, Na+, dissolved oxygen (DO)] and dual isotope approach (δ15N-NO3- and δ(18)O-NO3-). Both chemical and isotopic characteristics indicated that denitrification was not the main N cycling process in the study area. Using a Bayesian model (stable isotope analysis in R, SIAR), the contribution of each source was apportioned. Source apportionment results showed that source contributions differed significantly between the dry and wet season, AD and M&S contributed more in December than in May. In contrast, SN and SF contributed more NO3- to water in May than that in December. M&S and SF were the major contributors in December and May, respectively. Moreover, the shortcomings and uncertainties of SIAR were discussed to provide implications for future works. With the assessment of temporal variation and sources of NO3-, better agricultural management practices and sewage disposal programs can be implemented to sustain water quality in subtropical watersheds. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Using the HSPF and SWMM Models in a High Pervious Watershed and Estimating Their Parameter Sensitivity

    National Research Council Canada - National Science Library

    Lin-Yi Tsai; Chi-Feng Chen; Chi-Hsuan Fan; Jen-Yang Lin

    2017-01-01

    .... The Hydrological Simulation Program-Fortran (HSPF) model and Storm Water Management Model (SWMM) were applied to a mostly forested Taiwanese reservoir watershed with pollution from tea plantations...

  11. Simulating hydrological responses with a physically based model in a mountainous watershed

    Directory of Open Access Journals (Sweden)

    Q. Xu

    2015-06-01

    Full Text Available A physical and distributed approach was proposed by Reggiani et al. (1998 to describe the hydrological responses at the catchment scale. The rigorous balance equations for mass, momentum, energy and entropy are applied on the divided spatial domains which are called Representative Elementary Watershed (REW. Based on the 2nd law of thermodynamics, Reggiani (1999 put forward several constitutive relations of hydrological processes. Associated with the above equations, the framework of a physically based distributed hydrological model was established. The crucial step for successfully applying this approach is to develop physically based closure relations for these terms and simplify the set of equations. The paper showed how a theoretical hydrological model based on the REW method was applied to prosecute the hydrological response simulation for a humid watershed. The established model was used to carry on the long-term (daily runoff forecasting and short-term (runoff simulation of storm event hydrological simulation in the studied watershed and the simulated results were analysed. These results and analysis proved that this physically based distributed hydrological model can produce satisfied simulation results and describe the hydrological responses correctly. Finally, several aspects to improve the model demonstrated by the results and analysis were put forward which would be carried out in the future.

  12. Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: an integrated GIS-based approach

    Science.gov (United States)

    Banerjee, Abhishek; Singh, Prafull; Pratap, Kamleshwar

    2017-07-01

    The quantitative analysis of the watershed is vital to understand the hydrological setup of any terrain. The present study deals with quantitative evaluation of Swarnrekha Watershed, Madhya Pradesh, India based on IRS satellite data and SRTM DEM. Morphometric parameters of the watershed were evaluated by computations of linear and areal aspect using standard methodology in GIS environment. ARC GIS software was utilized for morphometric component analysis and delineation of the watershed using SRTM digital elevation model (DEM). The watershed is drained by a fifth-order river and shown a dendritic drainage pattern, which is a sign of the homogeneity in texture and lack of structural control. The drainage density in the area has been found to be low which indicates that the area possesses highly permeable soils and low relief. The bifurcation ratio varies from 3.00 to 5.60 and elongation ratio is 0.518 which reveals that the basin belongs to the elongated shape basin and has the potential for water management. The main objective of the paper is to extract the morphometric parameters of the watershed and their relevance in water resource evaluation management. The results observed from this work would be useful in categorization of watershed for future water management and selection recharge structure in the area.

  13. Identification of drought in Dhalai river watershed using MCDM and ANN models

    Science.gov (United States)

    Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  14. The Chena River Watershed Hydrology Model

    Science.gov (United States)

    2012-04-01

    during the season as the albedo and density of the snow change. During rainy condi- tions, snow melts at a faster rate because heat from the liquid...values for evapotranspiration and the air temperature lapse rate were estimated using the available data. A temperature index snow model was developed...and calibrated with existing snow water equivalent data. The HEC- HMS model was calibrated based on 3 years of continuous simulation between 1 April

  15. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach

    Directory of Open Access Journals (Sweden)

    J. D. Valiantzas

    2012-03-01

    Full Text Available The Soil Conservation Service Curve Number (SCS-CN approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one, a clear physical reasoning for them is presented.

  16. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Dave

    1995-04-01

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  17. Using Bayesian hierarchical models to better understand nitrate sources and sinks in agricultural watersheds.

    Science.gov (United States)

    Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan

    2016-11-15

    Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R(2) = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope

  18. From eutrophic to mesotrophic: modelling watershed management scenarios to change the trophic status of a reservoir.

    Science.gov (United States)

    Mateus, Marcos; Almeida, Carina; Brito, David; Neves, Ramiro

    2014-03-12

    Management decisions related with water quality in lakes and reservoirs require a combined land-water processes study approach. This study reports on an integrated watershed-reservoir modeling methodology: the Soil and Water Assessment Tool (SWAT) model to estimate the nutrient input loads from the watershed, used afterwards as boundary conditions to the reservoir model, CE-QUAL-W2. The integrated modeling system was applied to the Torrão reservoir and drainage basin. The objective of the study was to quantify the total maximum input load that allows the reservoir to be classified as mesotrophic. Torrão reservoir is located in the Tâmega River, one of the most important tributaries of the Douro River in Portugal. The watershed is characterized by a variety of land uses and urban areas, accounting for a total Waste Water Treatment Plants (WWTP) discharge of ~100,000 p.e. According to the criteria defined by the National Water Institute (based on the WWTP Directive), the Torrão reservoir is classified as eutrophic. Model estimates show that a 10% reduction in nutrient loads will suffice to change the state to mesotrophic, and should target primarily WWTP effluents, but also act on diffuse sources. The method applied in this study should provide a basis for water environmental management decision-making.

  19. a deterministic model for predicting water yield from two different watersheds

    Directory of Open Access Journals (Sweden)

    Putu Sudira

    2013-07-01

    The final test of the adequacy of the model lay in a comparison of observed and simulated runoff The comparison showed that the observed and simulated runoff values are not significantly different. This was based on the results obtained from statistical measures to test the model. The model did a better simulation in the smaller watershed (Pogung-Code sub watershed than in the larger one (Pulo-Opak sub watershed.

  20. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    Science.gov (United States)

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2017-11-29

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization

  1. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  2. Data to support "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations & Biological Condition"

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spreadsheets are included here to support the manuscript "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition". This...

  3. Distributed Watershed Modeling for a Small Urban Basin in Baltimore County, MD

    Science.gov (United States)

    Smith, B. K.; Smith, J. A.; Baeck, M. L.

    2013-12-01

    Improvements to hydrologic modeling of urban watersheds are necessary to improve flash flood forecasting, flood hazard assessment, and urban planning. We use the Gridded Surface/ Subsurface Hydrologic Analysis (GSSHA) model to represent the 14.3 square kilometer Dead Run watershed in Baltimore County Maryland. Dead Run is a flashy watershed with extremely high runoff ratios. We strive to represent the watershed with a physically-based watershed model and as little calibration as possible. GSSHA is a gridded model with 2-D overland flow and 1-D stream flow and infiltration processes. Significant efforts are made to accurately represent the effects of detention infrastructure, storm drains, and urban soils within the watershed. High resolution, spatially distributed, Hydro-NEXRAD rainfall fields are used to drive the model, and comparisons are made with a network of rain gages. We utilize USGS instantaneous streamflow data for the watershed outlet and five sub-watershed gaging sites to compare to model output. These nested gaging sites allow us to assess the model's performance throughout the watershed and to ensure that the hydrologic processes in each of the different sub-basins are properly captured.

  4. Development and testing of watershed-scale models for poorly drained soils

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2005-01-01

    Watershed-scale hydrology and water quality models were used to evaluate the crrmulative impacts of land use and management practices on dowrzstream hydrology and nitrogen loading of poorly drained watersheds. Field-scale hydrology and nutrient dyyrutmics are predicted by DRAINMOD in both models. In the first model (DRAINMOD-DUFLOW), field-scale predictions are coupled...

  5. Stable-isotope and solute-chemistry approaches to flow characterization in a forested tropical watershed, Luquillo Mountains, Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Shanley, James B.; Murphy, Sheila F.; Willenbring, Jane K; Occhi, Marcie; González, Grizelle

    2015-01-01

    subsurface watershed flowpaths, and better understanding of shallow hillslope and deeper groundwater processes in the watershed will require sub-weekly data and detailed transit time modeling. A combined isotopic and solute chemistry approach can guide further studies to a more comprehensive model of the hydrology, and inform decisions for managing water supply with future changes in climate and land use.

  6. Evaluation of Computational Techniques for Parameter Estimation and Uncertainty Analysis of Comprehensive Watershed Models

    Science.gov (United States)

    Yen, H.; Arabi, M.; Records, R.

    2012-12-01

    The structural complexity of comprehensive watershed models continues to increase in order to incorporate inputs at finer spatial and temporal resolutions and simulate a larger number of hydrologic and water quality responses. Hence, computational methods for parameter estimation and uncertainty analysis of complex models have gained increasing popularity. This study aims to evaluate the performance and applicability of a range of algorithms from computationally frugal approaches to formal implementations of Bayesian statistics using Markov Chain Monte Carlo (MCMC) techniques. The evaluation procedure hinges on the appraisal of (i) the quality of final parameter solution in terms of the minimum value of the objective function corresponding to weighted errors; (ii) the algorithmic efficiency in reaching the final solution; (iii) the marginal posterior distributions of model parameters; (iv) the overall identifiability of the model structure; and (v) the effectiveness in drawing samples that can be classified as behavior-giving solutions. The proposed procedure recognize an important and often neglected issue in watershed modeling that solutions with minimum objective function values may not necessarily reflect the behavior of the system. The general behavior of a system is often characterized by the analysts according to the goals of studies using various error statistics such as percent bias or Nash-Sutcliffe efficiency coefficient. Two case studies are carried out to examine the efficiency and effectiveness of four Bayesian approaches including Metropolis-Hastings sampling (MHA), Gibbs sampling (GSA), uniform covering by probabilistic rejection (UCPR), and differential evolution adaptive Metropolis (DREAM); a greedy optimization algorithm dubbed dynamically dimensioned search (DDS); and shuffle complex evolution (SCE-UA), a widely implemented evolutionary heuristic optimization algorithm. The Soil and Water Assessment Tool (SWAT) is used to simulate hydrologic and

  7. Integration of Tidal Prism Model and HSPF for simulating indicator bacteria in coastal watersheds

    Science.gov (United States)

    Sobel, Rose S.; Rifai, Hanadi S.; Petersen, Christina M.

    2017-09-01

    Coastal water quality is strongly influenced by tidal fluctuations and water chemistry. There is a need for rigorous models that are not computationally or economically prohibitive, but still allow simulation of the hydrodynamics and bacteria sources for coastal, tidally influenced streams and bayous. This paper presents a modeling approach that links a Tidal Prism Model (TPM) implemented in an Excel-based modeling environment with a watershed runoff model (Hydrologic Simulation Program FORTRAN, HSPF) for such watersheds. The TPM is a one-dimensional mass balance approach that accounts for loading from tidal exchange, runoff, point sources and bacteria die-off at an hourly time step resolution. The novel use of equal high-resolution time steps in this study allowed seamless integration of the TPM and HSPF. The linked model was calibrated to flow and E. Coli data (for HSPF), and salinity and enterococci data (for the TPM) for a coastal stream in Texas. Sensitivity analyses showed the TPM to be most influenced by changes in net decay rates followed by tidal and runoff loads, respectively. Management scenarios were evaluated with the developed linked models to assess the impact of runoff load reductions and improved wastewater treatment plant quality and to determine the areas of critical need for such reductions. Achieving water quality standards for bacteria required load reductions that ranged from zero to 90% for the modeled coastal stream.

  8. Use of fire spread and hydrology models to target forest management on a municipal watershed

    Science.gov (United States)

    Anurag Srivastava; William J. Elliot; Joan Wu

    2015-01-01

    A small town relies on a forested watershed for its water supply. The forest is at risk for a wildfire. To reduce this risk, some of the watershed will be thinned followed by a prescribed burn. This paper reports on a study to evaluate the impact of such watershed disturbances on water yield. To target management activities, a fire spread model was applied to the...

  9. Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning

    Science.gov (United States)

    Stehr, A.; Aguayo, M.; Link, O.; Parra, O.; Romero, F.; Alcayaga, H.

    2010-05-01

    A multidisciplinary approach is followed for analysis of the effect of changes in land use patterns on the hydrologic response of the Vergara watershed (4340 km2) located in central Chile. Probable future land use scenarios were generated using heuristic rules and logistic regression models, in order to identify and represent the main pressure on the watershed, namely forestation of extensive areas used for agriculture with rapid growing exotic species. The hydrologic response of the watershed was computed with a physically based distributed precipitation-runoff model, which was calibrated and validated for the current observed scenario. Results show that mean annual discharge increase with agricultural land use and diminish with forest coverage. Thus, implementation of protection laws for native species conservation and regulated land use change are strongly recommended

  10. Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control

    Science.gov (United States)

    The “Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control: State of the Technology” project investigated a range of innovative technology and management strategies emerging outside the normal realm of business within the continental United States, fo...

  11. The Art and Science of Rain Barrels: A Service Learning Approach to Youth Watershed Action

    Science.gov (United States)

    Rector, Patricia; Lyons, Rachel; Yost, Theresa

    2013-01-01

    Using an interdisciplinary approach to water resource education, 4-H Youth Development and Environmental Extension agents enlisted 4-H teens to connect local watershed education with social action. Teens participated in a dynamic service learning project that included learning about nonpoint source pollution; constructing, decorating, and teaching…

  12. Calibration and validation of the SWAT model for a forested watershed in coastal South Carolina

    Science.gov (United States)

    Devendra M. Amatya; Elizabeth B. Haley; Norman S. Levine; Timothy J. Callahan; Artur Radecki-Pawlik; Manoj K. Jha

    2008-01-01

    Modeling the hydrology of low-gradient coastal watersheds on shallow, poorly drained soils is a challenging task due to the complexities in watershed delineation, runoff generation processes and pathways, flooding, and submergence caused by tropical storms. The objective of the study is to calibrate and validate a GIS-based spatially-distributed hydrologic model, SWAT...

  13. Scaling up a model: Impact of soil map resolution and watershed discretization.

    Science.gov (United States)

    The modeling of a large river basin often starts with the modeling of a smaller watershed within that river basin. Reasons include the greater availability of flow and water quality data for smaller watersheds, a better knowledge of land management practices and the methodological step to start with...

  14. DRAINMOD-GIS: a lumped parameter watershed scale drainage and water quality model

    Science.gov (United States)

    G.P. Fernandez; G.M. Chescheir; R.W. Skaggs; D.M. Amatya

    2006-01-01

    A watershed scale lumped parameter hydrology and water quality model that includes an uncertainty analysis component was developed and tested on a lower coastal plain watershed in North Carolina. Uncertainty analysis was used to determine the impacts of uncertainty in field and network parameters of the model on the predicted outflows and nitrate-nitrogen loads at the...

  15. Watershed monitoring and modelling and USA regulatory compliance.

    Science.gov (United States)

    Turner, B G; Boner, M C

    2004-01-01

    The aim of the Columbus program was to implement a comprehensive watershed monitoring-network including water chemistry, aquatic biology and alternative sensors to establish water environment health and methods for determining future restoration progress and early warning for protection of drinking water supplies. The program was implemented to comply with USA regulatory requirements including Total Maximum Daily Load (TMDL) rules of the Clean Water Act (CWA) and Source Water Assessment and Protection (SWAP) rules under the Safe Drinking Water Act (SDWA). The USEPA Office of Research and Development and the Water Environment Research Foundation provided quality assurance oversight. The results obtained demonstrated that significant wet weather data is necessary to establish relationships between land use, water chemistry, aquatic biology and sensor data. These measurements and relationships formed the basis for calibrating the US EPA BASINS Model, prioritizing watershed health and determination of compliance with water quality standards. Conclusions specify priorities of cost-effective drainage system controls that attenuate stormwater flows and capture flushed pollutants. A network of permanent long-term real-time monitoring using combination of continuous sensor measurements, water column sampling and aquatic biology surveys and a regional organization is prescribed to protect drinking water supplies and measure progress towards water quality targets.

  16. Modeling land-based nitrogen loads from groundwater-dominated agricultural watersheds to estuaries to inform nutrient reduction planning

    Science.gov (United States)

    Jiang, Yefang; Nishimura, Peter; van den Heuvel, Michael R.; MacQuarrie, Kerry T. B.; Crane, Cindy S.; Xing, Zisheng; Raymond, Bruce G.; Thompson, Barry L.

    2015-10-01

    Excessive nitrate loads from intensive potato production have been linked to the reoccurring anoxic events in many estuaries in Prince Edward Island (PEI), Canada. Community-led watershed-based nutrient reduction planning has been promoted as a strategy for water quality restoration and initial nitrate load criteria have been proposed for the impacted estuaries. An integrated modeling approach was developed to predict base flow nitrate loads to inform the planning activities in the groundwater-dominated agricultural watersheds. Nitrate load is calculated as base flow multiplied by the average of nitrate concentration at the receiving watershed outlet. The average of nitrate concentration is estimated as the integration of nitrate leaching concentration over the watershed area minus a nitrate loss coefficient that accounts for long-term nitrate storage in the aquifer and losses from the recharge to the discharge zones. Nitrate leaching concentrations from potato rotation systems were estimated with a LEACHN model and the land use areas were determined from satellite image data (2006-2009) using GIS. The simulated average nitrate concentrations are compared with the arithmetic average of nitrate concentration measurements in each of the 27 watersheds for model calibration and in 138 watersheds for model verifications during 2006-2009. Sensitivity of the model to the variations of land use mapping errors, nitrate leaching concentrations from key sources, and nitrate loss coefficient was tested. The calibration and verification statistics and sensitivity analysis show that the model can provide accurate nitrate concentration predictions for watersheds with drainage areas more than 5 km2 and nitrate concentration over 2 mg N L-1, while the model resolution for watersheds with drainage areas below 5 km2 and/or nitrate concentration below 2 mg N L-1 may not be sufficient for nitrate load management purposes. Comparisons of normalized daily stream discharges among the

  17. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    Science.gov (United States)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  18. Modeling Nutrient Loading to Watersheds in the Great Lakes Basin: A Detailed Source Model at the Regional Scale

    Science.gov (United States)

    Luscz, E.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2011-12-01

    Watershed nutrient loading models are important tools used to address issues including eutrophication, harmful algal blooms, and decreases in aquatic species diversity. Such approaches have been developed to assess the level and source of nutrient loading across a wide range of scales, yet there is typically a tradeoff between the scale of the model and the level of detail regarding the individual sources of nutrients. To avoid this tradeoff, we developed a detailed source nutrient loading model for every watershed in Michigan's lower peninsula. Sources considered include atmospheric deposition, septic tanks, waste water treatment plants, combined sewer overflows, animal waste from confined animal feeding operations and pastured animals, as well as fertilizer from agricultural, residential, and commercial sources and industrial effluents . Each source is related to readily-available GIS inputs that may vary through time. This loading model was used to assess the importance of sources and landscape factors in nutrient loading rates to watersheds, and how these have changed in recent decades. The results showed the value of detailed source inputs, revealing regional trends while still providing insight to the existence of variability at smaller scales.

  19. Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina

    Science.gov (United States)

    D.M. Amatya; M.K. Jha.

    2011-01-01

    Modeling the hydrology of low�]gradient forested watersheds on shallow, poorly drained soils of the coastal plain is a challenging task due to complexities in watershed delineation, microtopography, evapotranspiration, runoff generation processes and pathways including flooding and submergence caused by tropical storms, and complexity of vegetation species....

  20. Assessing the radar rainfall estimates in watershed-scale water quality model

    Science.gov (United States)

    Watershed-scale water quality models are effective science-based tools for interpreting change in complex environmental systems that affect hydrology cycle, soil erosion and nutrient fate and transport in watershed. Precipitation is one of the primary input data to achieve a precise rainfall-runoff ...

  1. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    Science.gov (United States)

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  2. Groundwater flow modelling in the upper Anga'a river watershed ...

    African Journals Online (AJOL)

    The Anga'a River watershed is located within the Yaounde IV district, South-east of Yaounde City, Cameroon. The groundwater flow and particle tracking modelling was carried out to determine in detail the groundwater flow and particle migration in the shallow unconfined aquifer of the Upper Anga'a river watershed.

  3. Modeling the cumulative watershed effects of forest management strategies

    Science.gov (United States)

    R. R. Ziemer; J. Lewis; R. M. Rice; T. E. Lisle

    1991-01-01

    Abstract - There is increasing concern over the possibility of adverse cumulative watershed effects from intensive forest management. It is impractical to address many aspects of the problem experimentally because to do so would require studying large watersheds for 100 yr or more. One such aspect is the long-term effect of forest management strategies on erosion and...

  4. Using the HSPF and SWMM Models in a High Pervious Watershed and Estimating Their Parameter Sensitivity

    Directory of Open Access Journals (Sweden)

    Lin-Yi Tsai

    2017-10-01

    Full Text Available Models are necessary tools for watershed management. However, applying watershed models is time consuming and requires technical knowledge, including model selection and validation. The objective of this study is to assess two commonly used watershed models and their parameter sensitivity to reduce model loadings and to gain a better understanding of the model performances. The Hydrological Simulation Program-Fortran (HSPF model and Storm Water Management Model (SWMM were applied to a mostly forested Taiwanese reservoir watershed with pollution from tea plantations. Statistical analysis showed that both models are suitable for the studied watershed, but the performances of the flow and water quality simulations are different. The mean flow simulated by SWMM was lower than the experimental observations. The HSPF model performed better, possibly because the soil in the study area is highly permeable and the HSPF model has more precise soil layer calculations. SWMM may underestimate the total phosphorous (TP and suspended solid (SS loads following small storm events in highly permeable watersheds. The Latin Hypercube-One factor At a Time (LH-OAT method was used to determine the parameter sensitivity of the HSPF model and SWMM. In both of the models, the parameters related to infiltration and soil characteristics strongly affected the flow simulation, except when using the Horton infiltration method in the SWMM. Manning’s roughness coefficient for pervious areas was more sensitive in SWMM than in the HSPF model because SWMM has fewer parameters.

  5. Impact Assessment of Morphological Features on Watersheds Using SWAT Model

    Science.gov (United States)

    Kaya, S.; Kutukcu, A.

    2016-12-01

    Defining the morphological characteristics of a basin enables carrying out numerous hydrological assessments such as flow value of the basin. In this study the impacts of morphological features designated for the basins on the flow were analyzed. Related to the basin flow shape, drainage density, bifurcation ratio and texture ratio were evaluated using morphological parameters. In the study, Büyük Menderes River Basin and Gediz River Basin which extend across a long valley and flow into the Aegean Sea, were selected as the study area. In the calculation of morphometric parameters regarding the basins, DTM which has 10 m spatial resolution was used. DTM was used as input data for the Soil and Water Assessment Tool - SWAT model which makes significant contributions to the modelling of big basins for hydrologists. The flow value obtained as a result of operating the model facilitates to verify the conducted morphological analyses. On account of operating the model, hydrological parameters on the basis of sub basins were also obtained, which in return makes it possible to understand the hydrological reactions within the basin. The results of the conducted study can be effectively used for integrated watershed management which requires detailed hydrological parameters can be obtained using modern tools such as numerical models.

  6. Modeling watershed non-point source pollution: complexity, uncertainty and future directions

    Science.gov (United States)

    Zheng, Y.; Han, F.; Luo, X.; Wu, B.

    2012-12-01

    Non-point source pollution (NPSP) is a major cause of surface water quality degradation. Watershed models (e.g. the Soil and Water Assessment Tool, SWAT) have been increasingly used to simulate NPSP and support the pollution prevention. These models originated from hydrologic models but add significant complexity. Their simulations usually involve substantial uncertainty especially when observational data are scarce, which largely limits the models application. Based on our past and ongoing studies, this presentation discusses the following issues: 1) effective and efficient methods to quantify the uncertainty associated with the model simulations; 2) cost-effective strategies to reduce the uncertainty through data acquisition and assimilation; 3) directions to improve the current NPSP models. While discussing the first issue, Probabilistic Collocation Method (PCM) based approaches of uncertainty analysis (UA) and data assimilation will be presented, and the important role of management concerns in the UA will be discussed. Regarding the second issue, approaches to optimize data acquisition and assimilation, based on the concept of value of information (VOI), will be introduced, and the tradeoff between uncertainty and cost will be discussed. While addressing the last issue, two key points will be made. First, the complexity of the NPSP models does not necessarily lead to good simulation results, but is very likely to introduce significant uncertainty and the parameter identifiability issue. Thus, the model complexity has to be tailored to the data condition. Second, some core modeling assumptions should be re-examined through further studies on the physical process of NPSP. For example, our recent experimental studies showed that the enrichment theory widely adopted in NPSP models has significant limitations. This presentation calls for more efforts on developing a new generation of watershed NPSP models.

  7. Consistency between hydrological models and field observations: Linking processes at the hillslope scale to hydrological responses at the watershed scale

    Science.gov (United States)

    Clark, M.P.; Rupp, D.E.; Woods, R.A.; Tromp-van, Meerveld; Peters, N.E.; Freer, J.E.

    2009-01-01

    The purpose of this paper is to identify simple connections between observations of hydrological processes at the hillslope scale and observations of the response of watersheds following rainfall, with a view to building a parsimonious model of catchment processes. The focus is on the well-studied Panola Mountain Research Watershed (PMRW), Georgia, USA. Recession analysis of discharge Q shows that while the relationship between dQ/dt and Q is approximately consistent with a linear reservoir for the hillslope, there is a deviation from linearity that becomes progressively larger with increasing spatial scale. To account for these scale differences conceptual models of streamflow recession are defined at both the hillslope scale and the watershed scale, and an assessment made as to whether models at the hillslope scale can be aggregated to be consistent with models at the watershed scale. Results from this study show that a model with parallel linear reservoirs provides the most plausible explanation (of those tested) for both the linear hillslope response to rainfall and non-linear recession behaviour observed at the watershed outlet. In this model each linear reservoir is associated with a landscape type. The parallel reservoir model is consistent with both geochemical analyses of hydrological flow paths and water balance estimates of bedrock recharge. Overall, this study demonstrates that standard approaches of using recession analysis to identify the functional form of storage-discharge relationships identify model structures that are inconsistent with field evidence, and that recession analysis at multiple spatial scales can provide useful insights into catchment behaviour. Copyright ?? 2008 John Wiley & Sons, Ltd.

  8. A modified approach combining FNEA and watershed algorithms for segmenting remotely-sensed optical images

    Science.gov (United States)

    Liu, Likun

    2018-01-01

    In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.

  9. Application of the Ecosystem Diagnosis and Treatment Method to the Grande Ronde Model Watershed project : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mobrand, Lars Erik; Lestelle, Lawrence C.

    1997-01-01

    In the spring of 1994 a technical planning support project was initiated by the Grande Ronde Model Watershed Board of Directors (Board) with funding from the Bonneville Power Administration. The project was motivated by a need for a science based method for prioritizing restoration actions in the basin that would promote effectiveness and accountability. In this section the authors recall the premises for the project. The authors also present a set of recommendations for implementing a watershed planning process that incorporates a science-based framework to help guide decision making. This process is intended to assist the Grande Ronde Model Watershed Board in its effort to plan and implement watershed improvement measures. The process would also assist the Board in coordinating its efforts with other entities in the region. The planning process is based on an approach for developing an ecosystem management strategy referred to as the Ecosystem Diagnosis and Treatment (EDT) method (Lichatowich et al. 1995, Lestelle et al. 1996). The process consists of an on-going planning cycle. Included in this cycle is an assessment of the ability of the watershed to support and sustain natural resources and other economic and societal values. This step in the process, which the authors refer to as the diagnosis, helps guide the development of actions (also referred to as treatments) aimed at improving the conditions of the watershed to achieve long-term objectives. The planning cycle calls for routinely reviewing and updating, as necessary, the basis for the diagnosis and other analyses used by the Board in adopting actions for implementation. The recommendations offered here address this critical need to habitually update the information used in setting priorities for action.

  10. Soil erosion risk assessment using interviews, empirical soil erosion modeling (RUSLE) and fallout radionuclides in a volcanic crater lake watershed subjected to land use change, western Uganda

    Science.gov (United States)

    De Crop, Wannes; Ryken, Nick; Tomma Okuonzia, Judith; Van Ranst, Eric; Baert, Geert; Boeckx, Pascal; Verschuren, Dirk; Verdoodt, Ann

    2017-04-01

    Population pressure results in conversion of natural vegetation to cropland within the western Ugandan crater lake watersheds. These watersheds however are particularly prone to soil degradation and erosion because of the high rainfall intensity and steep topography. Increased soil erosion losses expose the aquatic ecosystems to excessive nutrient loading. In this study, the Katinda crater lake watershed, which is already heavily impacted by agricultural land use, was selected for an explorative study on its (top)soil characteristics - given the general lack of data on soils within these watersheds - as well as an assessment of soil erosion risks. Using group discussions and structured interviews, the local land users' perceptions on land use, soil quality, soil erosion and lake ecology were compiled. Datasets on rainfall, topsoil characteristics, slope gradient and length, and land use were collected. Subsequently a RUSLE erosion model was run. Results from this empirical erosion modeling approach were validated against soil erosion estimates based on 137Cs measurements.

  11. Modeling Yuba River Watershed using WEHY Model and Dam Operation Rules

    Science.gov (United States)

    Pahwa, Prince

    Water is an essential requirement for human existence. However, due to economic and social developments as well as climate change, both water withdrawals and water supplies are changing significantly. Water consumption has an increasing tendency in all the sectors mainly in agricultural use, industrial and power generation use, and domestic use. The total water demand of US is projected to increase by about 12.3 percent between 2000 and 2050. In the meantime, water supplies are being impacted by climate change and anthropogenic impacts. It has, thus, become a necessity to be able to model and predict the water flow based on integration of spatial elements and atmospheric/climatic changes. The purpose of this project is to model the surface run off in the Yuba River Watershed, California, given the geographic and geomorphologic complexities and the presence of dams that regulate the water discharge. The model used, the Watershed Environmental Hydrology Model, WEHY, utilizes upscaled hydrologic conservation equations to describe the evolution of the hydrologic processes and environmental processes within a watershed in time and space. It is capable of accounting for the effect of heterogeneity within natural watersheds. With the development of modern geographic information system (GIS) and remote sensing technologies, increasingly more watershed physical attributes are digitally available, such as topography, geology, soils, land/vegetation cover, and so on. Because the WEHY model parameters are related to the physical properties of the watershed, it is possible to estimate the geomorphologic parameters and the soil hydraulic parameters of the WEHY model by means of existing GIS data sets that describe the geomorphologic features and the soil conditions. So the geographic and geomorphologic complexities are addressed by WEHY and GIS. Presence of big dams makes it necessary to define operation rules taking care of all the constraints including downstream water demand

  12. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach

    Science.gov (United States)

    Shanley, J.B.; Alisa, Mast M.; Campbell, D.H.; Aiken, G.R.; Krabbenhoft, D.P.; Hunt, R.J.; Walker, J.F.; Schuster, P.F.; Chalmers, A.; Aulenbach, Brent T.; Peters, N.E.; Marvin-DiPasquale, M.; Clow, D.W.; Shafer, M.M.

    2008-01-01

    The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1 ng L-1 and MeHg was less than 0.2 ng L-1. THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56) ng L-1 at Sleepers River, Vermont; 112 (0.75) ng L-1 at Rio Icacos, Puerto Rico; and 55 (0.80) ng L-1 at Panola Mt., Georgia. Filtered (tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling. ?? 2008 Elsevier Ltd. All rights reserved.

  13. Using Remote Sensing and Radar Meteorological Data to Support Watershed Assessments Comprising Integrated Environmental Modeling

    Science.gov (United States)

    Meteorological (MET) data required by watershed assessments comprising Integrated Environmental Modeling (IEM) traditionally have been provided by land-based weather (gauge) stations, although these data may not be the most appropriate for adequate spatial and temporal resolution...

  14. Monitoring and Predicting Land-use Changes and the Hydrology of the Urbanized Paochiao Watershed in Taiwan Using Remote Sensing Data, Urban Growth Models and a Hydrological Model

    Science.gov (United States)

    Lin, Yu-Pin; Lin, Yun-Bin; Wang, Yen-Tan; Hong, Nien-Ming

    2008-01-01

    Monitoring and simulating urban sprawl and its effects on land-use patterns and hydrological processes in urbanized watersheds are essential in land-use and water-resource planning and management. This study applies a novel framework to the urban growth model Slope, Land use, Excluded land, Urban extent, Transportation, and Hillshading (SLEUTH) and land-use change with the Conversion of Land use and its Effects (CLUE-s) model using historical SPOT images to predict urban sprawl in the Paochiao watershed in Taipei County, Taiwan. The historical and predicted land-use data was input into Patch Analyst to obtain landscape metrics. This data was also input to the Generalized Watershed Loading Function (GWLF) model to analyze the effects of future urban sprawl on the land-use patterns and watershed hydrology. The landscape metrics of the historical SPOT images show that land-use patterns changed between 1990–2000. The SLEUTH model accurately simulated historical land-use patterns and urban sprawl in the Paochiao watershed, and simulated future clustered land-use patterns (2001–2025). The CLUE-s model also simulated land-use patterns for the same period and yielded historical trends in the metrics of land-use patterns. The land-use patterns predicted by the SLEUTH and CLUE-s models show the significant impact urban sprawl will have on land-use patterns in the Paochiao watershed. The historical and predicted land-use patterns in the watershed tended to fragment, had regular shapes and interspersion patterns, but were relatively less isolated in 2001–2025 and less interspersed from 2005–2025 compared with land-use pattern in 1990. During the study, the variability and magnitude of hydrological components based on the historical and predicted land-use patterns were cumulatively affected by urban sprawl in the watershed; specifically, surface runoff increased significantly by 22.0% and baseflow decreased by 18.0% during 1990–2025. The proposed approach is an

  15. A measure of watershed nonlinearity: interpreting a variable instantaneous unit hydrograph model on two vastly different sized watersheds

    Directory of Open Access Journals (Sweden)

    J. Y. Ding

    2011-01-01

    Full Text Available The linear unit hydrograph used in hydrologic design analysis and flood forecasting is known as the transfer function and the kernel function in time series analysis and systems theory, respectively. This paper reviews the use of an input-dependent or variable kernel in a linear convolution integral as a quasi-nonlinear approach to unify nonlinear overland flow, channel routing and catchment runoff processes. The conceptual model of a variable instantaneous unit hydrograph (IUH is characterized by a nonlinear storage-discharge relation, q = cNsN, where the storage exponent N is an index or degree of watershed nonlinearity, and the scale parameter c is a discharge coefficient. When the causative rainfall excess intensity of a unit hydrograph is known, parameters N and c can be determined directly from its shape factor, which is the product of the unit peak ordinate and the time to peak, an application of the statistical method of moments in its simplest form. The 2-parameter variable IUH model is calibrated by the shape factor method and verified by convolution integral using both the direct and inverse Bakhmeteff varied-flow functions on two watersheds of vastly different sizes, each having a family of four or five unit hydrographs as reported by the well-known Minshall (1960 paper and the seldom-quoted Childs (1958 one, both located in the US. For an 11-hectare catchment near Edwardsville in southern Illinois, calibration for four moderate storms shows an average N value of 1.79, which is 7% higher than the theoretical value of 1.67 by Manning friction law, while the heaviest storm, which is three to six times larger than the next two events in terms of the peak discharge and runoff volume, follows the Chezy law of 1.5. At the other end of scale, for the Naugatuck River at Thomaston in Connecticut having a drainage area of 186.2 km2, the average calibrated

  16. Development of total maximum daily loads for bacteria impaired watershed using the comprehensive hydrology and water quality simulation model.

    Science.gov (United States)

    Kim, Sang M; Brannan, Kevin M; Zeckoski, Rebecca W; Benham, Brian L

    2014-01-01

    The objective of this study was to develop bacteria total maximum daily loads (TMDLs) for the Hardware River watershed in the Commonwealth of Virginia, USA. The TMDL program is an integrated watershed management approach required by the Clean Water Act. The TMDLs were developed to meet Virginia's water quality standard for bacteria at the time, which stated that the calendar-month geometric mean concentration of Escherichia coli should not exceed 126 cfu/100 mL, and that no single sample should exceed a concentration of 235 cfu/100 mL. The bacteria impairment TMDLs were developed using the Hydrological Simulation Program-FORTRAN (HSPF). The hydrology and water quality components of HSPF were calibrated and validated using data from the Hardware River watershed to ensure that the model adequately simulated runoff and bacteria concentrations. The calibrated and validated HSPF model was used to estimate the contributions from the various bacteria sources in the Hardware River watershed to the in-stream concentration. Bacteria loads were estimated through an extensive source characterization process. Simulation results for existing conditions indicated that the majority of the bacteria came from livestock and wildlife direct deposits and pervious lands. Different source reduction scenarios were evaluated to identify scenarios that meet both the geometric mean and single sample maximum E. coli criteria with zero violations. The resulting scenarios required extreme and impractical reductions from livestock and wildlife sources. Results from studies similar to this across Virginia partially contributed to a reconsideration of the standard's applicability to TMDL development.

  17. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    Science.gov (United States)

    McLellan, Eileen; Schilling, Keith; Robertson, Dale

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  18. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    Energy Technology Data Exchange (ETDEWEB)

    Maurakis, Eugene G

    2010-10-01

    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

  19. A PCSWMM/GIS-based water balance model for the Reesor Creek watershed

    Science.gov (United States)

    Smith, D.; Li, J.; Banting, D.

    2005-09-01

    This paper presents the results of a study of a watershed experiencing the pressures of land-use change resulting from urban development. The study was undertaken to facilitate an understanding of the water balance of the watershed by developing and implementing watershed procedures that are to be addressed in a watershed plan. There were three components to the research: firstly, observation of the effects of spatially distributed rainfall measurements and their effect on modelling were assessed. Secondly, the model was then calibrated by observing how differing techniques can discretize both the landscape (e.g. land-use and soil type) and incoming precipitation. Finally, a modelling methodology was developed to integrate a Geographic Information System and a hydrologic model (e.g. Storm Water Management Model) in a water balance analysis on a watershed basis. Results show that, under certain conditions, kriging spatially distributed rainfall values can help predict rainfall at ungauged (virtual) sites. Discretization of a watershed was found to affect the differences between measured and generated runoff volumes; however, this can be refined with calibration. It was seen that a strong correlation between measured and predicted rainfall values did not always guarantee a strong relationship between measured and generated runoff Recommendations include the use of a longer time series of rainfall, streamflow and predicted rainfall to observe temporal variations, and the need to assess the differences in modelled rainfall values generated by various surface interpolation methods (e.g. Inverse Distance Weighting and other kriging options) currently available in GIS packages.

  20. Investigation of urban growth impacts on suitability of conservational patches using a landscape ecological approach (Study Area: Korganroud Watershed

    Directory of Open Access Journals (Sweden)

    M Sheikh Goodarzi

    2012-06-01

    Full Text Available Urbanization is one of the most significant global changes. The rapid growth in urban area isimposing high pressure to land and their resources. With regard to various ecological services of the Hyrcanian ecosystems and the necessity to conserve them, this research aimed to investigate the growth trend of urban areas and their impacts on land suitability of the conservational patches in Korganroud watershed, Guilan Province. First, the undeveloped parts of the watershed were divided into two main ecosystem types of forest and rangeland. Then, for each ecosystem type, required parameters of the CAPS Model (land capability and ecological parameters were calculated and combined using linear combination approach. In total, 14 different zones with an area o 64,541 hectare (19% of the watershed‘s area: 13% jungle and 6% rangeland ecosystems were distinguished as conservational patches. Simulation of the urban growth was done using a Markov-Cellular Automata Urban Change Modeling method called SLEUTH. We designed three different scenarios of historical, managed and ecologically sustainable growth for the period of 2008 - 2050. Finally, integration of the results of two approaches was implemented using a loose coupling approach. Results reflect a general trend in decline of patch suitability influenced by type and size of the urban area growth. According to the results, the observed changes in urban growth for the historical scenario provide a development approach different to the changes for the other two scenarios which collectively fall in another approach to development. Thus, conservational suitability of the area can be preserved by changing the development approach and harnessingcurrent trend of the urban area growth.

  1. Modeling nutrient sources, transport and management strategies in a coastal watershed, Southeast China.

    Science.gov (United States)

    Zhou, Pei; Huang, Jinliang; Hong, Huasheng

    2018-01-01

    Integrated watershed management requires an analytical model capable of revealing the full range of impacts that would be caused by the uses and developments in the watershed. The SPAtially Referenced Regressions On Watershed Attributes (SPARROW) model was developed in this study to provide empirical estimates of the sources, transport of total nitrogen (TN) and total phosphorus (TP) and to develop nutrient management strategies in the Jiulong River Watershed, southeast China that has enormous influence on the region's ecological safety. We calibrated the model using data related to daily streamflow, monthly TN and TP concentrations in 2014 at 30 locations. The model produced R(2) values for TN with 0.95 and TP with 0.94. It was found that for the entire watershed, TN came from fertilizer application (43%), livestock breeding (39%) and sewage discharge (18%), while TP came from livestock breeding (46%), fertilizer application (46%), and industrial discharge (8%). Fifty-eight percent of the TN and 80% of the TP in upstream reaches are delivered to the outlets of North and West rivers. A scenario analysis with SPARROW was coupled to develop suitable management strategies. Results revealed that controlling nutrient sources was effective in improving water quality. Normally sharp reduction in nutrient sources is not operational feasible. Hence, it is recommended that preventing nutrient on land from entering into the river as a suitable strategy in watershed management. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Quantifying the Urban and Rural Nutrient Fluxes to Lake Erie Using a Paired Watershed Approach

    Science.gov (United States)

    Hopkins, M.; Beck, M.; Rossi, E.; Luh, N.; Allen-King, R. M.; Lowry, C.

    2016-12-01

    Excess nutrients have a detrimental impact on the water quality of Lake Erie, specifically nitrate and phosphate, which can lead to toxic algae blooms. Algae blooms have negatively impacted Lake Erie, which is the main source of drinking water for many coastal Great Lake communities. In 2014 the city of Toledo, Ohio was forced to shut down its water treatment plant due to these toxic algae blooms. The objective of this research is to quantify surface water nutrient fluxes to the eastern basin of Lake Erie using a paired watershed approach. Three different western New York watersheds that feed Lake Erie were chosen based on land use and areal extent: one small urban, one small rural, and one large rural. These paired watersheds were chosen to represent a range of sources of potential nutrient loading to the lake. Biweekly water samples were taken from the streams during the 2015-2016 winter to summer seasonal transition to quantify springtime snow melt effects on nutrient fluxes. These results were compared to the previous year samples, collected over the summer of 2015, which represented wetter conditions. Phosphorous levels were assessed using the ascorbic acid colorimetric assay, while nitrate was analyzed by anion-exchange chromatography. Stream gaging was used to obtain flow measurements and establish a rating curve, which was incorporated to quantify seasonal nutrient fluxes entering the lake. Patterns in the nutrient levels show higher level of nutrients in the rural watersheds with a decrease in concentration over the winter to spring transition. However, nutrient patterns in the urban stream show relatively constant patters of nutrient flux, which is independent of seasonal transition or stream discharge. A comparison of wet and dry seasons shows higher nutrient concentrations during summers with greater rainfall. By identifying the largest contributors of each nutrient, we can better allocate limited attenuation resources.

  3. The evolution of local endemism in madagascar: watershed versus climatic gradient hypotheses evaluated by null biogeographic models.

    Science.gov (United States)

    Pearson, Richard G; Raxworthy, Christopher J

    2009-04-01

    Substantial insular speciation has resulted in exceptionally high levels of endemism in Madagascar, creating locally restricted species' ranges that remain poorly understood. The contributions of alternative processes that could influence patterns of local endemism-including speciation by geographic isolation or adaptation to environmental gradients-are widely debated, both for Madagascar and elsewhere. A recently proposed hypothesis (the "watershed hypothesis") suggests that allopatric speciation driven by isolation in watersheds during Quaternary climate shifts provides a general explanation for patterns of local endemism across taxa in Madagascar. Here we tested coincidence between species' distributions and areas of endemism predicted by two contrasting biogeographic hypotheses: (1) the watershed hypothesis, and (2) an alternative hypothesis driven by climatic gradients (the "current climate hypothesis"). Statistical significance of coincidence was assessed by comparing against a null model. Surprisingly, we found that extant distributions of lemurs, geckos, and chameleons reveal species patterns that are significantly coincident with the watershed and current climate hypotheses. These results strongly support local endemism developing from multiple processes, even among closely related species. Our findings thus indicate that pluralistic approaches will offer the best option both for understanding processes that generate local endemism, and for incorporating endemism within conservation priority setting.

  4. Modeling the effects of fire on streamflow in a chaparral watershed

    Science.gov (United States)

    McMichael, Christine Eleana

    A comprehensive understanding of the effects of fire and post-fire succession on streamflow dynamics in California chaparral watersheds is needed to facilitate effective planning and management in these semi-arid shrublands. Watershed experiments have provided insights into the hydrologic effects of fire and post fire succession in chaparral watersheds, however extrapolation of these results is constrained by the small number of studies and the limited space and/or time scales examined. As it was not logistically or economically feasible to conduct additional field experiments for this research, an integrated remote sensing-distributed hydrological modeling strategy was utilized to advance our understanding of the effects of fire and post-fire succession on streamflow dynamics in these ecosystems. A wide range of inputs was derived for a modified version of the distributed, physically-based MIKE-SHE model using remote sensing and geographic information systems (GIS) techniques, including the development of a remote sensing-chronosequence approach for estimating the post-fire recovery sequence of chaparral leaf area index (a key input given that approximately 75% of incoming rainfall is returned to the atmosphere via evapotranspiration). The Monte Carlo-based Generalized Likelihood Uncertainty Estimation (GLUE) methodology provided the framework for model calibration, testing, and predictive uncertainty estimation. Model simulations were performed using a suite of fire size-weather regime combinations to investigate the impacts of fire on annual and seasonal streamflow dynamics. Over two-thirds of the observations (comprising over 90% of the total observed flow) in the calibration and test periods were contained within the GLUE-based predictive uncertainty bounds, an acceptable level of model performance relative to total period flow; prediction errors were generally associated with large rainfall and fire events. Model simulation results demonstrated that seasonal

  5. Nutrient Inputs to the Laurentian Great Lakes by Source and Watershed Estimated Using SPARROW Watershed Models1

    Science.gov (United States)

    Robertson, Dale M; Saad, David A

    2011-01-01

    Abstract Nutrient input to the Laurentian Great Lakes continues to cause problems with eutrophication. To reduce the extent and severity of these problems, target nutrient loads were established and Total Maximum Daily Loads are being developed for many tributaries. Without detailed loading information it is difficult to determine if the targets are being met and how to prioritize rehabilitation efforts. To help address these issues, SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed for estimating loads and sources of phosphorus (P) and nitrogen (N) from the United States (U.S.) portion of the Great Lakes, Upper Mississippi, Ohio, and Red River Basins. Results indicated that recent U.S. loadings to Lakes Michigan and Ontario are similar to those in the 1980s, whereas loadings to Lakes Superior, Huron, and Erie decreased. Highest loads were from tributaries with the largest watersheds, whereas highest yields were from areas with intense agriculture and large point sources of nutrients. Tributaries were ranked based on their relative loads and yields to each lake. Input from agricultural areas was a significant source of nutrients, contributing ∼33-44% of the P and ∼33-58% of the N, except for areas around Superior with little agriculture. Point sources were also significant, contributing ∼14-44% of the P and 13-34% of the N. Watersheds around Lake Erie contributed nutrients at the highest rate (similar to intensively farmed areas in the Midwest) because they have the largest nutrient inputs and highest delivery ratio. PMID:22457580

  6. Integrated watershed management as an effective approach to curb land degradation: a case study of the Enabered watershed in northern Ethiopia.

    Science.gov (United States)

    Haregeweyn, Nigussie; Berhe, Ademnur; Tsunekawa, Atsushi; Tsubo, Mitsuru; Meshesha, Derege Tsegaye

    2012-12-01

    Integrated watershed management (IWM) is an advanced land-management approach that has been widely implemented in Tigray region of northern Ethiopia since 2004. The general aim of this study was to analyze to what extent the IWM approach is effective in curbing land degradation in the fragile drylands of the Enabered watershed in Tigray. This study assessed the impacts of IWM on (1) land-use and land-cover change and (2) the decrease of runoff loss and soil loss due to sheet and rill erosion and gully erosion. The watershed characteristics and implemented IWM measures were mapped in the field. Land use and land cover, runoff, and soil losses were compared before (2004) and after (2009) the IWM interventions. Plantations and exclosures increased significantly at the expense of grazing lands and bushland. Runoff and sheet and rill erosion decreased by 27 and 89 %, respectively, and gully channels were reclaimed. The decrease in sheet and rill erosion resulted from changes in crop cover (48 %) and conservation-practice (29 %) factors, as represented by C and P of the Universal Soil Loss Equation. The results showed that land degradation has been curbed as a result of IWM intervention. A key factor to this success was the effectiveness of the implementation approach for the main IWM components, including the participation of the local community in the form of a contribution of 20 days of free labor. Based on these results, IWM may be implemented in other regions with similar environmental and socioeconomic situations.

  7. Comparing the Hydrologic and Watershed Processes between a Full Scale Stochastic Model Versus a Scaled Physical Model of Bell Canyon

    Science.gov (United States)

    Hernandez, K. F.; Shah-Fairbank, S.

    2016-12-01

    The San Dimas Experimental Forest has been designated as a research area by the United States Forest Service for use as a hydrologic testing facility since 1933 to investigate watershed hydrology of the 27 square mile land. Incorporation of a computer model provides validity to the testing of the physical model. This study focuses on San Dimas Experimental Forest's Bell Canyon, one of the triad of watersheds contained within the Big Dalton watershed of the San Dimas Experimental Forest. A scaled physical model was constructed of Bell Canyon to highlight watershed characteristics and each's effect on runoff. The physical model offers a comprehensive visualization of a natural watershed and can vary the characteristics of rainfall intensity, slope, and roughness through interchangeable parts and adjustments to the system. The scaled physical model is validated and calibrated through a HEC-HMS model to assure similitude of the system. Preliminary results of the physical model suggest that a 50-year storm event can be represented by a peak discharge of 2.2 X 10-3 cfs. When comparing the results to HEC-HMS, this equates to a flow relationship of approximately 1:160,000, which can be used to model other return periods. The completion of the Bell Canyon physical model can be used for educational instruction in the classroom, outreach in the community, and further research using the model as an accurate representation of the watershed present in the San Dimas Experimental Forest.

  8. A GIS-based integrative approach for land use optimization in a semi-arid watershed

    Directory of Open Access Journals (Sweden)

    S.M. Tajbakhsh

    2018-01-01

    Full Text Available The proper use of natural resources can preserve these valuable assets. In line with the management of natural resources, land use optimization can be highly useful. The aim of the present study is to propose an appropriate integrative model for optimized allocation of lands for surface runoff and sediment load minimization and net income maximization in Bayg watershed, Iran. In this study, five categories of land uses, i.e. irrigated orchard, rangeland, irrigated farming, rainfed farming and almond orchard were spatially optimized to minimize surface runoff and sediment yield and to increase net income by integrating three approaches: weighted goal programming, analytic hierarchy process and multi-objective land allocation algorithm. To achieve the target levels in this work, the acreages of almond orchard and rainfed farming should be reduced by 100% and 37.32% respectively, and irrigated farming acreage should be increased by 138.53%. Through these alterations in the land use acreage, the sediment load will be reduced by 16.78% and net income will be improved by 72.52%. However, runoff volume will be increased by 0.22%. Results indicated that weighted goal programming satisfied 96% and 46% of the target levels of sediment load and net income respectively, but failed to reduce runoff volume. Therefore, it is necessary for managers to control runoff using the strategies related to runoff harvesting, especially on steep slopes. Generally, it can be concluded that a combination of the techniques weighted goal programming, analytic hierarchy process and multi-objective land allocation is highly capable to optimize land use and land covers based on the conflicting objectives.

  9. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  10. Snow Water Equivalent Modeling Capabilities of the GSSHA Watershed Model

    Science.gov (United States)

    2013-06-01

    potential for addressing a variety of real -world problems rather than a semi-distributed or lumped-parameter hydrologic model (Kimbauer et al. 1994...relative humidity (%) esat = saturated vapor pressure (mb) Pa = atmospheric pressure (mb) Equation 12 calculates the total energy to melt snow

  11. A CN-Based Ensembled Hydrological Model for Enhanced Watershed Runoff Prediction

    Directory of Open Access Journals (Sweden)

    Muhammad Ajmal

    2016-01-01

    Full Text Available A major structural inconsistency of the traditional curve number (CN model is its dependence on an unstable fixed initial abstraction, which normally results in sudden jumps in runoff estimation. Likewise, the lack of pre-storm soil moisture accounting (PSMA procedure is another inherent limitation of the model. To circumvent those problems, we used a variable initial abstraction after ensembling the traditional CN model and a French four-parameter (GR4J model to better quantify direct runoff from ungauged watersheds. To mimic the natural rainfall-runoff transformation at the watershed scale, our new parameterization designates intrinsic parameters and uses a simple structure. It exhibited more accurate and consistent results than earlier methods in evaluating data from 39 forest-dominated watersheds, both for small and large watersheds. In addition, based on different performance evaluation indicators, the runoff reproduction results show that the proposed model produced more consistent results for dry, normal, and wet watershed conditions than the other models used in this study.

  12. Stakeholder perceptions of soil managements in the Canyoles watershed. A Bayesian Belief Network approach

    Science.gov (United States)

    Burguet Marimón, Maria; Quinn, Claire; Stringer, Lindsay; Cerdà, Artemi

    2017-04-01

    The fate of the management and use of land is the result of economic, social and political factors (Tengberg et al., 2016). Stakeholder perceptions are relevant in understanding land management (Marques et al., 2015; Teshome et al., 2016) as perceptions can shape behaviours and actions. In the Canyoles River watershed (Eastern Spain), rainfed agriculture has been replaced by traditional irrigation systems at its valley bottom, and by drip irrigation on its slopes. The new irrigation systems in hilly citrus orchards, along with intensive farming, use of herbicides and high fertilization, are causing high erosion and land degradation rates due to the lack of vegetation cover, soil compaction and the loss of organic matter. Bayesian Belief Networks (BBN) are defined as a 'graphical tool for building decision support systems to help make decisions under uncertain conditions' (Cain, 2001). In this work, BBNs were used to incorporate the issues and objectives identified by stakeholders during interviews about their perceptions of different soil management practices in the Canyoles watershed. BBNs are appropriate for the modeling of geospatial data which can contain different kinds of uncertainties due to positional error, feature classification error, resolution, attribute error, data completeness, currency, and logical consistency, and can integrate qualitative and quantitative data. Our stakeholders were farmers, politicians (especially the mayors of the nearby towns), managers, farm employees and technicians. The questions asked to the stakeholders were related to their concern in keeping the farm active and profitable, the changes in the price of the farm products, the price of the fertilizers and tractors and if soil erosion is a key issue in their farms Preliminary results from the interviews performed with the stakeholders suggest that there is still a strong refusal to the use of different cover crops, as well as to the change in the tillage systems. Farmers do

  13. Rainfall-runoff modeling in a flashy tropical watershed using the distributed HL-RDHM model

    Science.gov (United States)

    Fares, Ali; Awal, Ripendra; Michaud, Jene; Chu, Pao-Shin; Fares, Samira; Kodama, Kevin; Rosener, Matt

    2014-11-01

    Many watersheds in Hawai'i are flash flood prone due to their small contributing areas and frequent intense rainfall. Motivated by the possibility of developing an operational flood forecasting system, this study evaluated the performance of the National Weather Service (NWS) model, the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) in simulating the hydrology of the flood-prone Hanalei watershed in Kaua'i, Hawai'i. This rural watershed is very wet and has strong spatial rainfall gradients. Application of HL-RDHM to Hanalei watershed required (i) modifying the Hydrologic Rainfall Analysis Project (HRAP) coordinate system; (ii) generating precipitation grids from rain gauge data, and (iii) generating parameters for Sacramento Soil Moisture Accounting Model (SAC-SMA) and routing parameter grids for the modified HRAP coordinate system. Results were obtained for several spatial resolutions. Hourly basin-average rainfall calculated from one HRAP resolution grid (4 km × 4 km) was too low and inaccurate. More realistic rainfall and more accurate streamflow predictions were obtained with the ½ and ¼ HRAP grids. For a one year period with the best precipitation data, the performance of HL-RDHM was satisfactory even without calibration for basin-averaged and distributed a priori parameter grids. Calibration and validation of HL-RDHM were conducted using four-year data set each. The model reasonably matched the observed peak discharges and time to peak during calibration and validation periods. The performance of model was assessed using the following three statistical measures: Root Mean Square Error (RMSE), Nash-Sutcliffe efficiency (NSE) and Percent bias (PBIAS). Overall, HL-RDHM's performance was ;very good (NSE > 0.75, PBIAS flood forecasting capability of the model was accessed using four accuracy measures (probability of false detection, false alarm ratio, critical success index, and probability of detection) for three return periods 1.005, 1

  14. Contribution of a GIS in the spatial modelling of the hydrologic balance of Allondon watershed (France, Switzerland)

    OpenAIRE

    Ebener, Steeve; Wildi, Walter; Bouzelboudjen, Mahmoud; Jaquet, Jean-Michel; J.P. Fortin

    2001-01-01

    This paper discusses the development of an approach allowing the spatial distribution of the hydrologic balance at the watershed scale using Geographical Information Systems (GIS). Methods were developed in order to obtain the intensity distribution of precipitation, interception, infiltration, runoff and evapotranspiration. These methods have been applied on the Allondon watershed (France, Switzerland). At the scale of this watershed (142 km2), the annual input of rain reaches 190*106m3, the...

  15. Predicting future, post-fire erosion and sedimentation with watershed models in the western USA

    Science.gov (United States)

    Sankey, J. B.; Kreitler, J.; Hawbaker, T. J.; McVay, J.; Vaillant, N.; Lowe, S. E.

    2015-12-01

    Increased sedimentation following wildland fire can negatively impact water supply and water quality. Understanding how future changes in fire frequency, extent, and location will affect watersheds and the ecosystem services they supply to communities is of great societal importance in the USA and throughout the world. In this work we predict variability in post-fire sediment yield at a watershed scale as a function of future wildfire conditions throughout the western USA through 2050. Our predictions are based on future fire probabilities, climate change scenarios, and differing GIS-based implementations of watershed sediment yield models. We assess the uncertainties of our predictions and compare predictions based on the GEOWEPP (Geo-spatial interface for the Water Erosion Prediction Project) model, the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Sediment Retention model, and the InVEST Sediment Delivery Ratio model. We show that the models can be parameterized in a relatively simple fashion to predict post-fire sediment yield with accuracy at a watershed scale. Predictions indicate that sediment yield from post-fire hillslope erosion may increase dramatically in coming decades as a function of increased wildfire for many watersheds across the western USA.

  16. Integration of aspect and slope in snowmelt runoff modeling in a mountain watershed

    Directory of Open Access Journals (Sweden)

    Shalamu Abudu

    2016-10-01

    Full Text Available This study assessed the performances of the traditional temperature-index snowmelt runoff model (SRM and an SRM model with a finer zonation based on aspect and slope (SRM + AS model in a data-scarce mountain watershed in the Urumqi River Basin, in Northwest China. The proposed SRM + AS model was used to estimate the melt rate with the degree-day factor (DDF through the division of watershed elevation zones based on aspect and slope. The simulation results of the SRM + AS model were compared with those of the traditional SRM model to identify the improvements of the SRM + AS model's performance with consideration of topographic features of the watershed. The results show that the performance of the SRM + AS model has improved slightly compared to that of the SRM model. The coefficients of determination increased from 0.73, 0.69, and 0.79 with the SRM model to 0.76, 0.76, and 0.81 with the SRM + AS model during the simulation and validation periods in 2005, 2006, and 2007, respectively. The proposed SRM + AS model that considers aspect and slope can improve the accuracy of snowmelt runoff simulation compared to the traditional SRM model in mountain watersheds in arid regions by proper parameterization, careful input data selection, and data preparation.

  17. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.11)

    Science.gov (United States)

    Long, A. J.

    2014-09-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, springflow, groundwater level, solute transport, or cave drip for a measurement point in response to a system input of precipitation, recharge, or solute injection. The RRAWFLOW open-source code is written in the R language and is included in the Supplement to this article along with an example model of springflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution; i.e., the unit hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Other options include the use of user-defined IRFs and different methods to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications. RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  18. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

    Science.gov (United States)

    Long, Andrew J.

    2015-01-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  19. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

    Science.gov (United States)

    Long, A. J.

    2015-03-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  20. An information system design for watershed-wide modeling of water loss to the atmosphere using remote sensing techniques

    Science.gov (United States)

    Khorram, S.

    1977-01-01

    Results are presented of a study intended to develop a general location-specific remote-sensing procedure for watershed-wide estimation of water loss to the atmosphere by evaporation and transpiration. The general approach involves a stepwise sequence of required information definition (input data), appropriate sample design, mathematical modeling, and evaluation of results. More specifically, the remote sensing-aided system developed to evaluate evapotranspiration employs a basic two-stage two-phase sample of three information resolution levels. Based on the discussed design, documentation, and feasibility analysis to yield timely, relatively accurate, and cost-effective evapotranspiration estimates on a watershed or subwatershed basis, work is now proceeding to implement this remote sensing-aided system.

  1. Bacteria transport simulation using APEX model in the Toenepi watershed, New Zealand

    Science.gov (United States)

    The Agricultural Policy/Environmental eXtender (APEX) model is a distributed, continuous, daily-time step small watershed-scale hydrologic and water quality model. In this study, the newly developed fecal-derived bacteria fate and transport subroutine was applied and evalated using APEX model. The e...

  2. QUANTITATIVE ESTIMATION OF SOIL EROSION IN THE DRĂGAN RIVER WATERSHED WITH THE U.S.L.E. TYPE ROMSEM MODEL

    Directory of Open Access Journals (Sweden)

    Csaba HORVÁTH

    2008-05-01

    Full Text Available Quantitative estimation of soil erosion in the Drăgan river watershed with the U.S.L.E. type Romsem modelSediment delivered from water erosion causes substantial waterway damages and water quality degradation. A number of factors such as drainage area size, basin slope, climate, land use/land cover may affect sediment delivery processes. The goal of this study is to define a computationally effective suitable soil erosion model in the Drăgan river watershed, for future sedimentation studies. Geographic Information System (GIS is used to determine the Universal Soil Loss Equation Model (U.S.L.E. values of the studied water basin. The methods and approaches used in this study are expected to be applicable in future research and to watersheds in other regions.

  3. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    Science.gov (United States)

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  4. Calibration and Validation of the SWAT2000 Watershed Model for Phosphorus Loading to the Cannonsville Reservoir

    Science.gov (United States)

    Tolson, B. A.; Shoemaker, C. A.

    2002-12-01

    A comprehensive modeling effort was undertaken to simulate phosphorus (P) loading to the Cannonsville Reservoir in upstate New York. The Cannonsville Reservoir is one of the City of New York's drinking water supply reservoirs and drains an 1178 km2 watershed that is predominantly agricultural (dairy farming) and forested. The occurrence of eutrophic conditions in the reservoir, due to excessive P loading, resulted in the reservoir being classified as `phosphorus restricted'. This classification restricts future economic growth in the watershed when the growth directly or indirectly increases P loadings. The Soil and Water Assessment Tool (SWAT2000) was used to model the P loading to the reservoir in order to help investigate the effectiveness of proposed management options for reducing P loading. SWAT2000 is a distributed watershed model developed by the Agricultural Research Service of the United States Department of Agriculture. This study is the first to apply SWAT2000 for P loading predictions in the Northeast US. SWAT2000 model development with respect to P focused initially on developing Cannonsville Watershed specific P inputs. Agricultural practices in the watershed were generalized, initial soil P levels were determined using aggregated watershed-wide soil P test results, manure spreading was based on the available manure masses as projected from local cattle population estimates and manure production characteristics were based on local manure studies. Ten years of daily P loading data were available for calibration and validation of the model. Additional bi-weekly sampling data of surface water P concentrations across the watershed were also utilized to test the spatial performance of the model. Comparison with measured data and further analysis of model equations showed that the model equations for sediment generation under snow melt conditions required modifications. In addition a number of P model parameters required calibration. Calibration results

  5. Development of multiple linear regression models for predicting the stormwater quality of urban sub-watersheds.

    Science.gov (United States)

    Arora, Amarpreet S; Reddy, Akepati S

    2014-01-01

    Stormwater management at urban sub-watershed level has been envisioned to include stormwater collection, treatment, and disposal of treated stormwater through groundwater recharging. Sizing, operation and control of the stormwater management systems require information on the quantities and characteristics of the stormwater generated. Stormwater characteristics depend upon dry spell between two successive rainfall events, intensity of rainfall and watershed characteristics. However, sampling and analysis of stormwater, spanning only few rainfall events, provides insufficient information on the characteristics. An attempt has been made in the present study to assess the stormwater characteristics through regression modeling. Stormwater of five sub-watersheds of Patiala city were sampled and analyzed. The results obtained were related with the antecedent dry periods and with the intensity of the rainfall event through regression modeling. Obtained regression models were used to assess the stormwater quality for various antecedent dry periods and rainfall event intensities.

  6. Integration of a Hydrological Model within a Geographical Information System: Application to a Forest Watershed

    Directory of Open Access Journals (Sweden)

    Dimitris Fotakis

    2014-03-01

    Full Text Available Watershed simulation software used for operational purposes must possess both dependability of results and flexibility in parameter selection and testing. The UBC watershed model (UBCWM contains a wide spectrum of parameters expressing meteorological, geological, as well as ecological watershed characteristics. The hydrological model was coupled to the MapInfo GIS and the software created was named Watershed Mapper (WM. WM is endowed with several features permitting operational utilization. These include input data and basin geometry visualization, land use/cover and soil simulation, exporting of statistical results and thematic maps and interactive variation of disputed parameters. For the application of WM two hypothetical scenarios of forest fires were examined in a study watershed. Four major rainfall events were selected from 12-year daily precipitation data and the corresponding peak flows were estimated for the base line data and hypothetical scenarios. A significant increase was observed as an impact of forest fires on peak flows. Due to its flexibility the combined tool described herein may be utilized in modeling long-term hydrological changes in the context of unsteady hydrological analyses.

  7. Assessing internal biophysical vulnerability to landslide hazards - a nested catchment approach: Xiangxi Watershed / Three Gorges Reservoir

    Science.gov (United States)

    Wiegand, Matthias; Seeber, Christoph; Hartmann, Heike; Xiang, Wei; King, Lorenz

    2010-05-01

    The Three Gorges dam construction was completed in 2006. Besides the international media, also the responsible authorities and various scholarly communities pay close attention to potential and actual environmental impacts related to the impoundment and development activities. The geo-environment within the Three Gorges region is highly conducive to landslides. Consequently, a scientific monitoring and risk mitigation system was established and is still under development. Risk analysis with regard to gravity driven mass movements is highly complex and strongly site specific - several aspects hamper a universal methodology applicable for landslide risk and site assessment. The interdisciplinary Sino-German Yangtze-Project Research co-operation aims, among others, to support the sustainable cultivation of the newly developed ecosystems within the Yangtze catchments. Land use change and increasing population growth are causing severe pressure on the scarce land resources. Landslides are acknowledged as important threat, hence vulnerability of certain landscape components have to be identified, quantified and monitored. A nested quantitative approach for vulnerability analysis is developed. The applied risk and vulnerability model understands risk as the product of hazard and vulnerability. Whereas vulnerability is characterized by: mass movement intensity and susceptibility of the respective element at risk. The watershed of Xiangxi river serves as study area. In general, catchment approaches intent and proved to be a functional geographical unit for successful integrated resources management. Several limitations with regard to data accessibility, availability and accuracy have to be considered due to restrictions of feasible scales. Comprehensive large-scale site investigations are confined to training areas for model calibration and validation. Remote sensing potentials are utilised for land use/ land cover change analysis and localization of selected elements

  8. Assessing the long-term hydrological services provided by wetlands under changing climate conditions: A case study approach of a Canadian watershed

    Science.gov (United States)

    Fossey, M.; Rousseau, A. N.

    2016-10-01

    The water content of wetlands represents a key driver of their hydrological services and it is highly dependent on short- and long-term weather conditions, which will change, to some extent, under evolving climate conditions. The impact on stream flows of this critical dynamic component of wetlands remains poorly studied. While hydrodynamic modelling provide a framework to describe the functioning of individual wetland, hydrological modelling offers the opportunity to assess their services at the watershed scale with respect to their type (i.e., isolated or riparian). This study uses a novel approach combining hydrological modelling and limited field monitoring, to explore the effectiveness of wetlands under changing climate conditions. To achieve this, two isolated wetlands and two riparian wetlands, located in the Becancour River watershed within the St Lawrence Lowlands (Quebec, Canada), were monitored using piezometers and stable water isotopes (δD - δ18O) between October 2013 and October 2014. For the watershed hydrology component of this study, reference (1986-2015) and future meteorological data (2041-2070) were used as inputs to the PHYSITEL/HYDROTEL modelling platform. Results obtained from in-situ data illustrate singular hydrological dynamics for each typology of wetlands (i.e., isolated and riparian) and support the hydrological modelling approach used in this study. Meanwhile, simulation results indicate that climate change could affect differently the hydrological dynamics of wetlands and associated services (e.g., storage and slow release of water), including their seasonal contribution (i.e., flood mitigation and low flow support) according to each wetland typology. The methodological framework proposed in this paper meets the requirements of a functional tool capable of anticipating hydrological changes in wetlands at both the land management scale and the watershed management scale. Accordingly, this framework represents a starting point towards

  9. A trading-space-for-time approach to probabilistic continuous streamflow predictions in a changing climate – accounting for changing watershed behavior

    Directory of Open Access Journals (Sweden)

    R. Singh

    2011-11-01

    Full Text Available Projecting how future climatic change might impact streamflow is an important challenge for hydrologic science. The common approach to solve this problem is by forcing a hydrologic model, calibrated on historical data or using a priori parameter estimates, with future scenarios of precipitation and temperature. However, several recent studies suggest that the climatic regime of the calibration period is reflected in the resulting parameter estimates and model performance can be negatively impacted if the climate for which projections are made is significantly different from that during calibration. So how can we calibrate a hydrologic model for historically unobserved climatic conditions? To address this issue, we propose a new trading-space-for-time framework that utilizes the similarity between the predictions under change (PUC and predictions in ungauged basins (PUB problems. In this new framework we first regionalize climate dependent streamflow characteristics using 394 US watersheds. We then assume that this spatial relationship between climate and streamflow characteristics is similar to the one we would observe between climate and streamflow over long time periods at a single location. This assumption is what we refer to as trading-space-for-time. Therefore, we change the limits for extrapolation to future climatic situations from the restricted locally observed historical variability to the variability observed across all watersheds used to derive the regression relationships. A typical watershed model is subsequently calibrated (conditioned on the predicted signatures for any future climate scenario to account for the impact of climate on model parameters within a Bayesian framework. As a result, we can obtain ensemble predictions of continuous streamflow at both gauged and ungauged locations. The new method is tested in five US watersheds located in historically different climates using synthetic climate scenarios generated by

  10. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework.

    Science.gov (United States)

    Yang, Guoxiang; Best, Elly P H

    2015-09-15

    Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco)

    Science.gov (United States)

    El Jazouli, Aafaf; Barakat, Ahmed; Ghafiri, Abdessamad; El Moutaki, Saida; Ettaqy, Abderrahim; Khellouk, Rida

    2017-12-01

    The Ikkour watershed located in the Middle Atlas Mountain (Morocco) has been a subject of serious soil erosion problems. This study aimed to assess the soil erosion susceptibility in this mountainous watershed using Universal Soil Loss Equation (USLE) and spectral indices integrated with Geographic Information System (GIS) environment. The USLE model required the integration of thematic factors' maps which are rainfall aggressiveness, length and steepness of the slope, vegetation cover, soil erodibility, and erosion control practices. These factors were calculated using remote sensing data and GIS. The USLE-based assessment showed that the estimated total annual potential soil loss was about 70.66 ton ha-1 year-1. This soil loss is favored by the steep slopes and degraded vegetation cover. The spectral index method, offering a qualitative evaluation of water erosion, showed different degrees of soil degradation in the study watershed according to FI, BI, CI, and NDVI. The results of this study displayed an agreement between the USLE model and spectral index approach, and indicated that the predicted soil erosion rate can be due to the most rugged land topography and an increase in agricultural areas. Indeed, these results can further assist the decision makers in implementation of suitable conservation program to reduce soil erosion.

  12. Modeling the Monthly Water Balance of a First Order Coastal Forested Watershed

    Science.gov (United States)

    S. V. Harder; Devendra M. Amatya; T. J. Callahan; Carl C. Trettin

    2006-01-01

    A study has been conducted to evaluate a spreadsheet-based conceptual Thornthwaite monthly water balance model and the process-based DRAINMOD model for their reliability in predicting monthly water budgets of a poorly drained, first order forested watershed at the Santee Experimental Forest located along the Lower Coastal Plain of South Carolina. Measured precipitation...

  13. Research article: Watershed management councils and scientific models: Using diffusion literature to explain adoption

    Science.gov (United States)

    King, M.D.; Burkardt, N.; Clark, B.T.

    2006-01-01

    Recent literature on the diffusion of innovations concentrates either specifically on public adoption of policy, where social or environmental conditions are the dependent variables for adoption, or on private adoption of an innovation, where emphasis is placed on the characteristics of the innovation itself. This article uses both the policy diffusion literature and the diffusion of innovation literature to assess watershed management councils' decisions to adopt, or not adopt, scientific models. Watershed management councils are a relevant case study because they possess both public and private attributes. We report on a survey of councils in the United States that was conducted to determine the criteria used when selecting scientific models for studying watershed conditions. We found that specific variables from each body of literature play a role in explaining the choice to adopt scientific models by these quasi-public organizations. The diffusion of innovation literature contributes to an understanding of how organizations select models by confirming the importance of a model's ability to provide better data. Variables from the policy diffusion literature showed that watershed management councils that employ consultants are more likely to use scientific models. We found a gap between those who create scientific models and those who use these models. We recommend shrinking this gap through more communication between these actors and advancing the need for developers to provide more technical assistance.

  14. It's all about Balance: Using a watershed model to evaluate costs, benefits and tradeoffs for Monponsett Ponds watershed

    Science.gov (United States)

    As part of an EPA Region 1 RARE project, EPA Region 1 reached out to towns in the Taunton River watershed to identify those interested in testing new version of EPA watershed management tool (WMOST version 2)and found Halifax, MA in need of assistance in dealing with a suite of w...

  15. Application of large-scale, multi-resolution watershed modeling framework using the Hydrologic and Water Quality System (HAWQS)

    Science.gov (United States)

    In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources all...

  16. Calibration of SWAT model for woody plant encroachment using paired experimental watershed data

    Science.gov (United States)

    Qiao, Lei; Zou, Chris B.; Will, Rodney E.; Stebler, Elaine

    2015-04-01

    Globally, rangeland has been undergoing a transition from herbaceous dominated grasslands into tree or shrub dominated woodlands with great uncertainty of associated changes in water budget. Previous modeling studies simulated the impact of woody plant encroachment on hydrological processes using models calibrated and constrained primarily by historic streamflow from intermediate sized watersheds. In this study, we calibrated the Soil and Water Assessment Tool (SWAT model), a widely used model for cropping and grazing systems, for a prolifically encroaching juniper species, eastern redcedar (Juniperus virginiana), in the south-central Great Plains using species-specific biophysical and hydrological parameters and in situ meteorological forcing from three pairs of experimental watersheds (grassland versus eastern redcedar woodland) for a period of 3-years covering a dry-to-wet cycle. The multiple paired watersheds eliminated the potentially confounding edaphic and topographic influences from changes in hydrological processes related to woody encroachment. The SWAT model was optimized with the Shuffled complexes with Principal component analysis (SP-UCI) algorithm developed from the Shuffled Complexes Evolution (SCE_UA). The mean Nash-Sutcliff coefficient (NSCE) values of the calibrated model for daily and monthly runoff from experimental watersheds reached 0.96 and 0.97 for grassland, respectively, and 0.90 and 0.84 for eastern redcedar woodland, respectively. We then validated the calibrated model with a nearby, larger watershed undergoing rapid eastern redcedar encroachment. The NSCE value for monthly streamflow over a period of 22 years was 0.79. We provide detailed biophysical and hydrological parameters for tallgrass prairie under moderate grazing and eastern redcedar, which can be used to calibrate any model for further validation and application by the hydrologic modeling community.

  17. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    Science.gov (United States)

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Approaches of Integrated Watershed Management Project: Experiences of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

    Science.gov (United States)

    Mula, Rosana P.; Wani, Suhas P.; Dar, William D.

    2008-01-01

    The process of innovation-development to scaling is varied and complex. Various actors are involved in every stage of the process. In scaling the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)-led integrated watershed management projects in India and South Asia, three drivers were identified--islanding approach,…

  19. Derivation of a GIS-based watershed-scale conceptual model for the St. Jones River Delaware from habitat-scale conceptual models.

    Science.gov (United States)

    Reiter, Michael A; Saintil, Max; Yang, Ziming; Pokrajac, Dragoljub

    2009-08-01

    Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs. In 2002, a Four-Component, Level 1 conceptual model was formed for the key habitats of the St. Jones River watershed, but since the habitat level of resolution is too fine for some important watershed-scale issues we developed a functional watershed-scale model using the existing narrowed habitat-scale models. The narrowed habitat-scale conceptual models and associated matrices developed by Reiter et al. (2006) were combined with data from the 2002 land use/land cover (LULC) GIS-based maps of Kent County in Delaware to assemble a diagrammatic and numerical watershed-scale conceptual model incorporating the calculated weight of each habitat within the watershed. The numerical component of the assembled watershed model was subsequently subjected to the same Monte Carlo narrowing methodology used for the habitat versions to refine the diagrammatic component of the watershed-scale model. The narrowed numerical representation of the model was used to generate forecasts for changes in the parameters "Agriculture" and "Forest", showing that land use changes in these habitats propagated through the results of the model by the weighting factor. Also, the narrowed watershed-scale conceptual model identified some key parameters upon which to focus research attention and management decisions at the watershed scale. The forecast and simulation results seemed to indicate that the watershed-scale conceptual model does lead to different conclusions than the habitat-scale conceptual models for some issues at the larger watershed scale.

  20. Evaluation of the Sacramento Soil Moisture Accounting Model for Flood Forecasting in a Hawaiian Watershed

    Science.gov (United States)

    Awal, R.; Fares, A.; Michaud, J.; Chu, P.; Fares, S.; Rosener, M.; Kevin, K.

    2012-12-01

    The focus of this study was to assess the performance of the U.S. National Weather Service Sacramento Soil Moisture Accounting Model (SAC-SMA) on the flash flood prone Hanalei watershed, Kauai, Hawaii, using site specific hydrologic data. The model was calibrated and validated using six-years of observed field hydrological data, e.g., stream flow, and spatially distributed rainfall. The ordinary kriging method was used to calculate mean watershed wide hourly precipitation for the six years using data from twenty rain gauges from north shore Kauai including five rain gauges within the watershed. Ranges of the values of a priori SAC-SMA parameters were also estimated based on the site specific soil hydrological properties; these calculated values were well within those reported in literature for different watersheds SAC-SMA was run for one year runs using the calibration and validation data. The performance of model in predicting streamflow using average watershed wide values of the a priori parameters was very poor. SAC-SMA over predicted streamflow throughout the year as compared to observed streamflow data. The upper limit of the lower layer tension water capacity, LZTWM, parameter was higher than those reported in the literature this might be due to the wetter conditions, higher precipitation, in Hanalei watershed (>6400mm) than the other previously studied watersheds (<1600mm). When the upper bound of LZTWM varied between 2500 and 3000 during calibration, SAC-SMA's performance improved to satisfactory and even to good for almost all years based on PBIAS and Nash-Sutcliffe coefficients of efficiency. When we used optimized parameter of one year to other years for the validation, the performance of optimized parameter of year 2005 was satisfactory for most of the year when upper bound of LZTWM = 2500 and the optimized parameter of year 2004 was satisfactory for most of the year when upper bound of LZTWM = 3000. The annual precipitation of 2004 was the highest

  1. Modeling potential evapotranspiration of two forested watersheds in the southern Appalachians

    Science.gov (United States)

    L.Y. Rao; G. Sun; C.R. Ford; J.M. Vose

    2011-01-01

    Global climate change has direct impacts on watershed hydrology through altering evapotranspiration (ET) processes at multiple scales. There are many methods to estimate forest ET with models, but the most practical and the most popular one is the potential ET (PET) based method. However, the choice of PET methods for AET estimation remains challenging. This study...

  2. A GSSHA Model of the Perris Basin of the San Jacinto River Watershed, Riverside County, California

    Science.gov (United States)

    2007-06-01

    ERDC/CHL CHETN-III-76 June 2007 A GSSHA Model of the Perris Basin of the San Jacinto River Watershed, Riverside County, California by Moira T...POINTS OF CONTACT: For additional information, contact Moira Fong, U.S. Army Engineer Research and Development Center, Information Technology Laboratory

  3. The WEPP Model Application in a Small Watershed in the Loess Plateau.

    Directory of Open Access Journals (Sweden)

    Fengpeng Han

    Full Text Available In the Loess Plateau, soil erosion has not only caused serious ecological and environmental problems but has also impacted downstream areas. Therefore, a model is needed to guide the comprehensive control of soil erosion. In this study, we introduced the WEPP model to simulate soil erosion both at the slope and watershed scales. Our analyses showed that: the simulated values at the slope scale were very close to the measured. However, both the runoff and soil erosion simulated values at the watershed scale were higher than the measured. At the slope scale, under different coverage, the simulated erosion was slightly higher than the measured. When the coverage is 40%, the simulated results of both runoff and erosion are the best. At the watershed scale, the actual annual runoff of the Liudaogou watershed is 83 m(3; sediment content is 0.097 t/m(3, annual erosion sediment 8.057 t and erosion intensity 0.288 t ha(-1 yr(-1. Both the simulated values of soil erosion and runoff are higher than the measured, especially the runoff. But the simulated erosion trend is relatively accurate after the farmland is returned to grassland. We concluded that the WEPP model can be used to establish a reasonable vegetation restoration model and guide the vegetation restoration of the Loess Plateau.

  4. Multisite-multivariable sensitivity analysis of distributed watershed models: enhancing the perceptions from computationally frugal methods

    Science.gov (United States)

    This paper assesses the impact of different likelihood functions in identifying sensitive parameters of the highly parameterized, spatially distributed Soil and Water Assessment Tool (SWAT) watershed model for multiple variables at multiple sites. The global one-factor-at-a-time (OAT) method of Morr...

  5. Capturing microbial sources distributed in a mixed-use watershed within an integrated environmental modeling workflow

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few provide loading rates on land surfaces and point sources to the waterbody network. This paper describes the underlying equations for microbial loading rates associated with 1) land-applied ...

  6. Idaho Model Watershed Project : Annual Report to the Bonneville Power Administration January 1, 1997 - December 31, 1997.

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Allen; Slavin, Katie

    1998-10-28

    The Model Watershed Project was initiated in the fall of 1992 with a grant from Bonneville Power Administration. The objective of this project is to protect, enhance and restore anadromous and resident fish habitat and achieve and maintain a balance between resource protection and resource use on a holistic watershed basis.

  7. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin

    Science.gov (United States)

    Erin S. Brooks; Mariana Dobre; William J. Elliot; Joan Q. Wu; Jan Boll

    2016-01-01

    Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to...

  8. Optimal land use/cover classification using remote sensing imagery for hydrological modelling in a Himalayan watershed

    NARCIS (Netherlands)

    Sameer Saran,; Sterk, G.; Kumar, S.

    2007-01-01

    Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into

  9. Evalution of Long-Term Impacts of Conservation Practice Within the Little River Watershed Using the SWAT Model

    Science.gov (United States)

    The SWAT model was used to simulate the long-term impacts of conservation practices implemented within the South Georgia Little River Watershed on streamflow hydrology and water quality. Typical practices which have been implemented within the watershed include nutrient management, residue manageme...

  10. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Hehuan, E-mail: hehuan86@vt.edu [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Krometis, Leigh-Anne H. [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Kline, Karen [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Center for Watershed Studies, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States)

    2016-05-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126 CFU/100 mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to

  11. Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: a case study in Namazgah reservoir.

    Science.gov (United States)

    Üçler, N; Engin, G Onkal; Köçken, H G; Öncel, M S

    2015-05-01

    In this study, game theory and fuzzy programming approaches were used to balance economic and environmental impacts in the Namazgah reservoir, Turkey. The main goals identified were to maximize economic benefits of land use and to protect water quality of reservoir and land resources. Total phosphorous load (kg ha(-1) year(-1)) and economic income (USD ha(-1) year(-1)) from land use were determined as environmental value and economic value, respectively. The surface area of existing land use types, which are grouped under 10 headings according to the investigations on the watershed area, and the constraint values for the watershed were calculated using aerial photos, master plans, and basin slope map. The results of fuzzy programming approach were found to be very close to the results of the game theory model. It was concluded that the amount of fertilizer used in the current situation presents a danger to the reservoir and, therefore, unnecessary fertilizer use should be prevented. Additionally, nuts, fruit, and vegetable cultivation, instead of wheat and corn cultivation, was found to be more suitable due to their high economic income and low total phosphorus (TP) load. Apart from agricultural activities, livestock farming should also be considered in the area as a second source of income. It is believed that the results obtained in this study will help decision makers to identify possible problems of the watershed.

  12. A generic system dynamics model for simulating and evaluating the hydrological performance of reconstructed watersheds

    Directory of Open Access Journals (Sweden)

    N. Keshta

    2009-06-01

    Full Text Available A generic system dynamics watershed (GSDW model is developed and applied to five reconstructed watersheds located in the Athabasca mining basin, Alberta, Canada, and one natural watershed (boreal forest located in Saskatchewan, Canada, to simulate various hydrological processes in reconstructed and natural watersheds. This paper uses the root mean square error (RMSE, the mean absolute relative error (MARE, and the correlation coefficient (R as the main performance indicators, in addition to the visual comparison. For the South Bison Hills (SBH, South West Sand Storage (SWSS and Old Aspen (OA simulated soil moisture, the RMSE values ranges between 2.5–4.8 mm, and the MARE ranges from 7% to 18%, except for the D2-cover it was 26% for the validation year. The R statistics ranges from 0.3 to 0.77 during the validation period. The error between the measured and simulated cumulative actual evapotranspiration (AET flux for the SWSS, SBH, and the OA sites were 2%, 5%, and 8%, respectively. The developed GSDW model enables the investigation of the utility of different soil cover designs and evaluation of their performance. The model is capable of capturing the dynamics of water balance components, and may used to conduct short- and long- term predictions under different climate scenarios.

  13. Assessment of soil erosion risk in Komering watershed, South Sumatera, using SWAT model

    Science.gov (United States)

    Salsabilla, A.; Kusratmoko, E.

    2017-07-01

    Changes in land use watershed led to environmental degradation. Estimated loss of soil erosion is often difficult due to some factors such as topography, land use, climate and human activities. This study aims to predict soil erosion hazard and sediment yield using the Soil and Water Assessment Tools (SWAT) hydrological model. The SWAT was chosen because it can simulate the model with limited data. The study area is Komering watershed (806,001 Ha) in South Sumatera Province. There are two factors land management intervention: 1) land with agriculture, and 2) land with cultivation. These factors selected in accordance with the regulations of spatial plan area. Application of the SWAT demonstrated that the model can predict surface runoff, soil erosion loss and sediment yield. The erosion risk for each watershed can be classified and predicted its changes based on the scenarios which arranged. In this paper, we also discussed the relationship between the distribution of erosion risk and watershed's characteristics in a spatial perspective.

  14. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review

    Directory of Open Access Journals (Sweden)

    Ly, S.

    2013-01-01

    Full Text Available Watershed management and hydrological modeling require data related to the very important matter of precipitation, often measured using raingages or weather stations. Hydrological models often require a preliminary spatial interpolation as part of the modeling process. The success of spatial interpolation varies according to the type of model chosen, its mode of geographical management and the resolution used. The quality of a result is determined by the quality of the continuous spatial rainfall, which ensues from the interpolation method used. The objective of this article is to review the existing methods for interpolation of rainfall data that are usually required in hydrological modeling. We review the basis for the application of certain common methods and geostatistical approaches used in interpolation of rainfall. Previous studies have highlighted the need for new research to investigate ways of improving the quality of rainfall data and ultimately, the quality of hydrological modeling.

  15. Can isolated and riparian wetlands mitigate the impact of climate change on watershed hydrology? A case study approach.

    Science.gov (United States)

    Fossey, M; Rousseau, A N

    2016-12-15

    The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Hydrological modeling of a watershed affected by acid mine drainage (Odiel River, SW Spain). Assessment of the pollutant contributing areas

    Science.gov (United States)

    Galván, L.; Olías, M.; Cánovas, C. R.; Sarmiento, A. M.; Nieto, J. M.

    2016-09-01

    The Odiel watershed drains materials belonging to the Iberian Pyrite Belt, where significant massive sulfide deposits have been mined historically. As a result, a huge amount of sulfide-rich wastes are deposited in the watershed, which suffer from oxidation, releasing acidic lixiviates with high sulfate and metal concentrations. In order to reliably estimate the metal loadings along the watershed a complete series of discharge and hydrochemical data are essential. A hydrological model was performed with SWAT (Soil and Water Assessment Tool) to solve the scarcity of gauge stations along the watershed. The model was calibrated and validated from daily discharge data (from 1980 to 2010) at the outlet of the watershed, river inputs into an existent reservoir, and a flow gauge station close to the northern area of the watershed. Discharge data obtained from the hydrological model, together with analytical data, allowed the estimation of the dissolved pollutant load delivered annually by the Odiel River (e.g. 9140 t of Al, 2760 t of Zn). The pollutant load is influenced strongly by the rainfall regime, and can even double during extremely rainy years. Around 50% of total pollution comes from the Riotinto Mining District, so the treatment of Riotinto lixiviates reaching the Odiel watershed would reduce the AMD (Acid Mine Drainages) in a remarkable way, improving the water quality downstream, especially in the reservoir of Alcolea, currently under construction. The information obtained in this study will allow the optimization of remediation efforts in the watershed, in order to improve its water quality.

  17. An Improved Flood-Frequency Model for Small Watersheds in the Upper Ouachita Mountains

    Science.gov (United States)

    Daniel A. Marion

    2004-01-01

    Abstract - A new regional flood-frequency (RFF) model is proposed for small, steep watersheds in the upper Ouachita Mountains of Arkansas. It is derived using Dalrymple’s (1960) method and data from 10 monitoring stations with record periods of 15 to 33 years. First, I developed a preliminary RFF model and tested it against Neely’s (1987) model using...

  18. Spatial Predictive Modeling and Remote Sensing of Land Use Change in the Chesapeake Bay Watershed

    Science.gov (United States)

    Goetz, Scott J.; Bockstael, Nancy E.; Jantz, Claire A.

    2005-01-01

    This project was focused on modeling the processes by which increasing demand for developed land uses, brought about by changes in the regional economy and the socio-demographics of the region, are translated into a changing spatial pattern of land use. Our study focused on a portion of the Chesapeake Bay Watershed where the spatial patterns of sprawl represent a set of conditions generally prevalent in much of the U.S. Working in the region permitted us access to (i) a time-series of multi-scale and multi-temporal (including historical) satellite imagery and (ii) an established network of collaborating partners and agencies willing to share resources and to utilize developed techniques and model results. In addition, a unique parcel-level tax assessment database and linked parcel boundary maps exists for two counties in the Maryland portion of this region that made it possible to establish a historical cross-section time-series database of parcel level development decisions. Scenario analyses of future land use dynamics provided critical quantitative insight into the impact of alternative land management and policy decisions. These also have been specifically aimed at addressing growth control policies aimed at curbing exurban (sprawl) development. Our initial technical approach included three components: (i) spatial econometric modeling of the development decision, (ii) remote sensing of suburban change and residential land use density, including comparisons of past change from Landsat analyses and more traditional sources, and (iii) linkages between the two through variable initialization and supplementation of parcel level data. To these we added a fourth component, (iv) cellular automata modeling of urbanization, which proved to be a valuable addition to the project. This project has generated both remote sensing and spatially explicit socio-economic data to estimate and calibrate the parameters for two different types of land use change models and has

  19. Watershed delineation in the field: A new approach for mobile applications using LiDAR elevation data

    Science.gov (United States)

    As mobile devices improve, the possibility of bringing watershed management tasks typically performed in the office to the field can be realized. High-resolution digital elevation models that capture microtopographic features such as natural depressions, road embankments, and ditches further enable ...

  20. Quasi-Empirical and Spatio-Temporal Vulnerability Modeling of Environmental Risks Posed to a Watershed

    Science.gov (United States)

    Rozario, Papia Faustina

    Water quality assessment is crucial in investigating impairment within agricultural watersheds. Seasonal and spatial variations on land can directly affect the adjoining riverine systems. Studies have revealed that agricultural activities are often major contributors to altering water quality of surface waters. A common means of addressing this issue is through the establishment and monitoring the health of riparian vegetation buffers along those areas of stream channels that would be most susceptible to the threat. Remote sensing and Geographic Information Systems (GIS) offer a means by which impaired areas can be identified, so that subsequent action toward the establishment of riparian zones can be taken. Modeling the size and rate of land use and land cover (LULC) change is an effective method of projecting localized impairment. This study presents an integrated model utilizing Analytical Hierarchical Process (AHP), Markov Chain Monte Carlo (MCMC) simulations, and geospatial analyses to address areas of impairment within the Pipestem Creek watershed, a part of the Missouri Watershed James Sub-region of North Dakota, USA. The rate and direction of LULC change was analyzed through this model and its impact on the ambient water and soil quality was studied. Tasseled Cap Greenness Index (TCGI) was used to determine the loss of forested land within the watershed from 1976 to 2015. Research results validated temporal and spatial relations of LULC dynamics to nutrient concentrations especially those that would be noted at the mouth of the watershed. It was found that the levels of Total Dissolved Solids (TDS) were much higher for the years 2014 to 2016 with a discernible increased localized alkalizing effect within the watershed. Fallow areas were seen to produce significant amounts of sediment loads from the sub-watershed. LULC distribution from 2007 to 2015 show that it is possible to project future land use change patterns. About 89.90% likelihood of increment in

  1. Development of a Watershed-Scale Long-Term Hydrologic Impact Assessment Model with the Asymptotic Curve Number Regression Equation

    Directory of Open Access Journals (Sweden)

    Jichul Ryu

    2016-04-01

    Full Text Available In this study, 52 asymptotic Curve Number (CN regression equations were developed for combinations of representative land covers and hydrologic soil groups. In addition, to overcome the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA model when it is applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN regression equation model (watershed-scale L-THIA ACN model was developed by integrating the asymptotic CN regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its streamflow prediction. The coefficient of determination (R2 and Nash–Sutcliffe Efficiency (NSE values for observed versus simulated streamflows over intervals of eight days were greater than 0.6 for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic CN regression equation method, can simulate long-term streamflow sufficiently well with the ten parameters that have been added for the characterization of streamflow.

  2. Development and evaluation of a watershed-scale hybrid hydrologic model

    OpenAIRE

    Cho, Younghyun

    2016-01-01

    A watershed-scale hybrid hydrologic model (Distributed-Clark), which is a lumped conceptual and distributed feature model, was developed to predict spatially distributed short- and long-term rainfall runoff generation and routing using relatively simple methodologies and state-of-the-art spatial data in a GIS environment. In Distributed-Clark, spatially distributed excess rainfall estimated with the SCS curve number method and a GIS-based set of separated unit hydrographs (spatially distribut...

  3. SWAT Model Prediction of Phosphorus Loading in a South Carolina Karst Watershed with a Downstream Embayment

    Science.gov (United States)

    Devendra M. Amatya; Manoj K. Jha; Thomas M. Williams; Amy E. Edwards; Daniel R.. Hitchcock

    2013-01-01

    The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for monthly streamflow predictions from tributaries draining three potential source areas as well as the downstream R-E, followed by TP loadings using data...

  4. Geospatial Modeling of Watershed Quality as an Indicator for Environmental Health

    Science.gov (United States)

    Archer, R.

    2016-12-01

    The impact of urbanization of rural Tennessee counties on environmental quality and human health and wellbeing has not been well studied, especially in the context of water quality. Between 2015 and 2025, Williamson County, TN is projected to see the strongest rate of population growth in the region, expanding by 33.7 percent. Water quality directly affects the condition of soils, vegetation, and other life forms that depend on water for survival, and therefore is a valid indicator of environmental health. Current reliable data is available on less than half (47%) of waterways in Tennessee. GIS is applied to model the impact of urbanization on rural communities within the Mill Creek watershed in Williamson County, Tennessee. Water quality measurements are integrated with data identifying urbanization and other land development influences assessed over a previous decades in order to identify influences of environmental change impacts on the watershed. The study examines the threat of urbanization to soils, vegetation and other related natural resources as well as the distance of farm areas, pasture grazing, cattle access and manure runoff, construction and landscaping to collection systems leading into the watershed. Combining spatial analysis with water quality interpretation helped to identify and display potential causes and sources of Mill Creek Watershed pollution as well as vulnerable locations susceptible to risk of declining environmental health.

  5. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    Science.gov (United States)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual

  6. Modeling Economic Impacts of Environmental Flows in California's Yuba River Watershed

    Science.gov (United States)

    Rheinheimer, D. E.; Yarnell, S.; Viers, J. H.

    2010-12-01

    Managing rivers is becoming more challenging with increasing demand for better environmental flow regimes, just as demand for water for hydropower and water supply are increasing and water supplies are changing due to climate change. Restoration of freshwater ecosystems, such as in the Yuba River in California’s Sierra Nevada, will require flows that mimic the natural flow regime, which native freshwater species are uniquely adapted to. In particular, freshwater ecosystems of the Sierra Nevada were historically adapted to the spring snowmelt flows. To study the potential effects of restoring a natural flow regime to the Yuba River watershed, we developed a multi-reservoir network flow optimization model of the watershed that represents environmental flows more ecologically useful than simple minimum instream flows, which are typically the only environmental requirement in streams. The model uses weekly time steps. The objective function is to maximize benefit, which equals hydropower revenue less penalties for deviations from environmental constraints and spills. Constraints include targets for minimum flows, maximum flows, maximum weekly up-ramp rates and maximum weekly down-ramp rates. We applied the model to the Yuba River watershed surface water inflow data from a rainfall-runoff model recently developed for the Sierra Nevada that considers regional climate warming of +0, 2, 4 and 6 °C. The Yuba watershed has high potential for fish restoration yet is currently managed primarily for hydropower. We assess the economic effects (primarily impacts on hydropower generation and revenues in the adjacent Bear River) and management implications of increasing and reshaping instream flow requirements in several ecologically important, yet regulated, stream reaches within the Yuba watershed. Further, we explore the potential of using regulating reservoirs to adapt to changing hydrologic conditions. Increasing minimum instream flow magnitudes in the South Fork Yuba River

  7. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    Science.gov (United States)

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Application of Large-Scale, Multi-Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS)

    OpenAIRE

    Haw Yen; Prasad Daggupati; Michael J. White; Raghavan Srinivasan; Arndt Gossel; David Wells; Jeffrey G. Arnold

    2016-01-01

    In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources allocation, sediment transport, and pollution control. Among commonly adopted models, the Soil and Water Assessment Tool (SWAT) has been demonstrated to provide superior performance with a large amount...

  9. Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2003-04-01

    The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment

  10. Quantifying nutrient export and deposition with a dynamic landscape evolution model for the lake Bolsena watershed, Italy

    Science.gov (United States)

    Pelorosso, Raffaele; Temme, Arnoud; Gobattoni, Federica; Leone, Antonio

    2010-05-01

    other hand, recent researches have been improving landscape evolution simulation models.. One such model, LAPSUS (LandscApe ProcesS modelling at mUlti-dimensions and Scales, Schoorl et al.,2002; Temme et al., 2009) has been applied to the Lake Bolsena watershed in Lazio, Italy. LAPSUS takes into account erosion as a naturally occurring process in landscape evolution and shapes landscapes by both erosion and deposition allowing interactions at different spatial and temporal resolutions and extents. An integrated approach to quantify nutrient export and deposition at catchment scale is presented and discussed here coupling such a dynamic landscape evolution model (LAPSUS) with the characteristic transport equations for nutrients.

  11. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    Energy Technology Data Exchange (ETDEWEB)

    Ligaray, Mayzonee; Baek, Sang Soo [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Kwon, Hye-Ok [Disaster Scientific Investigation Division, National Disaster Management Research Institute, 365 Jongga-ro Jung-gu, Ulsan 44538 (Korea, Republic of); Choi, Sung-Deuk, E-mail: sdchoi@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Cho, Kyung Hwa, E-mail: khcho@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of)

    2016-12-15

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  12. Hydrological modelling of wadi Ressoul watershed, Algeria, by HEC-HMS model

    Directory of Open Access Journals (Sweden)

    Skhakhfa Imene Diabi

    2016-12-01

    Full Text Available This study presents a flood estimation model for wadi Ressoul in El Berda watershed, north east of Algeria. To ensure the overall consistency of simulated results, it is necessary to develop a validation process, particularly in regions where data are scarce or limited and unreliable. To this we must calibrate and validate the model over the hydrograph as measured at the output. Calibration and validation processes were carried out using different sets of data (CN, SCS Lag and Muskingum K. Evaluation on the performance of the developed flood model derived using HEC-HMS (hydrologic modelling system yield a correlation coefficient R2 close to 1 and the Nash–Sutcliffe efficiency. We limit ourselves to modelling flood of short duration for which the process of evapotranspiration is negligible. Several events have been tested, including two to calibrate and one to validate the model. So it can be said that using the HEC-HMS model had the highest efficiency in with the values of these parameters calibrated, based on objective functions (percent error in peaks, with 8.8 percent difference between of observed and simulated discharges with R2 value is 0.87 and the Nash-Sutcliffe efficiency value is 0.99.

  13. A physically based model of the hydrological cycle of forest watershed and predicting the deforestation effects

    Science.gov (United States)

    Kuchment, L. S.; Gelfan, A. N.; Demidov, V.

    2012-12-01

    A physically based model of the hydrologic cycle of forest watershed for the whole year, including warm and cold seasons, has been developed. The model includes a detailed description of liquid water and snow interception by forest canopy, snow accumulation and melt, vertical soil moisture transfer and evapotranspiration, overland and subsurface flow. The evapotranspiration is separated on the evaporation from the wet part of canopy, the transpiration and the evaporation from bare soil. To describe the vertical soil moisture transfer, the Richards equation in the diffusion form including the uptake of water by plant roots. At describing snow accumulation and melt, the influence of canopy characteristics (forest density, tree structure, age, etc.) on radiation and turbulent heat fluxes are taking into account. Case-study has been carried out on the basis of experimental observations at a small completely forested watershed of the Valday water balance station situated in the north-western part of Russia. The watershed is completely covered by old fir forest. Most model parameters were either assigned directly from soil and vegetation measurements or calculated by empirical formulas using standard observations. After calibration, the model was applied to estimate possible changes of the water balance components after forest cutting. To take into account changing the soil characteristics after forest cutting, some soil constants in the model had been assigned from the measurements at the neighbouring deforested watershed. The simulated averaged snow water equivalent before snowmelt increased after deforestation by 15%; the snow sublimation losses decreased almost twice .The simulated annual runoff decreased by 10%, but its seasonal distribution changes essentially larger and the spring flood peak discharge from the deforested basin increased, on average, by 50%. Sensitivity of the hydrologic cycle processes to changes of the leaf area index as a representative

  14. MODFLOW-NWT model used to evaluate groundwater/surface-water interactions in the Bad River Watershed, Wisconsin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A groundwater-flow model was developed for the Bad River Watershed and surrounding area by using the U.S. Geological Survey (USGS) finite-difference code...

  15. Image segmentation for uranium isotopic analysis by SIMS: Combined adaptive thresholding and marker controlled watershed approach

    Energy Technology Data Exchange (ETDEWEB)

    Willingham, David G.; Naes, Benjamin E.; Heasler, Patrick G.; Zimmer, Mindy M.; Barrett, Christopher A.; Addleman, Raymond S.

    2016-05-31

    A novel approach to particle identification and particle isotope ratio determination has been developed for nuclear safeguard applications. This particle search approach combines an adaptive thresholding algorithm and marker-controlled watershed segmentation (MCWS) transform, which improves the secondary ion mass spectrometry (SIMS) isotopic analysis of uranium containing particle populations for nuclear safeguards applications. The Niblack assisted MCWS approach (a.k.a. SEEKER) developed for this work has improved the identification of isotopically unique uranium particles under conditions that have historically presented significant challenges for SIMS image data processing techniques. Particles obtained from five NIST uranium certified reference materials (CRM U129A, U015, U150, U500 and U850) were successfully identified in regions of SIMS image data 1) where a high variability in image intensity existed, 2) where particles were touching or were in close proximity to one another and/or 3) where the magnitude of ion signal for a given region was count limited. Analysis of the isotopic distributions of uranium containing particles identified by SEEKER showed four distinct, accurately identified 235U enrichment distributions, corresponding to the NIST certified 235U/238U isotope ratios for CRM U129A/U015 (not statistically differentiated), U150, U500 and U850. Additionally, comparison of the minor uranium isotope (234U, 235U and 236U) atom percent values verified that, even in the absence of high precision isotope ratio measurements, SEEKER could be used to segment isotopically unique uranium particles from SIMS image data. Although demonstrated specifically for SIMS analysis of uranium containing particles for nuclear safeguards, SEEKER has application in addressing a broad set of image processing challenges.

  16. Statistical Analysis and water Quality Modeling for a Drinking Water Source Watershed for the City of Houston, Texas

    Science.gov (United States)

    Teague, A.; Bedient, P.; Vieux, B. E.

    2009-12-01

    Water quality is a problem in Lake Houston, the primary source of drinking water for the City of Houston, due to pollutant loads coming from the influent watersheds, including Cypress Creek. Water quality issues in the watershed that are of concern for the lake include nutrient enrichment bacterial impairment, both of which present operational challenges for the drinking water treatment plant operations. Statistical analysis of the historic water quality data was developed in order to understand the source characterization and seasonality of the watershed. Multivariate analysis including principal component, cluster, and discriminant analysis provided a unique seasonal assessment of the watershed leading to refined loading curves have been analyzed using data collected by the USGS at 3 sites in Cypress Creek with corresponding City of Houston water quality data at the sites for the past 5 years to characterize the behavior of the pollutant source and watershed. A VfloTM hydrologic model from Vieux & Assoc., Inc for the watershed of the influent stream Cypress Creek was developed to predict the watershed flows into Lake Houston. A distributed model of a large scale watershed, it uses finite element analysis to solve the kinematic wave equation. The model incorporates land use relationships to predict runoff from Radar rainfall data. Continuous VfloTM was run for storm events and the distributed discharge of the watershed simulated. From the spatial discharge output, nutrient wash-off and convective transport was simulated. The simulated nutrient transport was then compared to storm sampling data at a downstream location to assess the water quality model and determine needed future refinements.

  17. The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access

    Science.gov (United States)

    Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.

    2011-12-01

    The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.

  18. The role of watershed characteristics in estuarine condition: an empirical approach

    Science.gov (United States)

    James Latimer; Melissa Hughes; Michael Charpentier; Christine Tilburg

    2016-01-01

    Estuarine condition is a function of the nature of the estuary, ocean, and atmospheric systems, and the upstream watershed. To fully understand and predict how an estuary will respond to drivers and pressures,...

  19. [Evaluating ground water vulnerability in West Lake Watershed by using DRASTIC model].

    Science.gov (United States)

    Dong, Liang; Zhu, Yinmei; Hu, Qinhai; Ogura, Norio

    2002-02-01

    Supported by Blackland GRASS Geographic Information System (GIS), the basic and special environmental databases of West Lake Watershed were established. The vulnerability map of ground water pollution was calculated and drawn by integrating GIS and DRASTIC model. Comparing to the present situation of land use, critical area of ground water pollution had been determined. The residential area accounted for 14.7% of the high susceptible area, and wastewater in the residential area should be piped and treated first.

  20. Simulation of semi-arid hydrological processes at different spatial resolutions using the AgroEcoSystem-Watershed (AgES-W) model

    Science.gov (United States)

    Green, T. R.; Erksine, R. H.; David, O.; Ascough, J. C., II; Kipka, H.; Lloyd, W. J.; McMaster, G. S.

    2015-12-01

    Water movement and storage within a watershed may be simulated at different spatial resolutions of land areas or hydrological response units (HRUs). Here, effects of HRU size on simulated soil water and surface runoff are tested using the AgroEcoSystem-Watershed (AgES-W) model with three different resolutions of HRUs. We studied a 56-ha agricultural watershed in northern Colorado, USA farmed primarily under a wheat-fallow rotation. The delineation algorithm was based upon topography (surface flow paths), land use (crop management strips and native grass), and mapped soil units (three types), which produced HRUs that follow the land use and soil boundaries. AgES-W model parameters that control surface and subsurface hydrology were calibrated using simulated daily soil moisture at different landscape positions and depths where soil moisture was measured hourly and averaged up to daily values. Parameter sets were both uniform and spatially variable with depth and across the watershed (5 different calibration approaches). Although forward simulations were computationally efficient (less than 1 minute each), each calibration required thousands of model runs. Execution of such large jobs was facilitated by using the Object Modeling System with the Cloud Services Innovation Platform to manage four virtual machines on a commercial web service configured with a total of 64 computational cores and 120 GB of memory. Results show how spatially distributed and averaged soil moisture and runoff at the outlet vary with different HRU delineations. The results will help guide HRU delineation, spatial resolution and parameter estimation methods for improved hydrological simulations in this and other semi-arid agricultural watersheds.

  1. Simulation of streamflow in the Pleasant, Narraguagus, Sheepscot, and Royal Rivers, Maine, using watershed models

    Science.gov (United States)

    Dudley, Robert W.; Nielsen, Martha G.

    2011-01-01

    The U.S. Geological Survey (USGS) began a study in 2008 to investigate anticipated changes in summer streamflows and stream temperatures in four coastal Maine river basins and the potential effects of those changes on populations of endangered Atlantic salmon. To achieve this purpose, it was necessary to characterize the quantity and timing of streamflow in these rivers by developing and evaluating a distributed-parameter watershed model for a part of each river basin by using the USGS Precipitation-Runoff Modeling System (PRMS). The GIS (geographic information system) Weasel, a USGS software application, was used to delineate the four study basins and their many subbasins, and to derive parameters for their geographic features. The models were calibrated using a four-step optimization procedure in which model output was evaluated against four datasets for calibrating solar radiation, potential evapotranspiration, annual and seasonal water balances, and daily streamflows. The calibration procedure involved thousands of model runs that used the USGS software application Luca (Let us calibrate). Luca uses the Shuffled Complex Evolution (SCE) global search algorithm to calibrate the model parameters. The calibrated watershed models performed satisfactorily, in that Nash-Sutcliffe efficiency (NSE) statistic values for the calibration periods ranged from 0.59 to 0.75 (on a scale of negative infinity to 1) and NSE statistic values for the evaluation periods ranged from 0.55 to 0.73. The calibrated watershed models simulate daily streamflow at many locations in each study basin. These models enable natural resources managers to characterize the timing and amount of streamflow in order to support a variety of water-resources efforts including water-quality calculations, assessments of water use, modeling of population dynamics and migration of Atlantic salmon, modeling and assessment of habitat, and simulation of anticipated changes to streamflow and water temperature

  2. Exploring storage and runoff generation processes for urban flooding through a physically based watershed model

    Science.gov (United States)

    Smith, B. K.; Smith, J. A.; Baeck, M. L.; Miller, A. J.

    2015-03-01

    A physically based model of the 14 km2 Dead Run watershed in Baltimore County, MD was created to test the impacts of detention basin storage and soil storage on the hydrologic response of a small urban watershed during flood events. The Dead Run model was created using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) algorithms and validated using U.S. Geological Survey stream gaging observations for the Dead Run watershed and 5 subbasins over the largest 21 warm season flood events during 2008-2012. Removal of the model detention basins resulted in a median peak discharge increase of 11% and a detention efficiency of 0.5, which was defined as the percent decrease in peak discharge divided by percent detention controlled area. Detention efficiencies generally decreased with increasing basin size. We tested the efficiency of detention basin networks by focusing on the "drainage network order," akin to the stream order but including storm drains, streams, and culverts. The detention efficiency increased dramatically between first-order detention and second-order detention but was similar for second and third-order detention scenarios. Removal of the soil compacted layer, a common feature in urban soils, resulted in a 7% decrease in flood peak discharges. This decrease was statistically similar to the flood peak decrease caused by existing detention. Current soil storage within the Dead Run watershed decreased flood peak discharges by a median of 60%. Numerical experiment results suggested that detention basin storage and increased soil storage have the potential to substantially decrease flood peak discharges.

  3. Metadata Modelling of the IPv6 Wireless Sensor Network in the Heihe River Watershed

    Directory of Open Access Journals (Sweden)

    Wanming Luo

    2013-03-01

    Full Text Available Environmental monitoring in ecological and hydrological watershed-scale research is an important and promising area of application for wireless sensor networks. This paper presents the system design of the IPv6 wireless sensor network (IPv6WSN in the Heihe River watershed in the Gansu province of China to assist ecological and hydrological scientists collecting field scientific data in an extremely harsh environment. To solve the challenging problems they face, this paper focuses on the key technologies adopted in our project, metadata modeling for the IPv6WSN. The system design introduced in this paper provides a solid foundation for effective use of a self-developed IPv6 wireless sensor network by ecological and hydrological scientists.

  4. Desertification Assessment Using MEDALUS Model in Watershed Oued El Maleh, Morocco

    Directory of Open Access Journals (Sweden)

    Hicham Lahlaoi

    2017-07-01

    Full Text Available Along with being a dynamic process that affects large areas, desertification is also one of the most serious problems in many countries. The effects of this phenomenon threaten the sustainability of natural resources, namely water resources, agricultural production and major basic infrastructure, specifically roads and habitations. Several factors exacerbate this phenomenon such as the climate dryness, the geological and morphological characteristics of the terrain, the irrational use of space, population growth and the over-exploitation of vegetation and water resources. This work aims to evaluate the desertification index in the Oued-El-Maleh watershed, through the integration of key factors involved in the MEDALUS model (Mediterranean Desertification and Land Use within a GIS. The model includes among its indexes: climate, vegetation, soil and management. Each index was obtained by the combination of sub-indexes. All the factors, measured and integrated into a geographic information system, enabled us to spatialize, on a synthetic map, the degree of the desertification effect throughout the watershed. This map is a managing tool available for decision-making regarding the selection of priority areas in the fight against desertification. High sensitivity to desertification class represents only 35% of the watershed. This class is concentrated in the north of the study area that corresponds to plains and low altitude. This could be explained by the dominance of agro-pastoral activity and the presence of a big population pressure.

  5. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, J.A.; Flint, L.E.; Alpers, C.N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  6. A coupled modeling framework for sustainable watershed management in transboundary river basins

    Science.gov (United States)

    Furqan Khan, Hassaan; Yang, Y. C. Ethan; Xie, Hua; Ringler, Claudia

    2017-12-01

    There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural-human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food-water-energy-environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco

  7. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Yarnell, Sarah M.

    2005-06-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  8. Application of the SUSTAIN Model to a Watershed-Scale Case for Water Quality Management

    Directory of Open Access Journals (Sweden)

    Chi-Feng Chen

    2014-11-01

    Full Text Available Low impact development (LID is a relatively new concept in land use management that aims to maintain hydrological conditions at a predevelopment level without deteriorating water quality during land development. The United States Environmental Protection Agency (USEPA developed the System for Urban Stormwater Treatment and Analysis Integration model (SUSTAIN to evaluate the performance of LID practices at different spatial scales; however, the application of this model has been limited relative to LID modeling. In this study, the SUSTAIN model was applied to a Taiwanese watershed. Model calibration and verification were performed, and different types of LID facilities were evaluated. The model simulation process and the verified model parameters could be used in other cases. Four LID scenarios combining bioretention ponds, grass swales, and pervious pavements were designed based on the land characteristics. For the SUSTAIN model simulation, the results showed that pollution reduction was mainly due to water quantity reduction, infiltration was the dominant mechanism and plant interception had a minor effect on the treatment. The simulation results were used to rank the primary areas for nonpoint source pollution and identify effective LID practices. In addition to the case study, a sensitivity analysis of the model parameters was performed, showing that the soil infiltration rate was the most sensitive parameter affecting the LID performance. The objectives of the study are to confirm the applicability of the SUSTAIN model and to assess the effectiveness of LID practices in the studied watershed.

  9. Land-cover in Watershed Models for Western Ghats

    Indian Academy of Sciences (India)

    6

    the models quoted by the Central Water Commission (CWC, 2010) in its 'State of the art report' and hence can be considered to be one accepted for general application for estimation of runoff. Hence, the present work is .... purpose, the NITK model is applied on three catchments for which reliable runoff values is available.

  10. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    Science.gov (United States)

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  11. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China

    Science.gov (United States)

    S. Wang; Z. Zhang; G. Sun; P. Strauss; J. Guo; Y. Tang; A. Yao

    2012-01-01

    Model calibration is essential for hydrologic modeling of large watersheds in a heterogeneous mountain environment. Little guidance is available for model calibration protocols for distributed models that aim at capturing the spatial variability of hydrologic processes. This study used the physically-based distributed hydrologic model, MIKE SHE, to contrast a lumped...

  12. Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds

    Science.gov (United States)

    Shortridge, Julie E.; Guikema, Seth D.; Zaitchik, Benjamin F.

    2016-07-01

    In the past decade, machine learning methods for empirical rainfall-runoff modeling have seen extensive development and been proposed as a useful complement to physical hydrologic models, particularly in basins where data to support process-based models are limited. However, the majority of research has focused on a small number of methods, such as artificial neural networks, despite the development of multiple other approaches for non-parametric regression in recent years. Furthermore, this work has often evaluated model performance based on predictive accuracy alone, while not considering broader objectives, such as model interpretability and uncertainty, that are important if such methods are to be used for planning and management decisions. In this paper, we use multiple regression and machine learning approaches (including generalized additive models, multivariate adaptive regression splines, artificial neural networks, random forests, and M5 cubist models) to simulate monthly streamflow in five highly seasonal rivers in the highlands of Ethiopia and compare their performance in terms of predictive accuracy, error structure and bias, model interpretability, and uncertainty when faced with extreme climate conditions. While the relative predictive performance of models differed across basins, data-driven approaches were able to achieve reduced errors when compared to physical models developed for the region. Methods such as random forests and generalized additive models may have advantages in terms of visualization and interpretation of model structure, which can be useful in providing insights into physical watershed function. However, the uncertainty associated with model predictions under extreme climate conditions should be carefully evaluated, since certain models (especially generalized additive models and multivariate adaptive regression splines) become highly variable when faced with high temperatures.

  13. Hydrological Modeling of Rainfall-Watershed-Bioretention System with EPA SWMM

    Science.gov (United States)

    gülbaz, sezar; melek kazezyılmaz-alhan, cevza

    2016-04-01

    Water resources should be protected for the sustainability of water supply and water quality. Human activities such as high urbanization with lack of infrastructure system and uncontrolled agricultural facilities adversely affect the water resources. Therefore, recent techniques should be investigated in detail to avoid present and future problems like flood, drought and water pollution. Low Impact Development-Best Management Practice (LID-BMP) is such a technique to manage storm water runoff and quality. There are several LID storm water BMPs such as bioretention facilities, rain gardens, storm water wetlands, vegetated rooftops, rain barrels, vegetative swales and permeable pavements. Bioretention is a type of Low Impact Developments (LIDs) implemented to diminish adverse effects of urbanization by reducing peak flows over the surface and improving surface water quality simultaneously. Different soil types in different ratios are considered in bioretention design which affects the performance of bioretention systems. Therefore, in this study, a hydrologic model for bioretention is developed by using Environmental Protection Agency Storm Water Management Model (EPA SWMM). Part of the input data is supplied to the hydrologic model by experimental setup called Rainfall-Watershed-Bioretention (RWB). RWB System is developed to investigate the relation among rainfall, watershed and bioretention. This setup consists of three main parts which are artificial rainfall system, drainage area and four bioretention columns with different soil mixture. EPA SWMM is a dynamic simulation model for the surface runoff which develops on a watershed during a rainfall event. The model is commonly used to plan, analyze, and control storm water runoff, to design drainage system components and to evaluate watershed management of both urban and rural areas. Furthermore, EPA SWMM is a well-known program to model LID-Bioretention in the literature. Therefore, EPA SWMM is employed in drainage

  14. Estimation Model of Soil Freeze-Thaw Erosion in Silingco Watershed Wetland of Northern Tibet

    Directory of Open Access Journals (Sweden)

    Bo Kong

    2013-01-01

    Full Text Available The freeze-thaw (FT erosion is a type of soil erosion like water erosion and wind erosion. Limited by many factors, the grading evaluation of soil FT erosion quantities is not well studied. Based on the comprehensive analysis of the evaluation indices of soil FT erosion, we for the first time utilized the sensitivity of microwave remote sensing technology to soil moisture for identification of FT state. We established an estimation model suitable to evaluate the soil FT erosion quantity in Silingco watershed wetland of Northern Tibet using weighted summation method of six impact factors including the annual FT cycle days, average diurnal FT phase-changed water content, average annual precipitation, slope, aspect, and vegetation coverage. Finally, with the support of GIS, we classified soil FT erosion quantity in Silingco watershed wetland. The results showed that soil FT erosion are distributed in broad areas of Silingco watershed wetland. Different soil FT erosions with different intensities have evidently different spatial and geographical distributions.

  15. Estimation model of soil freeze-thaw erosion in Silingco watershed wetland of Northern Tibet.

    Science.gov (United States)

    Kong, Bo; Yu, Huan

    2013-01-01

    The freeze-thaw (FT) erosion is a type of soil erosion like water erosion and wind erosion. Limited by many factors, the grading evaluation of soil FT erosion quantities is not well studied. Based on the comprehensive analysis of the evaluation indices of soil FT erosion, we for the first time utilized the sensitivity of microwave remote sensing technology to soil moisture for identification of FT state. We established an estimation model suitable to evaluate the soil FT erosion quantity in Silingco watershed wetland of Northern Tibet using weighted summation method of six impact factors including the annual FT cycle days, average diurnal FT phase-changed water content, average annual precipitation, slope, aspect, and vegetation coverage. Finally, with the support of GIS, we classified soil FT erosion quantity in Silingco watershed wetland. The results showed that soil FT erosion are distributed in broad areas of Silingco watershed wetland. Different soil FT erosions with different intensities have evidently different spatial and geographical distributions.

  16. Empirical Modeling of Stream Water Quality for Complex Coastal-Urban Watersheds

    Science.gov (United States)

    Al-Amin, S.; Abdul-Aziz, O.

    2013-12-01

    This study develops an understanding of the relative influence of land uses, surface hydrology, groundwater, seawater, and upstream contributions on the in-stream water quality of six highly urbanized, complex urban watersheds of South Florida by analyzing seasonal (Winter, Spring, Summer, and Fall) time-series of field data. We first explored the correlations among quality parameters (i.e., total nitrogen, total phosphorus, dissolved oxygen and specific conductance) and their changes with distance and time. Principle component analysis was then conducted to investigate the mutual correlations and potential group formations among the predictor and response variables. The findings were leveraged to develop regression-based non-linear empirical models for explaining stream water quality in relation to internal (land uses and hydrology) and external (upstream contribution, seawater) sources and drivers. In-stream dissolved oxygen and total phosphorus in the watersheds were dictated by internal stressors, while external stressors were dominant for total nitrogen and specific conductance. The research findings provide important insights into the dominant stressors of seasonal stream water quality of complex coastal-urban watersheds under a changing environment. The research tools will be useful for developing proactive monitoring and seasonally exclusive management strategies for urban stream water quality improvement in South Florida and around the world.

  17. Simulating cold-region hydrology in an intensively drained agricultural watershed in Manitoba, Canada, using the Cold Regions Hydrological Model

    Science.gov (United States)

    Cordeiro, Marcos R. C.; Wilson, Henry F.; Vanrobaeys, Jason; Pomeroy, John W.; Fang, Xing; The Red-Assiniboine Project Biophysical Modelling Team

    2017-07-01

    Etrophication and flooding are perennial problems in agricultural watersheds of the northern Great Plains. A high proportion of annual runoff and nutrient transport occurs with snowmelt in this region. Extensive surface drainage modification, frozen soils, and frequent backwater or ice-damming impacts on flow measurement represent unique challenges to accurately modelling watershed-scale hydrological processes. A physically based, non-calibrated model created using the Cold Regions Hydrological Modelling platform (CRHM) was parameterized to simulate hydrological processes within a low slope, clay soil, and intensively surface drained agricultural watershed. These characteristics are common to most tributaries of the Red River of the north. Analysis of the observed water level records for the study watershed (La Salle River) indicates that ice cover and backwater issues at time of peak flow may impact the accuracy of both modelled and measured streamflows, highlighting the value of evaluating a non-calibrated model in this environment. Simulations best matched the streamflow record in years when peak and annual discharges were equal to or above the medians of 6.7 m3 s-1 and 1.25 × 107 m3, respectively, with an average Nash-Sutcliffe efficiency (NSE) of 0.76. Simulation of low-flow years (below the medians) was more challenging (average NSE attention in further model development efforts. Despite the complexities of the study watershed, simulations of flow for average to high-flow years and other components of the water balance were robust (snow water equivalency (SWE) and soil moisture). A sensitivity analysis of the flow routing model suggests a need for improved understanding of watershed functions under both dry and flooded conditions due to dynamic routing conditions, but overall CRHM is appropriate for simulation of hydrological processes in agricultural watersheds of the Red River. Falsifications of snow sublimation, snow transport, and infiltration to frozen

  18. EVALUATION OF LAND USE/LAND COVER DATASETS FOR URBAN WATERSHED MODELING

    Energy Technology Data Exchange (ETDEWEB)

    S.J. BURIAN; M.J. BROWN; T.N. MCPHERSON

    2001-08-01

    Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size.

  19. A Distributed Hydrologic Model, HL-RDHM, for Flash Flood Forecasting in Hawaiian Watersheds

    Science.gov (United States)

    Fares, A.; Awal, R.; Michaud, J.; Chu, P.; Fares, S.; Kevin, K.; Rosener, M.

    2012-12-01

    Hawai'i's watersheds are flash flood prone due to their small contributing areas, and frequent intense spatially variable precipitation. Accurate simulation of the hydrology of these watersheds should incorporate spatial variability of at least the major input data, e.g., precipitation. The goal of this study is to evaluate the performance of the U.S. National Weather Service Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) in flash flood forecasting at Hanalei watershed, Kauai, Hawai'i. Some of the major limitations of using HL-RDHM in Hawaii are: i) Hawaii lies outside the Hydrologic Rainfall Analysis Project (HRAP) coordinate system of the continental US (CONUS), unavailability of a priori SAC-SMA parameter grids, and absence of hourly multi-sensor NEXRAD based precipitation grids. The specific objectives of this study were to i) run HL-RDHM outside CONUS domain, and ii) evaluate the performance of HL-RDHM for flash flood forecasting in the flood prone Hanalei watershed, Kauai, Hawai'i. We i) modified HRAP coordinate system; ii) generated input data of precipitation grids at different resolutions using data from 20 precipitation gauges five of which were within Hanalei watershed; iii) and generated SAC-SMA and routing parameter grids for the modified HRAP coordinate system. The one HRAP resolution grid (4 km x 4 km) was not accurate; thus, the basin averaged annual hourly precipitation of 1 HRAP grid is comparatively lower than that of ½ and ¼ HRAP grids. The performance of HL-RDHM using basin averaged a priori grids and distributed a priori grids was reasonable even using non-optimized a priori parameter values for 2008 data. HL-RDHM reasonably matched the observed streamflow magnitudes of peaks and time to peak during the calibration and validation periods. Overall, HL-RDHM performance is "good" to "very good" if we use input data of finer resolution grids (½ HRAP or ¼ HRAP) and precipitation grids interpolated from sufficient data of

  20. The Environmental Protection Agency's Watershed-based Approach: where social and natural sciences meet to address today's water resource challenges

    Science.gov (United States)

    Biddle, J. C.

    2010-12-01

    A growing number of governmental organizations at the local, state, and federal level collaborate with nongovernmental organizations and individuals to solve watershed scale problems (Imperial and Koontz, 2007). Such a shift in policy approach from hierarchical regulation to bottom-up collaboration is largely a result of regulator’s recognition of the interdependence of natural and socio-economic systems on a watershed scale (Steelman and Carmin, 2002. Agencies throughout the federal government increasingly favored new governing institutions that encourage cooperation between local actors with conflicting interests, divergent geographic bases, and overlapping administrative jurisdictions to resolve continuing disputes over resource management (Bardach 1998). This favoritism of collaborative over command-and-control approaches for managing nonpoint source pollution led to the development of watershed partnerships and the watershed-based approach (Lubell et al., 2002). This study aims to further collaborative governance scholarship and aid decision-makers in identifying the critical elements of collaborative governance resulting in environmental improvements. To date, this relationship has not been empirically determined, in spite of the fact that collaborative governance is used routinely by the U.S. Environmental Protection Agency in resolving issues related to watershed management and other applications. This gap in the research is largely due to the lack of longitudinal data. In order to determine whether changes have occurred, environmental data must be collected over relatively long time periods (Koontz and Thomas, 2006; Sabatier, et al., 2005). However, collecting these data is often cost prohibitive. Monitoring water quality is expensive and requires technical expertise, and is often the first line item cut in environmental management budgets. This research is interdisciplinary, looking at the physical, chemical, and biological parameters for 44 waterbodies

  1. Runoff Prediction Using an Aggregation Hydrology Model on Seulimum River Sub Watershed, Aceh Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Susi Chairani

    2014-11-01

    Full Text Available The objective of the present study was to predict the runoff in Seulimeum River sub watershed by utilizing an aggregation hydrology model. The method in this research consisted of field observation, collecting data and map, testing model, and analyzing data. Some parameters were used as the inputs on the model, such as: maximum storage, actual groundwater storage, soil moisture, and the constant of soil moisture k(t. The aggregation hydrology model was tested using 3 (three statistical parameters, such as; determination coefficient (R2, biased percentage (PBIAS, and Nash-Sutcliffe coefficient (ENS. The result showed that the minimum runoff occured in 1998 was 70.22 mm and the maximum runoff occurred in 1987 was 759.12 mm. The model testing showed that the aggregation hydrology model had a good performance in predicting the discharge of Krueng Seulimemum Sub Watershed; the R2, P biased, and ENS resulted 0.92, -5.21%, and 0.90, respectively

  2. Watershed Central: A New Gateway to Watershed Information

    Science.gov (United States)

    Many communities across the country struggle to find the right approaches, tools and data to in their watershed plans. EPA recently posted a new Web site called "Watershed Central, a “onestop" tool, to help watershed organizations and others find key resources to protect their ...

  3. A watershed scale spatially-distributed model for streambank erosion rate driven by channel curvature

    Science.gov (United States)

    McMillan, Mitchell; Hu, Zhiyong

    2017-10-01

    Streambank erosion is a major source of fluvial sediment, but few large-scale, spatially distributed models exist to quantify streambank erosion rates. We introduce a spatially distributed model for streambank erosion applicable to sinuous, single-thread channels. We argue that such a model can adequately characterize streambank erosion rates, measured at the outsides of bends over a 2-year time period, throughout a large region. The model is based on the widely-used excess-velocity equation and comprised three components: a physics-based hydrodynamic model, a large-scale 1-dimensional model of average monthly discharge, and an empirical bank erodibility parameterization. The hydrodynamic submodel requires inputs of channel centerline, slope, width, depth, friction factor, and a scour factor A; the large-scale watershed submodel utilizes watershed-averaged monthly outputs of the Noah-2.8 land surface model; bank erodibility is based on tree cover and bank height as proxies for root density. The model was calibrated with erosion rates measured in sand-bed streams throughout the northern Gulf of Mexico coastal plain. The calibrated model outperforms a purely empirical model, as well as a model based only on excess velocity, illustrating the utility of combining a physics-based hydrodynamic model with an empirical bank erodibility relationship. The model could be improved by incorporating spatial variability in channel roughness and the hydrodynamic scour factor, which are here assumed constant. A reach-scale application of the model is illustrated on ∼1 km of a medium-sized, mixed forest-pasture stream, where the model identifies streambank erosion hotspots on forested and non-forested bends.

  4. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

    Science.gov (United States)

    Xia, Bisheng; Qian, Xin; Yao, Hong

    2017-11-01

    Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

  5. Morphometric Analysis to Prioritize Sub-Watershed for Flood Risk Assessment in Central Karakoram National Park Using Gis/rs Approach

    Science.gov (United States)

    Syed, N. H.; Rehman, A. A.; Hussain, D.; Ishaq, S.; Khan, A. A.

    2017-11-01

    Morphometric analysis is vital for any watershed investigation and it is inevitable for flood risk assessment in sub-watershed basins. Present study undertaken to carry out critical evaluation and assessment of sub watershed morphological parameters for flood risk assessment of Central Karakorum National Park (CKNP), where Geographical information system and remote sensing (GIS & RS) approach used for quantifying the parameter and mapping of sub watershed units. ASTER DEM used as a geo-spatial data for watershed delineation and stream network. Morphometric analysis carried out using spatial analyst tool of ArcGIS 10.2. The parameters included were bifurcation ratio (Rb), Drainage Texture (Rt), Circulatory ratio (Rc), Elongated ratio (Re), Drainage density (Dd), Stream Length (Lu), Stream order (Su), Slope and Basin length (Lb) have calculated separately. The analysis revealed that the stream order varies from order 1 to 6 and the total numbers of stream segments of all orders were 52. Multi criteria analysis process used to calculate the risk factor. As an accomplished result, map of sub watershed prioritization developed using weighted standardized risk factor. These results helped to understand sensitivity of flush floods in different sub watersheds of the study area and leaded to better management of the mountainous regions in prospect of flush floods.

  6. MORPHOMETRIC ANALYSIS TO PRIORITIZE SUB-WATERSHED FOR FLOOD RISK ASSESSMENT IN CENTRAL KARAKORAM NATIONAL PARK USING GIS/RS APPROACH

    Directory of Open Access Journals (Sweden)

    N. H. Syed

    2017-11-01

    Full Text Available Morphometric analysis is vital for any watershed investigation and it is inevitable for flood risk assessment in sub-watershed basins. Present study undertaken to carry out critical evaluation and assessment of sub watershed morphological parameters for flood risk assessment of Central Karakorum National Park (CKNP, where Geographical information system and remote sensing (GIS & RS approach used for quantifying the parameter and mapping of sub watershed units. ASTER DEM used as a geo-spatial data for watershed delineation and stream network. Morphometric analysis carried out using spatial analyst tool of ArcGIS 10.2. The parameters included were bifurcation ratio (Rb, Drainage Texture (Rt, Circulatory ratio (Rc, Elongated ratio (Re, Drainage density (Dd, Stream Length (Lu, Stream order (Su, Slope and Basin length (Lb have calculated separately. The analysis revealed that the stream order varies from order 1 to 6 and the total numbers of stream segments of all orders were 52. Multi criteria analysis process used to calculate the risk factor. As an accomplished result, map of sub watershed prioritization developed using weighted standardized risk factor. These results helped to understand sensitivity of flush floods in different sub watersheds of the study area and leaded to better management of the mountainous regions in prospect of flush floods.

  7. Updates to watershed modeling in the Potholes Reservoir basin, Washington-a supplement to Scientific Investigation Report 2009-5081

    Science.gov (United States)

    Mastin, Mark

    2012-01-01

    A previous collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation resulted in a watershed model for four watersheds that discharge into Potholes Reservoir, Washington. Since the model was constructed, two new meteorological sites have been established that provide more reliable real-time information. The Bureau of Reclamation was interested in incorporating this new information into the existing watershed model developed in 2009, and adding measured snowpack information to update simulated results and to improve forecasts of runoff. This report includes descriptions of procedures to aid a user in making model runs, including a description of the Object User Interface for the watershed model with details on specific keystrokes to generate model runs for the contributing basins. A new real-time, data-gathering computer program automates the creation of the model input files and includes the new meteorological sites. The 2009 watershed model was updated with the new sites and validated by comparing simulated results to measured data. As in the previous study, the updated model (2012 model) does a poor job of simulating individual storms, but a reasonably good job of simulating seasonal runoff volumes. At three streamflow-gaging stations, the January 1 to June 30 retrospective forecasts of runoff volume for years 2010 and 2011 were within 40 percent of the measured runoff volume for five of the six comparisons, ranging from -39.4 to 60.3 percent difference. A procedure for collecting measured snowpack data and using the data in the watershed model for forecast model runs, based on the Ensemble Streamflow Prediction method, is described, with an example that uses 2004 snow-survey data.

  8. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    Science.gov (United States)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  9. Ecological and Socio-Economic Modeling of Consequences of Biological Management Scenarios Implementation in Integrated Watershed Management (Case Study: Simindasht Catchment

    Directory of Open Access Journals (Sweden)

    A. R. Keshtkar

    2016-09-01

    Full Text Available Integrated watershed management is considered as a new principle for development planning and management of water and soil resources emphasizing on socio-economic characteristics of the region to sustainable livelihoods without vulnerability for plants and the residents of an area. This research, in line with the objectives of integrated management, has been carried out for modelling and evaluating the effects of ecological, socio-economic consequences resulting from the implementation of the proposed management plans on the vegetation changes with a focus on the problems in Simindasht catchment, located in Semnan and Tehran Provinces. After standardization of indices by distance method and weighing them, the scenarios were prioritized using multi-criteria decision-making technique. Trade-off analysis of the results indicates that in the integrated management of Simindasht catchment more than one single management solution, covering all aspects of the system can be recommended in different weighting approaches. The approach used herein, considering the results of different models and comparing the results, is an efficient tool to represent the watershed system as a whole and to facilitate decision making for integrated watershed management.

  10. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    Science.gov (United States)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  11. Seasonal Changes of Precipitation and Temperature of Mountainous Watersheds in Future Periods with Approach of Fifth Report of Intergovernmental Panel on Climate Change (Case study: Kashafrood Watershed Basin

    Directory of Open Access Journals (Sweden)

    Amirhosein Aghakhani Afshar

    2017-01-01

    Full Text Available Introduction: Hydrology cycle of river basins and water resources availability in arid and semi-arid regions are highly affected by climate changes, so that recently the increase of temperature due to the increase of greenhouse gases have led to anomaly in the Earth’ climate system. At present, General Circulation Models (GCMs are the most frequently used models for projection of different climatic change scenarios. Up to now, IPCC has released four different versions of GCM models, including First Assessment Report models (FAR in 1990, Second Assessment Report models (SAR in 1996, Third Assessment Report models (TAR in 2001 and Fourth Assessment Report models (AR4 in 2007. In 2011, new generation of GCM, known as phase five of the Coupled Model Intercomparison Project (CMIP5 released which it has been actively participated in the preparation of Intergovernmental Panel on Climate Change (IPCC fifth Assessment report (AR5. A set of experiments such as simulations of 20th and projections of 21st century climate under the new emission scenarios (so called Representative Concentration Pathways (RCPs are included in CMIP5. Iran is a country that located in arid and semi-arid climates mostly characterized by low rainfall and high temperature. Anomalies in precipitation and temperature in Iran play a significant role in this agricultural and quickly developing country. Growing population, extensive urbanization and rapid economic development shows that Iran faces intensive challenges in available water resources at present and especially in the future. The first purpose of this study is to analyze the seasonal trends of future climate components over the Kashafrood Watershed Basin (KWB located in the northeastern part of Iran and in the Khorsan-e Razavi province using fifth report of Intergovernmental Panel on climate change (IPCC under new emission scenarios with Mann-Kendall (MK test. Mann-Kendall is one of the most commonly used nonparametric

  12. DETERMINATION OF AGRICULTURAL POTENTIAL BY GEO SPATIAL MODELING AND MULTI CRITERIA ANALYSIS FOR “BALSAS MEZCALA” WATERSHED

    Directory of Open Access Journals (Sweden)

    Anastacio Espejel-García

    2015-07-01

    Full Text Available The use of geographic information systems (GIS facilitates the modeling of specific information allowing faster, lower costs and accuracy for the planning of the agricultural activities for large territories. The objective for this paper was to use GIS as a support for the approach of the land use potential for the “Balsas Mezcala” watershed; for this purpose the multi criteria analysis was used, that allows to consider decision make issues with multiples objectives and considering the following criteria: geo-pedological (geomorphology and soil, climatology (thermal models and rainfall and the edapho-climatological requirements of the crops, the “Balsas Mezcala” hydrological region was chosen as the study area; through cartographic material the area was delimited and climate information was obtained from weather stations, geographic information and the data bases was collected from many different government agencies (INEGI, SEMARNAT, CONABIO, CONAGUA, IMTA, such information was processed in the ArcGIS software version 10.2.2, to obtained the geodatabases and geo spatial matrix which served as a cartographic input for the multi criteria analysis. The result of this investigation is a system that from geo spatial matrix and vectorial data originates raster dataset, same that were submitted to a modeling process with geo statistical algorithms, with that from a structure language, identify the potential zones with the highest aptness level, through the variable attributes that assign a weighted value using the methodology proposed by the United States Department of Agriculture (USDA in 1971 and taken by Food and Agriculture Organization of the United Nations (FAO for case studies since 1977 as an Agro-ecological Zoning System (AEZ. The result of the modeling of the soil aptness level in the watershed are 4 classes with 6 levels of aptness (very apt, apt, moderately apt, little apt, very little apt, unapt: Lands with irrigation potential

  13. Toolkit of Available EPA Green Infrastructure Modeling Software: Watershed Management Optimization Support Tool (WMOST)

    Science.gov (United States)

    Watershed Management Optimization Support Tool (WMOST) is a software application designed tofacilitate integrated water resources management across wet and dry climate regions. It allows waterresources managers and planners to screen a wide range of practices across their watersh...

  14. Catchment-Scale Modeling of Nitrogen Dynamics in a Temperate Forested Watershed, Oregon. An Interdisciplinary Communication Strategy

    Directory of Open Access Journals (Sweden)

    Kellie Vaché

    2015-10-01

    Full Text Available We present a systems modeling approach to the development of a place-based ecohydrological model. The conceptual model is calibrated to a variety of existing observations, taken in watershed 10 (WS10 at the HJ Andrews Experimental Forest (HJA in Oregon, USA, a long term ecological research (LTER site with a long history of catchment-scale data collection. The modeling framework was designed to help document and evaluate an evolving understanding of catchment processing of water, nitrogen, and carbon that has developed over the many years of on-going research at the site. We use the dynamic model to capture the temporal variation in the N and C budgets and to evaluate how different components of the complex system may control the retention and release of N in this pristine forested landscape. Results indicate that the relative roles of multiple competing controls on N change seasonally, between periods of wet/dry and growth/senescence. The model represents a communication strategy to facilitate dialog between disciplinary experimentalists and modelers, to produce a more complete picture of nitrogen cycling in the region. We view this explicit development of complete, yet conceptually simplified models as a useful and important way to evaluate complex environmental dynamics.

  15. Environmental modeling and exposure assessment of sediment-associated pyrethroids in an agricultural watershed.

    Directory of Open Access Journals (Sweden)

    Yuzhou Luo

    Full Text Available Synthetic pyrethroid insecticides have generated public concerns due to their increasing use and potential effects on aquatic ecosystems. A modeling system was developed in this study for simulating the transport processes and associated sediment toxicity of pyrethroids at coupled field/watershed scales. The model was tested in the Orestimba Creek watershed, an agriculturally intensive area in California' Central Valley. Model predictions were satisfactory when compared with measured suspended solid concentration (R(2 = 0.536, pyrethroid toxic unit (0.576, and cumulative mortality of Hyalella azteca (0.570. The results indicated that sediment toxicity in the study area was strongly related to the concentration of pyrethroids in bed sediment. Bifenthrin was identified as the dominant contributor to the sediment toxicity in recent years, accounting for 50-85% of predicted toxicity units. In addition, more than 90% of the variation on the annual maximum toxic unit of pyrethroids was attributed to precipitation and prior application of bifenthrin in the late irrigation season. As one of the first studies simulating the dynamics and spatial variability of pyrethroids in fields and instreams, the modeling results provided useful information on new policies to be considered with respect to pyrethroid regulation. This study suggested two potential measures to efficiently reduce sediment toxicity by pyrethroids in the study area: [1] limiting bifenthrin use immediately before rainfall season; and [2] implementing conservation practices to retain soil on cropland.

  16. Modeling of Erosion on Jelateng Watershed Using USLE Method, Associated with an Illegal Mining Activities (PETI)

    Science.gov (United States)

    Ananda, I. N.; Aswari, F. V.; Narmaningrum, D. A.; Nugraha, A. S. A.; Asidiqi, M. A. A.; Setiawan, Y.

    2016-11-01

    The Indonesian archipelago has abundant mineral resources, and it causes many mining activities. Mineral resource is natural based resource which cannot be renewable. An abandon mining pit makes a hole in land surface and it increase the erosion severity level on the rainy season. This erosion would brought sediment to the sea, and it causes damage the ecosystem of the coastal. Erosion modeling in Jelateng watershed performed temporally using remote sensing image data, which consist of LANDSAT-5 (1995), and LANDsAt-8 (2015), and supported by field data as well. The parameters for modeling of erosion through rasterization process as input from erosion USLE models to IDRISI software. The results shown that in 1995, the majority of the area has a low level of erosion. The low erosion rate is less than 183.67 tons/hectare/year and high erosion rate is 408.34 up to 633 tons/hectare/year. Compare with in 2015, erosion models shown that erosion is most prevalent on the upstream area of Jelateng watershed, with low erosion rate is less than 432.2 tons/hectare/year and high erosion rate is 615.64 up to 1448.31 tons/hectare/year.

  17. Assessing the Influence of Land Use and Land Cover Datasets with Different Points in Time and Levels of Detail on Watershed Modeling in the North River Watershed, China

    Science.gov (United States)

    Huang, Jinliang; Zhou, Pei; Zhou, Zengrong; Huang, Yaling

    2012-01-01

    Land use and land cover (LULC) information is an important component influencing watershed modeling with regards to hydrology and water quality in the river basin. In this study, the sensitivity of the Soil and Water Assessment Tool (SWAT) model to LULC datasets with three points in time and three levels of detail was assessed in a coastal subtropical watershed located in Southeast China. The results showed good agreement between observed and simulated values for both monthly and daily streamflow and monthly NH4+-N and TP loads. Three LULC datasets in 2002, 2007 and 2010 had relatively little influence on simulated monthly and daily streamflow, whereas they exhibited greater effects on simulated monthly NH4+-N and TP loads. When using the two LULC datasets in 2007 and 2010 compared with that in 2002, the relative differences in predicted monthly NH4+-N and TP loads were −11.0 to −7.8% and −4.8 to −9.0%, respectively. There were no significant differences in simulated monthly and daily streamflow when using the three LULC datasets with ten, five and three categories. When using LULC datasets from ten categories compared to five and three categories, the relative differences in predicted monthly NH4+-N and TP loads were −6.6 to −6.5% and −13.3 to −7.3%, respectively. Overall, the sensitivity of the SWAT model to LULC datasets with different points in time and levels of detail was lower in monthly and daily streamflow simulation than in monthly NH4+-N and TP loads prediction. This research provided helpful insights into the influence of LULC datasets on watershed modeling. PMID:23271303

  18. An integrative approach to characterize hydrological processes and water quality in a semi-arid watershed in Northeastern Brazil

    Science.gov (United States)

    Franklin, M. R.; Fernandes, N.; Veiga, L. H. S.; Melo, L. R.; Santos, A. C. S.; Araujo, V. P.

    2014-12-01

    Arid and semi-arid regions face serious challenges in the management of scarce water resources. This situation tends to become worse with the increasing population growth rates and consequently increasing water demand. Groundwater is the most important water resource in these areas and, therefore, the sustainability of its use depends on the effectiveness in which it is managed, both in terms of quantity and quality. The Caetité Experimental Basin (CEB), located in a semi-arid region of Northeastern Brazil, faces not only the challenges associated with water scarcity, but also changes in landscape and potential contamination processes due to mining activity. The only active uranium production center in Brazil (URA) is located in this watershed and the sustainability of mining and milling operations as well as the survival of the local community are highly dependent on the availability of groundwater resources. Hydrogeological studies in this area are scarce, and the potential contamination and overexploitation of groundwater can not be ruled out. Therefore, a national project was launched in order to improve the understanding and quantification of the interaction between the hydrogeological system and human health. The methodological approach involved hydrological and geochemical monitoring and characterization of the CEB, use of isotopic techniques, groundwater modeling, water quality diagnosis and human health risk assessment due to water ingestion. The results suggested that the groundwater in the CEB are not totally connected, with evidence of a mixture of recent and old waters. The Na-Ca-HCO3-Cl is the dominant water type (50%) followed by Ca-Na-HCO3-Cl water type (17%). The relevant non-radioactive contaminants are Mn, F, NO3 and Ba, mostly from natural origin, with the exception of NO3 that could be associated with the livestock activities. The estimated effective doses due to groundwater ingestion containing radionuclides are below the recommended

  19. 78 FR 13874 - Watershed Modeling To Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to...

    Science.gov (United States)

    2013-03-01

    ... Climate Change and Urban Development in 20 U.S. Watersheds AGENCY: Environmental Protection Agency (EPA... Streamflow, Nutrient, and Sediment Loads to Climate Change and Urban Development in 20 U.S. Watersheds (EPA... Streamflow, Nutrient, and Sediment Loads to Climate Change and Urban Development in 20 U.S. Watersheds, is...

  20. Modeling runoff and sediment yield from a terraced watershed using WEPP

    Science.gov (United States)

    Mary Carla McCullough; Dean E. Eisenhauer; Michael G. Dosskey

    2008-01-01

    The watershed version of WEPP (Water Erosion Prediction Project) was used to estimate 50-year runoff and sediment yields for a 291 ha watershed in eastern Nebraska that is 90% terraced and which has no historical gage data. The watershed has a complex matrix of elements, including terraced and non-terraced subwatersheds, multiple combinations of soils and land...

  1. The development and use of best practices in forest watersheds using GIS and simulation models

    Science.gov (United States)

    Steven G. McNulty; Ge Sun

    1998-01-01

    Forest watersheds provide timber and water, wildlife and fisheries habitat, and recreational opportunities. However, not an entire watershed is equally suited for each activity. Steeper slopes may be better left forested and used for wildlife habitat, while more gentle slopes of the watershed could be used for timber production. Logging steep slopes can lead to soil...

  2. Companion Modeling, Conflict Resolution, and Institution Building: Sharing Irrigation Water in the Lingmuteychu Watershed, Bhutan

    Directory of Open Access Journals (Sweden)

    Tayan Raj. Gurung

    2006-12-01

    Full Text Available We used multi-agent systems (MAS, following the companion modeling method, to facilitate water management negotiations in Bhutan. We show how this methodology helped resolve a conflict over the sharing of water resources by establishing a concrete agreement and creating an institution for collective watershed management. The conceptual model begins with a role-playing game (RPG. The stakeholders play the game, thus validating the proposed environment, the behavioral rules, and the emergent properties of the game. It is then relatively easy to translate the RPG into computerized MAS that allow different scenarios to be explored. After this first step in the MAS model, stakeholders then create an institution. A second model is developed to facilitate this process. We conclude by discussing the relationship between the models and reality, as well as the use of MAS as a mediation tool and the social process.

  3. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    Science.gov (United States)

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Spatially Referenced Regression on Watershed Attributes (SPARROW) was used to provide empirical estimates of the sources, fate, and transport of total nitrogen (TN) and total phosphorus (TP) in the Chesapeake Bay watershed, and the mean annual TN and TP flux to the bay and in each of 80,579 nontidal tributary stream reaches. Restoration efforts in recent decades have been insufficient to meet established standards for water quality and ecological conditions in Chesapeake Bay. The bay watershed includes 166,000 square kilometers of mixed land uses, multiple nutrient sources, and variable hydrogeologic, soil, and weather conditions, and bay restoration is complicated by the multitude of nutrient sources and complex interacting factors affecting the occurrence, fate, and transport of nitrogen and phosphorus from source areas to streams and the estuary. Effective and efficient nutrient management at the regional scale in support of Chesapeake Bay restoration requires a comprehensive understanding of the sources, fate, and transport of nitrogen and phosphorus in the watershed, which is only available through regional models. The current models, Chesapeake Bay nutrient SPARROW models, version 4 (CBTN_v4 and CBTP_v4), were constructed at a finer spatial resolution than previous SPARROW models for the Chesapeake Bay watershed (versions 1, 2, and 3), and include an updated timeframe and modified sources and other explantory terms.

  4. An application of the distributed hydrologic model CASC2D to a tropical montane watershed

    Science.gov (United States)

    Marsik, Matt; Waylen, Peter

    2006-11-01

    SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.

  5. Understanding the Shape of the Land and Watersheds Using Simple Models in the Classroom

    Science.gov (United States)

    Gardiner, L.; Johnson, R.; Russell, R.; Bergman, J.; Genyuk, J.; Lagrave, M.

    2006-12-01

    Middle school students can gain essential understandings of the Earth and its processes in the classroom by making and manipulating simple models. While no substitute for field experiences, simple models made of easily-obtained materials can foster student understanding of natural environments. Through this collection of hands-on activities, students build and manipulate simple models that demonstrate (1) tectonic processes that shape the land, (2) the shape of the land surface, (3) how the shape of the land influences the distribution of waterways and watersheds, and (4) how the human communities within a watershed are interconnected through use of surface water. The classroom activities described in this presentation are available on Windows to the Universe (www.windows.ucar.edu), a project of the University Corporation for Atmospheric Research Office of Education and Outreach. Windows to the Universe, a long-standing Web resource supporting Earth and space science education, provides users with content about the Earth and space sciences at three levels (beginner, intermediate, and advanced) in English and Spanish. Approximately 80 hands-on classroom activities appropriate for K-12 classrooms are available within the teacher resources section of the Windows to the Universe.

  6. Application of Coupled Human-Natural Systems Model for Assessing Trade-Offs Between Watershed Ecosystem Services in Veracruz, Mexico

    Science.gov (United States)

    Mayer, A. S.; Jones, K.; Berry, Z. C.; Congalton, R.; Kolka, R. K.; López-Ramírez, S.; Manson, R.; Muñoz Villers, L.; Saenz, L.; Salcone, J.; Von Thaden Ugalde, J.; Asbjornsen, H.

    2016-12-01

    Trade-offs between ecosystem services (ES) occur due to management choices that impact the type, magnitude, and relative mix of services provided by ecosystems. Trade-offs arise when the provision of one ES is reduced as a consequence of increased use of another ES. Here, we assess ES tradeoffs with a coupled human-natural systems (CHNS) model, in response to payments for watershed services (PWS) programs in two watersheds in Veracruz, Mexico. An econometric component of the CHNS model is used to determine the effect of the PWS programs on a given land use-land cover (LULC). Eight LULC categories, corresponding to 95% of the watershed area, are used to force LULC feedbacks within the CHNS model. The LULC can transition from the present category to another, given the outcome of landowner participation in the PWS programs. Biophysical sub-models of watershed discharge and water quality, carbon storage, and biodiversity conservation are used to estimate values of ES indicators at the watershed scale. These biophysical models are derived from qualitative and quantitative observations in the study watersheds. Using these models, we gain first-approximation insights into ES tradeoffs and the sensitivity of estimated tradeoffs to model structure—serving as a critical platform for informing hypotheses about PWS program design and ES tradeoffs. With a CHNS model in place, and data collected collected from our field experiments, we explore first, baseline implications for ES of existing PWS programs in Xalapa, Veracruz; and second, we develop scenarios of potential PWS program pathways, with or without climate change projection forcings in order to improve our understanding of changes in ES distribution, magnitude and biophysical tradeoffs. Finally, the econometric component is parameterized with economic variables and indicators identified with local stakeholders in order to asses economic implications of ES tradeoffs. Outputs from the model provide important information

  7. Modeling effectiveness of management practices for flood mitigation using GIS spatial analysis functions in Upper Cilliwung watershed

    Science.gov (United States)

    Darma Tarigan, Suria

    2016-01-01

    Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.

  8. Multiple-response Bayesian calibration of watershed water quality models with significant input and model structure errors

    Science.gov (United States)

    Han, Feng; Zheng, Yi

    2016-02-01

    While watershed water quality (WWQ) models have been widely used to support water quality management, their profound modeling uncertainty remains an unaddressed issue. Data assimilation via Bayesian calibration is a promising solution to the uncertainty, but has been rarely practiced for WWQ modeling. This study applied multiple-response Bayesian calibration (MRBC) to SWAT, a classic WWQ model, using the nitrate pollution in the Newport Bay Watershed (southern California, USA) as the study case. How typical input and model structure errors would impact modeling uncertainty, parameter identification and management decision-making was systematically investigated through both synthetic and real-situation modeling cases. The main study findings include: (1) with an efficient sampling scheme, MRBC is applicable to WWQ modeling in characterizing its parametric and predictive uncertainties; (2) incorporating hydrology responses, which are less susceptible to input and model structure errors than water quality responses, can improve the Bayesian calibration results and benefit potential modeling-based management decisions; and (3) the value of MRBC to modeling-based decision-making essentially depends on pollution severity, management objective and decision maker's risk tolerance.

  9. Hydrologic model parameterization using dynamic Landsat-based foliar cover estimates for runoff simulation on a semiarid grassland watershed

    Science.gov (United States)

    Kautz, Mark A.

    Changes in watershed vegetative cover from natural and anthropogenic causes including, climatic fluctuations, wildfires and land management practices, can result in increased surface water runoff and erosion. Hydrologic models play an important role in the decision support process for managing these landscape alterations. However, model parameterization requires quantified measures of watershed biophysical condition to generate accurate results. These inputs are often obtained from nationally available land cover data sets that are static in terms of vegetation condition and phenology. Obtaining vegetative data for model input of sufficient spatiotemporal resolution for long-term, watershed-scale change analysis has been a challenge. The purpose of this research was to assess the implications of parameterizing the event-based, Rangeland Hydrology and Erosion Model (RHEM) with dynamic, remotely sensed foliar cover data. The study was conducted on a small, instrumented, grassland watershed within the Walnut Gulch Experimental Watershed surrounding Tombstone, Arizona. A time series of foliar cover rasters was produced by calibrating Landsat-based Soil Adjusted Total Vegetation Index (SATVI) scenes with field measurements. Estimates of basal and litter cover were calculated using allometric relationships derived from ground-based transect data. The model was parameterized using these remotely sensed inputs for all recorded runoff events from 1996-2014. Model performance was improved using the remotely sensed foliar cover compared to using an a priori value based on static national land cover classes. Significant (plitter cover. The integration of Landsat-based vegetative data into RHEM shows potential for modelling on a broadened spatiotemporal scale, allowing for improved landscape characterization and the ability to track watershed response to long-term vegetation changes.

  10. A COMPARATIVE STUDY ON CALIBRATION METHODS OF NASH’S RAINFALL-RUNOFF MODEL TO AMMAMEH WATERSHED, IRAN

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2008-06-01

    Full Text Available Increasing importance of watershed management during last decades highlighted the need for sufficient data and accurate estimation of rainfall and runoff within watersheds. Therefore, various conceptual models have been developed with parameters based on observed data. Since further investigations depend on these parameters, it is important to accurately estimate them. This study by utilizing various methods, tries to estimate Nash rainfall-runoff model parameters and then evaluate the reliability of parameter estimation methods; moment, least square error, maximum likelihood, maximum entropy and genetic algorithm. Results based on a case study on the data from Ammameh watershed in Central Iran, indicate that the genetic algorithm method, which has been developed based on artificial intelligence, more accurately estimates Nash’s model parameters.

  11. A Risk Explicit Interval Linear Programming Model for Uncertainty-Based Environmental Economic Optimization in the Lake Fuxian Watershed, China

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2013-01-01

    Full Text Available The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers’ preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  12. A risk explicit interval linear programming model for uncertainty-based environmental economic optimization in the Lake Fuxian watershed, China.

    Science.gov (United States)

    Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  13. Development of a socio-ecological environmental justice model for watershed-based management

    Science.gov (United States)

    Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton

    2014-10-01

    The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.

  14. Risk watershed analysis: a new approach to manage torrent control structures

    Science.gov (United States)

    Quefféléan, Yann; Carladous, Simon; Deymier, Christian; Marco, Olivier

    2017-04-01

    Torrential check dams have been built in French public forests since the 19th century, applying the Restoration and conservation of Mountainous Areas (RTM) laws (1860, 1864, 1882). The RTM department of the National Forestry Office (ONF) helps the government to decide on protective actions to implement within these areas. While more than 100 000 structures were registered in 1964, more than 14 000 check dams are currently registered and maintained within approximatively 380 000 ha of RTM public forests. The RTM department officers thus have a long experience in using check dams for soil restoration, but also in implementing other kinds of torrential protective structures such as sediment traps, embankments, bank protection, and so forth. As a part of the ONF, they are also experienced in forestry engineering. Nevertheless, some limits in torrent control management have been highlighted: - as existing protective structures are ageing, their effectiveness to protect elements at risk must be assessed but it is a difficult task ; - as available budget for maintenance is continuously decreasing, priorities have to be made but decisions are difficult : what are the existing check dams functions? what is their expected effect on torrential hazard? is maintenance cost too important given this expected effect to protect elements at risk? Given these questions, a new policy has been engaged by the RTM department since 2012. A technical overview at the torrential watershed scale is now needed to help better maintenance decisions: it has been called a Risk Watershed Analysis (Etude de Bassin de Risque in French, EBR) and is funded by the government. Its objectives are to: - recall initial objectives of protective structures : therefore, a detailed archive analysis is made ; - describe current elements at risk to protect ; - describe natural hazards at the torrential watershed scale and their evolution since protective structures implementation ; - describe civil engineering

  15. Numerical modeling of watershed-scale radiocesium transport coupled with biogeochemical cycling in forests

    Science.gov (United States)

    Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.

    2015-12-01

    Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, intensive monitoring and modeling works on radionuclide transfer in environment have been carried out. Although Cesium (Cs) concentration has been attenuating due to both physical and environmental half-life (i.e., wash-off by water and sediment), the attenuation rate depends clearly on the type of land use and land cover. In the Fukushima case, studying the migration in forest land use is important for predicting the long-term behavior of Cs because most of the contaminated region is covered by forests. Atmospheric fallout is characterized by complicated behavior in biogeochemical cycle in forests which can be described by biotic/abiotic interactions between many components. In developing conceptual and mathematical model on Cs transfer in forest ecosystem, defining the dominant components and their interactions are crucial issues (BIOMASS, 1997-2001). However, the modeling of fate and transport in geosphere after Cs exports from the forest ecosystem is often ignored. An integrated watershed modeling for simulating spatiotemporal redistribution of Cs that includes the entire region from source to mouth and surface to subsurface, has been recently developed. Since the deposited Cs can migrate due to water and sediment movement, the different species (i.e., dissolved and suspended) and their interactions are key issues in the modeling. However, the initial inventory as source-term was simplified to be homogeneous and time-independent, and biogeochemical cycle in forests was not explicitly considered. Consequently, it was difficult to evaluate the regionally-inherent characteristics which differ according to land uses, even if the model was well calibrated. In this study, we combine the different advantages in modeling of forest ecosystem and watershed. This enable to include more realistic Cs deposition and time series of inventory can be forced over the land surface. These processes are integrated

  16. Bi-criteria evaluation of the MIKE SHE model for a forested watershed on the South Carolina coastal plain

    Science.gov (United States)

    Z. Dai; C. Li; C. Trettin; G. Sun; D. Amatya; H. Li

    2010-01-01

    Hydrological models are important tools for effective management, conservation and restoration of forested wetlands. The objective of this study was to test a distributed hydrological model, MIKE SHE, by using bi-criteria (i.e., two measurable variables, streamflow and water table depth) to describe the hydrological processes in a forested watershed that is...

  17. Sensitivity analysis of the DRAINWAT model applied to an agricultural watershed in the lower coastal plain, North Carolina, USA

    Science.gov (United States)

    Hyunwoo Kim; Devendra M. Amatya; Stephen W. Broome; Dean L. Hesterberg; Minha. Choi

    2011-01-01

    The DRAINWAT, DRAINmod for WATershed model, was selected for hydrological modelling to obtain water table depths and drainage outflows at Open Grounds Farm in Carteret County, North Carolina, USA. Six simulated storm events from the study period were compared with the measured data and analysed. Simulation results from the whole study period and selected rainfall...

  18. Model Watershed Plan; Lemhi, Pahsimeroi, and East Fork of the Salmon River Management Plan, 1995 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Ralph

    1995-11-01

    Idaho`s Model Watershed Project was established as part of the Northwest Power Planning Council`s plan for salmon recovery in the Columbia River Basin. The Council`s charge was simply stated and came without strings. The tasks were to identify actions within the watershed that are planned or needed for salmon habitat, and establish a procedure for implementing habitat-improvement measures. The Council gave the responsibility of developing this project to the Idaho Soil Conservation Commission. This Model Watershed Plan is intended to be a dynamic plan that helps address these two tasks. It is not intended to be the final say on either. It is also not meant to establish laws, policies, or regulations for the agencies, groups, or individuals who participated in the plan development.

  19. Development of An Empirical Water Quality Model for Stormwater Based on Watershed Land Use in Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Cullinan, Valerie I.; May, Christopher W.; Brandenberger, Jill M.; Judd, Chaeli; Johnston, Robert K.

    2007-03-29

    The Sinclair and Dyes Inlet watershed is located on the west side of Puget Sound in Kitsap County, Washington, U.S.A. (Figure 1). The Puget Sound Naval Shipyard (PSNS), U.S Environmental Protection Agency (USEPA), the Washington State Department of Ecology (WA-DOE), Kitsap County, City of Bremerton, City of Bainbridge Island, City of Port Orchard, and the Suquamish Tribe have joined in a cooperative effort to evaluate water-quality conditions in the Sinclair-Dyes Inlet watershed and correct identified problems. A major focus of this project, known as Project ENVVEST, is to develop Water Clean-up (TMDL) Plans for constituents listed on the 303(d) list within the Sinclair and Dyes Inlet watershed. Segments within the Sinclair and Dyes Inlet watershed were listed on the State of Washington’s 1998 303(d) because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue (WA-DOE 2003). Stormwater loading was identified by ENVVEST as one potential source of sediment contamination, which lacked sufficient data for a contaminant mass balance calculation for the watershed. This paper summarizes the development of an empirical model for estimating contaminant concentrations in all streams discharging into Sinclair and Dyes Inlets based on watershed land use, 18 storm events, and wet/dry season baseflow conditions between November 2002 and May 2005. Stream pollutant concentrations along with estimates for outfalls and surface runoff will be used in estimating the loading and ultimately in establishing a Water Cleanup Plan (TMDL) for the Sinclair-Dyes Inlet watershed.

  20. Evaluation results of the GlobalWatershed GK-12 Fellowship Program - a model for increased science literacy and partnership

    Science.gov (United States)

    Mayer, A. S.; Vye, E.

    2016-12-01

    -related issues. The GlobalWatershed GK-12 Fellowship program serves as a model for broadening scientific impacts among a wider public through shared communication and partnership.

  1. Proposal of a lumped hydrological model based on general equations of growth - application to five watersheds in the UK

    Science.gov (United States)

    Prieto Sierra, C.; García Alonso, E.; Mínguez Solana, R.; Medina Santamaría, R.

    2013-07-01

    This paper explores a new approach to lumped hydrological modelling based on general laws of growth, in particular using the classic logistic equation proposed by Verhulst. By identifying homologies between the growth of a generic system and the evolution of the flow at the outlet of a river basin, and adopting some complementary hypotheses, a compact model with 3 parameters, extensible to 4 or 5, is obtained. The model assumes that a hydrological system, under persistent conditions of precipitation, potential evapotranspiration and land uses, tends to reach an equilibrium discharge that can be expressed as a function of a dynamic aridity index, including a free parameter reflecting the basin properties. The rate at which the system approaches such equilibrium discharge, which is constantly changing and generally not attainable, is another parameter of the model; finally, a time lag is introduced to reflect a characteristic delay between the input (precipitation) and output (discharge) in the system behaviour. To test the suitability of the proposed model, 5 previously studied river basins in the UK, with different characteristics, have been analysed at a daily scale, and the results compared with those of the model IHACRES (Identification of unit Hydrographs and Component flows from Rainfall, Evaporation and Streamflow data). It is found that the logistic equilibrium model with 3 parameters properly reproduces the hydrological behaviour of such basins, improving the IHACRES in four of them; moreover, the model parameters are relatively stable over different periods of calibration and evaluation. Adding more parameters to the basic structure, the fits only improve slightly in some of the analysed series, but potentially increasing equifinality effects. The results obtained indicate that growth equations, with possible variations, can be useful and parsimonious tools for hydrological modelling, at least in certain types of watersheds.

  2. An integrated approach to assess the dynamics of a peri-urban watershed influenced by wastewater irrigation

    Science.gov (United States)

    Mahesh, Jampani; Amerasinghe, Priyanie; Pavelic, Paul

    2015-04-01

    In many urban and peri-urban areas of India, wastewater is under-recognized as a major water resource. Wastewater irrigated agriculture provides direct benefits for the livelihoods and food security of many smallholder farmers. A rapidly urbanizing peri-urban micro-watershed (270 ha) in Hyderabad was assessed over a 10-year period from 2000 to 2010 for changes in land use and associated farming practices, farmer perceptions, socio-economic evaluation, land-use suitability for agriculture and challenges in potential irrigated area development towards wastewater use. This integrated approach showed that the change in the total irrigated area was marginal over the decade, whereas the built-up area within the watershed boundaries doubled and there was a distinct shift in cropping patterns from paddy rice to paragrass and leafy vegetables. Local irrigation supplies were sourced mainly from canal supplies, which accounted for three-quarters of the water used and was largely derived from wastewater. The remainder was groundwater from shallow hard-rock aquifers. Farmer perception was that the high nutrient content of the wastewater was of value, although they were also interested to pay modest amounts for additional pre-treatment. The shift in land use towards paragrass and leafy vegetables was attributed to increased profitability due to the high urban demand. The unutilised scrubland within the watershed has the potential for irrigation development, but the major constraints appear to be unavailability of labour and high land values rather than water availability. The study provides evidence to support the view that the opportunistic use of wastewater and irrigation practices, in general, will continue even under highly evolving peri-urban conditions, to meet the livelihood needs of the poor driven by market demands, as urban sprawl expands into cultivable rural hinterlands. Policy support is needed for enhanced recognition of wastewater for agriculture, with flow

  3. A modified soil organic carbon density model for a forest watershed in southern China

    Science.gov (United States)

    Song, Jiangping; Li, Zhongwu; Nie, Xiaodong; Liu, Chun; Xiao, Haibing; Wang, Danyang; Zeng, Guangming

    2017-11-01

    In the context of global climate change, correctly estimating soil organic carbon (SOC) stocks is significant. Because SOC density is the basis for calculating total SOC, exploring the spatial distribution of SOC density is more important. In this study, a typical forest watershed in southern China was analysed. An established exponential model that combined the soil erosion, topography, and average annual rainfall in the region to estimate SOC density with varying soil depth was modified by simulated rainfall experiments and 137Cs (Caesium-137) tracer soil erosion techniques. Thus, a modified exponential model for the SOC density in southern China was established. The results showed that the correlation coefficient (R2) reached 0.870 for the linear regression analysis of the simulated and measured SOC densities. The differences between the measured and simulated SOC densities in different soil layers (0-60 cm) all passed the independent sample t-test. Additionally, the Nash-Sutcliffe coefficient for the simulated and measured SOC densities was 0.97 in the forest watershed. Furthermore, the application of the modified exponential model showed that the measured SOC densities were in good agreement with the simulated SOC densities in the different forest areas tested. These results illustrated that the modified exponential model could be effectively used to simulate the vertical distribution of SOC density in southern China. Because the parameters in the modified exponential model were easy to obtain, this modified model could be applied to simulate the vertical distribution of the SOC density in different geomorphological areas. Therefore, the results of this study will help to understand the global carbon cycle and provide valuable information for constructing the ecological environment of various landscapes.

  4. Ecosystem Services Assessment of Two Watersheds of Lancang River in Yunnan, China with a Decision Tree Approach

    NARCIS (Netherlands)

    Wang, C.; Meer, van der P.J.; Peng, M.; Douven, W.; Hessel, R.; Dang, C.

    2009-01-01

    In the Langcang (Upper-Mekong) watershed, degraded watershed ecosystems in upland areas threaten cultivation practices, water resources, and dam development downstream. Assessment of ecosystem services and the factors that threaten them is an important first step to support watershed management.

  5. A Watershed-Scale Agent-Based Model Incorporating Agent Learning and Interaction of Farmers' Decisions Subject to Carbon and Miscanthus Prices

    Science.gov (United States)

    Ng, T.; Eheart, J.; Cai, X.; Braden, J. B.

    2010-12-01

    Agricultural watersheds are coupled human-natural systems where the land use decisions of human agents (farmers) affect surface water quality, and in turn, are affected by the weather and yields. The reliable modeling of such systems requires an approach that considers both the human and natural aspects. Agent-based modeling (ABM), representing the human aspect, coupled with hydrologic modeling, representing the natural aspect, is one such approach. ABM is a relatively new modeling paradigm that formulates the system from the perspectives of the individual agents, i.e., each agent is modeled as a discrete autonomous entity with distinct goals and actions. The primary objective of this study is to demonstrate the applicability of this approach to agricultural watershed management. This is done using a semi-hypothetical case study of farmers in the Salt Creek watershed in East-Central Illinois under the influence markets for carbon and second-generation bioenergy crop (specifically, miscanthus). An agent-based model of the system is developed and linked to a hydrologic model of the watershed. The former is based on fundamental economic and mathematical programming principles, while the latter is based on the Soil and Water Assessment Tool (SWAT). Carbon and second-generation bioenergy crop markets are of interest here due to climate change and energy independence concerns. The agent-based model is applied to fifty hypothetical heterogeneous farmers. The farmers' decisions depend on their perceptions of future conditions. Those perceptions are updated, according to a pre-defined algorithm, as the farmers make new observations of prices, costs, yields and the weather with time. The perceptions are also updated as the farmers interact with each other as they share new information on initially unfamiliar activities (e.g., carbon trading, miscanthus cultivation). The updating algorithm is set differently for different farmers such that each is unique in his processing of

  6. Quantifying the Fecal Coliform Loads in Urban Watersheds by Hydrologic/Hydraulic Modeling: Case Study of the Beauport River Watershed in Quebec

    Directory of Open Access Journals (Sweden)

    Amélie Thériault

    2015-02-01

    Full Text Available A three-step method for the identification of the main sources of fecal coliforms (FC in urban waters and for the analysis of remedial actions is proposed. The method is based on (1 The statistical analysis of the relationship between rainfall and FC concentrations in urban rivers; (2 The simulation of hydrology and hydraulics; and (3 Scenario analysis. The proposed method was applied to the Beauport River watershed, in Canada, covering an area of 28.7 km2. FC loads and concentrations in the river, during and following rainfall events, were computed using the Storm Water Management Model (SWMM hydrological/hydraulic simulation model combined with event mean concentrations. It was found that combined sewer overflows (CSOs are the main FC sources, and that FC from stormwater runoff could still impair recreational activities in the Beauport River even if retention tanks were built to contain CSOs. Thus, intervention measures should be applied in order to reduce the concentration of FC in stormwater outfalls. The proposed method could be applied to water quality components other than FC, provided that they are present in stormwater runoff and/or CSOs, and that the time of concentration of the watershed is significantly lower than their persistence in urban waters.

  7. Application of SWAT-HS, a lumped hillslope model to simulate hydrology in the Cannonsville Reservoir watershed, New York

    Science.gov (United States)

    Hoang, Linh; Schneiderman, Elliot; Mukundan, Rajith; Moore, Karen; Owens, Emmet; Steenhuis, Tammo

    2017-04-01

    Surface runoff is the primary mechanism transporting substances such as sediments, agricultural chemicals, and pathogens to receiving waters. In order to predict runoff and pollutant fluxes, and to evaluate management practices, it is essential to accurately predict the areas generating surface runoff, which depend on the type of runoff: infiltration-excess runoff and saturation-excess runoff. The watershed of Cannonsville reservoir is part of the New York City water supply system that provides high quality drinking water to nine million people in New York City (NYC) and nearby communities. Previous research identified saturation-excess runoff as the dominant runoff mechanism in this region. The Soil and Water Assessment Tool (SWAT) is a promising tool to simulate the NYC watershed given its broad application and good performance in many watersheds with different scales worldwide, for its ability to model water quality responses, and to evaluate the effect of management practices on water quality at the watershed scale. However, SWAT predicts runoff based mainly on soil and land use characteristics, and implicitly considers only infiltration-excess runoff. Therefore, we developed a modified version of SWAT, referred to as SWAT-Hillslope (SWAT-HS), which explicitly simulates saturation-excess runoff by redefining Hydrological Response Units (HRUs) based on wetness classes with varying soil water storage capacities, and by introducing a surface aquifer with the ability to route interflow from "drier" to "wetter" wetness classes. SWAT-HS was first tested at Town Brook, a 37 km2 headwater watershed draining to the Cannonsville reservoir using a single sub-basin for the whole watershed. SWAT-HS performed well, and predicted streamflow yielded Nash-Sutcliffe Efficiencies of 0.68 and 0.87 at the daily and monthly time steps, respectively. More importantly, it predicted the spatial distribution of saturated areas accurately. Based on the good performance in the Town Brook

  8. Using Dual Isotopes and a Bayesian Isotope Mixing Model to Evaluate Nitrate Sources of Surface Water in a Drinking Water Source Watershed, East China

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-08-01

    Full Text Available A high concentration of nitrate (NO3− in surface water threatens aquatic systems and human health. Revealing nitrate characteristics and identifying its sources are fundamental to making effective water management strategies. However, nitrate sources in multi-tributaries and mix land use watersheds remain unclear. In this study, based on 20 surface water sampling sites for more than two years’ monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3− and δ18O-NO3− were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, China. Nitrate-nitrogen concentrations (ranging from 0.02 to 8.57 mg/L were spatially heterogeneous that were influenced by hydrogeological and land use conditions. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage, M & S; soil nitrogen, NS; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall were estimated by using a Bayesian isotope mixing model. The results showed that nitrate sources contributions varied significantly among different rainfall conditions and land use types. As for the whole watershed, M & S (manure and sewage and NS (soil nitrogen were major nitrate sources in both wet and dry seasons (from 28% to 36% for manure and sewage and from 24% to 27% for soil nitrogen, respectively. Overall, combining a dual isotopes method with a Bayesian isotope mixing model offered a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in drinking water source watersheds, Jianghuai hilly region, eastern China.

  9. Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed

    Science.gov (United States)

    Arif, N.; Danoedoro, P.; Hartono

    2017-12-01

    Erosion modeling is an important measuring tool for both land users and decision makers to evaluate land cultivation and thus it is necessary to have a model to represent the actual reality. Erosion models are a complex model because of uncertainty data with different sources and processing procedures. Artificial neural networks can be relied on for complex and non-linear data processing such as erosion data. The main difficulty in artificial neural network training is the determination of the value of each network input parameters, i.e. hidden layer, momentum, learning rate, momentum, and RMS. This study tested the capability of artificial neural network application in the prediction of erosion risk with some input parameters through multiple simulations to get good classification results. The model was implemented in Serang Watershed, Kulonprogo, Yogyakarta which is one of the critical potential watersheds in Indonesia. The simulation results showed the number of iterations that gave a significant effect on the accuracy compared to other parameters. A small number of iterations can produce good accuracy if the combination of other parameters was right. In this case, one hidden layer was sufficient to produce good accuracy. The highest training accuracy achieved in this study was 99.32%, occurred in ANN 14 simulation with combination of network input parameters of 1 HL; LR 0.01; M 0.5; RMS 0.0001, and the number of iterations of 15000. The ANN training accuracy was not influenced by the number of channels, namely input dataset (erosion factors) as well as data dimensions, rather it was determined by changes in network parameters.

  10. Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China

    Directory of Open Access Journals (Sweden)

    Hongwei Nan

    2012-05-01

    Full Text Available Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS, have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km2 Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R2 of 0.94 and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R2 of 0.93. Additionally, the model was validated using annual average sediment of 2000–2002 (relative error of −0.34 and 2003–2004 (relative error of 0.18 at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km−2·y−1. However, 8% of the watershed had soil erosion of exceeding 5,000 t·km−2

  11. Water quality assessment and meta model development in Melen watershed - Turkey.

    Science.gov (United States)

    Erturk, Ali; Gurel, Melike; Ekdal, Alpaslan; Tavsan, Cigdem; Ugurluoglu, Aysegul; Seker, Dursun Zafer; Tanik, Aysegul; Ozturk, Izzet

    2010-07-01

    Istanbul, being one of the highly populated metropolitan areas of the world, has been facing water scarcity since the past decade. Water transfer from Melen Watershed was considered as the most feasible option to supply water to Istanbul due to its high water potential and relatively less degraded water quality. This study consists of two parts. In the first part, water quality data covering 26 parameters from 5 monitoring stations were analyzed and assessed due to the requirements of the "Quality Required of Surface Water Intended for the Abstraction of Drinking Water" regulation. In the second part, a one-dimensional stream water quality model with simple water quality kinetics was developed. It formed a basic design for more advanced water quality models for the watershed. The reason for assessing the water quality data and developing a model was to provide information for decision making on preliminary actions to prevent any further deterioration of existing water quality. According to the water quality assessment at the water abstraction point, Melen River has relatively poor water quality with regard to NH(4)(+), BOD(5), faecal streptococcus, manganese and phenol parameters, and is unsuitable for drinking water abstraction in terms of COD, PO(4)(3-), total coliform, total suspended solids, mercury and total chromium parameters. The results derived from the model were found to be consistent with the water quality assessment. It also showed that relatively high inorganic nitrogen and phosphorus concentrations along the streams are related to diffuse nutrient loads that should be managed together with municipal and industrial wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Interactive model evaluation and selection via an optimization-based top-down approach using hydrological signatures

    Science.gov (United States)

    Shafii, Mahyar; Basu, Nandita; Craig, James

    2015-04-01

    The model selection in the context of hydrological modelling requires essential understanding about the dominant physical controls on watersheds' responses. Generally, modellers employ top-down or bottom-up approaches to identify the minimum level of complexity that reproduces the functional behavior of a watershed represented by historical data. This research formalizes an optimization-based framework for top-down model evaluation and selection, whereby a structurally flexible hydrologic model (called RAVEN) is calibrated with respect to both goodness-of-fit measures and hydrological signatures using a multi-criteria optimization algorithm. The signatures implemented in the calibration quantify the model capability with respect to different aspects of the watershed's behaviour. Therefore, starting from the simplest model structure, the modeller can monitor the information explored in the calibration process (e.g., failure in the satisfaction of the signatures corresponding to low- or high-flows) and increase the model complexity accordingly. Preliminary results suggest that the proposed top-down framework can turn into an interactive signature-based model design that enables the modeller to tune the hydrologic model so that the watershed's behaviour is fully reproduced, i.e., model outcomes meet all hydrological signatures. Applying the proposed framework to different small to large watersheds would demonstrate how physical controls vary with climate and watersheds' characteristics. Thus, multiple watersheds will be considered in this study ranging from small catchments in Canada to the Grand River Watershed with the area of 7000 km2 located in Ontario, Canada. Moreover, RAVEN is a computationally efficient hydrologic model and its multi-criteria calibration involves parallel computing, all of which significantly reduce the computational expenses of the proposed framework.

  13. Modeled and measured linkages between glaciers, permafrost and hydrology in a subarctic watershed, Interior Alaska

    Science.gov (United States)

    Gaedeke, A.; Liljedahl, A. K.; O'Neel, S.; Douglas, T. A.; Gatesman, T.; Daanen, R. P.; Zhang, J.; Campbell, S. W.

    2016-12-01

    Hydrological processes in subarctic, mountainous, glacierized watersheds are highly variable (seasonally and spatially) and are particularly vulnerable to climate change. Here, we combine field measurements and hydrological modeling to address the effects of altered glacier melt on lowland runoff, regional groundwater recharge/storage and permafrost distribution. Jarvis Creek watershed (630 km2), a headwater basin of the Tanana River (12,000 km2), in semi-arid Interior Alaska serves as our study area. The process-based, spatially distributed hydrological model WaSiM was utilized to simulate all aspects of the water cycle, including glacier melt, dynamic glacier coverage, seasonal soil freeze and thaw and permafrost. Downscaled regional climate scenarios force WaSiM for long-term climate change impact assessment. Field measurements (differential runoff, glacier mass balance, end-of-winter snow depths, soil temperature, and meteorology) are used to parameterize, calibrate and validate WaSiM. Our field measurements and modeling results indicate that Jarvis Creek, which is fed by on average 1/3 glacier runoff during summer, loses considerable amount of runoff to the regional aquifer. The aquifer, in turn, feeds the larger scale river system (Tanana River) throughout the year, which is especially prominent during winter when all overland runoff ceases and surface waters are covered with ice. Measured annual runoff increased from the nearby Gulkana Glacier during the last 50 years, which is consistent with an 11% decrease in glacier coverage (1950-2010) within the Tanana River basin. Glacier runoff is likely to continue to increase until glaciers recede to higher and cooler elevation. The changes in glacier runoff do not only affect the headwater streams (Jarvis Creek), but also the larger scale hydrological regime such as aquifer storage and release, long-term trends in winter baseflow of Tanana River and permafrost distribution.

  14. A coupled upland-erosion and instream hydrodynamic-sediment transport model for evaluating sediment transport in forested watersheds

    Science.gov (United States)

    W. J. Conroy; R. H. Hotchkiss; W. J. Elliot

    2006-01-01

    This article describes a prototype modeling system for assessing forest management-related erosion at its source and predicting sediment transport from hillslopes to stream channels and through channel networks to a watershed outlet. We demonstrate that it is possible to develop a land management tool capable of accurately assessing the primary impacts of...

  15. Performance of DRAINWAT model in assessing the drainage discharge from a small watershed in the Po Valley (Northern Italy)

    Science.gov (United States)

    Maurizio Borin; Tomaso Bisol; Devendra M. Amatya

    2010-01-01

    The performance of DRAINWAT, a DRAINMOD based-watershed scale hydrology model, in predicting the water discharge was assessed in a small basin in Northern Italy during 2002-2005. DRAINWAT slightly unpredicted (4%) the total stream drainage flow respect the measured data (549 mm), in calibration (2002-04). The underprediction was 11% in 2004-05 validation period, when...

  16. Simulating soil moisture change in a semiarid rangeland watershed with a process-based water-balance model

    Science.gov (United States)

    Howard Evan Canfield; Vicente L. Lopes

    2000-01-01

    A process-based, simulation model for evaporation, soil water and streamflow (BROOK903) was used to estimate soil moisture change on a semiarid rangeland watershed in southeastern Arizona. A sensitivity analysis was performed to select parameters affecting ET and soil moisture for calibration. Automatic parameter calibration was performed using a procedure based on a...

  17. Participatory Modeling Processes to Build Community Knowledge Using Shared Model and Data Resources and in a Transboundary Pacific Northwest Watershed (Nooksack River Basin, Washington, USA)

    Science.gov (United States)

    Bandaragoda, C.; Dumas, M.

    2014-12-01

    As with many western US watersheds, the Nooksack River Basin faces strong pressures associated with climate variability and change, rapid population growth, and deep-rooted water law. This transboundary basin includes contributing areas in British Columbia, Canada, and has a long history of joint data collection, model development, and facilitated communication between governmental (federal, tribal, state, local), environmental, timber, agricultural, and recreational user groups. However, each entity in the watershed responds to unique data coordination, information sharing, and adaptive management regimes and thresholds, further increasing the complexity of watershed management. Over the past four years, participatory methods were used to compile and review scientific data and models, including fish habitat (endangered salmonid species), channel hydraulics, climate data, agricultural, municipal and industrial water use, and integrated watershed scale distributed hydrologic models from over 15 years of projects (from jointly funded to independent shared work by individual companies, agencies, and universities). A specific outcome of the work includes participatory design of a collective problem statement used for guidance on future investment of shared resources and development of a data-generation process where modeling results are communicated in a three-tiers for 1) public/decision-making, 2) technical, and 3) research audiences. We establish features for successful participation using tools that are iteratively developed, tested for usability through incremental knowledge building, and designed to provide rigor in modeling. A general outcome of the work is ongoing support by tribal, state, and local governments, as well as the agricultural community, to continue the generation of shared watershed data using models in a dynamic legal and regulatory setting, where two federally recognized tribes have requested federal court resolution of federal treaty rights

  18. GIS based generation of dynamic hydrological and land patch simulation models for rural watershed areas

    Directory of Open Access Journals (Sweden)

    M. Varga

    2016-03-01

    Full Text Available This paper introduces a GIS based methodology to generate dynamic process model for the simulation based analysis of a sensitive rural watershed. The Direct Computer Mapping (DCM based solution starts from GIS layers and, via the graph interpretation and graphical edition of the process network, the expert interface is able to integrate the field experts’ knowledge in the computer aided generation of the simulation model. The methodology was applied and tested for the Southern catchment basin of Lake Balaton, Hungary. In the simplified hydrological model the GIS description of nine watercourses, 121 water sections, 57 small lakes and 20 Lake Balaton compartments were mapped through the expert interface to the dynamic databases of the DCM model. The hydrological model involved precipitation, evaporation, transpiration, runoff, infiltration. The COoRdination of INformation on the Environment (CORINE land cover based simplified “land patch” model considered the effect of meteorological and hydrological scenarios on freshwater resources in the land patches, rivers and lakes. The first results show that the applied model generation methodology helps to build complex models, which, after validation can support the analysis of various land use, with the consideration of environmental aspects.

  19. Development and application of benthic algal reference condition models to assess stream condition in the South Nahanni Watershed.

    Science.gov (United States)

    Thomas, Kathryn E; Hall, Roland I; Scrimgeour, Garry J

    2017-07-01

    Monitoring biologists continually strive to improve the effectiveness of protocols to quantify environmental and ecological effects of anthropogenic activities. We developed and applied a reference condition approach (RCA) model to assess the ability of 3 descriptors of algal community structure (algal taxonomy, diatom taxonomy, and algal pigments) to identify impairment in 2 northern rivers in the South Nahanni River Watershed, Northwest Territories, Canada. We established reference conditions by sampling 62 regional reference (i.e., minimally disturbed) sites in 2008 (n = 44) and 2009 (n = 18) and assessed the condition of 38 test sites downstream of 2 mines in 2008 (N = 20 sites) and 2009 (N = 18 sites). Patterns of impairment downstream of the 2 mines were assessed and zones of influence were identified for each algal descriptor. Results showed that the 3 RCA models using the 3 descriptors of algal community structure identified reasonably consistent assessments downstream of Prairie Creek mine with changes in algal pigments being more sensitive than the other 2 descriptors. In Flat River, however, assessment of test sites varied considerably depending on the descriptor of algal community structure. Our results suggest that benthic algal RCA models show promise as biological monitoring tools, but additional investigations are required to better understand variance in site assessments among the 3 algal community descriptors. Integr Environ Assess Manag 2017;13:728-745. © 2016 SETAC. © 2016 SETAC.

  20. Predicting watershed post-fire sediment yield with the InVEST sediment retention model: Accuracy and uncertainties

    Science.gov (United States)

    Sankey, Joel B.; McVay, Jason C.; Kreitler, Jason R.; Hawbaker, Todd J.; Vaillant, Nicole; Lowe, Scott

    2015-01-01

    Increased sedimentation following wildland fire can negatively impact water supply and water quality. Understanding how changing fire frequency, extent, and location will affect watersheds and the ecosystem services they supply to communities is of great societal importance in the western USA and throughout the world. In this work we assess the utility of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Sediment Retention Model to accurately characterize erosion and sedimentation of burned watersheds. InVEST was developed by the Natural Capital Project at Stanford University (Tallis et al., 2014) and is a suite of GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., USLE – Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. In this study, we evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured postfire sediment yields available for many watersheds throughout the western USA from an existing, published large database. We show that the model can be parameterized in a relatively simple fashion to predict post-fire sediment yield with accuracy. Our ultimate goal is to use the model to accurately predict variability in post-fire sediment yield at a watershed scale as a function of future wildfire conditions.

  1. New Approach for Evaluation of a Watershed Ecosystem Service for Avoiding Reservoir Sedimentation and Its Economic Value: A Case Study from Ertan Reservoir in Yalong River, China

    Directory of Open Access Journals (Sweden)

    Bilige Sude

    2011-01-01

    Full Text Available A model was established to simulate an ecosystem service of avoiding reservoir sedimentation and its economic value based on the process of sediment delivery in a watershed. The model included fabricating the watershed of the study reservoir. The sediment retention coefficient of different land cover types were used to simulate the spatial patterns of the annual quantity of the sediment that were prevented from entering the reservoir by the vegetation in each cell followed the flow path in watershed. The economic value of the ecosystem service in this model was determined by the marginal cost of reservoir desilting. This study took the Ertan reservoir as an example. The results showed that most eroded soil was intercepted by different types of ecosystems in the process of sediment delivery in a watershed. The region with a higher quantity of sediment retention was around the reservoir. The absolute quantity of average sediment retention in forestland was lower, so the sediment retention ability of forestland failed to be brought into fullest play in watershed.

  2. Microsensors to the Model Forecasts: Multiscale Embedded Networked Sensing of Nutrients in the Watershed

    Science.gov (United States)

    Harmon, T. C.

    2005-12-01

    Hydrologic and water quality observatories are being planned with a vision of enhancing our ability to better understand, forecast and adaptively manage both water quantity and quality. To adequately cover these spatially and temporally variable systems, distributed, embedded sensor networks must be designed with the proper mix (multimodality) of sensors to quantify key system properties, including temperature and chemical distributions, as well as mass and energy fluxes, and to do so across multiple scales. Given resource limitations, process models need to be coupled to the sensor network to interpolate between sensor data. This work focuses on the spatially distributed flux of nutrients, specifically nitrate, in surface-subsurface environments. It begins at the sensor level, describing the development and testing of nitrate microsensors that are scaleable to large, dense sensor networks required to cover heterogeneous watersheds, including associated soil and sediment systems. First and second generation miniature and inexpensive nitrate sensors (ion selective electrodes) fabricated by depositing conducting polymers on carbon substrates are presented in the context of laboratory and field tests. While these sensors are limited to relatively short deployments (4-8 weeks), there are potential strategies for overcoming this problem. Scale-up to one- and three-dimensional soil/sediment sensor arrays is discussed in the context of two deployments: (1) a groundwater quality protection network, where recycled wastewater that is potentially high in nitrate is being used for agricultural irrigation, and (2) nonpoint source nitrate pollution in rivers and groundwater in agricultural watersheds. Recent hardware (wireless transceivers) and software advancements (e.g., network topology design and debugging, energy management) intended for networks spanning 100s of m in space are outlined in these examples. The discussion extends to sensor form factor, in situ calibration

  3. Modeling Sustained Delivery of Agroecosystem Services at a Watershed Scale under Climate Change

    Science.gov (United States)

    Jaradat, A. A.; Starr, J.

    2015-12-01

    The intensive land use and agricultural production systems in the Chippewa River Watershed (CRW) in Minnesota, USA, contribute to inherent environmental problems and have major direct impact on soil conservation, and on several competing agro-ecosystem services (AESs); and may have indirect impact on AESs in the Upper Mississippi River Basin (UMRB). Field-scale indicators of AESs are largely absent in the highly diverse soils of the CRW. Therefore, proxy indicators were developed to assess these services under current (A0) and predicted (A2; 100 years) global climate change (GCC) scenarios. Individual indices were developed for biomass, grain yield, NO3- and NH4-N, soil carbon, runoff, and soil erosion for 132 soil series classified into three land capability classes (LCCs). The indices and a weighted index (Iw) were subjected to multivariate analyses procedures, including distance-weighted least squares, and variance components estimation. Three-D maps delineated contiguous areas of increasing or decreasing AESs in response to projected GCC. Largest significant variance portions in Iw were attributed to GCC scenarios; followed by the interaction of crop rotations and LCCs within conventional and organic cropping systems. The AES were predicted with larger certainty under A2 in organically-managed LCC-1 compared to conventional management. Significantly more runoff and soil erosion are predicted in conventionally-managed LCC-2 and LCC-3 under the same GCC scenario, regardless of soil heterogeneity. The modeling framework and the mapped AES indicators are designed to achieve multiple goals and will be used to support farmers in designing specific crop rotations that are suitable for each of the three LCCs and for major and vulnerable soil series in the watershed. Also, the modeling framework will address sustained delivery of multiple AESs, while enhancing soil conservation, water quality, and environmental protection aspects of farming in the CRW and the UMRB.

  4. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China); Zhang Xuyang [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Liu Xingmei [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Soil, Water and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Ficklin, Darren [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China)], E-mail: mhzhang@ucdavis.edu

    2008-12-15

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application.

  5. Development of a comprehensive watershed model applied to study stream yield under drought conditions

    Science.gov (United States)

    Perkins, S.P.; Sophocleous, M.

    1999-01-01

    We developed a model code to simulate a watershed's hydrology and the hydraulic response of an interconnected stream-aquifer system, and applied the model code to the Lower Republican River Basin in Kansas. The model code links two well-known computer programs: MODFLOW (modular 3-D flow model), which simulates ground water flow and stream-aquifer interaction; and SWAT (soil water assessment tool), a soil water budget simulator for an agricultural watershed. SWAT represents a basin as a collection of subbasins in terms of soil, land use, and weather data, and simulates each subbasin on a daily basis to determine runoff, percolation, evaporation, irrigation, pond seepages and crop growth. Because SWAT applies a lumped hydrologic model to each subbasin, spatial heterogeneities with respect to factors such as soil type and land use are not resolved geographically, but can instead be represented statistically. For the Republican River Basin model, each combination of six soil types and three land uses, referred to as a hydrologic response unit (HRU), was simulated with a separate execution of SWAT. A spatially weighted average was then taken over these results for each hydrologic flux and time step by a separate program, SWBAVG. We wrote a package for MOD-FLOW to associate each subbasin with a subset of aquifer grid cells and stream reaches, and to distribute the hydrologic fluxes given for each subbasin by SWAT and SWBAVG over MODFLOW's stream-aquifer grid to represent tributary flow, surface and ground water diversions, ground water recharge, and evapotranspiration from ground water. The Lower Republican River Basin model was calibrated with respect to measured ground water levels, streamflow, and reported irrigation water use. The model was used to examine the relative contributions of stream yield components and the impact on stream yield and base flow of administrative measures to restrict irrigation water use during droughts. Model results indicate that tributary

  6. A Comprehensive Land-Use/Hydrological Modeling System for Scenario Simulations in the Elbow River Watershed, Alberta, Canada

    Science.gov (United States)

    Wijesekara, Gayan Nishad; Farjad, Babak; Gupta, Anil; Qiao, Ying; Delaney, Patrick; Marceau, Danielle J.

    2014-02-01

    The Elbow River watershed in Alberta covers an area of 1,238 km2 and represents an important source of water for irrigation and municipal use. In addition to being located within the driest area of southern Canada, it is also subjected to considerable pressure for land development due to the rapid population growth in the City of Calgary. In this study, a comprehensive modeling system was developed to investigate the impact of past and future land-use changes on hydrological processes considering the complex surface-groundwater interactions existing in the watershed. Specifically, a spatially explicit land-use change model was coupled with MIKE SHE/MIKE 11, a distributed physically based catchment and channel flow model. Following a rigorous sensitivity analysis along with the calibration and validation of these models, four land-use change scenarios were simulated from 2010 to 2031: business as usual (BAU), new development concentrated within the Rocky View County (RV-LUC) and in Bragg Creek (BC-LUC), respectively, and development based on projected population growth (P-LUC). The simulation results reveal that the rapid urbanization and deforestation create an increase in overland flow, and a decrease in evapotranspiration (ET), baseflow, and infiltration mainly in the east sub-catchment of the watershed. The land-use scenarios affect the hydrology of the watershed differently. This study is the most comprehensive investigation of its nature done so far in the Elbow River watershed. The results obtained are in accordance with similar studies conducted in Canadian contexts. The proposed modeling system represents a unique and flexible framework for investigating a variety of water related sustainability issues.

  7. A stakeholder project to model water temperature under future climate scenarios in the Satus and Toppenish watersheds of the Yakima River Basinin Washington, USA

    Science.gov (United States)

    Graves, D.; Maule, A.

    2014-01-01

    The goal of this study was to support an assessment of the potential effects of climate change on select natural, social, and economic resources in the Yakima River Basin. A workshop with local stakeholders highlighted the usefulness of projecting climate change impacts on anadromous steelhead (Oncorhynchus mykiss), a fish species of importance to local tribes, fisherman, and conservationists. Stream temperature is an important environmental variable for the freshwater stages of steelhead. For this study, we developed water temperature models for the Satus and Toppenish watersheds, two of the key stronghold areas for steelhead in the Yakima River Basin. We constructed the models with the Stream Network Temperature Model (SNTEMP), a mechanistic approach to simulate water temperature in a stream network. The models were calibrated over the April 15, 2008 to September 30, 2008 period and validated over the April 15, 2009 to September 30, 2009 period using historic measurements of stream temperature and discharge provided by the Yakama Nation Fisheries Resource Management Program. Once validated, the models were run to simulate conditions during the spring and summer seasons over a baseline period (1981–2005) and two future climate scenarios with increased air temperature of 1°C and 2°C. The models simulated daily mean and maximum water temperatures at sites throughout the two watersheds under the baseline and future climate scenarios.

  8. Modeling Historical and Projected Future Atmospheric Nitrogen Loading to the Chesapeake Bay Watershed

    Science.gov (United States)

    Land use and climate change are expected to alter key processes in the Chesapeake Bay watershed and can potentially exacerbate the impact of excess nitrogen. Atmospheric sources are one of the largest loadings of nitrogen to the Chesapeake Bay watershed. In this study, we explore...

  9. Test of newly developed conceptual hydrological model for simulation of rain-on-snow events in forested watershed

    Directory of Open Access Journals (Sweden)

    Si-min QU

    2013-01-01

    Full Text Available A conceptual hydrological model that links the Xin’anjiang hydrological model and a physically based snow energy and mass balance model, described as the XINSNOBAL model, was developed in this study for simulating rain-on-snow events that commonly occur in the Pacific Northwest of the United States. The resultant model was applied to the Lookout Creek Watershed in the H. J. Andrews Experimental Forest in the western Cascade Mountains of Oregon, and its ability to simulate streamflow was evaluated. The simulation was conducted at 24-hour and one-hour time scales for the period of 1996 to 2005. The results indicated that runoff and peak discharge could be underestimated if snowpack accumulation and snowmelt under rain-on-snow conditions were not taken into account. The average deterministic coefficient of the hourly model in streamflow simulation in the calibration stage was 0.837, which was significantly improved over the value of 0.762 when the Xin’anjiang model was used alone. Good simulation performance of the XINSNOBAL model in the WS10 catchment, using the calibrated parameter of the Lookout Creek Watershed for proxy-basin testing, demonstrates that transplanting model parameters between similar watersheds can provide a useful tool for discharge forecasting in ungauged basins.

  10. Watershed Regressions for Pesticides (WARP) models for predicting stream concentrations of multiple pesticides

    Science.gov (United States)

    Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.

    2013-01-01

    Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.

  11. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells D.; Lang, Megan W.; Sharifi, Amir

    2018-01-01

    Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2 concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085-2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of ˜ 70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater increased rate of 5.2 kg N ha-1 in

  12. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells; Lang, Megan W.; Sharifi, Amir

    2018-01-01

    Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085–2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of  ∼  70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater

  13. Comparison of two regression-based approaches for determining nutrient and sediment fluxes and trends in the Chesapeake Bay watershed

    Science.gov (United States)

    Moyer, Douglas; Hirsch, Robert M.; Hyer, Kenneth

    2012-01-01

    Nutrient and sediment fluxes and changes in fluxes over time are key indicators that water resource managers can use to assess the progress being made in improving the structure and function of the Chesapeake Bay ecosystem. The U.S. Geological Survey collects annual nutrient (nitrogen and phosphorus) and sediment flux data and computes trends that describe the extent to which water-quality conditions are changing within the major Chesapeake Bay tributaries. Two regression-based approaches were compared for estimating annual nutrient and sediment fluxes and for characterizing how these annual fluxes are changing over time. The two regression models compared are the traditionally used ESTIMATOR and the newly developed Weighted Regression on Time, Discharge, and Season (WRTDS). The model comparison focused on answering three questions: (1) What are the differences between the functional form and construction of each model? (2) Which model produces estimates of flux with the greatest accuracy and least amount of bias? (3) How different would the historical estimates of annual flux be if WRTDS had been used instead of ESTIMATOR? One additional point of comparison between the two models is how each model determines trends in annual flux once the year-to-year variations in discharge have been determined. All comparisons were made using total nitrogen, nitrate, total phosphorus, orthophosphorus, and suspended-sediment concentration data collected at the nine U.S. Geological Survey River Input Monitoring stations located on the Susquehanna, Potomac, James, Rappahannock, Appomattox, Pamunkey, Mattaponi, Patuxent, and Choptank Rivers in the Chesapeake Bay watershed. Two model characteristics that uniquely distinguish ESTIMATOR and WRTDS are the fundamental model form and the determination of model coefficients. ESTIMATOR and WRTDS both predict water-quality constituent concentration by developing a linear relation between the natural logarithm of observed constituent

  14. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model

    Science.gov (United States)

    Li, Ji; Chen, Yangbo; Wang, Huanyu; Qin, Jianming; Li, Jie; Chiao, Sen

    2017-03-01

    Long lead time flood forecasting is very important for large watershed flood mitigation as it provides more time for flood warning and emergency responses. The latest numerical weather forecast model could provide 1-15-day quantitative precipitation forecasting products in grid format, and by coupling this product with a distributed hydrological model could produce long lead time watershed flood forecasting products. This paper studied the feasibility of coupling the Liuxihe model with the Weather Research and Forecasting quantitative precipitation forecast (WRF QPF) for large watershed flood forecasting in southern China. The QPF of WRF products has three lead times, including 24, 48 and 72 h, with the grid resolution being 20 km  × 20 km. The Liuxihe model is set up with freely downloaded terrain property; the model parameters were previously optimized with rain gauge observed precipitation, and re-optimized with the WRF QPF. Results show that the WRF QPF has bias with the rain gauge precipitation, and a post-processing method is proposed to post-process the WRF QPF products, which improves the flood forecasting capability. With model parameter re-optimization, the model's performance improves also. This suggests that the model parameters be optimized with QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy of the WRF QPF decreases, as does the flood forecasting capability. Flood forecasting products produced by coupling the Liuxihe model with the WRF QPF provide a good reference for large watershed flood warning due to its long lead time and rational results.

  15. High Resolution Modeling of Climate Change Impacts on Water Supply and Demand, and GHG Emissions, Similkameen Watershed, BC, Canada

    Science.gov (United States)

    Mirmasoudi, S.; Byrne, J. M.; Chasmer, L.; Kroebel, R.; Johnson, D. L.; MacDonald, R. J.

    2016-12-01

    In western North America, water supply is largely derived from mountain snowmelt. Climate change will have a significant impact on mountain snowpack and subsequently, the snow-derived water supply. This will strain water supplies and increase water demand in areas with substantial irrigation agriculture. This work will address a series of objectives based on a range of future climate scenarios in the Similkameen watershed, BC, Canada. First, to improve GIS-based radiation estimation by modelling local atmospheric transmissivity and diffusion functions. Second, to model historical and future water supplies under a range of climate scenarios using the Generate Earth Systems Science (GENESYS) model. Third, to assess climate driven changes in water requirement and associated crop productivity for a range of future climate scenarios using the GENESYS. Fourth, to link the GENESYS and the Holos model to estimate farm and regional level GHG emissions for the crops and land covers in the watershed.

  16. Modeling runoff and erosion risk in a~small steep cultivated watershed using different data sources: from on-site measurements to farmers' perceptions

    Science.gov (United States)

    Auvet, B.; Lidon, B.; Kartiwa, B.; Le Bissonnais, Y.; Poussin, J.-C.

    2015-09-01

    This paper presents an approach to model runoff and erosion risk in a context of data scarcity, whereas the majority of available models require large quantities of physical data that are frequently not accessible. To overcome this problem, our approach uses different sources of data, particularly on agricultural practices (tillage and land cover) and farmers' perceptions of runoff and erosion. The model was developed on a small (5 ha) cultivated watershed characterized by extreme conditions (slopes of up to 55 %, extreme rainfall events) on the Merapi volcano in Indonesia. Runoff was modelled using two versions of STREAM. First, a lumped version was used to determine the global parameters of the watershed. Second, a distributed version used three parameters for the production of runoff (slope, land cover and roughness), a precise DEM, and the position of waterways for runoff distribution. This information was derived from field observations and interviews with farmers. Both surface runoff models accurately reproduced runoff at the outlet. However, the distributed model (Nash-Sutcliffe = 0.94) was more accurate than the adjusted lumped model (N-S = 0.85), especially for the smallest and biggest runoff events, and produced accurate spatial distribution of runoff production and concentration. Different types of erosion processes (landslides, linear inter-ridge erosion, linear erosion in main waterways) were modelled as a combination of a hazard map (the spatial distribution of runoff/infiltration volume provided by the distributed model), and a susceptibility map combining slope, land cover and tillage, derived from in situ observations and interviews with farmers. Each erosion risk map gives a spatial representation of the different erosion processes including risk intensities and frequencies that were validated by the farmers and by in situ observations. Maps of erosion risk confirmed the impact of the concentration of runoff, the high susceptibility of long steep

  17. Using a Regional Climate Model for the Simulation of Hydrologic Processes in the High Himalayan Wangchu Watershed

    Science.gov (United States)

    Marke, T.; Hank, T.

    2009-04-01

    Since the late 70ies of the previous century, computer aided modelling of physical processes has developed to a substantial scientific tool that is widely applied in the most diverse scientific branches. For the scientific fields of hydrology and climatology, the mapping of the multiple exchange fluxes of mass and energy between landsurface and atmosphere is of special interest, since the mass and energy balance at the landsurface is defining the lower border conditions of the atmospheric climate models on one hand, while it is determining the upper boundary of the landsurface models on the other. If well developed and thoroughly tested, both, regional climate models and landsurface models can be reliable instruments to assist with the investigation of multiple environmental variables. This study focuses on an application of the hydrological landsurface model PROMET (Process of Radiation Mass and Energy Transfer Model), which is being developed at the Ludwig-Maximilians Universität (LMU) in Munich at the Chair of Geography and Remote Sensing. PROMET is successfully applied in central Europe to the Upper Danube watershed as part of the BMB+F funded cooperative project GLOWA-Danube. Supporting the idea of twinning the Upper Danube with the Brahmaputra, which is a basic issue of the EU funded cooperative project ‘Brahmatwinn - Twinning European and South Asian River Basins to enhance capacity and implement adaptive management approaches', PROMET was applied to the quantitative analysis of the landsurface water balance of the Wangchu watershed located in Bhutan, Asia without adjusting the model parameterisation. The Wangchu represents a small sized subcatchment of the Brahmaputra river system. The catchment covers a large part of the West of the Kingdom of Bhutan. It comprises high mountain regions of the Himalaya in the North, characterized by cold temperatures and low precipitation rates, temperate forested hills and evergreen deciduous forests featuring a humid

  18. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    Science.gov (United States)

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  19. Water and nonpoint source pollution estimation in the watershed with limited data availability based on hydrological simulation and regression model.

    Science.gov (United States)

    Huiliang, Wang; Zening, Wu; Caihong, Hu; Xinzhong, Du

    2015-09-01

    Nonpoint source (NPS) pollution is considered as the main reason for water quality deterioration; thus, to quantify the NPS loads reliably is the key to implement watershed management practices. In this study, water quality and NPS loads from a watershed with limited data availability were studied in a mountainous area in China. Instantaneous water discharge was measured through the velocity-area method, and samples were taken for water quality analysis in both flood and nonflood days in 2010. The streamflow simulated by Hydrological Simulation Program-Fortran (HSPF) from 1995 to 2013 and a regression model were used to estimate total annual loads of various water quality parameters. The concentrations of total phosphorus (TP) and total nitrogen (TN) were much higher during the flood seasons, but the concentrations of ammonia nitrogen (NH3-N) and nitrate nitrogen (NO3-N) were lower during the flood seasons. Nevertheless, only TP concentration was positively correlated with the flow rate. The fluctuation of annual load from this watershed was significant. Statistical results indicated the significant contribution of pollutant fluxes during flood seasons to annual fluxes. The loads of TP, TN, NH3-N, and NO3-N in the flood seasons were accounted for 58-85, 60-82, 63-88, 64-81% of the total annual loads, respectively. This study presented a new method for estimation of the water and NPS loads in the watershed with limited data availability, which simplified data collection to watershed model and overcame the scale problem of field experiment method.

  20. Impacts of manure application on SWAT model outputs in the Xiangxi River watershed

    Science.gov (United States)

    Liu, Ruimin; Wang, Qingrui; Xu, Fei; Men, Cong; Guo, Lijia

    2017-12-01

    SWAT (Soil and Water Assessment Tool) model has been widely used to simulate agricultural non-point source (ANPS) pollution; however, the impacts of livestock manure application on SWAT model outputs have not been well studied. The objective of this study was to investigate the environmental effects of livestock manure application based on the SWAT model in the Xiangxi River watershed, which is one of the largest tributaries of the Three Gorges Reservoir in China. Three newly-built manure databases (NB) were created and applied to different subbasins based on the actual livestock manure discharging amount. The calibration and validation values of SWAT model outputs obtained from the NB manure application and the original mixed (OM) manure were compared. The study results are as follows: (1) The livestock industry of Xingshan County developed quickly between 2005 and 2015. The downstream of the Xiangxi River (Huangliang, Shuiyuesi and Xiakou) had the largest livestock amount, and largely accounted for manure, total nitrogen (TN) and total phosphorus (TP) production (>50%). (2) The NB manure application resulted in less phosphorus pollution (1686.35 kg for ORGP and 31.70 kg for MINP) than the OM manure application. Compared with the upstream, the downstream was influenced more by the manure application. (3) The SWAT results obtained from the NB manure had a better calibration and validation values than those from the OM manure. For ORGP, R2 and NSE values were 0.77 and 0.65 for the NB manure calibration; and the same values for the OM manure were 0.72 and 0.61, respectively. For MINP, R2 values were 0.65 and 0.62 for the NB manure and the OM manure, and the NSE values were 0.60 and 0.58, respectively. The results indicated that the built-in fertilizer database in SWAT has its limitation because it is set up for the simulation in the USA. Thus, when livestock manure is considered in a SWAT simulation, a newly built fertilizer database needs to be set up to represent

  1. PROMET - Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds

    Science.gov (United States)

    Mauser, Wolfram; Bach, Heike

    2009-10-01

    SummaryClimate change will change availability, quality and allocation of regional water resources. Appropriate modelling tools should therefore be available to realistically describe reactions of watersheds to climate change and to identify efficient and effective adaptation strategies on the regional scale. The paper presents the hydrologic model PROMET (Processes of Radiation, Mass and Energy Transfer), which was developed within the GLOWA-Danube project as part of the decision support system DANUBIA. PROMET covers the coupled water and energy fluxes of large-scale ( A ˜ 100,000 km 2) watersheds. It is fully spatially distributed, raster-based with raster-elements of 1 km 2 area, runs on an hourly time step, strictly conserves mass and energy and is not calibrated using measured discharges. Details on the model concept and the individual model components are given. An application case of PROMET is given for the mountainous Upper-Danube watershed in Central Europe ( A = 77,000 km 2). The water resources are intensively utilized for hydropower, agriculture, industry and tourism. The water flows are significantly influenced by man-made structures like reservoirs and water diversions. A 33-years model run covering the period from 1971 to 2003 using the existing meteorological station network as input is used to validate the performance of PROMET against measured stream flow data. Three aspects of the model performance were validated with good to very good results: the annual variation of the water balance of the whole watershed and selected sub-watersheds, the daily runoff for the whole period at selected gauges and the annual flood peaks and low flows (minimum 7-days average). PROMET is used to investigate the impact of climate change on the water cycle of the Upper Danube. A stochastic climate generator is fed with two scenarios of climate development until 2060. One assumes no future temperature change, the other uses the temperature trends of the IPCC-A1B

  2. Development of Field Pollutant Load Estimation Module and Linkage of QUAL2E with Watershed-Scale L-THIA ACN Model

    Directory of Open Access Journals (Sweden)

    Jichul Ryu

    2016-07-01

    Full Text Available The Long Term Hydrologic Impact Assessment (L-THIA model was previously improved by incorporating direct runoff lag time and baseflow. However, the improved model, called the L-THIA asymptotic curve number (ACN model cannot simulate pollutant loads from a watershed or instream water quality. In this study, a module for calculating pollutant loads from fields and through stream networks was developed, and the L-THIA ACN model was combined with the QUAL2E model (The enhanced stream water quality model to predict instream water quality at a watershed scale. The new model (L-THIA ACN-WQ was applied to two watersheds within the Korean total maximum daily loads management system. To evaluate the model, simulated results of total nitrogen (TN and total phosphorus (TP were compared with observed water quality data collected at eight-day intervals. Between simulated and observed data for TN pollutant loads in Dalcheon A watershed, the R2 and Nash–Sutcliffe efficiency (NSE were 0.81 and 0.79, respectively, and those for TP were 0.79 and 0.78, respectively. In the Pyungchang A watershed, the R2 and NSE were 0.66 and 0.64, respectively, for TN and both statistics were 0.66 for TP, indicating that model performed satisfactorily for both watersheds. Thus, the L-THIA ACN-WQ model can accurately simulate streamflow, instream pollutant loads, and water quality.

  3. Stable-isotope and solute-chemistry approaches to flow characterization in a forested tropical watershed, Luquillo Mountains, Puerto Rico

    Science.gov (United States)

    Martha A. Scholl; James B. Shanley; Sheila F. Murphy; Jane K. Willenbring; Grizelle Gonzalez

    2015-01-01

    The prospect of changing climate has led to uncertainty about the resilience of forested mountain watersheds in the tropics. In watersheds where frequent, high rainfall provides ample runoff, we often lack understanding of how the system will respond under conditions of decreased rainfall or drought. Factors that govern water supply, such as recharge rates and...

  4. A GIS and statistical approach to identify variables that control water quality in hydrothermally altered and mineralized watersheds, Silverton, Colorado, USA

    Science.gov (United States)

    Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.

    2013-01-01

    Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.

  5. Analyzing dynamics of snow distribution and melt runoff in a meso-scaled watershed using the AgroEcoSystem-Watershed (AgES-W) model

    Science.gov (United States)

    Kunz, A.; Helmschrot, J.; Green, T. R.

    2013-12-01

    The seasonal snow cover in the western mountain regions of the United States functions as the primary supply and storage of water. Water management in these areas is often based on empirical relationships between point measurements of snow water equivalent (SWE) at selected sites and associated stream discharge. With a climate shifting towards more rain and less snow, due to the global warming, the patterns of snow deposition, and consequently the timing of melt, soil water content and the flow in streams and rivers will most likely alter. As a consequence, the established relationships between measured SWE and runoff will become unstable and unreliable, and consequently impacting the water resource management in this area. To better assess and understand the spatial and temporal dimension of altered snow cover on runoff generation in the intermountain region of the western United States, we set up the distributed hydrological AgroEcoSystem-Watershed (AgES-W) model for the Reynolds Creek Experimental Watershed (239 km2) in the Owyhee Mountains of Idaho. The study area with elevations ranging from 1101 to 2241 m is dominated by granitic and volcanic rocks and lake sediments. Deep moist soils allowing for mountain big sagebrush aspen and subalpine fir are found at higher elevations, whereas shallow, arid soils supporting sagebrush-grassland communities are common at lower elevations. Precipitation in the region varies from 230 mm at the lower elevations in the north up to 1100 mm in the higher regions at the southern margin south. The mean annual streamflow at the outlet is 0.56 m3/s. Since the Reynolds Creek Experimental Watershed (RCEW) was selected as a test basin in 1959, a comprehensive hydro-climatological network provides long-term records of daily snow, precipitation, temperature and streamflow measurements. Thus, we used a 30-year data record to calibrate and validate the AgES-W model to three nested sub-basins within the test site. First results show

  6. Modeled ecohydrological responses to climate change at seven small watersheds in the northeastern United States.

    Science.gov (United States)

    Pourmokhtarian, Afshin; Driscoll, Charles T; Campbell, John L; Hayhoe, Katharine; Stoner, Anne M K; Adams, Mary Beth; Burns, Douglas; Fernandez, Ivan; Mitchell, Myron J; Shanley, James B

    2017-02-01

    A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphere-ocean general circulation models (AOGCMs; CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern United States are anticipated to increase evapotranspiration across all sites, although invoking CO2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snow packs, longer growing seasons, and associated water deficits. Considering future CO2 effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a

  7. Application of Large-Scale, Multi-Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS

    Directory of Open Access Journals (Sweden)

    Haw Yen

    2016-04-01

    Full Text Available In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources allocation, sediment transport, and pollution control. Among commonly adopted models, the Soil and Water Assessment Tool (SWAT has been demonstrated to provide superior performance with a large amount of referencing databases. However, it is cumbersome to perform tedious initialization steps such as preparing inputs and developing a model with each changing targeted study area. In this study, the Hydrologic and Water Quality System (HAWQS is introduced to serve as a national-scale Decision Support System (DSS to conduct challenging watershed modeling tasks. HAWQS is a web-based DSS developed and maintained by Texas A & M University, and supported by the U.S. Environmental Protection Agency. Three different spatial resolutions of Hydrologic Unit Code (HUC8, HUC10, and HUC12 and three temporal scales (time steps in daily/monthly/annual are available as alternatives for general users. In addition, users can specify preferred values of model parameters instead of using the pre-defined sets. With the aid of HAWQS, users can generate a preliminarily calibrated SWAT project within a few minutes by only providing the ending HUC number of the targeted watershed and the simulation period. In the case study, HAWQS was implemented on the Illinois River Basin, USA, with graphical demonstrations and associated analytical results. Scientists and/or decision-makers can take advantage of the HAWQS framework while conducting relevant topics or policies in the future.

  8. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: State of the science and future opportunities.

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A; Oliver, David M; Muirhead, Richard W; Park, Yongeun; Quilliam, Richard S; Shelton, Daniel R

    2016-09-01

    Natural waters serve as habitat for a wide range of microorganisms, a proportion of which may be derived from fecal material. A number of watershed models have been developed to understand and predict the fate and transport of fecal microorganisms within complex watersheds, as well as to determine whether microbial water quality standards can be satisfied under site-specific meteorological and/or management conditions. The aim of this review is to highlight and critically evaluate developments in the modeling of microbial water quality of surface waters over the last 10 years and to discuss the future of model development and application at the watershed scale, with a particular focus on fecal indicator organisms (FIOs). In doing so, an agenda of research opportunities is identified to help deliver improvements in the modeling of microbial water quality draining through complex landscape systems. This comprehensive review therefore provides a timely steer to help strengthen future modeling capability of FIOs in surface water environments and provides a useful resource to complement the development of risk management strategies to reduce microbial impairment of freshwater sources. Published by Elsevier Ltd.

  9. Modeling watershed-scale solute transport using an integrated, process-based hydrologic model with applications to bacterial fate and transport

    Science.gov (United States)

    Niu, Jie; Phanikumar, Mantha S.

    2015-10-01

    Distributed hydrologic models that simulate fate and transport processes at sub-daily timescales are useful tools for estimating pollutant loads exported from watersheds to lakes and oceans downstream. There has been considerable interest in the application of integrated process-based hydrologic models in recent years. While the models have been applied to address questions of water quantity and to better understand linkages between hydrology and land surface processes, routine applications of these models to address water quality issues are currently limited. In this paper, we first describe a general process-based watershed-scale solute transport modeling framework, based on an operator splitting strategy and a Lagrangian particle transport method combined with dispersion and reactions. The transport and the hydrologic modules are tightly coupled and the interactions among different hydrologic components are explicitly modeled. We test transport modules using data from plot-scale experiments and available analytical solutions for different hydrologic domains. The numerical solutions are also compared with an analytical solution for groundwater transit times with interactions between surface and subsurface flows. Finally, we demonstrate the application of the model to simulate bacterial fate and transport in the Red Cedar River watershed in Michigan and test hypotheses about sources and transport pathways. The watershed bacterial fate and transport model is expected to be useful for making near real-time predictions at marine and freshwater beaches.

  10. Integrated Landsat Image Analysis and Hydrologic Modeling to Detect Impacts of 25-Year Land-Cover Change on Surface Runoff in a Philippine Watershed

    Directory of Open Access Journals (Sweden)

    Enrico Paringit

    2011-05-01

    Full Text Available Landsat MSS and ETM+ images were analyzed to detect 25-year land-cover change (1976–2001 in the critical Taguibo Watershed in Mindanao Island, Southern Philippines. This watershed has experienced historical modifications of its land-cover due to the presence of logging industries in the 1950s, and continuous deforestation due to illegal logging and slash-and-burn agriculture in the present time. To estimate the impacts of land-cover change on watershed runoff, land-cover information derived from the Landsat images was utilized to parameterize a GIS-based hydrologic model. The model was then calibrated with field-measured discharge data and used to simulate the responses of the watershed in its year 2001 and year 1976 land-cover conditions. The availability of land-cover information on the most recent state of the watershed from the Landsat ETM+ image made it possible to locate areas for rehabilitation such as barren and logged-over areas. We then created a “rehabilitated” land-cover condition map of the watershed (re-forestation of logged-over areas and agro-forestation of barren areas and used it to parameterize the model and predict the runoff responses of the watershed. Model results showed that changes in land-cover from 1976 to 2001 were directly related to the significant increase in surface runoff. Runoff predictions showed that a full rehabilitation of the watershed, especially in barren and logged-over areas, will be likely to reduce the generation of a huge volume of runoff during rainfall events. The results of this study have demonstrated the usefulness of multi-temporal Landsat images in detecting land-cover change, in identifying areas for rehabilitation, and in evaluating rehabilitation strategies for management of tropical watersheds through its use in hydrologic modeling.

  11. Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin.

    Science.gov (United States)

    Chabi, Adéyèmi; Lautenbach, Sven; Orekan, Vincent Oladokoun Agnila; Kyei-Baffour, Nicholas

    2016-12-01

    The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations

  12. Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin

    Directory of Open Access Journals (Sweden)

    Adéyèmi Chabi

    2016-08-01

    Full Text Available Abstract Background The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH, type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow, 3.62 ± 0.36 (for Savanna grassland, 4.86 ± 1.03 (for Settlements, 14.05 ± 0.72 (for Shrub savanna, 45.29 ± 2.51 (for Savanna Woodland, 46.06 ± 14.40 (for Agroforestry, 94.58 ± 4.98 (for riparian forest and woodland, 162 ± 64.88 (for Tectona grandis plantations, 179.62 ± 57.61 (for Azadirachta indica plantations, 25.17

  13. Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake

    Directory of Open Access Journals (Sweden)

    Chuan Luo

    2015-09-01

    Full Text Available The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS model to predict runoff, total nitrogen (TN and total phosphorus (TP loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.

  14. Drainage Basins used for Development of the Watershed Regressions for Pesticides (WARP) Model, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains 204 drainage basin boundaries for U.S. Geological Survey (USGS) stream sites analyzed in the Watershed Regressions for Pesticides (WARP)...

  15. Modeling the impacts of wildfire on runoff and pollutant transport from coastal watersheds to the nearshore environment.

    Science.gov (United States)

    Morrison, Katherine D; Kolden, Crystal A

    2015-03-15

    Wildfire is a common disturbance that can significantly alter vegetation in watersheds and affect the rate of sediment and nutrient transport to adjacent nearshore oceanic environments. Changes in runoff resulting from heterogeneous wildfire effects are not well-understood due to both limitations in the field measurement of runoff and temporally-limited spatial data available to parameterize runoff models. We apply replicable, scalable methods for modeling wildfire impacts on sediment and nonpoint source pollutant export into the nearshore environment, and assess relationships between wildfire severity and runoff. Nonpoint source pollutants were modeled using a GIS-based empirical deterministic model parameterized with multi-year land cover data to quantify fire-induced increases in transport to the nearshore environment. Results indicate post-fire concentration increases in phosphorus by 161 percent, sediments by 350 percent and total suspended solids (TSS) by 53 percent above pre-fire years. Higher wildfire severity was associated with the greater increase in exports of pollutants and sediment to the nearshore environment, primarily resulting from the conversion of forest and shrubland to grassland. This suggests that increasing wildfire severity with climate change will increase potential negative impacts to adjacent marine ecosystems. The approach used is replicable and can be utilized to assess the effects of other types of land cover change at landscape scales. It also provides a planning and prioritization framework for management activities associated with wildfire, including suppression, thinning, and post-fire rehabilitation, allowing for quantification of potential negative impacts to the nearshore environment in coastal basins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Water Balance to Recharge Calculation: Implications for Watershed Management Using Systems Dynamics Approach

    Directory of Open Access Journals (Sweden)

    Ramesh Dhungel

    2016-03-01

    Full Text Available Groundwater depletion in the face of growth is a well-known problem, particularly in those areas that have grown to become dependent on a declining resource. This research comprises a broad synthesis of existing water resources data, to understand the long-term implications of continued growth in water demand on groundwater dominant water resources, and to develop a tool for sustainable water management. The Palouse region of Washington and Idaho, USA. (approximately 60,000 people in a rural setting is entirely dependent on groundwater from two basalt aquifers for potable water. Using the systems dynamics approach and a water balance that considered the entire hydrologic cycle, a hydrologic model of these aquifers was developed, tested and applied to simulate their behavior over a 150 year time period assuming the current infrastructure does not change. With 1% population growth and current water extraction rates, the results indicated the upper aquifer use may be sustainable, while the lower aquifer use is likely unsustainable in the long term. This study also shows that uncertainties in key aspects of the system create limitations to groundwater management.

  17. Application of a water balance model for estimating deep infiltration in a karstic watershed

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2011-12-01

    Full Text Available The current scenario of water scarcity evidences the need for an adequate management of water resources. In karstic regions, the water flow through fractures significantly increases the water infiltration rate, which explains the small number of rivers and the importance of groundwater for urban supply. Therefore, the water balance is necessary since it may aid decision making processes and guide water management projects. The objective of this paper was to perform the water balance of a watershed situated in a karstic region quantifying infiltration, runoff and evapotranspiration. The study area is located near the Tancredo Neves International Airport in Confins, in the state of Minas Gerais, Brazil. Most of the area consists of forest formations (40.9%, and pastures (34.5%. In order to estimate deep infiltration, the BALSEQ model was used. BALSEQ is a numeric model of sequential water balance in which deep infiltration at the end of the day is given by the difference between daily precipitation and the sum of surface runoff, evapotranspiration and the variation of the amount of water stored in the soil. The results show that approximately 60% of total annual precipitation result in deep infiltration, considering the recharge period from September to March. After the dry period, the areas with no vegetal cover present higher deep infiltration. However, over the months, the contribution of the vegetated areas becomes greater, showing the importance of these areas to aquifer recharge.

  18. Ecohydrological modeling of the Goodyears watershed in the Yuba River basin, California

    Science.gov (United States)

    Maneta, M. P.; Pasternack, G. B.; Chen, S.; Fogg, G. E.; Grismer, M.; Harter, T.; Hopmans, J. W.; Pan, L.; Puente, C. E.; Ustin, S.; Wallender, W. W.

    2009-12-01

    Because evapotranspiration is one of the major output fluxes in the water balance of a catchment, evaluating the long term impacts of climate change on the land phase of the hydrologic cycle at the watershed scale involves understanding how vegetation and hydrology interact. Water demand by plants affects the soil moisture regime and thus exerts a control on the deep percolation to the groundwater system and on the runoff rates. Also its metabolic activity alters the energy balance of the catchment, affecting the energy available for other processes such as snowmelt. In this study we test the potential of Rhessys, a ecohydrologic model, to investigate the hydrology of a mountain catchment in Sierra Nevada, CA and to evaluate how the hydrologic functioning of the catchment would be impacted under different climate conditions. Data analysis and modeling was used to determine the contributions of groundwater, snowmelt and surface processes to streamflow. The results indicate that vegetation and hydrology feedbacks increase the nonlinearity of the catchment response to the forcing atmospheric conditions. Any rigorous attempt at simulating the hydrologic effects of climate change on terrestrial water resources must take vegetation dynamics into account.

  19. Model of Vertical Resistivity Distribution of Rock Layers in Jeneberang Watershed

    OpenAIRE

    Muhammad Altin Massinai, Muhammad; Syamsuddin, Syamsuddin; Makhrani, Makhrani

    2010-01-01

    Daerah Aliran Sungai (DAS) or Watershed is the accumulation of material from Jeneberang debris avalanche of Mount Bawakaraeng. The Resistivity material from several types of rock settling needs to be identified by using the geoelectric geophysical studies. Geoelectrical resistivity method used in this study aims to map the vertical layers of rock in the upstream and downstream of Jeneberang watershed. The results shows that resistivity values in the upstream of Jeneberang water...

  20. Population Models for Stream Fish Response to Habitat and Hydrologic Alteration: the CVI Watershed Tool. EPA/600/R-04/190

    Science.gov (United States)

    Models that predict the responses of fish populations and communities to key habitat characteristics are necessary for CVIs watershed management goals, for determining where to restore and how, as well as evaluating the most probable outcome.

  1. Estimation of non-point source pollution loads by improvising export coefficient model in watershed with a modified planting pattern

    Science.gov (United States)

    Dong, F.; Liu, X. B.; Peng, W. Q.; Wang, L.

    2017-08-01

    Export coefficient model was improved to calculate and compare non-point source pollution loads in an agricultural watershed before and after implanting new cropping pattern. The modification was done by introducing the reduction coefficient in consumption amount and loss load as well as the proportion of bioactive ingredients of fertilizer and pesticide to the export coefficient model developed by Johnes in 1996. The modified export coefficient model was then applied to estimate non-point source pollution load in Gaoxi community, Yunnan Province, China where a water-saving and emission reduction technology was implemented by changing cropping pattern. Study results showed that the improved export coefficient model had a favorable flexibility in calculating the non-point source pollution loads and well applicable to the watersheds where various input data is in short. Moreover, the findings will provide scientific basis to understand the variability of non-point source pollutants in agricultural watersheds and their load estimation in order to optimize the efficiency of pollutants reduction plan implemented through agricultural adjustment.

  2. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China)

    2009-12-15

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  3. Monitoring and Predicting Land-use Changes and the Hydrology of the Urbanized Paochiao Watershed in Taiwan Using Remote Sensing Data, Urban Growth Models and a Hydrological Model

    Directory of Open Access Journals (Sweden)

    Nien-Ming Hong

    2008-02-01

    Full Text Available Monitoring and simulating urban sprawl and its effects on land-use patterns andhydrological processes in urbanized watersheds are essential in land-use and waterresourceplanning and management. This study applies a novel framework to the urbangrowth model Slope, Land use, Excluded land, Urban extent, Transportation, andHillshading (SLEUTH and land-use change with the Conversion of Land use and itsEffects (CLUE-s model using historical SPOT images to predict urban sprawl in thePaochiao watershed in Taipei County, Taiwan. The historical and predicted land-use datawas input into Patch Analyst to obtain landscape metrics. This data was also input to theGeneralized Watershed Loading Function (GWLF model to analyze the effects of futureurban sprawl on the land-use patterns and watershed hydrology. The landscape metrics ofthe historical SPOT images show that land-use patterns changed between 1990–2000. TheSLEUTH model accurately simulated historical land-use patterns and urban sprawl in thePaochiao watershed, and simulated future clustered land-use patterns (2001–2025. TheCLUE-s model also simulated land-use patterns for the same period and yielded historical trends in the metrics of land-use patterns. The land-use patterns predicted by the SLEUTHand CLUE-s models show the significant impact urban sprawl will have on land-usepatterns in the Paochiao watershed. The historical and predicted land-use patterns in thewatershed tended to fragment, had regular shapes and interspersion patterns, but wererelatively less isolated in 2001–2025 and less interspersed from 2005–2025 compared withland-use pattern in 1990. During the study, the variability and magnitude of hydrologicalcomponents based on the historical and predicted land-use patterns were cumulativelyaffected by urban sprawl in the watershed; specifically, surface runoff increasedsignificantly by 22.0% and baseflow decreased by 18.0% during 1990

  4. Development of a Distributed Nutrient Sub-Model (NSM Version 1.0) for Watersheds - Kinetic Process Descriptions

    Science.gov (United States)

    2006-11-01

    attention to the role of watershed management in elevating N and P concentrations within soil leachates and runoff. The main factors influenc- ing...being subject to only dissolved transport, and moves through the soil profile with percolating water. In modeling , 3NO − ERDC/EL TR-06-12 22 the... leachates , the contri- bution of DON has been largely ignored or considered to be insignificant. However, recent research demonstrated that DON made up the

  5. Simulation of Nitrogen and Phosphorus Load Runoff by a GIS-based Distributed Model for Chikugo River Watershed

    Science.gov (United States)

    Iseri, Haruka; Hiramatsu, Kazuaki; Harada, Masayoshi

    A distributed model was developed in order to simulate the process of nitrogen and phosphorus load runoff in the semi-urban watershed of the Chikugo River, Japan. A grid of cells 1km in size was laid over the study area, and several input variables for each cell area including DEM, land use and statistical data were extracted by GIS. In the process of water runoff, hydrograph calculated at Chikugo Barrage was in close agreement with the observed one, which achieved Nash-Sutcliffe coefficient of 0.90. In addition, the model simulated reasonably well the movement of TN and TP at each station. The model was also used to analyze three scenarios based on the watershed management: (1) reduction of nutrient loads from livestock farm, (2) improvement of septic tanks' wastewater treatment system and (3) application of purification function of paddy fields. As a result, effectiveness of management strategy in each scenario depended on land use patterns. The reduction rates of nutrient load effluent in scenarios (1) and (3) were higher than that in scenario (2). The present result suggests that an appropriate management of livestock farm together with the effective use of paddy environment would have significant effects on the reduction of nutrient loads. A suitable management strategy should be planned based on the land use pattern in the watershed.

  6. Estimating Snow and Glacier Melt in a Himalayan Watershed Using an Energy Balance Snow and Glacier Melt Model

    Science.gov (United States)

    Sen Gupta, A.; Tarboton, D. G.; Racoviteanu, A.; Brown, M. E.; Habib, S.

    2014-12-01

    This study enhances an energy balance snowmelt model (Utah Energy Balance, UEB) to include the capability to quantify glacier melt. To account for clean and debris covered glaciers, substrate albedo and glacier outlines determined from remote sensing, are taken as inputs. The model uses the surface energy balance to compute the melting of seasonal snow and glacier substrate once the seasonal snow has melted. In this application the model was run over a 360 km2 glacierized watershed, Langtang Khola, in the Nepal Himalaya for a 10-year simulation period starting in water year 2003. The model was run on a distributed mesh of grid cells providing the capability to quantify both timing and spatial variability in snow and glacier melt. The distributed UEB melt model has a relatively high data demand, while the Hindu-Kush Himalayan region is a data-scarce region, a limitation that affects most water resources impact studies in this region. In this study, we determined model inputs from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Southern Asia Daily Rainfall Estimate (RFE2) data products. The model estimates that roughly 57% of total surface water input is generated from glacier melt, while snowmelt and rain contribute 34% and 9%, respectively over the simulation period. The melt model provided input to the USGS Geospatial Stream Flow Model (GeoSFM) for the computation of streamflow and produced reasonable streamflow simulations at daily scale with some discrepancies, while monthly and annual scale comparisons resulted in better agreement. The result suggests that this approach is of interest for water resources applications where monthly or longer scale streamflow estimates are needed. Mean annual streamflow was positively correlated with the total annual surface water input. However, mean annual streamflow was not correlated with total annual precipitation, highlighting the importance of energy balance melt calculation, in comparison

  7. Planning of water resources management and pollution control for Heshui River watershed, China: A full credibility-constrained programming approach.

    Science.gov (United States)

    Zhang, Y M; Huang, G; Lu, H W; He, Li

    2015-08-15

    A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    , and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding...... is successfully justified comparing predicted results with experimental data obtained in the HETEK-project on creep, relaxation, and shrinkage of very young concretes cured at a temperature of T = 20^o C and a relative humidity of RH = 100%. The model is also justified comparing predicted creep, shrinkage......, linear-viscoelastic analysis methods are justified from the age of approximately 10 hours.The rheological properties of plain cement paste are determined. These properties are the principal material properties needed in any stress analysis of concrete. Shrinkage (autogeneous or drying) of mortar...

  9. Using remotely sensed vegetation indices to model ecological pasture conditions in Kara-Unkur watershed, Kyrgyzstan

    Science.gov (United States)

    Masselink, Loes; Baartman, Jantiene; Verbesselt, Jan; Borchardt, Peter

    2017-04-01

    Kyrgyzstan has a long history of nomadic lifestyle in which pastures play an important role. However, currently the pastures are subject to severe grazing-induced degradation. Deteriorating levels of biomass, palatability and biodiversity reduce the pastures' productivity. To counter this and introduce sustainable pasture management, up-to-date information regarding the ecological conditions of the pastures is essential. This research aimed to investigate the potential of a remote sensing-based methodology to detect changing ecological pasture conditions in the Kara-Unkur watershed, Kyrgyzstan. The relations between Vegetation Indices (VIs) from Landsat ETM+ images and biomass, palatability and species richness field data were investigated. Both simple and multiple linear regression (MLR) analyses, including terrain attributes, were applied. Subsequently, trends of these three pasture conditions were mapped using time series analysis. The results show that biomass is most accurately estimated by a model including the Modified Soil Adjusted Vegetation Index (MSAVI) and a slope factor (R2 = 0.65, F = 0.0006). Regarding palatability, a model including the Enhanced Vegetation Index (EVI), Northness Index, Near Infrared (NIR) and Red band was most accurate (R2 = 0.61, F = 0.0160). Species richness was most accurately estimated by a model including Topographic Wetness Index (TWI), Eastness Index and estimated biomass (R2 = 0.81, F = 0.0028). Subsequent trend analyses of all three estimated ecological pasture conditions presented very similar trend patterns. Despite the need for a more robust validation, this study confirms the high potential of a remote sensing based methodology to detect changing ecological pasture conditions.

  10. Estimates of Nitrogen Removal in U.S. Streams and Reservoirs from the SPARROW Watershed Model

    Science.gov (United States)

    Alexander, R. B.; Smith, R. A.; Schwarz, G. E.; Nolan, J. V.; Boyer, E. W.

    2003-12-01

    Greater understanding is needed of the biotic and abiotic processes that remove nitrogen (N) from streams and reservoirs to quantify transport to downstream coastal waters where eutrophication is a major concern. Recent studies have improved estimates of N removal rates (e.g., denitrification, biological uptake) over small spatial scales in low-order streams. However, limited knowledge of the factors that explain the large variation in literature removal rates has made it difficult to accurately predict N transport through the range of stream and reservoir sizes that link sources to downstream waters. Spatially referenced watershed models (SPARROW) have been used to statistically estimate long-term mean-annual rates of total nitrogen removal in streams and reservoirs over large spatial scales. These rates are estimated as a function of physical and hydraulic properties (channel depth, water travel time) that influence the contact and exchange of water with benthic sediment. We recently refined our SPARROW model structure with expanded descriptions of climatic, topographic, and other surficial features of terrestrial and aquatic landscapes. We find that the net rates of N removal decline from about 0.3 day-1 of water travel time in streams with depths less than 0.5 meters to negligible quantities in large rivers (greater than 4 meters). These rates are generally consistent with those of earlier regional and national SPARROW models and with measured rates from the literature (adjusted for water travel time) over the reported range of stream depths. A settling velocity of approximately 8 meters year-1 is estimated for lakes and reservoirs and agrees well with literature rates for lakes where denitrification is the predominant removal process. We applied these removal rates within the SPARROW stream and reservoir network to estimate the regional-scale N transport and delivery to U.S. coastal waters.

  11. Publically accessible decision support system of the spatially referenced regressions on watershed attributes (SPARROW) model and model enhancements in South Carolina

    Science.gov (United States)

    Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith

    2016-01-01

    The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...

  12. Valuing Non-market Benefits of Rehabilitation of Hydrologic Cycle Improvements in the Anyangcheon Watershed: Using Mixed Logit Models

    Science.gov (United States)

    Yoo, J.; Kong, K.

    2010-12-01

    This research the findings from a discrete-choice experiment designed to estimate the economic benefits associated with the Anyangcheon watershed improvements in Rep. of Korea. The Anyangcheon watershed has suffered from streamflow depletion and poor stream quality, which often negatively affect instream and near-stream ecologic integrity, as well as water supply. Such distortions in the hydrologic cycle mainly result from rapid increase of impermeable area due to urbanization, decreases of baseflow runoff due to groundwater pumping, and reduced precipitation inputs driven by climate forcing. As well, combined sewer overflows and increase of non-point source pollution from urban regions decrease water quality. The appeal of choice experiments (CE) in economic analysis is that it is based on random utility theory (McFadden, 1974; Ben-Akiva and Lerman, 1985). In contrast to contingent valuation method (CVM), which asks people to choose between a base case and a specific alternative, CE asks people to choice between cases that are described by attributes. The attributes of this study were selected from hydrologic vulnerability components that represent flood damage possibility, instreamflow depletion, water quality deterioration, form of the watershed and tax. Their levels were divided into three grades include status quo. Two grades represented the ideal conditions. These scenarios were constructed from a 35 orthogonal main effect design. This design resulted in twenty-seven choice sets. The design had nine different choice scenarios presented to each respondent. The most popular choice models in use are the conditional logit (CNL). This model provides closed-form choice probability calculation. The shortcoming of CNL comes from irrelevant alternatives (IIA). In this paper, the mixed logit (ML) is applied to allow the coefficient’s variation for random taste heterogeneity in the population. The mixed logit model(with normal distributions for the attributes) fit the

  13. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.

    Science.gov (United States)

    Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S

    2017-01-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Spatial heterogeneity of extensively grazed watersheds. Consequences for the modeling of the fate of fecal micro-organisms and the quality of superficial waters.

    Science.gov (United States)

    Trevisan, D.; Dorioz, J. M.; Poulenard, J.

    2009-04-01

    The quality of superficial water of extensively grazed watersheds is substantially affected by critical source areas. The latter correspond to demarcated areas whose location may vary in space and time according to environmental factors and farming practices. The objective of our work was to identify the critical source areas involved in the microbiological quality of superficial water of extensively grazed watersheds in mountain area. In such conditions, soils are characterized by a strong spatial diversity in terms of intrinsic properties, vegetation biomass or amount of cow-pats deposition. This leads to a great spatial heterogeneity of both the release and transfer of microbial pollutants. To identify the zones where there is a spatial and temporal coincidence between a source of contaminants and superficial runoff one need models that explicitly take in account this heterogeneity and noticeably the interactions between cow-pats deposition and evolution, together with soils hydrodynamic. We have developed such an approach by analyzing the studied area within a geographical information system and identifying the pixels giving rise to bacteria and runoff. These critical pixels are defined by modeling the distribution and evolution of cow-pats and the variable sources of surface runoff. The flows of fecal bacteria (E. coli) transmitted to the outflow of the watershed are calculated by accumulating the unit bacterial flows originating from critical pixels. Functions for bacterial emission from the cow-pats and for retention during their transmission to the drainage basin outflow are calibrated by inverse analysis. Along the course of the water flow, the bacterial retention on the surface of the soils is very influential. Nevertheless the contents in the water remain very high and basically it is the age of the cow-pats, the volumes of runoff water, the location and the proportions of bacteria-emitting and non-emitting surfaces which determine the critical source

  15. Multidimensional Scaling Approach to Evaluate the Level of Community Forestry Sustainability in Babak Watershed, Lombok Island, West Nusa Tenggara

    OpenAIRE

    Ryke Nandini; Ambar Kusumandari; Totok Gunawan; Ronggo Sadono

    2017-01-01

    Community forestry in Babak watershed is one of the efforts to reduce critical land area. The aim of this research was to evaluate the level of community forestry sustainability in both of community forest (HKm) and private forest in Babak watershed. Multidimensional scaling (MDS) was used to analyse the level of community forest sustainability based on the five dimensions of ecology, economy, social, institutional, and technology as well as 29 attributes. Leverage analysis was used to know t...

  16. A Dynamic approach to PES pricing and finance for interlinked ecosystem services: Watershed conservation and groundwater management

    OpenAIRE

    James Roumasset; Christopher Wada

    2012-01-01

    A theory of payment for ecosystem services (PES) pricing consistent with dynamic efficiency and sustainable income requires optimized shadow prices. Since ecosystem services are generally interdependent, this requires joint optimization across multiple resource stocks. We develop such a theory in the context of watershed conservation and groundwater extraction. The optimal program can be implemented with a decentralized system of ecosystem payments to private watershed landowners, financed by...

  17. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China

    Directory of Open Access Journals (Sweden)

    S. Wang

    2012-12-01

    Full Text Available Model calibration is essential for hydrologic modeling of large watersheds in a heterogeneous mountain environment. Little guidance is available for model calibration protocols for distributed models that aim at capturing the spatial variability of hydrologic processes. This study used the physically-based distributed hydrologic model, MIKE SHE, to contrast a lumped calibration protocol that used streamflow measured at one single watershed outlet to a multi-site calibration method which employed streamflow measurements at three stations within the large Chaohe River basin in northern China. Simulation results showed that the single-site calibrated model was able to sufficiently simulate the hydrographs for two of the three stations (Nash-Sutcliffe coefficient of 0.65–0.75, and correlation coefficient 0.81–0.87 during the testing period, but the model performed poorly for the third station (Nash-Sutcliffe coefficient only 0.44. Sensitivity analysis suggested that streamflow of upstream area of the watershed was dominated by slow groundwater, whilst streamflow of middle- and down- stream areas by relatively quick interflow. Therefore, a multi-site calibration protocol was deemed necessary. Due to the potential errors and uncertainties with respect to the representation of spatial variability, performance measures from the multi-site calibration protocol slightly decreased for two of the three stations, whereas it was improved greatly for the third station. We concluded that multi-site calibration protocol reached a compromise in term of model performance for the three stations, reasonably representing the hydrographs of all three stations with Nash-Sutcliffe coefficient ranging from 0.59–072. The multi-site calibration protocol applied in the analysis generally has advantages to the single site calibration protocol.

  18. Developing Methodologies for Applying TRMM-Estimated Precipitation Data to Hydrological Modeling of a South TX Watershed - Initial Results

    Science.gov (United States)

    Tobin, K. J.; Bennett, M. E.

    2007-05-01

    Previous experience with hydrological modeling in South Texas, which is located along the Texas-Mexico border, suggests that NWS ground measurements are too widely scattered to provide reliable precipitation input for modeling. In addition, a significant fraction of the study region is located at the edge of the coverage envelopes of the NWS NEXRAD weather radars present in the region limiting the accuracy of these systems to provide reliable precipitation estimates. Therefore, we are exploring whether TRMM estimated-precipitation data (3B42), in some form, can be used to support hydrological modeling in the Middle Rio Grande and Nueces River Basin watersheds. We have begun our modeling efforts by focusing on the middle Nueces watershed (7770 sq km). To model this largely rural watershed we selected the Soil and Water Assessment Tool (SWAT). Three precipitation datasets were selected for our initial model runs that include: (1) nearest NWS cooperative hourly rain gauge data, (2) three hourly TRMM 3B42 estimated precipitation, and (3) combination TRMM 3B42/NWS rain gauge datasets in which ground measurements are used for three hourly periods lacking high quality satellite microwave precipitation estimates as determined from TRMM 3G68 data. Three dataset were aggregated into an average daily estimate of precipitation for each TRMM grid cell. Manual calibration of was completed achieving model results that yield realistic monthly and annual water balances with both gauge and satellite estimate precipitation datasets. In the future, we plan to use the newly developed automatic calibration routine for SWAT, which is based on the Shuffled Complex Evolution algorithm, to optimize modeled discharge results from this study.

  19. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    Science.gov (United States)

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  20. Calculating Hillslope Contributions to River Basin Sediment Yield Using Observations in Small Watersheds and an Index-based Model

    Science.gov (United States)

    Kinner, D. A.; Kinner, D. A.; Stallard, R. F.

    2001-12-01

    Detailed observations of hillslope erosion are generally made in nutrient source-to-sink questions, a broader, river basin ( > 1000 km2) view of erosion and deposition is necessary to incorporate the geographic variability in the factors controlling sediment mobilization and storage. At the river basin scale, floodplain and reservoir storage become significant in sediment budgets. In this study, we used observations from USDA experimental watersheds to constrain an index-based model of hillslope erosion for the 7270 km2 Nishnabotna River Basin in the agricultural, loess-mantled region of southwest Iowa. Spatial and time-series measurements from two watersheds near Treynor, Iowa were used to calibrate the model for the row-cropped fields of the basin. By modeling rainfall events over an 18-year period, model error was quantified. We then applied the model to calculate basin-wide hillslope erosion and colluvial storage. Soil maps and the National Land-Cover Dataset were used to estimate model soil erodibility and land-use factors. By comparing modeled hillslope yields with observed basin sediment yields, we calculated that hillslope contributions to sediment yield were < 50% for the period 1974-1992. A major uncertainty in modeling is the percentage of basin area that is terraced. We will use the isotopes Cs137 and Pb210 to distinguish bank (isotope-poor) and hillslope (isotope-rich) contributions in flood plain deposits. This independent estimate of the relative hillslope contribution to sediment yield will reduce modeling uncertainty.

  1. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S. [Univ. of Lethbridge, Dept. of Geography, Lethbridge, Alberta (Canada)

    2008-06-15

    Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter {mu} {+-} 1{sigma}), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha{sup -1}{center_dot}year{sup -1}. This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat

  2. Modeling sediment concentration and discharge variations in a small Ethiopian watershed with contributions from an unpaved road

    Directory of Open Access Journals (Sweden)

    Guzman Christian D.

    2017-03-01

    Full Text Available Drainage of paved and unpaved roads has been implicated as a major contributor of overland flow and erosion in mountainous landscapes. Despite this, few watershed models include or have tested for the effect roads have on discharge and sediment loads. Though having a model is an important step, its proper application and attention to distinct landscape features is even more important. This study focuses on developing a module for drainage from a road and tests it on a nested watershed (Shanko Bahir within a larger previously studied site (Debre Mawi that receives overland flow contributions from a highly compacted layer of soil on an unpaved road surface. Shanko Bahir experiences a sub-humid monsoonal climate and was assessed for the rainy seasons of 2010, 2011, and 2012. The model chosen is the Parameter Efficient Distributed (PED model, previously used where saturation-excess overland flow heavily influences discharge and sediment concentration variation, though infiltration-excess occasionally occurs. Since overland flow on unpaved surfaces emulates Hortonian flow, an adjustment to the PED model (the developed module advances possible incorporation of both flow regimes. The modification resulted in similar modeling performance as previous studies in the Blue Nile Basin on a daily basis (NSE = 0.67 for discharge and 0.71 for sediment concentrations. Furthermore, the road while occupying a small proportion of the sub-watershed (11% contributed importantly to the early discharge and sediment transport events demonstrating the effect of roads especially on sediment concentrations. Considerations for the dynamic erodibility of the road improved sediment concentration simulation further (NSE = 0.75. The results show that this PED modeling framework can be adjusted to include unpaved compacted surfaces to give reasonable results, but more work is needed to account for contributions from gullies, which can cause high influxes of sediment.

  3. Modeling the relationship between landscape characteristics and water quality in a typical highly intensive agricultural small watershed, Dongting lake basin, south central China.

    Science.gov (United States)

    Li, Hongqing; Liu, Liming; Ji, Xiang

    2015-03-01

    Understanding the relationship between landscape characteristics and water quality is critically important for estimating pollution potential and reducing pollution risk. Therefore, this study examines the relationship between landscape characteristics and water quality at both spatial and temporal scales. The study took place in the Jinjing River watershed in 2010; seven landscape types and four water quality pollutions were chosen as analysis parameters. Three different buffer areas along the river were drawn to analyze the relationship as a function of spatial scale. The results of a Pearson's correlation coefficient analysis suggest that "source" landscape, namely, tea gardens, residential areas, and paddy lands, have positive effects on water quality parameters, while forests exhibit a negative influence on water quality parameters because they represent a "sink" landscape and the sub-watershed level is identified as a suitable scale. Using the principal component analysis, tea gardens, residential areas, paddy lands, and forests were identified as the main landscape index. A stepwise multiple regression analysis was employed to model the relationship between landscape characteristics and water quality for each season. The results demonstrate that both landscape composition and configuration affect water quality. In summer and winter, the landscape metrics explained approximately 80.7 % of the variance in the water quality variables, which was higher than that for spring and fall (60.3 %). This study can help environmental managers to understand the relationships between landscapes and water quality and provide landscape ecological approaches for water quality control and land use management.

  4. ESTIMATION OF ANNUAL AVERAGE SOIL LOSS, BASED ON RUSLE MODEL IN KALLAR WATERSHED, BHAVANI BASIN, TAMIL NADU, INDIA

    Directory of Open Access Journals (Sweden)

    S. Abdul Rahaman

    2015-10-01

    Full Text Available Soil erosion is a widespread environmental challenge faced in Kallar watershed nowadays. Erosion is defined as the movement of soil by water and wind, and it occurs in Kallar watershed under a wide range of land uses. Erosion by water can be dramatic during storm events, resulting in wash-outs and gullies. It can also be insidious, occurring as sheet and rill erosion during heavy rains. Most of the soil lost by water erosion is by the processes of sheet and rill erosion. Land degradation and subsequent soil erosion and sedimentation play a significant role in impairing water resources within sub watersheds, watersheds and basins. Using conventional methods to assess soil erosion risk is expensive and time consuming. A comprehensive methodology that integrates Remote sensing and Geographic Information Systems (GIS, coupled with the use of an empirical model (Revised Universal Soil Loss Equation- RUSLE to assess risk, can identify and assess soil erosion potential and estimate the value of soil loss. GIS data layers including, rainfall erosivity (R, soil erodability (K, slope length and steepness (LS, cover management (C and conservation practice (P factors were computed to determine their effects on average annual soil loss in the study area. The final map of annual soil erosion shows a maximum soil loss of 398.58 t/ h-1/ y-1. Based on the result soil erosion was classified in to soil erosion severity map with five classes, very low, low, moderate, high and critical respectively. Further RUSLE factors has been broken into two categories, soil erosion susceptibility (A=RKLS, and soil erosion hazard (A=RKLSCP have been computed. It is understood that functions of C and P are factors that can be controlled and thus can greatly reduce soil loss through management and conservational measures.

  5. Estimation of Annual Average Soil Loss, Based on Rusle Model in Kallar Watershed, Bhavani Basin, Tamil Nadu, India

    Science.gov (United States)

    Rahaman, S. Abdul; Aruchamy, S.; Jegankumar, R.; Ajeez, S. Abdul

    2015-10-01

    Soil erosion is a widespread environmental challenge faced in Kallar watershed nowadays. Erosion is defined as the movement of soil by water and wind, and it occurs in Kallar watershed under a wide range of land uses. Erosion by water can be dramatic during storm events, resulting in wash-outs and gullies. It can also be insidious, occurring as sheet and rill erosion during heavy rains. Most of the soil lost by water erosion is by the processes of sheet and rill erosion. Land degradation and subsequent soil erosion and sedimentation play a significant role in impairing water resources within sub watersheds, watersheds and basins. Using conventional methods to assess soil erosion risk is expensive and time consuming. A comprehensive methodology that integrates Remote sensing and Geographic Information Systems (GIS), coupled with the use of an empirical model (Revised Universal Soil Loss Equation- RUSLE) to assess risk, can identify and assess soil erosion potential and estimate the value of soil loss. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the study area. The final map of annual soil erosion shows a maximum soil loss of 398.58 t/ h-1/ y-1. Based on the result soil erosion was classified in to soil erosion severity map with five classes, very low, low, moderate, high and critical respectively. Further RUSLE factors has been broken into two categories, soil erosion susceptibility (A=RKLS), and soil erosion hazard (A=RKLSCP) have been computed. It is understood that functions of C and P are factors that can be controlled and thus can greatly reduce soil loss through management and conservational measures.

  6. Comparison of watershed disturbance predictive models for stream benthic macroinvertebrates for three distinct ecoregions in western US

    Science.gov (United States)

    Waite, I.R.; Brown, L.R.; Kennen, J.G.; May, J.T.; Cuffney, T.F.; Orlando, J.L.; Jones, K.A.

    2010-01-01

    The successful use of macroinvertebrates as indicators of stream condition in bioassessments has led to heightened interest throughout the scientific community in the prediction of stream condition. For example, predictive models are increasingly being developed that use measures of watershed disturbance, including urban and agricultural land-use, as explanatory variables to predict various metrics of biological condition such as richness, tolerance, percent predators, index of biotic integrity, functional species traits, or even ordination axes scores. Our primary intent was to determine if effective models could be developed using watershed characteristics of disturbance to predict macroinvertebrate metrics among disparate and widely separated ecoregions. We aggregated macroinvertebrate data from universities and state and federal agencies in order to assemble stream data sets of high enough density appropriate for modeling in three distinct ecoregions in Oregon and California. Extensive review and quality assurance of macroinvertebrate sampling protocols, laboratory subsample counts and taxonomic resolution was completed to assure data comparability. We used widely available digital coverages of land-use and land-cover data summarized at the watershed and riparian scale as explanatory variables to predict macroinvertebrate metrics commonly used by state resource managers to assess stream condition. The "best" multiple linear regression models from each region required only two or three explanatory variables to model macroinvertebrate metrics and explained 41-74% of the variation. In each region the best model contained some measure of urban and/or agricultural land-use, yet often the model was improved by including a natural explanatory variable such as mean annual precipitation or mean watershed slope. Two macroinvertebrate metrics were common among all three regions, the metric that summarizes the richness of tolerant macroinvertebrates (RICHTOL) and some form

  7. Watershed District

    Data.gov (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  8. Hydrological risks in anthropized watersheds: modeling of hazard, vulnerability and impacts on population from south-west of Madagascar

    Science.gov (United States)

    Mamy Rakotoarisoa, Mahefa; Fleurant, Cyril; Taibi, Nuscia; Razakamanana, Théodore

    2016-04-01

    Hydrological risks, especially for floods, are recurrent on the Fiherenana watershed - southwest of Madagascar. The city of Toliara, which is located at the outlet of the river basin, is subjected each year to hurricane hazards and floods. The stakes are of major importance in this part of the island. This study begins with the analysis of hazard by collecting all existing hydro-climatic data on the catchment. It then seeks to determine trends, despite the significant lack of data, using simple statistical models (decomposition of time series). Then, two approaches are conducted to assess the vulnerability of the city of Toliara and the surrounding villages. First, a static approach, from surveys of land and the use of GIS are used. Then, the second method is the use of a multi-agent-based simulation model. The first step is the mapping of a vulnerability index which is the arrangement of several static criteria. This is a microscale indicator (the scale used is the housing). For each House, there are several criteria of vulnerability, which are the potential water depth, the flow rate, or the architectural typology of the buildings. For the second part, simulations involving scenes of agents are used in order to evaluate the degree of vulnerability of homes from flooding. Agents are individual entities to which we can assign behaviours on purpose to simulate a given phenomenon. The aim is not to give a criterion to the house as physical building, such as its architectural typology or its strength. The model wants to know the chances of the occupants of the house to escape from a catastrophic flood. For this purpose, we compare various settings and scenarios. Some scenarios are conducted to take into account the effect of certain decision made by the responsible entities (Information and awareness of the villagers for example). The simulation consists of two essential parts taking place simultaneously in time: simulation of the rise of water and the flow using

  9. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT ...

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS2) hydrologic models. The application of these two models allows AGWA to conduct hydrologic modeling and watershed assessments at multiple temporal and spatial scales. AGWA’s current outputs are runoff (volumes and peaks) and sediment yield, plus nitrogen and phosphorus with the SWAT model. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both models. Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM) based on the individual model requirements. The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then executed, and the results are imported back into AGWA for visualization. This allows managers to identify potential problem areas where additional monitoring can be undertaken or mitigation activities can be focused. AGWA also has tools to apply an array of best management practices. There are currently two versions of AGWA available; AGWA 1.5 for

  10. Integrated research - water quality, sociological, economic, and modeling - in a regulated watershed: Jordan Lake, NC

    Science.gov (United States)

    Deanna Osmond; Mazdak Arabi; Caela O' Connell; Dana Hoag; Dan Line; Marzieh Motallebi; Ali Tasdighi

    2016-01-01

    Jordan Lake watershed is regulated by state rules in order to reduce nutrient loading from point and both agricultural and urban nonpoint sources. The agricultural community is expected to reduce nutrient loading by specific amounts that range from 35 - 0 percent nitrogen, and 5 - 0 percent phosphorus.

  11. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

    Science.gov (United States)

    Tyler Crumbley; Ge Sun; Steve McNulty

    2008-01-01

    Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern piedmont forests and the risk of wildfire is becoming increasingly...

  12. Estimation of soil erosion for a sustainable land use planning: RUSLE model validation by remote sensing data utilization in the Kalikonto watershed

    Directory of Open Access Journals (Sweden)

    C. Andriyanto

    2015-10-01

    Full Text Available Technology of Geographic Information Systems (GIS and Remote Sensing (RS are increasingly used for planning and natural resources management. GIS and RS is based on pixels is used as a tool of spatial modeling for predicting the erosion. One of the methods developed for predicting the erosion is a Revised Universal Soil Loss Equation (RUSLE. RUSLE is the method used for predicting the erosion associated with runoff gained from five parameters, namely: rain erosivity (R, soil erodibility (K, length of slopes (L, slope (S, and land management (CP. The main constraint encountered in the process of operating the GIS is the calculation of the slope length factor (L.This study was designed to create a plan of sustainable land use and low erosion through the RULSE erosion modeling by utilizing the remote sensing data. With this approach, this study was divided into three activities, namely (1 the preparation and analysis of spatial data for the determination of the parameters and estimating the erosion by using RUSLE models, (2 the validation and calibration of the model of RUSLE by measuring soil erosion at the scale of plots on the field, and (3 Creating a plan of sustainable land use and low erosion with RUSLE. The validation erosion shows the value of R2 = 0.56 and r = 0.74. Results of this study showed that the RUSLE model could be used in the Kalikonto watershed. The erosions at the value of the actual estimation, spatial Plan (RTRW and land capability class in the Kalikonto watershed were 72t / ha / year, 62 t / ha / year and 58 t / ha / year, respectively.

  13. A Bayesian approach to landscape ecological risk assessment applied to the upper Grande Ronde watershed, Oregon

    Science.gov (United States)

    Kimberley K. Ayre; Wayne G. Landis

    2012-01-01

    We present a Bayesian network model based on the ecological risk assessment framework to evaluate potential impacts to habitats and resources resulting from wildfire, grazing, forest management activities, and insect outbreaks in a forested landscape in northeastern Oregon. The Bayesian network structure consisted of three tiers of nodes: landscape disturbances,...

  14. A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2017-05-01

    Full Text Available In this paper, a stochastic multi-objective chance-constrained programming model (SMOCCP was developed for tackling the water supply management problem. Two objectives were included in this model, which are the minimization of leakage loss amounts and total system cost, respectively. The traditional SCCP model required the random variables to be expressed in the normal distributions, although their statistical characteristics were suitably reflected by other forms. The SMOCCP model allows the random variables to be expressed in log-normal distributions, rather than general normal form. Possible solution deviation caused by irrational parameter assumption was avoided and the feasibility and accuracy of generated solutions were ensured. The water supply system in the Xiaoqing River watershed was used as a study case for demonstration. Under the context of various weight combinations and probabilistic levels, many types of solutions are obtained, which are expressed as a series of transferred amounts from water sources to treated plants, from treated plants to reservoirs, as well as from reservoirs to tributaries. It is concluded that the SMOCCP model could reflect the sketch of the studied region and generate desired water supply schemes under complex uncertainties. The successful application of the proposed model is expected to be a good example for water resource management in other watersheds.

  15. Global Climate Model Simulated Hydrologic Droughts and Floods in the Nelson-Churchill Watershed

    Science.gov (United States)

    Vieira, M. J. F.; Stadnyk, T. A.; Koenig, K. A.

    2014-12-01

    There is uncertainty surrounding the duration, magnitude and frequency of historical hydroclimatic extremes such as hydrologic droughts and floods prior to the observed record. In regions where paleoclimatic studies are less reliable, Global Climate Models (GCMs) can provide useful information about past hydroclimatic conditions. This study evaluates the use of Coupled Model Intercomparison Project 5 (CMIP5) GCMs to enhance the understanding of historical droughts and floods across the Canadian Prairie region in the Nelson-Churchill Watershed (NCW). The NCW is approximately 1.4 million km2 in size and drains into Hudson Bay in Northern Manitoba, Canada. One hundred years of observed hydrologic records show extended dry and wet periods in this region; however paleoclimatic studies suggest that longer, more severe droughts have occurred in the past. In Manitoba, where hydropower is the primary source of electricity, droughts are of particular interest as they are important for future resource planning. Twenty-three GCMs with daily runoff are evaluated using 16 metrics for skill in reproducing historic annual runoff patterns. A common 56-year historic period of 1950-2005 is used for this evaluation to capture wet and dry periods. GCM runoff is then routed at a grid resolution of 0.25° using the WATFLOOD hydrological model storage-routing algorithm to develop streamflow scenarios. Reservoir operation is naturalized and a consistent temperature scenario is used to determine ice-on and ice-off conditions. These streamflow simulations are compared with the historic record to remove bias using quantile mapping of empirical distribution functions. GCM runoff data from pre-industrial and future projection experiments are also bias corrected to obtain extended streamflow simulations. GCM streamflow simulations of more than 650 years include a stationary (pre-industrial) period and future periods forced by radiative forcing scenarios. Quantile mapping adjusts for magnitude

  16. Large-scale Watershed Modeling: NHDPlus Resolution with Achievable Conservation Scenarios in the Western Lake Erie Basin

    Science.gov (United States)

    Yen, H.; White, M. J.; Arnold, J. G.; Keitzer, S. C.; Johnson, M. V. V.; Atwood, J. D.; Daggupati, P.; Herbert, M. E.; Sowa, S. P.; Ludsin, S.; Robertson, D. M.; Srinivasan, R.; Rewa, C. A.

    2016-12-01

    By the substantial improvement of computer technology, large-scale watershed modeling has become practically feasible in conducting detailed investigations of hydrologic, sediment, and nutrient processes. In the Western Lake Erie Basin (WLEB), water quality issues caused by anthropogenic activities are not just interesting research subjects but, have implications related to human health and welfare, as well as ecological integrity, resistance, and resilience. In this study, the Soil and Water Assessment Tool (SWAT) and the finest resolution stream network, NHDPlus, were implemented on the WLEB to examine the interactions between achievable conservation scenarios with corresponding additional projected costs. During the calibration/validation processes, both hard (temporal) and soft (non-temporal) data were used to ensure the modeling outputs are coherent with actual watershed behavior. The results showed that widespread adoption of conservation practices intended to provide erosion control could deliver average reductions of sediment and nutrients without additional nutrient management changes. On the other hand, responses of nitrate (NO3) and dissolved inorganic phosphorus (DIP) dynamics may be different than responses of total nitrogen and total phosphorus dynamics under the same conservation practice. Model results also implied that fewer financial resources are required to achieve conservation goals if the goal is to achieve reductions in targeted watershed outputs (ex. NO3 or DIP) rather than aggregated outputs (ex. total nitrogen or total phosphorus). In addition, it was found that the model's capacity to simulate seasonal effects and responses to changing conservation adoption on a seasonal basis could provide a useful index to help alleviate additional cost through temporal targeting of conservation practices. Scientists, engineers, and stakeholders can take advantage of the work performed in this study as essential information while conducting policy

  17. GIS model-based real-time hydrological forecasting and operation management system for the Lake Balaton and its watershed

    Science.gov (United States)

    Adolf Szabó, János; Zoltán Réti, Gábor; Tóth, Tünde

    2017-04-01

    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land-use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date GIS model-based real-time hydrological forecasting and operation management systems for aiding decision-making processes to improve water management. After years of researches and developments the HYDROInform Ltd. has developed an integrated, on-line IT system (DIWA-HFMS: DIstributed WAtershed - Hydrologyc Forecasting & Modelling System) which is able to support a wide-ranging of the operational tasks in water resources management such as: forecasting, operation of lakes and reservoirs, water-control and management, etc. Following a test period, the DIWA-HFMS has been implemented for the Lake Balaton and its watershed (in 500 m resolution) at Central-Transdanubian Water Directorate (KDTVIZIG). The significant pillars of the system are: - The DIWA (DIstributed WAtershed) hydrologic model, which is a 3D dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. The DIWA integrates 3D soil-, 2D surface-, and 1D channel-hydraulic components as well. - Lakes and reservoir-operating component; - Radar-data integration module; - fully online data collection tools; - scenario manager tool to create alternative scenarios, - interactive, intuitive, highly graphical user interface. In Vienna, the main functions, operations and results-management of the system will be presented.

  18. Watershed-Scale Modeling of Land-Use and Altered Environment Impacts on Aquatic Weed Growth in the Delta

    Science.gov (United States)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, and water quality have all been suspected as playing role in the dramatic expansion of invasive aquatic plants and their impact on ecosystems of the San Francisco Bay / California Delta complex. NASA Ames Research Center, USDA-Agricultural Research Service, the State of California, UC Davis, and local governments have partnered under a USDA sponsored project (DRAAWP) to develop science-based, adaptive-management strategies for invasive aquatic plants in Sacramento-San Joaquin Delta. Critical to developing management strategies is to understand how the Delta is affected by both the magnitude of fluctuations in land-use and climate / drought induced altered environments and how the plants respond to these altered environments. We utilize the Soil Water Assessment Tool (SWAT), a watershed-scale model developed to quantify the impact of land management practices in large and complex watersheds on water quality, as the backbone for a customized Delta model - Delta-SWAT. The model uses land-use, soils, elevation, and hydrologic routing to characterize pesticide and nutrient transport from the Sacramento and San Joaquin rivers watersheds and loading into the Delta. Land-use within the Delta, as well as water extraction to supply those functions, and the resulting return of water to Delta waterways are included in Delta-SWAT. Hydrologic transport within the Delta has required significant attention to address the lack of elevation driven transport processes. Delta-SWAT water quality trend estimates are compared with water quality monitoring conducted throughout the Delta. Aquatic plant response to water quality and other environmental factors is carried out using a customized

  19. A Spatially Explicit Decision Support System for Watershed-Scale Management of Salmon

    Directory of Open Access Journals (Sweden)

    E. Ashley. Steel

    2008-12-01

    Full Text Available Effective management for wide-ranging species must be conducted over vast spatial extents, such as whole watersheds and regions. Managers and decision makers must often consider results of multiple quantitative and qualitative models in developing these large-scale multispecies management strategies. We present a scenario-based decision support system to evaluate watershed-scale management plans for multiple species of Pacific salmon in the Lewis River watershed in southwestern Washington, USA. We identified six aquatic restoration management strategies either described in the literature or in common use for watershed recovery planning. For each of the six strategies, actions were identified and their effect on the landscape was estimated. In this way, we created six potential future landscapes, each estimating how the watershed might look under one of the management strategies. We controlled for cost across the six modeled strategies by creating simple economic estimates of the cost of each restoration or protection action and fixing the total allowable cost under each strategy. We then applied a suite of evaluation models to estimate watershed function and habitat condition and to predict biological response to those habitat conditions. The concurrent use of many types of models and our spatially explicit approach enables analysis of the trade-offs among various types of habitat improvements and also among improvements in different areas within the watershed. We report predictions of the quantity, quality, and distribution of aquatic habitat as well as predictions for multiple species of species-specific habitat capacity and survival rates that might result from each of the six management strategies. We use our results to develop four on-the-ground watershed management strategies given alternative social constraints and manager profiles. Our approach provides technical guidance in the study watershed by predicting future impacts of potential

  20. Participatory Systems Modeling to Explore Sustainable Solutions: Triple-Value Simulation Modeling Cases Tackle Nutrient and Watershed Management from a Socio-Ecological Systems (ses) Perspective

    Science.gov (United States)

    Buchholtz ten Brink, M. R.; Heineman, K.; Foley, G. J.; Ruder, E.; Tanners, N.; Bassi, A.; Fiksel, J.

    2016-12-01

    Decision makers often need assistance in understanding dynamic interactions and linkages among economic, environmental and social systems in coastal watersheds. They also need scientific input to better evaluate potential costs and benefits of alternative policy interventions. The US EPA is applying sustainability science to address these needs. Triple Value (3V) Scoping and Modeling projects bring a systems approach to understand complex environmental problems, incorporate local knowledge, and allow decision-makers to explore policy scenarios. This leads to better understanding of feedbacks and outcomes to both human and environmental systems.The Suffolk County, NY (eastern Long Island) 3V Case uses SES interconnections to explore possible policy options and scenarios for intervention to mitigate the effects of excess nitrogen (N) loading to ground, surface, and estuarine waters. Many of the environmental impacts of N pollution have adverse effects on social and economic well-being and productivity. Key are loss of enjoyment and recreational use of local beach environments and loss of income and revenues from tourism and local fisheries. Stakeholders generated this Problem Statement: Suffolk County is experiencing widespread degradation to groundwater and the coastal marine environment caused by excess nitrogen. How can local stakeholders and decision makers in Suffolk County arrest and reverse this degradation, restore conditions to support a healthy thriving ecosystem, strengthen the County's resilience to emerging and expected environmental threats from global climate change, support and promote economic growth, attract a vibrant and sustainable workforce, and maintain and enhance quality of life and affordability for all County residents? They then built a Causal Loop Diagram of indicators and relationships that reflect these issues and identified a set of alternative policy interventions to address them. The project team conducted an extensive review of

  1. Catchment legacies and time lags: a parsimonious watershed model to predict the effects of legacy storage on nitrogen export.

    Directory of Open Access Journals (Sweden)

    Kimberly J Van Meter

    Full Text Available Nutrient legacies in anthropogenic landscapes, accumulated over decades of fertilizer application, lead to time lags between implementation of conservation measures and improvements in water quality. Quantification of such time lags has remained difficult, however, due to an incomplete understanding of controls on nutrient depletion trajectories after changes in land-use or management practices. In this study, we have developed a parsimonious watershed model for quantifying catchment-scale time lags based on both soil nutrient accumulations (biogeochemical legacy and groundwater travel time distributions (hydrologic legacy. The model accurately predicted the time lags observed in an Iowa watershed that had undergone a 41% conversion of area from row crop to native prairie. We explored the time scales of change for stream nutrient concentrations as a function of both natural and anthropogenic controls, from topography to spatial patterns of land-use change. Our results demonstrate that the existence of biogeochemical nutrient legacies increases time lags beyond those due to hydrologic legacy alone. In addition, we show that the maximum concentration reduction benefits vary according to the spatial pattern of intervention, with preferential conversion of land parcels having the shortest catchment-scale travel times providing proportionally greater concentration reductions as well as faster response times. In contrast, a random pattern of conversion results in a 1:1 relationship between percent land conversion and percent concentration reduction, irrespective of denitrification rates within the landscape. Our modeling framework allows for the quantification of tradeoffs between costs associated with implementation of conservation measures and the time needed to see the desired concentration reductions, making it of great value to decision makers regarding optimal implementation of watershed conservation measures.

  2. A component-based, integrated spatially distributed hydrologic/water quality model: AgroEcoSystem-Watershed (AgES-W) overview and application

    Science.gov (United States)

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components. The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the addition of nitrogen (N) and sediment modeling compo...

  3. Regression equations for estimation of annual peak-streamflow frequency for undeveloped watersheds in Texas using an L-moment-based, PRESS-minimized, residual-adjusted approach

    Science.gov (United States)

    Asquith, William H.; Roussel, Meghan C.

    2009-01-01

    Annual peak-streamflow frequency estimates are needed for flood-plain management; for objective assessment of flood risk; for cost-effective design of dams, levees, and other flood-control structures; and for design of roads, bridges, and culverts. Annual peak-streamflow frequency represents the peak streamflow for nine recurrence intervals of 2, 5, 10, 25, 50, 100, 200, 250, and 500 years. Common methods for estimation of peak-streamflow frequency for ungaged or unmonitored watersheds are regression equations for each recurrence interval developed for one or more regions; such regional equations are the subject of this report. The method is based on analysis of annual peak-streamflow data from U.S. Geological Survey streamflow-gaging stations (stations). Beginning in 2007, the U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, began a 3-year investigation concerning the development of regional equations to estimate annual peak-streamflow frequency for undeveloped watersheds in Texas. The investigation focuses primarily on 638 stations with 8 or more years of data from undeveloped watersheds and other criteria. The general approach is explicitly limited to the use of L-moment statistics, which are used in conjunction with a technique of multi-linear regression referred to as PRESS minimization. The approach used to develop the regional equations, which was refined during the investigation, is referred to as the 'L-moment-based, PRESS-minimized, residual-adjusted approach'. For the approach, seven unique distributions are fit to the sample L-moments of the data for each of 638 stations and trimmed means of the seven results of the distributions for each recurrence interval are used to define the station specific, peak-streamflow frequency. As a first iteration of regression, nine weighted-least-squares, PRESS-minimized, multi-linear regression equations are computed using the watershed

  4. Grande Ronde Model Watershed Project; Dark Canyon Riparian Exclosure, Completion Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Kuck, Todd

    2003-03-01

    The Baker Field Office, Vale District Bureau of Land Management (BLM) submitted a project proposal for funding in 2002 through the Grande Ronde Model Watershed Program (GRMWP). The project consisted of constructing two riparian exclosures to prevent livestock grazing in the riparian areas of Dark Canyon and Meadow Creek. The BLM completed the NEPA documentation and supplied the fencing materials. Funding from BPA through the GRMWP was used to complete the construction of the two exclosures. This project was completed in the fall of 2002. The project area is located in Union County, Oregon on BLM managed land adjacent to Dark Canyon and Meadow Creek, T. 3. S., R. 35 E., Section 24 and 25. Section 24 is along Dark Canyon Creek and section 25 is along Meadow Creek. Approximately 0.4 miles of stream would be protected from grazing with the construction of the two exclosures. A two person crew was hired to construct a four-strand barbed wire fence. The fence enclosed the riparian area on both sides of each creek so that no grazing would occur within the riparian area on BLM managed land. Total fence length is approximately 1.25 miles. Materials consisted of metal fence posts, barbed wire, rockjacks, fence stays, and 2 x 4's. The fence was constructed in the fall of 2002. The riparian area is effectively excluded from livestock grazing at this time. The construction of the exclosures should enhance riparian vegetation, increase bank stability, and improve riparian and in-stream habitat by exclusion of livestock in the riparian areas. Monitoring will ensure that the exclosures continues to be effective. Annual monitoring will include photo-points and compliance checks during the grazing season by BLM personnel. The BLM will submit a monitoring report, which includes the results of the annual monitoring, to the GRMWP in years 2005 and 2007. The exclosures do cross the creeks so maintenance may be needed on occasion, especially after high flow events in the creeks

  5. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    Science.gov (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. New Approaches to Facilitate Learning from Youth: Exploring the Use of Photovoice in Identifying Local Watershed Issues

    Science.gov (United States)

    Chanse, Victoria; Mohamed, Amina; Wilson, Sacoby; Dalemarre, Laura; Leisnham, Paul T.; Rockler, Amanda; Shirmohammadi, Adel; Montas, Hubert

    2017-01-01

    In urbanized areas, incorporating residents' concerns and priorities into the stormwater management debate has focused on adults rather than youth. This study used Photovoice, a tool that includes photographs taken by youth, to uncover youth concerns and perceptions about their local watersheds. This study consisted of a comparative study of two…

  7. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    Science.gov (United States)

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a

  8. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  9. Watershed characteristics and water-quality trends and loads in 12 watersheds in Gwinnett County, Georgia

    Science.gov (United States)

    Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.

    2014-01-01

    different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.

  10. Linkage of a Physically Based Distributed Watershed Model and a Dynamic Plant Growth Model

    National Research Council Canada - National Science Library

    Johnson, Billy E; Coldren, Cade L

    2006-01-01

    The impact of hydrological alteration on vegetation and of vegetation on water quality can be greatly facilitated by linking existing water engines with general ecosystem models designed to make long...

  11. TRADING POULTRY LITTER AT THE WATERSHED LEVEL: A GOAL FOCUSING APPLICATION

    OpenAIRE

    Jones, Kezelee Q.; D'Souza, Gerard E.

    1998-01-01

    We explore the transfer of poultry litter among watersheds incorporating both economic characteristics (litter demand and supply) and environmental characteristics (vulnerability to phosphorus runoff, a major pollutant). A combination of techniques was employed: the Lemunyon-Gilbert P-Index model to determine watershed environmental vulnerability, GIS for land use coverages, and a goal focusing model (incorporating Saaty's eigen-value approach for penalty weight estimation) to identify optima...

  12. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed.

    Science.gov (United States)

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2017-07-01

    For decades, the increase of nutrient enrichment has threatened the ecological integrity and economic sustainability of many rivers, lakes, and coastal waters, including Lake Okeechobee, the second largest freshwater lake in the contiguous United States. Water quality trading programs have been an area of active development to both, reduce nutrient pollution and minimize abatement costs. The objective of this study was to apply a comprehensive modeling framework, integrating a hydrologic-water quality model with an economic model, to assess and compare the cost-effectiveness of a water quality trading program over a command-and-control approach in order to reduce phosphorus loadings to Lake Okeechobee. The Upper Kissimmee (UK) and Taylor Creek/Nubbin Slough (TCNS) sub-watersheds, identified as major sources of total phosphorus (TP) loadings to the lake, were selected for this analysis. The effect of different caps on the market potential was assessed while considering four factors: the least-cost abatement solutions, credit prices, potential cost savings, and credit supply and demand. Hypothetical trading scenarios were also developed, using the optimal caps selected for the two sub-watersheds. In both sub-watersheds, a phosphorus credit trading program was less expensive than the conventional command-and-control approach. While attaining cost-effectiveness, keeping optimal credit prices, and fostering market competition, phosphorus reduction targets of 46% and 32% were selected as the most appropriate caps in the UK and TCNS sub-watersheds, respectively. Wastewater treatment facilities and urban areas in the UK, and concentrated animal feeding operations in the TCNS sub-watershed were identified as potential credit buyers, whereas improved pastures were identified as the major credit sellers in both sub-watersheds. The estimated net cost savings resulting from implementing a phosphorus trading program in the UK and TCNS sub-watersheds were 76% ($ 34.9 million per

  13. Predicting watershed sediment yields after wildland fire with the InVEST sediment retention model at large geographic extent in the western USA: accuracy and uncertainties

    Science.gov (United States)

    Sankey, J. B.; Kreitler, J.; McVay, J.; Hawbaker, T. J.; Vaillant, N.; Lowe, S. E.

    2014-12-01

    Wildland fire is a primary threat to watersheds that can impact water supply through increased sedimentation, water quality decline, and change the timing and amount of runoff leading to increased risk from flood and sediment natural hazards. It is of great societal importance in the western USA and throughout the world to improve understanding of how changing fire frequency, extent, and location, in conjunction with fuel treatments will affect watersheds and the ecosystem services they supply to communities. In this work we assess the utility of the InVEST Sediment Retention Model to accurately characterize vulnerability of burned watersheds to erosion and sedimentation. The InVEST tools are GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., RUSLE -Revised Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. We evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured post-fire sedimentation rates available for many watersheds in different rainfall regimes throughout the western USA from an existing, large USGS database of post-fire sediment yield [synthesized in Moody J, Martin D (2009) Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. International Journal of Wildland Fire 18: 96-115]. The ultimate goal of this work is to calibrate and implement the model to accurately predict variability in post-fire sediment yield as a function of future landscape heterogeneity predicted by wildfire simulations, and future landscape fuel treatment scenarios, within watersheds.

  14. Potential stream density in Mid-Atlantic US watersheds.

    Directory of Open Access Journals (Sweden)

    Andrew J Elmore

    Full Text Available Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt, a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (<1% for catchments larger than 10 ha. We apply this model to the entire Potomac River watershed (37,800 km(2 and several adjacent watersheds to map stream density and compare our results with the National Hydrography Dataset (NHD. We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts.

  15. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development…

  16. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  17. Watershed Runoff Model Uncertainty as affected by Spatial Climate Data Resolution for McKenzie River, OR

    Science.gov (United States)

    Epps, T. H.; Chang, H.; Jung, I.; Nolin, A. W.; Roth, T.

    2012-12-01

    Climate change and the potential impacts that it will have on water resources must be assessed through watershed modeling and forecasting to guide effective management strategies that will accommodate future uncertainty in climate patterns. Watershed modeling is a valuable method to assess potential changes in the timing and quantity of streamflow and the impacts that shifts in streamflow dynamics may have on the availability of local water resources. This has been observed for the Pacific Northwest's Willamette River Basin (WRB) in previous studies that display substantial potential for local changes in streamflow due to a changing climate. Precipitation Runoff Modeling System (PRMS), a semi-distributed physically-based hydrologic model, was used to simulate runoff in sub-basins of the Willamette River that originate in the Cascades region of Oregon. These sub-basins have displayed high sensitivity to parameters associated with snowpack accumulation and evolution processes due to larger annual snowfall amounts than in lower elevations. Snowpack acts as a temporal storage for hydrologic inputs in these sub-basins and snowpack evolution processes, subject to ambient climate conditions, influence the timing of streamflows and the seasonal resiliency of water resources in these areas. Accuracy in modeling these snowpack processes is important in forecasting changes in streamflow timing and magnitude that will occur under climate change scenarios. PRMS models snowpack evolution using daily measurements of precipitation, solar radiation, and the maximum and minimum temperatures. Measured precipitation is apportioned between rainfall and snowfall based on measured daily temperature ranges and spatial parameters linked to topography and land cover. The McKenzie River (MCK) sub-basin of the WRB has its headwaters in the high Cascades region and is influenced by annual snowpack accumulation and snowmelt processes. This study will assess the uncertainty in PRMS modeling

  18. Climate change forecasting in a mountainous data scarce watershed using CMIP5 models under representative concentration pathways

    Science.gov (United States)

    Aghakhani Afshar, A.; Hasanzadeh, Y.; Besalatpour, A. A.; Pourreza-Bilondi, M.

    2017-07-01

    Hydrology cycle of river basins and available water resources in arid and semi-arid regions are highly affected by climate changes. In recent years, the increment of temperature due to excessive increased emission of greenhouse gases has led to an abnormality in the climate system of the earth. The main objective of this study is to survey the future climate changes in one of the biggest mountainous watersheds in northeast of Iran (i.e., Kashafrood). In this research, by considering the precipitation and temperature as two important climatic parameters in watersheds, 14 models evolved in the general circulation models (GCMs) of the newest generation in the Coupled Model Intercomparison Project Phase 5 (CMIP5) were used to forecast the future climate changes in the study area. For the historical period of 1992-2005, four evaluation criteria including Nash-Sutcliffe (NS), percent of bias (PBIAS), coefficient of determination ( R 2) and the ratio of the root-mean-square-error to the standard deviation of measured data (RSR) were used to compare the simulated observed data for assessing goodness-of-fit of the models. In the primary results, four climate models namely GFDL-ESM2G, IPSL-CM5A-MR, MIROC-ESM, and NorESM1-M were selected among the abovementioned 14 models due to their more prediction accuracies to the investigated evaluation criteria. Thereafter, climate changes of the future periods (near-century, 2006-2037; mid-century, 2037-2070; and late-century, 2070-2100) were investigated and compared by four representative concentration pathways (RCPs) of new emission scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. In order to assess the trend of annual and seasonal changes of climatic components, Mann-Kendall non-parametric test (MK) was also employed. The results of Mann-Kendall test revealed that the precipitation has significant variable trends of both positive and negative alterations. Furthermore, the mean, maximum, and minimum temperature values had

  19. HEDR modeling approach: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Shipler, D.B.; Napier, B.A.

    1994-05-01

    This report is a revision of the previous Hanford Environmental Dose Reconstruction (HEDR) Project modeling approach report. This revised report describes the methods used in performing scoping studies and estimating final radiation doses to real and representative individuals who lived in the vicinity of the Hanford Site. The scoping studies and dose estimates pertain to various environmental pathways during various periods of time. The original report discussed the concepts under consideration in 1991. The methods for estimating dose have been refined as understanding of existing data, the scope of pathways, and the magnitudes of dose estimates were evaluated through scoping studies.

  20. How Sustainable is Participatory Watershed Development in India?

    NARCIS (Netherlands)

    Bouma, J.; Soest, van D.P.; Bulte, E.H.

    2007-01-01

    Watershed conservation is widely recognized as a major strategy for rural development throughout the developing world. In India, the apparent success of participatory approaches to watershed development resulted in a decentralization of project planning, implementation, and management to local

  1. Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China

    Science.gov (United States)

    Li, Zhiying; Fang, Haiyan

    2017-09-01

    Climate change is expected to impact discharge and sediment yield in watersheds. The purpose of this paper is to assess the potential impacts of climate change on water discharge and sediment yield for the Yi'an watershed of the black soil region, northeastern China, based on the newly released Representative Concentration Pathways (RCPs) during 2071-2099. For this purpose, the TETIS model was implemented to simulate the hydrological and sedimentological responses to climate change. The model calibration (1971-1977) and validation (1978-1987) performances were rated as satisfactory. The modeling results for the four RCP scenarios relative to the control scenario under the same land use configuration indicated an increase in discharge of 16.3% (RCP 2.6), 14.3% (RCP 4.5), 36.7% (RCP 6.0) and 71.4% (RCP 8.5) and an increase in the sediment yield of 16.5% (RCP 2.6), 32.4% (RCP 4.5), 81.8% (RCP 6.0) and 170% (RCP 8.5). This implies that the negative impact of climate change on sediment yield is generally greater than that on discharge. At the monthly scale, both discharge and sediment yield increased dramatically in April to June and August to September. A more vigorous hydrological cycle and an increase in high values of sediment yield are also expected. These changes in annual discharge and sediment yield were closely linked with changes in precipitation, whereas monthly changes in late spring and autumn were mainly related to temperature. This study highlights the possible adverse impact of climate change on discharge and sediment yield in the black soil region of northeastern China and could provide scientific basis for adaptive management.

  2. MODELLING THE IMPACTS OF WILDFIRE ON SURFACE RUNOFF IN THE UPPER UBERABINHA RIVER WATERSHED USING HEC-HMS

    Directory of Open Access Journals (Sweden)

    Jean Maikon Santos Oliveira

    2017-01-01

    Full Text Available Fire significantly affects hydrological processes in the waters hed because it changes land cover and it creates a double layer of hydrophobic soil co vered with ash, increasing the surface runoff and the production of debris flow in the basin. Assessing the impacts of fire on overland flow requires the use of modeli ng softwares capable of simulating post-fire discharge. Because a total of 760 wildfire s were detected in the Upper Uberabinha River subbasin in the last nine years, it is o f dire importance to understand the consequential impacts of fire on hydrological pr ocesses in this basin. In this study, the HEC-HMS model was used to evaluate post-fire di scharge in the Upper Uberabinha River watershed. Model was previously calibrated and validated using two representative storms observed in the wet season. After calibra tion, the 5-, 10-, 25-, 50-, 100-, and 200-year storms were simulated in scenarios with incr easing burn severity. The calibrated model performed well in the prediction of discha rge values at a daily basis (0% difference in peak tim ing; 0% difference in peak flow ; 31.8% BIAS . Peak flow and discharge volume increased and peak timing shifted to the left as severity of burn increased. The highest increment in peak discharge was 74. 7% for the 10-year storm, whereas overall discharge volume raised in up to 31.9% f or the 50-year storm, both after simulation in the mos t fire-impacted scenario. The results reveal that fire highly affects hydrological characteristics, e.g. peak timing a nd flow and discharge volume, in the Upper Uberabinha River watershed. The authors su ggest further investigations concerning the impacts of wildfire on other proc esses, such as the production of debris flow in the basin.

  3. Multiple Landscape Factors Affect the Resilience of a Mixed Land Cover Watershed

    Science.gov (United States)

    Golden, H. E.; Lane, C.; Prues, A. G.; D'Amico, E.

    2015-12-01

    Human activities can stimulate the physical and chemical properties of streams to move beyond their background conditions, thereby facilitating the transition of these factors to stressors that affect watershed resilience. This is particularly true in mixed land cover watersheds. We quantify and explore the statistical nonlinear relationships between watershed and buffer-scale factors and nutrient (nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen (TKN), total phosphorus (TP)) concentrations, in addition to a multi-metric Index of Biotic Integrity (IBI), in a mesoscale mixed land cover watershed. Our goal is to contribute to a better understanding of the potentially numerous landscape and near-stream hydrological and biogeochemical factors that affect watershed resiliency - as inferred from in-stream nutrient levels and biological condition. We used a boosted regression tree approach, which quantifies nonlinear relationships and variable interactions, to develop watershed and 200 m buffer scale models for each chemical constituent and the annual IBI score. We developed nutrient models for the spring and summer seasons. Two primary factors - location within the watershed and percentage of urban land cover in the watershed or buffer - emerged as important explanatory variables in most nutrient and IBI models. Geographic location (i.e., latitude and longitude) interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores and suggested that location might be associated with indicators of sources (e.g., land cover) and runoff potential (e.g., soil and topographic factors). Runoff indicators (e.g., Hydrologic Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. Our overall approach confirms that it is important to consider multiple and often interacting factors when managing for watershed resilience.

  4. Assessment and modelling of the influence of man-made networks on the hydrology of a small watershed: implications for fast flow components, water quality and landscape management

    Science.gov (United States)

    Carluer, Nadia; Marsily, Ghislain De

    2004-01-01

    Up to now, most watershed models have been focused on the representation of 'natural' flow and transport processes. In this paper, we discuss the role of man-made networks, such as ditches, roads, hedge rows and hedges, underground drainage by buried pipes, etc. The influence of such features on the hydrology of a watershed may be of particular importance if the aim of the modelling is to predict the effect of landscape management or the fate of contaminants, e.g. pesticides, when a rain event occurs very soon after their spreading on the soil surface. It is likely that such artificial networks may act as conduits or short-circuits for the transport of contaminants, either dissolved or sorbed on soil particles, by-passing some of the retardation mechanisms such as sorption in the soil, retention of surface runoff by grass verges, biodegradation in the unsaturated zone, etc. We first present a small watershed on which the study was conducted, the Kervidy, which is a 5 km 2 'bocage ' catchment in Brittany, France. The man-made networks were observed and their extent and functioning described. We then included the potential hydraulic role of these networks in a distributed watershed model (TOPOG, [J. Hydrol. 150 (1993) 665]). This modified model, ANTHROPOG, was run, for comparison, with and without the man-made network; sensitivity tests were also made to assess the hydrologic importance of these networks. It was shown that they can have a very significant effect on the functioning of a watershed. We conclude on the relevance of the improved distributed model for the management of rural landscapes, and on the type of additional data needed to calibrate the model with parameters representative of the true processes. Bocage is a landscape with grassland, hedges, and occasional trees—often apple trees—typical of Brittany and Normandy.

  5. Modeling Approaches in Planetary Seismology

    Science.gov (United States)

    Weber, Renee; Knapmeyer, Martin; Panning, Mark; Schmerr, Nick

    2014-01-01

    Of the many geophysical means that can be used to probe a planet's interior, seismology remains the most direct. Given that the seismic data gathered on the Moon over 40 years ago revolutionized our understanding of the Moon and are still being used today to produce new insight into the state of the lunar interior, it is no wonder that many future missions, both real and conceptual, plan to take seismometers to other planets. To best facilitate the return of high-quality data from these instruments, as well as to further our understanding of the dynamic processes that modify a planet's interior, various modeling approaches are used to quantify parameters such as the amount and distribution of seismicity, tidal deformation, and seismic structure on and of the terrestrial planets. In addition, recent advances in wavefield modeling have permitted a renewed look at seismic energy transmission and the effects of attenuation and scattering, as well as the presence and effect of a core, on recorded seismograms. In this chapter, we will review these approaches.

  6. A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.

    Energy Technology Data Exchange (ETDEWEB)

    Marmorek, David

    2004-03-01

    for future habitat restoration actions. Such designs are being developed concurrently with this project by several other groups in the Columbia Basin (RME Workgroup 2003, NMFS 2003, Hillman and Paulsen 2002, Hillman 2003). By addressing questions about habitat restoration and monitoring (in coordination with other related efforts), we hope that this project will catalyze a shift in the Basin's paradigm of habitat restoration, moving from implementation of individual watershed projects towards rigorously designed and monitored, multiwatershed, adaptive management experiments. The project involved three phases of work, which were closely integrated with various related and ongoing efforts in the region: (1) Scoping - We met with a Core Group of habitat experts and managers to scope out a set of testable habitat restoration hypotheses, identify candidate watersheds and recommend participants for a data evaluation workshop. (2) Data Assembly - We contacted over 80 scientists and managers to help evaluate the suitability of each candidate watershed's historical data for assessing the effectiveness of past restoration actions. We eventually settled on the Yakima, Wenatchee, Clearwater, and Salmon subbasins, and began gathering relevant data for these watersheds at a workshop with habitat experts and managers. Data assembly continued for several months after the workshop. (3) Data Analysis and Synthesis - We explored statistical approaches towards retrospectively analyzing the effects of restoration 'treatments' at nested spatial scales across multiple watersheds (Chapters 2-5 of this report). These analyses provided a foundation for identifying existing constraints to testing restoration hypotheses, and opportunities to overcome these constraints through improved experimental designs, monitoring protocols and project selection strategies (Chapters 6 and 7 of this report). Finally, we developed a set of recommendations to improve the design

  7. Comparison of two model approaches in the Zambezi river basin with regard to model reliability and identifiability

    Directory of Open Access Journals (Sweden)

    H. C. Winsemius

    2006-01-01

    Full Text Available Variations of water stocks in the upper Zambezi river basin have been determined by 2 different hydrological modelling approaches. The purpose was to provide preliminary terrestrial storage estimates in the upper Zambezi, which will be compared with estimates derived from the Gravity Recovery And Climate Experiment (GRACE in a future study. The first modelling approach is GIS-based, distributed and conceptual (STREAM. The second approach uses Lumped Elementary Watersheds identified and modelled conceptually (LEW. The STREAM model structure has been assessed using GLUE (Generalized Likelihood Uncertainty Estimation a posteriori to determine parameter identifiability. The LEW approach could, in addition, be tested for model structure, because computational efforts of LEW are low. Both models are threshold models, where the non-linear behaviour of the Zambezi river basin is explained by a combination of thresholds and linear reservoirs. The models were forced by time series of gauged and interpolated rainfall. Where available, runoff station data was used to calibrate the models. Ungauged watersheds were generally given the same parameter sets as their neighbouring calibrated watersheds. It appeared that the LEW model structure could be improved by applying GLUE iteratively. Eventually, it led to better identifiability of parameters and consequently a better model structure than the STREAM model. Hence, the final model structure obtained better represents the true hydrology. After calibration, both models show a comparable efficiency in representing discharge. However the LEW model shows a far greater storage amplitude than the STREAM model. This emphasizes the storage uncertainty related to hydrological modelling in data-scarce environments such as the Zambezi river basin. It underlines the need and potential for independent observations of terrestrial storage to enhance our understanding and modelling capacity of the hydrological processes. GRACE

  8. Multidimensional Scaling Approach to Evaluate the Level of Community Forestry Sustainability in Babak Watershed, Lombok Island, West Nusa Tenggara

    Directory of Open Access Journals (Sweden)

    Ryke Nandini

    2017-07-01

    Full Text Available Community forestry in Babak watershed is one of the efforts to reduce critical land area. The aim of this research was to evaluate the level of community forestry sustainability in both of community forest (HKm and private forest in Babak watershed. Multidimensional scaling (MDS was used to analyse the level of community forest sustainability based on the five dimensions of ecology, economy, social, institutional, and technology as well as 29 attributes. Leverage analysis was used to know the sensitive attributes of sustainability, while Monte Carlo analysis and goodness of fit was used to find the accuracy of MDS analysis. The result shows that HKm was in moderate sustainability level (sustainability index 54.08% and private forest was in less sustainability level (sustainability index 48.53%. Furthermore, the ecology and technology in HKm were classified as less sustainable, while the institution and technology in private forest were considered less sustainable. There were 11 sensitive attributes of HKm and 19 sensitive attributes of private forest. The priorities of attribute improvement in HKm include land recovering (the dimension of ecology and cooperative development (the dimension of technology. In private forest, the priorities of attribute improvement include leadership capacity building (the institutional dimension and also the use of silviculture intensive and soil conservation (the dimension of technology.

  9. Application of the Soil and Water Assessment Tool (SWAT Model on a small tropical island (Great River Watershed, Jamaica as a tool in Integrated Watershed and Coastal Zone Management

    Directory of Open Access Journals (Sweden)

    Orville P. Grey

    2014-09-01

    Full Text Available The Great River Watershed, located in north-west Jamaica, is critical for development, particularly for housing, tourism, agriculture, and mining. It is a source of sediment and nutrient loading to the coastal environment including the Montego Bay Marine Park. We produced a modeling framework using the Soil and Water Assessment Tool (SWAT and GIS. The calculated model performance statistics for high flow discharge yielded a Nash-Sutcliffe Efficiency (NSE value of 0.68 and a R² value of 0.70 suggesting good measured and simulated (calibrated discharge correlation. Calibration and validation results for streamflow were similar to the observed streamflows. For the dry season the simulated urban landuse scenario predicted an increase in surface runoff in excess of 150%. During the wet season it is predicted to range from 98 to 234% presenting a significant risk of flooding, erosion and other environmental issues. The model should be used for the remaining 25 watersheds in Jamaica and elsewhere in the Caribbean. The models suggests that projected landuse changes will have serious impacts on available water (streamflow, stream health, potable water treatment, flooding and sensitive coastal ecosystems.

  10. Integrating Hydrologic and Water Quality Models as a Decision Support Tool for Implementation of Low Impact Development in a Coastal Urban Watershed under Climate Variability and Sea Level Rise

    Science.gov (United States)

    Chang, N. B.

    2016-12-01

    Many countries concern about development and redevelopment efforts in urban regions to reduce the flood risk by considering hazards such as high-tide events, storm surge, flash floods, stormwater runoff, and impacts of sea level rise. Combining these present and future hazards with vulnerable characteristics found throughout coastal communities such as majority low-lying areas and increasing urban development, create scenarios for increasing exposure of flood hazard. As such, the most vulnerable areas require adaptation strategies and mitigation actions for flood hazard management. In addition, in the U.S., Numeric Nutrient Criteria (NNC) are a critical tool for protecting and restoring the designated uses of a waterbody with regard to nitrogen and phosphorus pollution. Strategies such as low impact development (LID) have been promoted in recent years as an alternative to traditional stormwater management and drainage to control both flooding and water quality impact. LID utilizes decentralized multifunctional site designs and incorporates on-site storm water management practices rather than conventional storm water management approaches that divert flow toward centralized facilities. How to integrate hydrologic and water quality models to achieve the decision support becomes a challenge. The Cross Bayou Watershed of Pinellas County in Tampa Bay, a highly urbanized coastal watershed, is utilized as a case study due to its sensitivity to flood hazards and water quality management within the watershed. This study will aid the County, as a decision maker, to implement its stormwater management policy and honor recent NNC state policy via demonstration of an integrated hydrologic and water quality model, including the Interconnected Channel and Pond Routing Model v.4 (ICPR4) and the BMPTRAIN model as a decision support tool. The ICPR4 can be further coupled with the ADCIRC/SWAN model to reflect the storm surge and seal level rise in coastal regions.

  11. Branding approach and valuation models

    Directory of Open Access Journals (Sweden)

    Mamula Tatjana

    2006-01-01

    Full Text Available Much of the skill of marketing and branding nowadays is concerned with building equity for products whose characteristics, pricing, distribution and availability are really quite close to each other. Brands allow the consumer to shop with confidence. The real power of successful brands is that they meet the expectations of those that buy them or, to put it another way, they represent a promise kept. As such they are a contract between a seller and a buyer: if the seller keeps to its side of the bargain, the buyer will be satisfied; if not, the buyer will in future look elsewhere. Understanding consumer perceptions and associations is an important first step to understanding brand preferences and choices. In this paper, we discuss different models to measure value of brand according to couple of well known approaches according to request by companies. We rely upon several empirical examples.

  12. Connecting Past to Present and Watersheds to Ocean: Modeling 165 Years of Incremental Changes to Flows into the San Francisco Bay Delta System

    Science.gov (United States)

    MacVean, L. J.; Thompson, S. E.; Huttom, P. H.; Sivapalan, M.

    2016-02-01

    California's Sacramento-San Joaquin Delta sits at the intersection of vast agricultural and population centers, and supplies fresh water for the diverse and often competing needs of ecosystems, farmers, and millions of Californians. Managing and allocating this resource is a complex feat of economics, politics, and engineering, made increasingly contentious by the ongoing drought. The objective of this research is to augment the scientific foundation of management decisions by addressing the question of how flows into the Delta have evolved in response to human intervention since 1850. In particular, quantifying the dynamic components of water usage through vegetative uptake and evapotranspiration, groundwater recharge, flood conveyance, and water exports at incremental levels of development is a key ambition. This approach emphasizes the built environment, which is subject to the local regulatory framework, rather than climate change, which is generally considered immovable without united global effort. This work encompasses the creation of a hydrologic model representing the watersheds of the San Francisco Bay-Delta system, and quantifies the impacts of changes in land use and the gradual construction of levees, reservoirs, and diversion infrastructure. The model is run using the same climatological forcing at each level of development, thus elucidating the effects of local anthropogenic activity on the Delta and the inflows to the San Francisco Bay estuary. Our results provide a timeline of change, giving decision-makers a scientifically established baseline to aid in the sustainable management of the Bay-Delta system.

  13. Measuring and Modeling Suspended Sediment and Nutrient Yields from a Mixed-Land-Use Watershed of the Central U.S.

    Science.gov (United States)

    Zeiger, S. J.; Hubbart, J. A.

    2016-12-01

    A nested-scale watershed study design was used to monitor water quantity and quality of an impaired 3rd order stream in a rapidly urbanizing mixed-land-use watershed of the central USA. Grab samples were collected at each gauging site (n=836 samples x 5 gauging sites) and analyzed for suspended sediment, total phosphorus, and inorganic nitrogen species during the four year study period (2010 - 2013). Observed data were used to quantify relationships between climate, land use and pollutant loading. Additionally, Soil and Water Assessment Tool (SWAT) estimates of monthly stream flow, suspended sediment, total phosphorus, nitrate, nitrite, and ammonium were validated. Total annual precipitation ranged from approximately 650 mm during 2012 (extreme drought year) to 1350 mm during 2010 (record setting wet year) which caused significant (pland use (positive correlate), forested land use (negative correlate), and wetland land use (negative correlate). Results from SWAT model performance assessment indicated calibration was necessary to achieve Nash-Sutcliff Efficiency (NSE) values greater than 0.05 for monthly pollutant loads. Calibrating the SWAT model to multiple gauging sites within the watershed improved estimates of monthly stream flow (NSE=0.83), and pollutant loads (NSE>0.78). However, nitrite and ammonium loads were underestimated by more than four orders of magnitude (NSEland-use watersheds.

  14. Stream Tables and Watershed Geomorphology Education.

    Science.gov (United States)

    Lillquist, Karl D.; Kinner, Patricia W.

    2002-01-01

    Reviews copious stream tables and provides a watershed approach to stream table exercises. Results suggest that this approach to learning the concepts of fluvial geomorphology is effective. (Contains 39 references.) (DDR)

  15. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    Science.gov (United States)

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2017-12-18

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  16. A Landscape-level Model for Ecosystem Restoration in the San Francisco Estuary and Its Watershed

    Directory of Open Access Journals (Sweden)

    Wim Kimmerer

    2005-03-01

    Full Text Available The CALFED Bay-Delta Program is an ambitious effort to restore ecosystems and improve reliability of ecosystem services in California’s Central Valley. Key issues for CALFED and its Ecosystem Restoration Program (ERP include (1 meeting societal demand for multiple, potentially conflicting ecosystem services; (2 the tradeoff among more or less environmentally intrusive approaches to solving problems; (3 whether restoration should focus at the ecosystem level or on individual species; (4 the appropriate response to uncertainty; and (5 the tension between action and investigation. A long-term, landscape-scale perspective is essential for framing the scientific questions underlying these broad issues. We introduce a landscape-scale conceptual model that illustrates linkages, including material flows and animal migration, among the major ecosystem components being described in detail in a series of review papers. This model shows how linkages between ecosystem components result in remote consequences of locally applied restoration actions. The network of linkages is made more complicated by human interventions, which add components not previously a part of the landscape (e.g., salmonid hatcheries and alter or even reverse causal relations. A landscape perspective also helps identify conceptual gaps in CALFED’s restoration strategy, such as climate change and human population growth, which should be explicitly considered in forecasts of the long-term prospects for restoration. A landscape perspective is no panacea; in particular, the effects of restoration at this scale will be difficult to detect. Nevertheless, we advocate integrating investigations of processes at nested, smaller scales as an approach for evaluating effects of individual restoration actions and of the entire program. We believe CALFED and other large restoration programs will be most successful if they are able to integrate both societal expectations and scientific study at the

  17. Hydrologic Responses to Land Use Change in the Loess Plateau: Case Study in the Upper Fenhe River Watershed

    OpenAIRE

    Zhixiang Lu; Songbing Zou; Zuodong Qin; Yonggang Yang; Honglang Xiao; Yongping Wei; Kai Zhang; Jiali Xie

    2015-01-01

    We applied an integrated approach to investigate the impacts of land use and land cover (LULC) changes on hydrology at different scales in the Loess Plateau of China. Hydrological modeling was conducted for the LULC maps from remote sensing images at two times in the Upper Fenhe River watershed using the SWAT model. The main LULC changes in this watershed from 1995 to 2010 were the transformation of farmland into forests, grassland, and built-up land. The simulation results showed that forest...

  18. Ash, Asterionella, and Anglers: A Paleolimnological Approach to Understanding Anthropogenic and Volcanogenic Disturbances in a Small Sub-Alpine Watershed

    Science.gov (United States)

    Howard, K. L.; Noble, P. J.

    2014-12-01

    This poster summarizes geochemical, biological, hydrological, and watershed data that characterize Manzanita Lake, a small sub-alpine catchment in Lassen Volcanic National Park, CA. The future objective is to use characteristics of this system to interpret variations in diatom and sediment composition dating back to the 1914 Mt. Lassen eruption from a recently recovered lake core. Manzanita Lake is a small (0.18 km2) lake with a ~30 km2 watershed area situated on the northwest flank of Mt. Lassen, one of the most active Cascade volcanoes, and is a valuable recreational spot for anglers and visitors. Hydraulic residence time is short; roughly 119 days, and is derived from lake volume (1.0 X 106m3) and estimates of stream inflow (~6 ft3/sec) and outflow (~3 ft3/sec) that were made from May 2014 sampling data. Limnological sampling in 2012-2014 suggests that Manzanita Lake exhibits stable thermal stratification in the summer months, which is unusual given the shallow depth (~10m), but possibly supported by the morphometry of the lake basin and inputs of cold snowmelt from the flank of Lassen Peak. The lake is a moderately conductive (100-114 μS), mesotrophic system with secchi depths ranging from 8m to the bottom (~10m). Total phosphorus (TP) ranges from 15-25 ppb and dissolved inorganic nitrogen (DIN) from 2-15 ppb, with ammonium in the epilimnion being the largest contributor. A high concentration of silica (Si) in surface water inputs (34 mg/L) to Manzanita Lake likely reflects the rhyodacitic bedrock geology and large drainage ratio (164) of the watershed. Variations in Si concentration in the lake seem to be coupled with diatom production. During the sampling period Manzanita Lake is has been dominated by diatom blooms throughout the summer and fall months. There is a seasonal succession in the diatom species present, with abundant Asterionella formosa in the spring, transitioning to abundant Fragilaria crotonensis in the summer months, to a mixed dominance of

  19. An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop

    Science.gov (United States)

    Ng, Tze Ling; Eheart, J. Wayland; Cai, Ximing; Braden, John B.

    2011-09-01

    An agent-based model of farmers' crop and best management practice (BMP) decisions is developed and linked to a hydrologic-agronomic model of a watershed, to examine farmer behavior, and the attendant effects on stream nitrate load, under the influence of markets for conventional crops, carbon allowances, and a second-generation biofuel crop. The agent-based approach introduces interactions among farmers about new technologies and market opportunities, and includes the updating of forecast expectations and uncertainties using Bayesian inference. The model is applied to a semi-hypothetical example case of farmers in the Salt Creek Watershed in Central Illinois, and a sensitivity analysis is performed to effect a first-order assessment of the plausibility of the results. The results show that the most influential factors affecting farmers' decisions are crop prices, production costs, and yields. The results also show that different farmer behavioral profiles can lead to different predictions of farmer decisions. The farmers who are predicted to be more likely to adopt new practices are those who interact more with other farmers, are less risk averse, quick to adjust their expectations, and slow to reduce their forecast confidence. The decisions of farmers have direct water quality consequences, especially those pertaining to the adoption of the second-generation biofuel crop, which are estimated to lead to reductions in stream nitrate load. The results, though empirically untested, appear plausible and consistent with general farmer behavior. The results demonstrate the usefulness of the coupled agent-based and hydrologic-agronomic models for normative research on watershed management on the water-energy nexus.

  20. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.

    Science.gov (United States)

    Khosravi, Khabat; Pham, Binh Thai; Chapi, Kamran; Shirzadi, Ataollah; Shahabi, Himan; Revhaug, Inge; Prakash, Indra; Tien Bui, Dieu

    2018-02-01

    Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A dynamically-coupled groundwater, land surface and regional climate model to predict seasonal watershed flow and groundwater response, FINAL LDRD REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Kollet, S; Chow, F; Granvold, P; Duan, Q

    2007-02-23

    This final report is organized in four sections. Section 1 is the project summary (below), Section 2 is a submitted manuscript that describes the offline, or spinup simulations in detail, Section 3 is also a submitted manuscript that describes the online, or fully-coupled simulations in detail and Section 3, which is report that describes work done via a subcontract with UC Berkeley. The goal of this project was to develop and apply a coupled regional climate, land-surface, groundwater flow model as a means to further understand important mass and energy couplings between regional climate, the land surface, and groundwater. The project involved coupling three distinct submodels that are traditionally used independently with abstracted and potentially oversimplified (inter-model) boundary conditions. This coupled model lead to (1) an improved understanding of the sensitivity and importance of coupled physical processes from the subsurface to the atmosphere; (2) a new tool for predicting hydrologic conditions (rainfall, temperature, snowfall, snowmelt, runoff, infiltration and groundwater flow) at the watershed scale over a range of timeframes; (3) a simulation of hydrologic response of a characteristic watershed that will provide insight into the certainty of hydrologic forecasting, dominance and sensitivity of groundwater dynamics on land-surface fluxes; and (4) a more realistic model representation of weather predictions, precipitation and temperature, at the regional scale. Regional climate models are typically used for the simulation of weather, precipitation and temperature behavior over 10-1000 km domains for weather or climate prediction purposes, and are typically driven by boundary conditions derived from global climate models (GCMs), observations or both. The land or ocean surface typically represents a bottom boundary condition of these models, where important mass (water) and energy fluxes are approximated. The viability and influence of these

  2. Watershed Management: Lessons from Common Property Theory

    Directory of Open Access Journals (Sweden)

    John Kerr

    2007-10-01

    Full Text Available Watershed development is an important component of rural development and natural resource management strategies in many countries. A watershed is a special kind of common pool resource: an area defined by hydrological linkages where optimal management requires coordinated use of natural resources by all users. Management is difficult because natural resources comprising the watershed system have multiple, conflicting uses, so any given management approach will spread benefits and costs unevenly among users. To address these challenges, watershed approaches have evolved from more technocratic to a greater focus on social organization and participation. However, the latter cannot necessarily be widely replicated. In addition, participatory approaches have worked better at a small scale, but hydrological relationships cover a larger scale and some projects have faced tradeoffs in choosing between the two. Optimal approaches for future efforts are not clear, and theories from common property research do not support the idea that complex watershed management can succeed everywhere. Solutions may include simplifying watershed projects, pursuing watershed projects where conditions are favorable, and making other investments elsewhere, including building the organizational capacity that can facilitate watershed management.

  3. Choosing Different Contour Interval on a Fully Raster-Based Erosion Modeling: Case Study at Merawu Watershed, Banjarnegara, Central Java

    Directory of Open Access Journals (Sweden)

    Bambang Sulistyo

    2011-09-01

    Full Text Available The research was aimed to study the efect of choosing different contour interval to produce Digital Elevation Model on a fully raster-based erosion modeling of The Universal Soil Loss Equation using remote sensing data and a geographical information system technique. Methods were applied by analyzing all factors that affecting erosion in GIS environment such data were in the form of raster. Those data were R , K, LS, C and P factors. LS factor was derived from Digital Elevation Model by taking flow direction from each pixel into consideration. Research used 3 contour intervals to produce Digital Elevation Model, i.e. 12.5, 25 and 50 meter. C factor was derived from the formula after applying linearly regression analysis between Normalized Difference Vegetation index of remote sensing data and C factor measured directly on the field. Another analysis was the creation of map of Bulk Density used to convert erosion unit as from Mg ha-1mo-1 to mm mo-1. To know the model accuracy, validation of the model was done by applying statistical analysis and by comparing the result of erosion model (Emodel with actual erosion (Eactual which was measured regularly in Merawu watershed. A threshold value of > 0.80 or > 80% was chosen to justify whether the model was accurate or not. The results showed that all Emodel using 3 countour intervals have correlation value of > 0.8. These results were strenghtened with the result of analysis of variance which showing there were no difference between Emodel and Eactual. Among the 3 models, only Emodel using 50 meter countour interval reached the accuracy of 81.13% while the other only had 50.87% (using countour interval 25 meter and 32.92% (using countour interval 12.5 meter.

  4. Differences in Net Ecosystem Exchange for an intensely managed watershed using a lumped, regional model and a mechanistic, hillslope-scale model

    Science.gov (United States)

    Wilson, C. G.; Wacha, K.; Papanicolaou, T.; Stanier, C. O.; Jamroensan, A.

    2014-12-01

    In this study, Net Ecosystem Exchange (NEE), and its components Gross Ecosystem Exchange (GEE) and Ecosystem Respiration (RESP), were compared from a lumped, regional model and a mechanistic, hillslope-scale model to determine if the effects of land management on the carbon cycle are captured by larger-scale biosphere models that determine CO2 sources and sinks. WRF-VPRM (Weather Research & Forecasting - Vegetation Photosynthesis & Respiration Model) is a regional-scale model that uses simulated downward shortwave radiation and surface temperatures, along with satellite-derived land cover indices and eddy flux tower-derived parameters to estimate biosphere CO2 fluxes with empirical equations. The DAYCENT biogeochemical model coupled with the Watershed Erosion Prediction Project model (WEPP), which simulates changes in soil carbon stocks due to different land management and the resulting enhanced erosion, can also quantify biosphere CO2 fluxes. Both models (i.e., WRF-VPRM and WEPP-DAYCENT) were used to quantify GEE, RESP, and NEE for the summer of 2008 in the IML-CZO Clear Creek watershed of the U.S. Midwest to examine the role of land management heterogeneity in CO2 exchanges between the biosphere and atmosphere. Comparing average daily GEE rates from WRF-VPRM (-11.0 ± 5.2 g C/m2/d) with WEPP-DAYCENT average values weighted per land use area in the watershed (-10.2 ± 1.5 g C/m2/d) showed no significant differences (t-test; p=0.08). In contrast, daily RESP values were different between the two models. Daily respiration rates were relatively constant for WRF-VPRM (6.0 ± 0.8 g C/m2/d), while WEPP-DAYCENT values for each management practice were significantly greater (7.2 ± 1.8 g C/m2/d; t-test, pmanagement and net erosion/deposition on total SOC stocks and tillage impacts on respiration by increasing decomposition from the breaking of soil aggregates and enhanced mineralization. In WRF-VPRM, respiration is calculated with a regression equation based on air

  5. Using Historical Data and Quasi-Likelihood Logistic Regression Modeling to Test Spatial Patterns of Channel Response to Peak Flows in a Mountain Watershed

    Science.gov (United States)

    Faustini, J. M.; Jones, J. A.

    2001-12-01

    This study used an empirical modeling approach to explore landscape controls on spatial variations in reach-scale channel response to peak flows in a mountain watershed. We used historical cross-section surveys spanning 20 years at five sites on 2nd to 5th-order channels and stream gaging records spanning up to 50 years. We related the observed proportion of cross-sections at a site exhibiting detectable change between consecutive surveys to the recurrence interval of the largest peak flow during the corresponding period using a quasi-likelihood logistic regression model. Stream channel response was linearly related to flood size or return period through the logit function, but the shape of the response function varied according to basin size, bed material, and the presence or absence of large wood. At the watershed scale, we hypothesized that the spatial scale and frequency of channel adjustment should increase in the downstream direction as sediment supply increases relative to transport capacity, resulting in more transportable sediment in the channel and hence increased bed mobility. Consistent with this hypothesis, cross sections from the 4th and 5th-order main stem channels exhibit more frequent detectable changes than those at two steep third-order tributary sites. Peak flows able to mobilize bed material sufficiently to cause detectable changes in 50% of cross-section profiles had an estimated recurrence interval of 3 years for the 4th and 5th-order channels and 4 to 6 years for the 3rd-order sites. This difference increased for larger magnitude channel changes; peak flows with recurrence intervals of about 7 years produced changes in 90% of cross sections at the main stem sites, but flows able to produce the same level of response at tributary sites were three times less frequent. At finer scales, this trend of increasing bed mobility in the downstream direction is modified by variations in the degree of channel confinement by bedrock and landforms, the

  6. From provocative narrative scenarios to quantitative biophysical model results: Simulating plausible futures to 2070 in an urbanizing agricultural watershed in Wisconsin, USA

    Science.gov (United States)

    Booth, E.; Chen, X.; Motew, M.; Qiu, J.; Zipper, S. C.; Carpenter, S. R.; Kucharik, C. J.; Steven, L. I.

    2015-12-01

    Scenario analysis is a powerful tool for envisioning future social-ecological change and its consequences on human well-being. Scenarios that integrate qualitative storylines and quantitative biophysical models can create a vivid picture of these potential futures but the integration process is not straightforward. We present - using the Yahara Watershed in southern Wisconsin (USA) as a case study - a method for developing quantitative inputs (climate, land use/cover, and land management) to drive a biophysical modeling suite based on four provocative and contrasting narrative scenarios that describe plausible futures of the watershed to 2070. The modeling suite consists of an agroecosystem model (AgroIBIS-VSF), hydrologic routing model (THMB), and empirical lake water quality model and estimates several biophysical indicators to evaluate the watershed system under each scenario. These indicators include water supply, lake flooding, agricultural production, and lake water quality. Climate (daily precipitation and air temperature) for each scenario was determined using statistics from 210 different downscaled future climate projections for two 20-year time periods (2046-2065 and 2081-2100) and modified using a stochastic weather generator to allow flexibility for matching specific climate events within the scenario narratives. Land use/cover for each scenario was determined first by quantifying changes in areal extent every decade for 15 categories at the watershed scale to be consistent with the storyline events and theme. Next, these changes were spatially distributed using a rule-based framework based on land suitability metrics that determine transition probabilities. Finally, agricultural inputs including manure and fertilizer application rates were determined for each scenario based on the prevalence of livestock, water quality regulations, and technological innovations. Each scenario is compared using model inputs (maps and time-series of land use/cover and

  7. GIS-Based Soil Erosion Modeling for Assessing Land Suitability in the Urban Watershed of Tallo River, South Sulawesi, Indonesia

    OpenAIRE

    Baja, Sumbangan; Nurmiaty, Nurmiaty; Arif, Samsu

    2014-01-01

    Urban watershed is a discrete and complex system where a diverse number of factors govern its quality and health. Soil erosion by water is the most dominant factor that determines a watershed quality, and considered as one of the most significant forms of land degradation that affects sustained productivity of land use. The principal aim of this paper is to utilise spatial-based soil erosion information to assess land suitability at a watershed level. The specific aim is three-fold: (i) to...

  8. Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses

    Science.gov (United States)

    Terêncio, D. P. S.; Sanches Fernandes, L. F.; Cortes, R. M. V.; Pacheco, F. A. L.

    2017-07-01

    This study introduces an improved rainwater harvesting (RWH) suitability model to help the implementation of agro-forestry projects (irrigation, wildfire combat) in catchments. The model combines a planning workflow to define suitability of catchments based on physical, socio-economic and ecologic variables, with an allocation workflow to constrain suitable RWH sites as function of project specific features (e.g., distance from rainfall collection to application area). The planning workflow comprises a Multi Criteria Analysis (MCA) implemented on a Geographic Information System (GIS), whereas the allocation workflow is based on a multiple-parameter ranking analysis. When compared to other similar models, improvement comes with the flexible weights of MCA and the entire allocation workflow. The method is tested in a contaminated watershed (the Ave River basin) located in Portugal. The pilot project encompasses the irrigation of a 400 ha crop land that consumes 2.69 Mm3 of water per year. The application of harvested water in the irrigation replaces the use of stream water with excessive anthropogenic nutrients that may raise nitrosamines in the food and accumulation in the food chain, with severe consequences to human health (cancer). The selected rainfall collection catchment is capable to harvest 12 Mm3·yr-1 (≈ 4.5 × the requirement) and is roughly 3 km far from the application area assuring crop irrigation by gravity flow with modest transport costs. The RWH system is an 8-meter high that can be built in earth with reduced costs.

  9. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Science.gov (United States)

    Cai, X.

    2011-12-01

    evidenced by 1) institutional innovation for integrated watershed management; 2) real-world management practices involving multidisciplinary expertise; 3) growing role of economics in systems analysis; 4) enhanced research programs such as the CHNS program and Water, Sustainability and Climate (WSC) program at the US National Science Foundation (NSF). Furthermore, recent scientific and technological developments are expected to accommodate integrated watershed system analysis approaches, such as: 1) increasing availability of distributed digital datasets especially from remote sensing products (e.g. digital watersheds); 2) distributed and semi-distributed watershed hydrologic modeling; 3) enhanced hydroclimatic monitoring and forecast; 4) identified evidences of vulnerability and threshold behavior of watersheds; and 5) continuing improvements in computational and optimization algorithms. Managing watersheds as CHNS will be critical for watershed sustainability, which ensures that human societies will benefit forever from the watershed through development of harmonious relationships between human and natural systems. This presentation will provide a review of the research opportunities that take advantage of the concept of CHNS and associated scientific, technological and institutional innovations/developments.

  10. A conceptual framework of agricultural land use planning with BMP for integrated watershed management.

    Science.gov (United States)

    Qi, Honghai; Altinakar, Mustafa S

    2011-01-01

    Land use planning is an important element of the integrated watershed management approach. It not only influences the environmental processes such as soil and stream bed erosion, sediment and nutrient concentrations in streams, quality of surface and ground waters in a watershed, but also affects social and economic development in that region. Although its importance in achieving sustainable development has long been recognized, a land use planning methodology based on a systems approach involving realistic computational modeling and meta-heuristic optimization is still lacking in the current practice of integrated watershed management. The present study proposes a new approach which attempts to combine computational modeling of upland watershed processes, fluvial processes and modern heuristic optimization techniques to address the water-land use interrelationship in its full complexity. The best land use allocation is decided by a multi-objective function that minimizes sediment yields and nutrient concentrations as well as the total operation/implementation cost, while the water quality and the production benefits from agricultural exploitation are maximized. The proposed optimization strategy considers also the preferences of land owners. The runoff model AnnAGNPS (developed by USDA), and the channel network model CCHE1D (developed by NCCHE), are linked together to simulate sediment/pollutant transport process at watershed scale based on any assigned land use combination. The greedy randomized adaptive Tabu search heuristic is used to flip the land use options for finding an optimum combination of land use allocations. The approach is demonstrated by applying it to a demonstrative case study involving USDA Goodwin Creek experimental watershed located in northern Mississippi. The results show the improvement of the tradeoff between benefits and costs for the watershed, after implementing the proposed optimal land use planning. Copyright © 2010 Elsevier Ltd. All

  11. Prioritization of sub-watersheds based on morphometric analysis using geospatial technique in Piperiya watershed, India

    Science.gov (United States)

    Chandniha, Surendra Kumar; Kansal, Mitthan Lal

    2017-03-01

    Hydrological investigation and behavior of watershed depend upon geo-morphometric characteristics of catchment. Morphometric analysis is commonly used for development of regional hydrological model of ungauged watershed. A critical valuation and assessment of geo-morphometric constraints has been carried out. Prioritization of watersheds based on water plot capacity of Piperiya watershed has been evaluated by linear, aerial and relief aspects. Morphometric analysis has been attempted for prioritization for nine sub-watersheds of Piperiya watershed in Hasdeo river basin, which is a tributary of the Mahanadi. Sub-watersheds are delineated by ArcMap 9.3 software as per digital elevation model (DEM). Assessment of drainages and their relative parameters such as stream order, stream length, stream frequency, drainage density, texture ratio, form factor, circulatory ratio, elongation ratio, bifurcation ratio and compactness ratio has been calculated separately for each sub-watershed using the Remote Sensing (RS) and Geospatial techniques. Finally, the prioritized score on the basis of morphometric behavior of each sub-watershed is assigned and thereafter consolidated scores have been estimated to identify the most sensitive parameters. The analysis reveals that stream order varies from 1 to 5; however, the first-order stream covers maximum area of about 87.7 %. Total number of stream segment of all order is 1,264 in the watershed. The study emphasizes the prioritization of the sub-watersheds on the basis of morphometric analysis. The final score of entire nine sub-watersheds is assigned as per erosion threat. The sub-watershed with the least compound parameter value was assigned as highest priority. However, the sub-watersheds has been categorized into three classes as high (4.1-4.7), medium (4.8-5.3) and low (>5.4) priority on the basis of their maximum (6.0) and minimum (4.1) prioritized score.

  12. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.

    Science.gov (United States)

    Wang, Xixi; Shang, Shiyou; Qu, Zhongyi; Liu, Tingxi; Melesse, Assefa M; Yang, Wanhong

    2010-07-01

    Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority

  13. Applications of remote sensing to watershed management

    Science.gov (United States)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  14. Modeling Microbial Biogeochemistry from Terrestrial to Aquatic Ecosystems Using Trait-Based Approaches

    Science.gov (United States)

    King, E.; Molins, S.; Karaoz, U.; Johnson, J. N.; Bouskill, N.; Hug, L. A.; Thomas, B. C.; Castelle, C. J.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.

    2014-12-01

    Currently, there is uncertainty in how climate or land-use-induced changes in hydrology and vegetation will affect subsurface carbon flux, the spatial and temporal distribution of flow and transport, biogeochemical cycling, and microbial metabolic activity. Here we focus on the initial development of a Genome-Enabled Watershed Simulation Capability (GEWaSC), which provides a predictive framework for understanding how genomic information stored in a subsurface microbiome affects biogeochemical watershed functioning, how watershed-scale processes affect microbial function, and how these interactions co-evolve. This multiscale framework builds on a hierarchical approach to multiscale modeling, which considers coupling between defined microscale and macroscale components of a system (e.g., a catchment being defined as macroscale and biogeofacies as microscale). Here, we report our progress in the development of a trait-based modeling approach within a reactive transport framework that simulates coupled guilds of microbes. Guild selection is driven by traits extracted from, and physiological properties inferred from, large-scale assembly of metagenome data. Meta-genomic, -transcriptomic and -proteomic information are also used to complement our existing biogeochemical reaction networks and contributes key reactions where biogeochemical analyses are unequivocal. Our approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolitho(auto)trophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for each based upon dynamic intracellular and environmental conditions. In addition to biomass development, anabolism includes the production of key enzymes, such as nitrogenase for nitrogen fixation or exo-enzymes for the hydrolysis of extracellular polymers. This internal resource partitioning represents a

  15. Valuing investments in sustainable land management using an integrated modelling framework to support a watershed conservation scheme in the Upper Tana River, Kenya

    Science.gov (United States)

    Hunink, Johannes E.; Bryant, Benjamin P.; Vogl, Adrian; Droogers, Peter

    2015-04-01

    We analyse the multiple impacts of investments in sustainable land use practices on ecosystem services in the Upper Tana basin (Kenya) to support a watershed conservation scheme (a "water fund"). We apply an integrated modelling framework, building on previous field-based and modelling studies in the basin, and link biophysical outputs to economic benefits for the main actors in the basin. The first step in the modelling workflow is the use of a high-resolution spatial prioritization tool (Resource Investment Optimization System -- RIOS) to allocate the type and location of conservation investments in the different subbasins, subject to budget constraints and stakeholder concerns. We then run the Soil and Water Assessment Tool (SWAT) using the RIOS-identified investment scenarios to produce spatially explicit scenarios that simulate changes in water yield and suspended sediment. Finally, in close collaboration with downstream water users (urban water supply and hydropower) we link those biophysical outputs to monetary metrics, including: reduced water treatment costs, increased hydropower production, and crop yield benefits for upstream farmers in the conservation area. We explore how different budgets and different spatial targeting scenarios influence the return of the investments and the effectiveness of the water fund scheme. This study is novel in that it presents an integrated analysis targeting interventions in a decision context that takes into account local environmental and socio-economic conditions, and then relies on detailed, process-based, biophysical models to demonstrate the economic return on those investments. We conclude that the approach allows for an analysis on different spatial and temporal scales, providing conclusive evidence to stakeholders and decision makers on the contribution and benefits of the land-based investments in this basin. This is serving as foundational work to support the implementation of the Upper Tana-Nairobi Water Fund

  16. Tank Model Application for Runoff and Infiltration Analysis on Sub-Watersheds in Lalindu River in South East Sulawesi Indonesia

    Science.gov (United States)

    Wirdhana Ahmad, Sitti

    2017-05-01

    Improper land management often causes flood, this is due to uncontrolled runoff. Runoff is affected by the management of the land cover. The phenomena also occurred in South East Sulawesi, Indonesia. This study aims to analyze the flow rate of water in watershed of Lalindu River in North Konawe, South East Sulawesi by using a Tank Model. The model determined the magnitude of the hydrologic runoff, infiltration capacity and soil water content several land uses were evaluated in the study area. The experimental and calculation results show that the runoff in the forest is 2,639.21 mm/year, in the reed is 2,517.05 mm/year, in the oil palm with a slope more than 45% is 2,715.36 mm/year, and in the oil palm with slopes less than 45% is 2,709.59 mm/year. Infiltration in the forest is 30.70 mm/year, in the reed is 7.51 mm/year, in the palm oil with a slope more than 45% is 24.13 mm/year and in the palm oil with slopes less than 45% is 29.67 mm/year. Runoff contributes to stream flow for water availability.

  17. Evidence of nonextensive statistical physics behavior in the watershed distribution in active tectonic areas: examples from Greece

    Science.gov (United States)

    Vallianatos, Filippos; Kouli, Maria

    2013-08-01

    The Digital Elevation Model (DEM) for the Crete Island with a resolution of approximately 20 meters was used in order to delineate watersheds by computing the flow direction and using it in the Watershed function. The Watershed function uses a raster of flow direction to determine contributing area. The Geographic Information Systems routine procedure was applied and the watersheds as well as the streams network (using a threshold of 2000 cells, i.e. the minimum number of cells that constitute a stream) were extracted from the hydrologically corrected (free of sinks) DEM. A number of a few thousand watersheds were delineated, and their areal extent was calculated. From these watersheds a number of 300 was finally selected for further analysis as the watersheds of extremely small area were excluded in order to avoid possible artifacts. Our analysis approach is based on the basic principles of Complexity theory and Tsallis Entropy introduces in the frame of non-extensive statistical physics. This concept has been successfully used for the analysis of a variety of complex dynamic systems including natural hazards, where fractality and long-range interactions are important. The analysis indicates that the statistical distribution of watersheds can be successfully described with the theoretical estimations of non-extensive statistical physics implying the complexity that characterizes the occurrences of them.

  18. Evaluating the impacts of agricultural land management practices on water resources: A probabilistic hydrologic modeling approach.

    Science.gov (United States)

    Prada, A F; Chu, M L; Guzman, J A; Moriasi, D N

    2017-05-15

    Evaluating the effectiveness of agricultural land management practices in minimizing environmental impacts using models is challenged by the presence of inherent uncertainties during the model development stage. One issue faced during the model development stage is the uncertainty involved in model parameterization. Using a single optimized set of parameters (one snapshot) to represent baseline conditions of the system limits the applicability and robustness of the model to properly represent future or alternative scenarios. The objective of this study was to develop a framework that facilitates model parameter selection while evaluating uncertainty to assess the impacts of land management practices at the watershed scale. The model framework was applied to the Lake Creek watershed located in southwestern Oklahoma, USA. A two-step probabilistic approach was implemented to parameterize the Agricultural Policy/Environmental eXtender (APEX) model using global uncertainty and sensitivity analysis to estimate the full spectrum of total monthly water yield (WYLD) and total monthly Nitrogen loads (N) in the watershed under different land management practices. Twenty-seven models were found to represent the baseline scenario in which uncertainty of up to 29% and 400% in WYLD and N, respectively, is plausible. Changing the land cover to pasture manifested the highest decrease in N to up to 30% for a full pasture coverage while changing to full winter wheat cover can increase the N up to 11%. The methodology developed in this study was able to quantify the full spectrum of system responses, the uncertainty associated with them, and the most important parameters that drive their variability. Results from this study can be used to develop strategic decisions on the risks and tradeoffs associated with different management alternatives that aim to increase productivity while also minimizing their environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Partial Contributing Area Model for Linking Rainfall Simulation Data With Hydrographs of a Small Arid Watershed

    Science.gov (United States)

    Ben-Asher, J.; Humborg, G.

    1992-08-01

    Four years of runoff measurement (29 events) in Kangussano, Mali, were analyzed on the basis of the partial area contribution concept. The study region is semiarid and the use of runoff water to satisfy crop consumption.is of high importance. A first-order basin which included two flow channels draining an area of 1.14 106 ha (1.14 km2) was used for this purpose. The objective of this study was to develop and test a conceptual model to predict runoff on natural catchments of about this size. The model assumes that a basin is composed of a large number of pixels (satellite picture elements). Each pixel covers an area of 900 m2. The hydraulic properties of a representative pixel are determined by runoff simulation experiments. The model calculates the number of runoff generating pixels at a given time and rain depth. The areal runoff is a product of these two factors. Analysis of satellite images from LANDSAT and SPOT indicated similarities of soil cover complexes between the study area and an experimental area in Upper Volta. Results of runoff simulation from this area were adapted for the study area and used for the calculations. A good agreement between predicted and measured contributing area was obtained when the number of runoff generating pixels was 80 pixels/ram effective rain. Predicted and measured hydrographs were also in good agreement. It was therefore concluded that the model can satisfactorily predict actual hydrographs from data generated by rainfall-runoff simulators. Dividing the watershed to surface elements of pixel's size makes the model capable of linking remote sensing information with simulation data in order to predict areal runoff.

  20. Watershed and Hydrodynamic Modeling for Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation and Seagrasses in Mobile Bay

    Science.gov (United States)

    2010-06-01

    climatic in nature. As development and other activities increase in coastal watersheds, there is a shift not only in how and when run-off reaches rivers...projections are derived from socio-economic drivers using a PSGM utility that determines the growth for each urban LCLU category (industrial, high...modeling grid and current SAV distribution Preliminary Results 1992 and 2001 Landsat derived National Land Cover Data (NLCD) were used for Mobile and

  1. Modeling and assessing the impact of reclaimed wastewater irrigation on the nutrient loads from an agricultural watershed containing rice paddy fields.

    Science.gov (United States)

    Kim, Sang Min; Park, Seung Woo; Lee, Jeong Jae; Benham, Brian L; Kim, Hak Kwan

    2007-02-15

    Two models were used in concert to predict nutrient loads in a waterbody receiving irrigation return flows from a rice paddy production system. Two irrig