WorldWideScience

Sample records for watershed management study

  1. Interior West Watershed Management

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1981-01-01

    Habitat type classification systems are reviewed for potential use in watershed management. Information on climate, soils, and vegetation related to the classifications are discussed. Possible cooperative applications of vegetation and habitat type classifications to watershed management are explored.

  2. Experimental study using coir geotextiles in watershed management

    Science.gov (United States)

    Vishnudas, S.; Savenije, H. H. G.; van der Zaag, P.; Anil, K. R.; Balan, K.

    2005-11-01

    This paper presents the results of a field experiment conducted in Kerala, South India, to test the effectiveness of coir geotextiles for embankment protection. In the context of sustainable watershed management, coir is a cheap and locally available material that can be used to strengthen traditional earthen bunds or protect the banks of village ponds from erosion. Particularly in developing countries, where coir is abundantly available and textiles can be produced by small-scale industry, this is an attractive alternative for conventional methods.

  3. Evaluating watershed management projects:

    OpenAIRE

    Kerr, John; Chung, Kimberly

    2001-01-01

    Watershed projects play an increasingly important role in managing soil and water resources throughout the world. Research is needed to ensure that new projects draw upon lessons from their predecessors' experiences. However, the technical and social complexities of watershed projects make evaluation difficult. Quantitative and qualitative evaluation methods, which traditionally have been used separately, both have strengths and weaknesses. Combining them can make evaluation more effective, p...

  4. WATERSHED MANAGEMENT RESEARCH TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    Science.gov (United States)

    The Urban Watershed Management Branch researches, develops, and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the risk management aspects of WWF research.One...

  5. Multiagent distributed watershed management

    Science.gov (United States)

    Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.

    2012-04-01

    Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing

  6. Restoration in the Anacostia river watershed: An ecosystem management case study

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.R.

    1995-12-01

    This paper discusses various aspects of an ecosystem approach to watershed restoration as illustrated by the Anacostia River Watershed Restoration initiative. This information was derived from a case study conducted as part of the Interagency Ecosystem Management Initiative (IEMI), an outgrowth of a recommendation in the National Performance Review. The purpose of this study was to identify components of the ecosystem approach used in the Anacostia initiative that may be useful to other ecosystem restoration and management initiatives in the future. Water quality and ecological conditions within the Anacostia River watershed have become degraded due to urban and suburban development and other activities in the watershed over the last two centuries. An intergovernmental partnership has been formed to cooperatively assess the specific problems in the basin and to direct and implement restoration efforts. The Anacostia initiative includes a number of cooperative efforts that cross political boundaries, and involves numerous states, local agencies, civic groups, and private individuals in addition to the Federal players. In contrast with some of the other case studies in the IEMI, the Anacostia restoration effort is primarily driven by state and local governments. There has, however, been Federal involvement in the restoration and use of Federal grants. In addition, the establishment of a forum for setting goals, priorities and resolving differences was viewed as essential. Closer relationships between planning and regulatory functions can help advance the restoration goals. Public participation, including education, outreach and involvement, is essential to viable ecosystem initiatives. Comprehensive planning and modeling must be balanced with continuous visible results in order to sustain administrative and public support for the initiative.

  7. Realities of the Watershed Management Approach: The Magat Watershed Experience

    OpenAIRE

    Elazegui, Dulce D.; Combalicer, Edwin A.

    2004-01-01

    This paper aims to showcase the experience of the Magat watershed in the implementation of the watershed management approach. Magat watershed was declared as a forest-reservation area through Proclamation No. 573 on June 26, 1969 because of its great importance to human survival and environmental balance in the region. The Magat case demonstrates the important role that ‘champions’ like the local government unit (LGU) could play in managing the country’s watersheds. With the Nueva Viscaya pro...

  8. Observing, studying, and managing for change-Proceedings of the Fourth Interagency Conference on Research in the Watersheds

    Science.gov (United States)

    Medley, Nicolas; Patterson, Glenn; Parker, Melanie J.

    2011-01-01

    These proceedings contain the abstracts, manuscripts, and posters of presentations given at the Fourth Interagency Conference on Research in the Watersheds-Observing, Studying, and Managing for Change, held at the Westmark Hotel in Fairbanks, Alaska, September 26-30, 2011. The conference was jointly hosted by the Bureau of Land Management and the National Park Service.

  9. ASSESSMENT AND MANAGEMENT OF WATERSHED MICROBIAL CONTAMINANTS

    Science.gov (United States)

    Numerous sources of infectious disease causing microorganisms exist in watersheds and can impact recreational and drinking water quality. Organisms of concern include bacteria, viruses, and parasites. The watershed manager is challenged to limit human contact with pathogens, limi...

  10. Community-Based Integrated Watershed Management

    Institute of Scientific and Technical Information of China (English)

    Li Qianxiang; Kennedy N.logbokwe; Li Jiayong

    2005-01-01

    Community-based watershed management is different from the traditional natural resources management. Traditional natural resources management is a way from up to bottom, but the community-based watershed management is from bottom to up. This approach focused on the joining of different stakeholders in integrated watershed management, especially the participation of the community who has been ignored in the past. The purpose of this paper is to outline some of the important basic definitions, concepts and operational framework for initiating community-based watershed management projects and programs as well as some successes and practical challenges associated with the approach.

  11. Preliminary study on streamflow in forested and forest plantation experimental watersheds for water resources management

    International Nuclear Information System (INIS)

    The future management of forests for water resources will be more important as population growth and demand for water resources increases. In Malaysia many lowland forests has been earmarked for agricultural crops, and timber concessionaires has moved towards the hillier region of the country where specific and costly logging techniques are required. Hence, planting timber trees, as an industrial timber plantation is an alternative to meet timber demands. Very few research on evaluation of the impact of forest clearance on hydrology attributes from newly established industrial timber plantations have been conducted. In 1989, experimental catchment at Bukit Tarek Tambahan Experimental Watershed (BTEW) was initiated to study the effects of land conversion from forest to industrial timber plantation on hydrological parameters changes. The BTEW is located in Compartment 41, Bukit Tarek Tambahan F. R. at Kerling, Selangor Malaysia. The study site was a regenerated secondary forest logged in 1963. The study area is divided into catchment C1 (32.8 ha) and C3 (12.5 ha). Catchment C1, act as a control whereas C3 is the experimental catchments. Catchment C3 was logged in 1999 and early 2000 and subsequently a forest plantation was established. The forest area in Catchment C3 was clear felled, and the residuals trees were burnt. Buffer zone was not established near the riverbanks. The plantation was established in catchment C3 with Hopea odorata in early 2004. Streamflow was measured continuously using the 120 degree V-notch weir at the outlet of each watershed (Weir 1 and Weir 3). The short time interval rainfall was also monitored. In this working paper, the main objective to analyze the data is to examine rainfall-runoff response of forested catchments before establishment of forest plantation. The preliminary study on discharge after the C3 was clear-felled using single storm hydrograph analysis shows that during the storm event, the quick flow runoff dominate the

  12. User participation in watershed management and research:

    OpenAIRE

    Johnson, Nancy; Ravnborg, Helle Munk; Westermann, Olaf; Probst, Kirsten

    2001-01-01

    Many watershed development projects around the world have performed poorly because they failed to take into account the needs, constraints, and practices of local people. Participatory watershed management—in which users help to define problems, set priorities, select technologies and policies, and monitor and evaluate impacts—is expected to improve performance. User participation in watershed management raises new questions for watershed research, including how to design appropriate mechanis...

  13. 18 CFR 801.9 - Watershed management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation,...

  14. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development of…

  15. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    OpenAIRE

    Zeyuan Qiu

    2013-01-01

    Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs) have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMP...

  16. Diagnostic Systems Approach to Watershed Management

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L

    2001-02-23

    The water quality of discharge from the surface water system is ultimately dictated by land use and climate within the watershed. Water quality has vastly improved from point source reduction measures, yet, non-point source pollutants continue to rise. 30 to 40% of rivers still do not meet water quality standards for reasons that include impact from urban storm water runoff, agricultural and livestock runoff, and loss of wetlands. Regulating non-point source pollutants proves to be difficult since specific dischargers are difficult to identify. However, parameters such as dissolved organic carbon (DOC) limit the amounts of chlorination due to simultaneous disinfection by-product formation. The concept of watershed management has gained much ground over the years as a means to resolve non-point source problems. Under this management scheme stakeholders in a watershed collectively agree to the nature and extent of non-point sources, determine water quality causes using sound scientific approaches, and together develop and implement a corrective plan. However, the ''science'' of watershed management currently has several shortcomings according to a recent National Research Council report. The scientific component of watershed management depends on acquiring knowledge that links water quality sources with geographic regions. However, there is an observational gap in this knowledge. In particular, almost all the water quality data that exists at a utility are of high frequency collected at a single point over a long period of time. Water quality data for utility purposes are rarely collected over an entire watershed. The potential is high, however, for various utilities in a single watershed to share and integrate water quality data, but no regulatory incentives exist at this point. The only other available water quality data originate from special scientific studies. Unfortunately these data rarely have long-term records and are usually tailored to

  17. Water environmental planning and management at the watershed scale:A case study of Lake Qilu,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Water environmental planning and management has become essential for guiding the water pollution control activities.Past water pollution control activities have been site specific,with little thought on water quality standard reaching at the watershed scale.Based on the watershed approach,a seven-step methodological framework for water environmental planning and management was developed.The framework was applied to water environmental planning and management of the Lake Qilu watershed in Yunnan Province,China.Results show that the reduction amount of total nitrogen (TN) under the plan is 1,205 tons per year so that the target of environmental capacity can be reached in 2020.Compared with traditional methods,the framework has its prevalence and could be generalized to analogous watersheds.

  18. Realities of the Watershed Management Approach: The Manupali Watershed Experience

    OpenAIRE

    Rola, Agnes C.; Suminguit, Vel J.; Sumbalan, Antonio T.

    2004-01-01

    Local research in the Manupali watershed, with about 60% of its land area belonging to the upland municipality of Lantapan, Bukidnon, found that water quantity and quality declined due to soil erosion and domestic waste contamination. As population grows and agriculture becomes more integrated to the market, water deterioration is projected to worsen. Both economic and environmental sustainability then depend on the following management bodies: 1) the management of the Mt. Kitanglad range, th...

  19. Application of watershed modeling system (WMS) for integrated management of a watershed in Turkey.

    Science.gov (United States)

    Erturk, Ali; Gurel, Melike; Baloch, Mansoor Ahmed; Dikerler, Teoman; Varol, Evren; Akbulut, Neslihan; Tanik, Aysegul

    2006-01-01

    Watershed models, that enable the quantification of current and future pollution loading impacts, are essential tools to address the functions and conflicts faced in watershed planning and management. In this study, the Watershed Modeling System (WMS) version 7.1 was used for the delineation of boundaries of Koycegiz Lake-Dalyan Lagoon watershed located in the southwest of Turkey at the Mediterranean Sea coast. A Digital Elevation Model (DEM) was created for one of the major streams of the watershed, namely, Kargicak Creek by using WMS, and DEM data were further used to extract stream networks and delineate the watershed boundaries. Typical properties like drainage areas, characteristic length and slope of sub-drainage areas have also been determined to be used as model inputs in hydrological and diffuse pollution modeling. Besides, run-off hydrographs for the sub-drainages have been calculated using the Rational Method, which produces valuable data for calculating the time variable inflow and input pollution loads to be further utilized in the future water quality models of the Creek. Application of WMS in the study has shown that, it is capable to visualize the results in establishing watershed management strategies.

  20. Optimal allocation of watershed management cost among different water users

    Institute of Scientific and Technical Information of China (English)

    Wang Zanxin; Margaret M.Calderon

    2006-01-01

    The issue of water scarcity highlights the importance of watershed management. A sound watershed management should make all water users share the incurred cost. This study analyzes the optimal allocation of watershed management cost among different water users. As a consumable, water should be allocated to different users the amounts in which their marginal utilities (Mus) or marginal products (MPs) of water are equal. The value of Mus or MPs equals the water price that the watershed manager charges. When water is simultaneously used as consumable and non-consumable, the watershed manager produces the quantity of water in which the sum of Mus and/or MPs for the two types of uses equals the marginal cost of water production. Each water user should share the portion of watershed management cost in the percentage that his MU or MP accounts for the sum of Mus and/or MPs. Thus, the price of consumable water does not equal the marginal cost of water production even if there is no public good.

  1. Watershed management program. Final environmental impact statement

    International Nuclear Information System (INIS)

    Under the Northwest Power Act, BPA is responsible for mitigating the loss of fish and wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian tribes, state agencies property owners, private conservation groups, and Federal agencies. Future watershed management actions with potential environmental impacts are expected to include in-channel modifications and fish habitat enhancement structures; riparian restoration and other vegetation management techniques; agricultural management techniques for crop irrigation, animal facilities, and grazing; road, forest, urban area, and recreation management techniques; mining reclamation; and similar watershed conservation actions. BPA needs to ensure that individual watershed management projects are planned and carried out with appropriate consistency across projects, jurisdictions, and ecosystems, as well as over time

  2. SUSTAINABLE URBAN TECHNOLOGIES TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    Science.gov (United States)

    The National Risk Management Research Laboratory's Urban Watershed Management Branch researches, develops and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the...

  3. Realities of Watershed Management in the Philippines: The Case of the Iloilo-Maasin Watershed

    OpenAIRE

    Francisco, Herminia A.; Salas, Jessica C.

    2004-01-01

    The paper analyzed the presence or absence of elements needed to have an effective system of watershed management in the Maasin Watershed, Iloilo Province. IT concluded that: a) both the legal and institutional structures needed support watershed management effort are in place; b) there is evidence of a strong social capital existing in the upland and lowland communities; c) there is an adequate level of technical capital investment to sustainably manage the watershed; and d) there is suffici...

  4. Exploring an innovative watershed management approach: From feasibility to sustainability

    International Nuclear Information System (INIS)

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  5. Exploring an innovative watershed management approach: From feasibility to sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Said, A. [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Sehlke, G. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T. [Civil and Environmental Department, Utah State University, Logan, UT 84321 (United States); Glover, T. [Economics Department, Utah State University, Logan, UT 84321 (United States)

    2006-10-15

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  6. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.

    Science.gov (United States)

    Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó

    2016-02-16

    Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.

  7. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.

    Science.gov (United States)

    Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó

    2016-02-16

    Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices. PMID:26784287

  8. DEVELOPING A SERVICE-LEARNING PROGRAM FOR WATERSHED MANAGEMENT: Lessons from the Stroubles Creek Watershed Initiative

    OpenAIRE

    de Leon, Raymond F.

    2002-01-01

    There has been a growing interest and support by many state and local programs to address aquatic resource protection and restoration at a watershed level. The desire by many programs to implement watershed management programs has become more than just a need, rather a necessity to ensure suitable water resources. However, many challenges arise when developing and sustaining watershed programs. One such challenge is that watershed programs are resource intensive. These programs require si...

  9. Statewide Watershed Management Effects on Local Watershed Groups: A Comparison of Wisconsin, Kentucky, and Virginia

    OpenAIRE

    Gorder, Joel Steven

    2001-01-01

    While there are no federal mandates for states to establish watershed management frameworks, many states see the benefits of doing so and have established such approaches. The main advantage of statewide watershed management over traditional resource management is the cost effectiveness and the formation of integrated solutions to water quality problems. Statewide watershed frameworks provide a geographic focus and partnerships in order to develop comprehensive solutions...

  10. Managing Watersheds with WMOST (Watershed Management Optimization Support Tool)

    Science.gov (United States)

    EPA’s Green Infrastructure research program and EPA Region 1 recently released a new public-domain software application, WMOST, which supports community applications of Integrated Water Resources Management (IWRM) principles (http://cfpub.epa.gov/si/si_public_record_report....

  11. Technical review of managed underground storage of water study of the upper Catherine Creek watershed, Union County, northeastern Oregon

    Science.gov (United States)

    Snyder, Daniel T.

    2014-01-01

    Because of water diversions during summer, flow in Catherine Creek, a tributary to the Grande Ronde River in northeastern Oregon, is insufficient to sustain several aquatic species for which the stream is listed as critical habitat. A feasibility study for managed underground storage (MUS) in the upper Catherine Creek watershed in Union County, Oregon, was undertaken by Anderson Perry and Associates, Inc., to address the issue of low flows in summer. The results of the study were released as a report titled “Upper Catherine Creek Storage Feasibility Study for Grande Ronde Model Watershed,” which evaluated the possibility of diverting Catherine Creek streamflow during winter (when stream discharge is high), storing the water by infiltration or injection into an aquifer adjacent to the stream, and discharging the water back to the stream in summer to augment low flows. The method of MUS would be accomplished using either (1) aquifer storage and recovery (ASR) that allows for the injection of water that meets drinking-water-quality standards into an aquifer for later recovery and use, or (2) artificial recharge (AR) that involves the intentional addition of water diverted from another source to a groundwater reservoir. Concerns by resource managers that the actions taken to improve water availability for upper Catherine Creek be effective, cost-efficient, long-term, and based on sound analysis led the National Fish and Wildlife Foundation to request that the U.S. Geological Survey conduct an independent review and evaluation of the feasibility study. This report contains the results of that review. The primary objectives of the Anderson Perry and Associates study reviewed here included (1) identifying potentially fatal flaws with the concept of using AR and (or) ASR to augment the streamflow of Catherine Creek, (2) identifying potentially favorable locations for augmenting streamflow, (3) developing and evaluating alternatives for implementing AR and (or) ASR, and

  12. LEAST-COST WATERSHED MANAGEMENT SOLUTIONS: USING GIS DATA IN ECONOMIC MODELING OF A WATERSHED

    OpenAIRE

    Ancev, Tihomir; Stoecker, Arthur L.

    2003-01-01

    Phosphorus pollution from excessive litter application causes eutorphication of lakes in the Eucha-Spavinaw watershed in eastern Oklahoma and western Arkansas. Consequent algal blooms impair the taste of municipal water supply drawn from the watershed. The paper shows how GIS data based biophysical modeling can be used to derive spatially optimal, least-cost allocation of management practices to reduce phosphorus runoff in the watershed. Transportation activities were added to the model so th...

  13. WATERSHED MANAGEMENT – A MEANS OF SUSTAINABLE DEVELOPMENT - A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Mrs. Vidula Arun Swami,

    2011-03-01

    Full Text Available In this era of ever increasing water demands and rapidly depleting water resources coupled with overpopulation, it has become necessary to develop the means to recharge the ground water resources which arenecessary for future requirements. This paper presents one such case study where large amount of rainwater is directed to recharge ground water resources. Somwar Peth is a small village located at distance of 15 Kms. from Kolhapur city. Under Social Forestry Department, some measures have been adopted to recharge the ground water resources, ut it has been found that these measures don’t work with full apacity in some cases. Hence it is planned to take such engineering and biological measures which will direct this extra runoff to ground water storage. The most significant feature of the work is that if such technologies are developed and adopted at larger scale in rural areas, it will prevent thousands of villages of the country from water supply by tankers. Moreover this will also help us to tackle the issue of flood which mainly occurs due to excess runoff.

  14. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  15. Open Source GIS based integrated watershed management

    Science.gov (United States)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address

  16. Climate Change, Resource Management and Human Safety in the Watershed -The Nishinotani Stream Case Study, Kyushu; Japan-

    Science.gov (United States)

    Santiago-Fandiño, V.

    2012-12-01

    Climate change is occurring already and heavy rain appears to be one of the many indicators. This requires revisiting the integration of resource management and policy making particularly in mountainous areas exposed to flashfloods with the view of increasing human safety too. Devastating flooding took place in the main island of Kyushu due to heavy rain during the second week of July 2012 causing major devastation in various watershed, cities and towns. This event has been tagged as unprecedented although a similar one with records of 27 inches of rain occurred in 1953 as reported in the literature and newspapers of the time. Levels of 7 inches per hour and about 31 inches of raining 72 hours were recorded in certain parts of the island causing most of the rivers to burst their banks, and produce large landslides in Kumamoto, Oita, Fukushima and Saga Prefectures. One of the many impacted upper watersheds belong to the Hoshino-Yokoyamawa river in the Minou Renzan mountains in Yame City; Fukuoka Prefecture. The Yokoyamawa waters flow downstream within high concrete walls with sporadic containments while receiving various affluents along its course. This type of embankment's design is typical of steep river courses and large seasonal discharge fluctuations, which is typical of many rivers in Japan. Along the embankments there are forest areas mainly of Japanese cedar (Sugi), bamboo trees as well as rice growing terraces and farmer houses. The lack of proper environmental management, safe planning by the local municipalities and peoples awareness came to light in many areas after the floods resulting in large damage. A particular case in point was identified in the Nishinotani stream, which feeds the Yokoyamawa River where a large farmer's house and rice field was built directly facing the stream flow direction. Furthermore, the municipality built a small bridge over the stream to allow for traffic. Both proved to be most inappropriate and unwise decisions causing

  17. Watershed Management Policies and Institutional Mechanisms: A Critical Review

    OpenAIRE

    Javier, Jesus A.

    1999-01-01

    While most government efforts are directed toward watershed conservation, its management has remained challenging and complex. This short article argues for reconsideration of existing policies and regulations. It also pushes for a long-term comprehensive national strategy to address several watershed management concerns.

  18. A Spatially Explicit Decision Support System for Watershed-Scale Management of Salmon

    Directory of Open Access Journals (Sweden)

    Michael Maher

    2008-12-01

    Full Text Available Effective management for wide-ranging species must be conducted over vast spatial extents, such as whole watersheds and regions. Managers and decision makers must often consider results of multiple quantitative and qualitative models in developing these large-scale multispecies management strategies. We present a scenario-based decision support system to evaluate watershed-scale management plans for multiple species of Pacific salmon in the Lewis River watershed in southwestern Washington, USA. We identified six aquatic restoration management strategies either described in the literature or in common use for watershed recovery planning. For each of the six strategies, actions were identified and their effect on the landscape was estimated. In this way, we created six potential future landscapes, each estimating how the watershed might look under one of the management strategies. We controlled for cost across the six modeled strategies by creating simple economic estimates of the cost of each restoration or protection action and fixing the total allowable cost under each strategy. We then applied a suite of evaluation models to estimate watershed function and habitat condition and to predict biological response to those habitat conditions. The concurrent use of many types of models and our spatially explicit approach enables analysis of the trade-offs among various types of habitat improvements and also among improvements in different areas within the watershed. We report predictions of the quantity, quality, and distribution of aquatic habitat as well as predictions for multiple species of species-specific habitat capacity and survival rates that might result from each of the six management strategies. We use our results to develop four on-the-ground watershed management strategies given alternative social constraints and manager profiles. Our approach provides technical guidance in the study watershed by predicting future impacts of potential

  19. DECISION SUPPORT FRAMEWORK FOR STORMWATER MANAGEMENT IN URBAN WATERSHEDS

    Science.gov (United States)

    To assist stormwater management professionals in planning for best management practices (BMPs) implementation, the U.S. Environmental Protection Agency (USEPA) is developing a decision support system for placement of BMPs at strategic locations in urban watersheds. This tool wil...

  20. Advances in Watershed Management: Modeling, Monitoring, and Assessment

    OpenAIRE

    Benham, B. L.; Yagow, G.; Chaubey, I.; Douglas-Mankin, K. R.

    2011-01-01

    This article introduces a special collection of nine articles that address a wide range of topics all related to improving the application of watershed management planning. The articles are grouped into two broadly defined categories.. modeling applications, and monitoring and assessment. The modeling application articles focus on one of two widely used watershed-scale water quality modeling packages: HSPF or SWAT The HSPF article assesses the model's robustness when applied to watersheds acr...

  1. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    Directory of Open Access Journals (Sweden)

    Zeyuan Qiu

    2013-03-01

    Full Text Available Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMPs for nonpoint source pollution control include cover crops, prescribed grazing, livestock access control, contour farming, nutrient management, and conservation buffers. The selected BMPs for stormwater management are rain gardens, roadside ditch retrofitting, and detention basin retrofitting. Cost-effectiveness is measured by the reduction in pollutant loads in total suspended solids and total phosphorus relative to the total costs of implementing the selected BMPs. The pollution load reductions for these BMPs are based on the total pollutant loads in the watershed simulated by the Soil and Water Assessment Tool and achievable pollutant reduction rates. The total implementation cost includes BMP installation and maintenance costs. The assessment results indicate that the BMPs for the nonpoint source pollution control are generally much more cost-effective in improving water quality than the BMPs for stormwater management.

  2. Advancing the Guánica Bay (Puerto Rico) Watershed Management Plan

    Science.gov (United States)

    Consideration of stakeholder values in watershed planning and management is a necessity, but sufficiently eliciting, understanding, and organizing those values can be daunting. Many studies have demonstrated the usefulness of formal decision analysis to integrate expert knowledge...

  3. Watershed Conservation, Groundwater Management, and Adaptation to Climate Change

    Science.gov (United States)

    Roumasset, J.; Burnett, K.; Wada, C.

    2009-12-01

    Sustainability science is transdisciplinary, organizing research to deliver meaningful and practical contributions to critical issues of resource management. As yet, however, sustainability science has not been integrated with the policy sciences. We provide a step towards integration by providing an integrated model of optimal groundwater management and investment in watershed conservation. The joint optimization problem is solved under alternative forecasts of the changing rainfall distribution for the Koolau Watershed in Oahu, Hawaii. Optimal groundwater management is solved using a simplified one-dimensional model of the groundwater aquifer for analytical tractability. For a constant aquifer recharge, the model solves for the optimal trajectories of water extraction up to the desalination steady state and an incentive compatible pricing scheme. The Koolau Watershed is currently being degraded, however, by invasive plants such as Miconia calvescens and feral animals, especially wild pigs. Runoff and erosion have increased and groundwater recharge is at risk. The Koolau Partnership, a coalition of private owners, the State Department of Land and Natural Resources have proposed a $5 million (present value) conservation plan that promises to halt further losses of recharge. We compare this to the enhanced present value of the aquifer, showing the benefits are an order of magnitude greater than the costs. If conservation is done in the absence of efficient groundwater management, however, more than 40% of the potential benefits would be wasted by under-pricing and overconsumption. We require an estimate of the rainfall-generating distribution and how that distribution is changing over time. We obtain these from statistical downsizing of IPCC climate models. Despite the finding that global warming will increase precipitation for most of the world, the opposite is forecast for Hawaii. A University of Hawaii study finds that the most likely precipitation scenario is a

  4. Improvement in health and empowerment of families as a result of watershed management in a tribal area in India - a qualitative study

    OpenAIRE

    Nerkar, Sandeep S.; Tamhankar, Ashok J.; Johansson, Eva; Lundborg, Cecilia Stålsby

    2013-01-01

    Background Tribal people in India, as in other parts of the world, reside mostly in forests and/or hilly terrains. Water scarcity and health problems related to it are their prime concern. Watershed management can contribute to resolve their health related problems and can put them on a path of socio-economic development. Integrated management of land, water and biomass resources within a watershed, i.e. in an area or a region which contributes rainfall water to a river or lake, is referred t...

  5. Effective Factors on Rural People’s Non-Participation of Mahabad’s Dam Catchment in Watershed Management Projects

    Directory of Open Access Journals (Sweden)

    Soleiman Rasouliazar

    2015-03-01

    Full Text Available The purpose of this descriptive-correlation study was to investigate effective factors on rural people’s non-participation of Mahabad’s dam catchment in Watershed Management Projects. The research instrument was structural questionnaire with close-ended questions, which its validity confirmed by panel of academic staff and reliability of questionnaire was confirmed. The target population of this study consisted of all householders who lived in Mahabad’s dam catchment (N=2458 out of them, according to Cochran's formula 175 people were selected by using cluster sampling in a simple randomization method (n=175. The descriptive results showed lack of financial ability for participating in watershed management, lack of awareness about watershed management efficiency, the longterm rate of return on the investment attracted in watershed management were the main variables related to rural people’s non participation in watershed management. By applying Factor Analysis Explanatory Technique, effective factors on rural people’s non-participation in watershed management were reduced to five factors namely weakness of agricultural extension services, getting watershed management out of governmental control, no achieving success to implement another rural projects by government, and no considering local individuals or organization by government. These five factors expressed 84% of the total variance of the non-participation people on Mahabad’s dam catchment in watershed management projects. Therefore points to these factors could solve the barriers of non-participation people on Mahabad’s dam catchment in watershed management projects.

  6. Watershed management for water supply in developing world city

    Institute of Scientific and Technical Information of China (English)

    车越; 杨凯; 吕永鹏; 张宏伟; 吴健; 杨永川

    2009-01-01

    The water supply system in Shanghai provides about 2.55×109 m3/a,of which more than 50% is derived from the Upper Huangpu River Watershed. During the process of rapid urbanization and industrialization,the role of watershed management in sustaining clean drinking water quality at surface sources is emphasized in Shanghai. This paper proposes an integrated watershed management (IWM) approach in the context of the current pressures and problems of source water protection at the Upper Huangpu River Watershed in Shanghai. Based on data sets of land use,water quality and regional development,multi-criteria analysis and system dynamics techniques were used to evaluate effectiveness and improve decision-making of source water protection at a watershed scale. Different scenarios for potential source water quality changing from 2008 to 2020 were predicted,based on a systematic analysis and system dynamics modeling,a watershed management approach integrating land use prioritization and stakeholder involvement was designed to conserve the source water quality. The integrated watershed management (IWM) approach may help local authorities better understand and address the complex source water system,and develop improved safe drinking water strategies to better balance urban expansion and source water protection.

  7. Community participation and implementation of water management instruments in watersheds

    Directory of Open Access Journals (Sweden)

    Mario Alejandro Perez Rincon

    2013-04-01

    Full Text Available The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. The basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted its water resources policy in 1991. This paper examined the participatory process in basin committees of the São Paulo State and its implications in the implementation of the instruments of water management, based in a case study of the Tiete - Jacaré Watershed Committee, using questionnaires filled by the Committee’s members (2009 - 2011. Engagement and integration among the stakeholders was observed. Still, the interviews’ results have shown that the Committee’s statute should be reviewed due to differences between the Federal and the State legislation, mainly regarding the participating sectors and representatives. It also showed a need for more information about water resource issues in this basin and in the State of São Paulo, as a whole. At the same time, it is recommended that representativeness of the institutions within the water council management be improved and that the work produced by the technical chambers be recognised at the committee decision-making level.

  8. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Science.gov (United States)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been

  9. Area Study prior to Companion Modelling to Integrate Multiple Interests in Upper Watershed Management of Northern Thailand

    OpenAIRE

    Barnaud, Cécile; Trebuil, Guy; Dumrongrojwatthana, Pongchai; Marie, Jérôme

    2008-01-01

    International audience Ethnic minorities living in the highlands of northern Thailand have long been accused of degrading the upper watersheds of the country's major basins. In the nineties, the government reinforced his environmental policies and further restricted their access to farm and forest resources. In the meanwhile, the policy framework also favoured decentralization and public participation. This contradiction resulted in an increasing number of conflicts over land-use between l...

  10. Area Study Prior to Companion Modelling to Integrate Multiple Interests in Upper Watershed Management of Northern Thailand

    OpenAIRE

    Barnaud, Cecile; Trebuil, Guy; Dumrongrojwatthana, Pongchai; MARIE, Jerome

    2008-01-01

    Ethnic minorities living in the highlands of northern Thailand have long been accused of degrading the upper watersheds of the country's major basins. In the nineties, the Thai government reinforced his environmental policies and further restricted their access to farm and forest resources. In the meanwhile, the policy framework also favoured decentralization and public participation. This contradiction resulted in an increasing number of conflicts over land-use between local communities and ...

  11. Institutional Performance in Natural Resource Management: A Study of Institutional Interaction in the Implementation of Watershed Development in Andhra Pradesh, India

    OpenAIRE

    Jain, Dinesh; Gandhi, Vasant P.

    2012-01-01

    The effective management of natural resources is increasingly critical for growth and development in India. The research examines the nature and impact of the interaction between formal and informal institutional structures in the rural areas in the context of the implementation of the major national initiative of watershed development programmes in India. It uses the concepts of new institutional economics and management theories of governance. It develops a conceptual framework which can be...

  12. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    Science.gov (United States)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  13. Management and Cost of Watershed Reforestation: The Pantabangan and Magat

    OpenAIRE

    Galvez, Jose A.

    1984-01-01

    Experiences of the National Irrigation Administration in its reforestation of the Pantabangan and Magat watersheds are presented in this paper, as it identifies the basic requirements of a successful reforestation program for denuded areas. The problems encountered in the implementation of the Watershed Management and Erosion Control Projects as well as the factors that significantly affected the success or failure of the project are identified.

  14. Social Safeguards for REDD+ in Mexico’s Watershed Management Program

    OpenAIRE

    Garduño Diaz, Philippe Youssef

    2012-01-01

    Case studies on environmental governance are essential to improve comprehension on howto implement international agreements. This study focuses on seven social safeguards relevant toREDD+. The existence of these social safeguards is examined in Mexico’s watershed managementprogram in La Sierra Madre and La Costa of Chiapas. The watershed management program is anotherPayment for Ecosystem Services (PES) scheme similar to REDD+. Questionnaires and interviews wereused to conduct primary research...

  15. Developing Participatory Models of Watershed Management in the Sugar Creek Watershed (Ohio, USA

    Directory of Open Access Journals (Sweden)

    Jason Shaw Parker

    2009-02-01

    Full Text Available The US Environmental Protection Agency (USEPA has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershed in the State of Ohio. This article addresses an alternative approach to watershed management and that emphasises a partnership of farmers and researchers, using community participation in the Sugar Creek to establish a time-frame with goals for water quality remediation. Of interest are the collaborative efforts of a team of farmers, researchers, and agents from multiple levels of government who established this participatory, rather than expert-driven, programme. This new approach created an innovative and adaptive model of non-point source pollution remediation, incorporating strategies to address farmer needs and household decision making, while accounting for local and regional farm structures. In addition, this model has been adapted for point source pollution remediation that creates collaboration among local farmers and a discharge-permitted business that involves nutrient trading.

  16. Toolkit of Available EPA Green Infrastructure Modeling Software: Watershed Management Optimization Support Tool (WMOST)

    Science.gov (United States)

    Watershed Management Optimization Support Tool (WMOST) is a software application designed tofacilitate integrated water resources management across wet and dry climate regions. It allows waterresources managers and planners to screen a wide range of practices across their watersh...

  17. Integrating socio-economic and biophysical data to enhance watershed management and planning

    Science.gov (United States)

    Pirani, Farshad Jalili; Mousavi, Seyed Alireza

    2016-09-01

    Sustainability has always been considered as one of the main aspects of watershed management plans. In many developing countries, watershed management practices and planning are usually performed by integrating biophysical layers, and other existing layers which cannot be identified as geographic layers are ignored. We introduce an approach to consider some socioeconomic parameters which are important for watershed management decisions. Ganj basin in Chaharmahal-Bakhtiari Province was selected as the case study area, which includes three traditional sanctums: Ganj, Shiremard and Gerdabe Olya. Socioeconomic data including net agricultural income, net ranching income, population and household number, literacy rate, unemployment rate, population growth rate and active population were mapped within traditional sanctums and then were integrated into other biophysical layers. After overlaying and processing these data to determine management units, different quantitative and qualitative approaches were adopted to achieve a practical framework for watershed management planning and relevant plans for homogeneous units were afterwards proposed. Comparing the results with current plans, the area of allocated lands to different proposed operations considering both qualitative and quantitative approaches were the same in many cases and there was a meaningful difference with current plans; e.g., 3820 ha of lands are currently managed under an enclosure plan, while qualitative and quantitative approaches in this study suggest 1388 and 1428 ha to be allocated to this operation type, respectively. Findings show that despite the ambiguities and complexities, different techniques could be adopted to incorporate socioeconomic conditions in watershed management plans. This introductory approach will help to enhance watershed management decisions with more attention to societal background and economic conditions, which will presumably motivate local communities to participate in

  18. Estimating Plot Scale Impacts on Watershed Scale Management

    Science.gov (United States)

    Shope, C. L.; Fleckenstein, J. H.; Tenhunen, J. D.; Peiffer, S.; Huwe, B.

    2010-12-01

    Over recent decades, land and resource use as well as climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, agricultural and forest products). The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, biology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a catchment of South Korea. A variety of models (Erosion-3D, HBV-Light, VS2DH, Hydrus, PIXGRO, DNDC, and Hydrogeosphere) are being used to simulate plot and field scale measurements within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. The experimental field data throughout the catchment was integrated with the spatially-distributed SWAT2005 model. Typically, macroscopic homogeneity and average effective model parameters are assumed when upscaling local-scale heterogeneous measurements to the watershed. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources.

  19. Bridging the gap between uncertainty analysis for complex watershed models and decision-making for watershed-scale water management

    Science.gov (United States)

    Zheng, Y.; Han, F.; Wu, B.

    2013-12-01

    Process-based, spatially distributed and dynamic models provide desirable resolutions to watershed-scale water management. However, their reliability in solving real management problems has been seriously questioned, since the model simulation usually involves significant uncertainty with complicated origins. Uncertainty analysis (UA) for complex hydrological models has been a hot topic in the past decade, and a variety of UA approaches have been developed, but mostly in a theoretical setting. Whether and how a UA could benefit real management decisions remains to be critical questions. We have conducted a series of studies to investigate the applicability of classic approaches, such as GLUE and Markov Chain Monte Carlo (MCMC) methods, in real management settings, unravel the difficulties encountered by such methods, and tailor the methods to better serve the management. Frameworks and new algorithms, such as Probabilistic Collocation Method (PCM)-based approaches, were also proposed for specific management issues. This presentation summarize our past and ongoing studies on the role of UA in real water management. Challenges and potential strategies to bridge the gap between UA for complex models and decision-making for management will be discussed. Future directions for the research in this field will also be suggested. Two common water management settings were examined. One is the Total Maximum Daily Loads (TMDLs) management for surface water quality protection. The other is integrated water resources management for watershed sustainability. For the first setting, nutrients and pesticides TMDLs in the Newport Bay Watershed (Orange Country, California, USA) were discussed. It is a highly urbanized region with a semi-arid Mediterranean climate, typical of the western U.S. For the second setting, the water resources management in the Zhangye Basin (the midstream part of Heihe Baisn, China), where the famous 'Silk Road' came through, was investigated. The Zhangye

  20. Non point source pollution modelling in the watershed managed by Integrated Conctructed Wetlands: A GIS approach.

    OpenAIRE

    Vyavahare, Nilesh

    2008-01-01

    The non-point source pollution has been recognised as main cause of eutrophication in Ireland (EPA Ireland, 2001). Integrated Constructed Wetland (ICW) is a management practice adopted in Annestown stream watershed, located in the south county of Waterford in Ireland, used to cleanse farmyard runoff. Present study forms the annual pollution budget for the Annestown stream watershed. The amount of pollution from non-point sources flowing into the stream was simulated by using GIS techniques; u...

  1. An Integrated Mobile Application to Improve the Watershed Management in Taiwan

    Science.gov (United States)

    Chou, T. Y.; Chen, M. H.; Lee, C. Y.

    2015-12-01

    This study aims to focus on the application of information technology on the reservoir watershed management. For the civil and commercial water usage, reservoirs and its upstream plays a significant role due to water scarcity and inequality, especially in Taiwan. Due to the progress of information technology, apply it can improve the efficiency and accuracy of daily affairs significantly which already proved by previous researches. Taipei Water Resource District (TWRD) is selected as study area for this study, it is the first reservoir watershed which authorized as special protection district by urban planning act. This study has designed a framework of mobile application, which addressed three types of public affairs relate to watershed management, includes building management, illegal land-use investigation, and a dashboard of real time stream information. This mobile application integrated a dis-connected map and interactive interface to collect, record and calculate field information which helps the authority manage the public affairs more efficiency.

  2. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management

    Science.gov (United States)

    Smucker, Nathan J.; Kuhn, Anne; Charpentier, Michael A.; Cruz-Quinones, Carlos J.; Elonen, Colleen M.; Whorley, Sarah B.; Jicha, Terri M.; Serbst, Jonathan R.; Hill, Brian H.; Wehr, John D.

    2016-03-01

    Watershed management and policies affecting downstream ecosystems benefit from identifying relationships between land cover and water quality. However, different data sources can create dissimilarities in land cover estimates and models that characterize ecosystem responses. We used a spatially balanced stream study (1) to effectively sample development and urban stressor gradients while representing the extent of a large coastal watershed (>4400 km2), (2) to document differences between estimates of watershed land cover using 30-m resolution national land cover database (NLCD) and create monitoring programs and indicators responsive to anthropogenic impacts. Differences between land cover datasets could affect resource protection due to misguided management targets, watershed development and conservation practices, or water quality criteria.

  3. Institutional Development to Build a Succesfull Local Collective Action in Forest Management from Arau Watershed Unit

    OpenAIRE

    Nursidah Nursidah; Bramasto Nugroho; Dudung Darusman; Omo Rusdiana; Yuzirwan Rasyid

    2012-01-01

    The study was aimed to build institution model of sustainable forest management, through analysis of action arena, community attributes and forest management rules in Arau Watershed Unit Management Area.  To achieve sustainable forest management, recognition and incorporation of local institutions in forest policy formulation is very important because it had great potential for collective action and had characteristics of common pools resources sustainable management needed.  To achieve a suc...

  4. Watershed hydrological responses to changes in land use and land cover, and management practices at Hare watershed, Ethiopia

    OpenAIRE

    Mengistu, Kassa Tadele

    2009-01-01

    This study investigates hydrological responses to changes in land use, land cover and management practices at Hare River watershed, Southern Rift Valley Lakes Basin, Ethiopia. It addresses methods that are required to better characterize impacts of land use and cover and climate change scenarios and understand the upstream-downstream linkages with respect to irrigation water allocation. Understanding how the changes in land use and cover influence streamflow and subsequently optimization of a...

  5. New trends in watershed management and protection

    International Nuclear Information System (INIS)

    I would like to present some new environmental technologies by shoving restoration projects that are currently being implemented in the eastern United States that require this co-operation for successful implementation. The environmental technologies that will be discussed include the use of existing or constructed wetlands to treat surface and groundwater impacted in contaminants from various sources. The main goal of these type projects are to provide a low-cost and effective treatment for existing pollution problems. Many of these projects are initiated by civic associations (or NGOs) that wanted to improve the state of environment in their area. Because everyone has the responsibility to a clean environment in which they live, NGOs, state government, business, and local citizens, and local citizens worked closely together to solve problems in their watersheds. These projects are only examples of what is being done in the United States. However, I would like also to discuss what projects exist in eastern Slovakia, and others that could be started in Slovakia that improve relationships between MGOs and the state and local governmental decision-making process, with the ultimate goal to improve water quality in the Danube watershed in the future. There are severe environmental technologies that can be applied to improve the water quality of rivers throughout the Danube watershed, such as treatment of wastewater using wetland vegetation, and treatment of acid-mine drainage. In April 1996, NGO People and Water in co-operation with the village governments of the Upper Torysa River watershed started the project Villages for the 3 rd millennium in the Carpathian Euro-Region. One of the main goals of this project is to introduce new environmental technologies in the rural communities of the Upper Torysa River area. Since people trust their eyes than their ears. It is important to initiate practical, pilot projects to convince citizens and governments that these low

  6. Can Integrated Watershed Management Contribute to Improvement of Public Health? A Cross-Sectional Study from Hilly Tribal Villages in India

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2015-02-01

    Full Text Available Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional study was performed in six purposively selected tribal villages located in Maharashtra, India. In three of the villages IWMP had been implemented (IWMV, but not in the other three (NWMV. The head of each household in all villages was interviewed using a questionnaire covering various public health aspects relevant to the villages. A total of 286/313 (92% households participated in the study. Compared to NWMV, respondents in IWMV experienced significantly lesser prolonged water scarcity (OR = 0.39, had greater number of toilets (OR = 6.95, cultivated more variety of crops (OR = 2.61, had lower migration (OR = 0.59, higher number of girls continuing education (OR = 3.04 and better utilized modern healthcare facilities in the antenatal, natal and postnatal period (OR = 3.75, 2.57, 4.88 respectively. Thus, tribal people in IWMP-implemented villages reported advantages in many aspects of public health.

  7. URBAN WATERSHED STUDIES IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Cristiano Poleto

    2007-12-01

    Full Text Available One of the greatest problems observed in Brazilian urban watersheds are concerned to the amount of solid residues, domestic sewerage and sediments that are disposed in the rivers and streams that drain those areas. This project aims to present these problems through a study of case taken in an urban watershed in Porto Alegre city, Southern Brazil. For this study, different procedures were used, such as field surveys, interviews with the inhabitants, satellite images, sediment samples, flow measures and morphology assessment of part of the local fluvial system to check the degree of instability of the channel. In 2005, it was verified that 42.57% of the watershed was impermeable, considering the paved streets, the residential and commercial buildings and stone pavements. As there was no sewer treatment, most of this sewerage was directly disposed into the stream and the TOC has reached 20% (m/m. Moreover, the occupation of riparian areas, a great amount of soil exposed in the watershed, the nonpaved streets and a great volume of solid residues were causing the instability in the channel, silting the stream bed. The metals (Zn, Pb and Cr selected for this study are most frequently found in high concentrations in urban areas. The results suggest the occurrence of a high enrichment of the fluvial sediment by these metals. The concentrations of these elements vary temporally during storms due to the input of impervious area runoff containing high concentration of elements associated to vehicular traffic and other anthropogenic activities. Then, it is possible to conclude that the contamination of the urban watershed is reflected in the results obtained in the fluvial suspended sediments.

  8. Vertical Collective Action: Addressing Vertical Asymmetries in Watershed Management

    OpenAIRE

    Cárdenas, Juan-Camilo; Rodriguez, Luz Angela; Johnson, Nancy

    2015-01-01

    Watersheds and irrigation systems have the characteristic of connecting people vertically by water flows. The location of users along these systems defines their role in the provision and appropriation of water which adds complexity to the potential for cooperation. Verticality thus imposes a challenge to collective action. This paper presents the results of field experiments conducted in four watersheds of Colombia (South America) and Kenya (East Africa) to study the role that location plays...

  9. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    Science.gov (United States)

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult.

  10. Economic Tools for Managing Nitrogen in Coastal Watersheds

    Science.gov (United States)

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to...

  11. Community participation and implementation of water management instruments in watersheds

    OpenAIRE

    Mario Alejandro Perez Rincon; Mariza Guimarães Prota; Tadeu Fabricio Malheiros

    2013-01-01

    The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. The basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted ...

  12. Economics of Integrated Watershed Management in the Presence of a Dam

    OpenAIRE

    Yoon Lee; Taeyeon Yoon; Farhed Shah

    2009-01-01

    A dynamic optimization framework is used to analyze integrated watershed management and suggest appropriate policies. Soil conservation, reservoir level sediment release, downstream water allocation and water quality are subject to control. Application of the model to the Aswan Dam watershed illustrates the need for international cooperation to manage shared watersheds.

  13. To manage inland fisheries is to manage at the social-ecological watershed scale.

    Science.gov (United States)

    Nguyen, Vivian M; Lynch, Abigail J; Young, Nathan; Cowx, Ian G; Beard, T Douglas; Taylor, William W; Cooke, Steven J

    2016-10-01

    Approaches to managing inland fisheries vary between systems and regions but are often based on large-scale marine fisheries principles and thus limited and outdated. Rarely do they adopt holistic approaches that consider the complex interplay among humans, fish, and the environment. We argue that there is an urgent need for a shift in inland fisheries management towards holistic and transdisciplinary approaches that embrace the principles of social-ecological systems at the watershed scale. The interconnectedness of inland fisheries with their associated watershed (biotic, abiotic, and humans) make them extremely complex and challenging to manage and protect. For this reason, the watershed is a logical management unit. To assist management at this scale, we propose a framework that integrates disparate concepts and management paradigms to facilitate inland fisheries management and sustainability. We contend that inland fisheries need to be managed as social-ecological watershed system (SEWS). The framework supports watershed-scale and transboundary governance to manage inland fisheries, and transdisciplinary projects and teams to ensure relevant and applicable monitoring and research. We discuss concepts of social-ecological feedback and interactions of multiple stressors and factors within/between the social-ecological systems. Moreover, we emphasize that management, monitoring, and research on inland fisheries at the watershed scale are needed to ensure long-term sustainable and resilient fisheries.

  14. Watershed-based natural research management: Lessons from projects in the Andean region

    OpenAIRE

    Sowell, A.R.

    2009-01-01

    This Undergraduate Honors Thesis focuses on how different factors affect the success of a watershed management project and lessons learned from projects in the Andean Region. LTRA-3 (Watershed-based NRM for Small-scale Agriculture)

  15. Manage Hydrologic Fluxes Instead of Land Cover in Watershed Services Projects

    Science.gov (United States)

    Brauman, K. A.; Ponette-González, A. G.; Marin-Spiotta, E.; Farley, K. A.; Weathers, K. C.; Young, K. R.; Curran, L. M.

    2014-12-01

    Payments for Watershed Services (PWS), Water Funds, and other payment schemes intended to increase the delivery of hydrologic ecosystem services have great potential for ensuring water resources for downstream beneficiaries while improving livelihoods for upstream residents. However, it is often ambiguous which land-management options should be promoted to enhance watershed service delivery. In many watershed investment programs, specific land covers are promoted as proxies for water service delivery. This approach is based on assumed relationships between land cover and water service outcomes. When land cover does not sufficiently describe ecosystem characteristics that affect water flow, however, desired water services may not be delivered. The use of land cover proxies is especially problematic for watershed investments in the tropics, where many projects are located, because these proxies rely on generalizations about landscape hydrology established for temperate zones. Based on an extensive review of hydrologic fluxes in the high-elevation tropics, we argue that direct management of hydrologic fluxes is a good design for achieving quantifiable results. We use case studies from sites in the Caribbean and Latin American tropics to illustrate how designers of watershed payment projects can manage hydrologic fluxes. To do so, projects must explicitly articulate the water service of interest based on the specific social setting. Projects must also explicitly account for the particulars of the geographic setting. Finally, outcomes must be assessed relative to water services delivered under an alternative land use or land cover scenario.

  16. Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: a case study in Namazgah reservoir.

    Science.gov (United States)

    Üçler, N; Engin, G Onkal; Köçken, H G; Öncel, M S

    2015-05-01

    In this study, game theory and fuzzy programming approaches were used to balance economic and environmental impacts in the Namazgah reservoir, Turkey. The main goals identified were to maximize economic benefits of land use and to protect water quality of reservoir and land resources. Total phosphorous load (kg ha(-1) year(-1)) and economic income (USD ha(-1) year(-1)) from land use were determined as environmental value and economic value, respectively. The surface area of existing land use types, which are grouped under 10 headings according to the investigations on the watershed area, and the constraint values for the watershed were calculated using aerial photos, master plans, and basin slope map. The results of fuzzy programming approach were found to be very close to the results of the game theory model. It was concluded that the amount of fertilizer used in the current situation presents a danger to the reservoir and, therefore, unnecessary fertilizer use should be prevented. Additionally, nuts, fruit, and vegetable cultivation, instead of wheat and corn cultivation, was found to be more suitable due to their high economic income and low total phosphorus (TP) load. Apart from agricultural activities, livestock farming should also be considered in the area as a second source of income. It is believed that the results obtained in this study will help decision makers to identify possible problems of the watershed.

  17. Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: a case study in Namazgah reservoir.

    Science.gov (United States)

    Üçler, N; Engin, G Onkal; Köçken, H G; Öncel, M S

    2015-05-01

    In this study, game theory and fuzzy programming approaches were used to balance economic and environmental impacts in the Namazgah reservoir, Turkey. The main goals identified were to maximize economic benefits of land use and to protect water quality of reservoir and land resources. Total phosphorous load (kg ha(-1) year(-1)) and economic income (USD ha(-1) year(-1)) from land use were determined as environmental value and economic value, respectively. The surface area of existing land use types, which are grouped under 10 headings according to the investigations on the watershed area, and the constraint values for the watershed were calculated using aerial photos, master plans, and basin slope map. The results of fuzzy programming approach were found to be very close to the results of the game theory model. It was concluded that the amount of fertilizer used in the current situation presents a danger to the reservoir and, therefore, unnecessary fertilizer use should be prevented. Additionally, nuts, fruit, and vegetable cultivation, instead of wheat and corn cultivation, was found to be more suitable due to their high economic income and low total phosphorus (TP) load. Apart from agricultural activities, livestock farming should also be considered in the area as a second source of income. It is believed that the results obtained in this study will help decision makers to identify possible problems of the watershed. PMID:25687606

  18. Water Quality Management in Utah Mountain Watersheds

    OpenAIRE

    Kimball, Keith R.; Middlebrooks, E. Joe

    1986-01-01

    What Quality Management in Utah Mountain Streams: Several years of thorough monitoring of water quality parameters in Little Cottonwood Creek in Salt Lake County, Utah, measured the natural levels of the major water constituents, spotted significant (largely nonpoint) pollution sources, identified the pollutants deserving primary attention, and suggested the approaches to land and water management for pollution co...

  19. Nitrogen management challenges in major watersheds of South America

    International Nuclear Information System (INIS)

    Urbanization and land use changes alter the nitrogen (N) cycle, with critical consequences for continental freshwater resources, coastal zones, and human health. Sewage and poor watershed management lead to impoverishment of inland water resources and degradation of coastal zones. Here we review the N contents of rivers of the three most important watersheds in South America: the Amazon, La Plata, and Orinoco basins. To evaluate potential impacts on coastal zones, we also present data on small- and medium-sized Venezuelan watersheds that drain into the Caribbean Sea and are impacted by anthropogenic activities. Median concentrations of total dissolved nitrogen (TDN) were 325 μg L−1 and 275 μg L−1 in the Amazon and Orinoco basins, respectively, increasing to nearly 850 μg L−1 in La Plata Basin rivers and 2000 μg L−1 in small northern Venezuelan watersheds. The median TDN yield of Amazon Basin rivers (approximately 4 kg ha−1 yr−1) was larger than TDN yields of undisturbed rivers of the La Plata and Orinoco basins; however, TDN yields of polluted rivers were much higher than those of the Amazon and Orinoco rivers. Organic matter loads from natural and anthropogenic sources in rivers of South America strongly influence the N dynamics of this region. (letter)

  20. Linking Farmer, Forest and Watershed: Agricultural Systems and Natural Resources Management Along the Upper Njoro River, Kenya

    OpenAIRE

    Krupnik, Timothy J.; Jenkins, Marion W.

    2006-01-01

    This paper describes subsistence farmers’ agricultural and natural resource management techniques and perceptions in the upper catchment of the River Njoro, Kenya and explores their implications for further research and action by watershed managers and policy makers. In East Africa and elsewhere in developing countries, small-scale poor farming households often form a critical group in the link between upland natural resource conditions and watershed services. A small-scale pilot study of a...

  1. Fuzzy Multicriteria Decision Analysis for Adaptive Watershed Management

    Science.gov (United States)

    Chang, N.

    2006-12-01

    The dramatic changes of societal complexity due to intensive interactions among agricultural, industrial, and municipal sectors have resulted in acute issues of water resources redistribution and water quality management in many river basins. Given the fact that integrated watershed management is more a political and societal than a technical challenge, there is a need for developing a compelling method leading to justify a water-based land use program in some critical regions. Adaptive watershed management is viewed as an indispensable tool nowadays for providing step-wise constructive decision support that is concerned with all related aspects of the water consumption cycle and those facilities affecting water quality and quantity temporally and spatially. Yet the greatest challenge that decision makers face today is to consider how to leverage ambiguity, paradox, and uncertainty to their competitive advantage of management policy quantitatively. This paper explores a fuzzy multicriteria evaluation method for water resources redistribution and subsequent water quality management with respect to a multipurpose channel-reservoir system--the Tseng- Wen River Basin, South Taiwan. Four fuzzy operators tailored for this fuzzy multicriteria decision analysis depict greater flexibility in representing the complexity of various possible trade-offs among management alternatives constrained by physical, economic, and technical factors essential for adaptive watershed management. The management strategies derived may enable decision makers to integrate a vast number of internal weirs, water intakes, reservoirs, drainage ditches, transfer pipelines, and wastewater treatment facilities within the basin and bring up the permitting issue for transboundary diversion from a neighboring river basin. Experience gained indicates that the use of different types of fuzzy operators is highly instructive, which also provide unique guidance collectively for achieving the overarching goals

  2. Identifying Cost-Effective Water Resources Management Strategies: Watershed Management Optimization Support Tool (WMOST)

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a public-domain software application designed to aid decision makers with integrated water resources management. The tool allows water resource managers and planners to screen a wide-range of management practices for c...

  3. Floristic study of Zangelanlo watershed (Khorassan, Iran)

    OpenAIRE

    Mohammad Sadegh Amiri; Parham Jabbarzadeh

    2011-01-01

    Zangelanlo watershed is located in Northeast of Iran, 28 km of Southeast of Daregaz between 37º13´ to 37º27´ north latitude and 59º8´ to 59º35´ east longitude. The surface area of the region is approximately 2482 ha. This area is mountainous with mean annual precipitation of about 412.7 mm. The mean maximum temperature is 20.8ºC in August and minimum temperature is -9ºC in January. The flora of the area was studied and life forms and chorotypes of the plants were identified. In this research,...

  4. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    Science.gov (United States)

    2011-11-04

    ... Cooperative Watershed Management Program whose goals are to improve water quality and ecological resilience... within the relevant watershed; and Otherwise meet the definition of a ``watershed group'' as described in... fulfilling the goals of the program by collaboratively improving water quality and ecological resilience,...

  5. Development of a Prototype Web-Based Decision Support System for Watershed Management

    Directory of Open Access Journals (Sweden)

    Dejian Zhang

    2015-02-01

    Full Text Available Using distributed hydrological models to evaluate the effectiveness of reducing non-point source pollution by applying best management practices (BMPs is an important support to decision making for watershed management. However, complex interfaces and time-consuming simulations of the models have largely hindered the applications of these models. We designed and developed a prototype web-based decision support system for watershed management (DSS-WMRJ, which is user friendly and supports quasi-real-time decision making. DSS-WMRJ is based on integrating an open-source Web-based Geographical Information Systems (Web GIS tool (Geoserver, a modeling component (SWAT, Soil and Water Assessment Tool, a cloud computing platform (Hadoop and other open source components and libraries. In addition, a private cloud is used in an innovative manner to parallelize model simulations, which are time consuming and computationally costly. Then, the prototype DSS-WMRJ was tested with a case study. Successful implementation and testing of the prototype DSS-WMRJ lay a good foundation to develop DSS-WMRJ into a fully-fledged tool for watershed management. DSS-WMRJ can be easily customized for use in other watersheds and is valuable for constructing other environmental decision support systems, because of its performance, flexibility, scalability and economy.

  6. Participatory integrated watershed management in the north-western highlands of Rwanda

    OpenAIRE

    Kagabo, M.D.

    2013-01-01

    This thesis is the result of assessments on the extent of existing resource use and management practices using a Participatory Integrated Watershed Management (PIWM) as a viable approach to promote best soil water conservation (SWC) measures towards more sustainable land use. The study was conducted in two contrasting agro-ecological zones of the north-western highlands of Rwanda, namely; Gataraga and Rwerere in the framework of “Agasozi ndatwa”  referred to as PIWM. "Ag...

  7. An index-based robust decision making framework for watershed management in a changing climate.

    Science.gov (United States)

    Kim, Yeonjoo; Chung, Eun-Sung

    2014-03-01

    This study developed an index-based robust decision making framework for watershed management dealing with water quantity and quality issues in a changing climate. It consists of two parts of management alternative development and analysis. The first part for alternative development consists of six steps: 1) to understand the watershed components and process using HSPF model, 2) to identify the spatial vulnerability ranking using two indices: potential streamflow depletion (PSD) and potential water quality deterioration (PWQD), 3) to quantify the residents' preferences on water management demands and calculate the watershed evaluation index which is the weighted combinations of PSD and PWQD, 4) to set the quantitative targets for water quantity and quality, 5) to develop a list of feasible alternatives and 6) to eliminate the unacceptable alternatives. The second part for alternative analysis has three steps: 7) to analyze all selected alternatives with a hydrologic simulation model considering various climate change scenarios, 8) to quantify the alternative evaluation index including social and hydrologic criteria with utilizing multi-criteria decision analysis methods and 9) to prioritize all options based on a minimax regret strategy for robust decision. This framework considers the uncertainty inherent in climate models and climate change scenarios with utilizing the minimax regret strategy, a decision making strategy under deep uncertainty and thus this procedure derives the robust prioritization based on the multiple utilities of alternatives from various scenarios. In this study, the proposed procedure was applied to the Korean urban watershed, which has suffered from streamflow depletion and water quality deterioration. Our application shows that the framework provides a useful watershed management tool for incorporating quantitative and qualitative information into the evaluation of various policies with regard to water resource planning and management.

  8. South Fork Iowa River watershed selected for a national water-quality study

    Science.gov (United States)

    Erwin, M.L.; Kalkhoff, Stephen

    2005-01-01

    The U.S. Geological Survey (USGS) is studying seven watersheds across the Nation to better understand how natural factors and agricultural management practices (AMPs) affect the transport of water and chemicals. Natural factors include climate and landscape (soil type, topography, geology), and AMPs include practices related to tillage, irrigation, and chemical application. The study approach is similar in each watershed so that we can compare and contrast the results and more accurately predict conditions in other agricultural settings.

  9. Research article: Watershed management councils and scientific models: Using diffusion literature to explain adoption

    Science.gov (United States)

    King, M.D.; Burkardt, N.; Clark, B.T.

    2006-01-01

    Recent literature on the diffusion of innovations concentrates either specifically on public adoption of policy, where social or environmental conditions are the dependent variables for adoption, or on private adoption of an innovation, where emphasis is placed on the characteristics of the innovation itself. This article uses both the policy diffusion literature and the diffusion of innovation literature to assess watershed management councils' decisions to adopt, or not adopt, scientific models. Watershed management councils are a relevant case study because they possess both public and private attributes. We report on a survey of councils in the United States that was conducted to determine the criteria used when selecting scientific models for studying watershed conditions. We found that specific variables from each body of literature play a role in explaining the choice to adopt scientific models by these quasi-public organizations. The diffusion of innovation literature contributes to an understanding of how organizations select models by confirming the importance of a model's ability to provide better data. Variables from the policy diffusion literature showed that watershed management councils that employ consultants are more likely to use scientific models. We found a gap between those who create scientific models and those who use these models. We recommend shrinking this gap through more communication between these actors and advancing the need for developers to provide more technical assistance.

  10. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds

    Science.gov (United States)

    Although defined hydrologically as a drainage basin, watersheds are systems that physically link the individual social and ecological attributes that comprise them. Hence the structure, function, and feedback systems of watersheds are dependent on interactions between these soci...

  11. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Adham

    2015-07-01

    Full Text Available The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Results indicated that the weighted curve number varies from 82 to 85 and monthly runoff 23% to 30% among the five watersheds. Soil erodibility varies from 0.038 to 0.06 ton/ha (MJ.mm/ha/h. Linau-Telok-Local Alluvium, Malacca-Munchong, Munchong-Malacca-Serdang and Malacca-Munchong-Tavy are the dominant soil series of this region having the average soil erodibility of about 0.042 ton/ha (MJ.mm/ha/h. The main focus of this study is to provide the information of soil erodibility to reduce the water pollution of a watershed.

  12. EFFECTS OF WATERSHED MANAGEMENT ON THE REDUCTION OF SEDIMENT AND RUNOFF IN THE JIALING RIVER,CHINA

    Institute of Scientific and Technical Information of China (English)

    Shixiong HU; Zhaoyin WANG; Gang WANG; Xiaoying LIU

    2004-01-01

    The Three Gorges Project is one of the largest hydro-projects in the world and has drawn many debates inside China and abroad.The major concern is that sediment load from the river basin may eventually fail the functions of the project for flood control and power generation.To reduce sedimentation in the reservoir,watershed management has been adopted.However,there is limited information regarding the effectiveness of various control measures such as terracing and afforestation on a watershed scale.The Jialing River,a main tributary of the Yangtze River,contributes approximately 25% of the total sediment load in the main river but only represents 8% of the whole basin area.There have been various land use patterns and extensive human activities for thousands of years in the Jialing River watershed.Based on analysis of the major factors affecting erosion in the Jialing River watershed,the main watershed management strategies (afforestation,farming and engineering practice) are illustrated,and their effects on the reduction of sediment and runoff are studied in detail.The sediment budget of the watershed shows that 1/3 of the sediment yield is trapped by the erosion control measures (afforestation and farming) on the slope,1/3 is trapped by the reservoirs,ponds and dams within the watershed,and only about 1/3 is transported into the Yangtze River,which will affect the Three Gorges Project.

  13. Urban Stormwater Temperature Surges: A Central US Watershed Study

    Directory of Open Access Journals (Sweden)

    Sean J. Zeiger

    2015-10-01

    Full Text Available Impacts of urban land use can include increased stormwater runoff temperature (Tw leading to receiving water quality impairment. There is therefore a need to target and mitigate sources of thermal pollution in urban areas. However, complex relationships between urban development, stormwater runoff and stream water heating processes are poorly understood. A nested-scale experimental watershed study design was used to investigate stormwater runoff temperature impacts to receiving waters in a representative mixed-use urbanizing watershed of the central US. Daily maximum Tw exceeded 35.0 °C (threshold for potential mortality of warm-water biota at an urban monitoring site for a total of five days during the study period (2011–2013. Sudden increases of more than 1.0 °C within a 15 min time interval of Tw following summer thunderstorms were significantly correlated (CI = 95%; p < 0.01 to cumulative percent urban land use (r2 = 0.98; n = 29. Differences in mean Tw between monitoring sites were significantly correlated (CI = 95%; p = 0.02 to urban land use practices, stream distance and increasing discharge. The effects of the 2012 Midwest USA drought and land use on Tw were also observed with maximum Tw 4.0 °C higher at an urban monitoring site relative to a rural site for 10.5 h. The current work provides quantitative evidence of acute increases in Tw related to urban land use. Results better inform land managers wishing to create management strategies designed to preserve suitable thermal stream habitats in urbanizing watersheds.

  14. Watershed Conservation and Groundwater Management: An Integrated Perspective

    Science.gov (United States)

    Kaiser, B. A.

    2005-05-01

    US natural resource policy has explicitly acknowledged the hydrological connection between forest resources and water resources from the inception of the USDA Forest Service for the dual purpose of timber and watershed management,, but it is often overlooked in short run policy decisions. In Hawaii, these closely interconnected resources led to the establishment of the Ko`olau Mountains Conservation District in the early 1900s in order to improve water supplies. This early action on the part of the state has enabled today a healthy watershed. The health of the watershed, however, is now under threat from incremental ecosystem change, particularly in the form of invasive species (e.g. pigs (Sus scrofa) and weedy shrubs (Miconia calvescens)) that change the hydrological properties of the watershed to increase runoff and reduce aquifer recharge. Economic costs of reduced recharge in the face of rising water demand from a growing population are potentially large, with preliminary estimates suggesting the losses from reduced groundwater recharge in the Pearl Harbor aquifer have a present value of 1.4 to 2.6 billion dollars (Kaiser and Roumasset, 2002). To refine and improve these preliminary estimates we use spatial analysis of the water balance in the Ko`olaus to relate land use and land cover to recharge and we simultaneously explore the risk of degradation of the forest quality for recharge purposes through a survey of watershed experts. Using this information together with a dynamic model of water pricing as a function of aquifer recharge and use, we examine how much of an economic return (in present value) forest conservation expenditures may produce in the form of protecting aquifer recharge. In conjunction, we begin to examine additional integrated benefits of reducing runoff to near-shore resources by relating upland conservation to reef quality using monitoring data from the Hawaii Coral Reef Assessment and Monitoring Program. Kaiser and Roumasset (2002

  15. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-11-01

    evapotranspiration (ET, with the lowest in old-growth natural coniferous forests (Abies faxoniana Rehd. et Wils. and the highest in coniferous plantations (e.g. Picea asperata Mast. among major forest types in the study watershed. This suggests that selection of different types of forests can have an important role in ET and consequently water yield. Our synthesis indicates that future reforestation and climate change would likely produce the hydrological effects in the same direction and thus place double the pressure on water resource as both key drivers may lead to water yield reduction. The findings can support designing management strategies for protection of watershed ecological functions in the context of future land cover and climate changes.

  16. Watershed management program on Santiago Island, Cape Verde

    Science.gov (United States)

    Lopes, Vicente L.; Meyer, John

    1993-01-01

    The Watershed Management Program (WMP) was put into operation in early 1985 on Santiago Island, Cape Verde, with the stated purpose, “to develop and protect the soil and water resources of the Program-designated watersheds … to stabilize the natural environment and increase agricultural production potential in the Program area.” The approach to soil and water conservation in the program has been to build erosion and flood control structures (engineering approach) and plant trees (biological approach) to decrease rill and gully erosion, trap sediment behind control structures, provide flood protection, increase infiltration, increase fuelwood and fodder production, and increase water supplies for irrigation. There have been many successes resulting from specific management activities, but flawed approach or implementation in a few key areas has acted to impede the program's complete success, including lack of a scientific basis for evaluating its impact on soil and water conservation; poor design, placement, and maintenance of some major hydraulic structures; inadequate intervention in stabilizing farmlands or education of farmers and landowners in the need for and benefits of agroforestry; and incomplete integration of engineering and biological approaches.

  17. An Adirondack Watershed Data Base: Attribute and mapping information for regional acidic deposition studies

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, A.E.; Olson, R.J.; Gruendling, G.K.; Bogucki, D.J.; Malanchuk, J.L.; Durfee, R.C.; Turner, R.S.; Adams, K.B.; Wilson, D.L.; Coleman, P.R.

    1988-12-01

    The Adirondack Watershed Data Base (AWDB) provides a means to test hypotheses concerning the relative importance of various watershed attributes that may contribute to increased acidification of Adirondack surface waters. The AWDB is a valuable resource for the study of other ecological phenomena. The AWDB consists of digital watershed boundaries and digital geographic data, stored within a geographic information system, and watershed/lake attribute data stored in a data management system (SAS) for 463 Adirondack headwater lakes. Attributes include watershed morphology, physiography, bedrock, soils, land cover, wetlands, disturbances (e.g., cabins, fire, and logging), beaver activity, precipitation, and atmospheric deposition. Over 600 variables are available for each watershed. These data can be combined with water chemistry data and fish community status for regional-scale examinations of watershed attributes that may account for variability and change in water chemistry and fish populations in the Adirondacks. This report describes the design of the AWDB, documents sources and history of the data; defines the format of the AWDB contents; and characterizes the data using summary statistics, frequency bar charts, and other graphics. In addition, it provides information necessary for researchers using the data base on their own computer systems. 37 refs., 42 figs., 4 tabs.

  18. New York City watershed case study

    OpenAIRE

    Government of New York City

    2006-01-01

    Metadata only record Due to degradation of New Your City's water source areas, their water has dropped below EPA standards. The cost of developing a filtration plant was estimated along with the cost of restoring the watershed's natural purification abilities. The cost of restoring the watershed's natural purification ability was found to be a fraction of what it would cost to construct and maintain a filtration plant. The city is now using funds to purchase and halt development, compensat...

  19. Status and management of watersheds in the Upper Pokhara Valley, Nepal

    Science.gov (United States)

    Thapa, Gopal B.; Weber, Karl E.

    1995-07-01

    Contributing to the debate on the causes of Himalayan environmental degradation, the status and management of four watersheds in the Upper Pokhara Valley were studied using information available from land use analysis, household surveys conducted in 1989 and 1992, deliberations held with villagers, and field observations. Accordingly, areas under forests and grazing lands were found being depleted at relatively high rates between 1957 and 1978 due mainly to the government policy of increasing national revenue by expansion of agricultural lands, nationalization of forests, steadily growing population, and dwindling household economy. Despite the steady growth of population, this process had remarkably slackened since 1978, owing primarily to remaining forests being located in very, steep slopes and implementation of the community forestry program. Forests with relatively sparase tree density, however, and grazing lands in the vicinity of settlements have been undergoing degradation due to fuelwood and fodder collection and livestock grazing. In many instances, this is aggravated by weak resource management institutions. Being particularly aware of the economic implication of land degradation, farmers have adopted assorted land management practices. Still a substantial proportion of bari lands in the hill slopes is vulnerable to accelerating degradation, as the arable cropping system is being practiced there as well. The perpetuation of the local subsistence economy is certain to lead, to a further deterioration of the socioeconomic and environmental conditions of watersheds. To facilitate environmental conservation and ecorestructuring for sustainable development, a broad watershed management strategy is outlined with focus on alleviating pressure on natural resources.

  20. Automatic delineation of a watershed using a DEM. Case study – The Oltet watershed

    Directory of Open Access Journals (Sweden)

    Andreea ZAMFIR

    2011-03-01

    Full Text Available This paper aims to present some solutions for automatic delineation of a watershed. In order to find this study’s applicability in the geographical reality, we decided that the river whose watershed will be delineated to be Oltet river. Automatic delineation of the Olteţ watershed was carried out comparatively, using two softwares, ArcGIS Desktop 9.3 andQuantum GIS 1.7.0 Wroclaw, and it based on a SRTM digital elevation model of 90 m. After using GIS techniques, there have resulted two maps showing the boundary of theOlteţ watershed. By overlapping the resulted maps, obtained with ArcGIS and QGIS, we found some small differences generated by the different way of working of each softwareinvolved in this study. We have also calculated a circularity coefficient for the Oltet watershed and the value obtained supports its elongated form and all the implication of it.

  1. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    Science.gov (United States)

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    Soil erosion can lead to severe destruction of agricultural sustainability that affects not only productivity, but the entire ecosystem in the neighboring areas. Sediments transported together with the associated nutrients and chemicals can significantly impact downstream water bodies. Various conservation and management practices implemented individually or integrated together as a system can be used to reduce the negative impacts on agricultural watersheds from soil erosion. Hydrological models are useful tools for decision makers when selecting the most effective combination of management practices to reduce pollutant loads within a watershed system. The Annualized Agricultural Non-point Source (AnnAGNPS) pollutant loading management model can be used to analyze the effectiveness of diverse management and conservation practices that can control or reduce the impact of soil erosion processes and subsequent sediment loads in agricultural watersheds. A 506 km2 Mediterranean medium-size watershed (Carapelle) located in Apulia, Southern Italy was used as a case study to evaluate the model and best management practices (BMPs) for sediment load control. A monitoring station located at the Ordona bridge has been instrumented to continuously monitor stream flow and suspended sediment loads. The station has been equipped with an ultrasound stage meter and a stage recorder to monitor stream flow. An infrared optic probe was used to measure suspended sediment concentrations (Gentile et al., 2010 ). The model was calibrated and validated in the Carapelle watershed on an event basis (Bisantino et al., 2013), and the validated model was used to evaluate the effectiveness of BMPs on sediment reduction. Various management practices were investigated including evaluating the impact on sediment load of: (1) converting all cropland areas into forest and grass covered conditions; (2) converting the highest eroding cropland areas to forest or grass covered conditions; and (3

  2. Quito's Urban Watersheds: Applications of Low Impact Development and Sustainable Watershed Management

    Science.gov (United States)

    Marzion, R.; Serra-Llobet, A.; Ward Simons, C.; Kondolf, G. M.

    2013-12-01

    facilitate the evaluation of LID potential in Quito, we conducted field observations and measurements, completed archival research, analyzed available geographic and hydrologic data, and developed plans and designs for the Quebrada Ortega from its steep headwater reaches down through the densely-populated valley floor. We identified opportunities and constraints for LID, along with strategies from international LID precedent cities that can be applied in the context of Quito's unique physical and climatic characteristics, urban planning practices, and institutional structures. Using remote sensing techniques to determine permeable versus impermeable surface areas, we calculated that basins of at least 1% of the Ortega subwatershed's surface area would be needed to mitigate peak flows from most design storm scenarios. Rainwater harvesting can provide approximately 30% of average daily water needs based on current Quito consumption rates for the subwatershed's residents. By implementing LID strategies while also addressing other water management priorities, Quito provides a unique case study of a city that could bypass prohibitively expensive models used in industrialized countries (e.g., end-of-pipe treatments), and serve as a model for other Latin American cities seeking to resolve similar water management problems.

  3. Watershed basin management and agriculture practices: an application case for flooding areas in Piemonte.

    Science.gov (United States)

    Bianco, G.; Franzi, L.; Valvassore, U.

    2009-04-01

    Watershed basin management in Piemonte (Italy) is a challenging issue that forces the local Authorities to a careful land planning in the frame of a sustainable economy. Different and contrasting objectives should be taken into account and balanced in order to find the best or the most "reasonable" choice under many constraints. Frequently the need for flood risk reduction and the demand for economical exploitation of floodplain areas represent the most conflicting aspects that influence watershed management politics. Actually, flood plains have been the preferred places for socio-economical activities, due to the availability of water, fertility of soil and the easiness of agricultural soil exploitation. Sometimes the bed and planform profile adjustments of a river, as a consequence of natural processes, can impede some anthropogenic activities in agriculture, such as the erosion of areas used for crops, the impossibility of water diversion, the deposition of pollutants on the ground, with effects on the economy and on the social life of local communities. In these cases watershed basin management should either balance the opposite demands, as the protection of economic activities (that implies generally canalized rivers and levees construction) and the need of favouring the river morphological stability, allowing the flooding in the inundation areas. In the paper a case study in Piemonte region (Tortona irrigation district) is shown and discussed. The effects of the Scrivia river planform adjustment on water diversion and soil erodibility force the local community and the authority of the irrigation district to ask for flood protection and river bed excavation. A mathematical model is also applied to study the effects of local river channel excavation on flood risk. Some countermeasures are also suggested to properly balance the opposite needs in the frame of a watershed basin management.

  4. Public participation in watershed management: International practices for inclusiveness

    Science.gov (United States)

    Perkins, Patricia E. (Ellie)

    This paper outlines a number of examples from around the world of participatory processes for watershed decision-making, and discusses how they work, why they are important, their social and ecological potential, and the practical details of how to start, expand and develop them. Because of long-standing power differentials in all societies along gender, class and ethnic lines, equitable public participation requires the recognition that different members of society have different kinds of relationships with the environment in general, and with water in particular. From a range of political perspectives, inclusive participatory governance processes have many benefits. The author has recently completed a 5 year project linking universities and NGOs in Brazil and Canada to develop methods of broadening public engagement in local watershed management committees, with a special focus on gender and marginalized communities. The innovative environmental education and multi-lingual international public engagement practices of the Centre for Socio-Environmental Knowledge and Care of the La Plata Basin (which spans Brazil, Argentina, Uruguay, Paraguay and Bolivia) are also discussed in this paper.

  5. Novel GIS approaches to watershed science and management: Description, prediction, and integration

    Science.gov (United States)

    Spatial data and geographic information systems (GIS) are playing an increasingly important role in watershed science and management, particularly in the face of increasing climate uncertainty and demand for water resources. Concomitantly, scientists and managers are presented wi...

  6. Analyzing the impacts of forest disturbance and regrowth on watershed hydrology: A case study from the Homochitto Watershed, Mississippi

    Science.gov (United States)

    Yeo, I.; Islam, A.; Huang, C.

    2009-12-01

    Forests are efficient sinks and reservoirs of terrestrial carbons. They can relieve or amplify the adverse impacts of global warming and climate variability and hence, managing forests has been the most important sustainable strategy to mitigate climatic impacts. However, forest management often involves a large scale landscape transformation of land use and cover, and brings significant changes on water resources to the local community. This study is to evaluate the impacts of forest management and disturbance on water quality and quanity in the Homochitto watershed (Mississippi), where forest management and disturbance have occurred on a large scale over long time scales. Using a watershed simulation model (Soil and Water Assessment Tool) and a long term water monitoring data from USGS and US EPA, we will investigate how the spatial heterogeneity of land use, vegetation cover, topography, and climate affect water cycles (e.g., soil water content, water yields), and water quality (e.g., nutrients and sediments) at multiple spatial and temporal scales. Historic chronologies of forest disturbance maps will be generated with a number of satellite-based measurements (such as Landsat, MODIS, and aerial photographs), Geospatial datasets (including MS Gap Analysis Project (GAP), National Land Cover Database (NLCD)), field measurements from the US Forest Service Forest Inventory Analysis (FIA) database, and historic records on forest land management in the region, characterizing the human induced changes in the forest landscape. This study will provide valuable information to better understand the hydrologic feedbacks to changing forests and climate system.

  7. Forest use strategies in watershed management and restoration: application to three small mountain watersheds in Latin America

    Directory of Open Access Journals (Sweden)

    Juan Ángel Mintegui Aguirre

    2014-06-01

    Full Text Available The effect of forests on flow and flood lamination decreases as the magnitude and intensity of torrential events and the watershed surface increase, thus resulting negligible when extreme events affect large catchments. However the effect of forests is advantageous in case of major events, which occur more often, and is particularly effective in soil erosion control. As a result, forests have been extensively used for watershed management and restoration, since they regulate water and sediments cycles, preventing the degradation of catchments.

  8. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    OpenAIRE

    Md. Ibrahim Adham; Sharif Moniruzzaman Shirazi; Faridah Othman; Noorul Hassan Zardari; Zulkifli Yusop; Zubaidah Ismail

    2015-01-01

    The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Res...

  9. Small Watershed Rehabilitation and Management in a Changing Economic and Policy Environment

    OpenAIRE

    Fock, Achim; Cao, Wendao

    2016-01-01

    China is considered one of the most seriously eroded countries in the world. The many causes of this degradation can be divided into natural, human-induced and root causes. The consequences of watershed degradation are severe and reach even beyond the country’s boundaries. Addressing this issue requires a sustainable participatory and integrated watershed management approach. The Loess Plateau Watershed Rehabilitation Projects, implemented by the Ministry of Water Resources and...

  10. An economic inquiry into collective action and household behaviour in watershed management

    OpenAIRE

    Devarajulu, Suresh Kumar

    2008-01-01

    The present paper analysed the people’s participation, collective action and farm household behaviour in micro watersheds. Peoples participation in different stages of watershed implementation indicate that farm households show inclination towards participation in planning and project formulation, attending meetings, training and exposure visits when the programme is on-going. Households participation in watershed management is found to influence by household level, supra household level fact...

  11. From Eutrophic to Mesotrophic: Modelling Watershed Management Scenarios to Change the Trophic Status of a Reservoir

    Directory of Open Access Journals (Sweden)

    Marcos Mateus

    2014-03-01

    Full Text Available Management decisions related with water quality in lakes and reservoirs require a combined land-water processes study approach. This study reports on an integrated watershed-reservoir modeling methodology: the Soil and Water Assessment Tool (SWAT model to estimate the nutrient input loads from the watershed, used afterwards as boundary conditions to the reservoir model, CE-QUAL-W2. The integrated modeling system was applied to the Torrão reservoir and drainage basin. The objective of the study was to quantify the total maximum input load that allows the reservoir to be classified as mesotrophic. Torrão reservoir is located in the Tâmega River, one of the most important tributaries of the Douro River in Portugal. The watershed is characterized by a variety of land uses and urban areas, accounting for a total Waste Water Treatment Plants (WWTP discharge of ~100,000 p.e. According to the criteria defined by the National Water Institute (based on the WWTP Directive, the Torrão reservoir is classified as eutrophic. Model estimates show that a 10% reduction in nutrient loads will suffice to change the state to mesotrophic, and should target primarily WWTP effluents, but also act on diffuse sources. The method applied in this study should provide a basis for water environmental management decision-making.

  12. Community implementation dynamics: Nutrient management in the New York City and Chesapeake Bay Watersheds

    Directory of Open Access Journals (Sweden)

    Glenn Earl Sterner

    2015-04-01

    Full Text Available The creation of natural resource management and conservation strategies can be affected by engagement with local citizens and competing interests between agencies and stakeholders at the varying levels of governance. This paper examines the role of local engagement and the interaction between governance levels on the outcomes of nutrient management policy, a specific area of natural resource conservation and management. Presented are two case studies of the New York City and Chesapeake Bay Watersheds in the US. These case studies touch upon the themes of local citizen engagement and governance stakeholder interaction in changing nutrient management to improve water quality. An analysis of these cases leads to several key considerations for the creation and implementation of nutrient management and natural resource management more broadly, including the importance of: local citizen engagement, government brokering and cost sharing; and the need of all stakeholders to respect each other in the policy creation and implementation process.

  13. Floristic study of Zangelanlo watershed (Khorassan, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Amiri

    2011-01-01

    Full Text Available Zangelanlo watershed is located in Northeast of Iran, 28 km of Southeast of Daregaz between 37º13´ to 37º27´ north latitude and 59º8´ to 59º35´ east longitude. The surface area of the region is approximately 2482 ha. This area is mountainous with mean annual precipitation of about 412.7 mm. The mean maximum temperature is 20.8ºC in August and minimum temperature is -9ºC in January. The flora of the area was studied and life forms and chorotypes of the plants were identified. In this research, 64 families, 238 genera and 286 species were identified among which 8 species were endemic to Iran. The largest plant family was Asteraceae with 40 genera and 51 species and the largest genus was Astragalus of Fabaceae with 7 species. Hemicryptophytes, therophytes and cryptophytes were the most frequent life forms 114 species (39.87%, 89 species (31.12% and 44 species (15.38%, respectively. High percentage of Hemicryptophytes indicated that the area had a cold mountain climate. Irano – Turanian plants were the most frequent chorotype of the area with 146 species (51.05%.

  14. Ecologically Significant Monitoring Strategies for Watershed Managers and Applied Ecohydrologists

    Science.gov (United States)

    Buchanan, B. P.; Walter, T.

    2007-12-01

    Upper Klamath Lake in Southern Oregon is home to a unique and increasingly rare strain of redband rainbow trout (Oncorhynchus mykiss newberrii). Populations connected to perennial lake systems such as the Upper Klamath have evolved adfluvial life histories and may possess unique adaptations that underscore their importance as units of conservation. Anthropogenic disturbance including stream channelization, timber harvest, livestock grazing and irrigation diversion have resulted in a 41 percent reduction in the redband's historic habitat and the disappearance of 11 redband trout populations throughout Oregon, Washington, and Idaho. In an effort to actively conserve this sensitive subspecies, a stream creation project was undertaken with the goal of increasing viable spawning and rearing habitat in Crooked Creek, a tributary to Upper Klamath Lake. A combination of analogue, empirical and analytical techniques were employed in the design of the created channel morphology (i.e. channel planform, profile, and cross-section), the sizing of bed substrate and spawning gravels and the design of in-stream habitat and scour structures. The project, completed in the fall of 1996, was qualitatively judged a success (e.g. trout were observed actively spawning and young-of-the-year were collected during unsystematic surveys). Unfortunately, as is often the case in the stream enhancement/restoration field, funding and personnel time were lacking for the implementation of a robust post-construction monitoring plan. Thus, project success was ascertained through cursory analyses and anecdotal reports. An opportunity to implement a similar stream creation project in a nearby watershed has afforded us the chance to return to the project site and conduct a more comprehensive, quantitative analysis of the project's success. A discussion of the original design methods and a review of several state of the art monitoring strategies are provided to assist watershed managers and applied

  15. Watershed Dynamics, with focus on connectivity index and management of water related impacts on road infrastructure

    Science.gov (United States)

    Kalantari, Z.

    2015-12-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. This study was built on a conceptual framework for looking at SedInConnect model, topography, land use, soil data and other PCDs and climate change in an integrated way to pave the way for more integrated policy making. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. This framework can provide a region with an effective tool to inform a broad range of watershed planning activities within a region. Regional planners, decision-makers, etc. can utilize this tool to identify the most vulnerable points in a watershed and along roads to plan for interventions and actions to alter impacts of high flows and other extreme weather events on roads construction. The application of the model over a large scale can give a realistic spatial characterization of sediment connectivity for the optimal management of debris flow to road structures. The ability of the model to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  16. COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES USING A GENETIC ALGORITHM

    Science.gov (United States)

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from non-point source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Here-...

  17. Evaluation of alternative management practices with the AnnAGNPS model in the Carapelle Watershed

    Science.gov (United States)

    The Annualized Agricultural Non-point Source (AnnAGNPS) model can be used to analyze the effectiveness of management and conservation practices that can control the impact of erosion and subsequent sediment loads in agricultural watersheds. A Mediterranean medium-size watershed (Carapelle) in Apulia...

  18. DEVELOPMENT OF A DECISION SUPPORT SYSTEM FOR MANAGING PESTICIDE LOSSES IN AGRICULTURAL WATERSHEDS

    Institute of Scientific and Technical Information of China (English)

    Y.-F.LI; Y.R.LI; G.H.HUANG; J.STRUGER; J.D.FISCHER; Xinzhu WANG; B.CHEN; J.B.LI; X.H.NIE

    2003-01-01

    In this study,a decision support system for managing pesticides losses in agricultural watersheds,based on a number of simulation,GIS and RS technologies was developed. The system allows acquisition of information through not only on-site survey but also RS technologies. Aerial photographs were used to generate DEM,and a set of terrain analysis methods were employed to calculate hydrological parameters that are needed for the pesticide loss model. The system also facilitates convenient management and presentation of vast amounts of modeling inputs and outputs through user interfaces. A case study in the Kintore Creek Watershed,Ontario,Canada was undertaken to provide bases for environmental management in the watershed and to demonstrate practical applicability of the developed DSS. The modeling outputs were verified through monitoring data,demonstrating reasonable prediction accuracy. The result indicated that the model provides an effective means for forecasting pesticide losses from agriculture lands. Especially,incorporation of GIS and remote sensing with the pesticides losses model provide a powerful tool for system simulation and environmental management. The major contribution of this study is the development of a new integrated modeling system for simulating fate of pesticides in agricultural lands,as well as its application to a real Canadian case study. In detail,a dynamic simulation model was developed,a solution algorithm was implemented,and the modeling results were verified. The developed simulator was also enhanced through incorporation of GIS and RS technologies within its framework to facilitate effective data acquisition and management,as well as input/output presentation.

  19. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management

    Science.gov (United States)

    Beck, Scott M.; McHale, Melissa R.; Hess, George R.

    2016-07-01

    Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.

  20. Locating Farmer-based Knowledge and Vested Interests in Natural Resource Management in the Manupali Watershed, Philipines

    NARCIS (Netherlands)

    Price, L.L.

    2007-01-01

    This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducte

  1. Hydromentor: An integrated water resources monitoring and management system at modified semi-arid watersheds

    Science.gov (United States)

    Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity

  2. Compromise-based Robust Prioritization of Climate Change Adaptation Strategies for Watershed Management

    Science.gov (United States)

    Kim, Y.; Chung, E. S.

    2014-12-01

    This study suggests a robust prioritization framework for climate change adaptation strategies under multiple climate change scenarios with a case study of selecting sites for reusing treated wastewater (TWW) in a Korean urban watershed. The framework utilizes various multi-criteria decision making techniques, including the VIKOR method and the Shannon entropy-based weights. In this case study, the sustainability of TWW use is quantified with indicator-based approaches with the DPSIR framework, which considers both hydro-environmental and socio-economic aspects of the watershed management. Under the various climate change scenarios, the hydro-environmental responses to reusing TWW in potential alternative sub-watersheds are determined using the Hydrologic Simulation Program in Fortran (HSPF). The socio-economic indicators are obtained from the statistical databases. Sustainability scores for multiple scenarios are estimated individually and then integrated with the proposed approach. At last, the suggested framework allows us to prioritize adaptation strategies in a robust manner with varying levels of compromise between utility-based and regret-based strategies.

  3. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    Science.gov (United States)

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses.

  4. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    Science.gov (United States)

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. PMID:27091048

  5. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  6. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-06-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i timber harvesting; (ii municipal clean water program; (iii agricultural nutrient management scenarios; (iv past land use evolution; (v possible future agricultural land use evolution under climate change, as well as (vi determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  7. The magnitude of lost ecosystem structure and function in urban streams and the effectiveness of watershed-based management (Invited)

    Science.gov (United States)

    Smucker, N. J.; Detenbeck, N. E.; Kuhn, A.

    2013-12-01

    Watershed development is a leading cause of stream impairment and increasingly threatens the availability, quality, and sustainability of freshwater resources. In a recent global meta-analysis, we found that measures of desirable ecological structure (e.g., algal, macroinvertebrate, and fish communities) and functions (e.g., metabolism, nutrient uptake, and denitrification) in streams with developed watersheds were only 23% and 34%, respectively, of those in minimally disturbed reference streams. As humans continue to alter watersheds in response to growing and migrating populations, characterizing ecological responses to watershed development and management practices is urgently needed to inform future development practices, decisions, and policy. In a study of streams in New England, we found that measures of macroinvertebrate and algal communities had threshold responses between 1-10% and 1-5% impervious cover, respectively. Macroinvertebrate communities had decreases in sensitive taxa and predators occurring from 1-3.5% and transitions in trophic and habitat guilds from 4-9% impervious cover. Sensitive algal taxa declined at 1%, followed by increases in tolerant taxa at 3%. Substantially altered algal communities persisted above 5% impervious cover and were dominated by motile taxa (sediment resistant) and those with high nutrient demands. Boosted regression tree analysis showed that sites with >65% and ideally >80% forest and wetland cover in near-stream buffers were associated with a 13-34% decrease in the effects of watershed impervious cover on algal communities. While this reduction is substantial, additional out-of-stream management efforts are needed to protect and restore stream ecosystems (e.g., created wetlands and stormwater ponds), but understanding their effectiveness is greatly limited by sparse ecological monitoring. Our meta-analysis found that restoration improved ecological structure and functions in streams by 48% and 14%, respectively, when

  8. Influence of watershed system management on herbicide concentrations in Mississippi Delta oxbow lakes.

    Science.gov (United States)

    Zablotowicz, Robert M; Locke, Martin A; Krutz, L Jason; Lerch, Robert N; Lizotte, Richard E; Knight, Scott S; Gordon, R Earl; Steinriede, R Wade

    2006-11-01

    The Mississippi Delta Management Systems Evaluation Area (MD-MSEA) project was established in 1994 in three small watersheds (202 to 1,497 ha) that drain into oxbow lakes (Beasley, Deep Hollow, and Thighman). The primary research objective was to assess the implications of management practices on water quality. Monthly monitoring of herbicide concentrations in lake water was conducted from 2000 to 2003. Water samples were analyzed for atrazine, cyanazine, fluometuron, metolachlor, and atrazine metabolites. Herbicide concentrations observed in the lake water reflected cropping systems of the watershed, e.g., atrazine and metolachlor concentrations were associated with the level of corn and sorghum production, whereas cyanazine and fluometuron was associated with the level of glyphosate-sensitive cotton production. The dynamics of herbicide appearance and dissipation in lake samples were strongly influenced by herbicide use, lake hydrology, rainfall pattern, and land management practices. The highest maximum concentrations of atrazine (7.1 to 23.4 microg L(-1)) and metolachlor (0.7 to 14.9 microg L(-1)) were observed in Thighman Lake where significant quantities of corn were grown. Introduction of s-metolachlor and use of glyphosate-resistant cotton coincided with reduced concentration of metolachlor in lake water. Cyanazine was observed in two lakes with the highest levels (1.6 to 5.5 microg L(-1)) in 2000 and lower concentrations in 2001 and 2002 (<0.4 microg L(-1)). Reduced concentrations of fluometuron in Beasley Lake were associated with greater use of glyphosate-resistant cotton and correspondingly less need for soil-applied fluometuron herbicide. In contrast, increased levels of fluometuron were observed in lake water after Deep Hollow was converted from conservation tillage to conventional tillage, presumably due to greater runoff associated with conventional tillage. These studies indicate that herbicide concentrations observed in these three watersheds were

  9. Institutional Development to Build a Succesfull Local Collective Action in Forest Management from Arau Watershed Unit

    Directory of Open Access Journals (Sweden)

    Nursidah Nursidah

    2012-04-01

    Full Text Available The study was aimed to build institution model of sustainable forest management, through analysis of action arena, community attributes and forest management rules in Arau Watershed Unit Management Area.  To achieve sustainable forest management, recognition and incorporation of local institutions in forest policy formulation is very important because it had great potential for collective action and had characteristics of common pools resources sustainable management needed.  To achieve a successful local collective action, the institution must be had: the rules in use suitable with local community norms; the organization has power to give reward and punishment as well as recognized and respected by society; specific management according location; rules of the game was made participatory; there are economic incentives for owners and users; there is an instrument for controlling sustainable use; and conflict resolution through negotiations to reach an concencus agreement.  The finding of institutional models  analysis  show  that  co-management  model  between government and local communities, called Nagari Forest Management Model is more suitable, because it gives greater opportunities for indigenous rights recognition to communal forest, until the capacity of villages get better, then the choice of forest management can be shifted into Nagari Community Based Forest Management Model.Keywords: sustainable forest management, institution, collective action, nagari

  10. Water and Poverty in Two Colombian Watersheds

    OpenAIRE

    Nancy Johnson; James Garcia; Jorge E. Rubiano; Marcela Quintero; Ruben Dario Estrada; Esther Mwangi; Adriana Morena; Alexandra Peralta; Sara Granados

    2009-01-01

    Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Result...

  11. Linking farmer, forest and watershed: Understanding forestry and soil resource management along the upper Njoro River, Kenya

    OpenAIRE

    Krupnik, Timothy J.

    2004-01-01

    This paper presents research-in-progress to understand small farmers’ soil and forestry management techniques in the Upper Catchment of the River Njoro (UCRN) in Kenya. This paper seeks to answer the following questions: How do farmers in the UCRN view and manage soil and forestry resources? What does this imply for development and conservation planners concerned with watershed and environmental services? The study blends social science approaches and biophysical assessment. Interviews were...

  12. Hydrologic and Water Quality Assessment from an Intensively Managed Watershed Scale Turfgrass System

    Science.gov (United States)

    Managed turf accounts for approximately 17 million hectares of land in the U.S. and is the most intensively managed system in the urban landscape. The primary objective of this research effort was to assess the watershed scale hydrologic and surface water quality impact from a well managed golf cour...

  13. Emergy evaluation of the artificial forest ecosystems in the watershed of Miyun Reservoir:a case study for ecosystems valuation and environmental management

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To build the artificial forest ecoaystem is the major eco-economic development model in the watershed of Miyun Reservoir.It is very important to evaluate the benefits of those ecosystems.Emergy theories are very helpful for us to establish a science-based assessment framework.Emergy evatuation of the artificial forest ecosystems in the watershed of Miyun Reservoir is used to asses the relative values of several ecological hinctions (sometimes called ecosystem services)and main ecosystem storages(sometimes called natural capital).The main driving energtes,internal processes and storages are evaluated.The main functions,including transpiration,GPP and infiltration,are evaluated,which are 609em$/ha/yr,6,245em$/ha/yr and 340em$/ha/yr respectively.The total values of major environmental services are 4,683em$/ha/yr in the artificial forest ecosystem.The main storages of natural capital including live biomass,soil moisture,organic matter,underground water and landform are estimated,which are 112,028em$/ha,9em$/ha,40,718em$/ha,34em$/ha and 6,400.514em$/ha respectively.The largest value is landform,which accounts for97.7%of these calculated total emdollar values.The concept of replacement value is explored using the emergy values of both ecosystem services and natural capital.The total calculated replacement values are 302,160em$/ha.

  14. Transaction Cost Analysis of Upstream-Downstream Relations in Watershed Services: Lessons from Community-Based Forestry Management in Sumatra, Indonesia

    OpenAIRE

    Arifin, Bustanul

    2006-01-01

    This study analyzes transaction costs occurred in the existing set-up of upstream-downstream relations and reward mechanisms of the watershed services in Sumatra, Indonesia. The rewards are manifested through property right reforms in terms of "recognition" and "loss of fear of eviction" among local communities to utilize land within the "protection forest", such as implemented under the community-based forestry management (CBFM) policy. The study sites of Sumber Jaya watershed in Sumatra, In...

  15. Critical sampling points methodology: case studies of geographically diverse watersheds.

    Science.gov (United States)

    Strobl, Robert O; Robillard, Paul D; Debels, Patrick

    2007-06-01

    Only with a properly designed water quality monitoring network can data be collected that can lead to accurate information extraction. One of the main components of water quality monitoring network design is the allocation of sampling locations. For this purpose, a design methodology, called critical sampling points (CSP), has been developed for the determination of the critical sampling locations in small, rural watersheds with regard to total phosphorus (TP) load pollution. It considers hydrologic, topographic, soil, vegetative, and land use factors. The objective of the monitoring network design in this methodology is to identify the stream locations which receive the greatest TP loads from the upstream portions of a watershed. The CSP methodology has been translated into a model, called water quality monitoring station analysis (WQMSA), which integrates a geographic information system (GIS) for the handling of the spatial aspect of the data, a hydrologic/water quality simulation model for TP load estimation, and fuzzy logic for improved input data representation. In addition, the methodology was purposely designed to be useful in diverse rural watersheds, independent of geographic location. Three watershed case studies in Pennsylvania, Amazonian Ecuador, and central Chile were examined. Each case study offered a different degree of data availability. It was demonstrated that the developed methodology could be successfully used in all three case studies. The case studies suggest that the CSP methodology, in form of the WQMSA model, has potential in applications world-wide.

  16. Agile data management for curation of genomes to watershed datasets

    Science.gov (United States)

    Varadharajan, C.; Agarwal, D.; Faybishenko, B.; Versteeg, R.

    2015-12-01

    A software platform is being developed for data management and assimilation [DMA] as part of the U.S. Department of Energy's Genomes to Watershed Sustainable Systems Science Focus Area 2.0. The DMA components and capabilities are driven by the project science priorities and the development is based on agile development techniques. The goal of the DMA software platform is to enable users to integrate and synthesize diverse and disparate field, laboratory, and simulation datasets, including geological, geochemical, geophysical, microbiological, hydrological, and meteorological data across a range of spatial and temporal scales. The DMA objectives are (a) developing an integrated interface to the datasets, (b) storing field monitoring data, laboratory analytical results of water and sediments samples collected into a database, (c) providing automated QA/QC analysis of data and (d) working with data providers to modify high-priority field and laboratory data collection and reporting procedures as needed. The first three objectives are driven by user needs, while the last objective is driven by data management needs. The project needs and priorities are reassessed regularly with the users. After each user session we identify development priorities to match the identified user priorities. For instance, data QA/QC and collection activities have focused on the data and products needed for on-going scientific analyses (e.g. water level and geochemistry). We have also developed, tested and released a broker and portal that integrates diverse datasets from two different databases used for curation of project data. The development of the user interface was based on a user-centered design process involving several user interviews and constant interaction with data providers. The initial version focuses on the most requested feature - i.e. finding the data needed for analyses through an intuitive interface. Once the data is found, the user can immediately plot and download data

  17. A Decision Support Systems Using A Combined Dynamic Model For Integrated Watershed Management

    Science.gov (United States)

    Kudo, E.; Ostrowski, M.

    In this context A Decision Support System (DSS) is presented using a combined dy- namic model for Integrated Watershed Management (IWM) in a small urbanized basin in Japan. In order to improve today's often unsustainable watershed management, the causes of water problems, which interact with each other, must be identified and adequate actions must be chosen to solve the problems. To achieve the ultimate goal of sustain- able development (SD) for water it is essential to develop and apply generic DSSs. A DSS is frequently defined as a combination of a management information system, a model base and an evaluation / assessment module. The EU Water Framework Di- rectives recently established have a narrow time schedule requiring fast action into this direction, which does hardly allow to develop completely new tolls. Thus we are trying to combine different existing dynamic models that incorporate an urban man- agement model, a water quality analysis model, a groundwater analysis model and a water supply model including geographical information system data. With this com- bined model, the most appropriate and sustainable water management plan in an urban area will be developed while considering land use, ground water level, allocation of drainage system, sewerage, water supply works, water quality, and quantity. Because of sharing input data, using this combined model requires less data than using sev- eral separate models. The DSS can also be used to determine the optimum location of gages and monitoring sites. As a case study, the research will deal with the Taguri-river basin in Japan. This basin is located near Tokyo. Although the area in this basin has about 8 km2 only, there are densely build-up areas, paddy fields, and non-developed areas. The river is polluted due to wastewater from point resources: households, and non-point resources: roads and fields, etc. Overpumping of aquifers results in sinking groundwater tables and land subsidence. Moreover, a decrease

  18. Development of a socio-ecological environmental justice model for watershed-based management

    Science.gov (United States)

    Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton

    2014-10-01

    The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.

  19. Relating sediment impacts on coral reefs to watershed sources, processes and management: a review.

    Science.gov (United States)

    Bartley, Rebecca; Bainbridge, Zoe T; Lewis, Stephen E; Kroon, Frederieke J; Wilkinson, Scott N; Brodie, Jon E; Silburn, D Mark

    2014-01-15

    Modification of terrestrial sediment fluxes can result in increased sedimentation and turbidity in receiving waters, with detrimental impacts on coral reef ecosystems. Preventing anthropogenic sediment reaching coral reefs requires a better understanding of the specific characteristics, sources and processes generating the anthropogenic sediment, so that effective watershed management strategies can be implemented. Here, we review and synthesise research on measured runoff, sediment erosion and sediment delivery from watersheds to near-shore marine areas, with a strong focus on the Burdekin watershed in the Great Barrier Reef region, Australia. We first investigate the characteristics of sediment that pose the greatest risk to coral reef ecosystems. Next we track this sediment back from the marine system into the watershed to determine the storage zones, source areas and processes responsible for sediment generation and run-off. The review determined that only a small proportion of the sediment that has been eroded from the watershed makes it to the mid and outer reefs. The sediment transported >1 km offshore is generally the clay to fine silt (erosion is the dominant process responsible for the fine sediment exported from these watersheds in recent times, although further work on the particle size of this material is required. Maintaining average minimum ground cover >75% will likely be required to reduce runoff and prevent sub-soil erosion; however, it is not known whether ground cover management alone will reduce sediment supply to ecologically acceptable levels.

  20. Influence of dem in Watershed Management as Flood Zonation Mapping

    Science.gov (United States)

    Alrajhi, Muhamad; Khan, Mudasir; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Despite of valuable efforts from working groups and research organizations towards flood hazard reduction through its program, still minimal diminution from these hazards has been realized. This is mainly due to the fact that with rapid increase in population and urbanization coupled with climate change, flood hazards are becoming increasingly catastrophic. Therefore there is a need to understand and access flood hazards and develop means to deal with it through proper preparations, and preventive measures. To achieve this aim, Geographical Information System (GIS), geospatial and hydrological models were used as tools to tackle with influence of flash floods in the Kingdom of Saudi Arabia due to existence of large valleys (Wadis) which is a matter of great concern. In this research paper, Digital Elevation Models (DEMs) of different resolution (30m, 20m,10m and 5m) have been used, which have proven to be valuable tool for the topographic parameterization of hydrological models which are the basis for any flood modelling process. The DEM was used as input for performing spatial analysis and obtaining derivative products and delineate watershed characteristics of the study area using ArcGIS desktop and its Arc Hydro extension tools to check comparability of different elevation models for flood Zonation mapping. The derived drainage patterns have been overlaid over aerial imagery of study area, to check influence of greater amount of precipitation which can turn into massive destructions. The flow accumulation maps derived provide zones of highest accumulation and possible flow directions. This approach provide simplified means of predicting extent of inundation during flood events for emergency action especially for large areas because of large coverage area of the remotely sensed data.

  1. Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control

    Science.gov (United States)

    The “Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control: State of the Technology” project investigated a range of innovative technology and management strategies emerging outside the normal realm of business within the continental United States, fo...

  2. Impact of Environmental Policies on the Adoption of Animal Waste Management Practices in the Chesapeake Bay Watershed

    OpenAIRE

    Savage, Jeff; Ribaudo, Marc

    2012-01-01

    We use data from the ERS-NASS ARMS surveys to compare the use of best management practices on poultry and livestock farms inside the watershed and outside the watershed. Animal operations within the Chesapeake Bay States were found to be adopting some important manure management practices at a greater rate than operations outside the watershed. Adoption was taking place before the implementation of the TMDL, indicating that farmers may have been acting in response to building public pressure ...

  3. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  4. Potential Hydrological Responses, and Carbon and Nitrogen Pools of a Two Distinct Watersheds to Rainfall and Brush Management

    Science.gov (United States)

    Ray, R. L.; Fares, A.; Awal, R.; Johnson, A. B.

    2014-12-01

    Investigating the effects of brush management on hydrologic fluxes, in the parts of the Texas where brush is a dominant component of the landscape is essential for the State of Texas's water management strategy and planning. The main goal of this study is to test the performance of brush management as an effective approach for protecting soil quality (carbon and nitrogen pools), and water resources management and planning. Specifically, this work reports on the potential i) hydrological response and ii) carbon and nitrogen pools of two watersheds, one in Colorado River Basin (arid) and the second one in Neches River Basin (humid), to brush management (uniform thinning vs. clear cutting) simulated using Regional Hydro-ecological Simulation System (RHESSys) model and site specific input data. The selected watersheds have similar potential evapotranspiration level, but their average elevations are 600 m and 250 m for the arid and humid watersheds, respectively. Results are showing that light thinning alone may not be enough to significantly impact water yield and soil quality. They further indicate that the streamflow response to brush reduction is a non-linear positive response.

  5. The participation of public institutions and private sector stakeholders to Devrekani Watershed management planning process

    Directory of Open Access Journals (Sweden)

    Sevgi Öztürk

    2014-07-01

    Full Text Available Watershed management is creating the ecological balance between human beings and habitats and natural resources especially water resources. In this study the nature and human beings and all of the components involving on human activities in nature were tried to be tackled and the strengths and weaknesses, threats and opportunities (SWOT analysis of the area were evaluated by prioritizing R’WOT (Ranking + SWOT analysis for ensuring the participation and evaluating the ideas and attitudes of public institutions and private sector which are interest groups of Devrekani Watershed. According to the analysis result, both of the participant groups stated that the planned Hydroelectric Power Plant (HPP in the basin will negatively affect the natural resource value. The economical deficiency- for the local administration- and the lack of qualified labour force –for private sector- issues are determined as the most important issues. Having an environmental plan (EP, supporting the traditional animal husbandry were determined as the highest priority factors by the local administration group and the presence of forests and grasslands and the eco-tourism potential were determined as the highest priority factors for the private sector. Creating awareness to local administration group, who are one of the most important decision making mechanisms in the area and did not prefer threats in a high priority way, is foreseen according to the context of the study.

  6. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    Science.gov (United States)

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a

  7. Environmental management cognitive strategies: Acid rain in the Yamaska watershed, Quebec, Canada

    Science.gov (United States)

    Sasseville, Jean-Louis; Lachance, Marius

    1983-05-01

    Systematic budgetary restrictions foreseen for the next few years will require greater organizational effectiveness in public management systems, particularly in environmental management, in which costs are seen as a burden to the national economy Environmental management efficiency could be increased, among other means, by the adoption of knowledge acquisition strategies that take into account the multiple facets of environmental management, these cognitive strategies involve the development and use of methods to establish facts and to analyze complex environmental situations It is the purpose of this paper to show that an efficient approach is possible in establishing facts from existing data. The method involves a heuristic use of advanced statistical tools to integrate multiple data into the description of environmental phenomena An example is given in which the method has been applied to a data base obtained from the inventory of Yamaska watershed; it revealed 16 facts of potential interest to environmental managers The case study suggests that management system efficiency could be improved by a more comprehensive understanding of the environmental situation that takes into account the structure of biophysical processes and the elements involved in information processing

  8. Locating farmer-based knowledge and vested interests in natural resource management: the interface of ethnopedology, land tenure and gender in soil erosion management in the Manupali watershed, Philippines

    OpenAIRE

    Price Lisa

    2007-01-01

    Abstract This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducted with 48 farmers holding 154 parcels at different elevations/locations in the watershed. The on-parcel research consisted of farmer classifications of the soil, topography, and erosion st...

  9. Automatic delineation of a watershed using a DEM. Case study – The Oltet watershed

    OpenAIRE

    ZAMFIR Andreea; Daniel SIMULESCU

    2011-01-01

    This paper aims to present some solutions for automatic delineation of a watershed. In order to find this study’s applicability in the geographical reality, we decided that the river whose watershed will be delineated to be Oltet river. Automatic delineation of the Olteţ watershed was carried out comparatively, using two softwares, ArcGIS Desktop 9.3 andQuantum GIS 1.7.0 Wroclaw, and it based on a SRTM digital elevation model of 90 m. After using GIS techniques, there have resulted two maps s...

  10. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-05-01

    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently-completed research programs (one of them known as "973 of the China National Major Fundamental Science" with funding of $3.5 million USD in 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful because the results from a small spatial scale (e.g. forest stand level can help interpret the findings at a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation at both spatial scales. The impact magnitudes caused by forest harvesting indicate that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yields in the Minjiang River watershed. In addition, different types of forests have different magnitudes of ET

  11. Riverine threat indices to assess watershed condition and identify primary management capacity of agriculture natural resource management agencies.

    Science.gov (United States)

    Fore, Jeffrey D; Sowa, Scott P; Galat, David L; Annis, Gust M; Diamond, David D; Rewa, Charles

    2014-03-01

    Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.

  12. Integrated watershed management: a planning methodology for construction of new dams in Ethiopia

    NARCIS (Netherlands)

    Bezuayehu, Tefera; Stroosnijder, L.

    2007-01-01

    Integrated watershed management (IWM) is emerging as an alternative to the centrally planned and sectoral approaches that currently characterize the planning process for dam construction in Ethiopia. This report clarifies the concept of IWM, and reviews the major social, environmental and economic p

  13. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    Science.gov (United States)

    2010-05-17

    ... Information Executive Order 13508, Chesapeake Bay Protection and Restoration, dated May 12, 2009 (74 FR 23099... 24, 2010 (75 FR 91294, March 24). This final guidance incorporates revisions resulting from public... AGENCY Guidance for Federal Land Management in the Chesapeake Bay Watershed AGENCY:...

  14. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is

  15. Modeling and sediment study in the watershed Medjerda, Tunisia

    Science.gov (United States)

    Kotti, Fatma; Mahé, Gil; Habaieb, Hamadi; Dieulin, Claudine; Hermassi, Taoufik

    2015-04-01

    Water projects have experienced a major expansion in the late 1980s, and we now have sufficient perspective to assess their actual performance and their socio-environmental impacts (Payan, 2007). This study focuses on the great watershed of Tunisia namely Medjerda which has an area of about 23,600 km2. In the main river of Medjerda some dams have been created for water retention: Sidi Salem Dam (the largest in the country), El Aroussia dam, and others on tributaries Mellegue Bouhertma, Siliana, Beni Mtir, Lakhemess and Kasseb. Since the construction of dams, essentially Sidi Salem and Siliana, the Medjerda river has undergone significant changes in morphology. The monitoring of the flow of the major hydrological stations in the pre-estuarine zone downstream from Sidi Salem dam is used to measure the impact of the constructions on hydrological regimes: reduction in average rates, reduction in volumes sold, altered seasonal pattern, and most of all reduction of the sediment transport, which the highest values are related to extreme events. In this context, the balance of sediment monitoring appears indispensable for the quantification of sediment transport at the outlet. Our approach is to calculate a specific flow rate relative to the area of the basin for every structure built in the Medjerda watershed, from the information available on transport and sedimentation rates known, combined with contours of each sub watershed. There are about ten dams spread throughout Medjerda watershed. The methodology is primarily developed for the Mellegue dam because we have at this station a long data set from 1955 until 2005. Other stations will be studied later on. The main objective of this study is to provide a series of annual variation of theoretical contributions. These calculated values will be compared with the actual measured sedimentary series. Two cores in the sediments of the pre-estuarine area are performed to determine past variability in sediment inputs over a time

  16. Micropollutants in urban watersheds : substance flow analysis as management tool

    Science.gov (United States)

    Rossi, L.; Copin, P. J.; Barry, A. D.; Bader, H.-P.; Scheidegger, R.; Chèvre, N.

    2009-04-01

    Micropollutants released by cities into water are of increasing concern as they are suspected of inducing long-term effects on both aquatic organisms and humans (eg., hormonally active substances). Substances found in the urban water cycle have different sources in the urban area and different fates in this cycle. For example, the pollutants emitted from traffic, like copper or PAHs get to surface water during rain events often without any treatment. Pharmaceuticals resulting from human medical treatments get to surface water mainly through wastewater treatment plants, where they are only partly treated and eliminated. One other source of contamination in urban areas for these compounds are combined sewer overflows (CSOs). Once in the receiving waters (lakes, rivers, groundwater), these substances may re-enter the cycle through drinking water. It is therefore crucial to study the behaviour of micropollutants in the urban water cycle and to get flexible tools for urban water management. Substance flow analysis (SFA) has recently been proposed as instrument for water pollution management in urban water systems. This kind of analysis is an extension of material flow analysis (MFA) originally developed in the economic sector and later adapted to regional investigations. In this study, we propose to test the application of SFA for a large number of classes of micropollutants to evaluate its use for urban water management. We chose the city of Lausanne as case study since the receiving water of this city (Lake Geneva) is an important source of drinking water for the surrounding population. Moreover a profound system-knowledge and many data were available, both on the sewer system and the water quality. We focus our study on one heavy metal (copper) and four pharmaceuticals (diclofenac, ibuprofen, carbamazepine and naproxen). Results conducted on copper reveals that around 1500 kg of copper enter the aquatic compartment yearly. This amount contributes to sediment

  17. Adaptive Management for Urban Watersheds: The Slavic Village Pilot Project

    Science.gov (United States)

    Adaptive management is an environmental management strategy that uses an iterative process of decision-making to reduce the uncertainty in environmental management via system monitoring. A central tenet of adaptive management is that management involves a learning process that ca...

  18. Impact of water management interventions on hydrology and ecosystem services in Garhkundar-Dabar watershed of Bundelkhand region, Central India

    Science.gov (United States)

    Singh, Ramesh; Garg, Kaushal K.; Wani, Suhas P.; Tewari, R. K.; Dhyani, S. K.

    2014-02-01

    Bundelkhand region of Central India is a hot spot of water scarcity, land degradation, poverty and poor socio-economic status. Impacts of integrated watershed development (IWD) interventions on water balance and different ecosystem services are analyzed in one of the selected watershed of 850 ha in Bundelkhand region. Improved soil, water and crop management interventions in Garhkundar-Dabar (GKD) watershed of Bundelkhand region in India enhanced ET to 64% as compared to 58% in untreated (control) watershed receiving 815 mm annual average rainfall. Reduced storm flow (21% vs. 34%) along with increased base flow (4.5% vs. 1.2%) and groundwater recharge (11% vs. 7%) of total rainfall received were recorded in treated watershed as compared to untreated control watershed. Economic Water productivity and total income increased from 2.5 to 5.0 INR m-3 and 11,500 to 27,500 INR ha-1 yr-1 after implementing integrated watershed development interventions in GKD watershed, respectively. Moreover IWD interventions helped in reducing soil loss more than 50% compared to control watershed. The results demonstrated that integrated watershed management practices addressed issues of poverty in GKD watershed. Benefit to cost ratio of project interventions was found three and pay back period within four years suggest economic feasibility to scale-up IWD interventions in Bundelkhend region. Scaling-up of integrated watershed management in drought prone rainfed areas with enabling policy and institutional support is expected to promote equity and livelihood along with strengthening various ecosystem services, however, region-specific analysis is needed to assess trade-offs for downstream areas along with onsite impact.

  19. Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation

    Science.gov (United States)

    Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y.

    2016-03-01

    Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.

  20. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    Science.gov (United States)

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  1. The effects of watershed physical properties on bed load morphometric and sedimentologic characteristics along downstream: a case study from Ghalesar watershed in Mazandaran Province

    Directory of Open Access Journals (Sweden)

    F., Adineh,

    2012-01-01

    Full Text Available Litnology and sedimentology factors affect on downstream changes in bed load shape and can be useful to detect watershed hydrological processes as they are very important to design hydraulic structures and reservoir management. This research was conducted in Qalesar River in Mazandaran Province with main river length of 24 Kilometers. After recognition of the study area, 11 sections were selected toward downstream for bed load sampling. Laboratory analysis were done using gravel meter and sieving method to measure and calculate some bed load shape characteristics. Also physical properties of each sub-watershed were extracted using Arc/GIS 9.2 software. Finally, in order to determine most effective physical characteristics on bed load shape, data were analyzed using SPSS 16. Results of statistical analysis indicate the best model between D50 and length of 1 order channel in bivariate regression equations and between D50 and distance from upstream in multi-variate regression equations.

  2. Statistical approach for the estimation of watershed scale nitrate export: a case study from Melen watershed of Turkey

    Directory of Open Access Journals (Sweden)

    Akiner Muhammed Ernur

    2016-06-01

    Full Text Available Nutrient pollution such as nitrate (NO3− can cause water quality degradation in rivers used as a source of drinking water. This situation raises the question of how the nutrients have moved depending on many factors such as land use and anthropogenic sources. Researchers developed several nutrient export coefficient models depending on the aforementioned factors. To this purpose, statistical data including a number of factors such as historical water quality and land use data for the Melen Watershed were used. Nitrate export coefficients are estimates of the total load or mass of nitrate (NO3− exported from a watershed standardized to unit area and unit time (e.g. kg/km2/day. In this study, nitrate export coefficients for the Melen Watershed were determined using the model that covers the Frequentist and Bayesian approaches. River retention coefficient was determined and introduced into the model as an important variable.

  3. Nonpoint source pollution management for the multipurpose dam watersheds.

    Science.gov (United States)

    Choi, J-Y

    2008-01-01

    Main pollution sources in multipurpose dam watersheds in Korea are highland fields, stream banks, livestock farms, roads, and construction sites. Specifically, highland fields are the major nonpoint pollution sources. Excessive organic chemicals such as fertilizer and pesticide can be exuded from the land, and the area is likely to be eroded by heavy rain. Fallow, conservative cultivation, and covering can be alternatives for soil protection and reinforcement. In addition to these, construction of detour waterways and improvement of irrigation method can minimize the impact of runoff. In the case of slope in 15% degree or more, prohibiting cultivation and restoring the surface is preferred to improving cultivation method in order to control nonpoint pollution sources efficiently. PMID:18547938

  4. A Contingent Valuation Approach to Community-based Watershed Management in Beyşehir Lake Basin

    OpenAIRE

    Fadim YAVUZ OZDEMIR; Tüzin BAYCAN-LEVENT

    2011-01-01

    Community-based watershed management has become more predominant as part of the trend towards more holistic and participatory approaches to water resources management. Locally based planning at the watershed scale is seen as an operative way to enhance long-term water resources management and environmental sustainability. Large-scale (regional) ecological systems can be most effectively regulated by small-scale (local) social organizations. Consequently motivating local people to actively par...

  5. Small watershed management as a tool of flood risk prevention

    Science.gov (United States)

    Jakubinsky, J.; Bacova, R.; Svobodova, E.; Kubicek, P.; Herber, V.

    2014-09-01

    According to the International Disaster Database (CRED 2009) frequency of extreme hydrological situations on a global scale is constantly increasing. The most typical example of a natural risk in Europe is flood - there is a decrease in the number of victims, but a significant increase in economic damage. A decrease in the number of victims is caused by the application of current hydrological management that focuses its attention primarily on large rivers and elimination of the damages caused by major flood situations. The growing economic losses, however, are a manifestation of the increasing intensity of floods on small watercourses, which are usually not sufficiently taken into account by the management approaches. The research of small streams should focus both on the study of the watercourse itself, especially its ecomorphological properties, and in particular on the possibility of flood control measures and their effectiveness. An important part of society's access to sustainable development is also the evolution of knowledge about the river landscape area, which is perceived as a significant component of global environmental security and resilience, thanks to its high compensatory potential for mitigation of environmental change. The findings discussed under this contribution are based on data obtained during implementation of the project "GeoRISK" (Geo-analysis of landscape level degradation and natural risks formation), which takes into account the above approaches applied in different case studies - catchments of small streams in different parts of the Czech Republic. Our findings offer an opportunity for practical application of field research knowledge in decision making processes within the national level of current water management.

  6. Tribal Watershed Management: Culture, Science, Capacity, and Collaboration

    Science.gov (United States)

    Cronin, Amanda; Ostergren, David M.

    2007-01-01

    This research focuses on two elements of contemporary American Indian natural resource management. First, the authors explore the capacity of tribes to manage natural resources, including the merging of traditional ecological knowledge (TEK) with Western science. Second, they analyze tribal management in the context of local and regional…

  7. Methodology for generation of hydrogeologic maps: rio da Palma watershed case study, DF, Brazil

    Directory of Open Access Journals (Sweden)

    Hélio Nóbile Diniz

    2007-08-01

    Full Text Available This paper had the objective of developing a methodology to support the management of water resources, based on hydro geological cartography, tested for the hydro geologic conditions of a watershed located at Central Brazil. Results show two major products: a hydro geologic, and a potential infiltration and recharge maps of the high course of the Rio da Palma watershed. This paper is presented in six parts. The first one discusses the map’s elements, essential thematic maps and appropriate scales. The second part proposes the graphic criteria for the integrated representation of the major parameters of overlaying aquifers. The third part demonstrates the importance of the data basis for the hydro geologic cartography, i.e., the contribution of each theme such as soil, geology, slope, climate and land use, when appropriately integrated. The fourth part discusses the selection and the integration of the main information layers for the Rio da Palma watershed using a Geographic Information System (GIS. On the fifth part, the result of the integration of the porous domain with the fractured domain aquifer information layers is shown and, finally, the potential infiltration and recharge map of the studied area, elaborated from the integration of overlapping of the data basis information layers is presented and discussed. In general, in the studied area, regions with high infiltration potential prevail where human interference is still moderate. Large portions of low infiltration potential are either associated with high slopes, with shallow soils (Cambissolos or else with urban constructions.

  8. A COMPARATIVE STUDY ON CALIBRATION METHODS OF NASH’S RAINFALL-RUNOFF MODEL TO AMMAMEH WATERSHED, IRAN

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2008-06-01

    Full Text Available Increasing importance of watershed management during last decades highlighted the need for sufficient data and accurate estimation of rainfall and runoff within watersheds. Therefore, various conceptual models have been developed with parameters based on observed data. Since further investigations depend on these parameters, it is important to accurately estimate them. This study by utilizing various methods, tries to estimate Nash rainfall-runoff model parameters and then evaluate the reliability of parameter estimation methods; moment, least square error, maximum likelihood, maximum entropy and genetic algorithm. Results based on a case study on the data from Ammameh watershed in Central Iran, indicate that the genetic algorithm method, which has been developed based on artificial intelligence, more accurately estimates Nash’s model parameters.

  9. Use of Sediment Budgets for Watershed Erosion Control Planning: A Case Study From Northern California

    Science.gov (United States)

    O'Connor, M.; McDavitt, W.

    2002-05-01

    Erosion, sedimentation and peak flow increases caused by forest management for commercial timber production may negatively affect aquatic habitat of endangered anadromous fish such as coho salmon ({\\ it O. kisutch}). This paper summarizes a portion of a Watershed Analysis study performed for Pacific Lumber Company, Scotia, CA, focusing on erosion and sedimentation processes and rates and downstream sediment routing and water quality in the Freshwater Creek watershed in northwest California. Hillslope, road and bank erosion, channel sedimentation and sediment rates were quantified using field surveys, aerial photo interpretation, and empirical modeling approaches for different elements of the study. Sediment transport rates for bedload were modeled, and sediment transport rates for suspended sediment were estimated based on size distribution of sediment inputs in relation to sizes transported in suspension. The resulting sediment budget was validated through comparison using recent short-term, high-quality estimates of suspended sediment yield collected by a community watershed group at a downstream monitoring site with technical assistance from the US Forest Service. Another check on the sediment budget was provided by bedload yield data from an adjacent watershed, Jacoby Creek. The sediment budget techniques and bedload routing models used for this study provide sediment yield estimates that are in good agreement with available data. These results suggest that sediment budget techniques that require moderate levels of fieldwork can be used to provide relatively accurate technical assessments for use in the TMDL process. The sediment budget also identifies the most significant sediment sources and suggests a framework within which effective erosion control strategies can be developed.

  10. The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed

    Science.gov (United States)

    Yang, G.; Best, E. P.; Goodwin, S.

    2013-12-01

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants to receiving water bodies and enhance local and regional ecosystem services. Barriers for the implementation of CRAM include uncertainties related to the extent to which nutrients are removed by CRAM at various spatial and temporal scales, longevity, optimal placement of CRAM within the landscape, and implementation / operation / maintenance costs. We conducted a study aimed at the identification of optimal placement of CRAM in watersheds that reduces N loading to an environmentally sustainable level, at an acceptable, known, cost. For this study, we used a recently developed screening-level modeling approach, WQM-TMDL-N, running in the ArcGIS environment, to estimate nitrogen loading under current land use conditions (NLCD 2006). This model was equipped with a new option to explore the performances of placement of various CRAM types and areas to reduce nitrogen loading to a State-accepted Total Maximum Daily Load (TMDL) standard, with related annual average TN concentration, and a multi-objective algorithm optimizing load and cost. CRAM practices explored for implementation in rural area included buffer strips, nutrient management practices, and wetland restoration. We initially applied this modeling approach to the Tippecanoe River (TR) watershed (8-digit HUC), a headwater of the Wabash River (WR) watershed, where CRAM implementation in rural and urban areas is being planned and implemented at various spatial scales. Consequences of future land use are explored using a 2050 land use/land cover map forecasted by the Land Transformation Model. The WR watershed, IN, drains two-thirds of the state's 92 counties and supports predominantly agricultural land use. Because the WR accounts for over 40% of the nutrient loads of the Ohio River and

  11. Fostering Incentive-Based Policies and Partnerships for Integrated Watershed Management in the Southeast Asian Uplands

    Directory of Open Access Journals (Sweden)

    Andreas Neef

    2012-08-01

    Full Text Available This paper attempts to identify the major factors associated with some of the failures and successes of integrated watershed management policies and projects with a particular emphasis on the uplands of mainland Southeast Asia. It argues that many policy measures have been misguided by failing to acknowledge the multi-dimensional facets of sustainable watershed management and putting too much emphasis on command-and-control approaches to resource management and one-size-fits-all conservation models. Attempts to introduce soil and water conservation measures, for instance, have largely failed because they concentrated merely on the technical feasibility and potential ecological effects, while neglecting economic viability and socio-cultural acceptance. The production of agricultural commodities, on the other hand, has mostly been market-driven and often induced boom and bust cycles that compromised the ecological and social dimensions of sustainability. Purely community-based approaches to watershed management, on their part, have often failed to address issues of elite capture and competing interests within and between heterogeneous uplands communities. Drawing on a review of recent experience and on lessons from initiatives in a long-term collaborative research program in Thailand (The Uplands Program aimed at bridging the various dimensions of sustainability in the Southeast Asian uplands, this paper discusses how a socially, institutionally and ecologically sustainable mix of agricultural production, ecosystem services and rural livelihood opportunities can be achieved through incentive-based policies and multi-stakeholder partnerships that attempt to overcome the (perceived antagonism between conservation and development in upland watersheds of Southeast Asia.

  12. Community-led Watershed-based Water Resources Management: The Case of Balian, Pangil, Laguna

    OpenAIRE

    Contreras, Antonio P.

    2004-01-01

    In Balian, the presence of indigenous institutions borne by a well entrenched and historically rooted and highly developed sociopolitical arrangement has enabled the local community to effectively link their governance and production activities to the watershed resource, despite opposition from some local political interests. The core of this is the Samahan ng Balian para sa Pagpapauwi ng Tubig, Inc. (SBPTI), a barangay based people’s organization formed in 1926 with the goal of managing the ...

  13. Environmental quality integrated indicator applied to the management of the Jiquiriçá river watershed, BA, Brazil

    Directory of Open Access Journals (Sweden)

    Raquel Maria de Oliveira

    2010-04-01

    Full Text Available In this work social, economic and environmental aspects were studied using the concept of programming by commitment, with the objective of structuring an integrated indicator capable of estimating the degree of the environmental quality of the Jiquiriça river basin, BA, composed by the indicator of environmental salubrity, water quality and soil’s protection. For the determination of the environmental salubrity indicator, data of the following variables were collected: existence of treated water supply, disposition and treatment of solid residues, diseases vectors control, the existence of the Agenda 21, socioeconomics data and indices of human development for each municipal district located in the area of the watershed. The indicator of the water quality was structured based on the analysis of water samples collected in eight sampling points along Jiquiriçá river and determined by seven parameters. The indicator of soil’s protection was based on the analysis of maps obtained according to the weight of each steepness and land use class. Results indicate that the watershed is in a poor equilibrium condition and suggest the need for structural investments as well as changes in public polices. The methodology used was efficient for this watershed management and could be used as tool for the environmental planning of the region, once it can be adapted to several situations depending on the data availability.

  14. Watershed Assessment with Beach Microbial Source Tracking and Outcomes of Resulting Gull Management.

    Science.gov (United States)

    Goodwin, Kelly D; Gruber, Steve; Vondrak, Mary; Crumpacker, Andrea

    2016-09-20

    Total maximum daily load (TMDL) implementation at a southern California beach involved ultraviolet treatment of watershed drainage that provided >97% reduction in fecal indicator bacteria (FIB) concentrations. However, this pollutant control measure did not provide sufficient improvement of beach water quality, prompting further assessment. Investigation included microbial source tracking (MST) for human, gull, and canine fecal sources, monitoring of enterococci and fecal coliform, and measurement of chemical and physical water quality parameters for samples collected from watershed, groundwater, and beach sites, including a beach scour pond and tidal creek. FIB variability remained poorly modeled in regression analysis. However, MST revealed correlations between FIB and gull source tracking markers, leading to recommendations to manage gulls as a pollutant source. Beach conditions were followed for three years after implementation of a best management practice (BMP) to abate gulls using a falconry program for the beach and an upland landfill. The gull abatement BMP was associated with improved beach water quality, and this appears to be the first report of falconry in the context of TMDL implementation. Overall, MST data enabled management action despite an inability to fully model FIB dynamics in the coupled watershed-beach system.

  15. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    Science.gov (United States)

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  16. Water and Poverty in Two Colombian Watersheds

    Directory of Open Access Journals (Sweden)

    Nancy Johnson

    2009-02-01

    Full Text Available Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Results of the participatory poverty assessment reveal significant decreases in poverty in both watersheds over the past 25 years, which was largely achieved by the diversification of livelihoods outside of agriculture. Water is an important resource for household welfare. However, opportunities for reducing poverty by increasing the quantity or quality of water available to the poor may be limited. While improved watershed management may have limited direct benefits in terms of poverty alleviation, there are important indirect linkages between watershed management and poverty, mainly through labour and service markets. The results suggest that at the level of the watershed the interests of the rich and the poor are not always in conflict over water. Sectoral as well as socio-economic differences define stakeholder groups in watershed management. The findings have implications for policymakers, planners and practitioners in various sectors involved in the implementation of integrated water resources management (IWRM.

  17. Watershed Boundaries, Watershed, Published in Not Provided, 1:1200 (1in=100ft) scale, NC Emergency Management.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of Not Provided. It is...

  18. Science Education for Environmental Sustainability: A Case Study of the Palouse Watershed

    Science.gov (United States)

    Lyman, Samson E.

    2009-01-01

    This study uses case study and qualitative content analysis methodologies to answer the question: What is the relationship between Washington State's k-12 science education standards and the environmental sustainability needs of the Palouse River Watershed? After defining the Palouse Watershed's attributes, the author presents a land use history…

  19. Evaluating changes in water quality with respect to nonpoint source nutrient management strategies in the Chesapeake Bay Watershed

    Science.gov (United States)

    Keisman, J.; Sekellick, A.; Blomquist, J.; Devereux, O. H.; Hively, W. D.; Johnston, M.; Moyer, D.; Sweeney, J.

    2014-12-01

    Chesapeake Bay is a eutrophic ecosystem with periodic hypoxia and anoxia, algal blooms, diminished submerged aquatic vegetation, and degraded stocks of marine life. Knowledge of the effectiveness of actions taken across the watershed to reduce nitrogen (N) and phosphorus (P) loads to the bay (i.e. "best management practices" or BMPs) is essential to its restoration. While nutrient inputs from point sources (e.g. wastewater treatment plants and other industrial and municipal operations) are tracked, inputs from nonpoint sources, including atmospheric deposition, farms, lawns, septic systems, and stormwater, are difficult to measure. Estimating reductions in nonpoint source inputs attributable to BMPs requires compilation and comparison of data on water quality, climate, land use, point source discharges, and BMP implementation. To explore the relation of changes in nonpoint source inputs and BMP implementation to changes in water quality, a subset of small watersheds (those containing at least 10 years of water quality monitoring data) within the Chesapeake Watershed were selected for study. For these watersheds, data were compiled on geomorphology, demographics, land use, point source discharges, atmospheric deposition, and agricultural practices such as livestock populations, crop acres, and manure and fertilizer application. In addition, data on BMP implementation for 1985-2012 were provided by the Environmental Protection Agency Chesapeake Bay Program Office (CBPO) and the U.S. Department of Agriculture. A spatially referenced nonlinear regression model (SPARROW) provided estimates attributing N and P loads associated with receiving waters to different nutrient sources. A recently developed multiple regression technique ("Weighted Regressions on Time, Discharge and Season" or WRTDS) provided an enhanced understanding of long-term trends in N and P loads and concentrations. A suite of deterministic models developed by the CBPO was used to estimate expected

  20. A system method for the assessment of integrated water resources management (IWRM) in mountain watershed areas: the case of the "Giffre" watershed (France).

    Science.gov (United States)

    Charnay, Bérengère

    2011-07-01

    In the last fifty years, many mountain watersheds in temperate countries have known a progressive change from self-standing agro-silvo-pastoral systems to leisure dominated areas characterized by a concentration of tourist accommodations, leading to a drinking water peak during the winter tourist season, when the water level is lowest in rivers and sources. The concentration of water uses increases the pressure on "aquatic habitats" and competition between uses themselves. Consequently, a new concept was developed following the international conferences in Dublin (International Conference on Water and the Environment - ICWE) and Rio de Janeiro (UN Conference on Environment and Development), both in 1992, and was broadly acknowledged through international and European policies. It is the concept of Integrated Water Resource Management (IWRM). It meets the requirements of different uses of water and aquatic zones whilst preserving the natural functions of such areas and ensuring a satisfactory economic and social development. This paper seeks to evaluate a local water resources management system in order to implement it using IWRM in mountain watersheds. The assessment method is based on the systemic approach to take into account all components influencing a water resources management system at the watershed scale. A geographic information system was built to look into interactions between water resources, land uses, and water uses. This paper deals specifically with a spatial comparison between hydrologically sensitive areas and land uses. The method is applied to a French Alps watershed: the Giffre watershed (a tributary of the Arve in Haute-Savoie). The results emphasize both the needs and the gaps in implementing IWRM in vulnerable mountain regions.

  1. FARMERS’ MOTIVATIONS FOR ADOPTING MANAGEMENT PRACTICES IN THE GOODWATER CREEK EXPERIMENTAL WATERSHED

    Science.gov (United States)

    The purpose of this work was to evaluate farm operator opinions relative to soil and water conservation practices in the Goodwater Creek Watershed in Central Missouri. This study reveals the outcome of structured interviews conducted with 25 farm operators within the Conservation Effects Assessment...

  2. Methods for Environmental Management Research at Landscape and Watershed Scales

    Science.gov (United States)

    Agriculture is as much as ever and perhaps more so today a landscape enterprise. And as we move into an era in which ecosystem services from agriculture are tabulated, valued, and judged by society, landscape involvement and management will become ever more important. The majority of the non-comm...

  3. Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed

    Directory of Open Access Journals (Sweden)

    Ossama M. M. Abdelwahab

    2014-11-01

    Full Text Available The Annualised Agricultural Non-point Source model was used to evaluate the effectiveness of different management practices to control the soil erosion and sediment load in the Carapelle watershed, a Mediterranean medium-size watershed (506 km2 located in Apulia, Southern Italy. The model was previously calibrated and validated using five years of runoff and sediment load data measured at a monitoring station located at Ordona - Ponte dei Sauri Bridge. A total of 36 events were used to estimate the performance of the model during the period 2007-2011. The model performed well in predicting runoff, as the high values of the coefficients of efficiency and determination during the validation process showed. The peak flows predictions were satisfactory especially for the high flow events; the prediction capability of sediment load was good, even if a slight over-estimation was observed. Simulations of alternative management practices show that converting the most eroding cropland cells (13.5% of the catchment area to no tillage would reduce soil erosion by 30%, while converting them to grass or forest would reduce soil erosion by 36.5% in both cases. A crop rotation of wheat and a forage crop can also provide an effective way for soil erosion control as it reduces erosion by 69%. Those results can provide a good comparative analysis for conservation planners to choose the best scenarios to be adopted in the watershed to achieve goals in terms of soil conservation and water quality.

  4. The relationship between the Municipal Master Plan and local Watershed Plans in water management

    Directory of Open Access Journals (Sweden)

    Denise Gallo Pizella

    2015-07-01

    Full Text Available The National Water Resources Policy has as one of its tools the drafting of local Water Resource Plans. In view of water resources planning and its relationship to land use planning, the aim of this work is to analyze the institutional and legal difficulties and the potential for an integrated system of water resources management. For this, we used the method of documentary and bibliographic research, beginning with the “Estatuto da Cidade”, a law for urban policy in Brazil, and literature on water management at the municipal and watershed levels. At the municipal level, the “Master Plan” (municipal plan of land use planning became the main instrument of territorial and municipal management, defining the parameters for the compliance of social, environmental and economic functions of real property. In this sense, the municipalities have a responsibility to protect water resources and, without local support, territorial and water management cannot be integrated in the context of the river basin. Despite the difficulties of including environmental variable in urban planning, the Master Plan has the potential to shape local water management systems that are environmentally sustainable and that progressively improve water quality and quantity within the watershed. Similarly, with more significant participation of the municipality in the Basin Committee, it is possible that the forms of municipal land use and occupation can be considered during the development and implementation of the Basin Plan. Thus, the management of water resources can occur integrally.

  5. Assisting community management of groundwater: Irrigator attitudes in two watersheds in Rajasthan and Gujarat, India

    Science.gov (United States)

    Varua, M. E.; Ward, J.; Maheshwari, B.; Oza, S.; Purohit, R.; Hakimuddin; Chinnasamy, P.

    2016-06-01

    The absence of either state regulations or markets to coordinate the operation of individual wells has focussed attention on community level institutions as the primary loci for sustainable groundwater management in Rajasthan and Gujarat, India. The reported research relied on theoretical propositions that livelihood strategies, groundwater management and the propensity to cooperate are associated with the attitudinal orientations of well owners in the Meghraj and Dharta watersheds, located in Gujarat and Rajasthan respectively. The research tested the hypothesis that attitudes to groundwater management and farming practices, household income and trust levels of assisting agencies were not consistent across the watersheds, implying that a targeted approach, in contrast to default uniform programs, would assist communities craft rules to manage groundwater across multiple hydro-geological settings. Hierarchical cluster analysis of attitudes held by survey respondents revealed four statistically significant discrete clusters, supporting acceptance of the hypothesis. Further analyses revealed significant differences in farming practices, household wealth and willingness to adapt across the four groundwater management clusters. In conclusion, the need to account for attitudinal diversity is highlighted and a framework to guide the specific design of processes to assist communities craft coordinating instruments to sustainably manage local aquifers described.

  6. Chemical characterization of sediment "Legacy P" in watershed streams - implications for P loading under land management

    Science.gov (United States)

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    Transfer of dissolved phosphorus (P) in runoff water via streams is regulated mainly by both stream sediment P adsorption and precipitation processes. The adsorption capacity of stream sediments acting as a P sink was a great benefit to preserving water quality in downstream lakes in the past, as it minimized the effects of surplus P loading from watershed streams. However, with long-term continued P loading the capacity of the sediments to store P has diminished, and eventually converted stream sediments from P sinks to sources of dissolved P. This accumulation of 'legacy P' in stream sediments has become the major source of dissolved P and risk to downstream water quality. Agricultural best management practices (BMP) for P typically attempt to minimize the transfer of P from farmland. However, because of the limitation in sediment P adsorption capacity, adoption of BMPs, such as reduction of external P loading, may not result in an immediate improvement in water quality. The goal of the research is to chemically characterize the P forms contributing to legacy P in stream sediments located in the watershed connecting to Cook's Bay, one of three basins of Lake Simcoe, Ontario, Canada. This watershed receives the largest amount of external P loading and has the highest rate of sediment build-up, both of which are attributed to agriculture. Water samples were collected monthly at six study sites from October 2015 for analysis of pH, temperature, dissolved oxygen, total P, dissolved reactive P, particulate P, total N, NH4-N, NO3-N, TOC and other elements including Al, Fe, Mn, Mg, Ca, S, Na, K and Zn. Sediment core samples were collected in November 2015 and will continue to be collected in March, July and October 2016. Various forms of P in five vertical sections were characterized by sequential fractionation and solution 31P NMR spectroscopy techniques. Pore water, sediment texture and clay identification were performed. The concentration of total P in water samples

  7. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  8. Collaborative research and watershed management for optimization of forest road best management practices

    OpenAIRE

    Riedel, Mark S.

    2003-01-01

    The Coweeta Hydrologic Laboratory, USFS Southern Research Station, worked with state and local agencies and various organizations to provide guidance and tools to reduce sedimentation and facilitate restoration of the 1900km2 Conasauga River watershed in northern Georgia and southern Tennessee. The Conasauga River has the most diverse aquatic ecosystem of any river in the region and is currently being considered for designation as a Federal wild and scenic river. The watershed is encircled an...

  9. Why watershed-based water management makes sense

    OpenAIRE

    Francisco, H.

    2002-01-01

    The alarming increase in the scarcity of water in various parts of the world has focused global attention on the need for a stronger and more appropriate water resource management solution. With about 166 million people in 18 countries suffering from water scarcity and about 270 million in 11 countries having "water stresses" conditions (World Bank 2002), it becomes imperative for nations to come up with more focused and direct measures that would address and stem this resource scarcity.

  10. Study on the Land Use Structure and Soil Erosion Variation before and a fter the Small Watershed Comprehensive Management%小流域综合治理前后土地利用结构和土壤侵蚀强度变化研究

    Institute of Scientific and Technical Information of China (English)

    邝高明; 刘银迪; 郝名利; 王敬贵; 刘超群

    2014-01-01

    土地利用结构调整和减少土壤侵蚀面积、降低土壤侵蚀强度是小流域综合治理工程的主要效益,小流域综合治理前后土地利用和土壤侵蚀变化分析是评价工程实施效益的重要方面。以云贵鄂渝水土保持世行贷款/欧盟赠款项目重点监测小流域-盆古小流域为研究对象,基于治理前后的两期高分辨率遥感影像和eCogni-tion、Arcgis软件,对盆古小流域治理前后的土地利用和土壤侵蚀变化情况进行了分析研究。结果表明:2008~2011年盆古小流域旱地、水田等面积减少,有林地和梯田等面积增加;小流域轻度侵蚀在有林地中分布最多,而轻度以上侵蚀主要分布在旱地中;另外,小流域土壤侵蚀这一期间整体呈现由强转弱的趋势,表明小流域综合治理工程取得了明显成效。%Main benefits of the small watershed comprehensive management include the adjustment of the land use structure , reduction of the soil erosion areas and the reduction of soil erosion strength .The land use before&after the small watershed comprehensive management and the soil erosion variation analysis are the important aspects in the as -sessment of the project implementation benefits .Based on the high -resolution RS images took before and after the management with the software such as the eCognition , Arcgis,the analysis and study was conducted on the land use and soil erosion variation before and after the management of the Pengu Small Watershed , that is under the Key Moni-toring Small Watershed of the World Bank Loan /EU Grant Project of Yunnan ,Guizhou , Hubei and Chongqing Prov-inces .The results showed that from 2008 to 2011 the area of dry land and paddy land reduced while the areas of forest and terrace increased .Most of the slight erosion is located in the forest land , while the erosion level higher than slight erosion is mainly located in the dry land .In addition , the soil erosion of

  11. Methodology for generation of hydrogeologic maps: rio da Palma watershed case study, DF, Brazil

    OpenAIRE

    Hélio Nóbile Diniz; José Eloi Guimarães Campos; Getulio Teixeira Batista; Tatiana Diniz Gonçalves; Marcelo dos Santos Targa

    2007-01-01

    This paper had the objective of developing a methodology to support the management of water resources, based on hydro geological cartography, tested for the hydro geologic conditions of a watershed located at Central Brazil. Results show two major products: a hydro geologic, and a potential infiltration and recharge maps of the high course of the Rio da Palma watershed. This paper is presented in six parts. The first one discusses the map’s elements, essential thematic maps and appropriate sc...

  12. SWAT meta-modeling as support of the management scenario analysis in large watersheds.

    Science.gov (United States)

    Azzellino, A; Çevirgen, S; Giupponi, C; Parati, P; Ragusa, F; Salvetti, R

    2015-01-01

    In the last two decades, numerous models and modeling techniques have been developed to simulate nonpoint source pollution effects. Most models simulate the hydrological, chemical, and physical processes involved in the entrainment and transport of sediment, nutrients, and pesticides. Very often these models require a distributed modeling approach and are limited in scope by the requirement of homogeneity and by the need to manipulate extensive data sets. Physically based models are extensively used in this field as a decision support for managing the nonpoint source emissions. A common characteristic of this type of model is a demanding input of several state variables that makes the calibration and effort-costing in implementing any simulation scenario more difficult. In this study the USDA Soil and Water Assessment Tool (SWAT) was used to model the Venice Lagoon Watershed (VLW), Northern Italy. A Multi-Layer Perceptron (MLP) network was trained on SWAT simulations and used as a meta-model for scenario analysis. The MLP meta-model was successfully trained and showed an overall accuracy higher than 70% both on the training and on the evaluation set, allowing a significant simplification in conducting scenario analysis.

  13. Tailored Watershed Assessment and Integrated Management (TWAIM: A Systems Thinking Approach

    Directory of Open Access Journals (Sweden)

    Joe Magner

    2011-06-01

    Full Text Available Control of non-point source (NPS water pollution remains elusive in the United States (US. Many US water-bodies which have been primarily impacted by NPS pollution have not achieved water quality goals set by Clean Water Act. Technological advances have been made since 1972, yet many water resources fail to meet water quality standards. Common Pool Resources Theory is considered to understand the human dimension of NPS pollution by exploring anthropogenic activities superimposed upon dynamic ecosystems. In the final analysis, priority management zones (PMZs for best management practice (BMP implementation must have buy-in from land managers. TWAIM is an iterative systems thinking approach to planning, collecting landscape and land use information and communicating systems understanding to stakeholders. Hydrologic pathways that link the physical, chemical and biological characteristics influence processes occurring in a watershed which drive stream health and ecological function. With better systems understanding and application by technical specialists, there is potential for improved stakeholder interaction and dialogue which could then enable better land use decisions. Issues of pollutant origin, transport, storage and hydraulic residence must be defined and communicated effectively to land managers within a watershed context to observe trends in water quality change. The TWAIM concept provides a logical framework for locally-led assessment and a means to communicate ecohydrologic systems understanding over time to the key land managers such that PMZs can be defined for BMP implementation.

  14. A GIS based watershed information system for water resources management and planning in semi-arid areas

    Science.gov (United States)

    Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study

  15. Participatory watershed management to decrease land degradation and sediment transport in Kagera and Nyando catchments of Lake Victoria basin

    OpenAIRE

    Kenge, James Gunya

    2009-01-01

    Attention to participatory watershed management is increasing across the developing world as soil erosion continues to degrade agricultural land; reservoirs and irrigation infrastructure are clogged with sediment. The realization of the importance of watersheds is crucial for sustainable utilization especially in developing countries where rural livelihoods and economies are highly dependant on the exploitation of natural resources. The Lake Victoria basin is characterized by high population ...

  16. SWAT ASSESSMENT OF MANAGEMENT PRACTICES ON ATRAZINE LOSS IN THE GOOD WATER CREEK EXPERIMENTAL WATERSHED.

    Science.gov (United States)

    The Goodwater Creek Watershed is a subwatershed of the Mark Twain Lake watershed, an ARS-CEAP benchmark watershed in Northeast Missouri. This 7,250-ha watershed was selected for initial modeling because of its smaller size and the large hydrologic and climatologic dataset available. A SWAT model of ...

  17. Community-based shared values as a 'Heart-ware' driver for integrated watershed management: Japan-Malaysia policy learning perspective

    Science.gov (United States)

    Mohamad, Zeeda Fatimah; Nasaruddin, Affan; Abd Kadir, Siti Norasiah; Musa, Mohd Noor; Ong, Benjamin; Sakai, Nobumitsu

    2015-11-01

    This paper explores the case for using "community-based shared values" as a potential driver for the "Heartware" aspects of governance in Integrated Watershed Management (IWM) - from a Japan-Malaysia policy learning perspective. This policy approach was originally inspired by the Japanese experience, and the paper investigates whether a similar strategy can be adapted in the Malaysian context-based on a qualitative exploratory case study of a local downstream watershed community. The community-based shared values are categorized into six functional values that can be placed on a watershed: industry, ecosystem, lifestyle, landscape, water resource and spirituality. The study confirmed the availability of a range of community-based shared values in each category that are promising to drive the heartware for integrated watershed management in the local Malaysian context. However, most of these shared values are either declining in its appreciation or nostalgic in nature. The paper ends with findings on key differences and similarities between the Malaysian and Japanese contexts, and concludes with lessons for international transfer of IWM heartware policy strategies between the two countries.

  18. Soil and nutrient retention in winter-flooded ricefields with implications for watershed management

    Science.gov (United States)

    Manley, S.W.; Kaminski, R.M.; Rodrigue, P.B.; Dewey, J.C.; Schoenholtz, S.H.; Gerard, P.D.; Reinecke, K.J.

    2009-01-01

    The ability of water resources to support aquatic life and human needs depends, in part, on reducing nonpoint source pollution amid contemporary agricultural practices. Winter retention of shallow water on rice and other agricultural fields is an accepted management practice for wildlife conservation; however, soil and water conservation benefits are not well documented. We evaluated the ability of four post-harvest ricefield treatment combinations (stubble-flooded, stubble-open, disked-flooded and disked-open) to abate nonpoint source exports into watersheds of the Mississippi Alluvial Valley. Total suspended solid exports were 1,121 kg ha-1 (1,000 lb ac-1) from disked-open fields where rice stubble was disked after harvest and fields were allowed to drain, compared with 35 kg ha-1 (31 lb ac-1) from stubble-flooded fields where stubble was left standing after harvest and fields captured rainfall from November 1 to March 1. Estimates of total suspended solid exports from ricefields based on Landsat imagery and USDA crop data are 0.43 and 0.40 Mg km-2 day-1 in the Big Sunflower and L'Anguille watersheds, respectively. Estimated reductions in total suspended solid exports from ricefields into the Big Sunflower and L'Anguille water-sheds range from 26% to 64% under hypothetical scenarios in which 65% to 100% of the rice production area is managed to capture winter rainfall. Winter ricefield management reduced nonpoint source export by decreasing concentrations of solids and nutrients in, and reducing runoff volume from, ricefields in the Mississippi Alluvial Valley.

  19. Application of a Structured Decision Process for Informing Watershed Management Options in Guánica Bay, Puerto Rico

    Science.gov (United States)

    The Guánica Bay watershed has been a priority for research, assessment and management since the 1970s, and since 2008, has been the focus of a U.S. Coral Reef Task Force (USCRTF) research initiative involving multiple agencies assembled to address the effect of land management de...

  20. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  1. Interactions of Soil Order and Land Use Management on Soil Properties in the Kukart Watershed, Kyrgyzstan

    OpenAIRE

    Zulfiia Sakbaeva; Veronica Acosta-Martínez; Jennifer Moore-Kucera; Wayne Hudnall; Karabaev Nuridin

    2012-01-01

    Surveys of soil properties related to soil functioning for many regions of Kyrgyzstan are limited. This study established ranges of chemical (soil organic matter (SOM), pH and total N (TN)), physical (soil texture), and biochemical (six enzyme activities of C, N, P, and S cycling) characteristics for nine profiles from the Kukart watershed of Jalal-Abad region in Kyrgyzstan. These profiles represent different soil orders (Inceptisols, Alfisols, and Mollisols) and land uses (cultivated, nut-fr...

  2. Upstream to downstream: a multiple-assessment-point approach for targeting non-point-source priority management areas at large watershed scale

    OpenAIRE

    Chen, L.; Zhong, Y.; Wei, G; Shen, Z.

    2014-01-01

    The identification of priority management areas (PMAs) is essential for the control of non-point-source (NPS) pollution, especially for a large-scale watershed. However, previous studies have typically focused on small-scale catchments adjacent to specific assessment points; thus, the interactions between multiple river points remain poorly understood. In this study, a multiple-assessment-point PMA (MAP-PMA) framework was proposed by integrating the upstream sources and the ...

  3. Decision Support System integrated with Geographic Information System to target restoration actions in watersheds of arid environment: A case study of Hathmati watershed, Sabarkantha district, Gujarat

    Indian Academy of Sciences (India)

    Dhruvesh P Patel; Prashant K Srivastava; Manika Gupta; Naresh Nandhakumar

    2015-02-01

    Watershed morphometric analysis is important for controlling floods and planning restoration actions. The present study is focused on the identification of suitable sites for locating water harvesting structures using morphometric analysis and multi-criteria based decision support system. The Hathmati watershed of river Hathmati at Idar taluka, Sabarkantha district, Gujarat is experiencing excessive runoff and soil erosion due to high intensity rainfall. Earth observation dataset such as Digital Elevation Model and Geographic Information System are used in this study to determine the quantitative description of the basin geometry. Several morphometric parameters such as stream length, elongation ratio, bifurcation ratio, drainage density, stream frequency, texture ratio, form factor, circularity ratio, and compactness coefficient are taken into account for prioritization of Hathmati watershed. The overall analysis reveals that Hathmati comprises of 13 mini-watersheds out of which, the watershed number 2 is of utmost priority because it has the highest degradation possibilities. The final results are used to locate the sites suitable for water harvesting structures using geo-visualization technique. After all the analyses, the best possibilities of check dams in the mini-watersheds that can be used for soil and water conservation in the watershed are presented.

  4. Physical characterization of a watershed through GIS: a study in the Schmidt stream, Brazil.

    Science.gov (United States)

    Reis, D R; Plangg, R; Tundisi, J G; Quevedo, D M

    2015-12-01

    Remote sensing and geoprocessing are essential tools for obtaining and maintaining records of human actions on space over the course of time; these tools offer the basis for diagnoses of land use, environmental interference and local development. The Schmidt stream watershed, located in the Sinos River basin, in southern Brazil, has an environmental situation similar to that of the majority of small streams draining rural and urban areas in southern Brazil: agricultural and urbanization practices do not recognize the riparian area and there is removal of original vegetation, disregarding the suitability of land use; removal of wetlands; intensive water use for various activities; and lack of control and monitoring in the discharge of wastewater, among other factors, deteriorate the quality of this important environment.This article aims to achieve a physical characterization of the Schmidt stream watershed (Sinos river basin) identifying elements such as land use and occupation, soil science, geology, climatology, extent and location of watershed, among others, so as to serve as the basis for a tool that helps in the integrated environmental management of watersheds. By applying geographic information system - GIS to the process of obtaining maps of land use and occupation, pedologicaland geological, and using climatological data from the Campo Bom meteorological station, field visit, review of literature and journals, and publicly available data, the physical characterization of the Schmidt stream watershed was performed, with a view to the integrated environmental management of this watershed. Out of the total area of the Schmidt stream watershed (23.92 km(2)), in terms of geology, it was observed that 23.7% consist of colluvial deposits, 22.6% consist of grass facies, and 53.7% consist of Botucatu formation. Major soil types of the watershed: 97.4% Argisols and only 2.6% Planosols. Land use and occupation is characterized by wetland (0.5%), Native Forest (12

  5. Physical characterization of a watershed through GIS: a study in the Schmidt stream, Brazil.

    Science.gov (United States)

    Reis, D R; Plangg, R; Tundisi, J G; Quevedo, D M

    2015-12-01

    Remote sensing and geoprocessing are essential tools for obtaining and maintaining records of human actions on space over the course of time; these tools offer the basis for diagnoses of land use, environmental interference and local development. The Schmidt stream watershed, located in the Sinos River basin, in southern Brazil, has an environmental situation similar to that of the majority of small streams draining rural and urban areas in southern Brazil: agricultural and urbanization practices do not recognize the riparian area and there is removal of original vegetation, disregarding the suitability of land use; removal of wetlands; intensive water use for various activities; and lack of control and monitoring in the discharge of wastewater, among other factors, deteriorate the quality of this important environment.This article aims to achieve a physical characterization of the Schmidt stream watershed (Sinos river basin) identifying elements such as land use and occupation, soil science, geology, climatology, extent and location of watershed, among others, so as to serve as the basis for a tool that helps in the integrated environmental management of watersheds. By applying geographic information system - GIS to the process of obtaining maps of land use and occupation, pedologicaland geological, and using climatological data from the Campo Bom meteorological station, field visit, review of literature and journals, and publicly available data, the physical characterization of the Schmidt stream watershed was performed, with a view to the integrated environmental management of this watershed. Out of the total area of the Schmidt stream watershed (23.92 km(2)), in terms of geology, it was observed that 23.7% consist of colluvial deposits, 22.6% consist of grass facies, and 53.7% consist of Botucatu formation. Major soil types of the watershed: 97.4% Argisols and only 2.6% Planosols. Land use and occupation is characterized by wetland (0.5%), Native Forest (12

  6. Assessment of Watershed Technologies

    OpenAIRE

    Lim Suan, Medel P.

    1999-01-01

    Dealing with various topics such as watershed classification, computer simulation and modeling and computer application in watershed research, this paper assembles and summarizes technologies that are currently being used or have potential for application in the Philippines. This is in the hope of helping watershed managers, planners and researchers.

  7. Evaluation of Distributed BMPs in an Urban Watershed - High Resolution Modeling for Stormwater Management

    Science.gov (United States)

    Fry, T. J.; Maxwell, R. M.; McCray, J. E.; Higgins, C. P.

    2015-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows which can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Currently there are two modeling approaches used to evaluate BMPs in urban watersheds, conceptually-based coarse resolution hydrologic models and high-resolution physically-based models. Conceptual urban hydrology-hydraulic models typically are used to determine peak flow hydrographs within a watershed based on uniform rainfall, the basins size, shape, and percent of impervious land cover. Physically-based hydrologic models simulate integrated surface and subsurface water flow. Here, we use high-resolution physically based hydrologic models of the urban hydrologic cycle with explicit inclusion of the built environment. We compare the inclusion and exclusion of LID features to evaluate the parameterizations used to model these components in more conceptually based models. Differences in response are discussed and a road map is put forth for improving LID representation in commonly used urban water models.

  8. Oral histories as a baseline of landscape restoration – co-management and watershed knowledge in Jukajoki river

    Directory of Open Access Journals (Sweden)

    Tero Mustonen

    2013-08-01

    Full Text Available This article explores local oral histories and selected communal written texts and their role in the severely damaged watershed of Jukajoki [and adjacent lake Jukajärvi watershed] located in Kontiolahti and Joensuu municipalities, North Karelia, Finland. All in all 35 narratives were collected 2010−2012. Four narratives have been presented in this paper as an example of the materials. Empirical materials have been analysed by using a framework of both Integrated Ecosystem Management and co-management. Three readings of the river Jukajoki and the adjacent watershed emerged from the materials – Sámi times, Savo-Karelian times and times of damages, or the industrial age of the river. Local knowledge, including optic histories, provided information about pre-industrial fisheries, fish ecology and behaviour and bird habitats. Lastly, special oral histories of keepers of the local tradition provided narratives which are consistent with inquiries from other parts of Finland, non-Euclidian readings of time and space and hint at what the Indigenous scholars have proposed as an intimate interconnection between nature and human societies extending beyond notions of social-ecological systems. Empirical oral histories also conceptualize collaborative governance with a formal role of local ecological knowledge as a future management option for the Jukajoki watershed. Watershed restoration and associated baseline information benefits greatly from the oral histories recorded with people who still remember pre-industrial and pre-war ecosystems and their qualities.

  9. Establishing ecological and social continuities: new challenges to optimize urban watershed management

    Science.gov (United States)

    Mitroi, V.; de Coninck, A.; Vinçon-Leite, B.; Deroubaix, J.-F.

    2014-09-01

    The (re)construction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and "classical" ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.

  10. Watershed-based systems

    OpenAIRE

    Walker, S; Mostaghimi, S.

    2009-01-01

    Metadata only record This chapter discusses the application of adaptive watershed management strategies and their importance to maintaining water supply. The watershed, which is an area of land that drains to a particular point or outlet, can be any size and is physically governed by topography. Thoroughly understanding these physical properties is essential to formulating an effective management plan for a watershed. In turn, proper management can improve and maintain soil quality and wat...

  11. Study on Characteristics of Climatic Variation in Yanhe Watershed during 1974-2004

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the climate changes of Yanhe watershed during 1974-2004. [Method] The monthly temperature and precipitation during 1974-2004 in seven representative stations in Yanhe watershed were chosen. By dint of climate statistics analysis method, accumulated anomaly and signal/noise ratio method, the regional temperature and precipitation changes in recent 31 years were expounded and its changes features and the year having climate mutation were found out. [Result] The climate changes...

  12. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    Science.gov (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales.

  13. Assessment and modelling of the influence of man-made networks on the hydrology of a small watershed: implications for fast flow components, water quality and landscape management

    Science.gov (United States)

    Carluer, Nadia; Marsily, Ghislain De

    2004-01-01

    Up to now, most watershed models have been focused on the representation of 'natural' flow and transport processes. In this paper, we discuss the role of man-made networks, such as ditches, roads, hedge rows and hedges, underground drainage by buried pipes, etc. The influence of such features on the hydrology of a watershed may be of particular importance if the aim of the modelling is to predict the effect of landscape management or the fate of contaminants, e.g. pesticides, when a rain event occurs very soon after their spreading on the soil surface. It is likely that such artificial networks may act as conduits or short-circuits for the transport of contaminants, either dissolved or sorbed on soil particles, by-passing some of the retardation mechanisms such as sorption in the soil, retention of surface runoff by grass verges, biodegradation in the unsaturated zone, etc. We first present a small watershed on which the study was conducted, the Kervidy, which is a 5 km 2 'bocage ' catchment in Brittany, France. The man-made networks were observed and their extent and functioning described. We then included the potential hydraulic role of these networks in a distributed watershed model (TOPOG, [J. Hydrol. 150 (1993) 665]). This modified model, ANTHROPOG, was run, for comparison, with and without the man-made network; sensitivity tests were also made to assess the hydrologic importance of these networks. It was shown that they can have a very significant effect on the functioning of a watershed. We conclude on the relevance of the improved distributed model for the management of rural landscapes, and on the type of additional data needed to calibrate the model with parameters representative of the true processes. Bocage is a landscape with grassland, hedges, and occasional trees—often apple trees—typical of Brittany and Normandy.

  14. RESEARCH FOR MANAGING URBAN WATERSHED MICROBIAL CONTAMINATION (PROJECT 1: MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION: 2. EFFECT OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATION ON URBAN STORMWATER RUNOFF; 3. MICROORGANISM DIE-OFF RATES UNDER VARIOUS CONDITIONS.

    Science.gov (United States)

    The Water Supply and Water Resources Division (WSWRD) developed a document entitled Managing Urban Watershed Pathogen Contamination (EPA 600/R-03/111). This document provides information to support specific steps of the total maximum daily load (TMDL) process for meeting water q...

  15. Best Management Practices in the CEAP Goodwater Creek Watershed: What, Where, Why, and How Much?

    Science.gov (United States)

    Continuation of conservation funding may depend upon demonstration that past funded projects have contributed to improvement of water quality or reduction of pollutant loadings from agricultural sources. In the Goodwater Creek watershed, a 7,250 ha sub-watershed of the Mark Twain Lake watershed in N...

  16. Assessment of best management practice effects on metolachlor mitigation in an agricultural watershed

    Science.gov (United States)

    Beasley Lake watershed in the Mississippi Delta is a 915 ha intensively cultivated watershed (49-78% in row crop production) that was monitored for the herbicide metolachlor from 1998-2009. As part of the USDA Conservation Effects Assessment Program (CEAP), the watershed was assessed for the effecti...

  17. Sustainable forest management: a challenging task in the siran watershed of district Mansehra in the NWFP of Pakistan

    International Nuclear Information System (INIS)

    Forests play an important socio-economic and environmental role on earth. Exploitation of forest resources within the carrying capacity of the natural ecosystem has always ensured their sustainability but in recent decades man has overexploited these resources to meet various needs. Pakistan with only 4.8% of its total land area under forests was also experiencing unsustainable forest management. In the Siran Watershed of District Mansehra in the North West Frontier Province (NWFP) of Pakistan, forests were exploited to meet not only the domestic and commercial wood-fuel needs but also timber needs of the local and external markets. Moreover, the local communities as a source of income generation have also used forest resources to increase their cash income earnings. Analysis of time series forest cover change in the past three decades was done in three adjacent sub-watersheds having different property right regimes. The GIS based spatial analysis showed that despite government efforts to conserve these forests, 75% of the forests were completely converted either into regeneration area (34%) or barren areas (41 %) during the past three decades. The Protected Forests have lost 41 % of its cover and the Guzara Forests 34%. Results show that the forest degradation stress has greatly increased in the eighties and afterwards. Using stakeholder analysis the key wood demanding stake holders in terms of their wood demand state were the local communities, the external commercial timber consumers, tobacco growers and Afghan refugees. The wood supplies stake holders were the Forest Department that controls the Common Pool Forests (CPF), the Forest Development Corporation (FDC), the Forest Cooperative Societies (FCS) and the farm foresters. Analysis of the cause effect relationship of the system shows that the pressure factors of increased wood demand by various stake holders coupled with the enabling factors of the market failure, government failure and institutional failure

  18. Delineation and Characterization of Furnace Brook Watershed in Marshfield, Massachusetts: A Study of Effects upon Conjunctive Water Use within a Watershed

    Science.gov (United States)

    Croll, E. D.; Enright, R.

    2012-12-01

    An understanding of conjunctive use between surface and ground water is essential to resource management both for sustained public use and watershed conservation practices. The Furnace Brook watershed in Marshfield, Massachusetts supplies a coastal community of 25,132 residents with nearly 50% of the town water supply. As with many other coastal communities, development pressure has increased creating a growing demand for freshwater extraction. It has been observed, however, that portions of the stream and Furnace Pond disappear entirely. This has created a conflict between protection of the designated wetland areas and meeting public pressure for water resources, even within what is traditionally viewed as a humid region. Questions have arisen as to whether the town water extraction is influencing this losing behavior by excessively lowering water-table elevations and potentially endangering the health of the stream. This study set out to initially characterize these behaviors and identify possible influences of anthropogenic and natural sources acting upon the watershed including stream flow obstructions, water extraction, and geologic conditions. The initial characterization was conducted utilizing simple, low-cost and minimally intrusive methods as outlined by Lee and Cherry (1978), Rosenberry and LaBaugh (2008) and others during a six week period. Five monitoring stations were established along a 3.0 mile reach of the basin consisting of mini-piezometers, seepage meters, survey elevation base-lines, and utilizing a Marsh-McBirney flow velocity meter. At each station stream discharge, seepage flux rates and hydraulic gradients were determined to develop trends of stream behavior. This methodology had the benefit of demonstrating the efficacy of an intrinsically low-expense, minimally intrusive initial approach to characterizing interactions between surface and ground water resources. The data was correlated with town pumping information, previous geologic

  19. ACHIEVING EFFICIENCY AND EQUITY IN IRRIGATION MANAGEMENT: AN OPTIMIZATION MODEL OF THE EL ANGEL WATERSHED, CARCHI, ECUADOR

    OpenAIRE

    Evans, Elizabeth M; Lee, David R.; Boisvert, Richard N.

    2002-01-01

    The objective of this paper is to address the problems of inefficiency and inequity in water allocation in the El Angel watershed, located in Ecuador's Sierra region. Water is captured in a high-altitude region of the watershed and distributed downstream to producers in four elevation-defined zones via a system of canals. Upstream and downstream producers face radically different conditions with respect to climate and terrain. A mathematical programming model was created to study the conseque...

  20. Facilitating adaptive management in the Chesapeake Bay Watershed through the use of online decision support tools

    Science.gov (United States)

    Mullinx, Cassandra; Phillips, Scott; Shenk, Kelly; Hearn, Paul; Devereux, Olivia

    2009-01-01

    The Chesapeake Bay Program (CBP) is attempting to more strategically implement management actions to improve the health of the Nation’s largest estuary. In 2007 the U.S. Geological Survey (USGS) and U.S. Environmental Protection Agency (USEPA) CBP office began a joint effort to develop a suite of Internetaccessible decision-support tools and to help meet the needs of CBP partners to improve water quality and habitat conditions in the Chesapeake Bay and its watersheds. An adaptive management framework is being used to provide a structured decision process for information and individual tools needed to implement and assess practices to improve the condition of the Chesapeake Bay ecosystem. The Chesapeake Online Adaptive Support Toolkit (COAST) is a collection of web-based analytical tools and information, organized in an adaptive management framework, intended to aid decisionmakers in protecting and restoring the integrity of the Bay ecosystem. The initial version of COAST is focused on water quality issues. During early and mid- 2008, initial ideas for COAST were shared and discussed with various CBP partners and other potential user groups. At these meetings, test cases were selected to help improve understanding of the types of information and analytical functionality that would be most useful for specific partners’ needs. These discussions added considerable knowledge about the nature of decisionmaking for Federal, State, local and nongovernmental partners. Version 1.0 of COAST, released in early winter of 2008, will be further reviewed to determine improvements needed to address implementation and assessment of water quality practices. Future versions of COAST may address other aspects of ecosystem restoration, including restoration of habitat and living resources and maintaining watershed health.

  1. WMOST: A tool for assessing cost-benefits of watershed management decisions affecting community resilience under varying climate regimes.

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST v.1) was released by the US Environmental Protection Agency in December 2013(http://www2.epa.gov/exposure-assessment-models/wmost-10-download-page). The objective of WMOST is to serve as a public-domain screening toolthat ...

  2. Approaches of Integrated Watershed Management Project: Experiences of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

    Science.gov (United States)

    Mula, Rosana P.; Wani, Suhas P.; Dar, William D.

    2008-01-01

    The process of innovation-development to scaling is varied and complex. Various actors are involved in every stage of the process. In scaling the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)-led integrated watershed management projects in India and South Asia, three drivers were identified--islanding approach,…

  3. An establishment on the hazard mitigation system of large scale landslides for Zengwen reservoir watershed management in Taiwan

    Science.gov (United States)

    Tsai, Kuang-Jung; Lee, Ming-Hsi; Chen, Yie-Ruey; Huang, Meng-Hsuan; Yu, Chia-Ching

    2016-04-01

    hazard mitigation program operated by local government and reservoir watershed management in southern Taiwan. Keywords: large scale landslide, disaster prevention, hazard mitigation, watershed management

  4. Phosphorus losses from an irrigated watershed in the Northwestern U.S.: Case study of the Upper Snake Rock Watershed

    Science.gov (United States)

    Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...

  5. A Study of Disaster Adaptation Behavior and Risk Communication for watershed Area Resident - the Case of Kaoping River Watershed in Taiwan

    Science.gov (United States)

    Te Pai, Jen; Chen, Yu-Yun; Huang, Kuan-Hua

    2016-04-01

    Along with the global climate change, the rainfall patterns become more centralized and cause natural disasters more frequently and heavily. Residents in river watersheds area are facing high risk of natural disasters and severe impacts, especially in Taiwan. From the experience of Typhoon Morakot in 2009, we learned that poor risk communication between the governments and the households and communities would lead to tremendous loss of property and life. Effective risk communication can trigger action to impending and current events. On the other hand, it can also build up knowledge on hazards and risks and encourage adaptation behaviors. Through the participation and cooperation of different stakeholders in disaster management, can reduce vulnerability, enhance adaptive capacity, improve the interaction between different stakeholders and also avoid conflicts. However, in Taiwan there are few studies about how households and communities perceive flood disaster risks, the process of risk communications between governments and households, or the relationship between risk communication and adaptation behaviors. Therefore, this study takes household and community of Kaoping River Watershed as study area. It aims to identify important factors in the process of disaster risk communication and find out the relationship between risk communication and adaptation behaviors. A framework of risk communication process was established to describe how to trigger adaptation behaviors and encourage adaptation behaviors with risk communication strategies. An ISM model was utilized to verify the framework by using household questionnaire survey. Moreover, a logit choice model was build to test the important factors for effective risk communication and adaption behavior. The result of this study would provide governments or relevant institutions suggestions about risk communication strategies and adaptation strategies to enhance the adaptive capacity of households and reduce the

  6. Global change impacts on river ecosystems: A high-resolution watershed study of Ebro river metabolism.

    Science.gov (United States)

    Val, Jonatan; Chinarro, David; Pino, María Rosa; Navarro, Enrique

    2016-11-01

    Global change is transforming freshwater ecosystems, mainly through changes in basin flow dynamics. This study assessed how the combination of climate change and human management of river flow impacts metabolism of the Ebro River (the largest river basin in Spain, 86,100km(2)), assessed as gross primary production-GPP-and ecosystem respiration-ER. In order to investigate the influence of global change on freshwater ecosystems, an analysis of trends and frequencies from 25 sampling sites of the Ebro river basin was conducted. For this purpose, we examined the effect of anthropogenic flow control on river metabolism with a Granger causality study; simultaneously, took into account the effects of climate change, a period of extraordinary drought (largest in past 140years). We identified periods of sudden flow changes resulting from both human management and global climate effects. From 1998 to 2012, the Ebro River basin was trending toward a more autotrophic condition indicated by P/R ratio. Particularly, the results show that floods that occurred after long periods of low flows had a dramatic impact on the respiration (i.e., mineralization) capacity of the river. This approach allowed for a detailed characterization of the relationships between river metabolism and drought impacts at the watershed level. These findings may allow for a better understanding of the ecological impacts provoked by flow management, thus contributing to maintain the health of freshwater communities and ecosystem services that rely on their integrity. PMID:27392332

  7. Suburban watershed nitrogen retention: Estimating the effectiveness of stormwater management structures

    Directory of Open Access Journals (Sweden)

    Benjamin J. Koch

    2015-07-01

    Full Text Available Abstract Excess nitrogen (N is a primary driver of freshwater and coastal eutrophication globally, and urban stormwater is a rapidly growing source of N pollution. Stormwater best management practices (BMPs are used widely to remove excess N from runoff in urban and suburban areas, and are expected to perform under a wide variety of environmental conditions. Yet the capacity of BMPs to retain excess N varies; and both the variation and the drivers thereof are largely unknown, hindering the ability of water resource managers to meet water quality targets in a cost-effective way. Here, we use structured expert judgment (SEJ, a performance-weighted method of expert elicitation, to quantify the uncertainty in BMP performance under a range of site-specific environmental conditions and to estimate the extent to which key environmental factors influence variation in BMP performance. We hypothesized that rain event frequency and magnitude, BMP type and size, and physiographic province would significantly influence the experts’ estimates of N retention by BMPs common to suburban Piedmont and Coastal Plain watersheds of the Chesapeake Bay region. Expert knowledge indicated wide uncertainty in BMP performance, with N removal efficiencies ranging from 40%. Experts believed that the amount of rain was the primary identifiable source of variability in BMP efficiency, which is relevant given climate projections of more frequent heavy rain events in the mid-Atlantic. To assess the extent to which those projected changes might alter N export from suburban BMPs and watersheds, we combined downscaled estimates of rainfall with distributions of N loads for different-sized rain events derived from our elicitation. The model predicted higher and more variable N loads under a projected future climate regime, suggesting that current BMP regulations for reducing nutrients may be inadequate in the future.

  8. Climate Change, Glaciers, and Water Management in the Rio Santa Watershed, Peru

    Science.gov (United States)

    Purkey, D. R.; Escobar, M.

    2009-12-01

    Recent decades have witnessed the dramatic decline in the spatial extent of tropical glaciers in the Andes Mountains. In the Rio Santa watershed of Peru, which lies on the western slope of the Cordillera Blanca, the glaciated area has declined from 507 km2 in 1970 to 387 km2 in 1999. The continual evolution of seasonal patterns of glacier accumulation and ablation have been held up as early sign of the impacts of global climate change on terrestrial hydrology. For water managers in the Andes, the cause of the recent glacier retreat is of less importance than the profound implications continued retreat will have on future hydrologic regimes in systems that are managed to meet multiple objectives, including domestic water supplies, irrigation and hydropower production, which provides over 70% of electricity demands in Peru. This research describes our efforts introduce a glacier evolution module, based on a degree-time formulation, into a water resources systems simulation tool. The Water Evaluation and Planning (WEAP) system, developed by the Stockholm Environment Institute, includes a dynamic integration of routines to simulate the terrestrial components of the hydrologic cycle and routines to allocate available water supplies to meet water demands. With the addition of a glacier routine, WEAP was applied to the Rio Santa and used to evaluate potential climate change impacts on glacier evolution and hydropower production in this important Peruvian watershed over 30 and 100 year planning horizons. Under a dry scenario glaciated areas in the Cordillera Blanca decreases by an additional 47% up to 2036, posing contraints on hydropower production during low flow periods.

  9. Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India

    Directory of Open Access Journals (Sweden)

    Surendra Kumar Chandniha

    2014-08-01

    Full Text Available In order to achieve continuous sustainable development in a watershed, it is desired that natural resources such as water are assessed and utilized efficiently. Generally, water resources are assessed considering watershed as a unit. Since the water requirements and availability varies in space and time, it is desired to manage the water resources so as to satisfy the demand on sustainable basis. Further, in order to achieve sustainability, it is necessary to consider social, economic and environment aspects of water resources. However it is difficult to bring all these indicators on a single platform. In this study, a watershed sustainability index (WSI which integrates the hydrology, environment, life and policy (HELP has been suggested for Piperiya watershed in Chhattisgarh state of India. This watershed has an area of about 2400km2 and is part of Hasdeo river basin which is located in Koriya district of Chhattisgarh. Further, the majority of population in the area is tribal and illiterate. Providing safe and adequate water to the masses is a challenge in this area. The District has numerous hill ranges with rocky geological formation having steep slope. The district faces an acute water shortage for drinking as well as irrigation. Further, the area has number of coal mines and coal washing plants, which contaminate the surface water as well as groundwater. Thus, the availability of safe and fresh water is quite limited. It has been noticed that the WSI for this watershed is about 0.60, which is moderate level of sustainability. In order to improve the water sustainability in this watershed, a watershed management framework and its utilizationhas been elaborated.

  10. Parcelling out the Watershed: The Recurring Consequences of Organising Columbia River Management within a Basin-Based Territory

    Directory of Open Access Journals (Sweden)

    Eve Vogel

    2012-02-01

    Full Text Available This article examines a 75-year history of North America’s Columbia river to answer the question: what difference does a river basin territory actually make? Advocates reason that river basins and watersheds are natural and holistic water management spaces, and can avoid the fragmentations and conflicts endemic to water management within traditional political territories. However, on the Columbia, this reasoning has not played out in practice. Instead, basin management has been shaped by challenges from and negotiations with more traditional jurisdictional spaces and political districts. The recurring result has been 'parcelling out the watershed': coordinating river management to produce a few spreadable benefits, and distributing these benefits, as well as other responsibilities and policy-making influence, to jurisdictional parts and political districts. To provide generous spreadable benefits, river management has unevenly emphasised hydropower, resulting in considerable environmental losses. However, benefits have been widely spread and shared – and over time challengers have forced management to diversify. Thus a river basin territory over time produced patterns of both positive and negative environmental, social, economic, and democratic outcomes. To improve the outcomes of watershed-based water management, we need more interactive and longer-term models attentive to dynamic politics and geographies.

  11. Curative vs. preventive management of nitrogen transfers in rural areas: lessons from the case of the Orgeval watershed (Seine River basin, France).

    Science.gov (United States)

    Garnier, J; Billen, G; Vilain, G; Benoit, M; Passy, P; Tallec, G; Tournebize, J; Anglade, J; Billy, C; Mercier, B; Ansart, P; Azougui, A; Sebilo, M; Kao, C

    2014-11-01

    The Orgeval watershed (104 km(2)) is a long-term experimental observatory and research site, representative of rural areas with intensive cereal farming of the temperate world. Since the past few years, we have been carrying out several studies on nitrate source, transformation and transfer of both surface and groundwaters in relation with land use and agriculture practices in order to assess nitrate (NO3(-)) leaching, contamination of aquifers, denitrification processes and associated nitrous oxide (N2O) emissions. A synthesis of these studies is presented to establish a quantitative diagnosis of nitrate contamination and N2O emissions at the watershed scale. Taking this watershed as a practical example, we compare curative management measures, such as pond introduction, and preventive measures, namely conversion to organic farming practices, using model simulations. It is concluded that only preventive measures are able to reduce the NO3(-) contamination level without further increasing N2O emissions, a result providing new insights for future management bringing together water-agro-ecosystems.

  12. Poverty and Environmental Services: Case Study in Way Besai Watershed, Lampung Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Beria Leimona

    2007-12-01

    Full Text Available Local communities in developing countries are often forbidden to earn their livelihood from state-owned forests, but nonetheless local people commonly manage these lands and depend on them to survive. In these places, community participation is the key to successful conservation programs intended to rehabilitate environmental functions and produce environmental services for beneficiaries outside the area. This paper reviews the relationship between poverty and environmental services and briefly discusses the main ways in which approaches that rely on payment for environmental services are thought likely to alleviate poverty. It also discusses the poverty profile and inequality of upland dwellers in the Sumberjaya watershed in Indonesia's Lampung Province, using income, education, and land-holding indicators. Data related to these three indicators were collected from intensive household surveys and interviews and used via Gini decomposition to measure inequality. In addition, analysis of data on stem at breast height and horizontal root diameter of coffee and other noncoffee trees planted on coffee farms showed that index of root shallowness could be used as an estimator of environmental services. This study revealed that state forest land in Lampung Province, Indonesia, not only provides important income for poor farmers but also leads to a more equitable distribution of income and land holdings. These farmers have also successfully rehabilitated degraded land by establishing coffee-based agroforestry. As found in other recent studies, these findings show that coffee-based agroforestry can perform watershed service functions similar to those of natural, undisturbed forests. This supports the argument that poor farmers who provide environmental services through their activities in state-owned forests should be rewarded with land rights as a policy to alleviate poverty.

  13. Analysis of livelihood security: a case study in the Kali-Khola watershed of Nepal.

    Science.gov (United States)

    Bhandari, B S; Grant, M

    2007-10-01

    This paper examines household livelihoods in highland and lowland communities of the Kali-Khola agricultural watershed in western Nepal on the basis of economic, ecological and social security indicators. Significant differences were found in soil fertility status, pests and diseases management, risk and uncertainties, use of agrochemicals and access to social services. No remarkable variations were found in crop diversification, annual agricultural income and food sufficiency. However, uncertainty and risk in agricultural production is relatively low in highland communities. The findings reveal that agriculture production alone is not a viable livelihood option for agricultural watershed communities in Nepal. The households growing crops with hired labour have relatively sustainable livelihoods in Nepal's agricultural watersheds. Insufficient agricultural land, insufficient working manpower within a family, and lack of access to ecological agricultural services are prime factors in being livelihood insecure in agricultural watershed communities. Therefore, long-term policies and plans need to be developed for the empowerment of local farmers and to support rural livelihoods with adaptable and flexible income-generating strategies, resilient resource management institutions and enhancement of knowledge, skills and social capital.

  14. The effects of multiple beneficial management practices on hydrology and nutrient losses in a small watershed in the Canadian prairies.

    Science.gov (United States)

    Li, Sheng; Elliott, Jane A; Tiessen, Kevin H D; Yarotski, James; Lobb, David A; Flaten, Don N

    2011-01-01

    Most beneficial management practices (BMPs) recommended for reducing nutrient losses from agricultural land have been established and tested in temperate and humid regions. Previous studies on the effects of these BMPs in cold-climate regions, especially at the small watershed scale, are rare. In this study, runoff and water quality were monitored from 1999 to 2008 at the outlets of two subwatersheds in the South Tobacco Creek watershed in Manitoba, Canada. Five BMPs-a holding pond below a beef cattle overwintering feedlot, riparian zone and grassed waterway management, grazing restriction, perennial forage conversion, and nutrient management-were implemented in one of these two subwatersheds beginning in 2005. We determined that >80% of the N and P in runoff at the outlets of the two subwatersheds were lost in dissolved forms, ≈ 50% during snowmelt events and ≈ 33% during rainfall events. When all snowmelt- and rainfall-induced runoff events were considered, the five BMPs collectively decreased total N (TN) and total P (TP) exports in runoff at the treatment subwatershed outlet by 41 and 38%, respectively. The corresponding reductions in flow-weighted mean concentrations (FWMCs) were 43% for TN and 32% for TP. In most cases, similar reductions in exports and FWMCs were measured for both dissolved and particulate forms of N and P, and during both rainfall and snowmelt-induced runoff events. Indirect assessment suggests that retention of nutrients in the holding pond could account for as much as 63 and 57%, respectively, of the BMP-induced reductions in TN and TP exports at the treatment subwatershed outlet. The nutrient management BMP was estimated to have reduced N and P inputs on land by 36 and 59%, respectively, in part due to the lower rates of nutrient application to fields converted from annual crop to perennial forage. Overall, even though the proportional contributions of individual BMPs were not directly measured in this study, the collective reduction

  15. Sustainable Water Resources Management in a Complex Watershed Under Climate Change Scenarios

    Science.gov (United States)

    Schuster, J. P.; McPhee, J.

    2007-05-01

    The Aconcagua River Basin in central Chile supplies water for over one million people, high-return agriculture, mining and hydropower industries. The Aconcagua river basin has Mediterranean/semi-arid climate, its hydrologic regime varies along its path from snow- to a rainfall-dominated, and significant stream-aquifer interaction is observed throughout the river path. A complex water market operates in the Aconcagua River Basin, where private owners hold surface and subsurface water rights independently of land ownership and/or intended use. The above yield integrated watershed management critical for the sustainability of basin operations, moreover under conditions of significant precipitation interannual variability and uncertain future climatic scenarios. In this work we propose an integrated hydrologic-operational model for the Aconcagua River in order to evaluate sustainable management scenarios under conditions of climatic uncertainty. The modeling software WEAP (Water Evaluation and Planning System) serves as the platform for decision support, allowing the assessment of diverse scenarios of water use development and hydrologic conditions. The hydrologic component of the adopted model utilizes conceptual functions for describing the relations between different hydrologic variables. The management component relies on economic valuation for characterizing the space of efficient operational policies.

  16. Effective Modeling of Nutrient Losses and Nutrient Management Practices in an Agricultural and Urbanizing Watershed

    OpenAIRE

    Liu, Yingmei

    2011-01-01

    The Lake Manassas Watershed is a 189 km2 basin located in the Northern Virginia suburbs of Washington, DC. Lake Manassas is a major waterbody in the watershed and serves as a drinking water source for the City of Manassas. Lake Manassas is experiencing eutrophication due to nutrient loads associated with agricultural activities and urban development in its drainage areas. Two watershed model applications using HSPF, and one receiving water quality model application using CE-QUAL-W2, were link...

  17. Consideration for modelling studies of migration of accidentally released radionuclides in a river watershed

    International Nuclear Information System (INIS)

    Concerning radionuclides that might be released in an event of an accident from a nuclear facility, much attention has been paid to the migration pathways including the atmospheric deposition and subsequent inflow to surface water bodies since the Chernobyl nuclear accident in 1986. In European countries, computer-coded systems for predicting the migration including those pathways and providing scientific supports for decision makers to manage the contamination have been developed. This report is a summary of presentations and discussion made at the occasion of the visit of Dr. Monte in order to have directions related to the current subject of research, development of a mathematical model of the behavior of radionuclides in a river watershed. Those presentations and discussions were made at JAERI and also at prominent universities and institutes of Japan involved in this study field. As a result of these discussions, distinct advantages and key issues in use of a mathematical model for prediction of the migration of radionuclides in a river watershed have been identified and analyzed. It was confirmed that the use of mathematical modeling has distinct advantages. Re-arrangement of the existing experimental knowledge on the environment in an ordered way according to a theory (a mathematical model) will lead to a new angle to consider a problem in that environment, despite several gaps in the data array. A model to assess the radionuclide behaviour in contaminated aquatic ecosystems is a basis of decision analysis tools for helping decision-makers to select the most appropriate intervention strategies for the ecosystems. Practical use of a mathematical model and continuous effort in its validation were recognized as crucial. (author)

  18. Interactions of Soil Order and Land Use Management on Soil Properties in the Kukart Watershed, Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    Zulfiia Sakbaeva

    2012-01-01

    Full Text Available Surveys of soil properties related to soil functioning for many regions of Kyrgyzstan are limited. This study established ranges of chemical (soil organic matter (SOM, pH and total N (TN, physical (soil texture, and biochemical (six enzyme activities of C, N, P, and S cycling characteristics for nine profiles from the Kukart watershed of Jalal-Abad region in Kyrgyzstan. These profiles represent different soil orders (Inceptisols, Alfisols, and Mollisols and land uses (cultivated, nut-fruit forests, and pasture. The Sierozem (Inceptisols soils had the highest pH and contained the lowest SOM and TN contents compared to the Brown, Black-brown, and Meadow-steppe soils (Alfisols and Mollisols. Enzymatic activities within surface horizons (0–18 cm typically decreased in the following order: forest > pasture > cultivated. Enzyme activity trends due to land use were present regardless of elevation, climate, and soil types although subtle differences among soil types within land use were observed. The significant reductions in measured soil enzyme activities involved in C, N, P, and S nutrient transformations under cultivation compared to pasture and forest ecosystems and lower values under Inceptisols can serve as soil quality indicators for land use decisions in the watershed.

  19. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    International Nuclear Information System (INIS)

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring 222Rn as a tracer. The first of the two stages was solving a mass-balance equation for 222Rn around a stream reach of interest in order to calculate Rnq, the 222Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rnq to the measured 222Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach

  20. A Sediment Budget Case Study: Comparing Watershed Scale Erosion Estimates to Modeled and Empirical Sediment Loads

    Science.gov (United States)

    McDavitt, B.; O'Connor, M.

    2003-12-01

    The Pacific Lumber Company Habitat Conservation Plan requires watershed analyses to be conducted on their property. This paper summarizes a portion of that analysis focusing on erosion and sedimentation processes and rates coupled with downstream sediment routing in the Freshwater Creek watershed in northwest California. Watershed scale erosion sources from hillslopes, roads, and channel banks were quantified using field surveys, aerial photo interpretation, and empirical modeling approaches for different elements of the study. Sediment transport rates for bedload were modeled, and sediment transport rates for suspended sediment were estimated based on size distribution of sediment inputs in relation to sizes transported in suspension. Recent short-term, high-quality estimates of suspended sediment yield that a community watershed group collected with technical assistance from the US Forest Service were used to validate the resulting sediment budget. Bedload yield data from an adjacent watershed, Jacoby Creek, provided another check on the sediment budget. The sediment budget techniques and bedload routing models used for this study generated sediment yield estimates that are in good agreement with available data. These results suggest that sediment budget techniques that require moderate levels of fieldwork can be used to provide relatively accurate technical assessments. Ongoing monitoring of sediment sources coupled with sediment routing models and reach scale field data allows for predictions to be made regarding in-channel sediment storage.

  1. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2014-04-01

    Full Text Available Constructing reservoirs can make more efficient use of water resources for human society. However, the negative impacts of these projects on the environment are often ignored. Optimal reoperation of reservoirs, which considers not only in socio-economic values but also environmental benefits, is increasingly important. A model of optimal reoperation of multi-reservoirs for integrated watershed management with multiple benefits was proposed to alleviate the conflict between water use and environmental deterioration. The social, economic, water quality and ecological benefits were respectively taken into account as the scheduling objectives and quantified according to economic models. River minimum ecological flows and reservoir water levels based on flood control were taken as key constraint conditions. Feasible search discrete differential dynamic programming (FS-DDDP was used to run the model. The proposed model was used in the upstream of the Nanpan River, to quantitatively evaluate the difference between optimal reoperation and routine operation. The results indicated that the reoperation could significantly increase the water quality benefit and have a minor effect on the benefits of power generation and irrigation under different hydrological years. The model can be readily adapted to other multi-reservoir systems for water resources management.

  2. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGIC MODELING TOOL FOR LANDSCAPE ASSESSMENT AND WATERSHED MANAGEMENT

    Science.gov (United States)

    The assessment of land use and land cover is an extremely important activity for contemporary land management. A large body of current literature suggests that human land-use practice is the most important factor influencing natural resource management and environmental condition...

  3. Sustaining the Earth's Watersheds-Agricultural Research Data System: Data development, user interaction, and operations management

    Science.gov (United States)

    To support the Agricultural Research Service’s Conservation Effects Assessment Project (CEAP) in assessing USDA conservation programs and practices on soil and water quality, a publicly available web-based watershed data system, called Sustaining the Earth’s Watersheds, Agricultural Research Data Sy...

  4. Impediments and Solutions to Sustainable, Watershed-Scale Urban Stormwater Management: Lessons from Australia and the United States

    Science.gov (United States)

    Roy, Allison H.; Wenger, Seth J.; Fletcher, Tim D.; Walsh, Christopher J.; Ladson, Anthony R.; Shuster, William D.; Thurston, Hale W.; Brown, Rebekah R.

    2008-08-01

    In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.

  5. Study on Ecological Remediation for Water and Soil Conservation of a Small Watershed

    Institute of Scientific and Technical Information of China (English)

    Chunjuan; ZHANG; Xueying; HE

    2013-01-01

    Taking the waterhead area of the middle line project for diverting water from the south to the north,Hanjiang watershed in Shiquan, as an example,ecological remediation of the small watershed was studied from aspects of necessity,practicability,plans and aims. The ecological restoration for soil and water conservation in Hanjiang River basin can not only control soil erosion and effectively protect water resources to provide clean water for people living in the lower reaches of Hanjiang mainstream,but also increase farmers’ income and protect environment, which is both typical and exemplary.

  6. Determining Watershed Management Efficacy in West Maui: Belt transect surveys of coral demography (adult and juvenile corals) from 2014 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  7. Determining Watershed Management Efficacy in West Maui: line-point-intercept and photo quadrat surveys of benthic communities for benthic cover from 2014 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  8. Study Regarding Hydrochemical Classification of the main Lakes from Fizes Watershed (Romania

    Directory of Open Access Journals (Sweden)

    Tania MIHAIESCU

    2010-08-01

    Full Text Available Regarding to the importance of the ponds is noted an increasing interest in Europe, and also an increase of theawareness on the ponds contribution to biodiversity and proper functioning of the watersheds. Although significantprogress was made in establishing generic methodologies of analysis in the purpose of implementing water directive,small water bodies, as lakes and ponds are still insufficient represented. The study area, Fizes watershed, is located inTransylvania Plain, in the northern part of Romania. A distinct characteristic of this watershed is the presence of lakeunits (natural and artificial. Natural lakes and ponds are a polarizing element, which provides identity for the landscapein Fizes watershed, concentrates the majority of settlements in their close vicinity and also represent a support ofeconomical activities development, from agriculture to tourism.The objective of the present work is to discuss the major ion chemistry of the main lakes from Fizes watershed.Chemical classification also throws light on the concentration of various predominant cations, anions and theirinterrelationships. Water lake samples were collected from 11 sampling points covering the area during the years 2007and 2008 and were analyzed for physical-chemical characters. The system of lake units present distinctive physicalchemicalcharacteristics, influenced by local natural conditions, main factors being climate, morphometriccharacteristics of lakes, vegetation by shadowing, factors which together with biological conditions and anthropicinfluences shape the quality conditions of the lake waters. Climatic, hydrological and substrate conditions are reflectedin the resulting water quality. The lakes located in the upper part of the watershed can be included in the bicarbonateclass, while lakes located in the lower part are closer to sulphate waters.

  9. Streamflow allocation in arid watersheds: a case study in Northwestern China

    Directory of Open Access Journals (Sweden)

    C. He

    2012-07-01

    Full Text Available This paper proposes a framework for allocating water resources among the upper, middle, and lower reaches of arid watersheds to meet the multiple demands for water, including rehabilitation of downstream ecosystem. The framework includes: (1 hydrologic simulation of distribution of water resources in the study watershed; (2 development of water allocation criteria; and (3 implementation of the water allocation plan. The advantages of the proposed framework are: (1 spatial integration; (2 multiple objectives; (3 incorporation of local needs through participatory decision making; and (4 dynamic evaluation.

    The framework was applied to the Heihe watershed, a large inland (terminal lake watershed with a drainage area of over 128 000 km2 in Northwestern China. Simulation of the daily river flows for the period of 1990–2000 by the Distributed Large Basin Runoff Model shows that Qilian Mountain in the upper reach produced most of the runoff in the watershed, and the increased withdrawals of water for agricultural irrigation, industrial development, and municipal supplies at the middles reach oasis reduced the annual mean discharge by approximately 0.18 × 109 m3 over the simulation period, making the middle reach unable to deliver the mandated amount of 0.95 × 109 m3 water downstream by the State Council, under normal climatic conditions. Changes in land use practices need to be implemented to achieve the mandated water allocation plan. The paper suggests that a participatory watershed planning approach involving multiple stakeholders in the water allocation process be undertaken to address key questions regularly, including how much water should be allocated to what uses and for whom and at what price?

  10. Prediction of climate change impacts on agricultural watersheds and the performance of winter cover crops: Case study of the upper region of the Choptank River Watershed

    Science.gov (United States)

    Elevated CO2 concentration, temperature, and precipitation intensity driven by climate change are expected to cause significant environmental changes in the Chesapeake Bay Watershed (CBW). Although the potential effects of climate change are widely reported, few studies have been conducted to unders...

  11. Simulation of streamflow and the effects of brush management on water yields in the Double Mountain Fork Brazos River watershed, western Texas 1994–2013

    Science.gov (United States)

    Harwell, Glenn R.; Stengel, Victoria G.; Bumgarner, Johnathan R.

    2016-04-20

    The U.S. Geological Survey, in cooperation with the City of Lubbock and the Texas State Soil and Water Conservation Board, developed and calibrated a Soil and Water Assessment Tool watershed model of the Double Mountain Fork Brazos River watershed in western Texas to simulate monthly mean streamflow and to evaluate the effects of brush management on water yields in the watershed, particularly to Lake Alan Henry, for calendar years 1994–2013. Model simulations were done to quantify the possible change in water yield of individual subbasins in the Double Mountain Fork Brazos River watershed as a result of the replacement of shrubland (brush) with grassland. The simulation results will serve as a tool for resource managers to guide brush-management efforts.

  12. Simulation of streamflow and the effects of brush management on water yields in the upper Guadalupe River watershed, south-central Texas, 1995-2010

    Science.gov (United States)

    Bumgarner, Johnathan R.; Thompson, Florence E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board and the Upper Guadalupe River Authority, developed and calibrated a Soil and Water Assessment Tool watershed model of the upper Guadalupe River watershed in south-central Texas to simulate streamflow and the effects of brush management on water yields in the watershed and to Canyon Lake for 1995–2010. Model simulations were done to quantify the possible change in water yield of individual subbasins in the upper Guadalupe River watershed as a result of the replacement of ashe juniper (Juniperus ashei) with grasslands. The simulation results will serve as a tool for resource managers to guide their brush-management efforts.

  13. Maasin Watershed Rehabilitation Project

    OpenAIRE

    Iloilo City

    2007-01-01

    Metadata only record "Iloilo city government had great interest in preserving the main source of water for the city and the Maasin municipality wanted support to manage the watershed reserve. Degradation of the watershed is seen as the cause of increasing water scarcity and frequent floods. PES-1 (Payments for Environmental Services Associate Award)

  14. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  15. High-resolution maps of forest-urban watersheds present an opportunity for ecologists and managers

    Science.gov (United States)

    Dense populations of people and abundant impervious surfaces contribute to poor water quality and increased flooding in forest-urban watersheds. Green infrastructure mitigates these effects, but precisely quantifying benefits is difficult because most land cover maps rely on coar...

  16. Hydrogeologic and Hydrochemical Studies in a Semi-arid Watershed in Northern Mexico

    Science.gov (United States)

    Kretzschmar, T.; Vazquez, R.; Hinojosa, A.

    2006-12-01

    Within the Baja California panhandle exist quite a significant number of valleys which hydrogeology conditions are of great importance for the communities of the region. The Guadalupe Valley for example, located 30 km Northeast of Ensenada, hosts an important wine industry which presents a mayor factor for agriculture and tourism in Baja California. The irrigation is carried out basically by groundwater extracted from quaternary sediments filling this post-Miocene depression. Besides the intensive usage of the water by the wine industry in the Guadalupe Valley, the local waterworks installed in 1985 a gallery of 10 wells extracting around 320 l/s or 30 % of the total water extraction in the valley to supply the city of Ensenada with drinking water. A total of more than 500 wells with a combined annual consumption of about 28 Mio m3 are at the moment active in the valley. In the arid portions of northern Mexico Mountain front recharge presents an important recharge source for the alluvial aquifers. Other important sources directly related to precipitation are direct infiltration, recharge by surface water runoff in the arroyos as well as by active fault systems. The principal recharge sources for the Guadalupe Valley aquifer are the Sierra Juárez and the Guadalupe River. To be able to address the state of equilibrium of aquifer, recharge estimates for the watershed were calculated determining the runoff/infiltration relationships obtained by curve number determinations combined with the interpretation of satellite images. These results were integrated into an evaluation and hydrologic modeling of the hydrologic data pointing towards differences of up to over 50 percent in the recharge estimation in comparison to earlier studies carried out in the area. Furthermore hydrochemical and isotopic studies were carried out to show the effects of the excessive ground water extraction on the water quality of the aquifer. The hydrochemical data indicate that intense use of

  17. EQUITY IN DISTRIBUTION OF BENEFITS FROM WATER HARVESTING AND GROUNDWATER RECHARGE – AN ECONOMIC STUDY IN SUJALA WATERSHED PROJECT IN KARNATAKA

    OpenAIRE

    Seema, H.M.; Chandrakanth, Mysore G.; Nagaraj, N.

    2008-01-01

    In this study, economic impact of water harvesting and groundwater recharging was analyzed in the context of Sujala watershed equity and efficiency in the distribution of benefits in Chitradurga district, Karnataka. Field data for 2004-05 (drought year) and 2005-06 (normal year) from 30 sample farmers in Sujala watershed form the data base for the study. Another sample of 30 farmers from Non-Sujala (or DPAP) watershed, and 30 from outside watershed area form the control. Farmers were further ...

  18. Watershed Management Optimization Support Tool: An approach for incorporating LID into integrated water management plans

    Science.gov (United States)

    To assist communities in the evaluation of green infrastructure, low impact development, and land conservation practices as part of an Integrated Water Resources Management (IWRM) approach, the U.S. Environmental Protection Agency (US EPA) has supported the development of the Wat...

  19. Impact of over-exploitation on groundwater quality: A case study from WR-2Watershed, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Bhushan R Lamsoge; Yashwant B Katpatal; Vijay P Nawale

    2014-10-01

    The WR-2 watershed is located in the Deccan trap basaltic terrain of Maharashtra State, India. The watershed area incorporates a rich orange orchard belt that requires a huge quantity of water for irrigation. This requirement is mostly met through groundwater, extracted from the shallow aquifers of the WR-2 watershed. However, over the years, excess withdrawal of groundwater from these aquifers has resulted in depletion of groundwater level. The declining trends of groundwater level, both long term and short term, have had a negative impact on the groundwater quality of the study area. This effect can be gauged through the rising electrical conductivity (EC) of groundwater in the shallow aquifers (dug wells) of the WR-2 watershed. It is observed that the long term declining trend of groundwater level, during 1977–2010, varied from 0.03 to 0.04 m per year, whereas the corresponding trend of rising EC varied from 1.90 to 2.94 S/cm per year. During 2007–2010, about 56% dug wells showed a positive correlation between depleting groundwater level and rising EC values. The groundwater level depletion during this period ranged from 0.03 to 0.67 m per year, whereas the corresponding trend of rising EC ranged from 0.52 to 46.91 S/cm per year. Moreover, the water quality studies reveal that groundwater from more than 50% of the dug wells of the WR-2 watershed is not suitable for drinking purpose. The groundwater, though mostly suitable for irrigation purpose, is corrosive and saturated with respect to mineral equilibrium and shows a tendency towards chemical scale formation.

  20. Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yueli; Lal, Rattan; Owens, Lloyd; Izaurralde, R Cesar C.; Post, W M.; Hothem, Daniel

    2002-12-01

    Soil organic matter is strongly related to soil type, landscape morphology, and soil and crop management practices. Therefore, long-term (15-36-years) effects of six cropland management systems on soil organic carbon (SOC) pool in 0-30 cm depth were studied for the period of 1939-1999 at the North Appalachian Experimental Watersheds (<3 ha, Dystric Cambisol, Haplic Luvisol, and Haplic Alisol) near Coshocton, OH, USA. Six management treatments were: (1) no tillage continuous corn with NPK (NC); (2) no tillage continuous corn with NPK and manure (NTC-M); (3) no tillage corn?soybean rotation (NTR); (4) chisel tillage corn?soybean rotation (CTR); (5) moldboard tillage with corn?wheat?meadow?meadow rotation with improved practices (MTR-I); (6) moldboard tillage with corn?wheat?meadow?meadow rotation with prevalent practices (MTR-P). The SOC pool ranged from 24.5Mgha?1 in the 32-years moldboard tillage corn (Zea mays L.)?wheat (Triticum aestivum L.)?meadow?meadow rotation with straight row farming and annual application of fertilizer (N:P:K = 5:9:17) of 56?112 kg ha?1 and cattle (Bos taurus) manure of 9Mg ha?1 as the prevalent system (MTR-P) to 65.5Mgha?1 in the 36-years no tillage continuous corn with contour row farming and annual application of 170?225 kgNha?1 and appropriate amounts of P and K, and 6?11Mgha?1 of cattle manure as the improved system (NTC-M).

  1. Longer-term Stream Nitrogen Dynamics after Wildfire and Salvage Harvesting: Implications for Management Concepts based on Trajectories of Post-disturbance Watershed Recovery.

    Science.gov (United States)

    Silins, U.; Emelko, M. B.; Bladon, K. D.; Stone, M.; Williams, C.; Martens, A. M.; Wagner, M. J.

    2015-12-01

    Biogeochemical processes reflecting interaction of vegetation and hydrology govern long-term export of nutrients such as nitrogen, phosphorus, and carbon over successional time scales. While management concepts of watershed "recovery" from disturbance back towards pre-disturbance conditions are often considered over much shorter timescales, few studies have directly explored watershed biogeochemical responses to disturbance long enough to directly document the longer-term trajectory of responses to severe land disturbance on nitrogen export. The objectives of this study were to document both the initial magnitude and patterns of longer-term recovery of stream nitrogen after the 2003 Lost Creek wildfire over nine years in front ranges of the Rocky Mountains in south-west Alberta, Canada. The study was conducted in seven instrumented catchments (4-14 km2), including burned, burned and salvage logged, and unburned (reference) conditions since 2004. Total nitrogen (TN) and nitrate (NO3-) concentrations and area-normalized yields were greater and more variable in burned and post-fire salvage logged catchments when compared with unburned catchments. Large initial increases in stream TN and NO3- production 1-3 years after both wildfire and post-fire salvage logging declined strongly to levels similar to, or below that of unburned watersheds 4-6 years after the fire, and continued to decline (although more slowly) 7-9 years after the wildfire. Post-fire salvage logging produced lower impacts on TN and NO3- in streams and these effects declined even more rapidly compared to the effects of wildfire alone. These changes closely corresponded to the early trajectory of establishment and rapid juvenile growth of post-fire regenerating forest vegetation in both catchment groups. While the concept of hydrologic recovery from disturbance is both a practical and meaningful concept for integrated landscape management for protection of forest water resources, the benchmark for

  2. Impact of Integrated Watershed Management on Complex Interlinked Factors Influencing Health: Perceptions of Professional Stakeholders in a Hilly Tribal Area of India.

    Science.gov (United States)

    Nerkar, Sandeep S; Tamhankar, Ashok J; Johansson, Eva; Lundborg, Cecilia Stålsby

    2016-03-01

    Lack of access to water has a significant impact on the health of people in tribal areas, where water in households as well as for productive purposes is essential for life. In resource-limited settings such as hilly tribal areas, implementation of an integrated watershed management programme (IWMP) can have a significant impact on public health by providing a solution to water scarcity and related problems. The professional stakeholders in rural healthcare and development administration are important pillars of the system that implements various programmes and policies of government and non-government organizations, and act as facilitators for the improvement of public health in tribal areas. Information about the perceptions of these stakeholders on public health implications of the integrated watershed management programme is important in this context. A qualitative study was conducted using face to face semi-structured interviews and focus group discussions (FGDs) with stakeholders involved in healthcare provision, education and development administration. The transcripts of interviews and FGDs were analyzed using manifest and latent content analysis. The perceptions and experiences shared by healthcare and development administration stakeholders suggest that implementation of IWMP in tribal areas helps efficient water and agriculture management, which results in improved socio-economic conditions that lead to positive health outcomes. PMID:26959039

  3. Impact of Integrated Watershed Management on Complex Interlinked Factors Influencing Health: Perceptions of Professional Stakeholders in a Hilly Tribal Area of India.

    Science.gov (United States)

    Nerkar, Sandeep S; Tamhankar, Ashok J; Johansson, Eva; Lundborg, Cecilia Stålsby

    2016-03-04

    Lack of access to water has a significant impact on the health of people in tribal areas, where water in households as well as for productive purposes is essential for life. In resource-limited settings such as hilly tribal areas, implementation of an integrated watershed management programme (IWMP) can have a significant impact on public health by providing a solution to water scarcity and related problems. The professional stakeholders in rural healthcare and development administration are important pillars of the system that implements various programmes and policies of government and non-government organizations, and act as facilitators for the improvement of public health in tribal areas. Information about the perceptions of these stakeholders on public health implications of the integrated watershed management programme is important in this context. A qualitative study was conducted using face to face semi-structured interviews and focus group discussions (FGDs) with stakeholders involved in healthcare provision, education and development administration. The transcripts of interviews and FGDs were analyzed using manifest and latent content analysis. The perceptions and experiences shared by healthcare and development administration stakeholders suggest that implementation of IWMP in tribal areas helps efficient water and agriculture management, which results in improved socio-economic conditions that lead to positive health outcomes.

  4. The Investigation on the Legislative Model of Watershed Management in China%我国流域管理立法模式探讨

    Institute of Scientific and Technical Information of China (English)

    曾祥华

    2012-01-01

    加强流域管理立法是改善流域环境的一个重要途径,流域管理立法应当坚持可持续性原则、协调性原则、整体性原则、时效性原则。我国现行流域管理立法具有分散性、多层次性和应急性等特征。完善流域立法应当提高立法层次,加强协商机制和公众参与,解决区际协议的效力,及时废改旧法,创制统一的流域管理基本法,加强流域管理专门立法。%It is an important way to improve the watershed environment by strengthening the watershed management legislation, which should adhere to the principles of sustainability, coordination, integrity and timeliness. Current watershed management legislation has dispersion, multi--level quality, emergency response and other features. The improvement of the watershed legislation should improve the legislative level, strengthen the consultation mechanism and public participation, address the effectiveness of the inter--district agreement, and timely abolish the old law, and create a unified basic watershed management law, and strengthen the specific watershed management legislation.

  5. Benthic habitat map of the U.S. Coral Reef Task Force Watershed Partnership Initiative Kā'anapali priority study area and the State of Hawai'i Kahekili Herbivore Fisheries Management Area, west-central Maui, Hawai'i

    Science.gov (United States)

    Cochran, Susan A.; Gibbs, Ann E.; White, Darla J.

    2014-01-01

    Nearshore areas off of west-central Maui, Hawai‘i, once dominated by abundant coral coverage, now are characterized by an increased abundance of turf algae and macroalgae. In an effort to improve the health and resilience of the coral reef system, the Kahekili Herbivore Fisheries Management Area was established by the State of Hawai‘i, and the U.S. Coral Reef Task Force selected the Kā‘anapali region as a priority study area. To support these efforts, the U.S. Geological survey mapped nearly 5 km2 of sea floor from the shoreline to water depths of about 30 m. Unconsolidated sediment (predominantly sand) constitutes 65 percent of the sea floor in the mapped area. Reef and other hardbottom potentially available for coral recruitments constitutes 35 percent of the mapped area. Of this potentially available hardbottom, only 51 percent is covered with a minimum of 10 percent coral, and most is found between 5 and 10 m water depth.

  6. Empirical streamflow simulation for water resource management in data-scarce seasonal watersheds

    Directory of Open Access Journals (Sweden)

    J. E. Shortridge

    2015-10-01

    Full Text Available In the past decade, certain methods for empirical rainfall–runoff modeling have seen extensive development and been proposed as a useful complement to physical hydrologic models, particularly in basins where data to support process-based models is limited. However, the majority of research has focused on a small number of methods, such as artificial neural networks, despite the development of multiple other approaches for non-parametric regression in recent years. Furthermore, this work has generally evaluated model performance based on predictive accuracy alone, while not considering broader objectives such as model interpretability and uncertainty that are important if such methods are to be used for planning and management decisions. In this paper, we use multiple regression and machine-learning approaches to simulate monthly streamflow in five highly-seasonal rivers in the highlands of Ethiopia and compare their performance in terms of predictive accuracy, error structure and bias, model interpretability, and uncertainty when faced with extreme climate conditions. While the relative predictive performance of models differed across basins, data-driven approaches were able to achieve reduced errors when compared to physical models developed for the region. Methods such as random forests and generalized additive models may have advantages in terms of visualization and interpretation of model structure, which can be useful in providing insights into physical watershed function. However, the uncertainty associated with model predictions under climate change should be carefully evaluated, since certain models (especially generalized additive models and multivariate adaptive regression splines became highly variable when faced with high temperatures.

  7. Evaluating Coupled Human-Hydrologic Systems in High Altitude Regions: A Case Study of the Arun Watershed, Eastern Nepal

    Science.gov (United States)

    Voss, K.; Bookhagen, B.; Tague, C.; Lopez-Carr, D.

    2014-12-01

    The Himalaya exhibit dynamic ecological, hydrological, and climatic extremes that magnify the variability and extent of natural hazards, resulting in destruction to both physical and human landscapes. Coupled with poverty, these factors intensify local communities' vulnerability to climate change. This study highlights the Arun watershed in eastern Nepal as a case study to evaluate how local communities in high altitude regions are managing their water for domestic and agricultural needs while coping with extreme events, such as floods and landslides. Remotely-sensed precipitation, snowpack and glacial extent data from the past decade are combined with preliminary results from extensive field-based community surveys in the Arun watershed. The analysis of remotely-sensed data will describe seasonal trends in water availability, glacial lake growth, and the spatial variation of these trends within the basin. These hydrologic changes will be linked to the human survey analysis, which will provide an understanding of locals' perceptions of water challenges and the current water management strategies within the basin. Particular attention will be given to a comparison between the eastern and western tributaries of the Arun River, where the catchments are mainly rain-fed (eastern) versus glacial-fed (western). This contrast will highlight how different hydrologic scenarios evidenced from remote-sensing data motivate diverse human water management responses as defined in field surveys. A particular focus will be given to management decisions related to agriculture expansion and hydropower development. This synthesis of remote-sensing and social research methodologies provides a valuable perspective on coupled human-hydrologic systems.

  8. A COLLABORATIVE LEARNING MATRIX FOR COMBINING SCIENCE WITH STAKEHOLDER INVOLVEMENT TO PRIORITIZE WATERSHED IMPLEMENTATION IN ARKANSAS' NONPOINT SOURCE STATE MANAGEMENT PLAN

    OpenAIRE

    ROBERT MORGAN; MARTY MATLOCK

    2008-01-01

    In 2004, the Ecological Engineering Group at the University of Arkansas received a grant to update Arkansas' nonpoint source pollution (NPS) management program. A stakeholder involvement process was developed that used collaborative learning (CL) and comparative risk assessment (CRA) to prioritise watersheds for NPS implementation. The relative ecological risk posed by nonpoint pollution to each watershed was assessed and values assigned using available water quality, GIS, and demographic dat...

  9. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management.

    Science.gov (United States)

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-12-01

    The present study was developed in four sub-basins of rivers Cávado and Douro, located in the North of mainland Portugal. The goal was to identify main stressors as well as driving and attenuating processes responsible for the presence of phosphorus in masses of surface water in those catchments. To accomplish the goal, the basins were selected where a quality station was present at the outlet, the forest occupation was greater than 75% and the phosphorus concentrations have repeatedly exceeded the threshold for the good ecological status in the period 2000-2006. Further, in two basins the quality station was installed in a lotic (free-flow water) environment whereas in the other two was placed in a lentic (dammed water) environment. The ArcMap GIS-based software package was used for the spatial analysis of stressors and processes. The yields of phosphorus vary widely across the studied basins, from 0.2-30 kg·ha(-1)·yr(-1). The results point to post-fire soil erosion and hardwood clear cuttings as leading factors of phosphorus exports across the watersheds, with precipitation intensity being the key variable of erosion. However, yields can be attenuated by sediment deposition along the pathway from burned or managed areas to water masses. The observed high yields and concentrations of phosphorus in surface water encompass serious implications for water resources management in the basins, amplified in the lentic cases by potential release of phosphorus from lake sediments especially during the summer season. Therefore, a number of measures were proposed as regards wildfire combat, reduction of phosphorus exports after tree cuts, attenuation of soil erosion and improvement of riparian buffers, all with the purpose of preventing phosphorus concentrations to go beyond the regulatory good ecological status. PMID:26225737

  10. Land use change for flood protection: A prospective study for the restoration of the river Jelašnica watershed

    Directory of Open Access Journals (Sweden)

    Ristić Ratko

    2011-01-01

    Full Text Available Serbia’s hilly-mountainous regions are extremely vulnerable to flooding as a consequence of their natural characteristics and human impacts. Land mismanagement influences the development of erosion processes, and causes soil degradation that significantly reduces the land’s capacity to infiltrate and retain rainwater. Inappropriate land use as well as development activities replace permeable with impervious surfaces in the watershed. This leads to more rapid runoff generation and the more frequent appearance of torrential floods and bed-load deposits on downstream sections. Environmental degradation creates economicsocial problems within local societies which is often followed by depopulation. Restoring watersheds to their optimal hydrologic state would reduce flood discharge and by increasing groundwater recharge would increase both low-flow and average discharges in springs and streams. Best management practices could be developed through the application of specific combinations of biotechnical, technical and administrative measures, and by using the concept of ″natural reservoirs″. The design of such practices is explored through a case study of the watershed of the river Jelašnica, southeastern Serbia. Realization of these planned restoration works should help decrease the annual yields of erosive material by 44.1% and the specific annual transport of sediment through hydrographic network by 43.6%. Representative value of the coefficient of erosion will be reduced from Z=0.555 to Z=0.379. The value of maximal discharge Qmax-AMCIII (1%=54.17 m3•s-1, before restoration, is decreased to Qmax-AMCIII (1%=41.22 m3•s-1 after restoration, indicating the improvement of hydrological conditions, as a direct consequence of land use changes. Administrative measures are applied through ″Plans for announcement of erosive regions and protection from torrential floods in the territory of Leskovac municipality″.

  11. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, D.; Hemond, H. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering; Mulholland, P. [Oak Ridge National Lab., TN (United States)

    1992-05-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate Rn{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rn{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach.

  12. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2014-06-01

    Full Text Available In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV compared to integrated watershed management villages (IWMV (95% CI 0.8–6.45, p = 0.081. The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05 was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  13. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management

    Science.gov (United States)

    We used a gradient (divided into impervious cover categories), spatially-balanced, random design (1) to sample streams along an impervious cover gradient in a large coastal watershed, (2) to characterize relationships between water chemistry and land cover, and (3) to document di...

  14. A Total Water Management Analysis of the Las Vegas Wash Watershed, Nevada

    Science.gov (United States)

    Climate change, land use change, and population growth are fundamental factors affecting future hydrologic conditions in streams, especially in arid regions with scarce water resources. Located in the arid southwest, Las Vegas Valley located within the Las Vegas Wash watershed is...

  15. Water quality monitoring of an agricultural watershed lake: the effectiveness of agricultural best management practices

    Science.gov (United States)

    Beasley Lake is an oxbow lake located in the Lower Mississippi Alluvial Plain (the Delta), a region of intensive agricultural activity. Due to intensive row-crop agricultural practices, the 915 ha watershed was sediment impaired when monitoring began in 1995 and was a candidate to assess the effect...

  16. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies

  17. Watersheds in disordered media

    CERN Document Server

    Araújo, N A M; Herrmann, H J; Andrade, J S

    2014-01-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics o...

  18. Methodology for a stormwater sensitive urban watershed design

    Science.gov (United States)

    Romnée, Ambroise; Evrard, Arnaud; Trachte, Sophie

    2015-11-01

    In urban stormwater management, decentralized systems are nowadays worldwide experimented, including stormwater best management practices. However, a watershed-scale approach, relevant for urban hydrology, is almost always neglected when designing a stormwater management plan with best management practices. As a consequence, urban designers fail to convince public authorities of the actual hydrologic effectiveness of such an approach to urban watershed stormwater management. In this paper, we develop a design oriented methodology for studying the morphology of an urban watershed in terms of sustainable stormwater management. The methodology is a five-step method, firstly based on the cartographic analysis of many stormwater relevant indicators regarding the landscape, the urban fabric and the governance. The second step focuses on the identification of many territorial stakes and their corresponding strategies of a decentralized stormwater management. Based on the indicators, the stakes and the strategies, the third step defines many spatial typologies regarding the roadway system and the urban fabric system. The fourth step determines many stormwater management scenarios to be applied to both spatial typologies systems. The fifth step is the design of decentralized stormwater management projects integrating BMPs into each spatial typology. The methodology aims to advise urban designers and engineering offices in the right location and selection of BMPs without given them a hypothetical unique solution. Since every location and every watershed is different due to local guidelines and stakeholders, this paper provide a methodology for a stormwater sensitive urban watershed design that could be reproduced everywhere. As an example, the methodology is applied as a case study to an urban watershed in Belgium, confirming that the method is applicable to any urban watershed. This paper should be helpful for engineering and design offices in urban hydrology to define a

  19. 农业最佳管理措施在全分布式水文模型中的表达--以罗玉沟流域为例%Representation of Agricultural Best Management Practices in a Fully Distributed Hydrologic Model:A Case Study in the Luoyugou Watershed

    Institute of Scientific and Technical Information of China (English)

    吴辉; 刘永波; 刘军志; 朱阿兴

    2014-01-01

    Agricultural Best Management Practices (BMPs) are effective ways to reduce agricultural nonpoint source pol ution from their source area to receiving water bodies. Characterization of BMPs in a watershed model is a critical prerequisite for evaluating their impacts on water quantity and water quality in a complex system. However, limited research has reported about the representation of BMPs in fully distributed models. This paper presents a stepwise procedure for representation of several BMPs and assessment of their hydrologic impacts with a ful y distributed model, SEIM (Spatially Explicit Integrated Modeling). A case study is conducted in the 73 km2 Luoyugou watershed located in the Loess Plateau of China, where rainstorm erosion accounts for more than 60%of annual sediment load in average. Three BMPs are selected in this study including (i) conversion from farmland to forest, (i ) terrace, and (i i) no-til farming. These management practices are represented in the model through the alteration of model parameters characterizing their physical processes in the ifeld. The results of scenario assessment for a historical storm event showed that the maximum sediment reduction after terrace is about 97.3%, the average sediment reduction after no-till farming is about 9.5%, and the average sediment reduction after conversion from farmland to forest is 75.6%.%农业最佳管理措施(BMPs)是为了减少由农业活动引起的非点源污染,防止污染物进入受纳水体的一系列措施。分布式水文模型是流域非点源污染模拟和BMPs评估的重要工具。利用分布式水文模型评估BMPs在水土保持、拦沙减污的有效性,首先要在模型中对BMPs进行刻画和表达。但是,在全分布式水文模型中,如何进行BMPs表达的研究比较缺乏。本文以黄土高原丘陵沟壑区典型小流域罗玉沟流域为例,基于一个全分布式模型,SEIM(Spatially Explicit Integrated Modeling)模型,逐步

  20. Using Four Capitals to Assess Watershed Sustainability

    Science.gov (United States)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  1. Tracking the Primary Sources of Fecal Pollution in a Tropical Watershed in a One-Year Study

    OpenAIRE

    Toledo-Hernandez, Carlos; Ryu, Hodon; Gonzalez-Nieves, Joel; Huertas, Evelyn; Gary A Toranzos; Santo Domingo, Jorge W.

    2013-01-01

    A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n = 534) from 10 different sites along the Rio Grande de Arecibo (RGA) watershed were collected mostly on a weekly basis (54 sampling events) during 13 months. DNA extracts from water samples were used in PCR assays to determine the occurrence of fecal bacteria (Bacteroidales, Clostridium coccoides, and enterococci) and ...

  2. Emerging Technologies for Ecohydrological Studies during the North American Monsoon in a Chihuahuan Desert Watershed

    Science.gov (United States)

    Templeton, R. C.; Vivoni, E. R.; Mendez-Barroso, L. A.; Rango, A.; Laliberte, A.; Saripalli, S.

    2010-12-01

    Monsoonal systems are due to seasonal shifts in atmospheric circulation that may result in a large fraction of the annual precipitation falling within a few months. The North American Monsoon System (NAMS) contributes approximately 55% of the annual rainfall in the New Mexico Chihuahuan Desert during the summer period. Relatively frequent storm events during the NAMS result in increased soil moisture that drive greater soil microbial activity and increased ecosystem primary productivity. During severe storms, runoff production can lead to flood events that recharge the subsurface through channel losses. In this study, we present preliminary results from a network of soil, channel, and atmospheric monitoring equipment in a small watershed (~0.05 km2) located in the Jornada Experimental Range (JER) near Las Cruces, New Mexico. Using the instrument network, we characterize the temporal and spatial variability of rainfall (5 rain gauges), soil moisture and temperature (16 profile locations), and channel runoff (4 flumes) within the watershed during the summer of 2010. In addition, we utilize CO2, H2O, and energy flux measurements by an eddy covariance tower to quantify the seasonal changes in land-atmosphere exchanges. These coordinated, spatially-distributed observations are complemented by the novel use of two Unmanned Aerial Vehicle (UAV) platforms for watershed characterization. Using a small airplane (the MLB BAT 3), we obtained a set of very high-resolution images (~7 cm) and created an orthomosaic to characterize vegetation cover and species prior to the NAMS and after full canopy development. Several instrument packages (optical, stereo and LIDAR) on board a SR30 UAV Electric helicopter also provide detailed information on the watershed, including a high-resolution digital elevation model (DEM). The conjunctive use of these datasets will allow for unprecedented analysis of how the onset and progression of the NAMS affects water, energy and carbon fluxes in a

  3. Cicatih Watershed

    OpenAIRE

    CIFOR

    2007-01-01

    On the 15 of March, IPB and CIFOR organized a workshop as an initial effort to invite all stakeholders of CICATIH watershed (Sukabumi - West Java) to discuss potentials and constrains in protecting the watershed and improving the quality of life of the people residing within the watershed. PES-1 (Payments for Environmental Services Associate Award)

  4. Watershed Seasons

    Science.gov (United States)

    Endreny, Anna

    2007-01-01

    All schools are located in "watersheds," land that drains into bodies of water. Some watersheds, like the one which encompasses the school discussed in this article, include bodies of water that are walking distance from the school. The watershed cited in this article has a brook and wetland within a several-block walk from the school. This…

  5. Watershed Restoration Project

    Energy Technology Data Exchange (ETDEWEB)

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  6. Ecosystem services valuation to support decisionmaking on public lands—A case study of the San Pedro River watershed, Arizona

    Science.gov (United States)

    Bagstad, Kenneth J.; Semmens, Darius; Winthrop, Rob; Jaworksi, Delilah; Larson, Joel

    2012-01-01

    This report details the findings of the Bureau of Land Management–U.S. Geological Survey Ecosystem Services Valuation Pilot Study. This project evaluated alternative methods and tools that quantify and value ecosystem services, and it assessed the tools’ readiness for use in the Bureau of Land Management decisionmaking process. We tested these tools on the San Pedro River watershed in northern Sonora, Mexico, and southeast Arizona. The study area includes the San Pedro Riparian National Conservation Area (managed by the Bureau of Land Management), which has been a focal point for conservation activities and scientific research in recent decades. We applied past site-specific primary valuation studies, value transfer, the Wildlife Habitat Benefits Estimation Toolkit, and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) and Artificial Intelligence for Ecosystem Services (ARIES) models to value locally important ecosystem services for the San Pedro River watershed—water, carbon, biodiversity, and cultural values. We tested these approaches on a series of scenarios to evaluate ecosystem service changes and the ability of the tools to accommodate scenarios. A suite of additional tools were either at too early a stage of development to run, were proprietary, or were place-specific tools inappropriate for application to the San Pedro River watershed. We described the strengths and weaknesses of these additional ecosystem service tools against a series of evaluative criteria related to their usefulness for Bureau of Land Management decisionmaking. Using these tools, we quantified gains or losses of ecosystem services under three categories of scenarios: urban growth, mesquite management, and water augmentation. These results quantify tradeoffs and could be useful for decisionmaking within Bureau of Land Management district or field offices. Results are accompanied by a relatively high level of uncertainty associated with model outputs, valuation

  7. Investigation of the promotion and adoption of sustainable natural resource management agricultural practices in the Chimbo watershed of Ecuador

    OpenAIRE

    Alwang, Jeffrey

    2009-01-01

    Final report for SANREM summer internship in Ecuador. Describes evaluation of determinants of adoption of soil conservation practices in Chimbo watershed, Ecuador LTRA-3 (Watershed-based NRM for Small-scale Agriculture)

  8. Modelling the hydrologic role of glaciers within a Water Evaluation and Planning System (WEAP): a case study in the Rio Santa watershed (Peru)

    Science.gov (United States)

    Condom, T.; Escobar, M.; Purkey, D.; Pouget, J. C.; Suarez, W.; Ramos, C.; Apaestegui, J.; Zapata, M.; Gomez, J.; Vergara, W.

    2011-01-01

    For the past 30 years, a process of glacier retreat has been observed in the Andes, raising alarm among regional water resources managers. The purpose of this paper is to develop a model of the role of Andean glaciers in the hydrology of their associated watersheds, which is appropriate for application at a river basin scale, with an eye towards creating an analytical tool that can be used to assess the water management implications of possible future glacier retreat. While the paper delves deeply into our formulation of a glacier module within a water resources management modelling system, the widely subscribed Water Evaluation and Planning System (WEAP), the originality of our work lies less in the domain of glaciology and more in how we apply an existing reduced form representation of glacier evolution within a model of the climate-glacier-hydrology-water management continuum. Key insights gained pertain to appropriate ways to deploy these reduced form representations in a relatively data poor environment and to effectively integrate them into a modelling framework that places glaciers within a wider water management context. The study area is the Rio Santa watershed in Peru which contains many of the expansive glaciers of the singular Cordillera Blanca. The specific objectives of this study included: (i) adequately simulating both monitored glacier retreat and observed river flows from the last forty years using historical climate time series as model input; (ii) quantifying the proportion of river flow in the Rio Santa produced from melting glaciers during this period; (iii) estimating the historical contribution of groundwater accretions to river flows; and (vi) reproducing a reasonable simulation of recent hydropower operations in the Rio Santa system. In pursuit objective (i), a split sample calibration-validation of the model was conducted by comparing the simulated glacier area to Landsat images taken in 1987 and 1998 and observed and simulated river flow

  9. Modelling the hydrologic role of glaciers within a Water Evaluation and Planning System (WEAP: a case study in the Rio Santa watershed (Peru

    Directory of Open Access Journals (Sweden)

    T. Condom

    2011-01-01

    Full Text Available For the past 30 years, a process of glacier retreat has been observed in the Andes, raising alarm among regional water resources managers. The purpose of this paper is to develop a model of the role of Andean glaciers in the hydrology of their associated watersheds, which is appropriate for application at a river basin scale, with an eye towards creating an analytical tool that can be used to assess the water management implications of possible future glacier retreat. While the paper delves deeply into our formulation of a glacier module within a water resources management modelling system, the widely subscribed Water Evaluation and Planning System (WEAP, the originality of our work lies less in the domain of glaciology and more in how we apply an existing reduced form representation of glacier evolution within a model of the climate-glacier-hydrology-water management continuum. Key insights gained pertain to appropriate ways to deploy these reduced form representations in a relatively data poor environment and to effectively integrate them into a modelling framework that places glaciers within a wider water management context. The study area is the Rio Santa watershed in Peru which contains many of the expansive glaciers of the singular Cordillera Blanca. The specific objectives of this study included: (i adequately simulating both monitored glacier retreat and observed river flows from the last forty years using historical climate time series as model input; (ii quantifying the proportion of river flow in the Rio Santa produced from melting glaciers during this period; (iii estimating the historical contribution of groundwater accretions to river flows; and (vi reproducing a reasonable simulation of recent hydropower operations in the Rio Santa system. In pursuit objective (i, a split sample calibration-validation of the model was conducted by comparing the simulated glacier area to Landsat images taken in 1987 and 1998 and observed and

  10. Project management case studies

    CERN Document Server

    Kerzner, Harold R

    2013-01-01

    A new edition of the most popular book of project management case studies, expanded to include more than 100 cases plus a ""super case"" on the Iridium Project Case studies are an important part of project management education and training. This Fourth Edition of Harold Kerzner''s Project Management Case Studies features a number of new cases covering value measurement in project management. Also included is the well-received ""super case,"" which covers all aspects of project management and may be used as a capstone for a course. This new edition:Contains 100-plus case studies drawn from re

  11. Discussions about some theoretical issues of small watershed comprehensive management%小流域综合治理的几个理论问题探讨

    Institute of Scientific and Technical Information of China (English)

    余新晓

    2012-01-01

    Soil and water resources are vital basic resources in mankind' s living and development progress. The Loss of soil and water resources caused by soil erosion has already seriously obstructed economy development of our country, which has been the first environmental problem. Therefore, it is essential for our country to carry out comprehensive management of soil erosion, with small watershed as unit. After SO years of exploration and development, the achievements of the small watershed management model are positive and remarkable. However, many weaknesses and outstanding theoretical problems we faced must be resolved. In order to solve the outstanding theory problems and provide some references for future study, this paper summarized the problems existed in comprehensive management of small watershed from the following aspects: soil erosion, hydrology and water resources, ecosystem economy, health, environment and ecosystem engineering.%水土资源是人类生存和发展过程中不可代替的基础资源,而由土壤侵蚀引发的水土资源流失问题已严重阻碍了我国经济的可持续发展,成为我国的头号环境问题.为此以小流域为单元,开展水土流失综合治理是我国可持续发展的必然选择.经过50多年的不断探索与发展,小流域综合治理模式成效显著,治理模式已日趋成熟,然而在肯定成果的同时,也面临着不少薄弱环节和突出理论问题亟待解决.为此,主要基于理论角度,从流域土壤侵蚀、流域水文与水资源、流域生态经济、流域生态系统健康、流域环境和流域生态工程等6方面对小流域综合治理过程中存在的问题加以总结,为小流域综合治理的未来发展提供一定参考.

  12. Modeling the Effects of Fire on Streamflow in a Chaparral Watershed

    OpenAIRE

    McMichael, Christine E.

    2004-01-01

    A comprehensive understanding of the effects of fire and post-fire succession on streamflow dynamics in California chaparral watersheds is needed to facilitate effective planning and management in these semi-arid shrublands. Watershed experiments have provided insights into the hydrologic effects of fire and post fire succession in chaparral watersheds, however extrapolation of these results is constrained by the small number of studies and the limited space and/or time scales examined. As i...

  13. Towards integrated watershed management in highland Ethiopia: the Chemoga watershed case study

    NARCIS (Netherlands)

    Bewket, W.

    2003-01-01

    Resource degradation is a critical problem in highland Ethiopia. Past soil and water conservation efforts did not bring about significant results. Hence, there is an urgent need to tackle the problem through new conservation approaches and technologies. This thesis discusses the need for and possibi

  14. Investigation of accuracy of CORINE 2006 land cover data used in watershed studies

    Directory of Open Access Journals (Sweden)

    Ayhan Ateşoğlu

    2016-01-01

    Full Text Available There have been many studies concerning the use of sustainable natural resources. The planning concerning the results of watershed-based studies is made for the future. The issue to be considered in these studies, is obtaining accurate data. The most important data of the studies in the watershed basin is obtaining land cover/use data. Land cover / land classification done by using remote sensing and GIS and monitoring the change periodically are both easy and economical. To this end, CORINE (Coordination of Information on the Environment land cover program was initiated by The European Commission (CEC. The accuracy of CORINE 2006 land cover data was evaluated using high resolution Google Earth data in two separate test areas located in the Black Sea and Central Anatolia region. Random 5000 points for each test area were assigned to classes according to the CORINE classification method using Google Earth and were compared with the CORINE 2006 data. The accuracy of first test area in Black Sea region was calculated as 51.80% the accuracy of second test area in Central Anatolia region was calculated as 55.32%. For each test area, CORINE 2006 data has not been found to be up to date and has been detected to have low accuracy.

  15. Landslide susceptibility analysis using Probabilistic Certainty Factor Approach: A case study on Tevankarai stream watershed, India

    Indian Academy of Sciences (India)

    Evangelin Ramani Sujatha; G Victor Rajamanickam; P Kumaravel

    2012-10-01

    This paper reports the use of a GIS based Probabilistic Certainty Factor method to assess the geo-environmental factors that contribute to landslide susceptibility in Tevankarai Ar sub-watershed, Kodaikkanal. Landslide occurrences are a common phenomenon in the Tevankarai Ar sub-watershed, Kodaikkanal owing to rugged terrain at high altitude, high frequency of intense rainfall and rapidly expanding urban growth. The spatial database of the factors influencing landslides are compiled primarily from topographical maps, aerial photographs and satellite images. They are relief, slope, aspect, curvature, weathering, soil, land use, proximity to road and proximity to drainage. Certainty Factor Approach is used to study the interaction between the factors and the landslide, highlighting the importance of each factor in causing landslide. The results show that slope, aspect, soil and proximity to roads play important role in landslide susceptibility. The landslide susceptibility map is classified into five susceptible classes – low, very low, uncertain, high and very high − 93.32% of the study area falls under the stable category and 6.34% falls under the highly and very highly unstable category. The relative landslide density index (R index) is used to validate the landslide susceptibility map. R index increases with the increase in the susceptibility class. This shows that the factors selected for the study and susceptibility mapping using certainty factor are appropriate for the study area. Highly unstable zones show intense anthropogenic activities like high density settlement areas, and busy roads connecting the hill town and the plains.

  16. Construction Management : Study Book

    OpenAIRE

    Ilveskoski, Olli; Niittymäki, Seppo

    2015-01-01

    This publication is a summary of the Construction Management course handscript. The objective is that as the students gets involved with the Construction Management of Building Projects they will learn Construction Management topics like Building Process, Production planning, Quantity Take Off, Cost Estimation, Scheduling, Work Safety and Quality Control. The study book has been in use in Construction Management courses in Häme University of Applied Sciences.

  17. Study of the quality and quantity of waters of a tributary watershed of Paraíba do Sul river- São Paulo, after environmental preservation actions

    Directory of Open Access Journals (Sweden)

    Alexandra Andrade

    2012-12-01

    Full Text Available Monitoring programs of water quality and quantity are necessary to provide subsidies to assess the conditions of the watersheds and for decision making regarding to the management of water resources. This study analyzed the quality and quantity of waters of the Macacos stream watershed, a tributary of the Paraíba do Sul river, in São Paulo State, by monitoring the parameters: temperature, pH, conductivity and dissolved oxygen at five sites in the watershed. The measurements of flow and height of water depth during dry and wet seasons of 2010 and 2011 allowed the construction of the "rating curve" in four points of water quality monitoring and to reconstruct the series of water flow in these seasons. The analysis results showed that there is indication of changes in water quality parameters due to the conservation practices adopted. The water temperature parameter was the most influenced by the seasonal variation in runoff. Several physical factors may have influenced the correlation of the other parameters with runoff, especially the different environmental recovery actions implemented in the study to achieve the sustainability of the water resources.

  18. Managing Microbial Risks from Indirect Wastewater Reuse for Irrigation in Urbanizing Watersheds.

    Science.gov (United States)

    Verbyla, Matthew E; Symonds, Erin M; Kafle, Ram C; Cairns, Maryann R; Iriarte, Mercedes; Mercado Guzmán, Alvaro; Coronado, Olver; Breitbart, Mya; Ledo, Carmen; Mihelcic, James R

    2016-07-01

    Limited supply of clean water in urbanizing watersheds creates challenges for safely sustaining irrigated agriculture and global food security. On-farm interventions, such as riverbank filtration (RBF), are used in developing countries to treat irrigation water from rivers with extensive fecal contamination. Using a Bayesian approach incorporating ethnographic data and pathogen measurements, quantitative microbial risk assessment (QMRA) methods were employed to assess the impact of RBF on consumer health burdens for Giardia, Cryptosporidium, rotavirus, norovirus, and adenovirus infections resulting from indirect wastewater reuse, with lettuce irrigation in Bolivia as a model system. Concentrations of the microbial source tracking markers pepper mild mottle virus and HF183 Bacteroides were respectively 2.9 and 5.5 log10 units lower in RBF-treated water than in the river water. Consumption of lettuce irrigated with river water caused an estimated median health burden that represents 37% of Bolivia's overall diarrheal disease burden, but RBF resulted in an estimated health burden that is only 1.1% of this overall diarrheal disease burden. Variability and uncertainty associated with environmental and cultural factors affecting exposure correlated more with QMRA-predicted health outcomes than factors related to disease vulnerability. Policies governing simple on-farm interventions like RBF can be intermediary solutions for communities in urbanizing watersheds that currently lack wastewater treatment. PMID:26992352

  19. Willingness to Adopt Best Management Practice Bundles by Beef Cattle Operations in an East Tennessee Watershed

    OpenAIRE

    Kutz, Alicia M.; Christopher D. Clark; Christopher N. Boyer; Lambert, Dayton M.

    2014-01-01

    Voluntary programs to reduce nonpoint source pollution are an important component of efforts to reduce water quality degradation in the U.S. Understanding the factors influencing the willingness of nonpoint sources such as farms to participate in these programs is critical to effectively designing and implementing these programs. This study examines factors influencing willingness to adopt four different best management practices—rotational grazing, pasture improvement, stream water crossing,...

  20. Stability of patches of oasis landscape in arid areas: A case study of Sangong River Watershed, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    LUO Geping; ZHOU Chenghu; CHEN Xi

    2006-01-01

    The stability of oases is one of the key scientific issues in the process of evolution and management of oases in arid areas. The stability of oases and its representation are also different at different scales. This paper deals with the stability of oases at the landscape patch scale with a case study in the Sangong River Watershed of Tianshan Mountains.We employed the remote sensing, geographic information system and mathematical statistical methods to process the remote sensing images of three periods in 1978, 1987 and 1998, and put forward the approaches for representing the oasis stability at the landscape patch scale. The landscape control capacity of oasis patches is a kind of natural driving forces of the dynamic landscape change. The control capacity of a certain patch type on landscape change increases with its area and shape complexity and contrasts between it and other patches, and reduces with its spatial distances between it and other patches. The patch type with the strongest control capacity should be the matrix of landscape. The conversion of oasis landscape patches results from both natural and anthropogenic driving forces, particularly the anthropogenic driving forces. The higher the conversion proportion is, the lower the stability of patch types is and the stronger the anthropogenic disturbance is. The patch type with the strongest net control capacity in the Sangong River Watershed in 1987 was the desert grassland, which was the matrix of landscapes; but the matrix of landscapes had been changed into the irrigated lands in 1987 and 1998.The control capacities of landscape patches on the oasis landscape evolution have gradually reduced with time in the Sangong River Watershed, and the change extents also have reduced gradually. This reveals that the interaction among the landscape patch types generally tends to reduce, and the natural stability of the oasis landscape patches generally tends to increase. However, the conversion among the

  1. Locating farmer-based knowledge and vested interests in natural resource management: the interface of ethnopedology, land tenure and gender in soil erosion management in the Manupali watershed, Philippines

    Directory of Open Access Journals (Sweden)

    Price Lisa

    2007-09-01

    Full Text Available Abstract This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducted with 48 farmers holding 154 parcels at different elevations/locations in the watershed. The on-parcel research consisted of farmer classifications of the soil, topography, and erosion status of their parcels. Soil samples were also taken and examined. Farming households were also examined with regard to erosion control activities conducted by age and sex. Erosion management was examined in relation to tenure of the parcel, which emerged as a salient aspect among focus group members and was evidenced by the actual control measures taken on farmed parcels. The results show that the major constraint in soil erosion management is not local knowledge as much as it is the tenure arrangements which allow "temporary owners" (those working rented or mortgaged parcels to manage the parcels as they see fit. Most of these temporary owners are not willing to invest in erosion control measures other than water diversion ditches. Parcel owners, in contrast, do invest in longer term erosion control measures on the parcels they actually work. The findings of this paper illustrate that linking local knowledge and practices is often not sufficient in and of itself for addressing questions of sound environmental management. While local knowledge serves farmers generally well, there are some limitations. Importantly, the pressures in the contemporary world of markets and cash can undermine what they know as the right thing to do for the environment.

  2. RIVER SEDIMENT MONITORING USING REMOTE SENSING AND GIS (CASE STUDY KARAJ WATERSHED

    Directory of Open Access Journals (Sweden)

    M. Shafaie

    2015-12-01

    Full Text Available Whereas the tank volume and dehydrating digits from kinds of tanks are depended on repository sludge, so calculating the sediments is so important in tank planning and hydraulic structures. We are worry a lot about soil erosion in the basin area leading to deposit in rivers and lakes. It holds two reasons: firstly, because the surface soil of drainage would lose its fertility and secondly, the capacity of the tank decreases also it causes the decrease of water quality in downstream. Several studies have shown that we can estimate the rate of suspension sediments through remote sensing techniques. Whereas using remote sensing methods in contrast to the traditional and current techniques is faster and more accurate then they can be used as the effective techniques. The intent of this study has already been to estimate the rate of sediments in Karaj watershed through remote sensing and satellite images then comparing the gained results to the sediments data to use them in gauge-hydraulic station. We mean to recognize the remote sensing methods in calculating sediment and use them to determine the rate of river sediments so that identifying their accuracies. According to the results gained of the shown relations at this article, the amount of annual suspended sedimentary in KARAJ watershed have been 320490 Tones and in hydrologic method is about 350764 Tones .

  3. River Sediment Monitoring Using Remote Sensing and GIS (case Study Karaj Watershed)

    Science.gov (United States)

    Shafaie, M.; Ghodosi, H.; Mostofi, K. H.

    2015-12-01

    Whereas the tank volume and dehydrating digits from kinds of tanks are depended on repository sludge, so calculating the sediments is so important in tank planning and hydraulic structures. We are worry a lot about soil erosion in the basin area leading to deposit in rivers and lakes. It holds two reasons: firstly, because the surface soil of drainage would lose its fertility and secondly, the capacity of the tank decreases also it causes the decrease of water quality in downstream. Several studies have shown that we can estimate the rate of suspension sediments through remote sensing techniques. Whereas using remote sensing methods in contrast to the traditional and current techniques is faster and more accurate then they can be used as the effective techniques. The intent of this study has already been to estimate the rate of sediments in Karaj watershed through remote sensing and satellite images then comparing the gained results to the sediments data to use them in gauge-hydraulic station. We mean to recognize the remote sensing methods in calculating sediment and use them to determine the rate of river sediments so that identifying their accuracies. According to the results gained of the shown relations at this article, the amount of annual suspended sedimentary in KARAJ watershed have been 320490 Tones and in hydrologic method is about 350764 Tones .

  4. Perceiving Patagonia: An Assessment of Social Values and Perspectives Regarding Watershed Ecosystem Services and Management in Southern South America

    Science.gov (United States)

    Zagarola, Jean-Paul A.; Anderson, Christopher B.; Veteto, James R.

    2014-04-01

    Research on human dimensions of ecosystems through the ecosystem services (ES) concept has proliferated over recent decades but has largely focused on monetary value of ecosystems while excluding other community-based values. We conducted 312 surveys of general community members and regional researchers and decision-makers (specialists) to understand local perceptions and values of watershed ES and natural resource management in South America's southern Patagonian ecoregion. Results indicated that specialists shared many similar values of ES with community members, but at the same time their mentalities did not capture the diversity of values that existed within the broader community. The supporting services were most highly valued by both groups, but generally poorly understood by the community. Many services that are not easily captured in monetary terms, particularly cultural services, were highly valued by community members and specialists. Both groups perceived a lack of communication and access to basic scientific information in current management approaches and differed slightly in their perspective on potential threats to ES. We recommend that a community-based approach be integrated into the natural resource management framework that better embodies the diversity of values that exist in these communities, while enhancing the science-society dialog and thereby encouraging the application of multiple forms of ecological knowledge in place-based environmental management.

  5. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)

    OpenAIRE

    Chen Lin; Ronghua Ma; Bin He

    2015-01-01

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as ...

  6. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  7. Modeling of Soil Erosion by IntErO model: The Case Study of the Novsicki Potok Watershed, of the Prokletije high mountains of Montenegro

    Science.gov (United States)

    Spalevic, Velibor; Al-Turki, Ali M.; Barovic, Goran; Leandro Naves Silva, Marx; Djurovic, Nevenka; Soares Souza, Walisson; Veloso Gomes Batista, Pedro; Curovic, Milic

    2016-04-01

    The application of soil conservation programs to combat erosion and sedimentation are significantly contributing to the protection of the natural resources. Watershed management practices include the assessment of Physical-Geographical, Climate, Geological, Pedological characteristics, including the analysis of Land Use of the regions concerned. The policy makers are increasingly looking for the different land uses and climatic scenarios that can be used for valuable projections for watershed management. To increase knowledge about those processes, use of hydrological and soil erosion models is needed and that is allowing quantification of soil redistribution and sediment productions. We focused on soil erosion processes in one of Northern Montenegrin mountain watersheds, the Novsicki Potok Watershed of the Polimlje River Basin, using modeling techniques: the IntErO model for calculation of runoff and soil loss. The model outcomes were validated through measurements of lake sediment deposition at the Potpec hydropower plant dam. Our findings indicate a medium potential of soil erosion risk. With 464 m³ yr‑1 of annual sediment yield, corresponding to an area-specific sediment yield of 270 m³km-2 yr‑1, the Novsicki Potok drainage basin belongs to the Montenegrin basins with the medium sediment discharge; according to the erosion type, it is surface erosion. The value of the Z coefficient was calculated on 0.403, what indicates that the river basin belongs to 3rd destruction category (of five). Our results suggest that the calculated peak discharge from the river basin was 82 m3s-1 for the incidence of 100 years. According to our analysis there is a possibility for large flood waves to appear in the studied river basin. With this research we, to some extent, improved the knowledge on the status of sediment yield and runoff of the river basins of Montenegro, where the map of Soil erosion is still not prepared. The IntErO model we used in this study is relatively

  8. Modeling of Soil Erosion by IntErO model: The Case Study of the Novsicki Potok Watershed, of the Prokletije high mountains of Montenegro

    Science.gov (United States)

    Spalevic, Velibor; Al-Turki, Ali M.; Barovic, Goran; Leandro Naves Silva, Marx; Djurovic, Nevenka; Soares Souza, Walisson; Veloso Gomes Batista, Pedro; Curovic, Milic

    2016-04-01

    The application of soil conservation programs to combat erosion and sedimentation are significantly contributing to the protection of the natural resources. Watershed management practices include the assessment of Physical-Geographical, Climate, Geological, Pedological characteristics, including the analysis of Land Use of the regions concerned. The policy makers are increasingly looking for the different land uses and climatic scenarios that can be used for valuable projections for watershed management. To increase knowledge about those processes, use of hydrological and soil erosion models is needed and that is allowing quantification of soil redistribution and sediment productions. We focused on soil erosion processes in one of Northern Montenegrin mountain watersheds, the Novsicki Potok Watershed of the Polimlje River Basin, using modeling techniques: the IntErO model for calculation of runoff and soil loss. The model outcomes were validated through measurements of lake sediment deposition at the Potpec hydropower plant dam. Our findings indicate a medium potential of soil erosion risk. With 464 m³ yr-1 of annual sediment yield, corresponding to an area-specific sediment yield of 270 m³km-2 yr-1, the Novsicki Potok drainage basin belongs to the Montenegrin basins with the medium sediment discharge; according to the erosion type, it is surface erosion. The value of the Z coefficient was calculated on 0.403, what indicates that the river basin belongs to 3rd destruction category (of five). Our results suggest that the calculated peak discharge from the river basin was 82 m3s-1 for the incidence of 100 years. According to our analysis there is a possibility for large flood waves to appear in the studied river basin. With this research we, to some extent, improved the knowledge on the status of sediment yield and runoff of the river basins of Montenegro, where the map of Soil erosion is still not prepared. The IntErO model we used in this study is relatively

  9. Potential and limitations of Payments for Environmental Services (PES as a means to manage watershed services in mainland Southeast Asia

    Directory of Open Access Journals (Sweden)

    Alana George

    2009-04-01

    Full Text Available Based on two case studies conducted at local sites in Northern Thailand and Lao PDR, the objectives of this paper are (i to assess whether conditions for the establishment of PES at the watershed level exist in the uplands of mainland SE Asia and (ii to examine and discuss limitations that are likely to impinge on direct transfer of the PES concept as well as the institutional adaptations and support that are required for the successful implementation of PES markets in this regional context. The study's main findings are that: (i acceptance of PES principles and constraints are directly related to stakeholders' perception of their land rights irrespective of their actual rights; (ii willingness to pay (WTP is very low among local stakeholders, making any PES market unlikely to emerge without external support; (iii the classical scheme for watershed services hardly applies in its original form because environmental service (ES providers and buyers are generally the same people; (iv where potential ES buyers feel that ES providers are better-off or wealthier than them, they do not have any WTP for ES; (v good governance, including a strong liaising at various levels between people and the authorities is a strong prerequisite for the successful establishment of PES markets, even without direct government funding

  10. Research on watershed sustainability index:a case study of Le’an River watershed%乐安河流域可持续发展指标体系研究

    Institute of Scientific and Technical Information of China (English)

    夏雨; 鄢帮有; Thomas Koenig; 方豫

    2015-01-01

    基于Chaves & Alipazz在巴西南某流域建立可持续发展指标体系理论,根据乐安河流域的实际情况及数据获取程度,选用可避免主观性误差的定量指标,建立了乐安河流域可持续发展指标体系,计算出乐安河流域可持续发展指数为0.72,属于中等水平。其中最高参数值为水文现状指标(0.88),而最低值为压力指数参数(0.25),充分反应了流域内目前水质尚好,水量也充分,但社会经济发展及气候变化影响已带来巨大压力。为了全面提高流域的可持续发展能力,水权使用方和政策制定者应致力于提高流域内水源涵养功能,加大污染防治力度,合理制定土地利用规划,改善土壤环境,提升流域内部环境容量。%The best way to compromise the resource development and environmental protection is to con-duct a comprehensive management based on the watershed unit. The watershed sustainability is closely re-lated to such factors as hydrology,environment,lifestyle and politics,which can be employed together to establish an index system for the purpose of survey and planning. The surveyed watershed that is employed in the case study is located in the North of Jiangxi Province of China,and the WSI-concept applied here is based on the principles published first by Chaves and Alipaz(2007)based on their research on the water-shed of a river in Brazil. We adjust our index according to the local situation and the data we collected,a-voiding using the subjective quantity index. We manage to find out that the WSI for Le’an River water-shed is 0. 72,which falls into an intermediate level. More specifically,the indicator for“hydrology pres-sure”reaches only the mark of 0 . 25 ,while“hydrology state”scores at 0 . 88 . The result suggests that al-though both the water quality and quantity reach a satisfying status currently,the social and economic de-velopment has brought serious pressure on both

  11. How Conservation Reserve Program Affects Runoff and Nutrients in an Oxbow Lake Watershed

    Science.gov (United States)

    A case study of Beasley Lake Watershed, located in the Mississippi Delta region of the U.S. was used to evaluate runoff from edge-of-field sites with row crop management practices and Conservation Reserve Program (CRP) sites with trees. Approximately one-third of the Beasley Lake watershed (280 ha)...

  12. Participatory Scenario Planning for the Cienega Watershed: Embracing Uncertainty in Public Lands Management in the U.S. Southwest

    Science.gov (United States)

    Hartmann, H.; Morino, K.; Bodner, G.; Markstein, A.; McFarlin, S.

    2013-12-01

    Land managers and communities struggle to sustain natural landscapes and the benefits they provide--especially in an era of rapid and unpredictable changes being driven by shifts in climate and other drivers that are largely outside the control of local managers and residents. The Cienega Watershed Partnership (CWP) is a long-standing multi-agency partnership involved in managing lands and resources over about 700,000 acres in southeast Arizona, surrounding the Bureau of Land Management's Las Cienegas National Conservation Area. The region forms a vital wildlife corridor connecting the diverse ecosystems of the Sonoran and Chihuahuan deserts and grasslands with the Sierra Madrean and Rocky Mountain forests and woodlands. The CWP has long-standing forums and relationships for considering complex issues and novel approaches for management, including practical implementation of adaptive management, development of monitoring programs and protocols, and the use of nested objectives to adjust management targets. However, current plans have objectives and strategies based on what is known or likely to become known about natural and socio-cultural systems; they do not incorporate uncertainties related to rapid changes in climate or have well developed feedback mechanisms for routinely reconsidering climate information. Since 2011, more than 50 individuals from over 20 federal and local governments, non-governmental organizations, and private landowners have participated in scenario planning for the Cienega Watershed. Scenario planning is an important tool for (1) managing risks in the face of high volatility, uncertainty, complexity, and ambiguity; (2) integrating quantitative climate projections, trend and impact assessments, and local expertise to develop qualitative scenario narratives that can inform decisions even by simply provoking insights; and (3) engaging jurisdictions having different missions, objectives, and planning processes. Participants are helping to

  13. Exploring the Potential Impact of Serious Games on Social Learning and Stakeholder Collaborations for Transboundary Watershed Management of the St. Lawrence River Basin

    Directory of Open Access Journals (Sweden)

    Wietske Medema

    2016-04-01

    Full Text Available The meaningful participation of stakeholders in decision-making is now widely recognized as a crucial element of effective water resource management, particularly with regards to adapting to climate and environmental change. Social learning is increasingly being cited as an important component of engagement if meaningful participation is to be achieved. The exact definition of social learning is still a matter under debate, but is taken to be a process in which individuals experience a change in understanding that is brought about by social interaction. Social learning has been identified as particularly important in transboundary contexts, where it is necessary to reframe problems from a local to a basin-wide perspective. In this study, social learning is explored in the context of transboundary water resource management in the St. Lawrence River Basin. The overarching goal of this paper is to explore the potential role of serious games to improve social learning in the St. Lawrence River. To achieve this end, a two-pronged approach is followed: (1 Assessing whether social learning is currently occurring and identifying what the barriers to social learning are through interviews with the region’s water resource managers; (2 Undertaking a literature review to understand the mechanisms through which serious games enhance social learning to understand which barriers serious games can break down. Interview questions were designed to explore the relevance of social learning in the St. Lawrence River basin context, and to identify the practices currently employed that impact on social learning. While examples of social learning that is occurring have been identified, preliminary results suggest that these examples are exceptions rather than the rule, and that on the whole, social learning is not occurring to its full potential. The literature review of serious games offers an assessment of such collaborative mechanisms in terms of design principles

  14. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    Science.gov (United States)

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin. PMID:24292872

  15. Field Studies of Streamflow Generation Using Natural and Injected Tracers on Bickford and Walker Branch Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, D.

    1992-01-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate [Rn]{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and {sup 222}Rn volatilization from, the study reach. The second stage involved quantitative comparison of [Rn]{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach. The method was first applied to a 34 m stream reach at Bickford during baseflow; results suggested that {ge} 70% of the lateral inflow could be considered vadose zone water (water which had been in a saturated zone for less than a few days), and the remainder ''soil groundwater'' or ''saturated zone water'' (which had a longer residence time in a soil saturated zone). The method was then applied to two stream reaches on the West Fork of Walker Branch over a wide range of flow conditions; four springs were also investigated. It was found that springwater and inflow to the stream could be viewed as a mixture of water from three end members: the two defined at Bickford (vadose zone water and soil groundwater) and a third (bedrock groundwater) to account for the movement of water through fractured dolomite bedrock. Calcium was used as a second naturally-occurring tracer to distinguish bedrock groundwater from the other two end members. The behavior

  16. Summary and Synthesis of Mercury Studies in the Cache Creek Watershed, California, 2000-01

    Science.gov (United States)

    Domagalski, Joseph L.; Slotton, Darell G.; Alpers, Charles N.; Suchanek, Thomas H.; Churchill, Ronald; Bloom, Nicolas; Ayers, Shaun M.; Clinkenbeard, John

    2004-01-01

    This report summarizes the principal findings of the Cache Creek, California, components of a project funded by the CALFED Bay?Delta Program entitled 'An Assessment of Ecological and Human Health Impacts of Mercury in the Bay?Delta Watershed.' A companion report summarizes the key findings of other components of the project based in the San Francisco Bay and the Delta of the Sacramento and San Joaquin Rivers. These summary documents present the more important findings of the various studies in a format intended for a wide audience. For more in-depth, scientific presentation and discussion of the research, a series of detailed technical reports of the integrated mercury studies is available at the following website: .

  17. An Integrated Approach to Identification, Assessment and Management of Watershed-Scale Risk for Sustainable Water Use Through Reuse and Recycling

    Science.gov (United States)

    Hunter, C. K.; Bolster, D.; Gironas, J. A.

    2014-12-01

    Water resources are essential to development, not only economically but also socially, politically and ecologically. With growing demand and potentially shrinking supply, water scarcity is one of the most pressing socio-ecological problems of the 21st century. Considering implications of global change and the complexity of interrelated systems, uncertain future conditions compound problems associated with water stress, requiring hydrologic models to re-examine traditional water resource planning and management. The Copiapó water basin, located in the Atacama Desert of northern Chile exhibits a complex resource management scenario. With annual average precipitation of only 28 mm, water intensive sectors such as export agriculture, extensive mining, and a growing population have depleted the aquifeŕs reserves to near critical levels. Being that global climate change models predict a decrease in already scarce precipitation, and that growing population and economies demand will likely increase, the real future situation might be even worse than that predicted. A viable option for alleviation of water stress, water reuse and recycling has evolved through technological innovation to feasibly meet hydraulic needs with reclaimed water. For the proper application of these methods for resource management, however, stakeholders must possess tools by which to quantify hydrologic risk, understand its factors of causation, and choose between competing management scenarios and technologies so as to optimize productivity. While previous investigations have addressed similar problems, they often overlook aspects of forecasting uncertainty, proposing solutions that while accurate under specific scenarios, lack robustness to withstand future variations. Using the WEAP (Water Evaluation and Planning) platform for hydrologic modeling, this study proposes a methodology, applicable to other stressed watersheds, to quantify inherent risk in water management positions, while considering

  18. Characterizing a Century of Climate and Hydrological Variability of a Mediterranean and Mountainous Watersheds: the Durance River Case-Study

    Science.gov (United States)

    Mathevet, T.; Kuentz, A.; Gailhard, J.; Andreassian, V.

    2013-12-01

    Improving the understanding of mountain watersheds hydrological variability is a great scientific issue, for both researchers and water resources managers, such as Electricite de France (Energy and Hydropower Company). The past and current context of climate variability enhances the interest on this topic, since multi-purposes water resources management is highly sensitive to this variability. The Durance River watershed (14000 km2), situated in the French Alps, is a good example of the complexity of this issue. It is characterized by a variety of hydrological processes (from snowy to Mediterranean regimes) and a wide range of anthropogenic influences (hydropower, irrigation, flood control, tourism and water supply), mixing potential causes of changes in its hydrological regimes. As water related stakes are numerous in this watershed, improving knowledge on the hydrological variability of the Durance River appears to be essential. In this presentation, we would like to focus on a methodology we developed to build long-term historical hydrometeorological time-series, based on atmospheric reanalysis (20CR : 20th Century Reanalysis) and historical local observations. This methodology allowed us to generate precipitation, air temperature and streamflow time-series at a daily time-step for a sample of 22 watersheds, for the 1883-2010 period. These long-term streamflow reconstructions have been validated thanks to historical searches that allowed to bring to light ten long historical series of daily streamflows, beginning on the early 20th century. Reconstructions appear to have rather good statistical properties, with good correlation (greater than 0.8) and limited mean and variance bias (less than 5%). Then, these long-term hydrometeorological time-series allowed us to characterize the past variability in terms of available water resources, droughts or hydrological regime. These analyses help water resources managers to better know the range of hydrological

  19. Downscaling future climate projections to the watershed scale: a north San Francisco Bay estuary case study

    Science.gov (United States)

    Micheli, Elisabeth; Flint, Lorraine; Flint, Alan; Weiss, Stuart; Kennedy, Morgan

    2012-01-01

    We modeled the hydrology of basins draining into the northern portion of the San Francisco Bay Estuary (North San Pablo Bay) using a regional water balance model (Basin Characterization Model; BCM) to estimate potential effects of climate change at the watershed scale. The BCM calculates water balance components, including runoff, recharge, evapotranspiration, soil moisture, and stream flow, based on climate, topography, soils and underlying geology, and the solar-driven energy balance. We downscaled historical and projected precipitation and air temperature values derived from weather stations and global General Circulation Models (GCMs) to a spatial scale of 270 m. We then used the BCM to estimate hydrologic response to climate change for four scenarios spanning this century (2000–2100). Historical climate patterns show that Marin’s coastal regions are typically on the order of 2 °C cooler and receive five percent more precipitation compared to the inland valleys of Sonoma and Napa because of marine influences and local topography. By the last 30 years of this century, North Bay scenarios project average minimum temperatures to increase by 1.0 °C to 3.1 °C and average maximum temperatures to increase by 2.1 °C to 3.4 °C (in comparison to conditions experienced over the last 30 years, 1981–2010). Precipitation projections for the 21st century vary between GCMs (ranging from 2 to 15% wetter than the 20th-century average). Temperature forcing increases the variability of modeled runoff, recharge, and stream discharge, and shifts hydrologic cycle timing. For both high- and low-rainfall scenarios, by the close of this century warming is projected to amplify late-season climatic water deficit (a measure of drought stress on soils) by 8% to 21%. Hydrologic variability within a single river basin demonstrated at the scale of subwatersheds may prove an important consideration for water managers in the face of climate change. Our results suggest that in arid

  20. Debris flow run off simulation and verification ‒ case study of Chen-You-Lan Watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    M.-L. Lin

    2005-01-01

    Full Text Available In 1996 typhoon Herb struck the central Taiwan area, causing severe debris flow in many subwatersheds of the Chen-You-Lan river watershed. More severe cases of debris flow occurred following Chi-Chi earthquake, 1999. In order to identify the potentially affected area and its severity, the ability to simulate the flow route of debris is desirable. In this research numerical simulation of debris flow deposition process had been carried out using FLO-2D adopting Chui-Sue river watershed as the study area. Sensitivity study of parameters used in the numerical model was conducted and adjustments were made empirically. The micro-geomorphic database of Chui-Sue river watershed was generated and analyzed to understand the terrain variations caused by the debris flow. Based on the micro-geomorphic analysis, the debris deposition in the Chui-Sue river watershed in the downstream area, and the position and volume of debris deposition were determined. The simulated results appeared to agree fairly well with the results of micro-geomorphic study of the area when not affected by other inflow rivers, and the trends of debris distribution in the study area appeared to be fairly consistent.

  1. An integrated multi-level watershed-reservoir modeling system for examining hydrological and biogeochemical processes in small prairie watersheds.

    Science.gov (United States)

    Zhang, Hua; Huang, Guo H; Wang, Dunling; Zhang, Xiaodong; Li, Gongchen; An, Chunjiang; Cui, Zheng; Liao, Renfei; Nie, Xianghui

    2012-03-15

    Eutrophication of small prairie reservoirs presents a major challenge in water quality management and has led to a need for predictive water quality modeling. Studies are lacking in effectively integrating watershed models and reservoir models to explore nutrient dynamics and eutrophication pattern. A water quality model specific to small prairie water bodies is also desired in order to highlight key biogeochemical processes with an acceptable degree of parameterization. This study presents a Multi-level Watershed-Reservoir Modeling System (MWRMS) to simulate hydrological and biogeochemical processes in small prairie watersheds. It integrated a watershed model, a hydrodynamic model and an eutrophication model into a flexible modeling framework. It can comprehensively describe hydrological and biogeochemical processes across different spatial scales and effectively deal with the special drainage structure of small prairie watersheds. As a key component of MWRMS, a three-dimensional Willows Reservoir Eutrophication Model (WREM) is developed to addresses essential biogeochemical processes in prairie reservoirs and to generate 3D distributions of various water quality constituents; with a modest degree of parameterization, WREM is able to meet the limit of data availability that often confronts the modeling practices in small watersheds. MWRMS was applied to the Assiniboia Watershed in southern Saskatchewan, Canada. Extensive efforts of field work and lab analysis were undertaken to support model calibration and validation. MWRMS demonstrated its ability to reproduce the observed watershed water yield, reservoir water levels and temperatures, and concentrations of several water constituents. Results showed that the aquatic systems in the Assiniboia Watershed were nitrogen-limited and sediment flux played a crucial role in reservoir nutrient budget and dynamics. MWRMS can provide a broad context of decision support for water resources management and water quality

  2. Study of Groundwater Circulation Using Stable Isotopes : the Example of the Punaruu Watershed (Tropical Oceanic Island of Tahiti, French Polynesia)

    Science.gov (United States)

    Sichoix, L.; Hildenbrand, A.; Marlin, C.; Gillot, P. Y.; Pheulpin, L.; Barriot, J. P.

    2015-12-01

    The increasing demand for drinking and industrial water, especially in the most populated areas of the tropical oceanic Island of Tahiti in French Polynesia (South central Pacific), makes it necessary to conduct hydrological and hydrogeological studies on water resources and management. Our investigation area represents the second largest watershed of Tahiti called Punaruu. The largest industrial zone of Tahiti occupies the minor low valley of this catchment and is particularly impacted by dredging of the stream and rock removals since several decades whereas the major high part is naturally well preserved. This study aims to identify the main infiltration areas of the aquifers of this industrial zone as well as the areas at low elevations to be protected from potential pollutions. During the period between May 2013 and July 2015, we have collected rainwater samples from five rain gauges located at elevations ranging from 0 to 1420 m. We have also performed water sampling from the main rivers and three springs up to altitudes of 800 m as well as six pumping boreholes in the industrial zone. Chemical (major elements) and stable isotopic (δ18O and δ2H) analyses have been done from all these water samples and help us to constrain a conceptual model of groundwater circulation within such a complex discontinuous volcanic structure.

  3. Endangered ecosystem conservation: a 30-year lesson from the evolution of saline-alkali soil management in Manasi river watershed, China

    International Nuclear Information System (INIS)

    Previous studies on saline-alkali soil management mostly followed an instrumental 'prediction and control' approach dominated by technical end-of-pipe solutions. However, those 'integrated' instrumental solutions frequently perished due to the growing social and economic uncertainties in financial support, legal insurance, expertise service and other factors. This investigation summarizes the 30-year period of saline-alkali soil management - the social and economic and ecological (SEE) management innovation - its adoption, diffusion, adaptation and transformation in Manasi River watershed of northern Xinjiang. This area was experiencing three distinct SEE management stages from pure instrumental desalination techniques to integrated desalination technique system following the SEE supporting system. The results of GIS analysis (Fragatats 3.3) and historical documents provide data evidence for above three transition stages. The total area of saline and alkali land was increased by 32.7%, 47.6% during the first two decades but decreased by 11.9% in the recent decade. The numbers of saline land patches were 116, 129 and 121 in 1989, 2000 and 2007 respectively, a similar trend to the changes of total area. However, both perimeter-area fractal dimension (PAFD) and splitting index (SI) continued to increase, with values of 1.265, 1.272 and 1.279 for PAFD and 259.29, 269.68, 272.92 for SI in 1989, 2000 and 2007, respectively. It suggests that saline and alkaline land distribution had been fragmented, and sequestrated into salt micro-catchments within whole oasis ecosystems. This case is largely associated with effective adoption of integrated engineering and biological desalination programs as a result of local SEE saline-alkali soil management innovation. (author)

  4. Determining Watershed Management Efficacy in West Maui: line-point-intercept and photo quadrat surveys of benthic communities for benthic cover from 2014-06-24 to 2015-07-31 (NCEI Accession 0138585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  5. Determining Watershed Management Efficacy in West Maui: Belt transect surveys of coral demography (adult and juvenile corals) from 2014-06-29 to 2015-12-01 (NCEI Accession 0137092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  6. Imagined Communities, Contested Watersheds: Challenges to Integrated Water Resources Management in Agricultural Areas

    Science.gov (United States)

    Ferreyra, Cecilia; de Loe, Rob C.; Kreutzwiser, Reid D.

    2008-01-01

    Integrated water resources management is one of the major bottom-up alternatives that emerged during the 1980s in North America as part of the trend towards more holistic and participatory styles of environmental governance. It aims to protect surface and groundwater resources by focusing on the integrated and collaborative management of land and…

  7. Hydrological and environmental diagnostic of the Cachoeira das Pombas’s watershed, Guanhães, MG, Brazil

    OpenAIRE

    Deuseles João Firme; Carlos Antonio Alvares Soares Ribeiro; Agostinho Lopes de Souza; Herly Carlos Teixeira Dias; Kelly Cristina Tonello; Fernando Palha Leite

    2009-01-01

    The objective of this work was to evaluate hydrological and environmental issues of Cachoeira das Pombas watershed, in Guanhães, eastern Minas Gerais State, Brazil, to support its management plan. The characterization of water springs included the definition of its types, assessment of flow persistence, conservation state, outflow values, and the hydrological and environmental conservation state of the watershed. For a detailed analysis, the watershed was studied considering each of its small...

  8. Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services in Three Watersheds with Contrasting Agricultural Land Use

    OpenAIRE

    Julien Fortier; Benoit Truax; Daniel Gagnon; France Lambert

    2016-01-01

    In temperate agricultural watersheds, the rehabilitation of tree vegetation in degraded riparian zones can provide many ecosystem services. This study evaluated ecosystem service provision potential following the conversion of non-managed herbaceous buffers to hybrid poplar (Populus spp.) buffers in three watersheds (555–771 km2) of southern Québec (Canada), with contrasting agricultural land uses. To extrapolate services at the watershed level, total stream length where hybrid poplars could ...

  9. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS

    Institute of Scientific and Technical Information of China (English)

    Tsou Ming-Shu; ZHAN Xiao-yong

    2004-01-01

    Sediment has been identified as a significant threat to water quality and channel clogging that in turn may lead to river flooding. With the increasing awareness of the impairment from sediment to water bodies in a watershed, identifying the locations of the major sediment sources and reducing the sediment through management practices will be important for an effective watershed management. The annualized agricultural non-point source pollution(AnnAGNPS) model and newly developed GIS interface for it were applied in a small agricultural watershed, Redrock Creek watershed, Kansas, in this pilot study for exploring the effectiveness of using this model as a management tool. The calibrated model appropriately simulated monthly runoff and sediment yield through the practices in this study and potentially suggested the ways of sediment reduction through evaluating the changes of land use and field operation in the model for the purpose of watershed management.

  10. Assessing the role of spatial rainfall variability on watersheds response using weather radar A case study in the Gard region, France

    Science.gov (United States)

    Anggraheni, Evi; Payrastre, Olivier; Emmanuel, Isabelle; Andrieu, Herve

    2014-05-01

    The consideration of spatial rainfall variability in hydrological modeling is not only an important scientific issue but also, with the current development of high resolution rainfall data from weather radars, an increasing request from managers of sewerage networks and from flood forecasting services. Although the literature on this topic is already significant, at this time the conclusions remain contrasted. The impact of spatial rainfall variability on the hydrological responses appears to highly depend both on the organization of rainfall fields and on the watershed characteristics. The objective of the study presented here is to confirm and analyze the high impact of spatial rainfall variability in the specific context of flash floods. The case study presented is located in the Gard region in south east of France and focuses on four events which occurred on 13 different watersheds in 2008. The hydrological behaviors of these watersheds have been represented by the distributed rainfall - runoff model CINECAR, which already proved to well represent the hydrological responses in this region (Naulin et al., 2013). The influence of spatial rainfall variability has been studied here by considering two different rainfall inputs: radar data with a resolution of 1 km x 1 km and the spatial average rainfall over the catchment. First, the comparison between simulated and measured hydrographs confirms the good performances of the model for intense rainfall events, independently of the level of spatial rainfall variability of these events. Secondly, the simulated hydrographs obtained from radar data are taken as reference and compared to those obtained from the average rainfall inputs by computing two values: the time difference and the difference of magnitude between the simulated peaks discharge. The results highly depend on the rainfall event considered, and on the level of organization of the spatial rainfall variability. According to the model, the behavior of the

  11. Impact of Integrated Watershed Management on Complex Interlinked Factors Influencing Health: Perceptions of Professional Stakeholders in a Hilly Tribal Area of India

    OpenAIRE

    Nerkar, Sandeep S; Tamhankar, Ashok J.; Eva Johansson; Cecilia Stålsby Lundborg

    2016-01-01

    Lack of access to water has a significant impact on the health of people in tribal areas, where water in households as well as for productive purposes is essential for life. In resource-limited settings such as hilly tribal areas, implementation of an integrated watershed management programme (IWMP) can have a significant impact on public health by providing a solution to water scarcity and related problems. The professional stakeholders in rural healthcare and development administration are ...

  12. Defining a data management strategy for USGS Chesapeake Bay studies

    Science.gov (United States)

    Ladino, Cassandra

    2013-01-01

    The mission of U.S. Geological Survey’s (USGS) Chesapeake Bay studies is to provide integrated science for improved understanding and management of the Chesapeake Bay ecosystem. Collective USGS efforts in the Chesapeake Bay watershed began in the 1980s, and by the mid-1990s the USGS adopted the watershed as one of its national place-based study areas. Great focus and effort by the USGS have been directed toward Chesapeake Bay studies for almost three decades. The USGS plays a key role in using “ecosystem-based adaptive management, which will provide science to improve the efficiency and accountability of Chesapeake Bay Program activities” (Phillips, 2011). Each year USGS Chesapeake Bay studies produce published research, monitoring data, and models addressing aspects of bay restoration such as, but not limited to, fish health, water quality, land-cover change, and habitat loss. The USGS is responsible for collaborating and sharing this information with other Federal agencies and partners as described under the President’s Executive Order 13508—Strategy for Protecting and Restoring the Chesapeake Bay Watershed signed by President Obama in 2009. Historically, the USGS Chesapeake Bay studies have relied on national USGS databases to store only major nationally available sources of data such as streamflow and water-quality data collected through local monitoring programs and projects, leaving a multitude of other important project data out of the data management process. This practice has led to inefficient methods of finding Chesapeake Bay studies data and underutilization of data resources. Data management by definition is “the business functions that develop and execute plans, policies, practices and projects that acquire, control, protect, deliver and enhance the value of data and information.” (Mosley, 2008a). In other words, data management is a way to preserve, integrate, and share data to address the needs of the Chesapeake Bay studies to better

  13. Integrated modelling as an analytical and optimisation tool for urban watershed management.

    Science.gov (United States)

    Erbe, V; Frehmann, T; Geiger, W F; Krebs, P; Londong, J; Rosenwinkel, K H; Seggelke, K

    2002-01-01

    In recent years numerical modelling has become a standard procedure to optimise urban wastewater systems design and operation. Since the models were developed for the subsystems independently, they did not support an integrated view to the operation of the sewer system, the wastewater treatment plant (WWTP) and the receiving water. After pointing out the benefits of an integrated approach and the possible synergy effects that may arise from analysing the interactions across the interfaces, three examples of modelling case studies carried out in Germany are introduced. With these examples we intend to demonstrate the potential of integrated models, though their development cannot be considered completed. They are set up with different combinations of self-developed and commercially available software. The aim is to analyse fluxes through the total wastewater system or to integrate pollution-based control in the upstream direction, that is e.g. managing the combined water retention tanks as a function of state variables in the WWTP or the receiving water. Furthermore the interface between the sewer and the WWTP can be optimised by predictive simulations such that the combined water flow can be maximised according to the time- and dynamics-dependent state of the treatment processes. PMID:12380985

  14. Watershed District

    Data.gov (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  15. Decision Making for Natural Resources and Watershed Management: Current Thinking and Approaches

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document overviews representative research related to natural resources andwatershed management, and gives directions to readers regarding publicly available...

  16. Influence of watershed-scale pesticide management on channelized agricultural headwater streams

    Science.gov (United States)

    Channelized agricultural headwater streams are streams that have been created or modified for agricultural drainage. Elevated pesticide concentrations frequently occur within these modified streams and represent a threat to their ecological integrity. Pesticide management (i.e., use of alternative ...

  17. Using Streamwater Chemistry in Flowpath Analysis of Large-Scale Forested Watersheds Near Stowe, VT: Developed vs. Undeveloped Watersheds

    Science.gov (United States)

    Zinni, B. J.; Wemple, B. C.; Lini, A.; James, S. B.

    2004-05-01

    The analysis of flowpaths in small alpine watersheds has provided insight into the interrelationships between overall streamwater chemistry and the various flowpaths contributing to it. The purpose of this study is to determine whether the methods used in determining the flowpaths of small watersheds are applicable in a large-scale watershed. The two sites being studied are in the Mt. Mansfield region of Vermont. They are the Ranch Brook (9.6km2) and West Branch (11.7km2) watersheds. The techniques being implemented include the isotopic characterization of streamwater samples following a precipitation event, basic streamwater chemistry data and their relationship to stream discharge, and the determination of endmembers to the overall streamwater chemistry. Analysis of stream chemistry data suggests that up to three end members contribute to run-off production in both watersheds. A second aspect of this study is a comparison of the two watersheds. These watersheds are similar in all aspects except for the amount of development within each. Ranch Brook is undeveloped forestland while West Branch encompasses an alpine ski resort. Elevated chloride concentrations in the managed watershed suggest the possibility of contamination due to the application of road-salt. Initial oxygen isotope data suggests different flowpath patterns during snowmelt events, which may be the result of the impacts of ski trails and artificial snow on the West Branch site. These two sites provide the unique opportunity to determine impacts of ski development on the streamwater chemistry of alpine watersheds. Future plans include sampling of potential end members such as soilwater, groundwater and snowpack and analysis of additional isotopic data in order to constrain our assessment of flowpaths contributing to the runoff in these basins.

  18. Reply to comment on “Suburban watershed nitrogen retention: Estimating the effectiveness of stormwater management structures” by Koch et al. (Elem Sci Anth 3:000063, July 2015

    Directory of Open Access Journals (Sweden)

    Benjamin J. Koch

    2015-12-01

    Full Text Available Abstract We reply to a comment on our recent structured expert judgment analysis of stormwater nitrogen retention in suburban watersheds. Low relief, permeable soils, a dynamic stream channel, and subsurface flows characterize many lowland Coastal Plain watersheds. These features result in unique catchment hydrology, limit the precision of streamflow measurements, and challenge the assumptions for calculating runoff from rainfall and catchment area. We reiterate that the paucity of high-resolution nitrogen loading data for Chesapeake Bay watersheds warrants greater investment in long-term empirical studies of suburban watershed nutrient budgets for this region.

  19. An Evolving Simulation/Gaming Process to Facilitate Adaptive Watershed Management in Northern Mountainous Thailand

    Science.gov (United States)

    Barnaud, Cecile; Promburom, Tanya; Trebuil, Guy; Bousquet, Francois

    2007-01-01

    The decentralization of natural resource management provides an opportunity for communities to increase their participation in related decision making. Research should propose adapted methodologies enabling the numerous stakeholders of these complex socioecological settings to define their problems and identify agreed-on solutions. This article…

  20. Integrated watershed management for saturation excess generated runoff, erosion and nutrient control

    Science.gov (United States)

    Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. An important question for judging effectiveness of soil and water conservation practices is whether runoff erosion and nutrient loss is affected by infil...

  1. Watershed-based natural resource management in small-scale agriculture: Sloped areas of the Andean Region

    OpenAIRE

    Alwang, Jeffrey

    2008-01-01

    This presentation summarizes the long term research activities of the SANREM project "Watershed-based NRM for Small-scale Agriculture" from 2004-2009. Research findings highlight the role of national institutions such as national research and extension systems, participatory learning based in trust, the useful applications of watershed modeling, a need to focus on risk and efficiency in working with smallholders and the importance of developing forward and backward linkages in the market to t...

  2. Prioritizing Watersheds for Conservation Actions in the Southeastern Coastal Plain Ecoregion

    Science.gov (United States)

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A.; Boll, Jan; Hyman, Jeffrey B.

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.

  3. OPTIMUM PARAMETER SELECTION FOR THE MORPHOMETRIC DESCRIPTION OF WATERSHEDS: A CASE STUDY OF CENTRAL NIGERIA

    Directory of Open Access Journals (Sweden)

    Solomon Olakunle Bilewu

    2015-09-01

    Full Text Available Hydrological models are very useful for predictions in many ungauged basins across the world. There are many hydrological models available for discharge data generation with different complexities and varied input parameter requirements. Studies have shown that models with many input parameters do not necessarily perform better than those with few input parameters. Basin morphometric parameters play significant roles in the conversion of rainfall to runoff and obtaining good estimates of these parameters for use in runoff models is sometime challenging as Inaccurate input into models can propagate errors and make the models to perform poorly. This study employs the method of principal component analysis to reduce the number of morphometric parameters required to run a runoff model without losing any major information. Parameters for five selected study basins in central Nigeria were measured and analysed. The result shows that three morphometric parameters (Fitness Ratio, Ruggedness Number and Watershed Eccentricity can adequately represent other parameters as an input into a runoff model for the basins. This reduces significantly the time and effort needed to compute all the parameters which in actual fact may not improve the quality or efficiency of the runoff model.

  4. Trend Change Study of Climate Variables in Xin’anjiang-Fuchunjiang Watershed, China

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2015-01-01

    Full Text Available This study emphasizes the precipitation and the maximum and minimum temperature trend and presents the results of study in temporal and spatial scales, after performing statistical analysis of the Xin’anjiang-Fuchunjiang watershed. Statistical Mann Kendall and Theil Sen techniques were used to determine the trend and its magnitude, respectively, and for determining the start and abrupt change in the trend, Sequential Mann Kendall test has been performed. Furthermore, statistical tests were performed to determine the overall trend in the area at a regional basis. For the removal of the serial effect of the data, prewhitening technique is applied. In this study, statistical tests were performed at 1901–2013 precipitation and temperature series and then after detection of the change year precipitation data were divided into two different scenarios of 1901–1960 period and 1961–2013 period. The results showed that precipitation trend is insignificant while maximum and minimum temperature have increased during 1901–2013 period except for some stations of autumn and summer seasons.

  5. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul A.; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  6. Management & Communication: Project Management Case Study

    CERN Multimedia

    Nathalie Dumeaux

    2004-01-01

    We are pleased to announce the recent launch of a new workshop on Project Management. This is designed for People with budgetary, scheduling and/or organizational responsibilities in a project or a sub-project. The objectives through a management case study specially suited to CERN are: to become familiar with modern management techniques in use for structuring, planning, scheduling, costing and progress monitoring of a project or a sub-project. to understand in-depth issues associated with Deliverable-oriented Project Management, Earned Value Management, Advanced Project Cost Engineering and Project Risk Management. The full description of this workshop can be found here. The next session will be held on 8 October 2004. If you are interested in this workshop, please contact Nathalie Dumeaux, email or 78144. Programme of Seminars October to December 2004 Situation : 21.09.2004 Séminaires bilingues Dates Jours Places disponibles Project Management Case study 8 October 1 oui Intr...

  7. User friendly tools to target vulnerable areas at watershed scale: evaluation of the soil vulnerability and conductivity claypan indices

    Science.gov (United States)

    One finding of the Conservation Effects Assessment Program (CEAP) watershed studies was that Best Management practices (BMPs) were not always installed where most needed: in many watersheds, only a fraction of BMPs were implemented in the most vulnerable areas. While complex computer simulation mode...

  8. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Science.gov (United States)

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be

  9. Preliminary studies on occurrence of monensin antibiotic in Bosque River Watershed

    Institute of Scientific and Technical Information of China (English)

    Sudarshan Kurwadkar; Victoria Sicking; Barry Lambert; Anne McFarland; Forrest Mitchell

    2013-01-01

    Water quality impact due to excessive nutrients has been extensively studied.In recent years,however,micro-pollutants such as pharmaceuticals and hormonal products used in animal agriculture have added an additional impact to overall water quality.Pharmaceuticals used in the poultry,swine,beef,and dairy industries have been detected in various environmental matrices such as,soil,groundwater and surface water.In this study,26 surface water samples were collected throughout the Bosque River Watershed (BRW) with samples representing a range of land use conditions and locations of major dairy operations.Samples were analyzed using commercially available Enzyme-Linked Immunosorbent Assay test.Of the 26 samples,three samples consistently tested positive for monensin antibiotic with concentration ranging from 0.30 to 3.41 μg/L.These three samples were collected from sites that received varying amount of agriculture wastes (11.7% to 31.3%) and located downstream from sites associated with moderate levels of animal agriculture.The preliminary results suggest that there is a potential for monensin occurrence in the BRW,although initial findings indicate only very low levels.

  10. 祁连山水源林经营模式研究%Management model for watershed forests in Qilian Mountains

    Institute of Scientific and Technical Information of China (English)

    李金良; 郑小贤; 陆元昌; 刘波

    2012-01-01

    水源林经营系统是一个复杂系统,关系着中国的水资源和生态安全,意义重大.为适应祁连山水源林经营管理实践和西部生态建设的需要,在实地调查的基础上,采用复杂性科学的新理论与新方法提出了一个有科学依据的、定量化、可操作的祁连山水源林经营模式,创新了原来的经营模式.该模式融合了水源林经营理论、水源林目标体系、水源林经营原则、水源林目标结构体系和水源林经营技术体系.该模式通过改善水源林结构,实践水源林的可持续经营,逐步实现水源林经营的生态效益、社会效益和经济效益目标,从而提供中国河西走廊地区稳定的优质水资源,促进该地区可持续发展和应对全球气候变化.根据该模式,对祁连山水源林区现有青海云杉Picea crassifolia林经营提出了经营建议.该模式对提高该区水源林的经营水平和经营效益具有现实指导意义.%The watershed forest management system is a complexity system, and is important for protecting our national water resources and ecological environment safety. In order to meet the needs of the watershed forest management practice in Qilian Mountains and the ecological environment construction in western China, based on field investigations and new theories and methods of complexity science, a scientific, quantitative and operational watershed forest management model is set up. The watershed forest management theories, management objectives, management principles, target forest structure and management technique system are integrated in this new model. Through improving the forest structure and practicing sustainable watershed forest management, the ecological, social and economic benefits from the watershed forest management will be gradually realized. And it will promote steady high quality water supply and the sustainable development for Hexi Corridor Area in China, and help to address global climate

  11. 流域城市化进程中雨洪综合管理量化关系分析%Quantitative analysis of stormwater management strategies in the process of watershed urbanization

    Institute of Scientific and Technical Information of China (English)

    王虹; 李昌志; 程晓陶

    2015-01-01

    针对城市化进程中流域尺度暴雨洪涝水文特征的变异及径流峰值与总量的增加,采用GIS技术划分子流域并应用数值模拟方法,对流域范围内不同蓄滞渗排与雨洪利用组合方案进行模拟分析及量化研究。研究结果显示,以流域为整体,实施雨洪综合调蓄管理措施明显优于传统的各子流域分散管理方式。以位于美国伊利诺伊州的黑莓溪流域为例,经过优化分析,流域尺度所需的雨洪蓄滞容积,较之于子流域分散蓄滞方式可减少24.7%。在单纯流域蓄滞的基础上加之于源头与社区尺度的低影响开发(LID)与雨洪利用等新型综合管理措施,可将流域尺度的蓄滞容积减少60.3%之多,有益于缓解城市雨洪管理中的蓄滞占用土地、耗资巨大和运行维护困难的结症。本文为流域尺度雨洪综合优化管理决策提供了新的规划评估思路与参考。%Utilizing GIS and hydrologic modeling techniques, this study analyzed various urban stormwater management strategies. Due to data limitation and availability in China, a typical watershed in the United States was chosen as a demonstration. The 185-square-kilometer watershed, located in the vicinity of the City of Chicago, Illinois, USA, has been experiencing urbanization in recent decades. Considering the land use pattern of 2005 as pre-development condition and projected land development of 2040 as post-develop⁃ment condition, a numeric model was constructed using HEC-HMS software, and hydrologic effects of ur⁃banization were examined. Moreover,various urban stormwater management measures,such as detention,re⁃tention, infiltration, and rain water harvesting, were modeled both at sub-catchment scale and watershed scale;the quantitative relationships among the various measures were investigated at watershed scale. The outcomes demonstrate that the sustainable urban stormwater management integrated at watershed level can

  12. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    Science.gov (United States)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  13. A Paired watershed Evaluation of Agroforestry effects on Water Quality on a Corn/Soybean Rotation

    Science.gov (United States)

    Udawatta, Ranjith; Jose, Shibu; Garrett, Harold

    2015-04-01

    Rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited and thus limit the adoption of agroforestry practices throughout the world. The objective of the study was to examine non point source pollution (NPSP) reduction by agroforestry buffers in row-crop watersheds. The study consists of three watersheds in a paired watershed design in Knox County, Missouri, USA. Watersheds were established in 1991 and treatments of agroforestry (trees+grass) and grass buffers were established on two watersheds in 1997 after a 7-year calibration period. Runoff water samples were analyzed for sediment, total nitrogen (TN) and total phosphorus (TP) for the 2009 to 2010 period. Results indicated that agroforestry and grass buffers on row crop watersheds significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with row crop management reduced runoff by 26% during the study period as compared to the control treatments. Average sediment loss for row crop management and buffer watersheds was 14.8 and 9.7 kg ha-1 yr-1 respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared to the control treatments. These differences could in part be attributed to the differences in management, soils, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be implemented to reduce NPSP to water bodies while improving land value and environmental quality.

  14. Examination of Land Use, Hydrology, and Perceptions of Use and Management of the Colombian Paramo with Implications for Water Quality and Availability Concerns for Affected Watersheds

    Science.gov (United States)

    Tyson, A. F.; Covino, T.; Riveros-Iregui, D. A.; Gonzalez-Pinzon, R.

    2015-12-01

    The Northern and Central Andes have experienced greater anthropogenic land use/land-cover (LULC) change than nearly any other high mountain system on Earth. In particular, páramo ecosystems, high elevation grasslands of the tropical Andes of Colombia, are undergoing rapid conversion to cropland and pasture. These systems have strong hydrologic buffering capacity and have historically provided consistent freshwater flows to downstream communities. Therefore, loss of these systems could threaten the viability of freshwater resources in the region. While this region has some of the highest runoff ratios, precipitation, and largest river flows in the world, the resiliency of these hydrologic systems and the influence LULC change may have on them remains poorly understood. Here we seek to develop a deeper understanding of these relationships through quantitative analyses of LULC change and impacts on the quantity and quality of water exported from páramo landscapes of Colombia. Our results indicate the intensity and spatial distribution of LULC change, build upon past remote sensing studies of the region, and aid in prioritizing areas of concern for hydrologic research on the ground. This information provides an initial framework for characterizing the degree of modification and impact to water quantity/quality, as well as the long-term sustainability of water resources in the region. We highlight the complexities of watershed management practices in the Colombian páramo and the need to account for the impact of human activity on changes in water quantity and quality in the region.

  15. Soil, environmental, and watershed measurements in support of carbon cycling studies in northwestern Mississippi

    Science.gov (United States)

    Huntington, T.G.; Harden, J.W.; Dabney, S.M.; Marion, D.A.; Alonso, C.; Sharpe, J.M.; Fries, T.L.

    1998-01-01

    Measurements including soil respiration, soil moisture, soil temperature, and carbon export in suspended sediments from small watersheds were recorded at several field sites in northwestern Mississippi in support of hillslope process studies associated with the U.S. Geological Survey's Mississippi Basin Carbon Project (MBCP). These measurements were made to provide information about carbon cycling in agricultural and forest ecosystems to understand the potential role of erosion and deposition in the sequestration of soil organic carbon in upland soils. The question of whether soil erosion and burial constitutes an important net sink of atmospheric carbon dioxide is one hypothesis that the MBCP is evaluating to better understand carbon cycling and climate change. This report contains discussion of methods used and presents data for the period December 1996 through March 1998. Included in the report are ancillary data provided by the U.S. Department of Agriculture (USDA) ARS National Sedimentation Laboratory and U.S. Forest Service (USFS) Center for Bottomland Hardwoods Research on rainfall, runoff, sediment yield, forest biomass and grain yield. Together with the data collected by the USGS these data permit the construction of carbon budgets and the calibration of models of soil organic matter dynamics and sediment transport and deposition. The U.S. Geological Survey (USGS) has established cooperative agreements with the USDA and USFS to facilitate collaborative research at research sites in northwestern Mississippi.

  16. Design of Water Discharge of Medewi Watershed Using Avswat Model

    Science.gov (United States)

    Pramana, Y. H.; Purwanto, B. P.

    2013-12-01

    Medewi watersheds is located in the southern of Bali Island and its estuary is located in Medewi Beach at Kabupaten Jembrana. The exact location of Medewi watersheds is between Desa Medewi and Desa Pulukan, Kecamatan Pekutatan, Kabupaten Jembrana. The watersheds itself, due to its strategic location is used as a territorial border between the two villages. Geographically, Medewi watersheds is between 114o48'00' - 114o50'00' east longitude and 08o20'00' - 08o26,5'00' south latitude. The main river of Medewi Watersheds is 25,64 km long and is classified as a continuous river, the width of the watersheds itself is measured 128,2 km2. Medewi watersheds have two tributaries which is Medaan watersheds and Pangliman watersheds, both watersheds' heads are located in Medewi Beach. Medewi watersheds is often flooded and brings heavy toll to its surrounding areas and citizen. Therefore, there is an urgent need to perform engineering techniques to overcome the aforementioned problem. However, there is a slight issue in the definition of water discharge plan in the location. The water discharge plan, which is used as a basis to prevent flooding, is often inaccurate. That is the reason why it is needed to build a model in order to accurately find out the amount of water discharge in the study location. Medewi watersheds' area usage is as follow: bushes (9,44%), forestation (77,10%), farm (7,76%), settlement (2,15%), irrigation field (1,64%), rainfed field (1,88%) and crops field (0,48%). The result of our modeling using ASVAT shows that the maximum water discharge is 149,9 m3/sec. The discharge is calibrated with the available water discharge data log. According to AWLR data, it is known that the largest discharge occurred on June 2nd, 2009 and measured at 147,9 m3/sec. Our conclusion is that the model used in this study managed to approach the field result with minimum error.

  17. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  18. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  19. Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India

    OpenAIRE

    Surendra Kumar Chandniha; M. L Kansal; G. Anvesh

    2014-01-01

    In order to achieve continuous sustainable development in a watershed, it is desired that natural resources such as water are assessed and utilized efficiently. Generally, water resources are assessed considering watershed as a unit. Since the water requirements and availability varies in space and time, it is desired to manage the water resources so as to satisfy the demand on sustainable basis. Further, in order to achieve sustainability, it is necessary to consider social, economic and en...

  20. Modeling the Dynamic Water Resource Needs of California's Coastal Watersheds

    Science.gov (United States)

    Alford, C.

    2009-12-01

    Many watersheds face formidable water supply challenges when it comes to managing water availability to meet diverse water supply and ecosystem management objectives. California’s central coast watersheds are no exception, and both the scarcity of water resources during drier water years and mandates to establish minimum instream flows for salmon habitat have prompted interests in reassessing water management strategies for several of these watersheds. Conventional supply-oriented hydrologic models, however, are not adequate to fully investigate and describe the reciprocal implications of surface water demands for human use and the maintenance of instream flows for salmon habitat that vary both temporally and spatially within a watershed. In an effort to address this issue I developed a coastal watershed management model based on the San Gregorio watershed utilizing the Water Evaluation and Planning (WEAP) system, which permits demand-side prioritization at a time step interval and spatial resolution that captures functional supply and demand relationships. Physiographic input data such as soil type, land cover, elevation, habitat, and water demand sites were extrapolated at a sub-basin level in a GIS. Time-series climate data were collected and processed utilizing the Berkeley Water Center Data Cube at daily time steps for the period 1952 through September 2009. Recent synoptic flow measurements taken at seven tributary sites during the 2009 water year, water depth measured by pressure transducers at six sites within the watershed from September 2005 through September 2009, and daily gauge records from temporary gauges installed in 1981 were used to assess the hydrologic patterns of sub-basins and supplement historic USGS gauge flow records. Empirical functions were used to describe evapotranspiration, surface runoff, sub-surface runoff, and deep percolation. Initial model simulations carried out under both dry and wet water year scenarios were able to capture

  1. Utilizing In-Situ Static Chamber Measurements and UAV Imagery for Integrated Greenhouse Gas Emissions Estimations: Assessing Environmental and Management Impacts on Agricultural Emissions for Two Paired-Watershed Sites in Vermont

    Science.gov (United States)

    Barbieri, L.; Peterson, F. S.; Wyngaard, J.

    2015-12-01

    Agricultural greenhouse gas (GHG) emissions contribute to ~10-12% of global anthropogenic emissions. While agriculture is a major source of GHG emissions, there is also great potential for mitigation, as emissions can be reduced by utilizing specific field management and fertilization strategies. This study closely monitors hay and corn fields in Vermont in two paired-watershed sites. Carbon dioxide, nitrous oxide and methane emissions were measured weekly using static chambers and a Photoacoustic Gas Sensor (PAS) across both field management treatments: conventional and mitigation. Accurately quantifying emissions from agricultural landscapes is crucial to develop and implement optimal mitigation strategies, but quantifying landscape-wide emissions is challenging. In this study, we show that both field management treatments and environmental conditions (such as field flooding from rain events) significantly affect GHG emissions, and both can be highly spatially variable even on the field-scale. Monitoring this kind of complexity across a watershed is difficult, as most current emissions quantification techniques, such as static chambers, are localized, point specific and costly. Remote sensing provides an opportunity to monitor landscapes more efficiently and cost effectively. High resolution imagery from an Unmanned Aerial Vehicle (UAV) can also provide opportunities for more accurate watershed-wide estimates of GHG emission rates based on observable agricultural field conditions and management signals, such as field flooding, fertilizer application method, and cover cropping. Satellite imagery, and even the higher resolution aerial imagery used for agricultural monitoring, do not provide the spatial or temporal resolution needed to monitor the on-field complexities that affect GHG emissions. This study combines and compares environmental and management observations from UAV imagery and in-situ field GHG emissions measurements to determine the effectiveness of

  2. Analysis of Hollinshed watershed using GIS software

    OpenAIRE

    Hipp, Michael.

    1999-01-01

    CIVINS The objective of this study is to apply GIS and storm water modeling software to develop an accurate hydrologic model of the Hollinshed watershed. Use of GIS will allow the user to quickly change the land use of specific areas within in the watershed to determine the hydrologic effects throughout the watershed using the storm water model. Specific objectives were to: (1) develop a GIS database for the Hollinshed watershed; (2) Develop an appropriate link/ node diagram and correspond...

  3. Supplement Analysis for the Watershed Management Program EIS - Libby Creek (Lower Cleveland) Stabilization Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-07-29

    This project is follow-up to stream stabilization activities on Libby Creek that were initiated on the Upper Cleveland reach of Libby Creek 2 years ago. BPA now proposes to fund FWP to complete channel stabilization activities on the Lower Cleveland reach of Libby Creek, reduce sediment sources, convert overwidened portions of the stream into self-maintaining channel types, use natural stream stabilization techniques, and improve wildlife migratory corridors. This lower reach is about one river mile below the upper Cleveland Reach and the proposed activities are very similar to those conducted before. The current work would be constructed in two additional phases. The first phase of the Lower Cleveland project would be completed in the fall of 2004 (9/1/04--12/31/04), to include the upper 3,100 feet. The second phase will be constructed in the fall of 2005 (9/1/05--12/31/05), to include stabilizing the remaining 6,200 feet of stream. The Cleveland reaches are a spawning and rearing tributary for resident redband trout, and resident and fluvial bull trout migrating from the Kootenai River. The planned work at the two remaining phases calls for shaping cut banks; installing root wads and tree revetments; installing channel grade control structures; planting native vegetation; and installing cross vanes constructed from rock and trees to control channel gradient. In the past, this reach of Libby Creek has been degraded by past management practices, including road building, hydraulic and dredge mining, and riparian logging. This past activity has resulted in accelerated bank erosion along a number of meander bends, resulting in channel degradation and poor fish habitat. Currently the stream channel is over-widened and shallow having limited pool habitat. The current stream channel is over-widened and shallow, having limited pool habitat.

  4. How Sustainable is Participatory Watershed Development in India?

    NARCIS (Netherlands)

    Bouma, J.; Soest, van D.P.; Bulte, E.H.

    2007-01-01

    Watershed conservation is widely recognized as a major strategy for rural development throughout the developing world. In India, the apparent success of participatory approaches to watershed development resulted in a decentralization of project planning, implementation, and management to local commu

  5. Interim report on the scientific investigations in the Animas River watershed, Colorado to facilitate remediation decisions by the U.S. Bureau of Land Management and the U.S. Forest Service, March 29, 2000 meeting, Denver, Colorado

    Science.gov (United States)

    ,

    2000-01-01

    INTRODUCTION The joint U.S. Department of the Interior and U.S. Department of Agriculture Abandoned Mine Lands Initiative (AMLI) was developed as a collaborative effort between the Federal land management agencies (FLMA, that is the U.S. Bureau of Land Management and the U.S. Forest Service) and the U.S. Geological Survey (USGS) in 1996. The stated goal of the AML Initiative was to develop a strategy for gathering and communicating the scientific information needed to develop effective and cost-efficient remediation of abandoned mines within the framework of a watershed. Four primary objectives of the AMLI are to: 1. Provide the scientific information needed (in the short-term) by the FLMAs to make decisions related to the design and implementation of cleanup actions, 2. Develop a multi-disciplined, multi-division approach that integrates geologic, hydrologic, geochemical and ecological information into a knowledge base for sound decision making, 3. Transfer technologies developed within the scientific programs of the USGS to the field and demonstrate their suitability to solve real, practical problems, and 4. Establish working relationships among involved members of land management and regulatory agencies within the framework of a watershed approach to the cleanup of abandoned mines. Long-term process-based research, including development of analytical tools, is recognized as being critical to the long-term success in remediating watersheds impacted by historical mining activities (AML 5-year plan, http://amli.usgs.gov/amli). In a meeting of Federal agencies (U.S. Bureau of Land Management [BLM], U.S. Bureau of Reclamation [BOR], U.S. National Park Service [NPS], U.S. Forest Service [USFS], the U.S. Environmental Protection Agency [EPA], the U.S. Fish and Wildlife Service [F&WS]), and State agencies (Colorado Division of Public Health and Environment, Colorado Division of Mines and Geology), several watersheds were examined within the state whose water quality was

  6. Watersheds in disordered media

    Directory of Open Access Journals (Sweden)

    José S. Andrade Jr.

    2015-02-01

    Full Text Available What is the best way to divide a rugged landscape? Since ancient times, watershedsseparating adjacent water systems that flow, for example, toward different seas, have beenused to delimit boundaries. Interestingly, serious and even tense border disputes betweencountries have relied on the subtle geometrical properties of these tortuous lines. For instance,slight and even anthropogenic modifications of landscapes can produce large changes in awatershed, and the effects can be highly nonlocal. Although the watershed concept arisesnaturally in geomorphology, where it plays a fundamental role in water management, landslide,and flood prevention, it also has important applications in seemingly unrelated fields suchas image processing and medicine. Despite the far-reaching consequences of the scalingproperties on watershed-related hydrological and political issues, it was only recently that a moreprofound and revealing connection has been disclosed between the concept of watershed andstatistical physics of disordered systems. This review initially surveys the origin and definition of awatershed line in a geomorphological framework to subsequently introduce its basic geometricaland physical properties. Results on statistical properties of watersheds obtained from artificialmodel landscapes generated with long-range correlations are presented and shown to be ingood qualitative and quantitative agreement with real landscapes.

  7. Development of Watershed Evaluation Index for Water Resources Considering Climate Change

    Science.gov (United States)

    Lee, K. S.; Oh, J.; Lee, S.; Chung, E.

    2010-12-01

    The concept of sustainable development is the center of issue between economic development and environmental protection. Water resources development and management is a main part of the issue. With this, integrated watershed management (IWM) which considers flood, drought and water quality control together is needed for watershed management. The Green house effect has been increased by the carbon based and thoughtless development, and climate change caused by global warming will affect all human activities. Accordingly, this study developed watershed evaluation index for water resources to assess water resources of watershed considering flood, drought, water quality control, and climate change and then applied results to actual watershed. This study consists of mainly 2 parts. The first is development of watershed evaluation index to analyze water resources vulnerability considering flood, drought, water quality, and climate change. Watershed evaluation index for water resources consists of flood indicator with climate change, drought indicator with climate change, and water quality indicator with climate change. There are two frameworks to make indices. One is a cause-effect chain framework and the other is a theme framework. Watershed evaluation index for water resources has been developed using DPSIR (Driving force-Pressure-Impact-Response) framework by EEA (European Environment Agency) that can explain interactions between socio-economic and water resources. The second is applying the index to study watershed. Three kinds of date sets are needed to apply the index. These are socio-economic data, meteorological and hydrologic data, and GCM (General Circulation Model) as a future climate change scenario. In this study, the North Han River watershed was selected as a study area. The socio-economic data set was collected using municipal statistics. The meteorological and hydrologic data, especially flow and water quality (BOD, DO et al.) data has been simulated

  8. COMPARATIVE PERFORMANCE MONITORING OF RAINFED WATERSHEDS APPLYING GIS AND RS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    ARUN W. DHAWALE

    2012-03-01

    Full Text Available Under the watershed development project of the Ministry of Rural Development, many micro watersheds have been identified for development and management. However Government is handicapped inobtaining data on the performance of these programmes due to the absence of watershed performance studies. Rainfed agriculture is clearly critical to agricultural performance in India. Nonetheless, it is difficult to precisely quantify the overall importance of the sector. The widely quoted statistic is that 70% of cultivated area israinfed, implying that rainfed agriculture is more important than irrigated agriculture. In the present study two rainfed micro-watersheds namely Kolvan valley and Darewadi is taken as case study for performance monitoring using GIS and RS Techniques. An attempt has been made to highlight the role of GIS and RS in estimation of runoff from both the watersheds by SCS curve number method. The methodology developed for the research show that the knowledge extracted from proposed approach can remove the problem of performance monitoring of micro watersheds to great extent. Comparative performance of both micro watersheds having extreme rainfall conditions shows that in Darewadi micro watershed overall success rate is more than Kolvan valley.

  9. AIPRC--BIA Management Study: Personnel Management

    Science.gov (United States)

    American Indian Journal, 1976

    1976-01-01

    Continuing the American Indian Policy Review Commission's (AIPRC) Bureau of Indian Affairs (BIA) Management Study, this article reviews the divisions of responsibility, Indian preference, recruitment and hiring problems, training, labor relations, and internal communication. (NQ)

  10. Urbanization and watershed sustainability: Collaborative simulation modeling of future development states

    Science.gov (United States)

    Randhir, Timothy O.; Raposa, Sarah

    2014-11-01

    Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.

  11. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Science.gov (United States)

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  12. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam

    Science.gov (United States)

    Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge.

  13. MesoHABSIM: an effective tool for river and watershed management; MesoHABSIM: una herramienta eficaz para la gestion de rios y cuencas fluviales

    Energy Technology Data Exchange (ETDEWEB)

    Parasiewicz, P.; Gortazar rubial, J.; Mateo Sanchez, M.; Garcia de Jalon Lastra, D.

    2009-07-01

    MesoHABSIM is an approach to modelling in stream habitats. It allows a user to compute how much habitat is available for selected aquatic fauna under specific environmental circumstances. It overcomes the classical physical habitat models, since it is designed to work in a catchment scale. For this reason it is a very efficient tool for the decision making in the management of rivers and watersheds. MesoHABSIM has applications in Environmental Impact Assessment, in the design of Ecological Flow Regimes or in river restoration planning. (Author) 19 refs.

  14. Soil erosion and sediment fluxes analysis: a watershed study of the Ni Reservoir, Spotsylvania County, VA, USA.

    Science.gov (United States)

    Pope, Ian C; Odhiambo, Ben K

    2014-03-01

    Anthropogenic forces that alter the physical landscape are known to cause significant soil erosion, which has negative impact on surface water bodies, such as rivers, lakes/reservoirs, and coastal zones, and thus sediment control has become one of the central aspects of catchment management planning. The revised universal soil loss equation empirical model, erosion pins, and isotopic sediment core analyses were used to evaluate watershed erosion, stream bank erosion, and reservoir sediment accumulation rates for Ni Reservoir, in central Virginia. Land-use and land cover seems to be dominant control in watershed soil erosion, with barren land and human-disturbed areas contributing the most sediment, and forest and herbaceous areas contributing the least. Results show a 7 % increase in human development from 2001 (14 %) to 2009 (21.6 %), corresponding to an increase in soil loss of 0.82 Mg ha(-1) year(-1) in the same time period. (210)Pb-based sediment accumulation rates at three locations in Ni Reservoir were 1.020, 0.364, and 0.543 g cm(-2) year(-1) respectively, indicating that sediment accumulation and distribution in the reservoir is influenced by reservoir configuration and significant contributions from bedload. All three locations indicate an increase in modern sediment accumulation rates. Erosion pin results show variability in stream bank erosion with values ranging from 4.7 to 11.3 cm year(-1). These results indicate that urban growth and the decline in vegetative cover has increased sediment fluxes from the watershed and poses a significant threat to the long-term sustainability of the Ni Reservoir as urbanization continues to increase.

  15. Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: an integrated GIS-based approach

    Science.gov (United States)

    Banerjee, Abhishek; Singh, Prafull; Pratap, Kamleshwar

    2015-10-01

    The quantitative analysis of the watershed is vital to understand the hydrological setup of any terrain. The present study deals with quantitative evaluation of Swarnrekha Watershed, Madhya Pradesh, India based on IRS satellite data and SRTM DEM. Morphometric parameters of the watershed were evaluated by computations of linear and areal aspect using standard methodology in GIS environment. ARC GIS software was utilized for morphometric component analysis and delineation of the watershed using SRTM digital elevation model (DEM). The watershed is drained by a fifth-order river and shown a dendritic drainage pattern, which is a sign of the homogeneity in texture and lack of structural control. The drainage density in the area has been found to be low which indicates that the area possesses highly permeable soils and low relief. The bifurcation ratio varies from 3.00 to 5.60 and elongation ratio is 0.518 which reveals that the basin belongs to the elongated shape basin and has the potential for water management. The main objective of the paper is to extract the morphometric parameters of the watershed and their relevance in water resource evaluation management. The results observed from this work would be useful in categorization of watershed for future water management and selection recharge structure in the area.

  16. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  17. Variation in Soil Enzyme Activities in a Temperate Agroforestry Watershed

    Science.gov (United States)

    Integration of agroforestry and grass buffers into row crop watersheds improves overall environmental quality, including soil quality. The objective of this study was to examine management and landscape effects on soil carbon, soil nitrogen, microbial diversity, enzyme activity, and DNA concentrati...

  18. Hydrologic Responses to Land Use Change in the Loess Plateau: Case Study in the Upper Fenhe River Watershed

    Directory of Open Access Journals (Sweden)

    Zhixiang Lu

    2015-01-01

    Full Text Available We applied an integrated approach to investigate the impacts of land use and land cover (LULC changes on hydrology at different scales in the Loess Plateau of China. Hydrological modeling was conducted for the LULC maps from remote sensing images at two times in the Upper Fenhe River watershed using the SWAT model. The main LULC changes in this watershed from 1995 to 2010 were the transformation of farmland into forests, grassland, and built-up land. The simulation results showed that forested land contributed more than any other LULC class to water yield, but built-up land had most impact due to small initial loss and infiltration. At basin scale, a comparison of the simulated hydrological components of two LULC maps showed that there were slight increases in average annual potential evapotranspiration, actual evapotranspiration, and water yield, but soil water decreased, between the two intervals. In subbasins, obvious LULC changes did not have clear impacts on hydrology, and the impacts may be affected by precipitation conditions. By linking a hydrological model to remote sensing image analysis, our approach of quantifying the impacts of LULC changes on hydrology at different scales provide quantitative information for stakeholders in making decisions for land and water resource management.

  19. Oxygen-18 study of the atmospheric-aquatic linkage in three Adirondack lake watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Holt, B.D.; Kumar, R.

    1985-01-01

    Twelve monthly measurements were made of the delta/sup 18/O of the water and of the dissolved sulfates in inlet streams and in outlet streams of lakes in three watersheds in the Adirondack Park region of New York. The average delta/sup 18/O/sub H/sub 2/O/ of the surface waters (streams and lakes) of the three watersheds was well within the typical range of seasonally varying delta/sup 18/O/sub H/sub 2/O/ of precipitation water; however, the delta/sup 18/O/sub SO/sub 4//sup 2 -// of the surface waters was significantly lower than the typical range of seasonally varying delta/sup 18/O/sub SO/sub 4//sup 2 -// in precipitation water. Two possible causes for the apparent alteration of delta/sup 18/O of the sulfates, during the water percolation of various ground strata in the ground link between the atmosphere and watershed lakes are: (1) bacteriological redox cycling, in which the sulfate is bacterially reduced, allowing isotopic equilibration between the HSO/sub 3//sup -/ ion and associated water, before catalytic reoxidation by air back to sulfate; and/or (2) ion exchange, in which the soil strata, containing chemically fixed sulfate, behave as a ''column'' which is not yet in sulfate-ion equilibrium with the sulfate in atmospheric recharge water.

  20. Oxygen-18 study of the atmospheric-aquatic linkage in Adirondack watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Holt, B.D.; Kumar, R.

    1986-11-01

    Twelve monthly measurements were made of the delta/sup 18/O of the water and of the dissolved sulfates in inlet streams and in outlet strems of lakes in three watersheds in the Adirondack Park region of New York. The average delta/sup 18/O (H/sub 2/O) of the surface waters (streams and lakes) of the three watersheds was in the typical range of seasonally varying delta/sup 18/O(H/sub 2/O) of precipitation water, whereas the delta/sup 18/O(SO/sub 4//sup 2 -/ of the surface waters was significantly lower than the typical range of seasonally varying delta/sup 18/O(SO/sub 4//sup 2 -/ in precipitation water. Two possible causes for the apparent alteration of delta/sup 18/O of the sulfates during percolation of the water through various strata in the ground link between the atmosphere and the watershed lakes are: (1) bacterial redox cycling, in which the sulfate is reduced, allowing isotopic equilibration between the HSO/sub 3//sup -/ ion and associated water, and then catalytically reoxidized to sulfate; and (2) ion exchange, in which the soil strata, containing chemically fixed sulfates, behave as a column that is not in sulfate-ion equilibrium with sulfates in the atmospheric recharge water. 13 references.

  1. SIMULATIONS OF SEDIMENT YIELD AND PHOSPHORUS YIELD FROM A WATERSHED IN TAIWAN, CHINA

    Institute of Scientific and Technical Information of China (English)

    Cheng-Daw HSIEH; Wan-Fa YANG; Wen C.WANG

    2006-01-01

    Long term sediment yield and phosphorus yield from a watershed are important information for watershed management planning. Since sediment and water quality data for the streams draining a watershed are most often observed only periodically, a method is needed to extend the knowledge gained from the observed data to the rest of the observation period. In this study, it is proposed that suspended sediment load be established as a power function of stream discharge, and total phosphorus load as a power function of suspended sediment load. The propositions are applied to a watershed in Taiwan. Using suspended sediment load and total phosphorus load data, parameters for the functions are calibrated. The functions are used to simulate daily suspended sediment load and daily total phosphorus load based on observed daily stream discharges for the gauging station near the watershed outlet. Annual sediment yield and total phosphorus yield are then calculated from the simulated daily load. It is shown in this study that the intercepts of the power functions are related to watershed land use activities and can be calibrated using those data. The relations may be used to develop watershed management strategies for controlling sediment and phosphorus exports.

  2. Statewide Watershed Protection and Local Implementation: A Comparison of Washington, Minnesota, and Oregon

    OpenAIRE

    Holst, David J.

    1999-01-01

    Abstract In 1991 EPA embraced the watershed protection approach for environmental management. EPA defines watershed protection as â a strategy for effectively protecting and restoring aquatic ecosystems and protecting human health.â To encourage statewide watershed protection, EPA developed the â Statewide Watershed Protection Approachâ document, which is designed to aid states in developing their own watershed protection program. The watershed protection approach is n...

  3. Modelling the hydrologic role of glaciers within a Water Evaluation and Planning System (WEAP): a case study in the Rio Santa watershed (Peru)

    OpenAIRE

    Condom, T.; Escobar, M.; D. Purkey; J. C. Pouget; W. Suarez; Ramos, C.; Apaestegui, J.; Zapata, M.; Gomez, J.; Vergara, W.

    2011-01-01

    For the past 30 years, a process of glacier retreat has been observed in the Andes, raising alarm among regional water resources managers. The purpose of this paper is to develop a model of the role of Andean glaciers in the hydrology of their associated watersheds, which is appropriate for application at a river basin scale, with an eye towards creating an analytical tool that can be used to assess the water management implications of possible future glacier retreat. While the paper d...

  4. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management.

    Science.gov (United States)

    Nie, Zeyu; Wu, Xiaodong; Huang, Haomin; Fang, Xiaomin; Xu, Chen; Wu, Jianyu; Liang, Xinqiang; Shi, Jiyan

    2016-05-01

    Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, 60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works. PMID:26805924

  5. Study on Ecological Risk of Land Use in Urbanization Watershed Based on RS and GIS:A Case Study of Songhua River Watershed in Harbin Section

    Institute of Scientific and Technical Information of China (English)

    Li; YUAN; Wenfeng; GONG; Yongfeng; DANG; Zexu; LONG

    2013-01-01

    By using RS and GIS technology,the ecological risk index ( ERI) was constructed based on the analysis of land use change and structural characteristics in urbanization watershed of Songhua River in Harbin section. Afterwards,the spatial distribution and change characteristics maps of ERI obtained by using block Kriging were analyzed to reveal the spatial and temporal evolution characteristics,change rules and formation mechanisms of ecological risk based on land use under the background of urbanization,and to minimize land use risk during urbanization process. The results showed that during the past 18 years,moderate ecological risk level was major,while proportion of high ecological risk was the lowest,and the area of higher and lower ecological risk region changed most greatly; high and higher ecological risk were focused on urban region and the transition zone from urban to suburban region,while low and lower ecological risk mainly distributed in forestland with higher vegetation coverage,water bodies,grassland,shrub land and so on. Meanwhile,the transition zone from high to low ecological risk was very obvious. In addition,ecological risk became slightly worse in some region due to the transformation from cropland to residential and urban land,while it became slightly better in other regions because of the transformation from cropland to forestland; the center of gravity in lower ecological risk region shifted most greatly,while the shift was the smallest in high ecological risk region,namely 12. 31 and 0. 57 km respectively.

  6. Rapid Assessment of Logging-Associated Sediment-Delivery Pathways in an Intensively-Managed Forested Watershed in the Southern Cascades, Northern California

    Science.gov (United States)

    Coe, D. B.; Wopat, M. A.; Lindsay, D.; Stanish, S.; Boone, M.; Beck, B.; Wyman, A.; Bull, J.

    2012-12-01

    The potential for water-quality impacts in intensively-managed forested watersheds depends partly upon the frequency of overland flow paths linking logging-related hillslope sediment sources to the channel network, as well as the volume of sediment delivered along these flow paths. In response to public concerns over perceived water-quality impacts from clearcut timber harvesting, the Battle Creek Task Force, composed of subject-matter experts from 4 different state agencies, performed a rapid assessment for visible evidence of sediment delivery pathways from multiple logging-associated features in the upper Battle Creek watershed - an area underlain predominantly by Holocene- and Late Pleistocene-aged volcanic rock types, with highly permeable soils, and relatively few streams. Logging-associated features were selected for assessment based on erosion potential and proximity to stream channels. Identified sediment-delivery pathways were then characterized by dominant erosion process and the relative magnitude of sediment delivery (i.e., low, moderate, and high) was estimated. Approximately 26 km of stream buffers adjacent to 55 clearcut harvest units were assessed, and the single detected instance of sediment delivery was found to be of low magnitude and the result of illegal encroachment by logging equipment into a 5-m wide stream-adjacent equipment-limitation zone. The proportion of sampled sites delivering sediment was found to be highest for tractor-stream crossings, followed by road-stream crossings, stream-adjacent road segments, stream-adjacent landings, and clearcut harvest units, respectively. All 5 tractor-stream crossings delivered sediment, but were generally delivering a low magnitude of sediment derived from sheetwash and rilling. Road-stream crossings (n=39) and stream-adjacent road segments (n=24) delivered observable sediment 69 and 67 percent of the time, respectively. The highest magnitudes of sediment delivery from roads were associated with

  7. A CASE STUDY OF ENVIRONMENTAL DATA MANAGEMENT

    Science.gov (United States)

    In order to support our ongoing research in watershed ecology and global climate change, we gather and analyze environmental data from several government agencies. This case study demonstrates a researcher’s approach to accessing, organizing, and using intersectoral data. T...

  8. Spatiotemporal nutrient loading to Cultus Lake: Context for eutrophication and implications for integrated watershed-lake management

    OpenAIRE

    Putt, Annika Elsie

    2014-01-01

    Cultus Lake, British Columbia experiences significant anthropogenic nutrient loadings and eutrophication. If continued unabated, these stresses threaten the persistence of two resident species at risk (coastrange sculpin and Cultus Lake sockeye salmon) and the many ecosystem services provided by the lake. We constructed water and nutrient budgets for the Cultus Lake watershed to identify major sources of nitrogen and phosphorus loadings to the lake. A steady-state water quality model calibrat...

  9. Methods for interfacing IPCC climate change scenarios with higher resolution watershed management models in the Ethiopian Blue Nile Basin

    Science.gov (United States)

    Easton, Z. M.; MacAlister, C.; Fuka, D. R.

    2013-12-01

    As much as 90% of the Nile River flow that reaches Egypt originates in the Highlands of the Ethiopian Blue Nile Basin. This imbalance in water availability poses a threat to water security in the region, and could be severely impacted by projected climate change. This analysis coupled hydrodynamic/watershed models with the Intergovernmental Panel on Climate Change (IPCC) AR4 climate change scenarios to assess the potential impact on water resources and sediment dynamics. Specific AR4 scenarios include the A1B, B1, B2 and COMMIT, which were used to force the baseline hydrodynamic models calibrated against 1979-2011 streamflow for 20 sub-watersheds in the Tana and Beles basins. Transfer functions were developed to distribute the model parameters from the calibrated sub-watersheds to un-gauged portions of the basins based on a similarity index of hydrologic response units. We analyzed the scenario in two manners: first we ran all of the seven individual Global Circulation Model results in the IPCC AR4 report though our watershed models to asses the potential spread of climate change predictions; then we assessed the mean value produced for each IPCC AR4 scenario to better estimate convergence. Results indicate that the Tana basin is expected to experience an increase in mean annual flow. The Beles basin is predicted to experience a small decrease in mean annual flow. Sediment concentrations in the Tana basin increase proportionally more than the flow increase. Interestingly, and perhaps counter to what might be expected for a decrease in flow in the Beles basin, sediment concentrations increase.

  10. Data base management study

    Science.gov (United States)

    1976-01-01

    Data base management techniques and applicable equipment are described. Recommendations which will assist potential NASA data users in selecting and using appropriate data base management tools and techniques are presented. Classes of currently available data processing equipment ranging from basic terminals to large minicomputer systems were surveyed as they apply to the needs of potential SEASAT data users. Cost and capabilities projections for this equipment through 1985 were presented. A test of a typical data base management system was described, as well as the results of this test and recommendations to assist potential users in determining when such a system is appropriate for their needs. The representative system tested was UNIVAC's DMS 1100.

  11. Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    T. Lahousse

    2011-10-01

    Full Text Available We developed a multi-scale OBIA (object-based image analysis landslide detection technique to map shallow landslides in the Baichi watershed, Taiwan, after the 2004 Typhoon Aere event. Our semi-automated detection method selected multiple scales through landslide size statistics analysis for successive classification rounds. The detection performance achieved a modified success rate (MSR of 86.5% with the training dataset and 86% with the validation dataset. This performance level was due to the multi-scale aspect of our methodology, as the MSR for single scale classification was substantially lower, even after spectral difference segmentation, with a maximum of 74%. Our multi-scale technique was capable of detecting landslides of varying sizes, including very small landslides, up to 95 m2. The method presented certain limitations: the thresholds we established for classification were specific to the study area, to the landslide type in the study area, and to the spectral characteristics of the satellite image. Because updating site-specific and image-specific classification thresholds is easy with OBIA software, our multi-scale technique is expected to be useful for mapping shallow landslides at watershed level.

  12. Enhancements to TauDEM to support Rapid Watershed Delineation Services

    Science.gov (United States)

    Sazib, N. S.; Tarboton, D. G.

    2015-12-01

    Watersheds are widely recognized as the basic functional unit for water resources management studies and are important for a variety of problems in hydrology, ecology, and geomorphology. Nevertheless, delineating a watershed spread across a large region is still cumbersome due to the processing burden of working with large Digital Elevation Model. Terrain Analysis Using Digital Elevation Models (TauDEM) software supports the delineation of watersheds and stream networks from within desktop Geographic Information Systems. A rich set of watershed and stream network attributes are computed. However limitations of the TauDEM desktop tools are (1) it supports only one type of raster (tiff format) data (2) requires installation of software for parallel processing, and (3) data have to be in projected coordinate system. This paper presents enhancements to TauDEM that have been developed to extend its generality and support web based watershed delineation services. The enhancements of TauDEM include (1) reading and writing raster data with the open-source geospatial data abstraction library (GDAL) not limited to the tiff data format and (2) support for both geographic and projected coordinates. To support web services for rapid watershed delineation a procedure has been developed for sub setting the domain based on sub-catchments, with preprocessed data prepared for each catchment stored. This allows the watershed delineation to function locally, while extending to the full extent of watersheds using preprocessed information. Additional capabilities of this program includes computation of average watershed properties and geomorphic and channel network variables such as drainage density, shape factor, relief ratio and stream ordering. The updated version of TauDEM increases the practical applicability of it in terms of raster data type, size and coordinate system. The watershed delineation web service functionality is useful for web based software as service deployments

  13. Geospatial techniques for developing a sampling frame of watersheds across a region

    Science.gov (United States)

    Gresswell, Robert E.; Bateman, Doug; Lienkaemper, George; Guy, T.J.

    2004-01-01

    Current land-management decisions that affect the persistence of native salmonids are often influenced by studies of individual sites that are selected based on judgment and convenience. Although this approach is useful for some purposes, extrapolating results to areas that were not sampled is statistically inappropriate because the sampling design is usually biased. Therefore, in recent investigations of coastal cutthroat trout (Oncorhynchus clarki clarki) located above natural barriers to anadromous salmonids, we used a methodology for extending the statistical scope of inference. The purpose of this paper is to apply geospatial tools to identify a population of watersheds and develop a probability-based sampling design for coastal cutthroat trout in western Oregon, USA. The population of mid-size watersheds (500-5800 ha) west of the Cascade Range divide was derived from watershed delineations based on digital elevation models. Because a database with locations of isolated populations of coastal cutthroat trout did not exist, a sampling frame of isolated watersheds containing cutthroat trout had to be developed. After the sampling frame of watersheds was established, isolated watersheds with coastal cutthroat trout were stratified by ecoregion and erosion potential based on dominant bedrock lithology (i.e., sedimentary and igneous). A stratified random sample of 60 watersheds was selected with proportional allocation in each stratum. By comparing watershed drainage areas of streams in the general population to those in the sampling frame and the resulting sample (n = 60), we were able to evaluate the how representative the subset of watersheds was in relation to the population of watersheds. Geospatial tools provided a relatively inexpensive means to generate the information necessary to develop a statistically robust, probability-based sampling design.

  14. A preliminary study of the Hg flux from selected Ohio watersheds to Lake Erie

    International Nuclear Information System (INIS)

    New measurements of riverine dissolved and particulate Hg fluxes into Lake Erie from 12 northern Ohio watersheds have been determined from samples collected in April 2002 and analyzed using ultra-clean techniques with cold-vapor atomic fluorescence spectrometry. Total Hg concentrations ranged through 2.5-18.5 ng L-1, with a mean of 10.4 ng L-1 with most Hg in particulate form. Dissolved Hg concentrations ranged through 0.8-4.3 ng L-1, with a mean of 2.5 ng L-1. Highest total Hg concentrations were observed in western rivers with primarily agricultural land use and eastern rivers with mixed land use in their watersheds. Total suspended solid concentrations ranged through 10-180 mg L-1 with particulate Hg concentrations ranging through 47-170 ng g-1, with a mean of 99 ng g-1. Particulate Hg was similar to published data for central Lake Erie bottom sediments but much lower than for bottom sediments in western Lake Erie. Total Hg concentrations were positively correlated with suspended sediment concentrations and negatively with dissolved NO3- concentrations. The total estimated annual Hg fluxes from these rivers into Lake Erie is estimated to be 85 kg, but because only one event was sampled during high flow conditions, this may be an overestimate. This is much lower than previous published estimates of riverine Hg input into Lake Erie

  15. Estimated Forest Ecological Water Requirements in the Jinghe Watershed-Theory and Case Study

    Institute of Scientific and Technical Information of China (English)

    He Yongtao; Min Qingwen; Li Wenhua; Li Guicai; Jin Liwei

    2006-01-01

    The ecological water requirement of forests is defined as the water resources used to maintain and improve the natural balance of forest ecosystems,which can be expressed by evapotranspiration of trees during the growing season.The relationship of evapotranspiration and soil moisture of forestland with tree growth showed that,if the soil moisture was above the temporary wilting point or the point of growth retardation,the growth of trees can,respectively,be basically or normally sustained.Therefore,they can be taken as the minimum and the suitable ecological water requirements of the forest.These points can be estimated by introducing the soil factor (Ks) and tree species factor (Kt) to potential evapotranspiration with the Penman formula.With geographic information system (GIS),the ecological water requirement for forests in the Jinghe watershed,western China was estimated.The results revealed that the minimum and suitable ecological water requirements of the forests in the Jinghe watershed were approximately 204×107 and 340×107 m,respectively.

  16. Simulating nitrate response functions in watersheds: Case studies in the United States and New Zealand

    Science.gov (United States)

    Gusyev, Maksym; Abrams, Daniel; Morgenstern, Uwe; Stewart, Michael

    2016-04-01

    Non-point sources of nitrate contamination are a common concern in different parts of the world and are difficult to characterize. Due to the solubility of nitrate, it easily enters groundwater and may take years or decades to completely flush to a stream. During this time, it may undergo denitrification, in particular if dissolved oxygen levels are low, requiring a representation of spatially distributed nitrate input as well as detailed hydrogeology. In this presentation, nitrate response functions are generated with four different methodologies that are listed in the order of decreasing degrees of freedom: groundwater flow and chemical transport (MODFLOW/MT3D), groundwater flow with solute particle tracing (MODFLOW/MODPATH), cross-sectional groundwater flow model (MODFLOW), and lumped parameter models (LPMs). We tested these approaches in selected watersheds in the Eastern and Midwestern United States as well as New Zealand and found similar nitrate results in all cases despite different model complexities. It is noted that only the fully three dimensional MODFLOW models with MT3D or MODPATH could account for detailed patterns of land use and nitrate applications; the cross-sectional models and lumped parameter models could only do so approximately. Denitrification at depth could also be explicitly accounted for in all four approaches, although this was not a major factor in any of the watersheds investigated.

  17. Hydrologic calibration of paired watersheds using a MOSUM approach

    Directory of Open Access Journals (Sweden)

    H. Ssegane

    2015-01-01

    Full Text Available Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment during the calibration (pre-treatment and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L. with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum, 14–15 year thinned loblolly pine with natural understory (control, and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  18. Hydrologic calibration of paired watersheds using a MOSUM approach

    Science.gov (United States)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-01

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1-3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14-15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash-Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  19. Analysis Of Leakage In Carbon Sequestration Projects In Forestry:A Case Study Of Upper Magat Watershed, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lasco, Rodel D.; Pulhin, Florencia B.; Sales, Renezita F.

    2007-06-01

    The role of forestry projects in carbon conservation andsequestration is receiving much attention because of their role in themitigation of climate change. The main objective of the study is toanalyze the potential of the Upper Magat Watershed for a carbonsequestration project. The three main development components of theproject are forest conservation, tree plantations, and agroforestry farmdevelopment. At Year 30, the watershed can attain a net carbon benefit of19.5 M tC at a cost of US$ 34.5 M. The potential leakage of the projectis estimated using historical experience in technology adoption inwatershed areas in the Philippines and a high adoption rate. Two leakagescenarios were used: baseline and project leakage scenarios. Most of theleakage occurs in the first 10 years of the project as displacement oflivelihood occurs during this time. The carbon lost via leakage isestimated to be 3.7 M tC in the historical adoption scenario, and 8.1 MtC under the enhanced adoption scenario.

  20. Assessment of Groundwater Quality Using Gis: A Case Study of Walayar Watershed, Parambikulam-Aliyar-Palar Basin, Tamilnadu, India

    Directory of Open Access Journals (Sweden)

    K. Balathandayutham

    2015-08-01

    Full Text Available Good groundwater quality is essential for crop yield, soil productivity and environmental protection. Suitability of groundwater for irrigation purposes is determined by its geochemistry. Groundwater geochemistry explains links between chemical composition of groundwater and subsurface geological and non-geological pollutants. Subsurface rock formations control the composition of soil and hence that of water and vegetation. The ground water samples were analyzed for physico-chemical parameters like Electrical Conductivity (EC, Hydrogen ion concentration (pH, Bicarbonate (HCO3-, Calcium (Ca2+, Magnesium (Mg2+, Sodium (Na+, Potassium (K+, Sulphate (SO42-, Nitrate (NO3-, and Chloride (Cl-. Inverse distance weighted method of the Geographical Information Systems is used to prepare the distribution map of physio-chemical parameters of groundwater while overlay method is used to assess spatial, temporal changes and prepare groundwater quality zones of Walayar watershed in Parambikulam-Aliyar-Palar basin situated in Coimbatore district, Tamil Nadu, India. The results of study show that the quality of groundwater varies both spatially and temporally in Walayar watershed. The groundwater samples in some of the wells showed deviation from water quality standards indicating groundwater contamination. Hence, proper care must be taken to avoid any contamination of groundwater and its quality be monitored periodically.

  1. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    Science.gov (United States)

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production.

  2. A Corresponding Study of Water Quality Evaluation of the Pasquotank Watershed in Northeastern North Carolina

    Science.gov (United States)

    Stevenson, J.; Walthall, S.; McKenzie, R.; Dixon, R.

    2015-12-01

    The Pasquotank River Watershed covers 450 sq miles in the Coastal Plain of NE North Carolina. It flows from the Great Dismal Swamp at the VA/NC border into the Albemarle Sound. The watershed provides a transition between spawning grounds and waters of the Albemarle Sound. Forested swamp wetlands border much of the waterways. Increased agricultural and urban development has greatly affected water quality during recent years. Test were completed along the tributaries and the river itself, adding to the previously data from 2011, 2013, and 2014. Streams tested were the Newbegun Creek, Knobbs Creek, Areneuse Creek, Mill Dam Creek, and Sawyers Creek. These streams cover a large area of the watershed and provide a wide variety of shore development from swampland and farmland to industrial development. Samples were tested for pH, salinity, total dissolved solids, and conductivity. Air/water temperature, dissolved oxygen, wind speed/direction, and turbidity/clarity measurements were taken in the field. The results were placed into an online database and correlated to the location of the sample using Google Maps®. Analysis tools were developed to compare the data from all years. Excel spreadsheets were developed to look more closely at individual points and tests for each point. This database was connected to a data visualization page utilizing Google Maps®. The results show variations for the individual water quality scores, but the overall water quality score for all the tested water sources remained at a comparable level from previous years. Mill Dam Creek rose above the previous three scores of 48 (2011), 47 (2013), and 49 (2014) and achieved a medium water quality score of 57. Areneuse Creek improved in water quality with a medium water quality score of 60. Sawyers Creek became the lowest scoring waterway tested at 35. Knobbs Creek decreased from previous years with a water quality score of 42. For a fourth consecutive testing year, Newbegun Creek fell within the

  3. Management systems research study

    Science.gov (United States)

    Bruno, A. V.

    1975-01-01

    The development of a Monte Carlo simulation of procurement activities at the NASA Ames Research Center is described. Data cover: simulation of the procurement cycle, construction of a performance evaluation model, examination of employee development, procedures and review of evaluation criteria for divisional and individual performance evaluation. Determination of the influences and apparent impact of contract type and structure and development of a management control system for planning and controlling manpower requirements.

  4. Study on the Topographic Effect on Soil Erosion Using RUSLE Model for Small Size Watershed

    Institute of Scientific and Technical Information of China (English)

    CHEN Chuan-sheng; JIANG Xin

    2006-01-01

    Soil erosion and subsequent sedimentation have caused serious environmental and soil degradation problems in Okinawa Prefecture, Japan. This research aims at evaluating an availability of the Revised Universal Soil loss Equation (RUSLE) for predicting the range of soil loss values for the Nago watershed in Okinawa. It shows that climatic conditions substantially influence the rainfall amount as a function of the I30 of the rainfall event. The rate of soil loss is higher with increasing in altitude due to greater slope steepness. By rainfall data analysis, it is concluded that the large difference in soil loss between 2000 and 2001 was due to concentrated heavy rainfall in the rainy season or the typhoon season.

  5. 东北黑土区小流域综合治理实践探究——以老二色小流域为例%Exploration on the Practice of Comprehensive Management for Small Watershed in Black Soil Region of the Northeast——Taking Laoerse Small Watershed as an Example

    Institute of Scientific and Technical Information of China (English)

    梁淑娟; 赵法领

    2011-01-01

    Comprehensive management model and system for small watershed have been becoming perfect in the regions of Loess Plateau,the earth and rock mountainous of southwest and the black soil of northeast.To realize sustainable development of watershed management,it is combined with the experience of watershed management in the black soil region,and the problems existing in the management are analyzed.As Laoerse small watershed is selected as the key management project to expand domestic demand for country,it is taken as the typical case to explore sustainable management way of the watershed.The field investigation has been undertaken in the small watershed.With regard to the existing problems,the principles of slope erosion control,gully protection,natural rehabilitation and artificial maintenance were implemented,models of biological,engineering and biological-engineering comprehensive measures for different slope and typical gullies were adopted.The results showed that the ecological fragility and poverty had been improved,significant ecological,economic and social benefits had been obtained.%黄土高原区、西南土石山区、东北黑土区小流域综合治理模式和体系日趋成熟,为实现流域治理可持续发展,结合黑土区流域治理的经验,分析流域治理存在的问题,以国家扩大内需重点治理项目——老二色小流域为典型案例,探究黑土区小流域可持续经营道路。对老二色小流域进行实地调查,针对存在问题,坚持坡面治理、沟道防护、自然修复、人工维护的原则,对不同坡面和典型沟道采取生物措施治理、工程措施治理、生物工程综合治理的模式。结果表明:老二色小流域治理取得了显著的生态、经济和社会效益,改善了小流域生态脆弱和贫困落后的面貌。

  6. Reducing Phosphorus Runoff and Leaching from Poultry Litter with Alum: Twenty-Year Small Plot and Paired-Watershed Studies.

    Science.gov (United States)

    Huang, Lidong; Moore, Philip A; Kleinman, Peter J A; Elkin, Kyle R; Savin, Mary C; Pote, Daniel H; Edwards, Dwayne R

    2016-07-01

    Treating poultry litter with alum has been shown to lower ammonia (NH) emissions and phosphorus (P) runoff losses. Two long-term studies were conducted to assess the effects of alum-treated poultry litter on P availability, leaching, and runoff under pasture conditions. From 1995 to 2015, litter was applied annually in a paired watershed study comparing alum-treated and untreated litter and in a small plot study comparing 13 treatments (an unfertilized control, four rates of alum-treated litter, four rates of untreated litter, and four rates of NHNO). In the paired watershed study, total P loads in runoff were 231% higher from pasture receiving untreated litter (1.96 kg P ha) than from that receiving alum-treated litter (0.85 kg P ha). In both studies, alum-treated litter resulted in significantly higher Mehlich III P (M3-P) and lower water-extractable P at the soil surface, reflecting greater retention of applied P and lesser availability of that P to runoff or leaching. In soils fertilized with alum-treated litter, M3-P was much higher when analyzed by inductively coupled argon plasma emission spectrometry than by colorimetry, possibly due to the formation of aluminum phytate. Indeed, alum-treated poultry litter leached less P over the 20-yr study: M3-P at 10 to 50 cm was 266% greater in plots fertilized with untreated litter (331 kg M3-P ha) than with alum-treated litter (124 kg M3-P ha). This research provides compelling evidence that treating poultry litter with alum provides short-term and long-term benefits to P conservation and water quality.

  7. A new watershed assessment framework for Nova Scotia: A high-level, integrated approach for regions without a dense network of monitoring stations

    Science.gov (United States)

    Sterling, Shannon M.; Garroway, Kevin; Guan, Yue; Ambrose, Sarah M.; Horne, Peter; Kennedy, Gavin W.

    2014-11-01

    High-level, integrated watershed assessments are a basic requirement for freshwater planning, as they create regional summaries of multiple environmental stressors for the prioritization of watershed conservation, restoration, monitoring, and mitigation. There is a heightened need for a high-level, integrated watershed assessment in Nova Scotia as it faces pressing watershed issues relating to acidification, soil erosion, acid rock drainage, eutrophication, and water withdrawals related to potential shale gas development. But because of the relative sparseness of the on-the-ground effects-based data, for example on water quality or fish assemblages, previously created approaches for integrated watershed assessment cannot be used. In a government/university collaboration, we developed a new approach that relies solely on easier-to-collect and more available exposure-based variables to perform the first high-level watershed assessment in Nova Scotia. In this assessment, a total of 295 watershed units were studied. We used Geographic Information Systems (GIS) to map and analyze 13 stressor variables that represent risks to aquatic environment (e.g., road/stream crossing density, acid rock drainage risk, surface water withdrawals, human land use, and dam density). We developed a model to link stressors with impacts to aquatic systems to serve as a basis for a watershed threat ranking system. Resource management activities performed by government and other stakeholders were also included in this analysis. Our assessment identifies the most threatened watersheds, enables informed comparisons among watersheds, and indicates where to focus resource management and monitoring efforts. Stakeholder communication tools produced by the NSWAP include a watershed atlas to communicate the assessment results to a broader audience, including policy makers and public stakeholders. This new framework for high-level watershed assessments provides a resource for other regions that also

  8. Does social capital improve watershed environmental governance?

    OpenAIRE

    Monteiro, Fernando

    2006-01-01

    International audience In Brazil, water management has been both sectored and centralized. In the 1990s, a series of state level reforms granted substantial participation to civil society and water users' organizations by incorporating Integrated Water Resourse Management principles and Watershed Committees as its guideline. However, its full implementation should produce quite different outcomes, understood as improved or poorer watershed environmental governance. That means that the key ...

  9. Calibration of SWAT2009 using crop biomass, evapotranspiration, and deep recharge: Calera watershed in Zacatecas, Mexico case study

    Science.gov (United States)

    Groundwater is the main source of water in the semi-arid Calera watershed, located in the State of Zacatecas, Mexico. Due to increasing population, rapid industrial growth, and increased irrigation to meet growing food demand, groundwater extraction in the Calera watershed are exceeding recharge rat...

  10. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Directory of Open Access Journals (Sweden)

    A. D. Jayakaran

    2013-09-01

    Full Text Available Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds – a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  11. Citizen Participation in Collaborative Watershed Partnerships

    Science.gov (United States)

    Koehler, Brandi; Koontz, Tomas M.

    2008-02-01

    Collaborative efforts are increasingly being used to address complex environmental problems, both in the United States and abroad. This is especially true in the growing field of collaborative watershed management, where diverse stakeholders work together to develop and advance water-quality goals. Active citizen participation is viewed as a key component, yet groups often struggle to attract and maintain citizen engagement. This study examined citizen participation behavior in collaborative watershed partnerships by way of a written survey administered to citizen members of 12 collaborative watershed groups in Ohio. Results for the determination of who joins such groups were consistent with the dominant-status model of participation because group members were not demographically representative of the broader community. The dominant-status model, however, does not explain which members are more likely to actively participate in group activities. Instead, individual characteristics, including political activity, knowledge, and comfort in sharing opinions with others, were positively correlated with active participation. In addition, group characteristics, including government-based membership, rural location, perceptions of open communication, perceptions that the group has enough technical support to accomplish its goals, and perceived homogeneity of participant opinions, were positively correlated with active participation. Overall, many group members did not actively participate in group activities.

  12. Community Capacity for Watershed Conservation: A Quantitative Assessment of Indicators and Core Dimensions

    Science.gov (United States)

    Brinkman, Elliot; Seekamp, Erin; Davenport, Mae A.; Brehm, Joan M.

    2012-10-01

    Community capacity for watershed management has emerged as an important topic for the conservation of water resources. While much of the literature on community capacity has focused primarily on theory construction, there have been few efforts to quantitatively assess community capacity variables and constructs, particularly for watershed management and conservation. This study seeks to identify predictors of community capacity for watershed conservation in southwestern Illinois. A subwatershed-scale survey of residents from four communities located within the Lower Kaskaskia River watershed of southwestern Illinois was administered to measure three specific capacity variables: community empowerment, shared vision and collective action. Principal component analysis revealed key dimensions of each variable. Specifically, collective action was characterized by items relating to collaborative governance and social networks, community empowerment was characterized by items relating to community competency and a sense of responsibility and shared vision was characterized by items relating to perceptions of environmental threats, issues with development, environmental sense of place and quality of life. From the emerging factors, composite measures were calculated to determine the extent to which each variable contributed to community capacity. A stepwise regression revealed that community empowerment explained most of the variability in the composite measure of community capacity for watershed conservation. This study contributes to the theoretical understanding of community capacity by quantifying the role of collective action, community empowerment and shared vision in community capacity, highlighting the need for multilevel interaction to address watershed issues.

  13. Assessing Water Management Impacts of Climate Change for a semi-arid Watershed in the Southwestern US

    Science.gov (United States)

    Rajagopal, S.; Dominguez, F.; Gupta, H. V.; Castro, C. L.; Troch, P. A.

    2011-12-01

    Water managers for the City of Phoenix currently face the need to make informed policy decisions regarding long-term impacts of climate change on the Salt-Verde River basin in central Arizona. To provide a scientifically informed basis for this, we estimate the evolution of important components of the basin-scale water balance through the end of the 21st century. Bias-corrected and spatially downscaled climate projections from the Phase-3 Coupled Model Intercomparison Project of the World Climate Research Programme were used to drive a spatially distributed variable infiltration capacity model of the hydrologic processes in the basins. Of the Global Climate Model's participating in the IPCC fourth assessment we selected a five-model ensemble, including the three that best reproduce the historical climatology for our study region, plus two others to represent wetter and drier than model average conditions; the latter two were requested by City of Phoenix water managers to more fully represent the full range of GCM prediction uncertainty. For each GCM, data for three emission scenarios (A1B, A2, B1) was used to drive the hydrologic model into the future. The model projections indicate a 25% statistically significant decrease in streamflow by the end of the 21st century. This is primarily caused by decreased winter precipitation accompanied by significant (temperature driven) reductions in storage of snow. From the analysis of the future period, a synthetic climate dataset was created to reflect future changes in magnitude while preserving the correlation by perturbing the historical observed precipitation and temperature. This dataset was used to evaluate climate elasticity and improve water managers understanding of the impacts to the basin. The results shown in this presentation clearly indicate the manner in which water management in central Arizona is likely to be impacted by changes in regional climate.

  14. Assessment and mapping of desertification sensitivity in an insular sahelian mountain region - case study of the Ribeira Seca Watershed, Cape Verde

    Science.gov (United States)

    Tavares, J.

    2012-04-01

    The aim of this study is to present the assessment and mapping of the environmental areas sensitive to desertification in an insular sahelian mountain region, in the catchment area of Ribeira Seca, island of Santiago, Cape Verde. Desertification is a threat for the global environment and it represents a serious ecological problem in Cape Verde. To fight both successfully, it requires an evaluation of its consequences and the building of cartography of the sensitivity for arid and semi-arid ecosystems. The model MEDALUS was the basis for this study with the use of six indicators of quality: climate, soil, vegetation, management, water runoff and social. Several sub-indicators were assigned to each indicator with weights variable between 1 (low) and 2 (high) according to the DESIRE Project (WB2). The geometric mean of each of the six indicators of quality was employed to produce the map of environmental sensitivity areas to desertification. The results of this study show that more than 50% of the watershed present obvious evidence of becoming a desertification area. Key words: Cape Verde, desertification, indicators, MEDALUS model, DESIRE project.

  15. Lessons From Watershed-Based Climate Smart Agricultural Practices In Jogo-Gudedo Watershed Ethiopia

    Directory of Open Access Journals (Sweden)

    Abera Assefa

    2015-08-01

    Full Text Available Abstract Land degradation is the most chronic problem in the Ethiopia. Soil erosion and denudation of vegetation covers are tending to enlarge the area of degraded and west land in semi-arid watersheds. It is therefore watershed management is believed as a holistic approach to create a climate smart landscape that integrate forestry agriculture pasture and soil water management with an objective of sustainable management of natural resources to improve livelihood. This approach pursues to promote interactions among multiple stakeholders and their interests within and between the upstream and downstream locations of a watershed. Melkassa Agricultural Research Centre MARC has been implementing integrated watershed management research project in the Jogo-gudedo watershed from 2010-2014 and lessons from Jogo-gudedo watershed are presented in this research report. Participatory action research PAR was implemented on Soil and Water Conservation SWC area enclosure Agroforestry AF Conservation Tillage CT energy saving stove drought resistance crop varieties in the Jogo-gudedo watershed. Empirical research and action research at plot level and evaluation of introduced technologies with farmers through experimental learning approach and documentation were employed. The participatory evaluation and collective action of SWC and improved practices brought high degree of acceptance of the practices and technologies. This had been ratified by the implementation of comprehensive watershed management action research which in turn enabled to taste and exploit benefits of climate-smart agricultural practices. Eventually significant reduction on soil loss and fuel wood consumption improvements on vegetation cover and crop production were quantitatively recorded as a good indicator and success. Field visit meetings trainings and frequent dialogues between practitioners and communities at watershed level have had a help in promoting the climate smart agriculture

  16. Comparison of Hydrologic Dynamics in Forested and Agricultural Sub-watersheds of a Large Mixed-use Prairie Watershed

    Science.gov (United States)

    Petzold, H.; Ali, G.

    2013-12-01

    The natural history of the Prairies includes the large-scale human modification of landscape biology and hydrology from first settlement to present. Forested land has been and continues to be lost and runoff is increasingly artificially drained in this intensively managed region. The impact of such modifications on hydrological dynamics has yet to be understood in such a way that measurable landscape alterations (i.e., area of forest loss, hydraulic capacity of artificial surface drains) can be linked to quantifiable alterations in event storm hydrographs or hydrological regimes. Here we focused on a large mixed-used watershed to compare the hydrological dynamics of forested sub-watersheds to those of neighboring deforested agricultural sub-watersheds within a similar geologic and pedologic setting. The chosen study site, the Catfish Creek watershed (CCW), drains a 600 km2 area located approximately 90 km north-east of Winnipeg (Manitoba, Canada) and has been extensively impacted by human activities including the continued clearing of forested land for cultivation. It is characterized as a low-relief, agro-forested watershed (~45% forest, ~40% crops, ~10% swamp, ~5% other). Surface runoff is managed in part by a network of artificial drains in both the forested and cultivated portions of this watershed. The lower CCW is naturally-vegetated by parkland forest and swamp. The eastern edge of the upper watershed is also forested and of greater relative relief; while to the west the landscape is dominated by intensive, large-scale agricultural operations on a near level landscape. Detailed topographic information was collected in 1 m LiDAR survey of the area. Through the spring of 2013, CCW was instrumented with thirteen water level recorders (15-minute frequency) and five weather stations (1-minute frequency) to monitor the precipitation-runoff dynamics from spring thaw to winter freeze-up. Water level gauging stations, 12 located in-stream and 1 located in swampland

  17. 加拿大最佳管理措施流域评价项目评述%A Review of the Canadian Watershed Evaluation of Beneficial Management Practices Project

    Institute of Scientific and Technical Information of China (English)

    刘永波; 吴辉; 刘军志

    2012-01-01

    可持续农业的目的是在保持良好环境质量的同时获得较高的农业生产率.最佳管理措施( BMPs)在世界范围内已得到广泛应用,以减少农业污染物对水环境的影响.自2004年以来,加拿大农业部实施了最佳管理措施流域评价(WEBs)项目,在全国各地选择了有代表性的9个小流域,对BMPs的环境和经济效益进行评价.笔者对过去几年来WEBs项目的进展、研究方法及主要成果进行简要的回顾,并对在中国开展类似项目的必要性和启示进行了探讨.%The objective of sustainable agriculture is to maintain high agriculture productivity while preserving a sound environmental quality. However, water quality degradation caused by excessive sediment and nutrient runoff has become a critical environment impact on agricultural watersheds all over the world. Beneficial management practices ( BMPs) are therefore designed and implemented to minimize these negative impacts on water environment. In 2004, Agriculture and Agri-Food Canada ( AAFC) launched a watershed evaluation of BMPs ( WEBs) project with a primary goal of assessing the environmental and economic performance of nine selected small watersheds across Canada under BMPs. The WEBs is composed of four main components, including biophysical evaluation, economic evaluation, hydrologic modeling, and integrated modeling. So far, WEBs has made significant progress in understanding the environmental and economic performance of the BMPs selected for the study and in validating hydrologic models using results from the field-tested BMPs, and WEBs has successfully begun to integrate biophysical and economic findings for planning for broader scales of land. The innovative and interdisciplinary research conducted in the WEBs watersheds will help farmers decide what practices might work best on their farm and will help the governments develop policies and programs to assist farmers in implementing effective BMPs for improving water

  18. Geospatial approach in mapping soil erodibility using CartoDEM - A case study in hilly watershed of Lower Himalayan Range

    Science.gov (United States)

    Kumar, Suresh; Gupta, Surya

    2016-09-01

    Soil erodibility is one of the most important factors used in spatial soil erosion risk assessment. Soil information derived from soil map is used to generate soil erodibility factor map. Soil maps are not available at appropriate scale. In general, soil maps at small scale are used in deriving soil erodibility map that largely generalized spatial variability and it largely ignores the spatial variability since soil map units are discrete polygons. The present study was attempted to generate soil erodibilty map using terrain indices derived from DTM and surface soil sample data. Soil variability in the hilly landscape is largely controlled by topography represented by DTM. The CartoDEM (30 m) was used to derive terrain indices such as terrain wetness index (TWI), stream power index (SPI), sediment transport index (STI) and slope parameters. A total of 95 surface soil samples were collected to compute soil erodibility factor (K) values. The K values ranged from 0.23 to 0.81 t ha-1R-1 in the watershed. Correlation analysis among K-factor and terrain parameters showed highest correlation of soil erodibilty with TWI (r 2= 0.561) followed by slope (r 2= 0.33). A multiple linear regression model was developed to derive soil erodibilty using terrain parameters. A set of 20 soil sample points were used to assess the accuracy of the model. The coefficient of determination (r 2) and RMSE were computed to be 0.76 and 0.07 t ha-1R-1 respectively. The proposed methodology is quite useful in generating soil erodibilty factor map using digital elevation model (DEM) for any hilly terrain areas. The equation/model need to be established for the particular hilly terrain under the study. The developed model was used to generate spatial soil erodibility factor (K) map of the watershed in the lower Himalayan range.

  19. Baseline Profile of Soil Samples from Upian River Watershed

    Directory of Open Access Journals (Sweden)

    Wilanfranco Caballero TAYONE

    2014-06-01

    Full Text Available The Mines and Geosciences Bureau (MGB in the Philippines is currently mapping out the entire Davao City Watershed Area (DCWA. There are 8 major watershed areas within DCWA that has been identified by the MGB and the largest is the Davao River Watershed Area (DRWA. A smaller sub-watershed within DRWA, the Upian River Watershed Area (URWA, was proposed of which its boundary and soil profile is yet to be established. This study focused on the analyses of the soil samples from URWA. The results for pH, organic matter, cation exchange capacity, N, P, K, Ca and Mg were then compared to the Bureau of Soil standard for its fertility rating. Analysis of lead (Pb was also included as a pollutant indicator for possible soil contamination. There are 4 sampling sites with unfavorable ratings for pH, 3 for both organic matter and phosphorus, and 2 stations for both nitrogen and calcium. Fertility rating is generally good for cation exchange capacity, potassium and magnesium. The Bureau of Soil has no existing standards for micronutrients. However, all sampling sites were found to be too low with micronutrients according to Gershuny and Smillie. No indication of lead contamination or pollution on all sites as far as natural levels of lead in surface soil is concerned. This study will provide baseline information that is useful to all stakeholders, to the people living near the area, farmers, planners, and resource managers. This can also provide inputs to key government agencies in the Philippines like the Department of Environment and Natural Resources (DENR and the City Planning Office of Davao in formulating policies for sustainable management of the resource upon implementation of their programs and projects. Without the aforementioned information, planners would have difficulty in predicting the impact or recommend best management strategies for a specific land use.

  20. Dynamic root distributions in ecohydrological modeling: A case study at Walnut Gulch Experimental Watershed

    Science.gov (United States)

    Sivandran, Gajan; Bras, Rafael L.

    2013-06-01

    Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. However, land surface models currently prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. Additionally, these models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings or competition from other plant species and therefore tend to underestimate the resilience of these ecosystems. To address the simplicity of the current representation of roots in land surface models, a new dynamic rooting scheme was incorporated into the framework of the distributed ecohydrological model tRIBS+VEGGIE. The new scheme optimizes the allocation of carbon to the root zone to reduce the perceived stress of the vegetation, so that root profiles evolve based upon local climate and soil conditions. The ability of the new scheme to capture the complex dynamics of natural systems was evaluated by comparisons to hourly timescale energy flux, soil moisture, and vegetation growth observations from the Walnut Gulch Experimental Watershed, Arizona. Robust agreement was found between the model and observations, providing confidence that the improved model is able to capture the multidirectional interactions between climate, soil, and vegetation at this site.

  1. Risk of flooding: Activities, parameters and regional peculiarities, Case study: Varbitsa watershed basin, Bulgaria

    Directory of Open Access Journals (Sweden)

    Lubenov Todor

    2009-01-01

    Full Text Available An overview of the activities overtaken during risk of flooding situations, in one of the more often flooding region - the watershed of Varbitsa river (Southeastern part of Bulgaria - has been performed. The main cognitive parameters for risk perception and risk definition, depending on regional, social and historical factors have been examined. The existing information and instructions for mass media communication in relation to the process of interaction in a disaster situation have been discussed. In connection to determination of the risky segments in the basin and plans for announcement, the prevention communication measures have been outlined. On the basis of the Bulgarian normative legislation, the activities concerning organization of communications in a risk-of-disaster situation and mutual aid between authorities, which are part of the Integrated Help System have been indicated. It has been accented on the necessity of a more effective realization of the action plans during natural disasters and especially flooding, in order to improve the partnership between authorities and participants in the communication process during risk-of-flooding situations.

  2. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Directory of Open Access Journals (Sweden)

    Sarah E Null

    Full Text Available This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  3. Mapping technological and biophysical capacities of watersheds to regulate floods

    Science.gov (United States)

    Mogollon, Beatriz; Villamagna, Amy M.; Frimpong, Emmanuel A.; Angermeier, Paul

    2016-01-01

    Flood regulation is a widely valued and studied service provided by watersheds. Flood regulation benefits people directly by decreasing the socio-economic costs of flooding and indirectly by its positive impacts on cultural (e.g., fishing) and provisioning (e.g., water supply) ecosystem services. Like other regulating ecosystem services (e.g., pollination, water purification), flood regulation is often enhanced or replaced by technology, but the relative efficacy of natural versus technological features in controlling floods has scarcely been examined. In an effort to assess flood regulation capacity for selected urban watersheds in the southeastern United States, we: (1) used long-term flood records to assess relative influence of technological and biophysical indicators on flood magnitude and duration, (2) compared the widely used runoff curve number (RCN) approach for assessing the biophysical capacity to regulate floods to an alternative approach that acknowledges land cover and soil properties separately, and (3) mapped technological and biophysical flood regulation capacities based on indicator importance-values derived for flood magnitude and duration. We found that watersheds with high biophysical (via the alternative approach) and technological capacities lengthened the duration and lowered the peak of floods. We found the RCN approach yielded results opposite that expected, possibly because it confounds soil and land cover processes, particularly in urban landscapes, while our alternative approach coherently separates these processes. Mapping biophysical (via the alternative approach) and technological capacities revealed great differences among watersheds. Our study improves on previous mapping of flood regulation by (1) incorporating technological capacity, (2) providing high spatial resolution (i.e., 10-m pixel) maps of watershed capacities, and (3) deriving importance-values for selected landscape indicators. By accounting for technology that enhances

  4. Nitrogen Losses in Runoff from Row-cropped Watersheds: Environmental Benefits of Native Prairie Filter Strips

    Science.gov (United States)

    Zhou, X.; Helmers, M. J.; Asbjornsen, H.; Kolka, R. K.; Tomer, M. D.

    2011-12-01

    Loss of nitrogen in runoff from agricultural landscapes is a serious problem in the Midwestern United States due to inappropriate/intensive management practices. Among other best management practices, vegetative filter strips have been effectively adopted to reduce pollutant transport with agricultural runoff. In this study, twelve ephemeral watersheds at the Neal Smith National Wildlife Refuge in Central Iowa were used to evaluate the effectiveness of native prairie filter strips (NPFS) in reducing total nitrogen (TN) and nitrate-N (NO3-N) loss from row-cropped watersheds. Small amounts of NPFS were incorporated at different locations within the watersheds in fall 2006 using a balanced incomplete block design. A no-till 2-yr corn-soybean rotation was adopted in nonperennial areas since spring 2007. Each watershed was instrumented with an H-flume, a flow-monitoring device, and an ISCO water sampler in 2007. Runoff samples during the growing season between 2007 and 2010 were analyzed for TN and NO3-N concentrations for each individual rainfall event. The 4-year mean annual TN loss for watersheds with NPFS was 6.9 kg ha-1, approximately 85% lower than TN loss from 100% row-cropped watersheds (47.7 kg ha-1). Mean annual NO3-N loss during the growing season was 4.2 and 1.3 kg ha-1 for the watersheds with and without NPFS, respectively. The results of this study suggest that incorporation of small amounts of NPFS within annual rowcrop systems could greatly reduce TN and NO3-N loss from agricultural watersheds.

  5. Chamberino Floodplain Management Study

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The Dona Ana County Flood Commission requested the United States Department of Agriculture's Natural Resources Conservation Service to conduct a study of the...

  6. Possible Scenarios of Impacts of Climatic Change on Potential Evapotranspiration in the Watershed of the Conchos River, Mexico

    Science.gov (United States)

    Raynal-Villasenor, J. A.; Rodriguez-Pineda, J. A.

    2007-12-01

    The watershed of the Conchos River is the main watershed of the state of Chihuahua, Mexico, and it is the main source of water of the watershed of the Grande river downstream El Paso, Texas. Such part of the watershed of the Grande River is also the border between Mexico and the United States of America, from El Paso-Ciudad Juarez up to Brownsville-Matamoros. It is very important for the state of Chihuahua and Mexico as a whole, to construct possible scenarios of the effects of the global climatic change in the potential evapotranspiration in such watershed and to construct likely scenarios which results will help to define an integrated watershed management to mitigate those global climate change impacts. The results of a recent study sponsored by the alliance between WWF-Fundacion Gonzalo Rio Arronte, are presented in the paper. The study was conducted to construct possible scenarios on the effects of the global climatic change on the potential evapotranspiration in the watershed of the Conchos River in Mexico. Three watershed characteristic meteorological stations were selected to conduct such study. The predictions of change of the surface air temperature and the change of the rainfall produced by the global climatic change, by the end of the XXI Century, were those published by the Hadley Center. The results show that air temperature increment of one degree centigrade increases evapotranspiration values between 3 and 3.5% with respect current values. As a consequence moisture deficiency increases from 9% to 40%. With an air temperature increment of three degrees centigrades, the potential evapotranspiration increases between 8.8% and 10% increasing moisture deficiency from 27.5% up to 116%. The expected rainfall increment values show a negligible contribution for the potential evapotranspiration reduction in the Rio Conchos watershed. These results conclude that immediate actions need to be taken to mitigate climate change impacts all along the watershed.

  7. Regeneration of Shorea robusta and Schima wallichii under Community Forest Management in Ludikhola watershed, Gorkha district, Nepal

    OpenAIRE

    Klokkeide, Kristin Madsen

    2013-01-01

    Resource and forest management in Nepal: Resource management is of current global interest because of its role in sustaining natural resources and livelihood for future generations. Hardin's paper, the Tragedy of the Commons", served as a starting point to the wider discussion on challenges for sustainable resource management. Hardin's theory is widely cited in the context of forest management, especially to explain forest degradation, e.g. in the Himalaya where forest degradation has a long...

  8. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  9. Impacts of future climate change on river discharge based on hydrological inference: A case study of the Grand River Watershed in Ontario, Canada.

    Science.gov (United States)

    Li, Zhong; Huang, Guohe; Wang, Xiuquan; Han, Jingcheng; Fan, Yurui

    2016-04-01

    Over the recent years, climate change impacts have been increasingly studied at the watershed scale. However, the impact assessment is strongly dependent upon the performance of the climatic and hydrological models. This study developed a two-step method to assess climate change impacts on water resources based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and a Hydrological Inference Model (HIM). PRECIS runs provided future temperature and precipitation projections for the watershed under the Intergovernmental Panel on Climate Change SRES A2 and B2 emission scenarios. The HIM based on stepwise cluster analysis is developed to imitate the complex nonlinear relationships between climate input variables and targeted hydrological variables. Its robust mathematical structure and flexibility in predictor selection makes it a desirable tool for fully utilizing various climate modeling outputs. Although PRECIS and HIM cannot fully cover the uncertainties in hydro-climate modeling, they could provide efficient decision support for investigating the impacts of climate change on water resources. The proposed method is applied to the Grand River Watershed in Ontario, Canada. The model performance is demonstrated with comparison to observation data from the watershed during the period 1972-2006. Future river discharge intervals that accommodate uncertainties in hydro-climatic modeling are presented and future river discharge variations are analyzed. The results indicate that even though the total annual precipitation would not change significantly in the future, the inter-annual distribution is very likely to be altered. The water availability is expected to increase in Winter while it is very likely to decrease in Summer over the Grand River Watershed, and adaptation strategies would be necessary.

  10. Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique

    Science.gov (United States)

    Soni, Sandeep

    2016-02-01

    The quantitative analysis of the watershed is important for the quantification of the channel network and to understand its geo-hydrological behaviour. Assessment of drainage network and their relative parameters have been quantitatively carried out for the Chakrar watershed of Madhya Pradesh, India, to understand the prevailing geological variation, topographic information and structural setup of the watershed and their interrelationship. Remote Sensing and Geographical Information System (GIS) has been used for the delineation and calculation of the morphometric parameters of the watershed. The Chakrar watershed is sprawled over an area of 415 km2 with dendritic, parallel and trellis drainage pattern. It is sub-divided into nine sub-watersheds. The study area is designated as sixth-order basin and lower and middle order streams mostly dominate the basin with the drainage density value of 2.46 km/km2 which exhibits gentle to steep slope terrain, medium dense vegetation, and less permeable with medium precipitation. The mean bifurcation value of the basin is 4.16 and value of nine sub-watersheds varies from 2.83 to 4.44 which reveals drainage networks formed on homogeneous rocks when the influences of geologic structures on the stream network is negligible. Form factor, circularity ratio and elongation ratio indicate an elongated basin shape having less prone to flood, lower erosion and sediment transport capacities. The results from the morphometric assessment of the watershed are important in water resources evaluation and its management and for the selection of recharge structure in the area for future water management.

  11. pyLIDEM: A Python-Based Tool to Delineate Coastal Watersheds Using LIDAR Data

    Science.gov (United States)

    O'Banion, R.; Alameddine, I.; Gronewold, A.; Reckhow, K.

    2008-12-01

    Accurately identifying the boundary of a watershed is one of the most fundamental and important steps in any hydrological assessment. Representative applications include defining a study area, predicting overland flow, estimating groundwater infiltration, modeling pollutant accumulation and wash-off rates, and evaluating effectiveness of pollutant mitigation measures. The United States Environmental Protection Agency (USEPA) Total Maximum Daily Load (TMDL) program, the most comprehensive water quality management program in the United States (US), is just one example of an application in which accurate and efficient watershed delineation tools play a critical role. For example, many impaired water bodies currently being addressed through the TMDL program drain small coastal watersheds with relatively flat terrain, making watershed delineation particularly challenging. Most of these TMDL studies use 30-meter digital elevation models (DEMs) that rarely capture all of the small elevation changes in coastal watersheds, leading to errors not only in watershed boundary delineation, but in subsequent model predictions (such as watershed runoff flow and pollutant deposition rate predictions) for which watershed attributes are key inputs. Manually delineating these low-relief coastal watersheds through the use of expert knowledge of local water flow patterns, often produces relatively accurate (and often more accurate) watershed boundaries as compared to the boundaries generated by the 30-meter DEMs. Yet, manual delineation is a costly and time consuming procedure that is often not opted for. There is a growing need, therefore, particularly to address the ongoing needs of the TMDL program (and similar environmental management programs), for software tools which can utilize high resolution topography data to more accurately delineate coastal watersheds. Here, we address this need by developing pyLIDEM (python LIdar DEM), a python-based tool which processes bare earth high

  12. Movement and Habitat Use of Bonneville Cutthroat Trout (Oncorhynchus Clarki Utah): A Case Study In the Temple Fork Watershed

    OpenAIRE

    Lokteff, Ryan L.

    2014-01-01

    Movement patterns and habitat use of Bonneville cutthroat trout (Oncorhynchus clarki utah) in tributaries of the Logan River watershed are greatly aected by habitat alterations created by North American Beaver (Castor canadensis). Evaluation of cutthroat trout habitat use in these watersheds is also complicated by biotic interactions with invasive brown trout (Salmo trutta) and brook trout (Salvelinus fontinalis). My objectives in this thesis were to 1.) Evaluate the passage of beaver dams by...

  13. Trip report: pilot studies of factors linking watershed function and coastal ecosystem health in American Samoa

    Science.gov (United States)

    Atkinson, Carter T.; Medeiros, Arthur C.

    2010-01-01

    Coral reef resources in the territory of American Samoa face significant problems from overfishing, non-point source pollution, global warming, and continuing population growth and development. The islands are still relatively isolated relative to other parts of the Pacific and have managed to avoid some of the more devastating invasive species that have reached other archipelagoes. As a result, there are opportunities for collaborative and integrative research and monitoring programs to help restore and maintain biodiversity and functioning natural ecosystem in the archipelago. We found that the 'Ridge to Reef' paradigm already exists in American Samoa, with a high degree of interagency cooperation and efficient use of limited resources already taking place in the Territory. USGS may be able to make contributions as a partner organization in the Coral Reef Advisory Group (CRAG) through deployment of sediment monitoring instrumentation to supplement stream monitoring by the American Samoa Environmental Protection Agency, by providing high resolution vegetation and land-use maps of main islands, by providing additional support to the American Samoa Department of Marine and Wildlife Resources and the National Park Service for monitoring of invasive species, by working with members of CRAG to initiate sediment transport studies on Samoan reefs, and by developing new projects on the effects of bacterial contamination and pollutants on coral reef physiology and demography.

  14. Using Linked Models to Study Interactions Between Water Use Decisions and Climate Change-Driven Watershed Processes in the Pacific Northwest Region

    Science.gov (United States)

    Orr, C. H.; Adam, J. C.; Beall, A. M.; Barber, M. E.; Nguyen, T. T.

    2012-12-01

    . Stakeholder processes that openly discuss the range of potential futures are helpful for mitigating the paralysis of water management policy caused by scientific and social uncertainty. The Palouse Basin bordering SE Washington and NW Idaho used collaborative modeling as to explore scientific uncertainty and potential futures in a sole source aquifer system with negligible recharge. In the Spokane Coeur D'Alene basin, a stakeholder exercise revealed that measurement uncertainty inclined stakeholders were inclined to pass up a costly Total Maximum Daily Load (TMDL) process and go directly to mitigation. Both cases revealed feedbacks to the physical system that are the result of decisions, preferences, and beliefs. This modeling framework is part of a larger development effort Watershed Integrated Systems Dynamics Model or "WISDM" to construct linked models to study interactions between water use decisions and climate change-driven watershed processes, and then to explore how participant / stakeholder involvement in the modeling could both improve understanding of the systems and lay the groundwork for adaptive changes in institutional arrangements.

  15. A GIS-BASED DISTRIBUTED SOIL EROSION MODEL:A CASE STUDY OF TYPICAL WATERSHED, SICHUAN BASIN

    Institute of Scientific and Technical Information of China (English)

    Zaijian YUAN; Qiangguo CAI; Yingmin CHU

    2007-01-01

    Based on the measuring data and Digital Elevation Data (DEM) in a typical watershed--Hemingguan Watershed, Nanbu County, Sichuan Province of China, a GIS-based distributed soil erosion model was developed particularly for the purple soil type. It takes 20 m × 20 m grid as calculating unit and operates at 10-minute time interval. The required input data to the model include DEM, soil, land use, and time-series of precipitation and evaporation loss. The model enables one to estimate runoff, erosion and sediment yield for each grid cell and route the flow along its flow path to the watershed outlet. Furthermore, the model is capable of calculating the total runoff; erosion and sediment yield for the entire watershed by recursion algorithm. The validation of the model demonstrated that it could quantitatively simulate the spatial distribution of hydrological variables in a watershed, such as runoff, vegetation entrapment, soil erosion, the degree of soil and water loss. Moreover, it can evaluate the effect of land use change on the runoff generation and soil erosion with an accuracy of 80% and 75% respectively. The application of this model to a neighboring watershed with similar conditions indicates that this distributed model could be extended to other similar regions in China.

  16. Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

  17. Can functional gene abundance predict N-fluxes? Examples from a well-studied hydrological flow path in a forested watershed in SW China

    Science.gov (United States)

    Liu, Binbin; Muzammil, Bushra; Dörsch, Peter; Zhu, Jing; Mulder, Jan; Frostegård, Åsa

    2014-05-01

    Edaphic, climatic and management factors shape soil microbial communities taxonomically and functionally, resulting in spatial separation of nitrogen (N) oxidation and reduction processes along hydrological flowpaths. In a recent study, we investigated N-cycling processes and N2O emissions along a mesic hillslope (HS) and a hydrologically connected groundwater discharge zone (GDZ) in a forested headwater catchment dominated by acid soils (pH 4.0 - 4.5) in subtropical China (Chongqing). The watershed receives 50 kg N ha-1 a-1 through atmogenic deposition (2/3 as ammonium), most of which is removed before discharge. Surprisingly, N2O emissions were found to be greatest on the well-drained HS, whereas a drop of NO3- concentrations along the flow path indicated that N removal was highest in the moist GDZ. Nitrification was assumed to be none-limiting as the total flux of NO3- leaving the hill slope soils roughly equalled the input of NH4+. To understand watershed N-cycling and removal in more detail, we studied the abundance of functional genes involved in ammonium oxidation (amoA of AOB and AOA), nitrite oxidation (nxrB) and denitrification (nirK, nirS, nosZ) in top soils from 8 locations along the flow path spanning from the hilltop to the outlet of the GDZ. 16S rRNA gene abundance was assessed as a general marker for bacterial abundance. All genes showed highest abundance per gram soil in the heavily disturbed GDZ (formerly cultivated terraces), despite lower soil organic carbon content (1-4% w/w as opposed to 10-20% w/w in HS topsoil) and periodically stagnant conditions due to high water tables after monsoonal rainfalls. Ratios of nosZ/nirS+nirK, commonly used to predict denitrification product stoichiometry (N2O/N2), yielded counterintuitive results with higher values for HS than for GDZ. However, comparing nir gene with 16S rRNA gene abundance revealed that denitrifiers accounted for up to 10% of the bacterial community in the GDZ soils whereas this value was

  18. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    Directory of Open Access Journals (Sweden)

    R. J. Thayyen

    2010-02-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and south-west monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007 is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is

  19. Ultrametric watersheds: a bijection theorem for hierarchical edge-segmentation

    CERN Document Server

    Najman, Laurent

    2010-01-01

    We study hierachical segmentation in the framework of edge-weighted graphs. We define ultrametric watersheds as topological watersheds null on the minima. We prove that there exists a bijection between the set of ultrametric watersheds and the set of hierarchical edgesegmentations. We end this paper by showing how the proposed framework allows to see constrained connectivity as a classical watershed-based morphological scheme, which provides an efficient algorithm to compute the whole hierarchy.

  20. Modeling subsurface contaminant reactions and transport at the watershed scale

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, J.P.; Jardine, P.M.; D`Azevedo, E.F. [Oak Ridge National Lab., TN (United States); Wilson, G.V. [Desert Research Inst., Las Vegas, NV (United States). Water Resources Center

    1997-12-01

    The objectives of this research are: (1) to numerically examine the multiscale effects of physical and chemical mass transfer processes on watershed scale, variably saturated subsurface contaminant transport, and (2) to conduct numerical simulations on watershed scale reactive solute transport and evaluate their implications to uncertainty characterization and cost benefit analysis. Concurrent physical and chemical nonequilibrium caused by inter aggregate gradients of pressure head and solute concentration and intra-aggregate geochemical and microbiological processes, respectively, may arise at various scales and flowpaths. To this date, experimental investigations of these complex processes at watershed scale remain a challenge and numerical studies are often needed for guidance of water resources management and decision making. This research integrates the knowledge bases developed during previous experimental and numerical investigations at a proposed waste disposal site at the Oak Ridge National Laboratory to study the concurrent effects of physical and chemical nonequilibrium. Comparison of numerical results with field data indicates that: (1) multiregion, preferential flow and solute transport exist under partially saturated condition and can be confirmed theoretically, and that (2) mass transfer between pore regions is an important process influencing contaminant movement in the subsurface. Simulations of watershed scale, multi species reactive solute transport suggest that dominance of geochemistry and hydrodynamics may occur simultaneously at different locales and influence the movement of one species relative to another. Execution times on the simulations of the reactive solute transport model also indicate that the model is ready to assist the selection of important parameters for site characterization.

  1. Assessing the effectiveness of winter cover crop on nitrate reduction in two-paired sub-basins on the Coastal Plain of the Chesapeake Bay Watershed

    Science.gov (United States)

    Lee, S.; Yeo, I. Y.; Sadeghi, A. M.; Mccarty, G.; Hively, W. D.; Lang, M. W.

    2014-12-01

    Best management practices (BMPs) have been widely adopted to improve water quality throughout the Chesapeake Bay Watershed (CBW). Winter cover crops (WCC) use has been highlighted for the reduction of nitrate leaching over the fallow season. Although various WCC practices are currently conducted in local croplands, the water quality improvement benefits of WCC have not been studied thoroughly at the watershed scale. The objective of this study is to assess the long-term impacts of WCC on reducing nitrate loadings using a processed-based watershed model, Soil and Water Assessment Tool (SWAT). Remote sensing based estimates of WCC biomass will be used to calibrate plant growth processes of SWAT and its nutrient cycling. The study will be undertaken in two-paired agricultural watersheds in the Coastal Plain of CBW. Multiple WCC practice scenarios will be prepared to investigate how nitrate loading varies with crop species, planting dates, and implementation areas. The performance of WCC on two-paired watersheds will be compared in order to understand the effects of different watershed characteristics on nitrate uptake by crops. The results will demonstrate the nitrate reduction efficiency of different WCC practices and identify the targeting area for WCC implementation at the watershed scale. This study will not only integrate remote sensing data into the physically based model but also extend our understandings of WCC functions. This will provide key information for effective conservation decision making. Key words: Water quality, Chesapeake Bay Watershed, Winter Cover Crop, Soil and Water Assessment Tool (SWAT)

  2. Integrated Management of Rocky Desertification in Fengshan River Small Watershed%凤山河小流域岩溶地区石漠化综合治理

    Institute of Scientific and Technical Information of China (English)

    江锦烽

    2011-01-01

    The rocky desertification land area in Fengshan river small watershed was 31.6% of the total area, the main reasons causing desertification were excessive grazing, steep slopes land reclamation, unreasonable farming etc. The paper expounds the severe rocky desertification and potential rocky desertification control countermeasures and comprehensive management models. The current comprehensive management project mainly focused on restoring ecology -dam, diversion-captive construction, including forestry vegetation construction, soil and water conservation measures in small water conservancy, grassland construction and the development of herbivorous livestock and other measures. Management goals of which the treatment rate by 90% , arbor forest area increased nearly 500hm were determined, and existing problems and future benefits also been analyzed.%凤山河小流域石漠化土地面积占总面积的31.6%,造成石漠化的主要原因有过牧、陡坡开荒、不合理耕种等.文中分别阐述了重度石漠化和潜在石漠化的治理对策以及综合治理模式.综合治理方案重点以恢复生态—拦水、引水一圈养建设为主,具体包括林业植被建设、小型水利水保措施、草地建设和草食畜牧业发展等措施,确定了治理率达90%以上,乔木林面积增加近500 hm2的治理目标,并对产生的效益和存在的问题作了进一步分析.

  3. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    Science.gov (United States)

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years

  4. A GIS-based study on non-point source pollutant distribution around Miyun Reservoir Watershed, Beijing, China

    Science.gov (United States)

    Wang, X.; wang, y; cai, x; wang, x

    2001-12-01

    Nitrogen and phosphorus, coming mainly from non-point sources (NPS), are major nutrients to cause eutrophication to degrade water quality of Miyun Reservoir, the only one surface drinking water source of Beijing, China. The spatial nature of the NPS pollution problem necessitates the use of a geographic information system (GIS) to manipulate, retrieve, and display the large volumes of spatial data. Based on the relevant data which range from meteorological and hydrological data to land use, fertilizer and pesticide usage, and even livestock raising information, the database of NPS of Shixia Catchment in Miyun Reservoir watershed were established. Using GIS, abstracting attribute data, digitizing, editing, coordinate transferring and generating the digital elevation model (DEM) could be finished. A total of four land use scenarios were modeled to evaluate various land management strategies on sediment and nutrient loading from catchment. The results suggest that high nutrient loads are associated with village, which has unsuitable livestock raising. Different land use influences intensively the loss of pollutants, especially slope tilling in agricultural land. The amount of nutrient loss from the agricultural land per unit is the highest, that from forestry is the secondary and that from grassland is the lowest. However, due to the variability of land use areas, agricultural land contributes the greatest effort to TP and forestry lands to TN. The loss amount of pollutant in flood season is nearly 60% of annual loss amount. The amount of nutrient loss from hill areas is larger than that from mountain areas. Pattern of non-point source pollution in Miyun County is showed that near the north and east boundary of the Reservoir is the heaviest area. It is indicated that nutrient loss is correlated with people density, fertilizer usage and soil erosion.

  5. A novel solution for outlier removal of ICESat altimetry data:a case study in the Yili watershed, China

    Institute of Scientific and Technical Information of China (English)

    Xiaodong HUANG; Hongjie XIE; Guoqing ZHANG; Tiangang LIANG

    2013-01-01

    Due to the influence of cloud and saturated waveforms,ICESat data contain many contaminated elevation data that cannot be directly used in examining surface elevation and change.This study provides a novel solution for removing bad data and getting clean ICESat data for land applications by using threshold values of reflectivity,saturation,and gain directly from ICESat's GLAS (Geoscience Laser Alteimeter System) 01,05,and 06 products.It is found that each laser campaign needs different threshold compositions to assure qualified ICESat data and that bad data removal rates range from 9.6% (laser 2A) to 62.3% (laser 2B) for the test area in the Yili watershed,China.These thresholds would possibly be used in other regions to extract qualified ICESat footprints for land applications.However,it is recommended to use the steps proposed here to further examine the transferability of threshold values for other regions of different elevations and climate regimes.As an example,the resulting ICESat data are applied to examine lake level changes of two lakes in the study area.

  6. Artificial neural networks applied to flow prediction scenarios in Tomebamba River - Paute watershed, for flood and water quality control and management at City of Cuenca Ecuador

    Science.gov (United States)

    Cisneros, Felipe; Veintimilla, Jaime

    2013-04-01

    The main aim of this research is to create a model of Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba River both, at real time and in a certain day of year. As inputs we are using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance This research includes two ANN models: Back propagation and a hybrid model between back propagation and OWO-HWO. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as: MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error are minimal. These predictions are useful for flood and water quality control and management at City of Cuenca Ecuador

  7. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  8. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  9. Sediment Budgets and Source Determinations Using Fallout Caesium-137 in a Semiarid Rangeland Watershed, Arizona, USA

    International Nuclear Information System (INIS)

    Analysis of soil redistribution patterns and sediment sources in semiarid and arid watersheds provides information for understanding watershed sediment budgets and for implementing management practices to improve rangeland conditions and reduce sediment loads in streams. The purpose of this research was to develop sediment budgets and to identify potential sediment sources using 137Caesium (137Cs) and other soil properties in a series of small semiarid subwatersheds on the USDA ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona, USA. Soils were sampled in a grid pattern on two small subwatersheds and along transects associated with soils and geomorphology on six larger subwatersheds. Soil samples were analyzed for 137Cs and selected physical and chemical properties (i.e. bulk density, rocks, particle size, soil organic carbon). Suspended sediment samples collected at flume sites on the Walnut Gulch Experimental Watershed were also analyzed for the same properties. Sediment budgets measured using 137Cs inventories for a small shrub and a small grass subwatersheds found eroding areas in these watersheds were losing 5.6 and 3.2 t ha-1 a-1, respectively; however, a sediment budget for each of the small subwatersheds, including depositional areas, found net soil loss to be 4.3 t ha-1 a-1 from the shrub watershed and near zero t ha-1 a-1 from the grass subwatershed. The suspended sediments collected at the flumes of the larger subwatersheds were enriched in silt, clay, and 40K, but not for 137Cs. Using multivariate mixing models to determine sediment source indicated that the shrub dominated subwatersheds were contributing most of the suspended sediments measured at the outlet flume of the Walnut Gulch Experimental Watershed. Both methodologies (sediment budgets and sediment source analyses) indicate that shrub dominated systems provide more suspended sediments to the stream systems. These studies also suggest that sediment yields measured at the outlet of a

  10. Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado

    Science.gov (United States)

    Church, Stanley E.; Von Guerard, Paul; Finger, Susan E.

    2007-01-01

    This publication comprises a Volume Contents of chapters (listed below) and a CD-ROM of data (contents shown in column at right). The Animas River watershed in southwest Colorado is one of many watersheds in the western United States where historical mining has left a legacy of acid mine drainage and elevated concentrations of potentially toxic trace elements in surface streams. U.S. Geological Survey scientists have completed a major assessment of the environmental effects of historical mining in the Animas River watershed focusing on the area upstream of Silverton, Colo.?the Mineral Creek, Cement Creek, and upper Animas River basins. The study demonstrated how the watershed approach can be used to assess and rank mining-affected sites for possible cleanup. The study was conducted in collaboration with State and Federal land-management agencies and regional stakeholders groups. This book is available for purchase at Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  11. The impact of topographical characteristics and land use change on the quality of Umbaniun micro-watershed water resources, Meghalaya

    Directory of Open Access Journals (Sweden)

    Phyllbor Rymbai

    2012-03-01

    Full Text Available A watershed is a geohydrological unit draining at a common point. Such natural unit has evolved through rain water interaction with land mass, typically comprising arable land, non-arable land and natural drainage lines in rain-fed areas. Sustainable production depends on the health, vitality and purity of a particular environment in which land and water are important constituents. A pilot study was thus undertaken to study the geomorphology, land-use systems and their impact on water resource management on the Meghalaya Umbaniun micro-watershed. In this Micro-watershed (3951.18 ha, water body covers an area of 5.69ha (0.14%. The paper highlights the linkage between geomorphology, land use systems and its impact on quality of water resources on the Umbaniun Micro-Watershed, Meghalaya. Topographical and physical-chemical characteristics, such as pH, conductivity, dissolved oxygen, turbidity and water temperature, were used as environmental degradation indicators

  12. Using GIS-based distributed soil loss modeling and morphometric analysis to prioritize watershed for soil conservation in Bago river basin of Lower Myanmar

    Institute of Scientific and Technical Information of China (English)

    Kay Thwe HLAING; Shigeko HARUYAMA; Maung Maung AYE

    2008-01-01

    Bago River is an important river in Myanmar. Although shorter than other rivers, it has its own river system, and people along the river rely heavily on it for their daily lives. The upper part of the watershed has changed rapidly from dosed forest to open forest land in the 1990s. Since the recent degradation of the forest environment, annual flooding has become worse during the rainy season in Bago City. This paper aims at determining soil conser-vation prioritization of watershed based on soil loss due to erosion and morphometric analysis in the Bago Watershed by integrating remote sensing and geographic information system (GIS) techniques. In this study, soil erosion of the Bago watershed was determined using the Universal Soil Loss Equation. Such factor maps as rainfall, soil erodibility, slope length gradient, and crop management were compiled as input parameters for the modeling; and the soil loss from 26 sub-watersheds were estimated. Then, the soil erosion maps of the Bago watershed for 2005 were developed. The resulting Soil Loss Tolerance Map could be utilized in developing watershed management planning, forestry management planning, etc.

  13. Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems:A case study using an integrated approach

    Institute of Scientific and Technical Information of China (English)

    Achilleas GSAMARAS; Christopher GKOUTITAS

    2014-01-01

    Climate change is an issue of major concern nowadays. Its impact on the natural and human environment is studied intensively, as the expected shift in climate will be significant in the next few decades. Recent experience shows that the effects will be critical in coastal areas, resulting in erosion and inundation phenomena worldwide. In addition to that, coastal areas are subject to"pressures"from upstream watersheds in terms of water quality and sediment transport. The present paper studies the impact of climate change on sediment transport and morphology in the aforementioned coupled system. The study regards a sandy coast and its upstream watershed in Chalkidiki, North Greece; it is based on: (a) an integrated approach for the quantitative correlation of the two through numerical modeling, developed by the authors, and (b) a calibrated application of the relevant models Soil and Water Assessment Tool (SWAT) and PELNCON-M, applied to the watershed and the coastal zone, respectively. The examined climate change scenarios focus on a shift of the rainfall distribution towards fewer and more extreme rainfall events, and an increased frequency of occurrence of extreme wave events. Results indicate the significance of climatic pressures in wide-scale sediment dynamics, and are deemed to provide a useful perspective for researchers and policy planners involved in the study of coastal morphology evolution in a changing climate.

  14. Study of the distribution of non-point source pollution in the watershed of the Miyun Reservoir, Beijing, China.

    Science.gov (United States)

    Wang, X; Li, T; Xu, A; He, W

    2001-01-01

    Nitrogen and phosphorus are major nutrients to cause eutrophication to degrade the water quality of the Miyun Reservoir, a very important drinking water source of Beijing in China. These are mainly from non-point sources. The watershed in Miyun County is selected as the study region with a total area of 1400 km2. Four typical monitoring catchments and two experimental units were used to monitor the precipitation, runoff, sediment yield and pollutant loading related to various land uses in the meantime. The results show that the total nutrient loss amount of TN and TP is 898.07 t/a, and 40.70 t/a, respectively, in which nutrient N and P carried by runoff is 91.3% and 77.3%, respectively. There is relatively heavier soil erosion at the northern mountain area whereas the main nutrient loss occurs near the northeast rim of the reservoir. Different land uses influence the loss of non-point source pollutants. The amount of nutrient loss from agricultural land per unit is the highest, nutrient loss from forestry is the second highest and that from grassland is the lowest. However, due to the variability of land use areas, agricultural land contributes the greatest amount of TP and forestry lands the greatest amount of TN. PMID:11724492

  15. Real time Measurement of Nitrate in Stream Water for a Paired Basin Study within the Choptank River Watershed, Maryland, USA.

    Science.gov (United States)

    McCarty, Greg

    2013-04-01

    For this study, a robust water quality monitoring system was designed to measure nitrate and sediment using a commercially available UV-Vis spectrometer probe. To increase reliability for monitoring highly dynamic small streams and reduce susceptibility to vandalism in public place installations, an innovative the monitoring system was implemented around the use of a flow cell attachment for the probe with automated stream water sample delivery using a peristaltic pump. This permitted all instrumentation and electronics to be housed in secure enclosures with maximum flexibility in sampling location in the dynamic stream cross section. Monitoring systems were successfully deployed at two USGS stream gauge stations located at public parks near the towns of Ruthsburg and Greensboro within the Choptank Watershed which established a paired basin comparison of water quality. Both basins have a mixed land use of cropland in largely corn - soybean rotation and forests containing extensive wetland complexes. The basins have very similar amounts of cropland area but the Greensboro basin contains more wetlands and cropland formed from wetland drainage. Monitoring data has shown that the Ruthsburg basin exports about 25% more nitrate per area of cropland than the Greensboro basin. These results are indicative of greater landscape processing of nitrate in the Greensboro basin due to greater prevalence of wetlands and poorly drained soils in crop production.

  16. A watershed-based method for environmental vulnerability assessment with a case study of the Mid-Atlantic region

    International Nuclear Information System (INIS)

    The paper presents a method for environmental vulnerability assessment with a case study of the Mid-Atlantic region. The method is based on the concept of “self-/peer-appraisal” of a watershed in term of vulnerability. The self-/peer-appraisal process is facilitated by two separate linear optimization programs. The analysis provided insights on the environmental conditions, in general, and the relative vulnerability pattern, in particular, of the Mid-Atlantic region. The suggested method offers a simple but effective and objective way to perform a regional environmental vulnerability assessment. Consequently the method can be used in various steps in environmental assessment and planning. - Highlights: ► We present a method for regional environmental vulnerability assessment. ► It is based on the self-/peer-appraisal concept in term of vulnerability. ► The analysis is facilitated by two separate linear optimization programs. ► The method provides insights on the regional relative vulnerability pattern.

  17. Case Study Report: REDD+ Pilot Project in Community Forests in Three Watersheds of Nepal

    Directory of Open Access Journals (Sweden)

    Shanti Shrestha

    2014-09-01

    Full Text Available Reducing emissions from deforestation and forest degradation (REDD+ is an international climate policy instrument that is expected to tap into the large mitigation potential for conservation and better management of the world’s forests through financial flows from developed to developing countries. This paper describes the results and lessons learned from a pioneering REDD+ pilot project in Nepal, which is based on a community forest management approach and which was implemented from 2009–2013 with support from NORAD’s Climate and Forest Initiative. The major focus of the project was to develop and demonstrate an innovative benefit-sharing mechanism for REDD+ incentives, as well as institutionally and socially inclusive approaches to local forest governance. The paper illustrates how community-based monitoring, reporting, and verification (MRV and performance-based payments for forest management can be implemented. The lessons on REDD+ benefit sharing from this demonstration project could provide insights to other countries which are starting to engage in REDD+, in particular in South Asia.

  18. Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: a case study of Bayelva watershed, Svalbard

    OpenAIRE

    Nowak, Aga; Hodson, Andy

    2013-01-01

    Our study considers climate change and its influence upon the hydrology and water balance of the glacierized Bayelva watershed in Svalbard. We find that changes are most noticeable within the last 10 years, when winters have become warmer and wetter. The change is most significant during the shoulder months, especially September, when the transition from summer ablation to winter accumulation is taking place. Winter rainfalls, when extreme, produce ground icings and runoff outside the summer ...

  19. Watershed Boundaries - Watershed Boundary Database for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  20. Biogeochemical and Hydrological Controls on Mercury and Methylmercury in First Order Coastal Plain Watersheds of the Chesapeake Bay

    Science.gov (United States)

    Heyes, A.; Gilmour, C. C.; Bell, J. T.; Butera, D.; McBurney, A. W.

    2015-12-01

    Over the past 7 years we made use of the long-term research site at the Smithsonian Environmental Research Center (SERC) in central Maryland to study the fluxes of mercury (Hg) and methylmercury (MeHg) in three small first-order mid-Atlantic coastal plain watersheds. One watershed is entirely forested, one watershed is primarily agriculture with a forested stream buffer, and one watershed is mixed land use but contains a beaver produced wetland pond. Our initial goals were to assess watershed Hg yields in the mid-Atlantic and to establish a baseline prior to implementation of Hg emissions controls. All three studied watersheds produced relatively high yields of Hg, with the greatest yield coming from the forested watershed. Our initial evaluation of three watersheds showed that MeHg production and flux could also be high, but varied dramatically among watersheds and across years and seasons. During each year we observed episodic MeHg production in the spring and sometimes during prolonged high-flow storm events in the fall. The observed spring maxima of MeHg release coincided with development of anoxia in riparian groundwater. MeHg accumulation in riparian groundwater began once nitrate was depleted and either iron accumulation or sulfate depletion of groundwater began. We propose the presence of nitrate was modulating MeHg production through the suppression of sulfate and iron reducers and perhaps methanogens. As sulfate is not limiting in any of the watersheds owing to the sediments marine origin, we hypothesize the depletion of nitrate allows sulfate reducing bacteria to now utilize available carbon. Although wetlands are generally thought of as the primary zones of MeHg production in watersheds, shallow riparian groundwaters very close to the stream appear to play that role in SERC Coastal Plain watersheds. We hypothesize that the balance between nitrate, sulfate and other microbial electron acceptors in watersheds is a major control on MeHg production. Land

  1. Outage management: A case study

    International Nuclear Information System (INIS)

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study

  2. Outage management: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Haber, S.B.; Barriere, M.T. (Brookhaven National Lab., Upton, NY (United States)); Roberts, K.H. (California Univ., Berkeley, CA (United States). Walter A. Haas School of Business)

    1992-01-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  3. Outage management: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Haber, S.B.; Barriere, M.T. [Brookhaven National Lab., Upton, NY (United States); Roberts, K.H. [California Univ., Berkeley, CA (United States). Walter A. Haas School of Business

    1992-09-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission`s (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  4. The Potential Importance of Conservation, Restoration, and Altered Management Practices for Water Quality in the Wabash River Watershed

    Science.gov (United States)

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants discharge into receiving water bodies and enhance local and ...

  5. Platforms and Terraces : Bridging participation and GIS in joint-learning for watershed management with the Ifugaos of the Philippines

    NARCIS (Netherlands)

    Gonzalez, R.M.

    2000-01-01

    Complex multi-actor problem situations in natural resource management (NRM) need the convergence of different knowledge processes, first of all, in understanding and agreeing what the problem is before aspiring for joint-action. This is a joint-learning approach in NRM. Geographic information system

  6. Effects of conservation reserve program on runoff and lake water quality in an oxbow lake watershed

    Science.gov (United States)

    Sediment and its associated pollutants entering a water body can be destructive to the ecological health of the system. Best Management Practices (BMPs) can be used to reduce these pollutants, but understanding the most effective practices is difficult. A case study of Beasley Lake Watershed, typica...

  7. Discover a Watershed: The Everglades.

    Science.gov (United States)

    Robinson, George B.; And Others

    This publication is designed for both classroom teachers and nonformal educators of young people in grades 6 through 12. It can provide a 6- to 8-week course of study on the watershed with students participating in activities as they are ordered in the guide, or activities may be used in any order with educators selecting those appropriate for the…

  8. The Walnut Gulch - Santa Rita Wildland Watershed-Scale LTAR Sites

    Science.gov (United States)

    Goodrich, D. C.; Heilman, P.; Scott, R. L.; Nearing, M. A.; Moran, M. S.; Nichols, M.; Vivoni, E. R.; Archer, S. R.; Biederman, J.; Naito, A. T.

    2015-12-01

    The 150 km2 Walnut Gulch Experimental Watershed (WGEW), a Long-Term Agroecosystem Research (LTAR) site, near Tombstone, Arizona was established in 1953 by the USDA-ARS Southwest Watershed Research Center in Tucson. It is one of the most intensively instrumented semiarid experimental watersheds in the world with elevation ranging from 1220 to 1950 m with mean annual temperature and precipitation equal to 17.7°C and 312 mm. Desert shrubs dominate the lower two thirds of the watershed and grasses the upper third. Spatial variation in precipitation is measured with a network of 88 weighing-type recording rain gauges. Surface runoff is quantified over a range of scales (0.002 to 0.06 km2) to characterize interactions between rainfall intensity, soils and vegetation at nine sub-watersheds. Channel network processes and rainfall spatial variability are studied using 11 nested watersheds (2 to 150 km2). Sediment from the small sub-watersheds is sampled. Meteorological, soil moisture and temperature, and energy/water/CO2 flux measurements are made within two vegetation/soil complexes. Parallel investigations dating back to 1974 have also been conducted on eight small experimental watersheds at the Santa Rita Experimental Range (SRER) 80 km west of Walnut Gulch. In contrast to the creosote bush-grass WGEW, the mesquite-grass SRER is publicly owned, which ensures control and consistent reporting of management for research purposes. A key LTAR objective is to contrast a "business as usual" to an alternate management strategy presumed to have the potential of significantly improving forage and livestock production and diversification of ecosystem services. Consequently, a new ARS-U. of Arizona-Arizona State U. partnership will assess the watershed-scale impacts of brush management, a common land use practice typically applied in conjunction with livestock grazing, on a suite of ecosystem services at the SRER including provisioning (forage production, water yield), supporting

  9. Platforms and Terraces : Bridging participation and GIS in joint-learning for watershed management with the Ifugaos of the Philippines

    OpenAIRE

    Gonzalez, R. M.

    2000-01-01

    Complex multi-actor problem situations in natural resource management (NRM) need the convergence of different knowledge processes, first of all, in understanding and agreeing what the problem is before aspiring for joint-action. This is a joint-learning approach in NRM. Geographic information systems (GIS), with their integrative, analytic, and visualization capabilities, offer promising means to facilitate this approach. However, using GIS relies heavily on specialists that develop and inter...

  10. Collaborative environmental planning in river management: An application of multicriteria decision analysis in the White River Watershed in Vermont

    Science.gov (United States)

    Hermans, C.; Erickson, J.; Noordewier, T.; Sheldon, A.; Kline, M.

    2007-01-01

    Multicriteria decision analysis (MCDA) provides a well-established family of decision tools to aid stakeholder groups in arriving at collective decisions. MCDA can also function as a framework for the social learning process, serving as an educational aid in decision problems characterized by a high level of public participation. In this paper, the framework and results of a structured decision process using the outranking MCDA methodology preference ranking organization method of enrichment evaluation (PROMETHEE) are presented. PROMETHEE is used to frame multi-stakeholder discussions of river management alternatives for the Upper White River of Central Vermont, in the northeastern United States. Stakeholders met over 10 months to create a shared vision of an ideal river and its services to communities, develop a list of criteria by which to evaluate river management alternatives, and elicit preferences to rank and compare individual and group preferences. The MCDA procedure helped to frame a group process that made stakeholder preferences explicit and substantive discussions about long-term river management possible. ?? 2006 Elsevier Ltd. All rights reserved.

  11. Soil and Water Assessment Tool (SWAT) Applicability on Nutrients Loadings Prediction in Mountainous Lower Bear Malad River (LBMR) Watershed, Utah.

    Science.gov (United States)

    Salha, A. A.; Stevens, D. K.

    2014-12-01

    The application of watershed simulation models is indispensable when pollution is generated by a nonpoint source. These models should be able to simulate large complex watersheds with varying soils, land use and management conditions over long periods of time. This study presents the application of Soil and Water Assessment Tool (SWAT) to investigate, manage, and research the transport and fate of nutrients in (Subbasin HUC 16010204) Lower Bear Malad River (LBMR) watershed, Box elder County, Utah. Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by increasing agricultural and farming activities and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses). Using the available input data (Digital Elevation Model (DEM), land use/Land cover (LULC), soil map and weather and climate data for 20 years (1990-2010) to predict the water quantity and quality of the LBMR watershed using a spatially distributed model version of hydrological ArcSWAT model (ArcSWAT 2012.10_1.14). No previous studies have been found in the literature regarding an in-depth simulation study of the Lower Bear Malad River (LBMR) watershed to simulate stream flow and to quantify the associated movement of nitrogen, phosphorus, and sediment. It is expected that the model mainly will predict monthly mean total phosphorus (TP) concentration and loadings in a mountainous LBRM watershed (steep Wellsville mountain range with peak of (2,857 m)) having into consideration the snow and runoff variables affecting the prediction process. The simulated nutrient concentrations were properly consistent with observations based on the R2 and Nash- Sutcliffe fitness factors. Further, the model will be able to manage and assess the land application in that area with corresponding to proper BMPs regarding water quality management. Keywords: Water Quality Modeling; Soil and

  12. USDA-ARS Southeast Watershed Laboratory at Tifton, GA:Index Site Design for the Suwannee Basin

    Science.gov (United States)

    Bosch, D.; Strickland, T.; Sheridan, J.; Lowrance, R.; Truman, C.; Hubbard, R.; Potter, T.; Wauchope, D.; Vellidis, G.; Thomas, D.

    2001-12-01

    The Southeast Watershed Hydrology Research Center (SEWHRC) was established in 1966 by order of the U.S. Senate "to identify and characterize those elements that control the flow of water from watersheds in the southeast". A 129 sq.mi. area within the headwaters of Little River Watershed (LRW) in central south Georgia was instrumented to provide data for evaluating and characterizing Coastal Plain hydrologic processes and for development and testing of prediction methodologies for use in ungaged watersheds in regions of low topographic relief. Pesticide analytical capabilities were added in 1976, and inorganic chemistry and sediment transport research were expanded. In 1980, the Center was renamed as the Southeast Watershed Research Laboratory (SEWRL), and laboratories were constructed for nutrient analysis and soil physics. A pesticide analysis laboratory was constructed in 1987. In the early 1990s, a hydraulics laboratory was established for sediment and chemical transport studies, and research on riparian buffers was expanded. The SEWRL research program continues to focus on hydrologic and environmental concerns. Major components of the program are hydrology, pesticides behavior, buffer systems, animal waste management, erosion, remote sensing of watershed condition, and relationships between site-specific agricultural management (BMPs) and small-to-large watershed response. SEWRL's program will be expanded over the next five years to include two additional watersheds comparable in size and instrumentation to the LRW; nesting the LRW within the full Little River drainage and subsequently...all three watersheds within the full Suwannee Basin; and mapping and quantifying irrigation water removals within the Suwannee Basin. We will instrument the three intensive study watersheds and the full Suwannee Basin to provide real-time characterization of precipitation, soil moisture, hydrologic flow, and water quality at a range of spatial and temporal scales. We will

  13. Discussion on the Landscape Pattern Change of Watershed

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-bin

    2006-01-01

    Evaluating the transition of landscape can understand that ecosystem processes are being influenced by disturbance. For this reason, it is essential that using appropriate mapping techniques and quantitative methods to assess landscape condition within different disturbance regimes. Landscape metrics were calculated for segmented areas of homogeneous land use in watershed to allow understanding and characterization of ecosystem.Chen-yu-lan watershed, located in the central of Taiwan, is a sensitivity area for disaster such as earthquakes and typhoons. In this study we focus on how the natural disaster affect landscape pattern. The study shows that landscape metrics can measure the effect of typhoon and earthquake disturbance regime. The analysis shows that evaluating landscape transition can contribute more detailed information for managing ecosystem.

  14. Who's in Charge: Role Clarity in a Midwestern Watershed Group

    Science.gov (United States)

    Floress, Kristin; Prokopy, Linda Stalker; Ayres, Janet

    2011-10-01

    Studies of collaborative watershed groups show that effective leadership is an important factor for success. This research uses data from in-depth interviews and meeting observation to qualitatively examine leadership in a Midwestern collaborative watershed group operating with government funding. One major finding was a lack of role definition for volunteer steering-committee members. Lack of role clarity and decision-making processes led to confusion regarding project management authority among the group, paid project staff members, and agency personnel. Given the important role of government grants for funding projects to protect water quality, this study offers insight into leadership issues that groups with Clean Water Act Section 319 (h) funds may face and suggestions on how to resolve them.

  15. Hypsometric Analysis Using Geographical Information System of Gour River Watershed, Jabalpur, Madhya Pradesh, India

    Directory of Open Access Journals (Sweden)

    Shailesh Kumar Sharma

    2016-04-01

    Full Text Available Hypsometric analysis of drainage basins reveals the geological stage of watershed and is a measure of its maturity, indicating the susceptibility of the watershed to erosion. In the present study sub watersheds of Khurji Nala and Dala Nala watersheds which are tributaries of GourRiver located in Jabalpur district of Madhya Pradesh was considered as the case study area. The watersheds were delineated into sub watersheds and hypsometric analysis was carried out for all of them using the digital contour map, which was generated using Arc GIS. The hypsometric integral values of Khurji Nala and Dala Nala sub watersheds reveals that sub watershed 2 of Khurji Nala and sub watershed 7 of Dala Nala watershed should be given top priority for soil and water conservation.

  16. Spate Irrigation Systems and Watershed Development in Eritrea: the case of Sheeb watershed

    NARCIS (Netherlands)

    Tesfai, M.H.

    2002-01-01

    This paper describes the interactions of the Spate Irrigation System (SIS) in Eritrea with their upper watersheds, as a case study in Sheeb watershed. The spate irrigation practices, among others, include techniques to harvest runoff water, sediments, and nutrients. A strong relationship exists betw

  17. Modeling flood reduction effects of low impact development at a watershed scale.

    Science.gov (United States)

    Ahiablame, Laurent; Shakya, Ranish

    2016-04-15

    Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas.

  18. Modeling flood reduction effects of low impact development at a watershed scale.

    Science.gov (United States)

    Ahiablame, Laurent; Shakya, Ranish

    2016-04-15

    Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas. PMID:26878221

  19. Knowledge Management System- A STUDY

    OpenAIRE

    Nidhi Agrawal

    2014-01-01

    Every organization and institute is facing the savior problem of generating the knowledge on the basis of their assets. Knowledge management is very indispensable for any organization. We discuss about the knowledge management through this paper. This paper provide an outline of knowledge management and how knowledge management is useful to improve the quality of the educational institute. With the help of knowledge management system we can manage any information. We can defin...

  20. Modeling reservoir sedimentation in the Agno watershed, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Ham, D.; Vasque, P. [Northwest Hydraulic Consultants, North Vancouver, BC (Canada); McLean, D. [Northwest Hydraulic Consultants, Nanaimo, BC (Canada); Valdez, T. [San Roque Power Corp., Makati City (Philippines)

    2008-07-01

    The exceptionally high sedimentation rate in the mountainous Agno River Watershed in the Philippines has affected dam operations on the Ambuklao and Binga reservoirs which were built in the late 1950s. In addition, sediment inflow scenarios have revealed that sedimentation will significantly reduce the total storage volume in the new San Roque facility which has been constructed downstream of those reservoirs. As such, watershed management plans will need to address conditions in the entire basin, not just the portion downstream of Binga Dam. Sediment will be deposited in the reservoir in the form of a delta front that will advance from the head of the reservoir towards the dam. Sedimentation in water reservoirs affects the utility to sustain power production, water supply and flood control objectives. It will likely be very difficult to reduce the sediment yield to any great degree by watershed restoration such as re-vegetation or tree planting. However, since sediment production from road-related slope failures appears to the main contributor to reservoir sedimentation, future developments in the basin related to road construction, mining activity and construction of new towns will need to adopt best management practices to avoid increased erosion or land disturbance. Empirical and analytic techniques were used in this study to assess sedimentation volumes and patterns, with particular emphasis on a GIS-based sediment yield model. The GIS model identified where sediment yield is greatest within the watershed, providing a means for developing sediment management and mitigation strategies that focus limited resources on key areas that give the highest rates of return. 25 refs., 3 tabs., 4 figs.

  1. Management case study: Tampa Bay, Florida

    Science.gov (United States)

    Morrison, Gerold; Greening, Holly; Yates, Kimberly K.; Wolanski, Eric; McLusky, Donald S.

    2011-01-01

    Tampa Bay, Florida, USA, is a shallow, subtropical estuary that experienced severe cultural eutrophication between the 1940s and 1980s, a period when the human population of its watershed quadrupled. In response, citizen action led to the formation of a public- and private-sector partnership (the Tampa Bay Estuary Program), which adopted a number of management objectives to support the restoration and protection of the bay’s living resources. These included numeric chlorophyll a and water-clarity targets, as well as long-term goals addressing the spatial extent of seagrasses and other selected habitat types, to support estuarine-dependent faunal guilds. Over the past three decades, nitrogen controls involving sources such as wastewater treatment plants, stormwater conveyance systems, fertilizer manufacturing and shipping operations, and power plants have been undertaken to meet these and other management objectives. Cumulatively, these controls have resulted in a 60% reduction in annual total nitrogen (TN) loads relative to earlier worse-case (latter 1970s) conditions. As a result, annual water-clarity and chlorophyll a targets are currently met in most years, and seagrass cover measured in 2008 was the highest recorded since 1950. Factors that have contributed to the observed improvements in Tampa Bay over the past several decades include the following: (1) Development of numeric, science-based water-quality targets to meet a long-term goal of restoring seagrass acreage to 1950s levels. Empirical and mechanistic models found that annual average chlorophyll a concentrations were a primary manageable factor affecting light attenuation. The models also quantified relationships between TN loads, chlorophyll a concentrations, light attenuation, and fluctuations in seagrass cover. The availability of long-term monitoring data, and a systematic process for using the data to evaluate the effectiveness of management actions, has allowed managers to track progress and

  2. 2012 Oregon Department of Interior, Bureau of Land Management (BLM) Lidar: Panther Creek Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Interior, Bureau of Land Management (BLM) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  3. McKenzie River Focus Watershed Coordination: Fiscal Year 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John; Davis-Born, Renee

    1998-01-01

    This report summarizes accomplishments made by the McKenzie River Focus Watershed Council in the areas of coordination and administration during Fiscal Year 1998. Coordination and administration consists of tasks associated with Focus Watershed Council staffing, project management, and public outreach.

  4. Hydrologic study and evaluation of Ish Creek watershed (West Chestnut Ridge proposed disposal site)

    International Nuclear Information System (INIS)

    As part of site characterization work for the proposed West Chestnut Ridge Central Waste Disposal Facility, hydrologic information has been assembled from literature sources and direct field measurements. Earlier studies provide the basis for estimating flow frequency and expected high and low flows for catchments on Knox Group formations. Seven waterflow-gaging installations were established and used to characterize runoff patterns in the study area. Based on findings of this study, a practical design capacity for a flume to measure site runoff would range between 1 and 3000 L/s, although flows up to 4500 L/s (10-year recurrence interval) may be encountered. 7 references, 2 figures, 5 tables

  5. Hydrological characterization of watersheds in the Blue Nile Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    S. G. Gebrehiwot

    2011-01-01

    Full Text Available Thirty-two watersheds (31–4350 km2, in the Blue Nile Basin, Ethiopia, were hydrologically characterized with data from a study of water and land resources by the US Department of Interior, Bureau of Reclamation (USBR published in 1964. The USBR document contains data on flow, topography, geology, soil type, and land use for the period 1959 to 1963. The aim of the study was to identify watershed variables best explaining the variation in the hydrological regime, with a special focus on low flows. Moreover, this study aimed to identify variables that may be susceptible to management policies for developing and securing water resources in dry periods. Principal Component Analysis (PCA and Partial Least Square (PLS were used to analyze the relationship between five hydrologic response variables (total flow, high flow, low flow, runoff coefficient, low flow index and 30 potential explanatory watershed variables. The explanatory watershed variables were classified into three groups: land use, climate and topography as well as geology and soil type. Each of the three groups had almost equal influence on the variation in hydrologic variables (R2 values ranging from 0.3 to 0.4. Specific variables from within each of the three groups of explanatory variables were better in explaining the variation. Low flow and low flow index were positively correlated to land use types woodland, dense wet forest and savannah grassland, whereas grazing land and bush land were negatively correlated. We concluded that extra care for preserving low flow should be taken on tuffs/basalts which comprise 52% of the Blue Nile Basin. Land use management plans should recognize that woodland, dense wet forest and savannah grassland can promote higher low flows, while grazing land diminishes low flows.

  6. Watershed land use effects on lake water quality in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Søndergaard, Martin;

    2012-01-01

    Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak......), the strength in relationship (R2) between in-lake total nitrogen (TN) and total phosphorus (TP) concentrations and the proportion of agricultural land use in the watershed increased markedly, from 10–12% to 39–42% for deep lakes and from 10–12% to 21–23% for shallow lakes, with the highest increase for TN...... and implementation of near-water buffer zones. This study suggests that transport mechanisms within the whole catchment are important for the nutrient export to lakes. Hence, the whole watershed should be considered when managing nutrient loadings to lakes, and future policies should ideally target measures...

  7. Developing a Watershed Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article presents a watershed challenge that gives students an opportunity to investigate the challenge of using a watershed area as a site for development, examining the many aspects of this multifaceted problem. This design challenge could work well in a team-based format, with students taking on specific aspects of the challenges and…

  8. Water quality trends in the Blackwater River watershed, West Virginia

    Science.gov (United States)

    Smith, Jessica; Welsh, Stuart; Anderson, James T.; Fortney, Ronald H.

    2015-01-01

    An understanding of historic and current water quality is needed to manage and improve aquatic communities within the Blackwater River watershed, WV. The Blackwater River, which historically offered an excellent Salvelinus fontinalis (Brook Trout) fishery, has been affected by logging, coal mining, use of off-road vehicles, and land development. Using information-theoretic methods, we examined trends in water quality at 12 sites in the watershed for the 14 years of 1980–1993. Except for Beaver Creek, downward trends in acidity and upward trends in alkalinity, conductivity, and hardness were consistent with decreases in hydrogen ion concentration. Water-quality trends for Beaver Creek were inconsistent with the other sites and reflect ongoing coal-mining influences. Dissolved oxygen trended downward, possibly due to natural conditions, but remained above thresholds that would be detrimental to aquatic life. Water quality changed only slightly within the watershed from 1980–1993, possibly reflecting few changes in development and land uses during this time. These data serve as a baseline for future water-quality studies and may help to inform management planning.

  9. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned

    Science.gov (United States)

    Gassman, P.W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.

    2010-01-01

    Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment

  10. Long-term water repellency in organic olive orchards in the Cànyoles River watershed. The impact of land management

    Science.gov (United States)

    Cerdà, Artemi; González Pelayo, Óscar; García Orenes, Fuensanta; Jordán, Antonio; Pereira, Paulo; Novara, Agata; Neris, Jonay

    2015-04-01

    Soil water repellency is being researched in many enviroments of the world due to the fact that after two decades of intense investigations we found that soil water repellency is a soil property that can be found at any ecosystem (Atanassava and Doerr, 2011; Goebel et al., 2011; Mataix-Solera et al., 2013; Roper et al., 2013; Young et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2014; Whelan et al., 2014). Soil water repellency inhibits or delays infiltration, encourage surface runoff but also the preferential flow in cracks and other macropores (Arye et al., 2011; Jordán et al., 2011; Madsen et al., 2011; Spohn and Rilling, 2012; García-Moreno et al., 2013; Hallin et al., 2013). Water repellency has been found in many soil types and it is present after forest fire, on forested land and also in agriculture soils (Granjed et al., 2013; Bodí et al., 2012; García Orenes et al., 2013; Jordán et al., 2012; Bodí et al., 2013; Dlapa et al., 2013; González-Peñaloza et al., 2012; López Garrido et al., 2012; León et al., 2013; Hewelke et al., 2014; Santos et al., 2014; Kröpfl et al., 2013). This paper show the measurements caried out by means of the water drop penetration time (WDPT) method in olive plantation in the Cànyoles watershed in Eastern Spain. Conservation practices applied such as no-tillage, manure addition, application of herbicides may contribute to increase soil organic matter and, hence, soil water repellency, and this is unknow under Mediterranean type ecosystems. The effect of long-term addition of plant residues and organic manure, no-tillage and no chemical fertilization (MNT), annual addition of plant residues and no-tillage (NT), application of conventional herbicides and no-tillage (H), and conventional tillage (CT) on soil water repellency in Mediterranean calcareous citrus-cropped soils (Eastern Spain) has been studied. Water repellency was observed in MNT soils, which may be attributed to the input of hydrophobic organic

  11. Monitoring and evaluation of soil bioengineering interventions for watershed management, disaster mitigation and environmental restoration in Latin America

    Science.gov (United States)

    Petrone, Alessandro; Preti, Federico

    2013-04-01

    In recent decades the institutions responsible for land management and civil protection have showed a great interest in relation to the use of more environmentally friendly techniques to mitigate the risk of landslides and floods. Soil bioengineering has responded to this need and several research groups are carrying out experimentations using the techniques of this discipline in the countries in the developing world. The Deistaf from University of Florence has concentrated its activities in this area over the past decade promoting the use of the techniques of Soil bioengineering in Latin America through the implementation of training and experimentation programmes. Numerous works have been completed both in riverbanks and on slopes in Nicaragua, Guatemala, Ecuador and Colombia. It was decided to make a census of interventions in Latin America from different institutions that may be related to Soil bioengineering in order to obtain an overview of the state of the art in the specific context taking into account also environmental and socio-economic issues. Taking advantage of its network of contacts, DEISTAF has collected dozens of sheets that describe interventions. These sheets describe, among other fields focused on the environment in which the work has been carried out, the materials and techniques used, and the impact of the intervention. In the sheets we present also the monitoring that has been realized for some of these works in the months of October and November 2012; we include the identification of the current condition and functionality of the intervention and, in the case of the presence of some damages, the formulation of instructions to fix them as well as the economic quantification of the repairs to be carried out.

  12. Evaluation of land use plan in Citarum Hulu watershed considering environmental degradation of soil erosion

    OpenAIRE

    Dharma, Nyoman Gde Gita Yogi; Deguchi, Chikashi; Yoshitake, Tetsunobu

    2011-01-01

    The Citarum Hulu watershed is one of the most important watersheds in West Java, Indonesia; it supplies water to the Bandung Metropolitan Area. However, land use in the watershed has been changed and causes some environmental degradation, such as erosion and sedimentation that will affect the performance of water supply system. Another impact is accumulation of sedimentation in the river causing floods, landslides, etc. Therefore, watershed management requires integrated and comprehensive app...

  13. Regional solid waste management study

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers,