WorldWideScience

Sample records for waters mediate structural

  1. Water-mediated ionic interactions in protein structures

    Indian Academy of Sciences (India)

    R Sabarinathan; K Aishwarya; R Sarani; M Kirti Vaishnavi; K Sekar

    2011-06-01

    It is well known that water molecules play an indispensable role in the structure and function of biological macromolecules. The water-mediated ionic interactions between the charged residues provide stability and plasticity and in turn address the function of the protein structures. Thus, this study specifically addresses the number of possible water-mediated ionic interactions, their occurrence, distribution and nature found in 90% non-redundant protein chains. Further, it provides a statistical report of different charged residue pairs that are mediated by surface or buried water molecules to form the interactions. Also, it discusses its contributions in stabilizing various secondary structural elements of the protein. Thus, the present study shows the ubiquitous nature of the interactions that imparts plasticity and flexibility to a protein molecule.

  2. Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules.

    Science.gov (United States)

    Choi, Hyunsung; Chang, Hyun Joon; Lee, Myeongsang; Na, Sungsoo

    2017-02-04

    In biological systems, structural confinements of amyloid fibrils can be mediated by the role of water molecules. However, the underlying effect of the dynamic behavior of water molecules on structural stabilities of amyloid fibrils is still unclear. By performing molecular dynamics simulations, we investigate the dynamic features and the effect of interior water molecules on conformations and mechanical characteristics of various amyloid fibrils. We find that a specific mechanism induced by the dynamic properties of interior water molecules can affect diffusion of water molecules inside amyloid fibrils, inducing their different structural stabilities. The conformation of amyloid fibrils induced by interior water molecules show the fibrils' different mechanical features. We elucidate the role of confined and movable interior water molecules in structural stabilities of various amyloid fibrils. Our results offer insights not only in further understanding of mechanical features of amyloids as mediated by water molecules, but also in the fine-tuning of the functional abilities of amyloid fibrils for applications.

  3. Protein Folding and Structure Prediction from the Ground Up: The Atomistic Associative Memory, Water Mediated, Structure and Energy Model.

    Science.gov (United States)

    Chen, Mingchen; Lin, Xingcheng; Zheng, Weihua; Onuchic, José N; Wolynes, Peter G

    2016-08-25

    The associative memory, water mediated, structure and energy model (AWSEM) is a coarse-grained force field with transferable tertiary interactions that incorporates local in sequence energetic biases using bioinformatically derived structural information about peptide fragments with locally similar sequences that we call memories. The memory information from the protein data bank (PDB) database guides proper protein folding. The structural information about available sequences in the database varies in quality and can sometimes lead to frustrated free energy landscapes locally. One way out of this difficulty is to construct the input fragment memory information from all-atom simulations of portions of the complete polypeptide chain. In this paper, we investigate this approach first put forward by Kwac and Wolynes in a more complete way by studying the structure prediction capabilities of this approach for six α-helical proteins. This scheme which we call the atomistic associative memory, water mediated, structure and energy model (AAWSEM) amounts to an ab initio protein structure prediction method that starts from the ground up without using bioinformatic input. The free energy profiles from AAWSEM show that atomistic fragment memories are sufficient to guide the correct folding when tertiary forces are included. AAWSEM combines the efficiency of coarse-grained simulations on the full protein level with the local structural accuracy achievable from all-atom simulations of only parts of a large protein. The results suggest that a hybrid use of atomistic fragment memory and database memory in structural predictions may well be optimal for many practical applications.

  4. Structural, Mutagenic and In Silico Studies of Xyloglucan Fucosylation in Arabidopsis thaliana Suggest a Water-Mediated Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Alahuhta, Petri M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lunin, Vladimir V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bomble, Yannick J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Urbanowicz, Breeanna R. [Univerisity of Georgia; Bharadwaj, Vivek [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pena, Maria J. [University of Georgia; Wang, Shuo [University of Georgia; Yang, Jeong-Yeh [University of Georgia; Tuomivaara, Sami [University of Georgia; Moremen, Kelley W. [University of Georgia; York, William S. [University of Georgia

    2017-07-03

    The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely due to the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase-1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2-fucosyl residues to xyloglucan side chains - a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X-ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable sufficient production of the enzyme for X-ray crystallography, which reveals the structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. The lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water-mediated fucosylation mechanism facilitated by an H-bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations.

  5. Solvent and Water Mediated Structural Variations in Deoxynivalenol and Their Potential Implications on the Disruption of Ribosomal Function

    Science.gov (United States)

    Foroud, Nora A.; Shank, Roxanne A.; Kiss, Douglas; Eudes, François; Hazendonk, Paul

    2016-01-01

    Fusarium head blight (FHB) is a disease of cereal crops caused by trichothecene producing Fusarium species. Trichothecenes, macrocylicic fungal metabolites composed of three fused rings (A–C) with one epoxide functionality, are a class of mycotoxins known to inhibit protein synthesis in eukaryotic ribosomes. These toxins accumulate in the kernels of infected plants rendering them unsuitable for human and animal consumption. Among the four classes of trichothecenes (A–D) A and B are associated with FHB, where the type B trichothecene deoxynivalenol (DON) is most relevant. While it is known that these toxins inhibit protein synthesis by disrupting peptidyl transferase activity, the exact mechanism of this inhibition is poorly understood. The three-dimensional structures and H-bonding behavior of DON were evaluated using one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy techniques. Comparisons of the NMR structure presented here with the recently reported crystal structure of DON bound in the yeast ribosome reveal insights into the possible toxicity mechanism of this compound. The work described herein identifies a water binding pocket in the core structure of DON, where the 3OH plays an important role in this interaction. These results provide preliminary insights into how substitution at C3 reduces trichothecene toxicity. Further investigations along these lines will provide opportunities to develop trichothecene remediation strategies based on the disruption of water binding interactions with 3OH. PMID:27582730

  6. Interactive ion-mediated sap flow regulation in olive and laurel stems: physicochemical characteristics of water transport via the pit structure.

    Directory of Open Access Journals (Sweden)

    Jeongeun Ryu

    Full Text Available Sap water is distributed and utilized through xylem conduits, which are vascular networks of inert pipes important for plant survival. Interestingly, plants can actively regulate water transport using ion-mediated responses and adapt to environmental changes. However, ionic effects on active water transport in vascular plants remain unclear. In this report, the interactive ionic effects on sap transport were systematically investigated for the first time by visualizing the uptake process of ionic solutions of different ion compositions (K+/Ca2+ using synchrotron X-ray and neutron imaging techniques. Ionic solutions with lower K+/Ca2+ ratios induced an increased sap flow rate in stems of Olea europaea L. and Laurus nobilis L. The different ascent rates of ionic solutions depending on K+/Ca2+ ratios at a fixed total concentration increases our understanding of ion-responsiveness in plants from a physicochemical standpoint. Based on these results, effective structural changes in the pit membrane were observed using varying ionic ratios of K+/Ca2+. The formation of electrostatically induced hydrodynamic layers and the ion-responsiveness of hydrogel structures based on Hofmeister series increase our understanding of the mechanism of ion-mediated sap flow control in plants.

  7. Nanofilled and/or toughened POM composites produced by water-mediated melt compounding: Structure and mechanical properties

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available Binary and ternary composites composed of polyoxymethylene (POM, polyurethane (PU and synthetic boehmite alumina (AlO(OH were produced by water-mediated melt compounding technique. PU latex and/or aqueous alumina suspension were injected into the molten POM in a twin-screw extruder to prepare toughened and/or reinforced polymer composites. The dispersion of the alumina and PU was studied by transmission- and scanning electron microcopy techniques (TEM and SEM, respectively, and discussed. The crystallization of the POM-based systems was inspected by polarized optical microscopy (PLM. The mechanical and thermomechanical properties of the composites were determined in dynamic-mechanical thermal analysis (DMTA, short-time creep tests (performed at various temperatures, uniaxial static tensile and notched Charpy impact tests. Incorporation of alumina increased the stiffness and resistance to creep and reduced the tensile strength, elongation at break and impact toughness. The change in the above parameters was opposite for the POM/PU binary blends. Additional incorporation of alumina in the POM/PU blend enhanced the resistance to creep, elongation at break and maintained the impact toughness compared to the POM/PU blend.

  8. Structure-mediated nanoscopy

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew Rafael; Aabo, Thomas

    2013-01-01

    -robotics requires the optimization of optical forces and torques that, in turn, requires optimization of the underlying light-matter interaction. The requirement of having tightly focused beams in optical tweezing systems exemplifies the need for optimal light-shaping in optical trapping, manipulation and sorting...... of optimal light-sculpting techniques [4] with the use of optimized shapes in micro-robotics structures [5]. Micro-fabrication processes such as two-photon photo-polymerization offer three-dimensional resolutions for creating custom-designed monolithic microstructures that can be equipped with optical...... trapping handles for convenient mechanical control using only optical forces [6]. These microstructures can be effectively handled with simultaneous top- and side-view on our BioPhotonics Workstation to carry out proof-of-principle experiments illustrating the six-degree-of-freedom optical actuation of two...

  9. Communication: Structural locking mediated by a water wire: A high-resolution rotational spectroscopy study on hydrated forms of a chiral biphenyl derivative.

    Science.gov (United States)

    Domingos, Sérgio R; Pérez, Cristóbal; Schnell, Melanie

    2016-10-28

    We report the observation of structural changes in an axially chiral molecule, biphenyl-2-carboxaldehyde, due to aggregation with water. Using high-resolution broadband rotational spectroscopy we find that two water molecules link opposite sides of the molecule, resembling a water wire. We show that this effect can be explained by a cooperative rearrangement of both molecule and a water dimer. Hydrogen bonding interactions are shown to change the original structure upon aggregation of water. This phenomenon is insightful on the role of microsolvation in assisting structural morphing of stereo-selective chiral molecular systems.

  10. Water-mediated correlations in DNA-enzyme interactions

    CERN Document Server

    Capolupo, A; Kurian, P; Vitiello, G

    2016-01-01

    In this paper we consider dipole-mediated correlations between DNA and enzymes in the context of their water environment. Such correlations emerge from electric dipole-dipole interactions between aromatic ring structures in DNA and in enzymes, and they are mediated by radiative fields that stimulate transitions between the $l=0$ and $l=1$ rotational levels of the molecular water electric dipoles. We show that there are matching collective modes between DNA and enzyme dipole fields, and that a dynamic time-averaged polarization vanishes in the water dipole field only if either DNA, enzyme, or both are absent from the sample. This persistent field may serve as the electromagnetic image that, in popular colloquialisms about DNA biochemistry, allows enzymes to "scan" or "read" the double helix. Topologically nontrivial configurations in the coherent ground state requiring clamplike enzyme behavior on the DNA may stem, ultimately, from spontaneously broken gauge symmetries.

  11. Structure of Energetic Particle Mediated Shocks Revisited

    Science.gov (United States)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-05-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1. We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  12. Renewable bio ionic liquids-water mixtures-mediated selective removal of lignin from rice straw: visualization of changes in composition and cell wall structure.

    Science.gov (United States)

    Hou, Xue-Dan; Li, Ning; Zong, Min-Hua

    2013-07-01

    Pretreatment of rice straw by using renewable cholinium amino acids ionic liquids ([Ch][AA] ILs)-water mixtures and the subsequent enzymatic hydrolysis of the residues were conducted in the present work. Of the eight mixtures composed of ILs and water, most were found to be effective for rice straw pretreatment. After pretreatment with 50% ILs-water mixtures, the enzymatic digestion of the lignocellulosic biomass was enhanced significantly, thus leading to satisfactory sugar yields of >80% for glucose and approximately 50% for xylose. To better understand the ILs pretreatment mechanism, confocal laser scanning microscopy combined with immunolabeling and transmission electron microscopy were used to visualize changes in the contents and distribution of two major components--lignin and xylan. The results coupled with changes in chemical structures (infrared spectra) of the substrates indicated occurrence of extensive delignification, especially in cell corner and compound middle lumen of cell walls, which made polysaccharides more accessible to enzymes. This pretreatment process is promising for large-scale application because of the high sugar yields, easy handling, being environmentally benign and highly tolerant to moisture, and significantly reduced cost and energy consumption.

  13. Water's quantum structures and life.

    Science.gov (United States)

    Germano, Roberto

    2015-01-01

    This article discusses several clues pointing to the spontaneous quantum origin of the recently discovered dissipative structures induced in liquid water by low-energy physical perturbations. These structures show an astonishing permanence, so much that large ponderal quantities of supramolecular aggregates of water - at ambient pressure and temperature - subsist even in the solid phase, strongly suggesting the possibility that these structures are the matrix itself of life.

  14. Proton Transfer in Nucleobases is Mediated by Water

    Energy Technology Data Exchange (ETDEWEB)

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  15. Activism and the Online Mediation Opportunity Structure

    DEFF Research Database (Denmark)

    Uldam, Julie

    2013-01-01

    The annual United Nations (UN) Framework Convention on Climate Change conferences provides a transnational mediation opportunity structure for activist networks to contest policies that favor market-based models for solving the climate crisis. Online technologies, including commercial social media...... to climate change activism. This impedes possibilities for using online media to protest at the radical end of the climate justice movement spectrum. This article explores this interrelationship between activist demands and (online) modes of action through a focus on the mobilization efforts of London...

  16. Water-mediated interactions influence the binding of thapsigargin to sarco/endoplasmic reticulum calcium adenosinetriphosphatase

    DEFF Research Database (Denmark)

    Paulsen, Eleonora S.; Villadsen, Jesper; Tenori, Eleonora;

    2013-01-01

    A crystal structure suggests four water molecules are present in the binding cavity of thapsigargin in sarco/endoplasmic reticulum calcium ATPase (SERCA). Computational chemistry indicates that three of these water molecules mediate an extensive hydrogen-bonding network between thapsigargin...

  17. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  18. Family Structure and Mediators of Adolescent Drug Use

    Science.gov (United States)

    Broman, Clifford L.; Li, Xin; Reckase, Mark

    2008-01-01

    This study investigates how family structure is associated with adolescent drug use and how parenting, peer use, religiosity, and neighborhood problems may mediate the relationship. The authors use structural equation modeling to examine the relationship between family structure and drug use across race, and examine potential mediators. Using data…

  19. First Magnesium-mediated Carbonyl Benzylation in Water

    Institute of Scientific and Technical Information of China (English)

    DENG,Wei(邓维); TAN,Xiang-Hui(谭翔辉); LIU,Lei(刘磊); GUO,Qing-Xiang(郭庆祥)

    2004-01-01

    Catalyzed by AgNO3, Mg was found for the first time to be able to mediate the coupling reaction between aromatic aldehydes and benzyl bromide or chloride in water. The yields were slightly higher than the recent results for Mg-mediated allylation despite the fact that aqueous benzylation is intrinsically much harder than allylation. It was also found that the coupling reaction was chemoselective for aromatic aldehydes over aliphatic aldehydes, and chemoselective for aromatic aldehydes over aromatic ketones.

  20. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  1. Water Vapor-Mediated Volatilization of High-Temperature Materials

    Science.gov (United States)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  2. Household rainwater tanks: mediating changing relations with water?

    Directory of Open Access Journals (Sweden)

    Carol Farbotko

    2014-06-01

    Full Text Available Domestic rainwater tanks have become commonplace in Australia's urban landscape, and have become the physical embodiment of the changing relations between householders, water, and water authorities. The aim of our research was to understand these changing relations by examining how domestic rainwater tanks are inscribed with meanings and assumptions and thus mediate a relationship between households and government. In particular, we considered how domestic rainwater tanks are implicated in various understandings of entitlements to water collected or used in private domains. We examined how tanks can render visible the contestation over rights and obligations of state and citizen as to what is considered private and public water collection, management, and use at the scale of the household. Our exploration of these issues was conducted through a case study of changing water relations in South East Queensland, Australia, where there has been recent widespread installation of domestic rainwater tanks.

  3. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  4. Water mediated ligand functional group cooperativity: the contribution of a methyl group to binding affinity is enhanced by a COO(-) group through changes in the structure and thermodynamics of the hydration waters of ligand-thermolysin complexes.

    Science.gov (United States)

    Nasief, Nader N; Tan, Hongwei; Kong, Jing; Hangauer, David

    2012-10-11

    Ligand functional groups can modulate the contributions of one another to the ligand-protein binding thermodynamics, producing either positive or negative cooperativity. Data presented for four thermolysin phosphonamidate inhibitors demonstrate that the differential binding free energy and enthalpy caused by replacement of a H with a Me group, which binds in the well-hydrated S2' pocket, are more favorable in presence of a ligand carboxylate. The differential entropy is however less favorable. Dissection of these differential thermodynamic parameters, X-ray crystallography, and density-functional theory calculations suggest that these cooperativities are caused by variations in the thermodynamics of the complex hydration shell changes accompanying the H→Me replacement. Specifically, the COO(-) reduces both the enthalpic penalty and the entropic advantage of displacing water molecules from the S2' pocket and causes a subsequent acquisition of a more enthalpically, less entropically, favorable water network. This study contributes to understanding the important role water plays in ligand-protein binding.

  5. Simulating structural response to water impact

    OpenAIRE

    Campbell, James C; Vignjevic, Rade

    2012-01-01

    Structural response to water impact is important for several areas, including the aerospace and marine industries. Aircraft must be designed to cope with ditching and offshore structures are subject to extreme wave impact and green water loading. The goal is a reliable technique for predicting the structural response to extreme water loading. This is a complex problem involving the interaction of non-linear fluid behaviour (breaking waves, fluid impact) with non-linear structural behaviour (l...

  6. Ion-mediated RNA structural collapse: effect of spatial confinement

    CERN Document Server

    Tan, Zhi-Jie

    2013-01-01

    RNAs are negatively charged molecules residing in macromolecular crowding cellular environments. Macromolecular confinement can influence the ion effects in RNA folding. In this work, using the recently developed tightly bound ion model for ion fluctuation and correlation, we investigate the confinement effect on the ion-mediated RNA structural collapse for a simple model system. We found that, for both Na$^+$ and Mg$^{2+}$, ion efficiencies in mediating structural collapse/folding are significantly enhanced by the structural confinement. Such an enhancement in the ion efficiency is attributed to the decreased electrostatic free energy difference between the compact conformation ensemble and the (restricted) extended conformation ensemble due to the spatial restriction.

  7. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction...

  8. Molecular dynamics simulation reveals conformational switching of water-mediated uracil-cytosine base-pairs in an RNA duplex.

    Science.gov (United States)

    Schneider, C; Brandl, M; Sühnel, J

    2001-01-26

    A 4 ns molecular dynamics simulation of an RNA duplex (r-GGACUUCGGUCC)(2 )in solution with Na+ and Cl- as counterions was performed. The X-ray structure of this duplex includes two water-mediated uracil-cytosine pairs. In contrast to the other base-pairs in the duplex the water-mediated pairs switch between different conformations. One conformation corresponds to the geometry of the water-mediated UC pairs in the duplex X-ray structure with water acting both as hydrogen-bond donor and acceptor. Another conformation is close to that of a water-mediated UC base-pair found in the X-ray structure of the 23 S rRNA sarcin/ricin domain. In this case the oxygen of the water molecule is linked to two-base donor sites. For a very short time also a direct UC base-pair and a further conformation that is similar to the one found in the RNA duplex structure but exhibits an increased H3(U)...N3(C) distance is observed. Water molecules with unusually long residence times are involved in the water-mediated conformations. These results indicate that the dynamic behaviour of the water-mediated UC base-pairs differs from that of the duplex Watson-Crick and non-canonical guanine-uracil pairs with two or three direct hydrogen bonds. The conformational variability and increased flexibility has to be taken into account when considering these base-pairs as RNA building blocks and as recognition motifs. Copyright 2001 Academic Press.

  9. Molecular Component Structures Mediated Formation of Self-assemblies

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Molecular recognition directed self-assemblies from complementary molecular components, melamine and barbituric acid derivatives were studied by means of NMR, fluorescence, and TEM. It was found that both the process of the self-assembly and the morphologies of the result ed self-assemblies could be mediated by modifying the structures of the molecular components used. The effect of the structures of the molecular components on the formation of the self-as semblies was discussed in terms of intermolecular interactions.

  10. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor.

    Science.gov (United States)

    Lee, Yoonji; Kim, Songmi; Choi, Sun; Hyeon, Changbong

    2016-09-20

    Water molecules inside a G-protein coupled receptor (GPCR) have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal water molecules in GPCR activity, we studied the A2A adenosine receptor using microsecond molecular-dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times more slowly than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from ∼O(10(2)) ps to ∼O(10(2)) ns. Especially, water molecules, exhibiting ultraslow relaxation (∼O(10(2)) ns) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow water molecules in the activation of GPCRs. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Structural characterization of water-metal interfaces

    Science.gov (United States)

    Ryczko, Kevin; Tamblyn, Isaac

    2017-08-01

    We analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including Pt, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid water-graphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the Pt surface but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water.

  12. Evidence for water structuring forces between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Christopher B [ORNL; Rau, Dr. Donald [National Institutes of Health

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  13. AFM Structural Characterization of Drinking Water Biofilm ...

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  14. Structural Models for Cytochrome P450�Mediated Catalysis

    Directory of Open Access Journals (Sweden)

    David F.V. Lewis

    2003-01-01

    Full Text Available This review focuses on the structural models for cytochrome P450 that are improving our knowledge and understanding of the P450 catalytic cycle, and the way in which substrates bind to the enzyme leading to catalytic conversion and subsequent formation of mono-oxygenated metabolites. Various stages in the P450 reaction cycle have now been investigated using X-ray crystallography and electronic structure calculations, whereas homology modelling of mammalian P450s is currently revealing important aspects of pharmaceutical and other xenobiotic metabolism mediated by P450 involvement. These features are explored in the current review on P450-based catalysis, which emphasises the importance of structural modelling to our understanding of this enzyme's function. In addition, the results of various QSAR analyses on series of chemicals, which are metabolised via P450 enzymes, are presented such that the importance of electronic and other structural factors in explaining variations in rates of metabolism can be appreciated.

  15. Perspective on the structure of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A., E-mail: nilsson@slac.stanford.edu [Stanford Synchrotron Radiation Lightsource, P.O. Box 20450, Stanford, CA 94309 (United States); Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden); Pettersson, L.G.M. [Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden)

    2011-11-07

    Graphical abstract: Liquid water can be described in a fluctuating inhomogeneous picture with two local structural motifs that are spatially separated. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds giving higher density (yellow), which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations (blue), i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. Highlights: Black-Right-Pointing-Pointer Two components maximizing either enthalpy (tetrahedral, low-density) or entropy (non-specific H-bonding, higher density). Black-Right-Pointing-Pointer Interconvert discontinuously and ratio depends on temperature. Black-Right-Pointing-Pointer Density fluctuations on 1 nm length scale. Black-Right-Pointing-Pointer Increasing size in supercooled region. Black-Right-Pointing-Pointer Connection to Widom line and 2nd critical point. - Abstract: We present a picture that combines discussions regarding the thermodynamic anomalies in ambient and supercooled water with recent interpretations of X-ray spectroscopy and scattering data of water in the ambient regime. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds, which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations, i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. The two local structures are connected to the liquid-liquid critical point hypothesis in supercooled water corresponding to high

  16. Ran-dependent nuclear export mediators: a structural perspective.

    Science.gov (United States)

    Güttler, Thomas; Görlich, Dirk

    2011-08-31

    Nuclear export is an essential eukaryotic activity. It proceeds through nuclear pore complexes (NPCs) and is mediated by soluble receptors that shuttle between nucleus and cytoplasm. RanGTPase-dependent export mediators (exportins) constitute the largest class of these carriers and are functionally highly versatile. All of these exportins load their substrates in response to RanGTP binding in the nucleus and traverse NPCs as ternary RanGTP-exportin-cargo complexes to the cytoplasm, where GTP hydrolysis leads to export complex disassembly. The different exportins vary greatly in their substrate range. Recent structural studies of both protein- and RNA-specific exporters have illuminated how exportins bind their cargoes, how Ran triggers cargo loading and how export complexes are disassembled in the cytoplasm. Here, we review the current state of knowledge and highlight emerging principles as well as prevailing questions.

  17. Modeling Equity for Alternative Water Rate Structures

    Science.gov (United States)

    Griffin, R.; Mjelde, J.

    2011-12-01

    The rising popularity of increasing block rates for urban water runs counter to mainstream economic recommendations, yet decision makers in rate design forums are attracted to the notion of higher prices for larger users. Among economists, it is widely appreciated that uniform rates have stronger efficiency properties than increasing block rates, especially when volumetric prices incorporate intrinsic water value. Yet, except for regions where water market purchases have forced urban authorities to include water value in water rates, economic arguments have weakly penetrated policy. In this presentation, recent evidence will be reviewed regarding long term trends in urban rate structures while observing economic principles pertaining to these choices. The main objective is to investigate the equity of increasing block rates as contrasted to uniform rates for a representative city. Using data from four Texas cities, household water demand is established as a function of marginal price, income, weather, number of residents, and property characteristics. Two alternative rate proposals are designed on the basis of recent experiences for both water and wastewater rates. After specifying a reasonable number (~200) of diverse households populating the city and parameterizing each household's characteristics, every household's consumption selections are simulated for twelve months. This procedure is repeated for both rate systems. Monthly water and wastewater bills are also computed for each household. Most importantly, while balancing the budget of the city utility we compute the effect of switching rate structures on the welfares of households of differing types. Some of the empirical findings are as follows. Under conditions of absent water scarcity, households of opposing characters such as low versus high income do not have strong preferences regarding rate structure selection. This changes as water scarcity rises and as water's opportunity costs are allowed to

  18. The effect of confinement on water structure

    Energy Technology Data Exchange (ETDEWEB)

    Mancinelli, R, E-mail: mancinelli@fis.uniroma3.i [CNR Istituto Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Dipartimento di Fisica ' Amaldi' , University of Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy)

    2010-10-13

    Neutron diffraction experiments with hydrogen isotope substitution on water confined in MCM41-S15 have been performed at temperatures of 300 and 210 K. Data are analyzed at a microscopic level using a revised version of the empirical potential structure refinement technique. It is found that the influence of the substrate on the water structure is not negligible and depends on the temperature: owing to the geometrical constraints and the symmetry breaking induced by the wall, comparison with the corresponding bulk phases is not straightforward and standard analysis should be replaced by a more suitable one.

  19. Supramolecular isomers, water clusters and solvent-mediated transformations in a series of lanthanide MOFs

    Science.gov (United States)

    Michaelides, Adonis; Skoulika, Stavroula

    2017-09-01

    A series of Lanthanide MOFs of hydromuconic acid (H2hymuc) with cations of different size (La3+, Ce3+, Gd3+, Y3+) were generated at room temperature, pH = 5.5-5.8, using water as solvent. Two microporous genuine supramolecular isomers were found for the larger cations (La3+, Ce3+) sustained either by discrete (H2O)18 clusters or by infinite water tapes, consisting of fused tetramers, pentamers and hexamers. The smaller cations (Gd3+, Y3+) produced a 2D phase, considered as catenane isomer of previously published lanthanide MOFs with adipic acid. MOFs obtained with Ce3+, Gd3+and Y3+ undergo irreversible solvent-mediated transformation, yielding isomorphous 3D two-fold interpenetrated MOFs. The close structural similarity between the 2D phase and the 3D interpenetrated one indicated a possible mechanism for this transformation.

  20. Water Demand Under Alternative Price Structures

    OpenAIRE

    Sheila Olmstead; W. Michael Hanemann; Robert N. Stavins

    2007-01-01

    We estimate the price elasticity of water demand with household-level data, structurally modeling the piecewise-linear budget constraints imposed by increasing-block pricing. We develop a mathematical expression for the unconditional price elasticity of demand under increasing-block prices and compare conditional and unconditional elasticities analytically and empirically. We test the hypothesis that price elasticity may depend on price structure, beyond technical differences in elasticity co...

  1. Water Demand Under Alternative Price Structures

    OpenAIRE

    Sheila Olmstead; W. Michael Hanemann; Robert N. Stavins

    2007-01-01

    We estimate the price elasticity of water demand with household-level data, structurally modeling the piecewise-linear budget constraints imposed by increasing-block pricing. We develop a mathematical expression for the unconditional price elasticity of demand under increasing-block prices and compare conditional and unconditional elasticities analytically and empirically. We test the hypothesis that price elasticity may depend on price structure, beyond technical differences in elasticity co...

  2. Assessing Mediation Using Marginal Structural Models in the Presence of Confounding and Moderation

    Science.gov (United States)

    Coffman, Donna L.; Zhong, Wei

    2012-01-01

    This article presents marginal structural models with inverse propensity weighting (IPW) for assessing mediation. Generally, individuals are not randomly assigned to levels of the mediator. Therefore, confounders of the mediator and outcome may exist that limit causal inferences, a goal of mediation analysis. Either regression adjustment or IPW…

  3. Structural equation modeling versus marginal structural modeling for assessing mediation in the presence of posttreatment confounding.

    Science.gov (United States)

    Moerkerke, Beatrijs; Loeys, Tom; Vansteelandt, Stijn

    2015-06-01

    Inverse probability weighting for marginal structural models has been suggested as a strategy to estimate the direct effect of a treatment or exposure on an outcome in studies where the effect of mediator on outcome is subject to posttreatment confounding. This type of confounding, whereby confounders of the effect of mediator on outcome are themselves affected by the exposure, complicates mediation analyses and necessitates apt analysis strategies. In this article, we contrast the inverse probability weighting approach with the traditional path analysis approach to mediation analysis. We show that in a particular class of linear models, adjustment for posttreatment confounding can be realized via a fairly standard modification of the traditional path analysis approach. The resulting approach is simpler; by avoiding inverse probability weighting, it moreover results in direct effect estimators with smaller finite sample bias and greater precision. We further show that a particular variant of the G-estimation approach from the causal inference literature is equivalent with the path analysis approach in simple linear settings but is more generally applicable in settings with interactions and/or noncontinuous mediators and confounders. We conclude that the use of inverse probability weighting for marginal structural models to adjust for posttreatment confounding in mediation analysis is primarily indicated in nonlinear models for the outcome.

  4. Structural Insights into Ail-Mediated Adhesion in Yersinia pestis

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Satoshi; Lukacik, Petra; Barnard, Travis J.; Noinaj, Nicholas; Felek, Suleyman; Tsang, Tiffany M.; Krukonis, Eric S.; Hinnebusch, B. Joseph; Buchanan, Susan K. (Michigan); (NIH); (Michigan-Med)

    2012-01-30

    Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.

  5. Factors mediating the restoration of structurally degraded soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Schjønning, Per;

    with the ability of soils to perform these functions. The present study examines the roles of clay mineralogy, native organic matter, and exogenous organic material on the restoration of structurally degraded soils. Totally seven soils from Denmark and Ghana - five soils dominated by illites, one kaolinitic soil......Soil structure is essential for sustained provision of ecosystem services such as water filtering and storage, waste disposal, carbon sequestration and many more. Structural degradation/disaggregation of soils emanating from human activities such as mining, grading and filling interferes...... and lowest for the smectitic soil. Among the illitic soils, aggregate workability increased with native organic matter content. Addition of exogenous organic material showed little effect on soil physical properties. Results points to the possibility of regenerating the structure of physically degraded soils...

  6. On equilibrium structures of the water molecule

    Science.gov (United States)

    Császár, Attila G.; Czakó, Gábor; Furtenbacher, Tibor; Tennyson, Jonathan; Szalay, Viktor; Shirin, Sergei V.; Zobov, Nikolai F.; Polyansky, Oleg L.

    2005-06-01

    Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky et al. [Polyansky et al.Science 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3×10-5Å and 0.02° for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is reBO=0.95782Å and θeBO=104.485°, respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of H2O16 is read=0.95785Å and θead=104.500°, respectively, while those of D2O16 are read=0.95783Å and θead=104.490°. Pure ab initio prediction of J =1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002cm-1 for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05cm-1 (or the lower ones to better than 0.0035cm-1) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A0 and B0. The

  7. Vegetation plays an important role in mediating future water resources

    Science.gov (United States)

    Ukkola, A. M.; Keenan, T. F.; Kelley, D. I.; Prentice, I. C.

    2016-09-01

    Future environmental change is expected to modify the global hydrological cycle, with consequences for the regional distribution of freshwater supplies. Regional precipitation projections, however, differ largely between models, making future water resource projections highly uncertain. Using two representative concentration pathways and nine climate models, we estimate 21st century water resources across Australia, employing both a process-based dynamic vegetation model and a simple hydrological framework commonly used in water resource studies to separate the effects of climate and vegetation on water resources. We show surprisingly robust, pathway-independent regional patterns of change in water resources despite large uncertainties in precipitation projections. Increasing plant water use efficiency (due to the changing atmospheric CO2) and reduced green vegetation cover (due to the changing climate) relieve pressure on water resources for the highly populated, humid coastal regions of eastern Australia. By contrast, in semi-arid regions across Australia, runoff declines are amplified by CO2-induced greening, which leads to increased vegetation water use. These findings highlight the importance of including vegetation dynamics in future water resource projections.

  8. Climate mediates the effects of disturbance on ant assemblage structure

    Science.gov (United States)

    Gibb, Heloise; Sanders, Nathan J.; Dunn, Robert R.; Watson, Simon; Photakis, Manoli; Abril, Silvia; Andersen, Alan N.; Angulo, Elena; Armbrecht, Inge; Arnan, Xavier; Baccaro, Fabricio B.; Bishop, Tom R.; Boulay, Raphael; Castracani, Cristina; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A.; Enríquez, Martha L.; Fayle, Tom M.; Feener, Donald H.; Fitzpatrick, Matthew C.; Gómez, Crisanto; Grasso, Donato A.; Groc, Sarah; Heterick, Brian; Hoffmann, Benjamin D.; Lach, Lori; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Majer, Jonathan; Menke, Sean B.; Mezger, Dirk; Mori, Alessandra; Munyai, Thinandavha C.; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M.; de Souza, Jorge L. P.; Tista, Melanie; Vasconcelos, Heraldo L.; Vonshak, Merav; Parr, Catherine L.

    2015-01-01

    Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk. PMID:25994675

  9. Habitat structure mediates biodiversity effects on ecosystem properties.

    Science.gov (United States)

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  10. Is ion channel selectivity mediated by confined water?

    CERN Document Server

    Prada-Gracia, Diego

    2012-01-01

    Ion channels form pores across the lipid bilayer, selectively allowing inorganic ions to cross the membrane down their electrochemical gradient. While the study of ion desolvation free-energies have attracted much attention, the role of water inside the pore is less clear. Here, molecular dynamics simulations of a reduced model of the KcsA selectivity filter indicate that the equilibrium position of Na+, but not of K+, is strongly influenced by confined water. The latter forms a stable complex with Na+, moving the equilibrium position of the ion to the plane of the backbone carbonyls. Almost at the centre of the binding site, the water molecule is trapped by favorable electrostatic interactions and backbone hydrogen-bonds. In the absence of confined water the equilibrium position of both Na+ and K+ is identical. Our observations strongly suggest a previously unnoticed active role of confined water in the selectivity mechanism of ion channels.

  11. Structure of water for origin of life and living matter

    OpenAIRE

    Ignatov, Ignat; Mosin, Oleg

    2013-01-01

    This review defines structure of water for origin of life and living matter. Structure is a way of distribution of atoms making the molecule and molecules in space. Features of a physical structure of a molecule of water and short-lived hydrogen bonds caused by electrostatic forces and donor-acceptor interactions between the neighboring atoms of hydrogen and oxygen in molecules of water create favorable opportunities for formation in water special nano-structures associates (clusters) having ...

  12. Alu recombination-mediated structural deletions in the chimpanzee genome.

    Directory of Open Access Journals (Sweden)

    Kyudong Han

    2007-10-01

    Full Text Available With more than 1.2 million copies, Alu elements are one of the most important sources of structural variation in primate genomes. Here, we compare the chimpanzee and human genomes to determine the extent of Alu recombination-mediated deletion (ARMD in the chimpanzee genome since the divergence of the chimpanzee and human lineages ( approximately 6 million y ago. Combining computational data analysis and experimental verification, we have identified 663 chimpanzee lineage-specific deletions (involving a total of approximately 771 kb of genomic sequence attributable to this process. The ARMD events essentially counteract the genomic expansion caused by chimpanzee-specific Alu inserts. The RefSeq databases indicate that 13 exons in six genes, annotated as either demonstrably or putatively functional in the human genome, and 299 intronic regions have been deleted through ARMDs in the chimpanzee lineage. Therefore, our data suggest that this process may contribute to the genomic and phenotypic diversity between chimpanzees and humans. In addition, we found four independent ARMD events at orthologous loci in the gorilla or orangutan genomes. This suggests that human orthologs of loci at which ARMD events have already occurred in other nonhuman primate genomes may be "at-risk" motifs for future deletions, which may subsequently contribute to human lineage-specific genetic rearrangements and disorders.

  13. The Micropillar Structure on Silk Fibroin Film Influence Intercellular Connection Mediated by Nanotubular Structures

    Directory of Open Access Journals (Sweden)

    Renchuan You

    2014-06-01

    Full Text Available Tunneling nanotubes are important membrane channels for cell-to-cell communication. In this study, we investigated the effect of the microenvironment on nanotubular structures by preparing a three-dimensional silk fibroin micropillar structure. In previous reports, tunneling nanotubes were described as stretched membrane channels between interconnected cells at their nearest distance. They hover freely in the cell culture medium and do not contact with the substratum. Interestingly, the micropillars could provide supporting points for nanotubular connection on silk fibroin films, where nanotubular structure formed a stable anchor at contact points. Consequently, the extension direction of nanotubular structure was affected by the micropillar topography. This result suggests that the hovering tunneling nanotubes in the culture medium will come into contact with the raised roadblock on the substrates during long-distance extension. These findings imply that the surface microtopography of biomaterials have an important influence on cell communication mediated by tunneling nanotubes.

  14. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.

    2016-10-31

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  15. Modeling elephant-mediated cascading effects of water point closure

    NARCIS (Netherlands)

    Hilbers, J.P.; Langevelde, van F.; Prins, H.H.T.; Grant, C.C.; Peel, M.; Coughenour, M.B.; Knegt, de H.J.; Slotow, R.; Smit, I.; Kiker, G.A.; Boer, de W.F.

    2015-01-01

    Wildlife management to reduce the impact of wildlife on their habitat can be done in several ways, among which removing animals (by either culling or translocation) is most often used. There are however alternative ways to control wildlife densities, such as opening or closing water points. The effe

  16. Modeling elephant-mediated cascading effects of water point closure

    NARCIS (Netherlands)

    Hilbers, J.P.; Langevelde, van F.; Prins, H.H.T.; Grant, C.C.; Peel, M.; Coughenour, M.B.; Knegt, de H.J.; Slotow, R.; Smit, I.; Kiker, G.A.; Boer, de W.F.

    2014-01-01

    Wildlife management to reduce the impact of wildlife on their habitat can be done in several ways, among which removing animals (by either culling or translocation) is most often used. There are however alternative ways to control wildlife densities, such as opening or closing water points. The effe

  17. Unfolding Ubiquitin by force: water mediated H-bond destabilization

    Directory of Open Access Journals (Sweden)

    Germán Pabón

    2012-12-01

    Full Text Available Using the “pull and wait” (PNW simulation protocol at 300 K, we studied the unfolding by force of an ubiquitin molecule. PNW was implemented in the CHARMM program using an integration time step of 1 fs and a uniform dielectric constant of 1. The ubiquitin molecule, initially solvated, was put under mechanical stress, exerting forces from different directions. The rupture of five hydrogen bonds between parallel strands β1 and β5 takes place during the extension from 13 to 15 Å, defines a mechanical barrier for unfolding and dominates the point of maximum unfolding force. The simulations described here show that given adequate time, a small applied force can destabilize those five H-bonds relative to the bonds that can be created to water molecules; allowing the formation of stable H-bonds between a single water molecule and the donor and acceptor groups of the interstrand H-bonds. Thus, simulations run with PNW show that the force is not responsible for “ripping apart” the backbone H-bonds; it merely destabilizes them making them less stable than the H-bonds they can make with water. Additional simulations show that the force necessary to destabilize the H-bonds and allow them to be replaced by H-bonds to water molecules depends strongly on the pulling direction. By using a simulation protocol that allows equilibration at each extension we have been able to observe the details of the events leading to the unfolding of ubiquitin by mechanical force.

  18. Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces.

    Science.gov (United States)

    Kanduč, Matej; Schlaich, Alexander; Schneck, Emanuel; Netz, Roland R

    2016-09-01

    All surfaces in water experience at short separations hydration repulsion or hydrophobic attraction, depending on the surface polarity. These interactions dominate the more long-ranged electrostatic and van der Waals interactions and are ubiquitous in biological and colloidal systems. Despite their importance in all scenarios where the surface separation is in the nanometer range, the origin of these hydration interactions is still unclear. Using atomistic solvent-explicit molecular dynamics simulations, we analyze the interaction free energies of charge-neutral model surfaces with different elastic and water-binding properties. The surface polarity is shown to be the most important parameter that not only determines the hydration properties and thereby the water contact angle of a single surface but also the surface-surface interaction and whether two surfaces attract or repel. Elastic properties of the surfaces are less important. On the basis of surface contact angles and surface-surface binding affinities, we construct a universal interaction diagram featuring three different interaction regimes-hydration repulsion, cavitation-induced attraction-and for intermediate surface polarities-dry adhesion. On the basis of scaling arguments and perturbation theory, we establish simple combination rules that predict the interaction behavior for combinations of dissimilar surfaces.

  19. Liquid Water Structure from Anomalous Density under Ambient Condition

    Institute of Scientific and Technical Information of China (English)

    SUN Qiang; ZHENG Hai-Fei

    2006-01-01

    @@ From discussion of the structure of liquid water, we deduce that water under ambient condition is mainly composed of ice Ih-like molecular clusters and clathrate-like molecular clusters. The water molecular clusters remain in a state of chemical equilibrium (reversible clustering reactions). This structural model can be demonstrated by quantitative study on anomalous density with increasing temperature at ambient pressure.

  20. Uranium-mediated electrocatalytic dihydrogen production from water

    Science.gov (United States)

    Halter, Dominik P.; Heinemann, Frank W.; Bachmann, Julien; Meyer, Karsten

    2016-02-01

    Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [((Ad,MeArO)3mes)U] (refs 18 and 19)—the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium—an abundant waste product of the nuclear power industry—could be a valuable resource.

  1. Modeling elephant-mediated cascading effects of water point closure.

    Science.gov (United States)

    Hilbers, Jelle P; Van Langevelde, Frank; Prins, Herbert H T; Grant, C C; Peel, Mike J S; Coughenour, Michael B; De Knegt, Henrik J; Slotow, Rob; Smit, Izak P J; Kiker, Greg A; De Boer, Willem F

    2015-03-01

    Wildlife management to reduce the impact of wildlife on their habitat can be done in several ways, among which removing animals (by either culling or translocation) is most often used. There are, however, alternative ways to control wildlife densities, such as opening or closing water points. The effects of these alternatives are poorly studied. In this paper, we focus on manipulating large herbivores through the closure of water points (WPs). Removal of artificial WPs has been suggested in order to change the distribution of African elephants, which occur in high densities in national parks in Southern Africa and are thought to have a destructive effect on the vegetation. Here, we modeled the long-term effects of different scenarios of WP closure on the spatial distribution of elephants, and consequential effects on the vegetation and other herbivores in Kruger National Park, South Africa. Using a dynamic ecosystem model, SAVANNA, scenarios were evaluated that varied in availability of artificial WPs; levels of natural water; and elephant densities. Our modeling results showed that elephants can indirectly negatively affect the distributions of meso-mixed feeders, meso-browsers, and some meso-grazers under wet conditions. The closure of artificial WPs hardly had any effect during these natural wet conditions. Under dry conditions, the spatial distribution of both elephant bulls and cows changed when the availability of artificial water was severely reduced in the model. These changes in spatial distribution triggered changes in the spatial availability of woody biomass over the simulation period of 80 years, and this led to changes in the rest of the herbivore community, resulting in increased densities of all herbivores, except for giraffe and steenbok, in areas close to rivers. The spatial distributions of elephant bulls and cows showed to be less affected by the closure of WPs than most of the other herbivore species. Our study contributes to ecologically

  2. Water-Mediated Ion Pairing: Occurrence and Relevance

    DEFF Research Database (Denmark)

    van der Vegt, Nico F.A.; Haldrup, Kristoffer; Roke, Sylvie

    2016-01-01

    We present an overview of the studies of ion pairing in aqueous media of the past decade. In these studies, interactions between ions, and between ions and water, are investigated with relatively novel approaches, including dielectric relaxation spectroscopy, far-infrared (terahertz) absorption...... spectroscopy, femtosecond mid-infrared spectroscopy, and X-ray spectroscopy and scattering, as well as molecular dynamics simulation methods. With these methods, it is found that ion pairing is not a rare phenomenon only occurring for very particular, strongly interacting cations and anions. Instead, for many...

  3. Occurrence patterns of facilitation by shade along a water gradient are mediated by species traits

    Science.gov (United States)

    Egawa, Chika; Tsuyuzaki, Shiro

    2015-01-01

    In disturbed habitats, shade often has facilitative effects on plants by ameliorating water and thermal stresses. Facilitation by shade tends to increase as water availability decreases. At the same time, several studies have suggested that facilitation by shade is not affected by water status or collapses under extremely dry conditions. We hypothesized that traits of beneficiary plants, specifically, the flexibility in the allocation of biomass between shoots and roots, would mediate variation in the relationship between facilitation by shade and water status. To test this hypothesis, we examined the responses of two bog species to shade under various water conditions in a post-mined peatland. The seeds of Rhynchospora alba and Moliniopsis japonica were sown under three water levels (dry: 53% peat water content, wet: 77%, and control: 71%) × two shading levels (50% shaded and unshaded). The survival, biomass, and biomass allocation between the shoots and roots of the two species were monitored for two years. Shade increased the survival and biomass of both species. However, the facilitation of R. alba by shade was independent of water level, whereas the strength of the facilitative effects on M. japonica increased as water content decreased. R. alba preferentially allocated biomass to roots under dry conditions and was highly drought tolerant. M. japonica did not alter the allocation of its biomass in response to either shade or water level and was drought intolerant. Our results suggest that flexibility in biomass allocation of beneficiary plants mediates occurrence patterns of facilitation by shade along a water gradient. The facilitation of species with inflexible biomass allocation by shade through the amelioration of water stress increases as water availability decreases, whereas the facilitation of species with flexible biomass allocation is independent of water status. Such species-specific facilitation would promote the coexistence of diverse species in a

  4. Structure of water and the thermodynamics of aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nemethy, G.

    1970-10-26

    This report represents the summary of a series of lectures held at the Istituto Superiore di Sanita, Laboratori di Fisica, from 18 September to 26 October 1970. The topics discussed were: Intermolecular forces, the individual water molecule and the hydrogen bond, the structures of the solid phases of water, experimental information on the strucuture of liquid water, theoretical models of water structure, experimental properties and theoretical models of aqueous solutions of nonpolar solutes, polar solutes, and electrolytes, the conformational stability of biological macromolecules.

  5. CBR with Commonsense Reasoning and Structure Mapping: An Application to Mediation

    CERN Document Server

    Baydin, Atilim Gunes; Simoff, Simeon; Sierra, Carles

    2011-01-01

    Mediation is an important method in dispute resolution. We implement a case based reasoning approach to mediation integrating analogical and commonsense reasoning components that allow an artificial mediation agent to satisfy requirements expected from a human mediator, in particular: utilizing experience with cases in different domains; and structurally transforming the set of issues for a better solution. We utilize a case structure based on ontologies reflecting the perceptions of the parties in dispute. The analogical reasoning component, employing the Structure Mapping Theory from psychology, provides a flexibility to respond innovatively in unusual circumstances, in contrast with conventional approaches confined into specialized problem domains. We aim to build a mediation case base incorporating real world instances ranging from interpersonal or intergroup disputes to international conflicts.

  6. Protein Folding under Mediation of Ordering Water: an Off-Lattice Gō-Like Model Study

    Institute of Scientific and Technical Information of China (English)

    ZUO Guang-Hong; HU Jun; FANG Hai-Ping

    2007-01-01

    @@ Water plays an important role in the structure and function of biomolecules. Water confined at the nanoscale usually exhibits phenomena not seen in bulk water, including the ice-like ordering structure on the surfaces of many substrates. We investigate the behaviour of protein folding in which the proteins are asssumed in an environment with ordering water by using of an off-lattice Gō-like model. It is found that in the physiological temperature, both the folding rate and the thermodynamic stability of the protein are greatly promoted by the existence of ordering of water.

  7. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  8. Unusual Water-mediated Antigenic Recognition of the Proinflammatory Cytokine Interleukin-18

    Energy Technology Data Exchange (ETDEWEB)

    Argiriadi, Maria A.; Xiang, Tao; Wu, Chengbin; Ghayur, Tariq; Borhani, David W.; (Abbott)

    2009-10-21

    The unique cytokine interleukin-18 (IL-18) acts synergistically with IL-12 to regulate T-helper 1 and 2 lymphocytes and, as such, seems to underlie the pathogenesis of various autoimmune and allergic diseases. Several anti-IL-18 agents are in clinical development, including the recombinant human antibody ABT-325, which is entering trials for autoimmune diseases. Given competing cytokine/receptor and cytokine/receptor decoy interactions, understanding the structural basis for recognition is critical for effective development of anti-cytokine therapies. Here we report three crystal structures: the murine antibody 125-2H Fab fragment bound to human IL-18, at 1.5 {angstrom} resolution; the 125-2H Fab (2.3 {angstrom}); and the ABT-325 Fab (1.5 {angstrom}). These structures, along with human/mouse IL-18 chimera binding data, allow us to make three key observations relevant to the biology and antigenic recognition of IL-18 and related cytokines. First, several IL-18 residues shift dramatically (>10 {angstrom}) upon binding 125-2H, compared with unbound IL-18 (Kato, Z., Jee, J., Shikano, H., Mishima, M., Ohki, I., Ohnishi, H., Li, A., Hashimoto, K., Matsukuma, E., Omoya, K., Yamamoto, Y., Yoneda, T., Hara, T., Kondo, N., and Shirakawa, M. (2003) Nat. Struct. Biol. 10, 966-971). IL-18 thus exhibits plasticity that may be common to its interactions with other receptors. Related cytokines may exhibit similar plasticity. Second, ABT-325 and 125-2H differ significantly in combining site character and architecture, thus explaining their ability to bind IL-18 simultaneously at distinct epitopes. These data allow us to define the likely ABT-325 epitope and thereby explain the distinct neutralizing mechanisms of both antibodies. Third, given the high 125-2H potency, 10 well ordered water molecules are trapped upon complex formation in a cavity between two IL-18 loops and all six 125-2H complementarity-determining regions. Thus, counterintuitively, tight and specific antibody

  9. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis.

    Science.gov (United States)

    Shu, Longfei; Suter, Marc J-F; Laurila, Anssi; Räsänen, Katja

    2015-11-01

    Environmental stress, such as acidification, can challenge persistence of natural populations and act as a powerful evolutionary force at ecological time scales. The ecological and evolutionary responses of natural populations to environmental stress at early life-stages are often mediated via maternal effects. During early life-stages, maternal effects commonly arise from egg coats (the extracellular structures surrounding the embryo), but the role of egg coats has rarely been studied in the context of adaptation to environmental stress. Previous studies on the moor frog Rana arvalis found that the egg coat mediated adaptive divergence along an acidification gradient in embryonic acid stress tolerance. However, the exact mechanisms underlying these adaptive maternal effects remain unknown. Here, we investigated the role of water balance and charge state (zeta potential) of egg jelly coats in embryonic adaptation to acid stress in three populations of R. arvalis. We found that acidic pH causes severe water loss in the egg jelly coat, but that jelly coats from an acid-adapted population retained more water than jelly coats from populations not adapted to acidity. Moreover, embryonic acid tolerance (survival at pH 4.0) correlated with both water loss and charge state of the jelly, indicating that negatively charged glycans influence jelly water balance and contribute to embryonic adaptation to acidity. These results indicate that egg coats can harbor extensive intra-specific variation, probably facilitated in part via strong selection on water balance and glycosylation status of egg jelly coats. These findings shed light on the molecular mechanisms of environmental stress tolerance and adaptive maternal effects.

  10. Origins of Water Molecules in the Photosystem II Crystal Structure.

    Science.gov (United States)

    Sakashita, Naoki; Watanabe, Hiroshi C; Ikeda, Takuya; Saito, Keisuke; Ishikita, Hiroshi

    2017-06-20

    The cyanobacterial photosystem II (PSII) crystal structure includes more than 1300 water molecules in each monomer unit; however, their precise roles in water oxidation are unclear. To understand the origins of water molecules in the PSII crystal structure, the accessibility of bulk water molecules to channel inner spaces in PSII was investigated using the water-removed PSII structure and molecular dynamics (MD) simulations. The inner space of the channel that proceeds toward the D1-Glu65/D2-Glu312 pair (E65/E312 channel) was entirely filled with water molecules from the bulk region. In the same channel, a diamond-shaped cluster of water molecules formed near redox-active TyrZ in MD simulations. Reorientation of the D2-Leu352 side chain resulted in formation of a hexagonal water network at the Cl(-)2 binding site. Water molecules could not enter the main region of the O4-water chain, which proceeds from the O4 site of the Mn4CaO5 cluster. However, in the O4-water chain, the two water binding sites that are most distant from the protein bulk surface were occupied by water molecules that approached along the E65/E312 channel, one of which formed an H-bond with the O4 site. These findings provide key insights into the significance of the channel ends, which may utilize water molecules during the PSII photocycle.

  11. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides.

    Science.gov (United States)

    Grossutti, Michael; Dutcher, John R

    2016-03-14

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly interesting example of confined water, because differences in polysaccharide structure provide different spatially confined environments for water sorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, dendrimer-like phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA), and chitosan. We find similarities between the water structuring in the two linear polysaccharides and significant differences for phytoglycogen. In particular, the results suggest that the high degree of branching in phytoglycogen leads to a much more well-ordered water structure (low density, high connectivity network water), indicating the strong influence of chain architecture on the structuring of water. These measurements provide unique insight into the relationship between the structure and hydration of polysaccharides, which is important for understanding and exploiting these sustainable nanomaterials in a wide range of applications.

  12. Water in a Soft Confinement: Structure of Water in Amorphous Sorbitol.

    Science.gov (United States)

    Shalaev, Evgenyi; Soper, Alan K

    2016-07-28

    The structure of water in 70 wt % sorbitol-30 wt % water mixture is investigated by wide-angle neutron scattering (WANS) as a function of temperature. WANS data are analyzed using empirical potential structure refinement to obtain the site-site radial distribution functions (RDFs). Orientational structure of water is represented using OW-OW-OW triangles distributions and a tetrahedrality parameter, q, while water-water correlation function is used to estimate size of water clusters. Water structure in the sorbitol matrix is compared with that of water confined in nanopores of MCM41. The results indicate the existence of voids in the sorbitol matrix with the length scale of approximately 5 Å, which are filled by water. At 298 K, positional water structure in these voids is similar to that of water in MCM41, whereas there is a difference in the tetrahedral (orientational) arrangement. Cooling to 213 K strengthens tetrahedrality, with the orientational order of water in sorbitol becoming similar to that of confined water in MCM41 at 210 K, whereas further cooling to 100 K does not introduce any additional changes in the tetrahedrality. The results obtained allow us to propose, for the first time, that such confinement of water in a sorbitol matrix is the main reason for the lack of ice formation in this system.

  13. Water's structure around hydrophobic solutes and the iceberg model.

    Science.gov (United States)

    Galamba, N

    2013-02-21

    The structure of water in the hydration shells of small hydrophobic solutes was investigated through molecular dynamics. The results show that a subset of water molecules in the first hydration shell of a nonpolar solute have a significantly enhanced tetrahedrality and a slightly larger number of hydrogen bonds, relative to the molecules in water at room temperature, consistent with the experimentally observed negative excess entropy and increased heat capacity of hydrophobic solutions at room temperature. This ordering results from the rearrangement of a small number of water molecules near the nonpolar solutes that occupy one to two vertices of the enhanced water tetrahedra. Although this structuring is not nearly like that often associated with a literal interpretation of the term "iceberg" in the Frank and Evans iceberg model, it does support a moderate interpretation of this model. Thus, the tetrahedral orientational order of this ensemble of water molecules is comparable to that of liquid water at ~10 °C, although not accompanied by the small contraction of the O-O distance observed in cold water. Further, we show that the structural changes of water in the vicinity of small nonpolar solutes cannot be inferred from the water radial distribution functions, explaining why this increased ordering is not observed through neutron diffraction experiments. The present results restore a molecular view where the slower translational and reorientational dynamics of water near hydrophobic groups has a structural equivalent resembling water at low temperatures.

  14. Structure-function relationships in sapwood water transport and storage.

    Science.gov (United States)

    Barbara L. Gartner; Frederick C. Meinzer

    2005-01-01

    Primary production by plants requires the loss of substantial quantities of water when the stomata are open for carbon assimilation. The delivery of that water to the leaves occurs through the xylem. The structure, condition, and quantity of the xylem control not only the transport efficiency but also the release of water from storage. For example, if there is high...

  15. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water.

    Science.gov (United States)

    Bai, Xuelian; Acharya, Kumud

    2017-03-01

    The persistence and fate of pharmaceutical and personal care products (PPCPs) in the Lake Mead ecosystem are particularly important considering the potential ecological risks and human health impacts. This study evaluated the removal of five common PPCPs (i.e., trimethoprim, sulfamethoxazole, carbamazepine, ciprofloxacin, and triclosan) from Lake Mead water mediated by the green alga Nannochloris sp. The results from the incubation studies showed that trimethoprim and carbamazepine were highly resistant to uptake in the algal cultural medium and were measured at approximately 90%-100% of the applied dose after 14days of incubation. Sulfamethoxazole was found relatively persistent, with >60% of the applied dose remaining in the water after 14days, and its removal was mainly caused by algae-mediated photolysis. However, ciprofloxacin and triclosan dissipated significantly and nearly 100% of the compounds were removed from the water after 7days of incubation under 24h of light. Ciprofloxacin and triclosan were highly susceptible to light, and their estimated half-lives were 12.7hours for ciprofloxacin and 31.2hours for triclosan. Algae-mediated sorption contributed to 11% of the removal of trimethoprim and sulfamethoxazole, 13% of the removal of carbamazepine, and 27% of the removal of triclosan from the lake water. This research showed that 1) trimethoprim, sulfamethoxazole, and carbamazepine are quite persistent in aquatic environments and may potentially affect human health via drinking water intake; 2) photolysis is the dominant pathway to remove ciprofloxacin from aquatic ecosystems, which indicates that ciprofloxacin may have lower ecological risks compared with other PPCPs; and 3) triclosan can undergo photolysis as well as algae-mediated uptake and it may potentially affect the food web because of its high toxicity to aquatic species. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Structured free-water clusters near lubricating surfaces are essential in water-based lubrication.

    Science.gov (United States)

    Hou, Jiapeng; Veeregowda, Deepak H; de Vries, Joop; Van der Mei, Henny C; Busscher, Henk J

    2016-10-01

    Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as more hydrophobic Si crystal surfaces (61°), while lubrication by hydrophilic Ge crystal surfaces (44°) is best. Thus surface hydrophilicity is not sufficient for water-based lubrication. Surface-thermodynamic analyses demonstrated that all surfaces, regardless of their water-based lubrication, were predominantly electron donating, implying water binding with their hydrogen groups. X-ray photoelectron spectroscopy showed that Ge crystal surfaces providing optimal lubrication consisted of a mixture of -O and =O functionalities, while Si crystal and quartz surfaces solely possessed -O functionalities. Comparison of infrared absorption bands of the crystals in water indicated fewer bound-water layers on hydrophilic Ge than on hydrophobic Si crystal surfaces, while absorption bands for free water on the Ge crystal surface indicated a much more pronounced presence of structured, free-water clusters near the Ge crystal than near Si crystal surfaces. Accordingly, we conclude that the presence of structured, free-water clusters is essential for water-based lubrication. The prevalence of structured water clusters can be regulated by adjusting the ratio between surface electron-donating and electron-accepting groups and between -O and =O functionalities.

  17. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R., E-mail: pbandaru@ucsd.edu [Department of Mechanical Engineering, University of California, San Diego, La Jolla, CA (United States)

    2016-08-15

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  18. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    Science.gov (United States)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R.

    2016-08-01

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  19. Structural and functional significance of water permeation through cotransporters

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Gorraitz, Edurne; Her, Ka

    2016-01-01

    and mutated residues lining the sugar transport pathway to cysteine. The mutants were expressed in Xenopus oocytes, and the unitary water and urea permeabilities were determined before and after modifying the cysteine side chain with reversible methanethiosulfonate reagents. The results demonstrate that water......Membrane transporters, in addition to their major role as specific carriers for ions and small molecules, can also behave as water channels. However, neither the location of the water pathway in the protein nor their functional importance is known. Here, we map the pathway for water and urea...... through the intestinal sodium/glucose cotransporter SGLT1. Molecular dynamics simulations using the atomic structure of the bacterial transporter vSGLT suggest that water permeates the same path as Na+ and sugar. On a structural model of SGLT1, based on the homology structure of vSGLT, we identified...

  20. A gentle introduction to the structure of water

    Energy Technology Data Exchange (ETDEWEB)

    Lower, S. [Simon Fraser Univ., Burnaby (Canada). Dept. of Chemistry

    2007-02-15

    Basic chemical theory predicts that a substance whose molecules are made up of just three lightweight atoms could not possibly exist as a liquid under ordinary conditions. This is just one of the ''anomalous'' properties that the structural unit H{sub 2}O confers on the liquid we know as water, and which enable this remarkable substance to play a central role in shaping both our planet and the living organisms on it. This article attempts to show how the nature of water-the-molecule leads to higher-level structural elements that give water-the-substance its unique properties. The essential role of water in the human body has caused some science-naive seekers-of-health to stray into the realm of pseudoscience; sales of miracle water-treatment devices, homeopathic remedies and various fictional ''structured'' waters are now a thriving industry. (orig.)

  1. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    to dynamic ocean waves. The goal of this research project is to develop numerical soil models for computing realistic seabed response in the interacting offshore environment, where ocean waves, seabed and offshore structure highly interact with each other. The seabed soil models developed are based...... as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...... of Computational Fluid Dynamics (CFD) and structural mechanics are available. The interaction in the system is modeled in a 1-way manner: First detailed free surface CFD calculations are executed to obtain a realistic wave field around a given structure. Then the dynamic structural response, due to the motions...

  2. Ions in water: the microscopic structure of concentrated hydroxide solutions.

    Science.gov (United States)

    Imberti, S; Botti, A; Bruni, F; Cappa, G; Ricci, M A; Soper, A K

    2005-05-15

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45 degrees from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  3. Density filament and helical field line structures in three dimensional Weibel-mediated collisionless shocks

    Science.gov (United States)

    Moritaka, Toseo; Sakawa, Youichi; Kuramitsu, Yasuhiro; Morita, Taichi; Yamaura, Yuta; Ishikawa, Taishi; Takabe, Hideaki

    2016-03-01

    Collisionless shocks mediated by Weibel instability are attracting attention for their relevance to experimental demonstrations of astrophysical shocks in high-intensity laser facilities. The three dimensional structure of Weibel-mediated shocks is investigated through a fully kinetic particle-in-cell simulation. The structures obtained are characterized by the following features: (i) helical magnetic field lines elongated in the direction upstream of the shock region, (ii) high and low density filaments inside the helical field lines. These structures originate from the interaction between counter-streaming plasma flow and magnetic vortexes caused by Weibel instability, and potentially affect the shock formation mechanism.

  4. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area

    Science.gov (United States)

    Jameel, Yusuf; Brewer, Simon; Good, Stephen P.; Tipple, Brett J.; Ehleringer, James R.; Bowen, Gabriel J.

    2016-08-01

    Water extraction for anthropogenic use has become a major flux in the hydrological cycle. With increasing demand for water and challenges supplying it in the face of climate change, there is a pressing need to better understand connections between human populations, climate, water extraction, water use, and its impacts. To understand these connections, we collected and analyzed stable isotopic ratios of more than 800 urban tap water samples in a series of semiannual water surveys (spring and fall, 2013-2015) across the Salt Lake Valley (SLV) of northern Utah. Consistent with previous work, we found that mean tap water had a lower 2H and 18O concentration than local precipitation, highlighting the importance of nearby montane winter precipitation as source water for the region. However, we observed strong and structured spatiotemporal variation in tap water isotopic compositions across the region which we attribute to complex distribution systems, varying water management practices and multiple sources used across the valley. Water from different sources was not used uniformly throughout the area and we identified significant correlation between water source and demographic parameters including population and income. Isotopic mass balance indicated significant interannual and intra-annual variability in water losses within the distribution network due to evaporation from surface water resources supplying the SLV. Our results demonstrate the effectiveness of isotopes as an indicator of water management strategies and climate impacts within regional urban water systems, with potential utility for monitoring, regulation, forensic, and a range of water resource research.

  5. The role of adjuvant in mediating antigen structure and stability.

    Science.gov (United States)

    Braun, Latoya Jones; Eldridge, Aimee M; Cummiskey, Jessica; Arthur, Kelly K; Wuttke, Deborah S

    2012-04-01

    The purpose of this study was to probe the fate of a model antigen, a cysteine-free mutant of bacteriophage T4 lysozyme, to the level of fine structural detail, as a consequence of its interaction with an aluminum (Al)-containing adjuvant. Fluorescence spectroscopy and differential scanning calorimetry were used to compare the thermal stability of the protein in solution versus adsorbed onto an Al-containing adjuvant. Differences in accessible hydrophobic surface areas were investigated using an extrinsic fluorescence probe, 8-Anilino-1-naphthalenesulfonic acid (ANS). As has been observed with other model antigens, the apparent thermal stability of the protein decreased following adsorption onto the adjuvant. ANS spectra suggested that adsorption onto the adjuvant caused an increase in exposure of hydrophobic regions of the protein. Electrostatic interactions drove the adsorption, and disruption of these interactions with high ionic strength buffers facilitated the collection of two-dimensional (15) N heteronuclear single quantum coherence nuclear magnetic resonance data of protein released from the adjuvant. Although the altered stability of the adsorbed protein suggested changes to the protein's structure, the fine structure of the desorbed protein was nearly identical to the protein's structure in the adjuvant-free formulation. Thus, the adjuvant-induced changes to the protein that were responsible for the reduced thermal stability were not observed upon desorption.

  6. Mediation pathways and effects of green structures on respiratory mortality via reducing air pollution

    Science.gov (United States)

    Shen, Yu-Sheng; Lung, Shih-Chun Candice

    2017-01-01

    Previous studies have shown both health and environmental benefits of green spaces, especially in moderating temperature and reducing air pollution. However, the characteristics of green structures have been overlooked in previous investigations. In addition, the mediation effects of green structures on respiratory mortality have not been assessed. This study explores the potential mediation pathways and effects of green structure characteristics on respiratory mortality through temperature, primary and secondary air pollutants separately using partial least squares model with data from Taiwan. The measurable characteristics of green structure include the largest patch percentage, landscape proportion, aggregation, patch distance, and fragmentation. The results showed that mortality of pneumonia and chronic lower respiratory diseases could be reduced by minimizing fragmentation and increasing the largest patch percentage of green structure, and the mediation effects are mostly through reducing air pollutants rather than temperature. Moreover, a high proportion of but fragmented green spaces would increase secondary air pollutants and enhance health risks; demonstrating the deficiency of traditional greening policy with primary focus on coverage ratio. This is the first research focusing on mediation effects of green structure characteristics on respiratory mortality, revealing that appropriate green structure planning can be a useful complementary strategy in environmental health management. PMID:28230108

  7. Mediation pathways and effects of green structures on respiratory mortality via reducing air pollution

    Science.gov (United States)

    Shen, Yu-Sheng; Lung, Shih-Chun Candice

    2017-02-01

    Previous studies have shown both health and environmental benefits of green spaces, especially in moderating temperature and reducing air pollution. However, the characteristics of green structures have been overlooked in previous investigations. In addition, the mediation effects of green structures on respiratory mortality have not been assessed. This study explores the potential mediation pathways and effects of green structure characteristics on respiratory mortality through temperature, primary and secondary air pollutants separately using partial least squares model with data from Taiwan. The measurable characteristics of green structure include the largest patch percentage, landscape proportion, aggregation, patch distance, and fragmentation. The results showed that mortality of pneumonia and chronic lower respiratory diseases could be reduced by minimizing fragmentation and increasing the largest patch percentage of green structure, and the mediation effects are mostly through reducing air pollutants rather than temperature. Moreover, a high proportion of but fragmented green spaces would increase secondary air pollutants and enhance health risks; demonstrating the deficiency of traditional greening policy with primary focus on coverage ratio. This is the first research focusing on mediation effects of green structure characteristics on respiratory mortality, revealing that appropriate green structure planning can be a useful complementary strategy in environmental health management.

  8. Conserved water-mediated H-bonding dynamics of catalytic Asn 175 in plant thiol protease

    Indian Academy of Sciences (India)

    Tapas K Nandi; Hridoy R Bairagya; Bishnu P Mukhopadhyay; K Sekar; Dipankar Sukul; Asim K Bera

    2009-03-01

    The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.

  9. A structured ecosystem-scale approach to marine water quality ...

    African Journals Online (AJOL)

    A structured ecosystem-scale approach to marine water quality management ... environmentally responsible and sustainable development practices, either ... which to design and implement environmental management programmes. ... It also aims to support and stimulate local stakeholder empowerment and involvement.

  10. Structured ecosystem-scale approach to marine water quality management

    CSIR Research Space (South Africa)

    Taljaard, Susan

    2006-10-01

    Full Text Available and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in response to recent advances in policies...

  11. Crossover between tetrahedral and hexagonal structures in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Chara, Osvaldo [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), CONICET - Universidad Nacional de La Plata (Argentina); McCarthy, Andres N., E-mail: amccarthy@iflysib.unlp.edu.a [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), CONICET - Universidad Nacional de La Plata (Argentina); Grigera, J. Raul [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), CONICET - Universidad Nacional de La Plata (Argentina)

    2011-01-17

    It is widely accepted that liquid water structure is comprised of two closely interweaved components; i.e. tetrahedral (low density) and hexagonal (high density) structures. The relative amount of these components is temperature and pressure dependent. We propose an order parameter, based on the radial distribution function, that quantifies the relative structural composition at any defined temperature and pressure, thus establishing the crossover point in structural dominance. At 300 K this point lies close to 2 kbar, pressure at which water looses most of its 'anomalous' properties.

  12. Adhesion to tooth structure mediated by contemporary bonding systems.

    Science.gov (United States)

    Stangel, Ivan; Ellis, Thomas H; Sacher, Edward

    2007-07-01

    Given the enormity of the field of adhesion and the number of commercial products available, the discipline of modern adhesive dentistry can be daunting with respect to materials and techniques. This article organizes contemporary bonding practice and materials around an understanding of the fundamentals of adhesion to tooth structure. In providing this context, adhesive development, bonding systems, and their appropriate use are better understood. The end result is the better practice of adhesive dentistry.

  13. Simulation of Fluid-Structure and Fluid-Mediated Structure-Structure Interactions in Stokes Regime Using Immersed Boundary Method

    Directory of Open Access Journals (Sweden)

    Masoud Baghalnezhad

    2014-01-01

    Full Text Available The Stokes flow induced by the motion of an elastic massless filament immersed in a two-dimensional fluid is studied. Initially, the filament is deviated from its equilibrium state and the fluid is at rest. The filament will induce fluid motion while returning to its equilibrium state. Two different test cases are examined. In both cases, the motion of a fixed-end massless filament induces the fluid motion inside a square domain. However, in the second test case, a deformable circular string is placed in the square domain and its interaction with the Stokes flow induced by the filament motion is studied. The interaction between the fluid and deformable body/bodies can become very complicated from the computational point of view. An immersed boundary method is used in the present study. In order to substantiate the accuracy of the numerical method employed, the simulated results associated with the Stokes flow induced by the motion of an extending star string are compared well with those obtained by the immersed interface method. The results show the ability and accuracy of the IBM method in solving the complicated fluid-structure and fluid-mediated structure-structure interaction problems happening in a wide variety of engineering and biological systems.

  14. Green Synthesis and Regioselective Control of Sn/I2 Mediated Allylation of Carbonyl Compounds with Crotyl Halide in Water

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yan; ZHA,Zhang-Gen; ZHOU,Yu-Qing; WANG,Zhi-Yong

    2004-01-01

    @@ Barbier-type carbonyl allylation is particularly useful due to ease of operation and the availability and tractability of allylic substrates,[1] Metals such as indium, zinc and tin are often used as the mediator. Here we present a green approach toward the synthesis, that is, Sn/I2 mediated allylation of carbonyl compounds with crotyl halide in water.

  15. Structural basis for angiopoietin-1–mediated signaling initiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xuehong [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Seegar, Tom C. M. [Virginia Commonwealth Univ., Richmond, VA (United States); Dalton, Annamarie C. [Virginia Commonwealth Univ., Richmond, VA (United States); Tzvetkova-Robev, Dorothea [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Goldgur, Yehuda [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rajashankar, Kanagalaghatta R. [Argonne National Lab. (ANL), Argonne, IL (United States); Nikolov, Dimitar B. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Barton, William A. [Virginia Commonwealth Univ., Richmond, VA (United States)

    2013-04-30

    Angiogenesis is a complex cellular process involving multiple regulatory growth factors and growth factor receptors. Among them, the ligands for the endothelial-specific tunica intima endothelial receptor tyrosine kinase 2 (Tie2) receptor kinase, angiopoietin-1 (Ang1) and Ang2, play essential roles in balancing vessel stability and regression during both developmental and tumor-induced angiogenesis. Despite possessing a high degree of sequence identity, Ang1 and Ang2 have distinct functional roles and cell-signaling characteristics. Here, we present the crystal structures of Ang1 both unbound and in complex with the Tie2 ectodomain. Comparison of the Ang1-containing structures with their Ang2-containing counterparts provide insight into the mechanism of receptor activation and reveal molecular surfaces important for interactions with Tie2 coreceptors and associated signaling proteins. Using structure-based mutagenesis, we identify a loop within the angiopoietin P domain, adjacent to the receptor-binding interface, which confers the specific agonist/antagonist properties of the molecule. We demonstrate using cell-based assays that an Ang2 chimera containing the Ang1 loop sequence behaves functionally similarly to Ang1 as a constitutive Tie2 agonist, able to efficiently dissociate the inhibitory Tie1/Tie2 complex and elicit Tie2 clustering and downstream signaling.

  16. Identification of Structural Relaxation in the Dielectric Response of Water

    Science.gov (United States)

    Hansen, Jesper S.; Kisliuk, Alexander; Sokolov, Alexei P.; Gainaru, Catalin

    2016-06-01

    One century ago pioneering dielectric results obtained for water and n -alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.

  17. Structures of water molecules in carbon nanotubes under electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji, E-mail: yasuoka@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2015-03-28

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate.

  18. Water-mediated conformational transitions in nicotinic receptor M2 helix bundles: a molecular dynamics study.

    Science.gov (United States)

    Sankararamakrishnan, R; Sansom, M S

    1995-12-27

    The ion channel of the nicotinic acetylcholine receptor is a water-filled pore formed by five M2 helix segments, one from each subunit. Molecular dynamics simulations on bundles of five M2 alpha 7 helices surrounding a central column of water and with caps of water molecules at either end of the pore have been used to explore the effects of intrapore water on helix packing. Interactions of water molecules with the N-terminal polar sidechains lead to a conformational transition from right- to left-handed supercoils during these stimulations. These studies reveal that the pore formed by the bundle of M2 helices is flexible. A structural role is proposed for water molecules in determining the geometry of bundles of isolated pore-forming helices.

  19. What happens to the structure of water in cryoprotectant solutions?

    Science.gov (United States)

    Towey, James J; Soper, Alan K; Dougan, Lorna

    2013-01-01

    Cryoprotectant molecules are widely utilised in basic molecular research through to industrial and biomedical applications. The molecular mechanisms by which cryoprotectants stabilise and protect molecules and cells, along with suppressing the formation of ice, are incompletely understood. To gain greater insight into these mechanisms, we have completed an experimental determination of the structure of aqueous glycerol. Our investigation combines neutron diffraction experiments with isotopic substitution and computational modelling to determine the atomistic level structure of the glycerol-water mixtures, across the complete concentration range at room temperature. We examine the local structure of the system focusing on water structure. By comparing our data with that from other studies of cryoprotectant solutions, we attempt to find general rules for the action of cryoprotectants on water structure. We also discuss how these molecular scale interactions may be related to the macroscopic properties of the system.

  20. Temporal modelling of ballast water discharge and ship-mediated invasion risk to Australia

    Science.gov (United States)

    Cope, Robert C.; Prowse, Thomas A. A.; Ross, Joshua V.; Wittmann, Talia A.; Cassey, Phillip

    2015-01-01

    Biological invasions have the potential to cause extensive ecological and economic damage. Maritime trade facilitates biological invasions by transferring species in ballast water, and on ships' hulls. With volumes of maritime trade increasing globally, efforts to prevent these biological invasions are of significant importance. Both the International Maritime Organization and the Australian government have developed policy seeking to reduce the risk of these invasions. In this study, we constructed models for the transfer of ballast water into Australian waters, based on historic ballast survey data. We used these models to hindcast ballast water discharge over all vessels that arrived in Australian waters between 1999 and 2012. We used models for propagule survival to compare the risk of ballast-mediated propagule transport between ecoregions. We found that total annual ballast discharge volume into Australia more than doubled over the study period, with the vast majority of ballast water discharge and propagule pressure associated with bulk carrier traffic. As such, the ecoregions suffering the greatest risk are those associated with the export of mining commodities. As global marine trade continues to increase, effective monitoring and biosecurity policy will remain necessary to combat the risk of future marine invasion events. PMID:26064643

  1. Persistent Urban Impacts on Surface Water Quality Mediated by Stormwater Recharge

    Science.gov (United States)

    Gabor, R. S.; Brooks, P. D.; Neilson, B. T.; Bowen, G. J.; Jameel, M. Y.; Hall, S. J.; Eiriksson, D.; Millington, M. R.; Gelderloos, A.

    2016-12-01

    Growing population centers along mountain watersheds put added stress on sensitive hydrologic systems and create water quality impacts downstream. We examined the mountain-to-urban transition in watersheds on Utah's Wasatch Front to identify mechanisms by which urbanization impacts water resources. Rivers in the Wasatch flow from the mountains directly into an urban landscape, where they are subject to channelization, stormwater runoff systems, and urban inputs to water quality from sources such as road salt and fertilizer. As part of an interdisciplinary effort within the iUTAH project, multiple synoptic surveys were performed and a variety of measurements were made, including basic water chemistry along with discharge, water isotopes, and nutrients. Red Butte Creek, a stream in Salt Lake City, does not show significant urban impact to water quality until several kilometers after it enters the city where concentrations of solutes such as chloride and nitrate more than triple in a gaining reach. Groundwater springs discharging to this gaining section demonstrate urban-impacted water chemistry, suggesting that during baseflow a contaminated alluvial aquifer significantly controls stream chemistry. By combining hydrometric and hydrochemical observations we were able to estimate that these groundwater springs were 17-20% urban runoff. We were then able to predict the chemistry of urban runoff that feeds into the alluvial aquifer. Samples collected from storm culverts, roofs, and asphalt during storms had chemistry values within the range of those predicted by the mixing model. This evidence that urbanization affects the water quality of baseflow through impacted groundwater suggests that stormwater mitigation may not be sufficient for protecting urban watersheds, and quantifying these persistent groundwater mediated impacts is necessary to evaluate the success of restoration efforts. By comparing these results from Red Butte Creek with similar studies from other

  2. Alternative Structures for Water Rights Markets

    Science.gov (United States)

    Eheart, J. Wayland; Lyon, Randolph M.

    1983-08-01

    This paper examines the design of systems of marketable permits for water consumption from natural watercourses. The most important considerations for the work reported upon here are those associated with (1) uncertainty of future streamflows and economic conditions, (2) locational issues, and (3) efficient and effective functioning of the markets. Particular attention is given to the problem of implementing marketable rights systems in regions presently following the riparian doctorine. In these regions the most important design decisions include the basis of definition of permits, the means for initially distributing them, the type of market mechanism used for their transfer after they are issued, and the restrictions placed on their use and transfer. These design decisions are examined here with respect to program objectives, including economic efficiency, equity, ease of administration and implementation, and maintenance of instream flows. Alternative approaches to the design problems are discussed, and trade-offs implied by the decisions are identified.

  3. Structure and Hydrogen Bonding of Water in Polyacrylate Gels: Effects of Polymer Hydrophilicity and Water Concentration.

    Science.gov (United States)

    Mani, Sriramvignesh; Khabaz, Fardin; Godbole, Rutvik V; Hedden, Ronald C; Khare, Rajesh

    2015-12-10

    The ability to tune the hydrophilicity of polyacrylate copolymers by altering their composition makes these materials attractive candidates for membranes used to separate alcohol-water mixtures. The separation behavior of these polyacrylate membranes is governed by a complex interplay of factors such as water and alcohol concentrations, water structure in the membrane, polymer hydrophilicity, and temperature. We use molecular dynamics simulations to investigate the effect of polymer hydrophilicity and water concentration on the structure and dynamics of water molecules in the polymer matrix. Samples of poly(n-butyl acrylate) (PBA), poly(2-hydroxyethyl acrylate) (PHEA), and a 50/50 copolymer of BA and HEA were synthesized in laboratory, and their properties were measured. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. Molecular simulations of polyacrylate gels swollen in water and ethanol mixtures showed that water exhibits very different affinities toward the different (carbonyl, alkoxy, and hydroxyl) functional groups of the polymers. Water molecules are well dispersed in the system at low concentrations and predominantly form hydrogen bonds with the polymer. However, water forms large clusters at high concentrations along with the predominant formation of water-water hydrogen bonds and the acceleration of hydrogen bond dynamics.

  4. Structure and reactivity of water at biomaterial surfaces.

    Science.gov (United States)

    Vogler, E A

    1998-02-01

    Molecular self association in liquids is a physical process that can dominate cohesion (interfacial tension) and miscibility. In water, self association is a powerful organizational force leading to a three-dimensional hydrogen-bonded network (water structure). Localized perturbations in the chemical potential of water as by, for example, contact with a solid surface, induces compensating changes in water structure that can be sensed tens of nanometers from the point of origin using the surface force apparatus (SFA) and ancillary techniques. These instruments reveal attractive or repulsive forces between opposing surfaces immersed in water, over and above that anticipated by continuum theory (DLVO), that are attributed to a variable density (partial molar volume) of a more-or-less ordered water structure, depending on the water wettability (surface energy) of the water-contacting surfaces. Water structure at surfaces is thus found to be a manifestation of hydrophobicity and, while mechanistic/theoretical interpretation of experimental results remain the subject of some debate in the literature, convergence of experimental observations permit, for the first time, quantitative definition of the relative terms 'hydrophobic' and 'hydrophilic'. In particular, long-range attractive forces are detected only between surfaces exhibiting a water contact angle theta > 65 degrees (herein defined as hydrophobic surfaces with pure water adhesion tension tau O = gamma O cos theta 30 dyn/cm). These findings suggest at least two distinct kinds of water structure and reactivity: a relatively less-dense water region against hydrophobic surfaces with an open hydrogen-bonded network and a relatively more-dense water region against hydrophilic surfaces with a collapsed hydrogen-bonded network. Importantly, membrane and SFA studies reveal a discrimination between biologically-important ions that preferentially solubilizes divalent ions in more-dense water regions relative to less

  5. Rheoceptive mediators of graviperception in a water flea: Morphological implications of antennal-socket setae in daphnia magna

    Science.gov (United States)

    Meyers, D. G.

    1984-01-01

    Aquatic microcrustaceans of the genus Daphnia are known to orient to light during the day. At night, in the absence of visual cues, daphnids were suspected of maintaining equilibrium by monitoring the direction of gravity through their swimming antennae. Recent investigations using simulated, weightlessness conditions coupled with absence of illumination revealed hair like structures or setae on the basal, articulating socket of the antennae that, when surgically removed, resulted in disorientation. Given the simulated weightlessness or neutrally buoyant condition that eliminated sinking of the normally negatively buoyant Daphnia, it was proposed that the antennal socket setae function as rheoceptors stimulated by the upward rush of water currents during gravity induced, sinking phase of daphnid swimming movements. This rheoceptively mediated, gravity perception hypothesis is further supported by morphological investigations. Scanning electron micrographs indicate that antennal socket setae are anatomically similar to proprioceptors used by higher crustaceans to monitor gravitational direction.

  6. Structural topography-mediated high temperature wetting symmetry breaking

    CERN Document Server

    Li, Jing; Liu, Yahua; Hao, Chonglei; Li, Minfei; Chaudhury, Manoj K; Yao, Shuhuai

    2015-01-01

    Directed motion of liquid droplets is of considerable importance in various industrial processes. Despite extensive advances in this field of research, our understanding and the ability to control droplet dynamics at high temperature remain limited, in part due to the emergence of complex wetting states intertwined by the phase change process at the triple-phase interfaces. Here we show that two concurrent wetting states (Leidenfrost and contact boiling) can be manifested in a single droplet above its boiling point rectified by the presence of asymmetric textures. The breaking of the wetting symmetry at high temperature subsequently leads to the preferential motion towards the region with higher heat transfer coefficient. We demonstrate experimentally and analytically that the droplet vectoring is intricately dependent on the interplay between the structural topography and its imposed thermal state. Our fundamental understanding and the ability to control the droplet dynamics at high temperature represent an ...

  7. The role of RNA structure at 5' untranslated region in microRNA-mediated gene regulation.

    Science.gov (United States)

    Gu, Wanjun; Xu, Yuming; Xie, Xueying; Wang, Ting; Ko, Jae-Hong; Zhou, Tong

    2014-09-01

    Recent studies have suggested that the secondary structure of the 5' untranslated region (5' UTR) of messenger RNA (mRNA) is important for microRNA (miRNA)-mediated gene regulation in humans. mRNAs that are targeted by miRNA tend to have a higher degree of local secondary structure in their 5' UTR; however, the general role of the 5' UTR in miRNA-mediated gene regulation remains unknown. We systematically surveyed the secondary structure of 5' UTRs in both plant and animal species and found a universal trend of increased mRNA stability near the 5' cap in mRNAs that are regulated by miRNA in animals, but not in plants. Intra-genome comparison showed that gene expression level, GC content of the 5' UTR, number of miRNA target sites, and 5' UTR length may influence mRNA structure near the 5' cap. Our results suggest that the 5' UTR secondary structure performs multiple functions in regulating post-transcriptional processes. Although the local structure immediately upstream of the start codon is involved in translation initiation, RNA structure near the 5' cap site, rather than the structure of the full-length 5' UTR sequences, plays an important role in miRNA-mediated gene regulation.

  8. Structure and adsorption of water in nonuniform cylindrical nanopores

    Science.gov (United States)

    Torrie, G. M.; Lakatos, G.; Patey, G. N.

    2010-12-01

    Grand canonical Monte Carlo simulations are used to examine the adsorption and structure of water in the interior of cylindrical nanopores in which the axial symmetry is broken either by varying the radius as a function of position along the pore axis or by introducing regions where the characteristic strength of the water-nanopore interaction is reduced. Using the extended simple point charge (SPC/E) model for water, nanopores with a uniform radius of 6.0 Å are found to fill with water at chemical potentials approximately 0.5 kJ/mol higher than the chemical potential of the saturated vapor. The water in these filled pores exists in either a weakly structured fluidlike state or a highly structured uniformly polarized state composed of a series of stacked water clusters with pentagonal cross sections. This highly structured state can be disrupted by creating hydrophobic regions on the surface of the nanopore, and the degree of disruption can be systematically controlled by adjusting the size of the hydrophobic regions. In particular, hydrophobic banded regions with lengths larger than 9.2 Å result in a complete loss of structure and the formation of a liquid-vapor coexistence in the tube interior. Similarly, the introduction of spatial variation in the nanopore radius can produce two condensation transitions at distinct points along the filling isotherm.

  9. Structural coupling between FKBP12 and buried water.

    Science.gov (United States)

    Szep, Szilvia; Park, Sheldon; Boder, Eric T; Van Duyne, Gregory D; Saven, Jeffery G

    2009-02-15

    Globular proteins often contain structurally well-resolved internal water molecules. Previously, we reported results from a molecular dynamics study that suggested that buried water (Wat3) may play a role in modulating the structure of the FK506 binding protein-12 (FKBP12) (Park and Saven, Proteins 2005; 60:450-463). In particular, simulations suggested that disrupting a hydrogen bond to Wat3 by mutating E60 to either A or Q would cause a structural perturbation involving the distant W59 side chain, which rotates to a new conformation in response to the mutation. This effectively remodels the ligand-binding pocket, as the side chain in the new conformation is likely to clash with bound FK506. To test whether the protein structure is in effect modulated by the binding of a buried water in the distance, we determined high-resolution (0.92-1.29 A) structures of wild-type FKBP12 and its two mutants (E60A, E60Q) by X-ray crystallography. The structures of mutant FKBP12 show that the ligand-binding pocket is indeed remodeled as predicted by the substitution at position 60, even though the water molecule does not directly interact with any of the amino acids of the binding pocket. Thus, these structures support the view that buried water molecules constitute an integral, noncovalent component of the protein structure. Additionally, this study provides an example in which predictions from molecular dynamics simulations are experimentally validated with atomic precision, thus showing that the structural features of protein-water interactions can be reliably modeled at a molecular level.

  10. Review: mechanisms for boron deficiency-mediated changes in plant water relations.

    Science.gov (United States)

    Wimmer, Monika A; Eichert, Thomas

    2013-04-01

    Boron (B) is an essential microelement for plants and is constantly needed throughout the plant life due to its function as a structural element of the plant cell wall. B deficiency is a wide-spread problem in agricultural areas world-wide, and management of B nutrition is challenged by sudden occurrences of B deficiency or inconsistent effects of foliar B application. The effects of insufficient B supply on different structures relevant for the plant water status have been heavily researched, but the resulting conclusions are contradictory and no clear picture has so far emerged that fully explains the inconsistencies. B deficiency can affect water uptake by inhibition of root and shoot growth and by upregulation of water channels. Structural damage to xylem vessels can limit water transport to arial plant parts, while water loss can be altered by impaired barrier functions of leaf surfaces and reduced photosynthesis. In consequence of all these effects, transpiration is reduced in B-deficient plants under well-watered conditions. Under drought conditions, the responsiveness of stomata is impaired. Possible consequences of damaged vasculature for plant B nutrition include the reduced effectiveness of foliar B fertilization, especially in species with high B phloem mobility. Changes in leaf surface properties can further reduce B uptake after foliar application. In species with low B phloem mobility, weakened xylem vessels may not be able to supply sufficient B to arial parts under conditions of increased B demand, such as during bud development of trees. Since structural damage to vessels is hardly reversible, these effects could be permanent, even if B deficiency was only transient. Another consequence of reduced water status is the higher susceptibility of B-deficient plants to other abiotic stresses, which also impair water relations, especially drought. Since damage to vasculature can occur before visible symptoms of B deficiency appear in shoots, the

  11. Structure and Controls of the Global Virtual Water Trade Network

    Science.gov (United States)

    Suweis, S. S.

    2011-12-01

    Recurrent or ephemeral water shortages are a crucial global challenge, in particular because of their impacts on food production. The global character of this challenge is reflected in the trade among nations of virtual water, i.e. the amount of water used to produce a given commodity. We build, analyze and model the network describing the transfer of virtual water between world nations for staple food products. We find that all the key features of the network are well described by a model, the fitness model, that reproduces both the topological and weighted properties of the global virtual water trade network, by assuming as sole controls each country's gross domestic product and yearly rainfall on agricultural areas. We capture and quantitatively describe the high degree of globalization of water trade and show that a small group of nations play a key role in the connectivity of the network and in the global redistribution of virtual water. Finally, we illustrate examples of prediction of the structure of the network under future political, economic and climatic scenarios, suggesting that the crucial importance of the countries that trade large volumes of water will be strengthened. Our results show the importance of incorporating a network framework in the study of virtual water trades and provide a model to study the structure and resilience of the GVWTN under future scenarios for social, economic and climate change.

  12. Water-mediated conformations of the alanine dipeptide as revealed by distributed umbrella sampling simulations, quantum mechanics based calculations, and experimental data.

    Science.gov (United States)

    Cruz, Víctor; Ramos, Javier; Martínez-Salazar, Javier

    2011-04-28

    An exhaustive umbrella sampling simulation of the alanine dipeptide in solution is reported. The presence of stable Y conformations in solution is assessed by both quantum calculations and experimental data from X-ray and NMR protein-solved structures available in the protein coil library. The agreement between experimental and simulation Ramachandran plots of the dipeptide in solution is excellent. A suitable explanation of the stabilization of the Y conformation mediated by water for the alanine dipeptide is discussed on the basis of Car-Parrinello MD calculations of the dipeptide in water.

  13. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    The trend towards the installation of more offshore constructions for the production and transmission of marine oil, gas and wind power is expected to continue over the coming years. An important process in the offshore construction design is the assessment of seabed soil stability exposed...... to dynamic ocean waves. The goal of this research project is to develop numerical soil models for computing realistic seabed response in the interacting offshore environment, where ocean waves, seabed and offshore structure highly interact with each other. The seabed soil models developed are based...... on the ’modified’ Biot’s consolidation equations, in which the soil-pore fluid coupling is extended to account for the various nonlinear soil stress-strain relations included. The Finite volume method (FVM) together with a segregated solution strategy has been used to numerically solve the governing equations...

  14. Water Dynamics and Its Role in Structural Hysteresis of Dissolved Organic Matter.

    Science.gov (United States)

    Conte, Pellegrino; Kucerik, Jiri

    2016-03-01

    Knowledge of structural dynamics of dissolved organic matter (DOM) is of paramount importance for understanding DOM stability and role in the fate of solubilized organic and inorganic compounds (e.g., nutrients and pollutants), either in soils or aquatic systems. In this study, fast field cycling (FFC) (1)H NMR relaxometry was applied to elucidate structural dynamics of terrestrial DOM, represented by two structurally contrasting DOM models such as Suwanee River (SRFA) and Pahokee peat (PPFA) fulvic acids purchased by the International Humic Substance Society. Measurement of NMR relaxation rate of water protons in heating-cooling cycles revealed structural hysteresis in both fulvic acids. In particular, structural hysteresis was related to the delay in re-establishing water network around fulvic molecules as a result of temperature fluctuations. The experiments revealed that the structural temperature dependency and hysteresis were more pronounced in SRFA than in PPFA. This was attributed to the larger content of hydrogel-like structure in SRFA stabilized, at a larger extent, by H-bonds between carboxylic and phenolic groups. Moreover, results supported the view that terrestrial DOM consist of a hydrophobic rigid core surrounded by progressively assembling amphiphilic and polar molecules, which form an elastic structure that can mediate reactivity of the whole DOM.

  15. Water mediated hydrogen abstraction mechanism in the radical reaction between HOSO and NO2

    Science.gov (United States)

    Lesar, Antonija; Tušar, Simona

    2016-05-01

    The effect of water molecules on the direct hydrogen abstraction from HOSO by NO2 was investigated for the first time. Stationary points were located at the B3LYP/6-311+G(2df,2pd) and CCSD/aug-cc-pVDZ levels of theory whereas energetics was further improved by CBS-QB3 and G4 composite methods. The fractions of hydrated radical complexes were estimated in order to assess atmospheric relevance of the title reaction. The energy barrier of the water mediated process becomes negligible. The formations of post-reactive complexes from pre-reactive complexes are energetically very favorable and the processes are spontaneous suggesting that they should be very feasible under atmospheric conditions.

  16. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis.

    Science.gov (United States)

    Feng, Xi-Qiao; Gao, Xuefeng; Wu, Ziniu; Jiang, Lei; Zheng, Quan-Shui

    2007-04-24

    Water striders are a type of insect with the remarkable ability to stand effortlessly and walk quickly on water. This article reports the water repellency mechanism of water strider legs. Scanning electron microscope (SEM) observations reveal the uniquely hierarchical structure on the legs, consisting of numerous oriented needle-shaped microsetae with elaborate nanogrooves. The maximal supporting force of a single leg against water surprisingly reaches up to 152 dynes, about 15 times the total body weight of this insect. We theoretically demonstrate that the cooperation of nanogroove structures on the oriented microsetae, in conjunction with the wax on the leg, renders such water repellency. This finding might be helpful in the design of innovative miniature aquatic devices and nonwetting materials.

  17. TNF-induced structural joint damage is mediated by IL-1.

    NARCIS (Netherlands)

    Zwerina, J.; Redlich, K.; Polzer, K.; Joosten, L.A.B.; Kronke, G.; Distler, J.; Hess, A.; Pundt, N.; Pap, T.; Hoffmann, O.; Gasser, J.; Scheinecker, C.; Smolen, J.S.; Berg, W.B. van den; Schett, G.

    2007-01-01

    Blocking TNF effectively inhibits inflammation and structural damage in human rheumatoid arthritis (RA). However, so far it is unclear whether the effect of TNF is a direct one or indirect on up-regulation of other mediators. IL-1 may be one of these candidates because it has a central role in anima

  18. Structural and functional cortical connectivity mediating cross education of motor function

    NARCIS (Netherlands)

    Ruddy, Kathy L.; Leemans, Alexander; Woolley, Daniel G.; Wenderoth, Nicole; Carson, Richard G.

    2017-01-01

    Cross-education (CE) is the process whereby training with one limb leads to subsequent improvement in performance by the opposite untrained limb. We used multimodal neuroimaging in humans to investigate the mediating neural mechanisms by relating quantitative estimates of functional and structural

  19. An Overview of Path Analysis: Mediation Analysis Concept in Structural Equation Modeling

    OpenAIRE

    Jenatabadi, Hashem Salarzadeh

    2015-01-01

    This paper provides a tutorial discussion on path analysis structure with concept of structural equation modelling (SEM). The paper delivers an introduction to path analysis technique and explain to how to deal with analyzing the data with this kind of statistical methodology especially with a mediator in the research model. The intended audience is statisticians, mathematicians, or methodologists who either know about SEM or simple basic statistics especially in regression and linear/nonline...

  20. The effect of the water tariff structures on the water consumption in Mallorcan hotels

    Science.gov (United States)

    Deyà-Tortella, Bartolomé; Garcia, Celso; Nilsson, William; Tirado, Dolores

    2016-08-01

    Tourism increases water demand, especially in coastal areas and on islands, and can also cause water shortages during the dry season and the degradation of the water supply. The aim of this study is to evaluate the impact of water price structures on hotel water consumption on the island of Mallorca (Spain). All tourist municipalities on the island use different pricing structures, such as flat or block rates, and different tariffs. This exogenous variation is used to evaluate the effect of prices on water consumption for a sample of 134 hotels. The discontinuity of the water tariff structure and the fixed rate, which depends on the number of hotel beds, generate endogeneity problems. We propose an econometric model, an instrumental variable quantile regression for within artificial blocks transformed data, to solve both problems. The coefficients corresponding to the price variables are not found to be significantly different from zero. The sign of the effect is negative, but the magnitude is negligible: a 1% increase in all prices would reduce consumption by an average of only 0.024%. This result is probably due to the small share of water costs with respect to the total hotel operational costs (around 4%). Our regression model concludes that the introduction of water-saving initiatives constitutes an effective way to reduce consumption.

  1. Using crystallographic water properties for the analysis and prediction of lectin-carbohydrate complex structures.

    Science.gov (United States)

    Modenutti, C; Gauto, D; Radusky, L; Blanco, J; Turjanski, A; Hajos, S; Marti, Ma

    2015-02-01

    Understanding protein-ligand interactions is a fundamental question in basic biochemistry, and the role played by the solvent along this process is not yet fully understood. This fact is particularly relevant in lectins, proteins that mediate a large variety of biological processes through the recognition of specific carbohydrates. In the present work, we have thoroughly analyzed a nonredundant and well-curated set of lectin structures looking for a potential relationship between the structural water properties in the apo-structures and the corresponding protein-ligand complex structures. Our results show that solvent structure adjacent to the binding sites mimics the ligand oxygen structural framework in the resulting protein-ligand complex, allowing us to develop a predictive method using a Naive Bayes classifier. We also show how these properties can be used to improve docking predictions of lectin-carbohydrate complex structures in terms of both accuracy and precision, thus developing a solid strategy for the rational design of glycomimetic drugs. Overall our results not only contribute to the understanding of protein-ligand complexes, but also underscore the role of the water solvent in the ligand recognition process. Finally, we discuss our findings in the context of lectin specificity and ligand recognition properties.

  2. Biomimetic "water strider leg" with highly refined nanogroove structure and remarkable water-repellent performance.

    Science.gov (United States)

    Bai, Fan; Wu, Juntao; Gong, Guangming; Guo, Lin

    2014-09-24

    The water strider is a wonderful case that we can learn from nature to understand how to stride on the water surface. Inspired by the unique hierarchical micro/nanostructure of the water strider leg, in this article, we designed and fabricated an artificial strider leg with refined nanogroove structure by using an electrospinning and sacrificial template method. A model water strider that was equipped with four artificial legs showed remarkable water-repellent performance; namely, it could carry a load that was about 7 times heavier than its own weight. Characterization demonstrated that, even though the artificial leg did not possess a superhydrophobic surface, the numerous nanogrooves could still provide a huge supporting force for the man-made model strider. This work enlightens the development of artificial water-walking devices for exploring and monitoring the surface of water. Because of the advances of the applied materials, the devices may fulfill tasks in a harsh aquatic environment.

  3. Topography mediates plant water stress: coupling groundwater flow and rhizosphere-xylem hydraulics

    Science.gov (United States)

    Mackay, D. S.; Tai, X.

    2016-12-01

    Explicit representation of groundwater movement and its subsidy to the unsaturated zone have long been recognized to affect land surface fluxes. But its impact on mediating plant safety during drought has not yet been evaluated, due to the oversimplified representation of the soil-plant-atmospheric continuum in current mainstream land surface models. Here we evaluated the interaction between groundwater processes and plant hydraulics by integrating a three-dimensional groundwater model - ParFlow with a physiologically sophisticated plant model - TREES. A series of simulation experiments using representative hillslope shapes during a general dry down period were carried out to explore the impacts of topography, soil properties, and plant traits - maximum hydraulic conductance (Kmax), root area (Ar), and vulnerability to cavitation on plant hydraulic stress and the potential feedbacks to soil water spatial dynamics. From an initial condition of uniform pressure, lateral redistribution dominated the first stage when soils were wet, resulting in various water table depths. As drought progressed, the tension wetted zone provided a water subsidy to the root zone, causing various rates of soil dry down at different locations. In the end, the root zone soil water remains stable and dry, with diurnal fluctuations induced by the hydraulic redistribution of plant roots. Plants, in general, had higher transpiration and lower hydraulic stress on concave hillslopes. The same plant growing on fine-textured soils had higher transpiration rate, and therefore stronger feedbacks to the water table depths, compared to coarse-textured soil. But these responses could further vary by plant traits. For locations with shallow water table, Kmax is the most important factor determining plant function. When soil is dry, plants with higher Ar and more resistant xylem sustained higher transpiration rates. Those promising performance suggests that the coupled model could be a powerful tool for

  4. Character and Structure of Hydrogen Bonding in Liquid Water

    Science.gov (United States)

    Guo, Jinghua; Luo, Yi; Augustsson, Andreas; Rubensson, Jan-Erik; Sathe, Conny; Agren, Hans; Siegbahn, Hans; Nordgren, Joseph

    2003-03-01

    Pauling stated in the 50s that electron sharing between water molecules results in a covalency in the hydrogen bond. Many attempts have been made in the past to verify PaulingÂ's prediction, but without much success due to the limitation of experimental access to the electronic structure of liquids. We reported the first X-ray emission spectra of liquid water. X-ray emission is a direct probe of the local electronic structure of complex systems. Our experimental and theoretical studies on liquid water provide clear evidence that an electron sharing takes place between water molecules. Such a sharing mainly involves the so-called 3a1 orbital, which is a mixing of oxygen 2p and hydrogen 2s atomic orbitals. The outermost "lone pair" orbital (1b_1), however, hardly shows any change upon solvation, which is in contradiction with the normal definition of so-called coordinate-covalent bonding (also called donor-acceptor or Lewis acid-base bonding). Moreover, the X-ray emission spectra of liquid water nicely show the origin for the increasing of dipole moment in liquid water, and they have also been used to separately determine a particular structure with broken hydrogen bonding.

  5. Structure and Dynamics of Water at Carbon-Based Interfaces

    Directory of Open Access Journals (Sweden)

    Jordi Martí

    2017-03-01

    Full Text Available Water structure and dynamics are affected by the presence of a nearby interface. Here, first we review recent results by molecular dynamics simulations about the effect of different carbon-based materials, including armchair carbon nanotubes and a variety of graphene sheets—flat and with corrugation—on water structure and dynamics. We discuss the calculations of binding energies, hydrogen bond distributions, water’s diffusion coefficients and their relation with surface’s geometries at different thermodynamical conditions. Next, we present new results of the crystallization and dynamics of water in a rigid graphene sieve. In particular, we show that the diffusion of water confined between parallel walls depends on the plate distance in a non-monotonic way and is related to the water structuring, crystallization, re-melting and evaporation for decreasing inter-plate distance. Our results could be relevant in those applications where water is in contact with nanostructured carbon materials at ambient or cryogenic temperatures, as in man-made superhydrophobic materials or filtration membranes, or in techniques that take advantage of hydrated graphene interfaces, as in aqueous electron cryomicroscopy for the analysis of proteins adsorbed on graphene.

  6. Local structure analysis in ab initio liquid water

    Science.gov (United States)

    Santra, Biswajit; DiStasio, Robert A., Jr.; Martelli, Fausto; Car, Roberto

    2015-09-01

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyse the local structure in such highly accurate ab initio liquid water. At ambient conditions, the LSI probability distribution, P(I ), was unimodal with most water molecules characterised by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P(I ) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high-density- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies among water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- and high-density amorphous phases of ice are present in the IPES of ambient liquid water. Analysis of the LSI autocorrelation function uncovered a persistence time of ∼ 4 ps - a finding consistent with the fact that natural thermal fluctuations are responsible for transitions between these distinct yet transient local aqueous environments in ambient liquid water.

  7. Discovery of Water Structural Transitions near Interfaces of Polarizable Solutes

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry

    2015-03-01

    The standard harmonic approximation describing polarization around the solute is expected to break down with increasing solute polarizability. The focus of this study is to investigate the structure of water around dipolar-polarizable solutes by Monte Carlo (MC) simulations in the non-harmonic regime. We observe a structural transition in the water hydration shell and its condensation, which are driven by increasing the solute polarizability. There is also a crossover in the orientational structure near the point of breakdown of the harmonic approximation. At lower polarizabilities, waters in the hydration shell point their hydrogens toward the solute. The dipoles flip their orientations at the transition to the non-harmonic regime. Both the hydration shell compressibility and the electric field susceptibility display maxima in the transition region. Using the water electric field at the center of the polarizable solute as the order parameter, a Landau-type model is formulated. Its predictions are in reasonable agreement with MC simulations performed for hard sphere and Lennard Jones polarizable solutes in a TIP3P water model. The observed structural transition suggests a general crossover phenomenon driven by the stabilization energy required to polarize the solute. This research was supported by the National Science Foundation (CHE-1213288). CPU time was provided by the National Science Foundation through XSEDE resources (TG-MCB080116N).

  8. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin.

    Science.gov (United States)

    Wier, Adam D; Mayekar, Manasi K; Héroux, Annie; Arndt, Karen M; VanDemark, Andrew P

    2013-10-22

    Polymerase associated factor 1 complex (Paf1C) broadly influences gene expression by regulating chromatin structure and the recruitment of RNA-processing factors during transcription elongation. The Plus3 domain of the Rtf1 subunit mediates Paf1C recruitment to genes by binding a repeating domain within the elongation factor Spt5 (suppressor of Ty). Here we provide a molecular description of this interaction by reporting the structure of human Rtf1 Plus3 in complex with a phosphorylated Spt5 repeat. We find that Spt5 binding is mediated by an extended surface containing phosphothreonine recognition and hydrophobic interfaces that interact with residues outside the Spt5 motif. Changes within these interfaces diminish binding of Spt5 in vitro and chromatin localization of Rtf1 in vivo. The structure reveals the basis for recognition of the repeat motif of Spt5, a key player in the recruitment of gene regulatory factors to RNA polymerase II.

  9. Structural mechanism of nuclear transport mediated by importin β and flexible amphiphilic proteins.

    Science.gov (United States)

    Yoshimura, Shige H; Kumeta, Masahiro; Takeyasu, Kunio

    2014-12-02

    Karyopherin β family proteins mediate the nuclear/cytoplasmic transport of various proteins through the nuclear pore complex (NPC), although they are substantially larger than the size limit of the NPC.To elucidate the molecular mechanism underlying this paradoxical function, we focused on the unique structures called HEAT repeats, which consist of repetitive amphiphilic α helices. An in vitro transport assay and FRAP analyses demonstrated that not only karyopherin β family proteins but also other proteins with HEAT repeats could pass through the NPC by themselves, and serve as transport mediators for their binding partners. Biochemical and spectroscopic analyses and molecular dynamics simulations of purified HEAT-rich proteins revealed that they interact with hydrophobic groups, including phenyl and alkyl groups, and undergo reversible conformational changes in tertiary structures, but not in secondary structures. These results show that conformational changes in the flexible amphiphilic motifs play a critical role in translocation through the NPC.

  10. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein.

    Science.gov (United States)

    Popovych, Nataliya; Tzeng, Shiou-Ru; Tonelli, Marco; Ebright, Richard H; Kalodimos, Charalampos G

    2009-04-28

    The cAMP-mediated allosteric transition in the catabolite activator protein (CAP; also known as the cAMP receptor protein, CRP) is a textbook example of modulation of DNA-binding activity by small-molecule binding. Here we report the structure of CAP in the absence of cAMP, which, together with structures of CAP in the presence of cAMP, defines atomic details of the cAMP-mediated allosteric transition. The structural changes, and their relationship to cAMP binding and DNA binding, are remarkably clear and simple. Binding of cAMP results in a coil-to-helix transition that extends the coiled-coil dimerization interface of CAP by 3 turns of helix and concomitantly causes rotation, by approximately 60 degrees , and translation, by approximately 7 A, of the DNA-binding domains (DBDs) of CAP, positioning the recognition helices in the DBDs in the correct orientation to interact with DNA. The allosteric transition is stabilized further by expulsion of an aromatic residue from the cAMP-binding pocket upon cAMP binding. The results define the structural mechanisms that underlie allosteric control of this prototypic transcriptional regulatory factor and provide an illustrative example of how effector-mediated structural changes can control the activity of regulatory proteins.

  11. Contact angles of wetting and water stability of soil structure

    Science.gov (United States)

    Kholodov, V. A.; Yaroslavtseva, N. V.; Yashin, M. A.; Frid, A. S.; Lazarev, V. I.; Tyugai, Z. N.; Milanovskiy, E. Yu.

    2015-06-01

    From the soddy-podzolic soils and typical chernozems of different texture and land use, dry 3-1 mm aggregates were isolated and sieved in water. As a result, water-stable aggregates and water-unstable particles composing dry 3-1 mm aggregates were obtained. These preparations were ground, and contact angles of wetting were determined by the static sessile drop method. The angles varied from 11° to 85°. In most cases, the values of the angles for the water-stable aggregates significantly exceeded those for the water-unstable components. In terms of carbon content in structural units, there was no correlation between these parameters. When analyzing the soil varieties separately, the significant positive correlation between the carbon content and contact angle of aggregates was revealed only for the loamy-clayey typical chernozem. Based on the multivariate analysis of variance, the value of contact wetting angle was shown to be determined by the structural units belonging to water-stable or water-unstable components of macroaggregates and by the land use type. In addition, along with these parameters, the texture has an indirect effect.

  12. Characterization of the Shock Wave Structure in Water

    Science.gov (United States)

    Teitz, Emilie Maria

    The scientific community is interested in furthering the understanding of shock wave structures in water, given its implications in a wide range of applications; from researching how shock waves penetrate unwanted body tissues to studying how humans respond to blast waves. Shock wave research on water has existed for over five decades. Previous studies have investigated the shock response of water at pressures ranging from 1 to 70 GPa using flyer plate experiments. This report differs from previously published experiments in that the water was loaded to shock pressures ranging from 0.36 to 0.70 GPa. The experiment also utilized tap water rather than distilled water as the test sample. Flyer plate experiments were conducted in the Shock Physics Laboratory at Marquette University to determine the structure of shock waves within water. A 12.7 mm bore gas gun fired a projectile made of copper, PMMA, or aluminum at a stationary target filled with tap water. Graphite break pins in a circuit determined the initial projectile velocity prior to coming into contact with the target. A Piezoelectric timing pin (PZT pin) at the front surface of the water sample determined the arrival of the leading wave and a Photon Doppler Velocimeter (PDV) measured particle velocity from the rear surface of the water sample. The experimental results were compared to simulated data from a Eulerian Hydrocode called CTH [1]. The experimental results differed from the simulated results with deviations believed to be from experimental equipment malfunctions. The main hypothesis being that the PZT pin false triggered, resulting in measured lower than expected shock velocities. The simulated results were compared to published data from various authors and was within range.

  13. Water-insoluble Silk Films with Silk I Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  14. DOMMINO 2.0: integrating structurally resolved protein-, RNA-, and DNA-mediated macromolecular interactions.

    Science.gov (United States)

    Kuang, Xingyan; Dhroso, Andi; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2016-01-01

    Macromolecular interactions are formed between proteins, DNA and RNA molecules. Being a principle building block in macromolecular assemblies and pathways, the interactions underlie most of cellular functions. Malfunctioning of macromolecular interactions is also linked to a number of diseases. Structural knowledge of the macromolecular interaction allows one to understand the interaction's mechanism, determine its functional implications and characterize the effects of genetic variations, such as single nucleotide polymorphisms, on the interaction. Unfortunately, until now the interactions mediated by different types of macromolecules, e.g. protein-protein interactions or protein-DNA interactions, are collected into individual and unrelated structural databases. This presents a significant obstacle in the analysis of macromolecular interactions. For instance, the homogeneous structural interaction databases prevent scientists from studying structural interactions of different types but occurring in the same macromolecular complex. Here, we introduce DOMMINO 2.0, a structural Database Of Macro-Molecular INteractiOns. Compared to DOMMINO 1.0, a comprehensive database on protein-protein interactions, DOMMINO 2.0 includes the interactions between all three basic types of macromolecules extracted from PDB files. DOMMINO 2.0 is automatically updated on a weekly basis. It currently includes ∼1,040,000 interactions between two polypeptide subunits (e.g. domains, peptides, termini and interdomain linkers), ∼43,000 RNA-mediated interactions, and ∼12,000 DNA-mediated interactions. All protein structures in the database are annotated using SCOP and SUPERFAMILY family annotation. As a result, protein-mediated interactions involving protein domains, interdomain linkers, C- and N- termini, and peptides are identified. Our database provides an intuitive web interface, allowing one to investigate interactions at three different resolution levels: whole subunit network

  15. Autonomous motivation: involvement in physical activity, and perceived sport competence: structural and mediator models.

    Science.gov (United States)

    Bagøien, Tor Egil; Halvari, Hallgeir

    2005-02-01

    Students in upper secondary school (N = 231, M = 16.6 yr., SD = 1.6) were tested on involvement in physical activity, perceived sport competence, using the Perceived Competence Scale of Harter, and motivational regulation on the Self-regulation Questionnaire of Ryan and Connell. Correlations were positive among involvement in physical activity, autonomous motivation, and perceived sport competence. A hypothetical model indicated that autonomous motivation mediates the relation between perceived sport competence and involvement in physical activity. Although LISREL analysis supported this mediation, the best model fit of the data supported a structural model with involvement in physical activity (R2 = .63) to mediate between autonomous motivation and perceived competence (R2 = .47). Results are interpreted and discussed in terms of self-determination theory.

  16. Effect of Magnesium Oxide Nanoparticles on Water Glass Structure

    OpenAIRE

    A. Bobrowski; Kmita, A.; Starowicz, M.; B. Stypuła; B. Hutera

    2012-01-01

    An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide onthe structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgOin propanol and ethanol were introduced in the same mass content (5wt.%) and structural changes were determined by measurement of theFT-IR absorption spectra.

  17. Carrier Mediated Distribution System (CAMDIS): a new approach for the measurement of octanol/water distribution coefficients.

    Science.gov (United States)

    Wagner, Bjoern; Fischer, Holger; Kansy, Manfred; Seelig, Anna; Assmus, Frauke

    2015-02-20

    Here we present a miniaturized assay, referred to as Carrier-Mediated Distribution System (CAMDIS) for fast and reliable measurement of octanol/water distribution coefficients, log D(oct). By introducing a filter support for octanol, phase separation from water is facilitated and the tendency of emulsion formation (emulsification) at the interface is reduced. A guideline for the best practice of CAMDIS is given, describing a strategy to manage drug adsorption at the filter-supported octanol/buffer interface. We validated the assay on a set of 52 structurally diverse drugs with known shake flask log D(oct) values. Excellent agreement with literature data (r(2) = 0.996, standard error of estimate, SEE = 0.111), high reproducibility (standard deviation, SD stock solution) and a broad analytical range (log D(oct) range = -0.5 to 4.2) make CAMDIS a valuable tool for the high-throughput assessment of log D(oc)t. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Thermodynamic consequences of disrupting a water-mediated hydrogen bond network in a protein:pheromone complex.

    Science.gov (United States)

    Sharrow, Scott D; Edmonds, Katherine A; Goodman, Michael A; Novotny, Milos V; Stone, Martin J

    2005-01-01

    The mouse pheromones (+/-)-2-sec-butyl-4,5-dihydrothiazole (SBT) and 6-hydroxy-6-methyl-3-heptanone (HMH) bind into an occluded hydrophobic cavity in the mouse major urinary protein (MUP-1). Although the ligands are structurally unrelated, in both cases binding is accompanied by formation of a similar buried, water-mediated hydrogen bond network between the ligand and several backbone and side chain groups on the protein. To investigate the energetic contribution of this hydrogen bond network to ligand binding, we have applied isothermal titration calorimetry to measure the binding thermodynamics using several MUP mutants and ligand analogs. Mutation of Tyr-120 to Phe, which disrupts a hydrogen bond from the phenolic hydroxyl group of Tyr-120 to one of the bound water molecules, results in a substantial loss of favorable binding enthalpy, which is partially compensated by a favorable change in binding entropy. A similar thermodynamic effect was observed when the hydrogen bonded nitrogen atom of the heterocyclic ligand was replaced by a methyne group. Several other modifications of the protein or ligand had smaller effects on the binding thermodynamics. The data provide supporting evidence for the role of the hydrogen bond network in stabilizing the complex.

  19. Plasmon-mediated synthesis of silver cubes with unusual twinning structures using short wavelength excitation.

    Science.gov (United States)

    Personick, Michelle L; Langille, Mark R; Zhang, Jian; Wu, Jinsong; Li, Shuyou; Mirkin, Chad A

    2013-06-10

    The plasmon-mediated synthesis of silver nanoparticles is a versatile synthetic method which leverages the localized surface plasmon resonance (LSPR) of nanoscale silver to generate particles with non-spherical shapes and control over dimensions. Herein, a method is reported for controlling the twinning structure of silver nanoparticles, and consequently their shape, via the plasmon-mediated synthesis, solely by varying the excitation wavelength between 400, 450, and 500 nm, which modulates the rate of Ag⁺ reduction. Shorter, higher energy excitation wavelengths lead to faster rates of reaction, which in turn yield structures containing a greater number of twin boundaries. With this method, silver cubes can be synthesized using 450 nm excitation, which represents the first time this shape has been realized by a plasmon-mediated synthetic approach. In addition, these cubes contain an unusual twinning structure composed of two intersecting twin boundaries or multiple parallel twin boundaries. With respect to their twinning structure, these cubes fall between planar-twinned and multiply twinned nanoparticles, which are synthesized using 500 and 400 nm excitation, respectively.

  20. Waterdock 2.0: Water placement prediction for Holo-structures with a pymol plugin.

    Science.gov (United States)

    Sridhar, Akshay; Ross, Gregory A; Biggin, Philip C

    2017-01-01

    Water is often found to mediate interactions between a ligand and a protein. It can play a significant role in orientating the ligand within a binding pocket and contribute to the free energy of binding. It would thus be extremely useful to be able to accurately predict the position and orientation of water molecules within a binding pocket. Recently, we developed the WaterDock protocol that was able to predict 97% of the water molecules in a test set. However, this approach generated false positives at a rate of over 20% in most cases and whilst this might be acceptable for some applications, in high throughput scenarios this is not desirable. Here we tackle this problem via the inclusion of knowledge regarding the solvation structure of ligand functional groups. We call this new protocol WaterDock2 and demonstrate that this protocol maintains a similar true positive rate to the original implementation but is capable of reducing the false-positive rate by over 50%. To improve the usability of the method, we have also developed a plugin for the popular graphics program PyMOL. The plugin also contains an implementation of the original WaterDock.

  1. An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior

    Science.gov (United States)

    Jung, Yonwoo; Hsieh, Lawrence S.; Lee, Angela M.; Zhou, Zhifeng; Coman, Daniel; Heath, Christopher J.; Hyder, Fahmeed; Mineur, Yann S.; Yuan, Qiaoping; Goldman, David; Bordey, Angelique; Picciotto, Marina R.

    2016-01-01

    Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2l, a component of a histone methyltransferase complex. We therefore examined genome-wide changes in H3K4 tri-methylation, a mark induced by the Ash2l complex associated with increased gene transcription. A significant number of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4 tri-methylation. Knockdown of Ash2l or Mef2c abolishes nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuates nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimics nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a novel target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior. PMID:27239938

  2. Skin lipid structure controls water permeability in snake molts.

    Science.gov (United States)

    Torri, Cristian; Mangoni, Alfonso; Teta, Roberta; Fattorusso, Ernesto; Alibardi, Lorenzo; Fermani, Simona; Bonacini, Irene; Gazzano, Massimo; Burghammer, Manfred; Fabbri, Daniele; Falini, Giuseppe

    2014-01-01

    The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat.

  3. structural interaction of novel dendrimer and subunits with water ...

    African Journals Online (AJOL)

    Preferred Customer

    potential when mixed with water due to structural reorientation. Thus excess volumes (VE10-6 m3 mol-1), viscosities (ηE/0.1 N s m-2) and molar free activation energy (∆GE kJ mol-1 K–1) from 0.63 to 10 .... transnational and kinetic motions.

  4. Structure and dynamics of confined alcohol-water mixtures

    NARCIS (Netherlands)

    Bampoulis, Pantelis; Witteveen, J.P.; Kooij, Ernst S.; Lohse, Detlef; Poelsema, Bene; Zandvliet, Henricus J.W.

    2016-01-01

    The effect of confinement between mica and graphene on the structure and dynamics of alcohol–water mixtures has been studied in situ and in real time at the molecular level by atomic force microscopy (AFM) at room temperature. AFM images reveal that the adsorbed molecules are segregated into faceted

  5. Atomic scale structures of interfaces between kaolinite edges and water

    NARCIS (Netherlands)

    Liu, X.; Lu, X.; Wang, R.; Meijer, E.J.; Zhou, H.; He, H.

    2012-01-01

    This paper reports the atomic scale structures of kaolinite edge surfaces in contact with water. The commonly occurring edge surfaces are investigated (i.e. (0 1 0) and (1 1 0)) by using first principles molecular dynamics (FPMD) technique. For (1 1 0)-type edge surface, there are two different

  6. Structural basis of water-specific transport through the AQP1 water channel

    Science.gov (United States)

    Sui, Haixin; Han, Bong-Gyoon; Lee, John K.; Walian, Peter; Jap, Bing K.

    2001-12-01

    Water channels facilitate the rapid transport of water across cell membranes in response to osmotic gradients. These channels are believed to be involved in many physiological processes that include renal water conservation, neuro-homeostasis, digestion, regulation of body temperature and reproduction. Members of the water channel superfamily have been found in a range of cell types from bacteria to human. In mammals, there are currently 10 families of water channels, referred to as aquaporins (AQP): AQP0-AQP9. Here we report the structure of the aquaporin 1 (AQP1) water channel to 2.2Å resolution. The channel consists of three topological elements, an extracellular and a cytoplasmic vestibule connected by an extended narrow pore or selectivity filter. Within the selectivity filter, four bound waters are localized along three hydrophilic nodes, which punctuate an otherwise extremely hydrophobic pore segment. This unusual combination of a long hydrophobic pore and a minimal number of solute binding sites facilitates rapid water transport. Residues of the constriction region, in particular histidine 182, which is conserved among all known water-specific channels, are critical in establishing water specificity. Our analysis of the AQP1 pore also indicates that the transport of protons through this channel is highly energetically unfavourable.

  7. Evidence for water-mediated mechanisms in coral-algal interactions.

    Science.gov (United States)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk; Nugues, Maggy M

    2016-08-17

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral-algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral-algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral-algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. © 2016 The Author(s).

  8. Iron-mediated soil carbon response to water-table decline in an alpine wetland

    Science.gov (United States)

    Wang, Yiyun; Wang, Hao; He, Jin-Sheng; Feng, Xiaojuan

    2017-06-01

    The tremendous reservoir of soil organic carbon (SOC) in wetlands is being threatened by water-table decline (WTD) globally. However, the SOC response to WTD remains highly uncertain. Here we examine the under-investigated role of iron (Fe) in mediating soil enzyme activity and lignin stabilization in a mesocosm WTD experiment in an alpine wetland. In contrast to the classic `enzyme latch' theory, phenol oxidative activity is mainly controlled by ferrous iron [Fe(II)] and declines with WTD, leading to an accumulation of dissolvable aromatics and a reduced activity of hydrolytic enzyme. Furthermore, using dithionite to remove Fe oxides, we observe a significant increase of Fe-protected lignin phenols in the air-exposed soils. Fe oxidation hence acts as an `iron gate' against the `enzyme latch' in regulating wetland SOC dynamics under oxygen exposure. This newly recognized mechanism may be key to predicting wetland soil carbon storage with intensified WTD in a changing climate.

  9. Structural changes in microcrystalline cellulose in subcritical water treatment.

    Science.gov (United States)

    Tolonen, Lasse K; Zuckerstätter, Gerhard; Penttilä, Paavo A; Milacher, Walter; Habicht, Wilhelm; Serimaa, Ritva; Kruse, Andrea; Sixta, Herbert

    2011-07-11

    Subcritical water is a high potential green chemical for the hydrolysis of cellulose. In this study microcrystalline cellulose was treated in subcritical water to study structural changes of the cellulose residues. The alterations in particle size and appearance were studied by scanning electron microscopy (SEM) and those in the degree of polymerization (DP) and molar mass distributions by gel permeation chromatography (GPC). Further, changes in crystallinity and crystallite dimensions were quantified by wide-angle X-ray scattering and (13)C solid-state NMR. The results showed that the crystallinity remained practically unchanged throughout the treatment, whereas the size of the remaining cellulose crystallites increased. Microcrystalline cellulose underwent significant depolymerization in subcritical water. However, depolymerization leveled off at a relatively high degree of polymerization. The molar mass distributions of the residues showed a bimodal form. We infer that cellulose gets dissolved in subcritical water only after extensive depolymerization.

  10. Structure and Controls of the Global Virtual Water Trade Network

    CERN Document Server

    Suweis, S; Dalin, C; Hanasaki, N; Rinaldo, A; Rodriguez-Iturbe, I; 10.1029/2011GL046837

    2012-01-01

    Recurrent or ephemeral water shortages are a crucial global challenge, in particular because of their impacts on food production. The global character of this challenge is reflected in the trade among nations of virtual water, i.e. the amount of water used to produce a given commodity. We build, analyze and model the network describing the transfer of virtual water between world nations for staple food products. We find that all the key features of the network are well described by a model that reproduces both the topological and weighted properties of the global virtual water trade network, by assuming as sole controls each country's gross domestic product and yearly rainfall on agricultural areas. We capture and quantitatively describe the high degree of globalization of water trade and show that a small group of nations play a key role in the connectivity of the network and in the global redistribution of virtual water. Finally, we illustrate examples of prediction of the structure of the network under fut...

  11. COUNTRY OF ORIGIN EFFECT ON ORGANIZATIONAL INNOVATION IN MALAYSIA: THE MEDIATING ROLE OF STRUCTURE

    OpenAIRE

    Aizzat Mohd. Nasurdin; Muhamad Jantan; Nur Fitriah Ahmed Fadzil

    2004-01-01

    The two main objectives of this study are: first, to determine whether the level of innovation (technological and process, product and administrative) varies by country of origin, and second, to investigate the influence of country of origin on organizational innovation (technological and process, product and administrative) via the mediating role played by organizational structure (formalization and centralization), among firms operating in Malaysia. Statistical analyses of the 80 multinatio...

  12. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    Science.gov (United States)

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512

  13. Plant structural complexity and mechanical defenses mediate predator-prey interactions in an odonate-bird system.

    Science.gov (United States)

    Grof-Tisza, Patrick; LoPresti, Eric; Heath, Sacha K; Karban, Richard

    2017-03-01

    Habitat-forming species provide refuges for a variety of associating species; these refuges may mediate interactions between species differently depending on the functional traits of the habitat-forming species. We investigated refuge provisioning by plants with different functional traits for dragonfly and damselfly (Odonata: Anisoptera and Zygoptera) nymphs emerging from water bodies to molt into their adult stage. During this period, nymphs experience high levels of predation by birds. On the shores of a small pond, plants with mechanical defenses (e.g., thorns and prickles) and high structural complexity had higher abundances of odonate exuviae than nearby plants which lacked mechanical defenses and exhibited low structural complexity. To disentangle the relative effects of these two potentially important functional traits on nymph emergence-site preference and survival, we conducted two fully crossed factorial field experiments using artificial plants. Nymphs showed a strong preference for artificial plants with high structural complexity and to a lesser extent, mechanical defenses. Both functional traits increased nymph survival but through different mechanisms. We suggest that future investigations attempt to experimentally separate the elements contributing to structural complexity to elucidate the mechanistic underpinnings of refuge provisioning.

  14. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  15. Water-assisted nitrogen mediated crystallisation of ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Muydinov, R. [Technical University Berlin, Institute of Semiconducting- and High-Frequency Technologies, Einsteinufer 25, 10587 Berlin (Germany); Steigert, A. [Helmholtz-Zentrum Berlin, Institute of Heterogeneous Material Systems, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Schönau, S.; Ruske, F. [Helmholtz-Zentrum Berlin, Institute of Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany); Kraehnert, R.; Eckhardt, B. [Technical University Berlin, Institute of Technical Chemistry, Straße des 17. Juni 124, 10623 Berlin (Germany); Lauermann, I. [Helmholtz-Zentrum Berlin, Institute of Heterogeneous Material Systems, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Szyszka, B. [Technical University Berlin, Institute of Semiconducting- and High-Frequency Technologies, Einsteinufer 25, 10587 Berlin (Germany)

    2015-09-01

    Nitrogen mediated crystallisation (NMC) being performed in oxygen atmosphere at T ≥ 600 °C is an effective approach to obtain very well (00l)-textured ZnO films. A use of NMC-seed layers remarkably improves electrical transport properties of subsequently deposited ZnO:Al contacts. In this work, crystallisation of quasi-amorphous, nitrogen doped ZnO seed layers has been performed using water vapours at overpressure and temperatures around 100 °C. This approach allows employment of soda-lime float-glass or temperature sensitive film stacks as a substrate. We propose here possible mechanism of water-assisted NMC and grope for optimised crystallisation conditions on the basis of optical, microscopic, and textural investigation. Low temperature water-assisted crystallisation of 20 nm thick ZnO layers was compared with high temperature annealing methods in terms of composition, microstructure and crystallinity. Electrical properties such as electron Hall mobility (μ{sub e}), concentration of free electrons (N{sub e}) and sheet resistance (R{sub sh}) have been evaluated and compared for functional ZnO:Al films obtained on glass and on differently crystallised NMC-seed layers. It was found that the crystallised with water assistance at low temperature ZnO seed layers provide comparable improvement in crystallinity and electrical properties of subsequently grown functional ZnO:Al films with respect to the ones crystallised at high temperature. Use of optimised water-assisted crystallisation of seed layers has allowed decreasing R{sub sh} of thin (130–270 nm) functional ZnO:Al films twice compared to the glass substrate. Both provide this effect: increase in μ{sub e} and increase of N{sub e}. - Highlights: • Amorphous ZnO:N films can be crystallised in autoclave at temperatures around 100 °C. • Such water-assisted crystallisation provides well-crystalline ZnO seed layers. • Use of these seed layers resulted in stress-free ZnO:Al contacts with twice lower R

  16. Structure and stability of spiro-cyclic water clusters

    Indian Academy of Sciences (India)

    M Elango; V Subramanian; N Sathyamurthy

    2009-09-01

    The structure and stability of spiro-cyclic water clusters containing up to 32 water molecules have been investigated at different levels of theory. Although there exist minima lower in energy than these spiro-cyclic clusters, calculations at the Hartree-Fock level, density functional theory using B3LYP parametrization and second order Møller-Plesset perturbation theory using 6-31G∗ and 6-311++G∗∗ basis sets show that they are stable in their own right. Vibrational frequency calculations and atoms-inmolecules analysis of the electron density map confirm the robustness of these hydrogen bonded clusters.

  17. Promotion of Water-mediated Carbon Removal by Nanostructured Barium Oxide/nickel Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    L Yang; Y Choi; W Qin; H Chen; K Blinn; M Liu; P Liu; J Bai; T Tyson; M Liu

    2011-12-31

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C{sub 3}H{sub 8}, CO and gasified carbon fuels at 750 C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.

  18. Leader Empowering Behaviours and Work Engagement: The Mediating Role of Structural Empowerment.

    Science.gov (United States)

    Cziraki, Karen; Laschinger, Heather

    2015-09-01

    Reports of poor working conditions persist amid ongoing healthcare restructuring. Simultaneously, nursing shortage threats continue as the nursing population ages. Leadership strategies that create empowering working conditions are likely to retain nurses who are eligible to retire, and attract future nurses to the profession. Several studies have focused on leader behaviours and structural empowerment in recent years and how these impact the work environment and staff engagement. Correlations among leader empowering behaviours, structural empowerment and work engagement have been demonstrated (Laschinger et al. 1999; Peachey 2002); however, there is a gap in the empirical literature as to how leader empowering behaviours influence nurses' work engagement by creating structurally empowering work environments. Kanter's (1977, 1993) structural empowerment theory was used to test this proposition using data from a cross-sectional study of 322 Ontario staff nurses. Mediation analysis revealed that structural empowerment partially mediated the influence of leader empowering behaviours on work engagement. The implications for healthcare managers and leaders are discussed with a view to the recruitment and retention of nursing staff, by fostering greater work engagement.

  19. Global efficiency of structural networks mediates cognitive control in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Rok Berlot

    2016-12-01

    Full Text Available Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localised white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI.Methods: 25 patients with MCI and 20 age, sex and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI. Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusions: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive

  20. YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure.

    Science.gov (United States)

    Pan, Houhua; Xie, Youtao; Zhang, Zequan; Li, Kai; Hu, Dandan; Zheng, Xuebin; Fan, Qiming; Tang, Tingting

    2017-04-01

    Hierarchical structure mimicking the natural bone microenvironment has been considered as a promising platform to regulate cell functions. We have previously fabricated hierarchical macropore/nanowire structure and evidence has shown that it can better manipulate the cytoskeleton status and osteogenic performance of osteoblasts. However, how cues of hierarchical structure are translated and ultimately linked to BMSC lineage commitment have still remained elusive, which hinders the accurate knowledge and further development of the hierarchical structure. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) fate on hierarchical structure was investigated as well as the detailed mechanisms. It was shown that well-developed cytoskeleton and focal adhesion were observed for BMSCs on hierarchical structure, which was accompanied by enhanced osteogenic and depressed adipogenic potential. Evidence of increased YAP activity and nuclear translocation were exhibited on hierarchical structure and YAP knockdown inhibited osteogenic differentiation and promoted adipogenic differentiation induced by hierarchical structure. Further remove of cytoskeleton tension inhibited YAP function, which confirmed the key role of YAP-mediated mechanotransduction in the BMSC differentiation. These results together provide information of the stem cell fate commitment on hierarchical structure and a promising approach to design advanced biomaterials by focusing on specific mechanotransduction process.

  1. Narcissism and Anger: Self-Esteem and Contingencies of Self-Worth as Mediating Self-Structures

    Directory of Open Access Journals (Sweden)

    Grisel M. Garcia

    2015-06-01

    Full Text Available Theory and research suggest that an internalization of psychological “structure” related to self-esteem may mediate relationships of Maladaptive Narcissism with higher and Adaptive Narcissism with lower Anger. In the present study (N = 623, Self-Esteem and Contingency of Self-Worth Scales served as presumed indices of the presence or absence of structure. Maladaptive Narcissism predicted greater Anger and a relative absence of structure whereas Adaptive Narcissism displayed an opposite pattern of results. Constructs assessing structure partially mediated the Maladaptive Narcissism relationship with greater Anger. Mediation analyses also revealed that structure not only fully mediated the inverse Adaptive Narcissism linkage with Anger, but also suppressed an association with greater Anger that would otherwise have been evident. These data supported the idea that psychological structure related to self-esteem is noteworthy in explaining the implications of narcissism for personality and interpersonal functioning.

  2. Structural evaluation report of piping and support structure for HANARO hot-water layer system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo

    1997-02-01

    The major goal of this report is to assess the structural integrity on the piping and the support structures of HANARO hot-water layer system. The piping stress analysis was performed by using ADLPIPE program for the pipings subjected to dead weight, pressure, thermal expansion and seismic loadings. The pipings to evaluate the structural integrity are the pump suction line and the pump discharge line near safety related structures in reactor pool. Based on the reaction forces from the piping stress analysis, the design of support structure was carried out. The results of structural evaluation for the piping and the support structure showed that the structural acceptance criteria were satisfied, in compliance with ASME B and PV code, section III, subsection ND for the pipings and Subsection NF for the support structures. Therefore based on results of the analysis and the design, the structural integrity on the piping and the support structures of HANARO hot-water layer system proved. (author). 9 tabs., 14 figs. 9 refs.

  3. Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy.

    Science.gov (United States)

    Jiang, Tao; Zhang, Li Min; Chen, Xiangyu; Han, Chang Bao; Tang, Wei; Zhang, Chi; Xu, Liang; Wang, Zhong Lin

    2015-12-22

    Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy.

  4. Cellular network formation of hydrophobic alkanethiol capped gold nanoparticles on mica surface mediated by water islands

    Science.gov (United States)

    John, Neena S.; Raina, Gargi; Sharma, Ashutosh; Kulkarni, Giridhar U.

    2010-09-01

    Dendritic and cellular networks of nanoparticles are known to form commonly either by random diffusion-limited aggregation or by solvent evaporation dynamics. Using alkanethiol capped gold nanoparticles deposited on mica imaged under ambient and controlled water vapor conditions by atomic force microscope and in situ scanning electron microscope, respectively, we show a third mechanism in action. The cellular network consisting of open and closed polygons is formed by the nucleation and lateral growth of adsorbed water islands, the contact lines of which push the randomly distributed hydrophobic nanoparticles along the growth directions, eventually leading to the polygonal structure formation as the boundaries of the growing islands meet. Such nanoparticle displacement has been possible due to the weakly adhering nature of the hydrophilic substrate, mica. These results demonstrate an important but hitherto neglected effect of adsorbed water in the structure formation on hydrophilic substrates and provide a facile tool for the fabrication of nanoparticle networks without specific particle or substrate modifications and without a tight control on particle deposition conditions during the solvent evaporation.

  5. Regulatory Focus as a Mediator of the Influence of Initiating Structure and Servant Leadership on Employee Behavior

    Science.gov (United States)

    Neubert, Mitchell J.; Kacmar, K. Michele; Carlson, Dawn S.; Chonko, Lawrence B.; Roberts, James A.

    2008-01-01

    In this research, the authors test a model in which the regulatory focus of employees at work mediates the influence of leadership on employee behavior. In a nationally representative sample of 250 workers who responded over 2 time periods, prevention focus mediated the relationship of initiating structure to in-role performance and deviant…

  6. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  7. Desiccation tolerance in the tardigrade Richtersius coronifer relies on muscle mediated structural reorganization.

    Science.gov (United States)

    Halberg, Kenneth Agerlin; Jørgensen, Aslak; Møbjerg, Nadja

    2013-01-01

    Life unfolds within a framework of constraining abiotic factors, yet some organisms are adapted to handle large fluctuations in physical and chemical parameters. Tardigrades are microscopic ecdysozoans well known for their ability to endure hostile conditions, such as complete desiccation--a phenomenon called anhydrobiosis. During dehydration, anhydrobiotic animals undergo a series of anatomical changes. Whether this reorganization is an essential regulated event mediated by active controlled processes, or merely a passive result of the dehydration process, has not been clearly determined. Here, we investigate parameters pivotal to the formation of the so-called "tun", a state that in tardigrades and rotifers marks the entrance into anhydrobiosis. Estimation of body volume in the eutardigrade Richtersius coronifer reveals an 87 % reduction in volume from the hydrated active state to the dehydrated tun state, underlining the structural stress associated with entering anhydrobiosis. Survival experiments with pharmacological inhibitors of mitochondrial energy production and muscle contractions show that i) mitochondrial energy production is a prerequisite for surviving desiccation, ii) uncoupling the mitochondria abolishes tun formation, and iii) inhibiting the musculature impairs the ability to form viable tuns. We moreover provide a comparative analysis of the structural changes involved in tun formation, using a combination of cytochemistry, confocal laser scanning microscopy and 3D reconstructions as well as scanning electron microscopy. Our data reveal that the musculature mediates a structural reorganization vital for anhydrobiotic survival, and furthermore that maintaining structural integrity is essential for resumption of life following rehydration.

  8. Desiccation tolerance in the tardigrade Richtersius coronifer relies on muscle mediated structural reorganization.

    Directory of Open Access Journals (Sweden)

    Kenneth Agerlin Halberg

    Full Text Available Life unfolds within a framework of constraining abiotic factors, yet some organisms are adapted to handle large fluctuations in physical and chemical parameters. Tardigrades are microscopic ecdysozoans well known for their ability to endure hostile conditions, such as complete desiccation--a phenomenon called anhydrobiosis. During dehydration, anhydrobiotic animals undergo a series of anatomical changes. Whether this reorganization is an essential regulated event mediated by active controlled processes, or merely a passive result of the dehydration process, has not been clearly determined. Here, we investigate parameters pivotal to the formation of the so-called "tun", a state that in tardigrades and rotifers marks the entrance into anhydrobiosis. Estimation of body volume in the eutardigrade Richtersius coronifer reveals an 87 % reduction in volume from the hydrated active state to the dehydrated tun state, underlining the structural stress associated with entering anhydrobiosis. Survival experiments with pharmacological inhibitors of mitochondrial energy production and muscle contractions show that i mitochondrial energy production is a prerequisite for surviving desiccation, ii uncoupling the mitochondria abolishes tun formation, and iii inhibiting the musculature impairs the ability to form viable tuns. We moreover provide a comparative analysis of the structural changes involved in tun formation, using a combination of cytochemistry, confocal laser scanning microscopy and 3D reconstructions as well as scanning electron microscopy. Our data reveal that the musculature mediates a structural reorganization vital for anhydrobiotic survival, and furthermore that maintaining structural integrity is essential for resumption of life following rehydration.

  9. Forest stand structure, productivity, and age mediate climatic effects on aspen decline.

    Science.gov (United States)

    Bell, David M; Bradford, John B; Lauenroth, William K

    2014-08-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  10. Thermochemotherapy mediated by novel solar-planet structured magnetic nanocomposites for glioma treatment.

    Science.gov (United States)

    Zhao, Lingyun; Yang, Bing; Wang, Yuying; Yao, Zhu; Wang, Xiaowen; Feng, Si-Shen; Tang, Jintian

    2012-02-01

    Cancer comprehensive treatment has been fully recognized as it can provide an effective multimodality approach for fighting cancers. This work evaluates the effects of a kind of novel solar-planet structured magnetic nanocomposites (MNCs) for magnetic thermochemotherapy. Amino silane coated magnetic nanoparticles (MNPs) as agent of magnetic mediated hyperthermia (MMH) for cancer treatment were prepared by the chemical precipitation method. Docetaxel (an anticancer drug) loaded polymeric nanoparticles (DNPs) composed of carboxylic-terminated poly (D,L-lactic-co-glycolic acid) (PLGA) with Vitamin E TPGS as emulsifier for sustained drug release were prepared by a modified solvent extraction/evaporation technique. Furthermore, the MNPs modified with amino groups could be covalently attached to the surface of carboxylic terminated DNPs to form the so-called solar-planet structured MNCs by 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) crosslinking. The prepared solar-planet structure has been confirmed by fluorescent observation. Inductive heating property of the nanocomposite was evaluation by monitoring the temperature increase of the MNCs suspension under alternative magnetic field (AMF). Drug encapsulation efficacy and drug release of the magnetic nanocomposite were conducted by high performance liquid chromatography (HPLC). In vitro evaluation of the novel nanocomposite as mediator for thermochemotherapy was conducted on the U251 human glioma cells and the synergistic effect between MMH and docetaxel chemotherapy was confirmed. All the observation supports that solar-planet structured MNC is a novel and effective mediator for magnetic thermochemotherapy. The MNCs can realize cancer comprehensive treatment thus has great potential in clinical application.

  11. Triple oxygen isotope systematics of structurally bonded water in gypsum

    Science.gov (United States)

    Herwartz, Daniel; Surma, Jakub; Voigt, Claudia; Assonov, Sergey; Staubwasser, Michael

    2017-07-01

    The triple oxygen isotopic composition of gypsum mother water (gmw) is recorded in structurally bonded water in gypsum (gsbw). Respective fractionation factors have been determined experimentally for 18O/16O and 17O/16O. By taking previous experiments into account we suggest using 18αgsbw-gmw = 1.0037; 17αgsbw-gmw = 1.00195 and θgsbw-gmw = 0.5285 as fractionation factors in triple oxygen isotope space. Recent gypsum was sampled from a series of 10 ponds located in the Salar de Llamara in the Atacama Desert, Chile. Total dissolved solids (TDS) in these ponds show a gradual increase from 23 g/l to 182 g/l that is accompanied by an increase in pond water 18O/16O. Gsbw falls on a parallel curve to the ambient water from the saline ponds. The offset is mainly due to the equilibrium fractionation between gsbw and gmw. However, gsbw represents a time integrated signal biased towards times of strong evaporation, hence the estimated gmw comprises elevated 18O/16O compositions when compared to pond water samples taken on site. Gypsum precipitation is associated with algae mats in the ponds with lower salinity. No evidence for respective vital effects on the triple oxygen isotopic composition of gypsum hydration water is observed, nor are such effects expected. In principle, the array of δ18Ogsbw vs. 17Oexcess can be used to: (1) provide information on the degree of evaporation during gypsum formation; (2) estimate pristine meteoric water compositions; and (3) estimate local relative humidity which is the controlling parameter of the slope of the array for simple hydrological situations. In our case study, local mining activities may have decreased deep groundwater recharge, causing a recent change of the local hydrology.

  12. Water orientation and hydrogen-bond structure at the fluorite/water interface

    CERN Document Server

    Khatib, Rémi; Bonn, Mischa; Perez-Haro, María-José; Gaigeot, Marie-Pierre; Sulpizi1, Marialore

    2016-01-01

    Water in contact with mineral interfaces is important for a variety of different processes. Here, we present a combined theoretical-experimental study which provides a quantitative, molecular-level understanding of the ubiquitous and important flourite-water interface. Our results show that, at low pH, the surface is positively charged, causing a substantial degree of water ordering. The surface charge originates primarily from the dissolution of fluoride ions, rather than from adsorption of protons to the surface. At high pH we observe the presence of Ca-OH species pointing into the water. These OH groups interact remarkably weakly with the surrounding water, and are responsible for the free OH signature in the SFG spectrum, which can be explained from local electronic structure effects. The quantification of the surface termination, near-surface ion distribution and water arrangement is enabled by a combination of advanced phase-resolved Vibrational Sum Frequency Generation spectra of flourite-water interfa...

  13. Narcissism and Anger: Self-Esteem and Contingencies of Self-Worth as Mediating Self-Structures

    National Research Council Canada - National Science Library

    Grisel M Garcia; P J Watson; Christopher J L Cunningham; Brian J O'Leary; Zhuo Chen

    2015-01-01

      Theory and research suggest that an internalization of psychological "structure" related to self-esteem may mediate relationships of Maladaptive Narcissism with higher and Adaptive Narcissism with lower Anger...

  14. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective

    Science.gov (United States)

    Preininger, Anita M.; Meiler, Jens; Hamm, Heidi

    2013-01-01

    Structure and dynamics of G proteins and their cognate receptors, both alone and in complex, are becoming increasingly accessible to experimental techniques. Understanding the conformational changes and timelines which govern these changes can lead to new insights into the processes of ligand binding and associated G protein activation. Experimental systems may involve the use of, or otherwise stabilize, non-native environments. This can complicate our understanding of structural and dynamical features of processes such as the ionic lock, Tryptophan toggle, and G protein flexibility. While elements in the receptor’s transmembrane helices and the C-terminal α5 helix of Gα undergo well defined structural changes, regions subject to conformational flexibility may be important in fine-tuning the interactions between activated receptors and G proteins. The pairing of computational and experimental approaches will continue to provide powerful tools to probe the conformation and dynamics of receptor-mediated G protein activation. PMID:23602809

  15. Structure and Water Transport in Nafion Nanocomposite Membranes

    Science.gov (United States)

    Davis, Eric; Page, Kirt

    2014-03-01

    Perfluorinated ionomers, specifically Nafion, are the most widely used ion exchange membranes for vanadium redox flow battery applications, where an understanding of the relationship between membrane structure and transport of water/ions is critical to battery performance. In this study, the structure of Nafion/SiO2 nanocomposite membranes, synthesized using sol-gel chemistry, as well as cast directly from Nafion/SiO2 nanoparticle dispersions, was measured using both small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS). Through contrast match studies of the SiO2 nanoparticles, direct information on the change in the structure of the Nafion membranes and the ion-transport channels within was obtained, where differences in membrane structure was observed between the solution-cast membranes and the membranes synthesized using sol-gel chemistry. Additionally, water sorption and diffusion in these Nafion/SiO2 nanocomposite membranes were measured using in situ time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy and dynamic vapor sorption (DVS).

  16. Defluoridation of water using dicarboxylic acids mediated chitosan-polyaniline/zirconium biopolymeric complex.

    Science.gov (United States)

    Muthu Prabhu, Subbaiah; Meenakshi, Sankaran

    2016-04-01

    The present investigation describes the preparation of hydrogen bonded chitosan-polyaniline/zirconium biopolymeric matrix by grafting method under dicarboxylic acid medium for the removal of fluoride, first time. Herein, the dicarboxylic acids, oxalic acid, malonic acid, succinic acid were used as medium. The synthesized complex was characterized by usual analytical techniques like FTIR, XRD, SEM and EDAX analysis. From the batch equilibrium experiments, the maximum defluoridation capacity (DC) was found to be 8.713 mg/g at room temperature with the minimum contact time of 24 min at 100mg of the sorbent dosage. The temperature study results of adsorption kinetics showed the adsorption behavior could be better described by the pseudo-second-order equation than pseudo-first-order kinetic model. The adsorption isotherm was well fitted by the Freundlich equation rather than Langmuir and D-R isotherms. The mechanism of fluoride removal was ligand exchange at neutral pH and electrostatic attraction at acidic pH of the medium. Regeneration studies were carried out to identify the best regenerant which makes the process cost-effective. Conclusions of this work demonstrate the potential applicability of the dicarboxylic acid mediated chitosan-polyaniline/zirconium complex as an effective adsorbent for fluoride removal from water.

  17. THE MEDIATING ROLE OF SCIENCE MUSEUM IN STRUCTURING AND SYNTHESIS OF LEARNING

    Directory of Open Access Journals (Sweden)

    Fanny Angulo Delgado

    2016-10-01

    Full Text Available Understanding the mediating role of science museum in learning scientific content in school, it involves reflecting on the contributions of research to the question of what and how people learn in non-conventional educational settings. It has been shown that most people spend less than 3% of their lives learning in school, which emphasizes the importance of conceptualizing what they are and how much of their learning take place. While that question is resolved, it speaks at this bioassay on the complementary relationship between the museum and the school, as both institutions share the same educational purpose, but differ in the ways of achieving it. The science museum joins the class as a mediator that facilitates student learning as part of an education that promotes understanding of the phenomena of the world through models, which means that school learning goes in stages, one of which is that students have opportunity to structure new knowledge and synthesize on its own model. For this it is necessary that students speak, read, listen and write in science class, while the thought is expressed in language to attest to the facts. These communication skills arise in science class as indicators of mediation exercised by the museum and allow us to understand that it takes place in at least two dimensions: museographic and didactics.

  18. Epitope target structures of Fc-mediated effector function during HIV-1 acquisition.

    Science.gov (United States)

    Lewis, George K; Guan, Yongjun; Kamin-Lewis, Roberta; Sajadi, Mohammad; Pazgier, Marzena; Devico, Anthony L

    2014-05-01

    This review analyzes recent studies suggesting that highly conserved epitopes in the HIV-1 Env trimer are targets of potentially protective nonneutralizing antibodies that mediate antibody-dependent cellular cytotoxicity. Recent studies in both non-human primates and humans suggest that nonneutralizing antibodies play a role in blocking infection with hybrid simian HIV (SHIV)/simian immunodeficiency virus (SIV) or HIV-1 by Fc-mediated effector function, in particular antibody-dependent cellular cytotoxicity. Further, several studies implicate highly conserved epitopes in the C1 region of gp120 as targets of these antibodies. However, these suggestions are controversial, as passive immunization studies do not indicate that such antibodies can block acquisition in non-human primates. Potential reasons for this discrepancy are discussed in the structural context of potent antibody-dependent cellular cytotoxicity epitopes on target cells during the narrow window of opportunity when antibodies can block HIV-1 acquisition. Cumulative evidence suggests that, in addition to virus neutralization, Fc-mediated effector responses to highly conserved epitopes in the HIV-1 trimer play distinct as well as overlapping roles in blocking HIV-1 acquisition. Evidence will be discussed as to whether nonneutralizing antibodies specific for epitopes on the HIV-1 Env trimer that become exposed during viral entry contribute significantly to blocking HIV-1 acquisition.

  19. Emotion dysregulation mediates the relationship between child maltreatment and psychopathology: A structural equation model.

    Science.gov (United States)

    Jennissen, Simone; Holl, Julia; Mai, Hannah; Wolff, Sebastian; Barnow, Sven

    2016-12-01

    The present study investigated the mediating effects of emotion dysregulation on the relationship between child maltreatment and psychopathology. An adult sample (N=701) from diverse backgrounds of psychopathology completed the Childhood Trauma Questionnaire (CTQ), the Difficulties in Emotion Regulation Scale (DERS), the Brief Symptom Inventory (BSI), and the negative affect subscale of the Positive and Negative Affect Schedule (PANAS) in a cross-sectional online survey. Correlational analyses showed that all types of child maltreatment were uniformly associated with emotion dysregulation, and dimensions of emotion dysregulation were strongly related to psychopathology. Limited access to strategies for emotion regulation emerged as the most powerful predictor. Structural equation modeling analyses revealed that emotion dysregulation partially mediated the relationship between child maltreatment and psychopathology, even after controlling for shared variance with negative affect. These findings emphasize the importance of emotion dysregulation as a possible mediating mechanism in the association between child maltreatment and later psychopathology. Additionally, interventions targeting specific emotion regulation strategies may be effective to reduce psychopathology in victims of child maltreatment.

  20. Structure and functions of water-membrane interfaces and their role in proto-biological evolution

    Science.gov (United States)

    Pohorille, A.; Wilson, M.; Macelroy, R. D.

    1991-01-01

    Among the most important developments in proto-biological evolution was the emergence of membrane-like structures. These are formed by spontaneous association of relatively simple amphiphilic molecules that would have been readily available in the primordial environment. The resulting interfacial regions between water and nonpolar interior of the membrane have several properties which made them uniquely suitable for promoting subsequent evolution. They can (1) selectively attract organic material and mediate its transport, (2) serve as simple catalysts for chemical reactions, and (3) promote the formation of trans-membrane electrical and chemical gradients which could provide energy sources for proto-cells. Understanding the structure of interfaces, their interactions with organic molecules and molecular mechanisms of their functions is an essential step to understanding proto-biological evolution. In our computer simulation studies, we showed that the structure of water at interfaces with nonpolar media is significantly different from that in the bulk. In particular, the average surface dipole density points from the vapor to the liquid. As a result, negative ions can approach the interface more easily than positive ions. Amphiphilic molecules composed of hydrocarbon conjugated rings and polar substituents (e.g., phenol) assume at the interface rigid orientations in which polar groups are buried in water while hydrocarbon parts are located in the nonpolar environment. These orientational differences are of special interest in connection with the ability of some of these molecules to efficiently absorb photons. Flexible molecules with polar substituents often adopt at interfaces conformations different from those in the bulk aquaeous solution and in the gas phase. As a result, in many instances both specificity and kinetics of chemical reactions in which these molecules can participate is modified by the presence of surfaces. Of special interest is the mechanism by

  1. Using Lagrangian Coherent Structures to understand coastal water quality

    Science.gov (United States)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  2. Microbial Community Structure in Relation to Water Quality in ...

    Science.gov (United States)

    Weeks Bay is a shallow, microtidal, eutrophic sub-estuary of Mobile Bay, AL. High watershed nutrient inputs to the estuary contribute to a eutrophic condition characterized by frequent summertime diel-cycling hypoxia and dissolved oxygen (DO) oversaturation. Spatial and seasonal variability of microbial communities that contribute to estuarine ecosystem metabolism were characterized using high-throughput DNA sequencing. Surface water samples were collected from spring to fall at three sites along a transect of Weeks Bay from the Fish River to Mobile Bay. Water samples were analyzed for physiochemical properties and were also filtered onto Sterivex filters for DNA extraction. Genes for 16S rRNA and 18S rRNA were amplified and sequenced according to Earth Microbiome Project protocols. Sequences were assembled into contigs and clustered into OTUs with mothur using the Silva database. The prokaryotes were dominated by Cyanobacteria, Actinobacteria, and Spartobacteria, whereas the eukaryotes were dominated by Bacillariophyta (diatoms). Multivariate statistical analysis of microbial community composition and environmental data showed that Bacteria, Archaea and Eukaryota were clustered by season. BEST analysis by station showed that prokaryotic community structure was associated with salinity and CDOM (Rho=0.924), whereas eukaryotic community structure was most associated with salinity (Rho=0.846). Prokaryotic community structure within seasons was associated with six

  3. The sound velocity structure of the shelf waters off Visakhapatnam

    Directory of Open Access Journals (Sweden)

    J. Sivarama Sastry

    1957-04-01

    Full Text Available The vertical structure of sound velocity has been presented. The depth-sound velocity curves are drawn. The sound velocity is found to vary considerably in the surface waters during the period from November 1995 to April 1956. The variations in sound velocity have been discussed in relation to (1sinking, (2upwelling (3advection and (4diurnal and seasonal variation in temperature and salinity. The sound velocity in surface waters shows a general increase with the advance of upwelling season. The sound velocity decreases with depth in the surface layers in the upwelling seasons. In contrast; the sound velocity increases with depth in the surface layers during sinking season. At greater depths the sound velocity is found not to vary much during the entire period (November to April.

  4. Investigation of structural responses of breakwaters for green water based on fluid-structure interaction analysis

    Directory of Open Access Journals (Sweden)

    Chi-Seung Lee

    2012-06-01

    Full Text Available In the present study, the structural response of breakwaters installed on container carriers against green water impact loads was numerically investigated on the basis of the fluid-structure interaction analysis. A series of numerical studies is carried out to induce breakwater collapse under such conditions, whereby a widely accepted fluid-structure interaction analysis technique is adopted to realistically consider the phenomenon of green water impact loads. In addition, the structural behaviour of these breakwaters under green water impact loads is investigated simultaneously throughout the transient analysis. A verification study of the numerical results is performed using data from actual collapse incidents of breakwaters on container carriers. On the basis of the results of a series of numerical analyses, the pressure distribution of green water was accurately predicted with respect to wave mass and velocity. It is expected that the proposed analytical methodology and predicted pressure distribution could be used as a practical guideline for the design of breakwaters on container carriers.

  5. The Structure of Sea Water and Gelatinous Water in the Deep Ocean

    Science.gov (United States)

    Peltzer, E. T.; Walz, P. M.; Wojciechowicz, M.; Brewer, P. G.

    2016-12-01

    Gelatinous life forms are common in the deep sea and are able to maintain a careful combination of body integrity and easy fluidity of motion over a wide range of T and P. They accomplish this in part by modifying the molecular structure of water. Both the transparent body of the organism (the mesoglea) and the structure of the immediate surrounding sea water were investigated by in situ laser Raman spectroscopy at depths from 300m to 2,800m. The structure of water is reasonably well known; the basic unit is a hydrogen bonded pentamer with defined stretching and bending modes. The spectrum of the bending band is separable into two components while the stretching band spectrum is composed of five components representing both intra- and inter-molecular vibrations. The effect of temperature on the various vibrational modes is complex. While the effect of pressure on the bending modes is small, but the effect of temperature and pressure on the stretching modes is significant and can be modeled as a van `t Hoff function. Our in situ experiments were conducted using MBARI's ROV Ventana and ROV Doc Ricketts. We collected cnidarians and ctenophores into a 6 L glass detritus sampler fitted with a metal grid plate. Once the animal was captured, we introduced argon gas through the lid of the sampler displacing the contained sea water and leaving a motionless sea water free specimen for spectroscopy. The laser beam was focused through the glass wall of the container and the focal point adjusted to be inside the gelatinous body. Our results very clearly show that:i) The gelatinous mass effectively excludes salts with zero sulfate ion being detected.ii) The water bending modes are absent from the gelatinous spectra.iii) The water stretching modes are highly modified from the typical 5 band liquid pentamer structure with only 3 vibrational modes observable. These results stand in marked contrast to the familiar household gelatin which is typically derived from bovine sources

  6. Urban "accidental" wetlands mediate water quality and heat exposure for homeless populations in a desert city

    Science.gov (United States)

    Palta, M.

    2015-12-01

    In urban settings where humans interact in complex ways with ecosystems, there may be hidden or unanticipated benefits (services) or harm (disservices) conferred by the built environment. We examined interactions of a highly vulnerable population, the homeless, with urban waterways and wetlands in the desert city of Phoenix, Arizona, U.S.A. Climate change models project increases in heat, droughts, and extreme floods for the southwestern U.S. These projected changes pose a number of problems for sustainability and quality of future water supply, and the ability of human populations to mitigate heat stress and avoid fatalities. Urban wetlands that are created "accidentally" (by water pooling in abandoned areas of the landscape) have many structural (e.g., soils and hydrology) and functional (e.g., high denitrification) elements that mimic natural, unaltered aquatic systems. Accidental wetland systems in the dry bed of the Salt River, fed by storm and waste water from urban Phoenix, are located within economically depressed sections of the city, and show the potential for pollutant and heat mitigation. We used a mixed-method socio-ecological approach to examine wetland ecosystem functions and the ways in which homeless populations utilize Salt River wetlands for ecosystem services. Interviews and trash surveys indicated that homeless people are accessing and utilizing the wetlands as a source of running water, for sanitary and heat mitigation services, and for recreation and habitation. Environmental monitoring demonstrated that the wetlands can provide a reliable source of running water, nutrient and pathogen removal, heat mitigation, and privacy, but they may also pose a health risk to individuals coming in contact with the water through drinking or bathing. Whether wetlands provided a net benefit vs. harm varied according to site, season, and particular service, and several tradeoffs were identified. For example, heat is highest during the summer storm season

  7. Structural Integrity of Water Reactor Pressure Boundary Components.

    Science.gov (United States)

    1981-02-20

    RES-79-103 UNCLASSIFIED NRL--- 400 NURE-CR-17B3 NL mnmmnuunin -’El-.--. IIIIIIINI ., *q. - - ,aM T? * NUREG /CI 73 NIL Iteof AW, SOIituA 1 nert of Water...Progress Report for July-September 1979," NUREG /CR-1197, Oak Ridge National Labora- tory, Oak Ridge, Tn., Oct. 1978. 2. F. J. Loss, Ed., "Structural...Progress Report for April-June 1976," ORNL/ NUREG /TM-49, Oak Ridge National Labora- tory, Oak Ridge, Tn., Oct. 1976, pp. 27-38. 5. R. G. Berggren

  8. Studies on melt-water-structure interaction during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Dinh, T.N.; Okkonen, T.J.; Bui, V.A.; Nourgaliev, R.R.; Andersson, J. [Royal Inst. of Technology, Div. of Nucl. Power Safety, Stockholm (Sweden)

    1996-10-01

    Results of a series of studies, on melt-water-structure interactions which occur during the progression of a core melt-down accident, are described. The emphasis is on the in-vessel interactions and the studies are both experimental and analytical. Since, the studies performed resulted in papers published in proceedings of the technical meetings, and in journals, copies of a set of selected papers are attached to provide details. A summary of the results obtained is provided for the reader who does not, or cannot, venture into the perusal of the attached papers. (au).

  9. An RNA secondary structure bias for non-homologous reverse transcriptase-mediated deletions in vivo

    DEFF Research Database (Denmark)

    Duch, Mogens; Carrasco, Maria L; Jespersen, Thomas

    2004-01-01

    , deletion mutants with junction sites within the heterologous cassette may also be retrieved, in particular from vectors without flanking repeats. Such deletion mutants were here used to investigate determinants of reverse transcriptase-mediated non-homologous recombination. Based upon previous structural...... analysis the individual recombination sites within the IRES could be assigned to either base-paired or unpaired regions of RNA. This assignment showed a significant bias (P = 0.000082) towards recombination within unpaired regions of the IRES. We propose that the events observed in this in vivo system...... result from template switching during first-strand cDNA synthesis and that the choice of acceptor sites for non-homologous recombination are guided by non-paired regions. Our results may have implications for recombination events taking place within structured regions of retroviral RNA genomes...

  10. XB130 translocation to microfilamentous structures mediates NNK-induced migration of human bronchial epithelial cells.

    Science.gov (United States)

    Wu, Qifei; Nadesalingam, Jeya; Moodley, Serisha; Bai, Xiaohui; Liu, Mingyao

    2015-07-20

    Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.

  11. The structural features of Trask that mediate its anti-adhesive functions.

    Directory of Open Access Journals (Sweden)

    Danislav S Spassov

    Full Text Available Trask/CDCP1 is a transmembrane protein with a large extracellular and small intracellular domains. The intracellular domain (ICD undergoes tyrosine phosphorylation by Src kinases during anchorage loss and, when phosphorylated, Trask functions to inhibit cell adhesion. The extracellular domain (ECD undergoes proteolytic cleavage by serine proteases, although the functional significance of this remains unknown. There is conflicting evidence regarding whether it functions to signal the phosphorylation of the ICD. To better define the structural determinants that mediate the anti-adhesive functions of Trask, we generated a series of deletion mutants of Trask and expressed them in tet-inducible cell models to define the structural elements involved in cell adhesion signaling. We find that the ECD is dispensable for the phosphorylation of the ICD or for the inhibition of cell adhesion. The anti-adhesive functions of Trask are entirely embodied within its ICD and are specifically due to tyrosine phosphorylation of the ICD as this function is completely lost in a phosphorylation-defective tyrosine-phenylalanine mutant. Both full length and cleaved ECDs are fully capable of phosphorylation and undergo phosphorylation during anchorage loss and cleavage is not an upstream signal for ICD phosphorylation. These data establish that the anti-adhesive functions of Trask are mediated entirely through its tyrosine phosphorylation. It remains to be defined what role, if any, the Trask ECD plays in its adhesion functions.

  12. RNA structures facilitate recombination-mediated gene swapping in HIV-1.

    Science.gov (United States)

    Simon-Loriere, Etienne; Martin, Darren P; Weeks, Kevin M; Negroni, Matteo

    2010-12-01

    Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny.

  13. RNA Structures Facilitate Recombination-Mediated Gene Swapping in HIV-1 ▿

    Science.gov (United States)

    Simon-Loriere, Etienne; Martin, Darren P.; Weeks, Kevin M.; Negroni, Matteo

    2010-01-01

    Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny. PMID:20881047

  14. Solvent-mediated gel formation, hierarchical structures, and rheological properties of organogels.

    Science.gov (United States)

    Su, Ming-Ming; Yang, Hai-Kuan; Ren, Li-Jun; Zheng, Ping; Wang, Wei

    2015-01-28

    We report the formation of solvent-mediated gels as well as their hierarchical structures and rheological properties. The gelator used is a hybrid with a molecular structure of cholesterol-polyoxometalate-cholesterol, in which the cholesterol dissolves well in toluene and N,N-dimethylformamide (DMF), whereas the polyoxometalate cluster dissolves only in DMF. These solubility differences enable the gelator to form thermally reversible supramolecular organogels by mixing solvents of toluene and DMF when the volume fraction, ftol, of toluene is larger than 85.7 v/v%. We found a V-shaped correlation between the gelation times, tgel and ftol: tgel decreases from 1300 min to 2 min when ftol increases from 85.7 v/v% to 90.0 v/v%. It then increases from 2 min to 5800 min when ftol further increases from 90.0 v/v% to 100.0 v/v%. We observed ribbon-like self-assembled structures in the gels as well as a structural evolution from rigid and straight ribbons to twistable ones from ftol=85.7 v/v% to ftol=100.0 v/v%. These ribbons constitute two three-dimensional (3D) gel networks: one is constructed via physical connection of the rigid and straight ribbon, and the other is built up from ribbons splitting and intertwining. The latter has a better 3D gel network that offers improved rheological properties. Fundamentally, this solvent-mediated approach regulates the balance between solubility and insolubility of this gelator in the mixing solvents. It also provides a new method for the preparation of organogels.

  15. Interfacial structure in an air-water planar bubble jet

    Science.gov (United States)

    Sun, X.; Vasavada, S.; Choi, S. W.; Kim, S.; Ishii, M.; Beus, S. G.

    2005-04-01

    The objective of the current study is to better understand the interfacial structure and its development in an air-water planar bubble jet, as well as to provide a unique benchmark data set for a 3D thermal-hydraulic analysis code. Both flow visualization and local measurements were performed in three characteristic flow conditions at four elevations along a test section with a cross section of 200 mm in width and 10 mm in gap. A high-speed digital video camera was applied in the flow visualization study to capture the flow structures and bubble interaction phenomena, while a miniaturized four-sensor conductivity probe was used to acquire the time-averaged local void fraction, interfacial velocity, and bubble number frequency. Also, the interfacial area concentration and the averaged bubble Sauter mean diameter were obtained from the local measurements. The lateral bubble transport and bubble interaction mechanisms were clearly demonstrated in the acquired data.

  16. Arbuscular mycorrhizal mediation of biomass-density relationship of Medicago sativa L. under two water conditions in a field experiment.

    Science.gov (United States)

    Zhang, Qian; Xu, Liming; Tang, Jianjun; Bai, Minge; Chen, Xin

    2011-05-01

    The biomass-density relationship (whereby the biomass of individual plants decreases as plant density increases) has generally been explained by competition for resources. Arbuscular mycorrhizal fungi (AMF) are able to affect plant interactions by mediating resource utilization, but whether this AMF-mediated interaction will change the biomass-density relationship is unclear. We conducted an experiment to test the hypothesis that AMF will shift the biomass-density relationship by affecting intraspecific competition. Four population densities (10, 100, 1,000, or 10,000 seedlings per square meter) of Medicago sativa L. were planted in field plots. Water application (1,435 or 327.7 mm/year) simulated precipitation in wet areas (sufficient water) and arid areas (insufficient water). The fungicide benomyl was applied to suppress AMF in some plots ("low-AMF" treatment) and not in others ("high-AMF" treatment). The effect of the AMF treatment on the biomass-density relationship depended on water conditions. High AMF enhanced the decrease of individual biomass with increasing density (the biomass-density line had a steeper slope) when water was sufficient but not when water was insufficient. AMF treatment did not affect plant survival rate or population size but did affect absolute competition intensity (ACI). When water was sufficient, ACI was significantly higher in the high-AMF treatment than in the low-AMF treatment, but ACI was unaffected by AMF treatment when water was insufficient. Our results suggest that AMF status did not impact survival rate and population size but did shift the biomass-density relationship via effects on intraspecific competition. This effect of AMF on the biomass-density relationship depended on the availability of water.

  17. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification.

    Science.gov (United States)

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-06-05

    This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H2O2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H2O2 concentration, while the optimal pH and H2O2 concentration were 7.0 and 8μM, respectively. 98% TCS was removed with only 0.1UmL(-1) SBP in 30min reaction time, while an HRP dose of 0.3UmL(-1) was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (KCAT) and catalytic efficiency (KCAT/KM) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via CC and CO coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment.

  18. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhua; Peng, Jianbiao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhang, Ya [Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of the People’s Republic of China, Nanjing 210042 (China); Ji, Yuefei [College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095 (China); Shi, Huanhuan; Mao, Liang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Gao, Shixiang, E-mail: ecsxg@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-06-05

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H{sub 2}O{sub 2} concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K{sub CAT} and K{sub CAT}/K{sub M} values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H{sub 2}O{sub 2} concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H{sub 2}O{sub 2} concentration, while the optimal pH and H{sub 2}O{sub 2} concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL{sup −1} SBP in 30 min reaction time, while an HRP dose of 0.3 U mL{sup −1} was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K{sub CAT}) and catalytic efficiency (K{sub CAT}/K{sub M}) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water

  19. 76 FR 74831 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Science.gov (United States)

    2011-12-01

    ... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY...- ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water... management of stainless steel structures and components exposed to treated borated water. In response to...

  20. Influence of organobentonite structure on toluene adsorption from water solution

    Directory of Open Access Journals (Sweden)

    Nuria Vidal

    2012-12-01

    Full Text Available Due to increase water pollution by organic compound derived from hydrocarbons such as toluene, several alternative technologies for remediation of polluted water have been originated. In this work natural bentonites were modified with cetyltrimethylammonium (CTMA+ for obtaining organophilic bentonites. The obtained CTMA-bentonites would be suitable for use as adsorbents of toluene present in water. The influence of structural characteristics of CTMA-bentonites on their adsorption capacity was studied. It was shown that adsorption of toluene depended on homogeneous interlayer space associated with arrangements of CTMA+ paraffin-monolayer and bilayer models, accompanied by a high degree ordering of the carbon chain of organic cation in both arrangements. However, packing density would not have an evident influence on the retention capacity of these materials. The solids obtained were characterized by chemical analysis, X-ray diffractions and infrared spectroscopy. Toluene adsorption was measured by UV-visible spectrophotometer. Adsorption capacity was studied by determining adsorption isotherms and adsorption coefficient calculation. The adsorption isotherms were straight-line indicating a partition phenomenon of toluene between the aqueous and organic phase present in organophilic bentonites.

  1. Metabolite profiles of Stachybotrys isolates from water-damaged buildings and their induction of inflammatory mediators and cytotoxicity in macrophages

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Huttunen, K.; Hyvarinen, A.

    2002-01-01

    The metabolite profiles of 20 Stachybotrys spp. isolates from Finnish water-damaged buildings were compared with their biological activities. Effects of purified compounds on cytotoxicity and production of inflammatory mediators such as nitric oxide, IL-6 and TNFalpha in murine RAW264.7 macrophage......, cytotoxicity of Stachybotrys sp. isolates appear to be related to satratoxin production whereas the specific component inducing inflammatory responses in atranone-producing isolates remains obscure....

  2. Stabilization of acyclic water tetramer in a copper(II) malonate framework structure.

    Science.gov (United States)

    Deshpande, Megha S; Kumbhar, Avinash S; Näther, Christian

    2010-10-14

    Copper(II) complex [Cu(dpq)(mal)(H(2)O)]·3H(2)O (1) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline, mal = malonato) was synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis and single-crystal X-ray crystallography. The single-crystal X-ray structure of 1 reveals a square pyramidal structure, with the dipyrido-[3,2-d:2',3'-f]-quinoxaline and malonato at the equatorial positions and a water molecule at the axial position. The molecule acts as a building block generating a supramolecular three-dimensional metal-organic framework (MOF) encapsulating metal linked acyclic water tetramer. The H-bonding capacity of malonato and the π-π stacking interactions of dipyrido-[3,2-d:2',3'-f]-quinoxaline further reinforce the framework. The copper(II) bound hydroxyl group is demonstrated to mediate hydrolytic cleavage of plasmid pBR322 DNA under dark conditions.

  3. Metal-Free Hydrogen Atom Transfer from Water: Expeditious Hydrogenation of N-Heterocycles Mediated by Diboronic Acid.

    Science.gov (United States)

    Xia, Yun-Tao; Sun, Xiao-Tao; Zhang, Ling; Luo, Kai; Wu, Lei

    2016-11-21

    A hydrogenation of N-heterocycles mediated by diboronic acid with water as the hydrogen atom source is reported. A variety of N-heterocycles can be hydrogenated with medium to excellent yields within 10 min. Complete deuterium incorporation from stoichiometric D2 O onto substrates further exemplifies the H/D atom sources. Mechanism studies reveal that the reduction proceeds with initial 1,2-addition, in which diboronic acid synergistically activates substrates and water via a six-membered ring transition state.

  4. Linking Organizational Structure, Technological Support and Process Innovation: the Mediating Role of Knowledge Sharing in the Iraqi Textile Industry

    Directory of Open Access Journals (Sweden)

    Al-Mamoori Amal Ghalib Rashid

    2015-01-01

    Full Text Available This paper investigates the relationships among organizational structure, technological support, knowledge sharing and process innovation and whether knowledge sharing has a mediating effect on these relationships. Based on the survey among employees in the Iraqi textile industry, the results revealed that organizational structure and technological support positively and significantly influence knowledge sharing. Knowledge sharing was also found to be an important mediator between organizational structure, support technology and process innovation. The findings bear implications to the Iraqi government’s call for innovation in the Iraqi textile industry.

  5. Organic extract contaminants from drinking water activate Nrf2-mediated antioxidant response in a human cell line.

    Science.gov (United States)

    Wang, Shu; Zhang, Hao; Zheng, Weiwei; Wang, Xia; Andersen, Melvin E; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2013-05-07

    Traditional risk assessment methods face challenges in estimating risks from drinking waters that contain low-levels of large numbers of contaminants. Here, we evaluate the toxicity of organic contaminant (OC) extracts from drinking water by examining activation of nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant response. In HepG2 cells, the Nrf2-mediated antioxidant response-measured as Nrf2 protein accumulation, expression of antioxidant response element (ARE)-regulated genes and ARE-luciferase reporter gene assays were activated by OC extracts from drinking water sources that detected 25 compounds in 9 classification groups. Individual OCs induced oxidative stress at concentrations much higher than their environmental levels; however, mixtures of contaminants induced oxidative stress response at only 8 times the environmental levels. Additionally, a synthetic OC mixture prepared based on the contamination profiling of drinking water induced ARE activity to the same extent as the real-world mixture, reinforcing our conclusion that these mixture exposures produce responses relevant for human exposure situations. Our study tested the possibility of assessing toxicity of OCs of drinking water using a specific ARE-pathway measurement. This approach should be broadly useful in assisting risk assessment of mixed environmental exposure.

  6. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure?

    Science.gov (United States)

    Pattison, David I; Hawkins, Clare L; Davies, Michael J

    2007-08-28

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.

  7. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor.

    Science.gov (United States)

    Hennen, Stephanie; Kodra, János T; Soroka, Vladyslav; Krogh, Berit O; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S; Reedtz-Runge, Steffen

    2016-05-19

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors.

  8. Employing a Structured Interface to Advance Primary Students' Communicative Competence in a Text-Based Computer Mediated Environment

    Science.gov (United States)

    Chiu, Chiung-Hui; Wu, Chiu-Yi; Hsieh, Sheng-Jieh; Cheng, Hsiao-Wei; Huang, Chung-Kai

    2013-01-01

    This study investigated whether a structured communication interface fosters primary students' communicative competence in a synchronous typewritten computer-mediated collaborative learning environment. The structured interface provided a set of predetermined utterance patterns for elementary students to use or imitate to develop communicative…

  9. Employing a Structured Interface to Advance Primary Students' Communicative Competence in a Text-Based Computer Mediated Environment

    Science.gov (United States)

    Chiu, Chiung-Hui; Wu, Chiu-Yi; Hsieh, Sheng-Jieh; Cheng, Hsiao-Wei; Huang, Chung-Kai

    2013-01-01

    This study investigated whether a structured communication interface fosters primary students' communicative competence in a synchronous typewritten computer-mediated collaborative learning environment. The structured interface provided a set of predetermined utterance patterns for elementary students to use or imitate to develop communicative…

  10. Building Collaborative Structures for Teachers' Autonomy and Self-Efficacy: The Mediating Role of Participative Management and Learning Culture

    Science.gov (United States)

    Lu, Jiafang; Jiang, Xinhui; Yu, Huen; Li, Dongyu

    2015-01-01

    This study focused on the collaborative structure-building behavior of school principals and examined how such behavior affects teacher empowerment. More important, it tested the mediating effects of participative management and learning culture. By collecting nested data from 104 schools in Hong Kong and adopting multilevel structural equation…

  11. Building Collaborative Structures for Teachers' Autonomy and Self-Efficacy: The Mediating Role of Participative Management and Learning Culture

    Science.gov (United States)

    Lu, Jiafang; Jiang, Xinhui; Yu, Huen; Li, Dongyu

    2015-01-01

    This study focused on the collaborative structure-building behavior of school principals and examined how such behavior affects teacher empowerment. More important, it tested the mediating effects of participative management and learning culture. By collecting nested data from 104 schools in Hong Kong and adopting multilevel structural equation…

  12. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity

    Directory of Open Access Journals (Sweden)

    Rocha-Sanchez Sonia M

    2010-10-01

    Full Text Available Abstract Background The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental. Results Here we report that a point mutation at the phospholipase Cγ (PLCγ docking site in the mouse neurotrophin tyrosine kinase receptor TrkB (Ntrk2 specifically impairs fiber guidance inside the vestibular sensory epithelia, but has limited effects on the survival of vestibular sensory neurons and growth of afferent processes toward the sensory epithelia. We also show that expression of the TRPC3 cation calcium channel, whose activity is known to be required for nerve-growth cone guidance induced by brain-derived neurotrophic factor (BDNF, is altered in these animals. In addition, we find that absence of the PLCγ mediated TrkB signalling interferes with the transformation of bouton type afferent terminals of vestibular dendrites into calyces (the largest synaptic contact of dendrites known in the mammalian nervous system on type I vestibular hair cells; the latter are normally distributed in these mutants as revealed by an unaltered expression pattern of the potassium channel KCNQ4 in these cells. Conclusions These results demonstrate a crucial involvement of the TrkB/PLCγ-mediated intracellular signalling in structural aspects of sensory neuron plasticity.

  13. Religious congregations as mediating structures for social justice: a multilevel examination.

    Science.gov (United States)

    Todd, Nathan R; Allen, Nicole E

    2011-12-01

    Scholars in the field of community psychology have called for a closer examination of the mediating role that religious congregations serve in society, especially in relation to the promotion of social justice. The current study provides such an examination, offering a multilevel examination of religious individuals (n = 5,123) nested within religious congregations (n = 62) with a particular focus on how individual and congregational level variables (i.e. theological orientation, frequency of religious attendance, bonding and bridging social capital) predict individual prioritization of and participation in congregational social justice activities. Findings indicated that individual level theological orientation was associated with prioritization, and demographics and social capital bonding were associated with prioritization and participation. Furthermore, congregational bridging social capital was associated with the prioritization of justice, whereas congregational theological orientation moderated the associations between frequency of religious participation for both prioritization of and participation in congregational justice activities. These findings show that specific aspects of the congregational setting (i.e., congregational theological orientation) are important to the individual prioritization of and participation in social justice activities. These findings provide support for the role of religious congregations as mediating structures for social justice. Implications for future research are also discussed.

  14. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration

    Science.gov (United States)

    Fang, Yuqiang; Iu, Catherine Y. Y.; Lui, Cathy N. P.; Zou, Yukai; Fung, Carmen K. M.; Li, Hung Wing; Xi, Ning; Yung, Ken K. L.; Lai, King W. C.

    2014-11-01

    Glutamate-mediated neurodegeneration resulting from excessive activation of glutamate receptors is recognized as one of the major causes of various neurological disorders such as Alzheimer's and Huntington's diseases. However, the underlying mechanisms in the neurodegenerative process remain unidentified. Here, we investigate the real-time dynamic structural and mechanical changes associated with the neurodegeneration induced by the activation of N-methyl-D-aspartate (NMDA) receptors (a subtype of glutamate receptors) at the nanoscale. Atomic force microscopy (AFM) is employed to measure the three-dimensional (3-D) topography and mechanical properties of live SH-SY5Y cells under stimulus of NMDA receptors. A significant increase in surface roughness and stiffness of the cell is observed after NMDA treatment, which indicates the time-dependent neuronal cell behavior under NMDA-mediated neurodegeneration. The present AFM based study further advance our understanding of the neurodegenerative process to elucidate the pathways and mechanisms that govern NMDA induced neurodegeneration, so as to facilitate the development of novel therapeutic strategies for neurodegenerative diseases.

  15. The structure of the pelagic food web in relation to water column structure in the Skagerrak

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Kaas, H.; Kruse, B.

    1990-01-01

    The distribution, composition and activity of phytoplankton, and accompanying changes in specific activities of bacterioplankton and copepods, were related to variations in the vertical structure of the water column along a transect through the Skagerrak in May 1987. The Skagerrak is characterized....... Thus a 'microbial loop' type of food web seemed to be evolving in the central, strongly stratified parts of the Skagerrak, while a shorter 'classical' type of food web appeared to dominate along the margin. The relation between food web structure and vertical mixing processes observed on oceanwide...

  16. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    Directory of Open Access Journals (Sweden)

    Hitoshi Miyakawa

    Full Text Available Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH, which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms

  17. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    Science.gov (United States)

    Miyakawa, Hitoshi; Sato, Masanao; Colbourne, John K; Iguchi, Taisen

    2015-01-01

    Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH), which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms underlying the recognition

  18. Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases

    OpenAIRE

    Sekretaryova, Alina; Vagin, Mikhail; Beni, Valerio; Turner, Anthony P.F.; Karyakin, Arkady A

    2014-01-01

    The mediation of oxidases glucose oxidase (GOx), lactate oxidase (LOx) and cholesterol oxidase (ChOx) by a new electron shuttling mediator, unsubstituted phenothiazine (PTZ), was studied. Cyclic voltammetry and rotating-disk electrode measurements in nonaqueous media were used to determine the diffusion characteristics of the mediator and the kinetics of its reaction with GOx, giving a second-order rate constant of 7.6×103–2.1×104 M−1 s−1 for water–acetonitrile solutions containing 5–15% wate...

  19. Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation.

    Science.gov (United States)

    Zhao, Kuiwen; Wu, Huiying

    2015-04-28

    Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive molecular dynamics simulations, we show the dependence of water transport behaviours on water structures. Our results indicate that owing to the change in water structure in nanopores, water flux across nanopores with certain pore sizes decreases sharply (nearly 3 orders of magnitude) with the decreasing temperature. This phenomenon is very sensitive to the pore size. The threshold temperatures for the occurrence of the ultrafast-slow flow transition for water transport are also determined for various pore sizes. These findings suggest a novel protocol for selective gating of water and proton conduction across nanopores and temperature-controlled drug release.

  20. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness.

    Science.gov (United States)

    Huang, Qihua; Wang, Hao

    2016-08-01

    The question of the effects of environmental toxins on ecological communities is of great interest from both environmental and conservational points of view. Mathematical models have been applied increasingly to predict the effects of toxins on a variety of ecological processes. Motivated by the fact that individuals with different sizes may have different sensitivities to toxins, we develop a toxin-mediated size-structured model which is given by a system of first order fully nonlinear partial differential equations (PDEs). It is very possible that this work represents the first derivation of a PDE model in the area of ecotoxicology. To solve the model, an explicit finite difference approximation to this PDE system is developed. Existence-uniqueness of the weak solution to the model is established and convergence of the finite difference approximation to this unique solution is proved. Numerical examples are provided by numerically solving the PDE model using the finite difference scheme.

  1. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma.

    Science.gov (United States)

    Verstraete, Kenneth; Peelman, Frank; Braun, Harald; Lopez, Juan; Van Rompaey, Dries; Dansercoer, Ann; Vandenberghe, Isabel; Pauwels, Kris; Tavernier, Jan; Lambrecht, Bart N; Hammad, Hamida; De Winter, Hans; Beyaert, Rudi; Lippens, Guy; Savvides, Savvas N

    2017-04-03

    The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) is pivotal to the pathophysiology of widespread allergic diseases mediated by type 2 helper T cell (Th2) responses, including asthma and atopic dermatitis. The emergence of human TSLP as a clinical target against asthma calls for maximally harnessing its therapeutic potential via structural and mechanistic considerations. Here we employ an integrative experimental approach focusing on productive and antagonized TSLP complexes and free cytokine. We reveal how cognate receptor TSLPR allosterically activates TSLP to potentiate the recruitment of the shared interleukin 7 receptor α-chain (IL-7Rα) by leveraging the flexibility, conformational heterogeneity and electrostatics of the cytokine. We further show that the monoclonal antibody Tezepelumab partly exploits these principles to neutralize TSLP activity. Finally, we introduce a fusion protein comprising a tandem of the TSLPR and IL-7Rα extracellular domains, which harnesses the mechanistic intricacies of the TSLP-driven receptor complex to manifest high antagonistic potency.

  2. A novel DNA computing model based on RecA-mediated triple-stranded DNA structure

    Institute of Scientific and Technical Information of China (English)

    Fang Gang; Zhang Shemin; Dong Yafei; Xu Jin

    2007-01-01

    The field of DNA computing emerged in 1994 after Adleman's paper was published. Henceforth, a few scholars solved some noted NP-complete problems in this way. And all these methods of DNA computing are based on conventional Watson-Crick hydrogen bond of doublehelical DNA molecule. In this paper, we show that the triple-stranded DNA structure mediated by RecA protein can be used for solving computational problems. Sequence-specific recognition of double-stranded DNA by oligonucleotide-directed triple helix (triplex) formation is used to carry out the algorithm. We present procedure for the 3-vertex-colorability problems. In our proposed procedure, it is suggested that it is possible to solve more complicated problems with more variables by this model.

  3. A structure-activity relationship study of small-molecule inhibitors of GLI1-mediated transcription.

    Science.gov (United States)

    Actis, Marcelo; Connelly, Michele C; Mayasundari, Anand; Punchihewa, Chandanamali; Fujii, Naoaki

    2011-01-01

    We have previously reported ketoprofen amide compounds as inhibitors of GLI1-mediated transcription, an essential down-stream element of the Hedgehog (Hh) pathway. These compounds inhibited Gli-luciferase reporter in C3H10T1/2 cells that were exogenously transfected with GLI1 and in Rh30 cells that endogenously overexpress GLI1. Here we have designed new derivatives of these compounds aiming to explore the structure-activation relationship (SAR). By replacing the ketone carbonyl group of the ketoprofen moiety with an ether, amide, sulfonamide, or sulfone, we found several new compounds that are equipotent to the ketoprofen amide compounds. Among them, sulfone 30 inhibited Gli-luciferase reporter in C3H10T1/2 cells that were exogenously transfected with GLI1 and in Rh30 cells that endogenously overexpress GLI1.

  4. Does white matter structure or hippocampal volume mediate associations between cortisol and cognitive ageing?

    Science.gov (United States)

    Cox, Simon R; MacPherson, Sarah E; Ferguson, Karen J; Royle, Natalie A; Maniega, Susana Muñoz; Hernández, Maria Del C Valdés; Bastin, Mark E; MacLullich, Alasdair M J; Wardlaw, Joanna M; Deary, Ian J

    2015-12-01

    Elevated glucocorticoid (GC) levels putatively damage specific brain regions, which in turn may accelerate cognitive ageing. However, many studies are cross-sectional or have relatively short follow-up periods, making it difficult to relate GCs directly to changes in cognitive ability with increasing age. Moreover, studies combining endocrine, MRI and cognitive variables are scarce, measurement methods vary considerably, and formal tests of the underlying causal hypothesis (cortisol→brain→cognition) are absent. In this study, 90 men, aged 73 years, provided measures of fluid intelligence, processing speed and memory, diurnal and reactive salivary cortisol and two measures of white matter (WM) structure (WM hyperintensity volume from structural MRI and mean diffusivity averaged across 12 major tracts from diffusion tensor MRI), hippocampal volume, and also cognitive ability at age 11. We tested whether negative relationships between cognitive ageing differences (over more than 60 years) and salivary cortisol were significantly mediated by WM and hippocampal volume. Significant associations between reactive cortisol at 73 and cognitive ageing differences between 11 and 73 (r=-.28 to -.36, pageing differences from childhood to the early 70s, partly via brain WM structure. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Molecular Architecture of G alpha o and the Structural Basis for RGS16-Mediated Deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Slep,K.; Kercher, M.; Wieland, T.; Chen, C.; Simon, M.; Sigler, P.

    2008-01-01

    Heterotrimeric G proteins relay extracellular cues from heptahelical transmembrane receptors to downstream effector molecules. Composed of an a subunit with intrinsic GTPase activity and a {beta} heterodimer, the trimeric complex dissociates upon receptor-mediated nucleotide exchange on the a subunit, enabling each component to engage downstream effector targets for either activation or inhibition as dictated in a particular pathway. To mitigate excessive effector engagement and concomitant signal transmission, the Ga subunit's intrinsic activation timer (the rate of GTP hydrolysis) is regulated spatially and temporally by a class of GTPase accelerating proteins (GAPs) known as the regulator of G protein signaling (RGS) family. The array of G protein-coupled receptors, Ga subunits, RGS proteins and downstream effectors in mammalian systems is vast. Understanding the molecular determinants of specificity is critical for a comprehensive mapping of the G protein system. Here, we present the 2.9 Angstroms crystal structure of the enigmatic, neuronal G protein Gao in the GTP hydrolytic transition state, complexed with RGS16. Comparison with the 1.89 Angstroms structure of apo-RGS16, also presented here, reveals plasticity upon Gao binding, the determinants for GAP activity, and the structurally unique features of Gao that likely distinguish it physiologically from other members of the larger Gai family, affording insight to receptor, GAP and effector specificity.

  6. Examining brain structures associated with dispositional envy and the mediation role of emotional intelligence.

    Science.gov (United States)

    Xiang, Yanhui; Zhao, Sasa; Wang, Hanlin; Wu, Qihan; Kong, Feng; Mo, Lei

    2017-02-08

    Dispositional envy is distinguished by definition and neurally from episodic envy. While the neural correlates of episodic envy have been evaluated by specific tasks in previous studies, little is known about the structural neural basis of dispositional envy. In this study, we investigated the structural neural basis of dispositional envy underlying individual differences across two independent samples comprising a total of 100 young healthy adults. Firstly, 73 subjects' data (sample 1) was analyzed, and we assessed the association between regional gray matter volume (rGMV) and dispositional envy using voxel-based morphometry (VBM). Furthermore, we explored the role of emotional intelligence in the association between GMV and dispositional envy. VBM indicated that dispositional envy was positively correlated with GMV in the left dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG). We also found that emotional intelligence partially mediated the association between DLPFC volume and dispositional envy. These results were replicated in another independent sample (Sample 2, n = 27). These results provide the first evidence that dispositional envy exhibits a structural neural correlation with the DLPFC and STG, and give a neutral explanation for why individuals with high emotional intelligence exhibit less envy.

  7. A multi-scale "soil water structure" model based on the pedostructure concept

    OpenAIRE

    Braudeau, Erik; Mohtar, Rabi,; El Ghezal, Nadim; Salahat, Mohammed; Martin, Pierre

    2009-01-01

    International audience; Current soil water models do not take into account the internal organization of the soil medium and, consequently, ignore the physical interaction between the water film at the surface of solids making the soil structure, and this structure. In that sense they empirically deal with the physical soil properties that are all generated from this soil waterstructure interaction. As a result, the thermodynamic state of the soil water medium, which constitutes the local p...

  8. Thermal structure of a lake with water in vertical motion

    Energy Technology Data Exchange (ETDEWEB)

    Zito, G.; Mongelli, F. (Bari Univ. (Italy). Ist. di Geodesia e Geofisica)

    The vertical temperature structures of the seasonal thermocline of two lakes in temperate latitude with different feedings have been examined experimentally and reproduced theoretically by the basic equation of heat diffusion. One of these lakes is fed mainly from springs emerging from the lake bottom: as a consequence a vertical motion of water is established. The other lake is fed from the former by a small superficial channel. It is argued that the observed quantitative features of the stratification cycle agree with the theoretical calculations in both lakes with the same value of the molecular thermal diffusivity. Moreover, the seasonal thermocline of the lake with the bottom feeding is reduced: this involves a faster drop in the temperature amplitude of the annual cycle.

  9. Technical Tools for Studying Structure and Dynamics of Water Masses

    Directory of Open Access Journals (Sweden)

    V.Z. Dykman

    2016-12-01

    Full Text Available The article gives a review of the technical tools designed to study structure and dynamics of water masses in the surface, bottom and deep-water sea layers, where the acting processes are not connected with wind waves. The process of adapting the measuring equipment to the requirements resulting from the expanding notions on physics of the marine environment phenomena is shown. Almost all the major designs are patented in the USSR, Ukraine and Russia. The experience in the development of different instruments enable adequately respond to the need for new methods and technical means intended for the organization of operational observations of the marine environment and land and sea interface zone. CTD-system experimental samples having a high degree of miniaturization and extremely low power consumption have already been created. They possess the necessary metrological characteristics and are intended for use in the drifters and lost (disposable probes. According to its metrological and operating characteristics, the autonomous electromagnetic current meter is able to provide reliable data in a variety of conditions (including collapse area of wind waves both being installed on a fixed base and hung on buoy stations. For wide manufacture of the new measurement tools it is necessary to create a complete set of design documentation on the basis of existing sketches, as well as to find the production base, equipped with machine tools of the corresponding class.

  10. Accounting for target flexibility and water molecules by docking to ensembles of target structures: the HCV NS5B palm site I inhibitors case study.

    Science.gov (United States)

    Barreca, Maria Letizia; Iraci, Nunzio; Manfroni, Giuseppe; Gaetani, Rosy; Guercini, Chiara; Sabatini, Stefano; Tabarrini, Oriana; Cecchetti, Violetta

    2014-02-24

    The introduction of new anti-HCV drugs in therapy is an imperative need and is necessary with a view to develop an interferon-free therapy. Thus, the discovery and development of novel small molecule inhibitors of the viral NS5B polymerase represent an exciting area of research for many pharmaceutical companies and academic groups. This study represents a contribution to this field and relies on the identification of the best NS5B model(s) to be used in structure-based computational approaches aimed at identifying novel non-nucleoside inhibitors of one of the protein allosteric sites, namely, palm site I. First, the NS5B inhibitors at palm site I were classified as water-mediated or nonwater-mediated ligands depending on their ability to interact with or displace a specific water molecule. Then, we took advantage of the available X-ray structures of the NS5B/ligand complexes to build different models of protein/water combinations, which were used to investigate the influence on docking studies of solvent sites as well as of the influence of the protein conformations. As the overall trend, we observed improved performance in the docking results of the water-mediated inhibitors by inclusion of explicit water molecules, with an opposite behavior generally happening for the nonwater-mediated inhibitors. The best performing target structures for the two ligand sets were then used for virtual screening simulations of a library containing the known NS5B inhibitors along with related decoys to assess the best performing targets ensembles on the basis of their ability to discriminate active and inactive compounds as well as to generate the correct binding modes. The parallel use of different protein structures/water sets outperformed the use of a single target structure, with the two-protein 3H98/2W-2FVC/7W and 3HKY/NoW-3SKE/NoW models resulting in the best performing ensembles for water-mediated inhibitors and nonwater-mediated inhibitors, respectively. The information

  11. The equivalent potential of water molecules for electronic structure of lysine

    Institute of Scientific and Technical Information of China (English)

    LI ChunJie; ZHENG HaoPing; WANG XueMei

    2007-01-01

    In order to get more reliable electronic structures of proteins in aqueous solution,it is necessary to construct a potential of water molecules for protein's electronic structure calculation.The lysine is a hydrophilic amino acid.It is positively charged (Lys+) in neutral water solution.The first-principles,all-electron,ab initio calculations,based on the density functional theory,have been performed to construct such an equivalent potential of water molecules for lysine (Lys+).The process consists of three parts.First,the electronic structure of the cluster containing Lys+ and water molecules is calculated.By adjusting the positions of water molecules,the geometric structure of the cluster having minimum total energy is determined.Then,based on the structure,the electronic structure of Lys+ with the potential of water molecules is calculated using the self-consistent cluster-embedding (SCCE) method.Finally,the electronic structure of Lys+ with the potential of dipoles is calculated.The dipoles are adjusted so that the electronic structure of Lys+ with the potential of dipoles is close to that of water molecules.Thus the equivalent potential of water molecules for the electronic structure of lysine is obtained.The major effect of water molecules on lysine's electronic structure is raising the occupied eigenvalues about 0.5032 eV,and broadening energy gap 89%.The effect of water molecules on the electronic structure of lysine can be simulated by dipoles potential.

  12. The equivalent potential of water molecules for electronic structure of lysine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to get more reliable electronic structures of proteins in aqueous solution, it is necessary to construct a potential of water molecules for protein’s electronic structure calculation. The lysine is a hydrophilic amino acid. It is positively charged (Lys+) in neutral water solution. The first-principles, all-electron, ab initio calcula-tions, based on the density functional theory, have been performed to construct such an equivalent potential of water molecules for lysine (Lys+). The process consists of three parts. First, the electronic structure of the cluster containing Lys+ and water molecules is calculated. By adjusting the positions of water molecules, the geometric structure of the cluster having minimum total energy is determined. Then, based on the structure, the electronic structure of Lys+ with the potential of water molecules is calculated using the self-consistent cluster-embedding (SCCE) method. Finally, the electronic structure of Lys+ with the potential of dipoles is calculated. The dipoles are adjusted so that the electronic structure of Lys+ with the potential of dipoles is close to that of water molecules. Thus the equivalent potential of water molecules for the electronic structure of lysine is obtained. The major effect of water molecules on lysine’s electronic structure is raising the occupied eigenvalues about 0.5032 eV, and broadening energy gap 89%. The effect of water molecules on the electronic structure of lysine can be simulated by dipoles potential.

  13. Effect Mechanism of Structure-Changed Water on Heat Stability of Lysozyme

    Institute of Scientific and Technical Information of China (English)

    赵林; 谭欣

    2003-01-01

    Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The results obtained by differential scanning calorimetry (DSC) showed that the thermal denaturation temperature of lysozyme had been elevated 8.47 K through hydration of lysozyme with processed water whose structure had been changed so it was called "structured water" compared to ordinary water. The reason is that structured water changed the dipole moment of water molecules and easily formed cyclic water hexamer or cage-like water hexamer, so that the interacting force of maintaining three-dimensional conformation of lysozyme could be reinforced.

  14. Institutional and structural barriers for implementing on-farm water saving irrigation systems

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Boesen, Mads Vejlby; Ørum, Jens Erik

    2013-01-01

    Population growth and increased global water demand has intensified the need to apply water more efficiently. As the main global water user the agricultural sector needs special attention. In this study, the water saving potential of new drip irrigation systems has been investigated in five...... to new water saving technologies are low in many of these regions due to low profitability of water savings and various institutional and structural barriers. On Crete, however, attempts have been made with regulation and volumetric water levies, resulting in the adoption of water saving technology...... are suggested to improve incentives to save water among farmers....

  15. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Sebastian A.; Linden, Rafael [Universidade Federal do Rio de Janeiro (IBCCF/UFRl), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho; Cordeiro, Yraima; Rocha e Lima, Luis M.T. da [Universidade Federal do Rio de Janeiro (FF/UFRl), RJ (Brazil). Fac. de Farmacia; Lopes, Marilene H. [Instituto Ludwig de Pesquisa de Cancer, Sao Paulo, SP (Brazil); Silva, Jerson L.; Foguel, Debora [Universidade Federal do Rio de Janeiro (IBqM/UFRl), RJ (Brazil). Inst. de Bioquimica Medica

    2009-07-01

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrP{sup c}), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrP{sup c} with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr P{sup c} and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrP{sup c}:hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr P{sup c}{sub 143-153} beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrP{sup c}. Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr P{sup c}{sub 143-153} beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr P{sup c}, and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr P{sup c}:hop/STI 1 interaction, consistent with the hypothesis that Pr P{sup c} scaffolds multiprotein signaling complexes at the cell surface. (author)

  16. Polydopamine microcapsules with different wall structures prepared by a template-mediated method for enzyme immobilization.

    Science.gov (United States)

    Shi, Jiafu; Yang, Chen; Zhang, Shaohua; Wang, Xiaoli; Jiang, Zhongyi; Zhang, Wenyan; Song, Xiaokai; Ai, Qinghong; Tian, Chunyong

    2013-10-23

    Microcapsules with diverse wall structures may exhibit different performance in specific applications. In the present study, three kinds of mussel-inspired polydopamine (PDA) microcapsules with different wall structures have been prepared by a template-mediated method. More specifically, three types of CaCO3 microspheres (poly(allylamine hydrochloride), (PAH)-doped CaCO3; pure-CaCO3; and poly(styrene sulfonate sodium), (PSS)-doped CaCO3) were synthesized as sacrificial templates, which were then treated by dopamine to obtain the corresponding PDA-CaCO3 microspheres. Through treating these microspheres with disodium ethylene diamine tetraacetic acid (EDTA-2Na) to remove CaCO3, three types of PDA microcapsules were acquired: that was (1) PAH-PDA microcapsule with a thick (∼600 nm) and highly porous capsule wall composed of interconnected networks, (2) pure-PDA microcapsule with a thick (∼600 nm) and less porous capsule wall, (3) PSS-PDA microcapsule with a thin (∼70 nm) and dense capsule wall. Several characterizations confirmed that a higher degree in porosity and interconnectivity of the capsule wall would lead to a higher mass transfer coefficient. When serving as the carrier for catalase (CAT) immobilization, these enzyme-encapsulated PDA microcapsules showed distinct structure-related activity and stability. In particular, PAH-PDA microcapsules with a wall of highly interconnected networks displayed several significant advantages, including increases in enzyme encapsulation efficiency and enzyme activity/stability and a decrease in enzyme leaching in comparison with other two types of PDA microcapsules. Besides, this hierarchically structured PAH-PDA microcapsule may find other promising applications in biocatalysis, biosensors, drug delivery, etc.

  17. Human-Mediated Marine Dispersal Influences the Population Structure of Aedes aegypti in the Philippine Archipelago.

    Directory of Open Access Journals (Sweden)

    Eugenio Fonzi

    Full Text Available Dengue virus (DENV is an extraordinary health burden on global scale, but still lacks effective vaccine. The Philippines is endemic for dengue fever, but massive employment of insecticides favored the development of resistance mutations in its major vector, Aedes aegypti. Alternative vector control strategies consist in releasing artificially modified mosquitos in the wild, but knowledge on their dispersal ability is necessary for a successful implementation. Despite being documented that Ae. aegypti can be passively transported for long distances, no study to date has been aimed at understanding whether human marine transportation can substantially shape the migration patterns of this mosquito. With thousands of islands connected by a dense network of ships, the Philippines is an ideal environment to fill this knowledge gap.Larvae of Ae. aegypti from 15 seaports in seven major islands of central-western Philippines were collected and genotyped at seven microsatellite loci. Low genetic structure and considerable gene flow was found in the area. Univariate and multivariate regression analyses suggested that anthropic factors (specifically the amount of processed cargo and human population density can explain the observed population structure, while geographical distance was not correlated. Interestingly, cargo shipments seem to be more efficient than passenger ships in transporting Ae. aegypti. Bayesian clustering confirmed that Ae. aegypti from busy ports are more genetically similar, while populations from idle ports are relatively structured, regardless of the geographical distance that separates them.The results confirmed the pivotal role of marine human-mediated long-range dispersal in determining the population structure of Ae. aegypti. Hopefully corroborated by further research, the present findings could assist the design of more effective vector control strategies.

  18. Drinking water to reduce alcohol craving? A randomized controlled study on the impact of ghrelin in mediating the effects of forced water intake in alcohol addiction.

    Science.gov (United States)

    Koopmann, Anne; Lippmann, Katharina; Schuster, Rilana; Reinhard, Iris; Bach, Patrick; Weil, Georg; Rietschel, Marcella; Witt, Stephanie H; Wiedemann, Klaus; Kiefer, Falk

    2017-08-05

    Recent data suggest that ghrelin is involved in the pathophysiology of alcohol use disorders, affecting alcohol self-administration and craving. Gastric ghrelin secretion is reduced by stomach distension. We now tested the hypothesis whether the clinically well-known effects of high-volume water intake on craving reduction in alcoholism is mediated by acute changes in ghrelin secretion. In this randomized human laboratory study, we included 23 alcohol-dependent male inpatient subjects who underwent alcohol cue exposure. Participants of the intervention group drank 1000ml of mineral water within 10min directly thereafter, compared to the participants of the control group who did not. Craving and plasma concentrations of acetylated ghrelin were measured ten times during the 120min following the alcohol cue exposure session. In the intervention group, a significant decrease in acetylated ghrelin in plasma compared to the control group was observed. This decrease was correlated to a reduction in patients' subjective level of craving. In the control group, no decrease of acetylated ghrelin in plasma and no association between alcohol craving and changes in plasma concentrations of acetylated ghrelin were observed. Our results present new evidence that the modulation in the ghrelin system by oral water intake mediates the effects of volume intake with craving reduction in alcohol use disorders. Hence, in addition to pharmacological interventions with ghrelin antagonists, the reduction of physiological ghrelin secretion might be a target for future interventions in the treatment of alcohol craving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. COUNTRY OF ORIGIN EFFECT ON ORGANIZATIONAL INNOVATION IN MALAYSIA: THE MEDIATING ROLE OF STRUCTURE

    Directory of Open Access Journals (Sweden)

    Aizzat Mohd. Nasurdin

    2004-01-01

    Full Text Available The two main objectives of this study are: first, to determine whether the level of innovation (technological and process, product and administrative varies by country of origin, and second, to investigate the influence of country of origin on organizational innovation (technological and process, product and administrative via the mediating role played by organizational structure (formalization and centralization, among firms operating in Malaysia. Statistical analyses of the 80 multinational corporations and 43 locally-owned firms and joint-ventures using ANOVA revealed that significant differences do exist in terms of their innovation levels. Firms from the West (American multinationals and European multinationals had higher levels of technological and process innovation compared to firms from the East (Eastern multinationals plus local companies and joint-ventures. Regarding product innovation, American multinationals were found to be more innovative compared to European multinationals and firms from the East (Eastern multinationals plus local firms and joint-ventures. In terms of administrative innovation, American multinationals were found to be most innovative followed by European multinationals, and lastly, firms from the East (Eastern multinationals plus local companies and joint-ventures. Additionally, country of origin had no indirect effect on the three forms of innovation via structure. Implications and suggestions for future research are discussed.

  20. Structural elements in IGP synthase exclude water to optimize ammonia transfer.

    Science.gov (United States)

    Amaro, Rommie E; Myers, Rebecca S; Davisson, V Jo; Luthey-Schulten, Zaida A

    2005-07-01

    In the complex pathway of histidine biosynthesis, a key branch point linking amino acid and purine biosynthesis is catalyzed by the bifunctional enzyme imidazole glycerol phosphate (IGP) synthase. The first domain of IGP synthase, a triad glutamine amidotransferase, hydrolyzes glutamine to form glutamate and ammonia. Its activity is tightly regulated by the binding of the substrate PRFAR to its partner synthase domain. Recent crystal structures and molecular dynamics simulations strongly suggest that the synthase domain, a (beta/alpha)(8) barrel protein, mediates the insertion of ammonia and ring formation in IGP by channeling ammonia from one remote active site to the other. Here, we combine both mutagenesis experiments and computational investigations to gain insight into the transfer of ammonia and the mechanism of conduction. We discover an alternate route for the entrance of ammonia into the (beta/alpha)(8) barrel and argue that water acts as both agonist and antagonist to the enzymatic function. Our results indicate that the architecture of the two subdomains, most notably the strict conservation of key residues at the interface and within the (beta/alpha)(8) barrel, has been optimized to allow the efficient passage of ammonia, and not water, between the two remote active sites.

  1. A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements.

    Directory of Open Access Journals (Sweden)

    Jason E Chan

    2011-05-01

    Full Text Available Ty elements are high copy number, dispersed repeated sequences in the Saccharomyces cerevisiae genome known to mediate gross chromosomal rearrangements (GCRs. Here we found that introduction of Ty912, a previously identified Ty1 element, onto the non-essential terminal region of the left arm of chromosome V led to a 380-fold increase in the rate of accumulating GCRs in a wild-type strain. A survey of 48 different mutations identified those that either increased or decreased the rate of Ty-mediated GCRs and demonstrated that suppression of Ty-mediated GCRs differs from that of both low copy repeat sequence- and single copy sequence-mediated GCRs. The majority of the Ty912-mediated GCRs observed were monocentric nonreciprocal translocations mediated by RAD52-dependent homologous recombination (HR between Ty912 and a Ty element on another chromosome arm. The remaining Ty912-mediated GCRs appeared to involve Ty912-mediated formation of unstable dicentric translocation chromosomes that were resolved by one or more Ty-mediated breakage-fusion-bridge cycles. Overall, the results demonstrate that the Ty912-mediated GCR assay is an excellent model for understanding mechanisms and pathways that suppress genome rearrangements mediated by high copy number repeat sequences, as well as the mechanisms by which such rearrangements occur.

  2. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    Science.gov (United States)

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.

  3. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water

    Science.gov (United States)

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  4. Spectroscopic Manifestation of Vibrationally-Mediated Structure Change in the Isolated Formate Monohydrate

    Science.gov (United States)

    Denton, Joanna K.; Wolke, Conrad T.; Gorlova, Olga; Gerardi, Helen; McCoy, Anne B.; Johnson, Mark

    2016-06-01

    The breadth of the OH stretching manifold observed in the IR for bulk water is commonly attributed to the thermal population of excited states and the presence of many configurations within the water network. Here, I use carboxylate species as a rigid framework to isolate a single water molecule in the gas phase and cold ion vibrational pre-dissociation spectroscopy to explore excited state contributions to bandwidth. The spectrum of the carboxylate monohydrate exhibits a signature series of peaks in the OH stretching region of this system, providing an archetypal model to study vibrationally adiabatic mode separation. Previous analysis of this behavior accounts for the extensive progression in a Franck-Condon formalism involving displaced vibrationally adiabatic potentials. In this talk I will challenge this prediction by using isotopic substation to systematically change the level structure within these potentials. This picture quantitatively accounts for the diffuse spectrum of this complex at elevated temperature providing a convenient spectroscopic reporter for the temperature of ions in a trap. E. M. Myshakin, K. D. Jordan, E. L. Sibert III, M. A. Johnson J. Chem. Phys. 119, 10138 (2003) W.H. Robertson, et al. J. Phys Chem. 107, 6527 (2003)

  5. Effects of water concentration on the structural and diffusion properties of imidazolium-based ionic liquid-water mixtures.

    Science.gov (United States)

    Niazi, Amir A; Rabideau, Brooks D; Ismail, Ahmed E

    2013-02-07

    We have used molecular dynamics simulations to study the properties of three ionic liquid (IL)-water systems: 1-butyl-3-methylimidazolium chloride ([bmim]Cl), 1-ethyl-3-methylimidazolium acetate ([emim][Ac]), and 1,3-dimethylimidazolium dimethylphosphate ([dmim][DMP]). We observe the transition of those mixtures from pure IL to aqueous solution by analyzing the changes in important bulk properties (density) and structural and bonding properties (radial distribution functions, water clustering, hydrogen bonding, and cationic stacking) as well as dynamical properties (diffusion coefficients) at 12 different concentration samplings of each mixture, ranging from 0.0 to 99.95 mol % water. Our simulations revealed across all of the different structural, bonding, and dynamical properties major structural changes consistent with a transition from IL-water mixture to aqueous solution in all three ILs at water concentrations around 75 mol %. Among the structural changes observed were rapid increase in the frequency of hydrogen bonds, both water-water and water-anion. Similarly, at these critical concentrations, the water clusters formed begin to span the entire simulation box, rather than existing as isolated networks of molecules. At the same time, there is a sudden decrease in cationic stacking at the transition point, followed by a rapid increase near 90 mol % water. Finally, the diffusion coefficients of individual cations and anions show a rapid transition from rates consistent with diffusion in IL's to rates consistent with diffusion in water beginning at 75 mol % water. The location of this transition is consistent, for [bmim]Cl and [dmim][DMP], with the water concentration limit above which the ILs are unable to dissolve cellulose.

  6. The importance of nature's invisible fabric: food web structure mediates modeled responses to river restoration

    Science.gov (United States)

    Bellmore, R.; Benjamin, J.; Newsom, M.; Bountry, J.; Dombroski, D.

    2016-12-01

    Restoration is frequently aimed at the recovery of target species, but also influences the larger food web in which these species participate. Effects of restoration on this broader network of organisms can influence target species both directly and indirectly via changes in energy flow through food webs. To help incorporate these complexities into river restoration planning we constructed a food web model that links river food web dynamics to in-stream physical habitat and riparian vegetation conditions. We present an application of this model to the Methow River, Washington (USA), a location of on-going restoration aimed at recovering salmon. Three restoration strategies were simulated: riparian vegetation restoration, nutrient augmentation via salmon carcass addition, and floodplain reconnection. To explore how food web structure mediates responses to these actions, we modified the food web by adding populations of invasive aquatic snails and nonnative fish. Simulations suggest that floodplain reconnection may be a better strategy than carcass addition and vegetation planting for improving conditions for salmon in this river segment. However, modeled responses were strongly sensitive to changes in the structure of the food web. The addition of invasive snails and nonnative fishes modified pathways of energy through the food web, which negated restoration improvements. This finding illustrates that forecasting responses to restoration may require accounting for the structure of food webs, and that changes in this structure—as might be expected with the spread of invasive species—could compromise restoration outcomes. By elucidating the direct and indirect pathways by which restoration affects target species, dynamic food web models can improve restoration planning by fostering a deeper understanding of system connectedness and dynamics.

  7. Analysis of microscopic pore structures of rocks before and after water absorption

    Institute of Scientific and Technical Information of China (English)

    Li Dejian; Wang Guilian; Han Liqiang; Liu Peiyu; He Manchao; Yang Guoxing; Tai Qimin; Chen Cheng

    2011-01-01

    Hydrophilic characteristics of rocks are affected by their microscopic pore structures, which clearly change after water absorption. Water absorption tests and scanning electron microscopic (SEM) experiments on rock samples, located at a site in Tibet, China, were carried out. Changes of rock pore structures before and after water absorption were studied with the distribution of pore sizes and fractal characteristics of pores. The results show that surface porosities, fractal dimensions of pores and the complexity of pore structures increased because the number of new small pores produced increased or the original macropore flow channels were expanded after rocks absorbed water. There were points of inflection on their water absorption curves. After water absorption of other rocks, surface porosities and fractal dimensions of pores and complexity of pore structures decreased as the original pore flow channels became filled. Water absorption curves did not change. Surface porosity and the pore fractal dimensions of rocks have good linear relationships before and after water absorption.

  8. Spectrophotometric determination of Mercury (II by simultaneous micelle mediated extraction through ternary complex formation in water samples

    Directory of Open Access Journals (Sweden)

    Farzin Nekouei

    2014-06-01

    Full Text Available In this study, a micelle mediated extraction procedure for preconcentration of trace quantities of Hg(II as a prior step to its simultaneous spectrophotometric determination has been developed. The method is based on a ternary ion-association of Hg(II, Xylidyl Blue (XB and cationic surfactant (CTAB. Major factors affecting the efficiency of the method has been studied. The limit of detection (LOD under optimum conditions based on 3Sb was 4.65 ng mL-1. The proposed method has been applied for determination of trace amount of mercury in water samples with satisfactory results.

  9. SnCl2/Cu-Mediated Carbonyl Allylation Reaction in Water:Scope,Selectivity and Mechanism

    Institute of Scientific and Technical Information of China (English)

    TAN,Xiang-Hui(谭翔晖); HOU,Yong-Quan(侯永泉); LIU,Lei(刘磊); GUO,Qing-Xiang(郭庆祥)

    2004-01-01

    Copper was found to be able to promote the SnC12-mediated carbonyl allylation reactions in water,giving the corresponding homoallylic alcohol products in very high yields.Detailed studies showed that the reaction could be applied to a variety of carbonyl compounds including those with hydroxyl,amino and nitro groups.It was also found that this reaction showed good regioselectivities for some substrates.Furthermore,carefully controled experiments and in situ NMR measurements provided important insights into the mechanism of the newly developed reaction.

  10. Topological water wave states in a one-dimensional structure

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Zhang, Baile

    2016-01-01

    Topological concepts have been introduced into electronic, photonic, and phononic systems, but have not been studied in surface-water-wave systems. Here we study a one-dimensional periodic resonant surface-water-wave system and demonstrate its topological transition. By selecting three different water depths, we can construct different types of water waves - shallow, intermediate and deep water waves. The periodic surface-water-wave system consists of an array of cylindrical water tanks connected with narrow water channels. As the width of connecting channel varies, the band diagram undergoes a topological transition which can be further characterized by Zak phase. This topological transition holds true for shallow, intermediate and deep water waves. However, the interface state at the boundary separating two topologically distinct arrays of water tanks can exhibit different bands for shallow, intermediate and deep water waves. Our work studies for the first time topological properties of water wave systems, and paves the way to potential management of water waves. PMID:27373982

  11. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2

    NARCIS (Netherlands)

    Zanden, J.J. van; Wortelboer, H.M.; Bijlsma, S.; Punt, A.; Usta, M.; Bladeren, P.J.V.; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2005-01-01

    In the present study, the effects of a large series of flavonoids on multidrug resistance proteins (MRPs) were studied in MRP1 and MRP2 transfected MDCKII cells. The results were used to define the structural requirements of flavonoids necessary for potent inhibition of MRP1- and MRP2-mediated calce

  12. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2

    NARCIS (Netherlands)

    Zanden, J.J. van; Wortelboer, H.M.; Bijlsma, S.; Punt, A.; Usta, M.; Bladeren, P.J.V.; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2005-01-01

    In the present study, the effects of a large series of flavonoids on multidrug resistance proteins (MRPs) were studied in MRP1 and MRP2 transfected MDCKII cells. The results were used to define the structural requirements of flavonoids necessary for potent inhibition of MRP1- and MRP2-mediated

  13. Conformational fluctuations of a protein-DNA complex and the structure and ordering of water around it

    Science.gov (United States)

    Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy

    2011-12-01

    Protein-DNA binding is an important process responsible for the regulation of genetic activities in living organisms. The most crucial issue in this problem is how the protein recognizes the DNA and identifies its target base sequences. Water molecules present around the protein and DNA are also expected to play an important role in mediating the recognition process and controlling the structure of the complex. We have performed atomistic molecular dynamics simulations of an aqueous solution of the protein-DNA complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. The conformational fluctuations of the protein and DNA and the microscopic structure and ordering of water around them in the complex have been explored. In agreement with experimental studies, the calculations reveal conformational immobilization of the terminal segments of the protein on complexation. Importantly, it is discovered that both structural adaptations of the protein and DNA, and the subsequent correlation between them to bind, contribute to the net entropy loss associated with the complex formation. Further, it is found that water molecules around the DNA are more structured with significantly higher density and ordering than that around the protein in the complex.

  14. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction

    Science.gov (United States)

    Ma, Ming; Grey, François; Shen, Luming; Urbakh, Michael; Wu, Shuai; Liu, Jefferson Zhe; Liu, Yilun; Zheng, Quanshui

    2015-08-01

    The emergence of the field of nanofluidics in the last decade has led to the development of important applications including water desalination, ultrafiltration and osmotic energy conversion. Most applications make use of carbon nanotubes, boron nitride nanotubes, graphene and graphene oxide. In particular, understanding water transport in carbon nanotubes is key for designing ultrafiltration devices and energy-efficient water filters. However, although theoretical studies based on molecular dynamics simulations have revealed many mechanistic features of water transport at the molecular level, further advances in this direction are limited by the fact that the lowest flow velocities accessible by simulations are orders of magnitude higher than those measured experimentally. Here, we extend molecular dynamics studies of water transport through carbon nanotubes to flow velocities comparable with experimental ones using massive crowd-sourced computing power. We observe previously undetected oscillations in the friction force between water and carbon nanotubes and show that these oscillations result from the coupling between confined water molecules and the longitudinal phonon modes of the nanotube. This coupling can enhance the diffusion of confined water by more than 300%. Our results may serve as a theoretical framework for the design of new devices for more efficient water filtration and osmotic energy conversion devices.

  15. Water deprivation-induced sodium appetite: humoral and cardiovascular mediators and immediate early genes

    Science.gov (United States)

    De Luca, Laurival A Jr; Xu, Zhice; Schoorlemmer, Guus H M.; Thunhorst, Robert L.; Beltz, Terry G.; Menani, Jose V.; Johnson, Alan Kim

    2002-01-01

    Adult rats deprived of water for 24-30 h were allowed to rehydrate by ingesting only water for 1-2 h. Rats were then given access to both water and 1.8% NaCl. This procedure induced a sodium appetite defined by the operational criteria of a significant increase in 1.8% NaCl intake (3.8 +/- 0.8 ml/2 h; n = 6). Expression of Fos (as assessed by immunohistochemistry) was increased in the organum vasculosum of the lamina terminalis (OVLT), median preoptic nucleus (MnPO), subfornical organ (SFO), and supraoptic nucleus (SON) after water deprivation. After rehydration with water but before consumption of 1.8% NaCl, Fos expression in the SON disappeared and was partially reduced in the OVLT and MnPO. However, Fos expression did not change in the SFO. Water deprivation also 1) increased plasma renin activity (PRA), osmolality, and plasma Na+; 2) decreased blood volume; and 3) reduced total body Na+; but 4) did not alter arterial blood pressure. Rehydration with water alone caused only plasma osmolality and plasma Na+ concentration to revert to euhydrated levels. The changes in Fos expression and PRA are consistent with a proposed role for ANG II in the control of the sodium appetite produced by water deprivation followed by rehydration with only water.

  16. Water deprivation-induced sodium appetite: humoral and cardiovascular mediators and immediate early genes

    Science.gov (United States)

    De Luca, Laurival A Jr; Xu, Zhice; Schoorlemmer, Guus H M.; Thunhorst, Robert L.; Beltz, Terry G.; Menani, Jose V.; Johnson, Alan Kim

    2002-01-01

    Adult rats deprived of water for 24-30 h were allowed to rehydrate by ingesting only water for 1-2 h. Rats were then given access to both water and 1.8% NaCl. This procedure induced a sodium appetite defined by the operational criteria of a significant increase in 1.8% NaCl intake (3.8 +/- 0.8 ml/2 h; n = 6). Expression of Fos (as assessed by immunohistochemistry) was increased in the organum vasculosum of the lamina terminalis (OVLT), median preoptic nucleus (MnPO), subfornical organ (SFO), and supraoptic nucleus (SON) after water deprivation. After rehydration with water but before consumption of 1.8% NaCl, Fos expression in the SON disappeared and was partially reduced in the OVLT and MnPO. However, Fos expression did not change in the SFO. Water deprivation also 1) increased plasma renin activity (PRA), osmolality, and plasma Na+; 2) decreased blood volume; and 3) reduced total body Na+; but 4) did not alter arterial blood pressure. Rehydration with water alone caused only plasma osmolality and plasma Na+ concentration to revert to euhydrated levels. The changes in Fos expression and PRA are consistent with a proposed role for ANG II in the control of the sodium appetite produced by water deprivation followed by rehydration with only water.

  17. Ionization of Water Clusters is Mediated by Exciton Energy Transfer from Argon Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Amir; Ahmed, Musahid

    2012-01-25

    The exciton energy deposited in an argon cluster, (Arn ,< n=20>) using VUV radiation is transferred to softly ionize doped water clusters, ((H2O)n, n=1-9) leading to the formation of non-fragmented clusters. Following the initial excitation, electronic energy is channeled to ionize the doped water cluster while evaporating the Ar shell, allowing identification of fragmented and complete water cluster ions. Examination of the photoionization efficiency curve shows that cluster evaporation from excitons located above 12.6 eV are not enough to cool the energized water cluster ion, and leads to their dissociation to (H2O)n-2H+ (protonated) clusters.

  18. The structure and dynamics of water inside armchair carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiao-Yan; Lu Hang-Jun

    2007-01-01

    In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern distribution along the channel axis, similar phenomena are also observed in biological water channels. Carbon nanotubes(CNTs)can serve as simple nonpolar water channels. Molecular transport through narrow CNTs is highly collective because of tight hydrogen bonds in the protective environment of the pore. The hydrogen bond net is important for proton and other signal transports. The average dipoles of water molecules inside CNTs (7,7), (8,8) and (9,9) are discussed in detail. Simulation results indicate that the states of dipole are affected by the diameter of SWNT. The number of hydrogen bonds, the water-water interaction and water-CNT interaction are also studied in this paper.

  19. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  20. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  1. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.

    Science.gov (United States)

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2016-06-14

    Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon.

  2. Thermodynamic substantiation of water-bridged collagen structure.

    Science.gov (United States)

    Burjanadze, T V

    1992-08-01

    A solution of the problem of topology of a hydrogen bond net in a triple helix of collagen is suggested on the basis of an analysis of thermodynamic data on denaturation of phylogenetically different collagen [T. V. Burjanadze (1982), Vol. 21, pp. 1489-1501; T. V. Burjanadze, E. I. Tiktopulo, and P. L. Privalov (1987), Dokl. Akad. Nauk. USSR, Vol. 293, pp. 720-724] as well as on the earlier evaluation of the energy of the OH group of the 4-hydroxyproline bond [A. R. Ward and P. Mason (1973), Journal of Molecular Biology, Vol. 29, pp. 431-435]. It is shown that only the water-bridged collagen structure [G. N. Ramachandran and R. Chandrasekharan (1968), Biopolymers, Vol. 6, pp. 1649-1661; G. N. Ramachandran, M. Bansal, and R. S. Bhatnagar (1973), Biochimica Biophysica Acta, Vol. 322, pp. 166-171; M. Bansal, C. Ramakrishnan, and G. N. Ramachandran (1975), Proceedings of the Indian Academy of Sciences, Vol. 82, pp. 152-164] can explain both the change of thermostability upon proline hydroxylation [J. Rosenbloom, M. Harsch, and S. Jimenez (1973), Archives of Biochemistry and Biophysics, Vol. 158, pp. 478-484] and its phylogenetic change [T. V. Burjanadze (1982)].

  3. Large vortex-like structure of dipole field in computer models of liquid water and dipole-bridge between biomolecules.

    Science.gov (United States)

    Higo, J; Sasai, M; Shirai, H; Nakamura, H; Kugimiya, T

    2001-05-22

    We propose a framework to describe the cooperative orientational motions of water molecules in liquid water and around solute molecules in water solutions. From molecular dynamics (MD) simulation a new quantity "site-dipole field" is defined as the averaged orientation of water molecules that pass through each spatial position. In the site-dipole field of bulk water we found large vortex-like structures of more than 10 A in size. Such coherent patterns persist more than 300 ps although the orientational memory of individual molecules is quickly lost. A 1-ns MD simulation of systems consisting of two amino acids shows that the fluctuations of site-dipole field of solvent are pinned around the amino acids, resulting in a stable dipole-bridge between side-chains of amino acids. The dipole-bridge is significantly formed even for the side-chain separation of 14 A, which corresponds to five layers of water. The way that dipole-bridge forms sensitively depends on the side-chain orientations and thereby explains the specificity in the solvent-mediated interactions between biomolecules.

  4. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities.

    Science.gov (United States)

    Petermann, Jana S; Farjalla, Vinicius F; Jocque, Merlijn; Kratina, Pavel; MacDonald, A Andrew M; Marino, Nicholas A C; De Omena, Paula M; Piccoli, Gustavo C O; Richardson, Barbara A; Richardson, Michael J; Romero, Gustavo Q; Videla, Martin; Srivastava, Diane S

    2015-02-01

    Local habitat size has been shown to influence colonization and extinction processes of species in patchy environments. However, species differ in body size, mobility, and trophic level, and may not respond in the same way to habitat size. Thus far, we have a limited understanding of how habitat size influences the structure of multitrophic communities and to what extent the effects may be generalizable over a broad geographic range. Here, we used water-filled bromeliads of different sizes as a natural model system to examine the effects of habitat size on the trophic structure of their inhabiting invertebrate communities. We collected composition and biomass data from 651 bromeliad communities from eight sites across Central and South America differing in environmental conditions, species pools, and the presence of large-bodied odonate predators. We found that trophic structure in the communities changed dramatically with changes in habitat (bromeliad) size. Detritivore : resource ratios showed a consistent negative relationship with habitat size across sites. In contrast, changes in predator: detritivore (prey) ratios depended on the presence of odonates as dominant predators in the regional pool. At sites without odonates, predator: detritivore biomass ratios decreased with increasing habitat size. At sites with odonates, we found odonates to be more frequently present in large than in small bromeliads, and predator: detritivore biomass ratios increased with increasing habitat size to the point where some trophic pyramids became inverted. Our results show that the distribution of biomass amongst food-web levels depends strongly on habitat size, largely irrespective of geographic differences in environmental conditions or detritivore species compositions. However, the presence of large-bodied predators in the regional species pool may fundamentally alter this relationship between habitat size and trophic structure. We conclude that taking into account the

  5. The Impact of Structural Empowerment on Organizational Citizenship Behavior-Organization and Job Performance: A Mediating Role of Burnout

    Directory of Open Access Journals (Sweden)

    Hina Jaffery

    2015-10-01

    Full Text Available The banking sector employees are usually exposed to potential job burnout which impacts their employee performance. This study examined the impact of structural empowerment on organizational citizenship behavior-organization (henceforth, OCBO and job performance and further examined the mediating effect of job burnout in the relationships of structural empowerment, OCBO and job performance. In this study, data from 282 employees was taken from four banks: both public and private sectors. Two stage sampling technique was carried out to collect data. In the first stage probability cluster sampling and in the second stage convenience sampling was used. Different data analysis techniques like correlation, regression analysis, were used to test the four hypotheses of the study. Findings show that there are strong positive relationships of structural empowerment with OCBO and job performance. It has also proved that job burnout strongly mediates the relationship of structural empowerment and organizational citizenship-behavior (OCBO and weakly mediates the relationship between structural empowerment and job performance. The findings would help the HR executives of the organizations to formulate future development to combat the burnout and ensure effective overall performance of employees through structurally empowering them.

  6. Vertical distribution patterns of zooplanktivorous fish in a shallow, eutrophic lake, mediated by water transparency

    NARCIS (Netherlands)

    Mous, P.J.; Densen, van W.L.T.; Machiels, M.A.M.

    2004-01-01

    The vertical distribution pattern (VDP) of fish at shallow sites in eutrophic lake - Lake IJssel, the Netherlands - as affected by water transparency, was examined. The pattern was assessed by pair trawling at three depths and by hydroacoustics from June to August. Water transparency was estimated b

  7. The Centrality of the "Mediation" Concept in the Participatory Management of Water Resources

    Science.gov (United States)

    dos Santos, Irenilda Angela; Berlinck, Christian Niel; de Santana Araujo, Symone Christine; Steinke, Ercilia Torres; Steinke, Valdir Adilson; Pianta, Taissa Ferreira; Graebner, Ivete Teresinha; Saito, Carlos Hiroo

    2005-01-01

    This work presents questions related to the viability and the requirements for the implementation of a National Policy of Water Resources in Brazil, and identifies the means to bring about active participation by the population in the management of water resources. While social inequalities may be an impediment to the implementation of full…

  8. Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.).

    Science.gov (United States)

    Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino

    2012-11-15

    Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions.

  9. Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha-synuclein aggregation

    Science.gov (United States)

    Anderson, V. L.; Webb, W. W.; Eliezer, D.

    2012-10-01

    Both increased temperature and moderate concentrations of fluorinated alcohols enhance aggregation of the Parkinson's disease-associated protein α-synuclein (αS). Here, we investigate the secondary structural rearrangements induced by heating and trifluoroethanol [TFE]. At low TFE concentrations, CD spectra feature a negative peak characteristic of disordered polypeptides near 200 nm and a slight shoulder around 220 nm suggesting some polyproline-II content. Upon heating, these peaks weaken, while a weak negative signal develops at 222 nm. At high TFE concentrations, the spectra show distinct minima at 208 and 222 nm, indicative of considerable α-helical structure, which diminish upon heating. We observe a crossover between the low-TFE and high-TFE behavior near 15% TFE, where we previously showed that a partially helical intermediate is populated. We postulate that the protein is well solvated by water at low TFE concentrations and by TFE at high TFE concentrations, but may become desolvated at the crossover point. We discuss the potential roles and interplay of desolvation and helical secondary structure in driving αS aggregation.

  10. Water stress augments silicon-mediated resistance of susceptible sugarcane cultivars to the stalk borer Eldana saccharina (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Kvedaras, O L; Keeping, M G; Goebel, F-R; Byrne, M J

    2007-04-01

    Silicon (Si) can improve resistance of plants to insect attack and may also enhance tolerance of water stress. This study tested if Si-mediated host plant resistance to insect attack was augmented by water stress. Four sugarcane cultivars, two resistant (N21, N33) and two susceptible (N26, N11) to Eldana saccharina Walker were grown in a pot trial in Si-deficient river sand, with (Si+) and without (Si-) calcium silicate. To induce water stress, irrigation to half the trial was reduced after 8.5 months. The trial was artificially infested with E. saccharina eggs after water reduction and harvested 66 days later. Silicon treated, stressed and non-stressed plants of the same cultivar did not differ appreciably in Si content. Decreases in numbers of borers recovered and stalk damage were not associated with comparable increases in rind hardness in Si+ cane, particularly in water-stressed susceptible cultivars. Overall, Si+ plants displayed increased resistance to E. saccharina attack compared with Si- plants. Borer recoveries were significantly lower in stressed Si+ cane compared with either stressed Si- or non-stressed Si- and Si+ cane. Generally, fewer borers were recovered from resistant cultivars than susceptible cultivars. Stalk damage was significantly lower in Si+ cane than in Si- cane, for N21, N11 and N26. Stalk damage was significantly less in Si+ combined susceptible cultivars than in Si- combined susceptible cultivars under non-stressed and especially stressed conditions. In general, the reduction in borer numbers and stalk damage in Si+ plants was greater for water-stressed cane than non-stressed cane, particularly for susceptible sugarcane cultivars. The hypothesis that Si affords greater protection against E. saccharina borer attack in water-stressed sugarcane than in non-stressed cane and that this benefit is greatly enhanced in susceptible cultivars is supported. A possible active role for soluble Si in defence against E. saccharina is proposed.

  11. Investigation of the Structures and Energy Landscapes of Thiocyanate-Water Clusters

    Directory of Open Access Journals (Sweden)

    Lewis C. Smeeton

    2017-03-01

    Full Text Available The Basin Hopping search method is used to find the global minima (GM and map the energy landscapes of thiocyanate-water clusters, (SCN−(H2On with 3–50 water molecules, with empirical potentials describing the ion-water and water-water interactions. (It should be noted that beyond n = 23, the lowest energy structures were only found in 1 out of 8 searches so they are unlikely to be the true GM but are indicative low energy structures. As for pure water clusters, the low energy isomers of thiocyanate-water clusters show a preponderance of fused water cubes and pentagonal prisms, with the weakly solvated thiocyanate ion lying on the surface, replacing two water molecules along an edge of a water polyhedron and with the sulfur atom in lower coordinated sites than nitrogen. However, by comparison with Density Functional Theory (DFT calculations, the empirical potential is found to overestimate the strength of the thiocyanate-water interaction, especially O–H⋯S, with low energy DFT structures having lower coordinate N and (especially S atoms than for the empirical potential. In the case of these finite ion-water clusters, the chaotropic (“disorder-making” thiocyanate ion weakens the water cluster structure but the water molecule arrangement is not significantly changed.

  12. Leucas aspera mediated multifunctional CeO2 nanoparticles: Structural, photoluminescent, photocatalytic and antibacterial properties.

    Science.gov (United States)

    Malleshappa, J; Nagabhushana, H; Sharma, S C; Vidya, Y S; Anantharaju, K S; Prashantha, S C; Daruka Prasad, B; Raja Naika, H; Lingaraju, K; Surendra, B S

    2015-01-01

    Spherical shaped cerium dioxide (CeO2) nanoparticles (NPs) were synthesized via bio mediated route using Leucas aspera (LA) leaf extract. The NPs were characterized by PXRD, SEM, UV-Visible techniques. Photoluminescence (PL), photocatalysis and antibacterial properties of NPs were studied. PXRD patterns and Rietveld analysis confirm cubic fluorite structure with space group Fm-3m. SEM results evident that morphology of the NPs was greatly influenced by the concentration of LA leaf extract in the reaction mixture. The band gap energy of the NPs was found to be in the range of 2.98-3.4 eV. The photocatalytic activity of NPs was evaluated by decolorization of Rhodamine-B (RhB) under UVA and Sun light irradiation. CeO2 NPs show intense blue emission with CIE coordinates (0.14, 0.22) and average color coordinated temperature value ∼148,953 K. Therefore the present NPs quite useful for cool LEDs. The superior photocatalytic activity was observed for CeO2 NPs with 20 ml LA under both UVA and Sunlight irradiation. The enhanced photocatalytic activity and photoluminescent properties were attributed to defect induced band gap engineered CeO2 NPs. Further, CeO2 with 20 ml LA exhibit significant antibacterial activity against Escherichia coli (EC) and Staphylococcus aureus (SA). These findings show great promise of CeO2 NPs as multifunctional material for various applications.

  13. iSAW: Integrating Structure, Actors, and Water to Study Socio-Hydro-Ecological Systems

    OpenAIRE

    Rebecca L. Hale; Armstrong, Andrea; Baker, Michelle A.; Bedingfield, Sean; Betts, David; Buahin, Caleb; Buchert, Martin; Crowl, Todd; Dupont, R. Ryan; Ehleringer, James R.; Endter-Wada, Joanna; Flint, Courtney; Grant, Jacqualine; Hinners, Sarah; Horsburgh, Jeffery S.

    2015-01-01

    Urbanization, climate, and ecosystem change represent major challenges for managing water resources. Although water systems are complex, a need exists for a generalized representation of these systems to identify important components and linkages to guide scientific inquiry and aid water management. We developed an integrated Structure-Actor-Water framework (iSAW) to facilitate the understanding of and transitions to sustainable water systems. Our goal was to produce an interdisciplinary fram...

  14. Cholinergic basal forebrain structures are involved in the mediation of the arousal effect of noradrenaline.

    Science.gov (United States)

    Lelkes, Zoltán; Porkka-Heiskanen, Tarja; Stenberg, Dag

    2013-12-01

    Cholinergic basal forebrain structures are implicated in cortical arousal and regulation of the sleep-wake cycle. Cholinergic neurones are innervated by noradrenergic terminals, noradrenaline excites them via alpha-1 receptors and microinjection of noradrenaline into the basal forebrain enhances wakefulness. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing effects of noradrenaline. To elucidate the roles of cholinergic basal forebrain structures we administered methoxamine, an alpha-1-adrenergic agonist into the basal forebrain, in intact animals and again after selective destruction of the basal forebrain cholinergic cells by 192 IgG-saporin. In eight male Han-Wistar rats implanted with electroencephalogram/electromyogram electrodes, a microdialysis probe targeted into the basal forebrain was perfused with artificial cerebrospinal fluid for 6 h on a baseline day, and with cerebrospinal fluid in the first and with methoxamine in the second 3-h period of the subsequent day. The sleep-wake activity was recorded for 24 h on both days. Saporin was then injected into the basal forebrain and 2 weeks later the same experimental schedule (with cerebrospinal fluid and methoxamine) was repeated. In the intact animals, methoxamine exhibited a robust arousing effect and non-rapid eye movement (NREM) and REM sleep was suppressed. Lesioning of the basal forebrain cholinergic neurones abolished almost completely the NREM sleep-suppressing effect of methoxamine, whereas the REM sleep-suppressing effect remained intact. Thus, the basal forebrain cholinergic neurones mediate, at least in part, cortical arousal and non-REM sleep-suppression, but they are not involved in the REM sleep-suppressing effects of noradrenaline. © 2013 European Sleep Research Society.

  15. Structure and dynamics of water molecules confined in triglyceride oils.

    Science.gov (United States)

    Groot, Carien C M; Velikov, Krassimir P; Bakker, Huib J

    2016-10-26

    Though it is commonly known that a small amount of water can be present in triglyceride oil, a molecular picture of how water molecules organize in the oil phase is lacking. We investigate the hydrogen-bond configuration and dynamics of water in triacetin, tributyrin and trioctanoin using linear infrared and time-resolved two-dimensional infrared (2DIR) spectroscopy of the water hydroxyl stretch vibration. We identify water molecules with a single strong hydrogen bond to the triglyceride, water molecules with two weaker hydrogen bonds to the triglycerides, and water clusters. These species do not interconvert on the 20 ps timescale of the experiment, as evidenced by the absence of cross-peaks in the 2DIR spectrum. The vibrational response of water molecules with a single strong hydrogen bond to the triglyceride depends strongly on the excitation frequency, revealing the presence of different subspecies of singly-bound water molecules that correspond to different hydrogen-bond locations. In contrast, the water molecules with two weaker hydrogen bonds to the triglyceride correspond to a single, specific hydrogen-bond configuration; these molecules likely bridge the carbonyl groups of adjacent triglyceride molecules, which can have considerable influence on liquid triglyceride properties.

  16. Spectroscopic Observation of Water-Mediated Deformation of the CARBOXYLATE-M2+ (M= Mg, Ca) Contact Ion Pair

    Science.gov (United States)

    Kelleher, Patrick J.; DePalma, Joseph W.; Johnson, Mark

    2016-06-01

    The binding of alkaline earth dications to the biologically relevant carboxylate ligand has previously been studied using vibrational sum frequency generation (VSFG) spectroscopy of the air-water interface, infrared multiple photon dissociation (IRMPD) spectroscopy of clusters, and DFT methods. These results suggest the presence of both monodentate and bidentate binding motifs of the M2+ ions to the cayboxyl head groups depending on the extent of solvation. We revisit these systems using vibrational predissociation spectroscopy to measure the gas-phase vibrational spectra of the D2-tagged microhydrated [MgOAc(H2O)n=1-5]+ and [CaOAc(H2O)n=1-6]+ clusters. The spectra show that [MgOAc(H2O)n]+ switches from bidentate to monodentate binding promptly at n = 5, while [CaOAc(H2O)n]+ retains its bidentate attachment such that the sixth water molecule initiates the second solvation shell. The difference in binding behavior between these two divalent metal ions is analyzed in the context of the local acidity of the solvent water molecules and the strength of the metal-carboxylate and metal-water interactions. This cluster study provides insight into the chemical physics underlying the unique and surprising impacts of Mg2+ and Ca2+ on the chemistry mediated by sea spray aerosols. Funding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.

  17. Influence of temperature on the structure of liquid water

    Institute of Scientific and Technical Information of China (English)

    顾健德; 田安民; 鄢国森

    1996-01-01

    Molecular dynamics simulations have been carried out for liquid water at 7 different temperatures to understand the nature of hydrogen bonding at molecular level through the investigation of the effects of temperature on the geometry of water molecules. The changes in bond length and bond angle of water molecules from gaseous state to liquid state have been observed, and the change in the bond angle of water molecules in liquid against temperature has been revealed, which has not been seen in literature so far. The analysis of the radial distribution functions and the coordinate numbers shows that, on an average, each water molecule in liquid acts as both receptor and donor, and forms at least two hydrogen bonds with its neigbors. The analysis of the results also indicates that the water molecules form clusters in liquid.

  18. A theoretical study on the water-mediated asynchronous addition between urea and formaldehyde

    Institute of Scientific and Technical Information of China (English)

    Tao-Hong Li; Xiao-Guang Xie; Guan-Ben Du

    2013-01-01

    The reaction between urea and formaldehyde in water solution was theoretically investigated by using B3LYP and MP2 methods,It was found that the addition of the nitrogen atom in urea to the carbonyl group in formaldehyde precedes the proton transfer and the proton migration from water to the carbonyl group occurs before the proton abstraction from the nitrogen,With one or two water molecules involved in the TS,the activation energy barrier is lowered compared to the TS of the mechanism with no water participation.The energy change along the reaction coordinate clearly shows that a zwitterionic-like intermediate does not exist on the PES.The reaction between urea and formaldehyde occurs in a concerted mechanism but with asynchronous characters.This is different from the stepwise mechanism recently found for the amination reactions of formaldehyde.

  19. Metropolitan Washington Area Water Supply Study. Appendix F. Structural Alternatives.

    Science.gov (United States)

    1983-09-01

    Influent Chamber L,C Filtered Water Clearwell L,C Backwash Water Holding Tank L,C Carbon Column Effluent Clearwell L,C Finished Water Clearwell C...in fiters and carbon columns, f. Clearwell levels, g. Chemical dosage rates, h. Filter and GAG backwash times, i. On-line turbidity and chlorine... Clearwell levels, b. Flows through each unit processes-recorded as gallons per 24 hours, c. Flow losses-through backwashing, sludge withdrawal, d

  20. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass.

    Science.gov (United States)

    Cantero-Navarro, Elena; Romero-Aranda, Remedios; Fernández-Muñoz, Rafael; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2016-10-01

    Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals

  1. Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention.

    Science.gov (United States)

    Shany-Ur, Tal; Lin, Nancy; Rosen, Howard J; Sollberger, Marc; Miller, Bruce L; Rankin, Katherine P

    2014-08-01

    versus exaggerating deficits, overestimation and underestimation scores were analysed separately, controlling for age, sex, total intracranial volume and extent of actual functional decline. Atrophy related to overestimating one's functioning included bilateral, right greater than left frontal and subcortical regions, including dorsal superior and middle frontal gyri, lateral and medial orbitofrontal gyri, right anterior insula, putamen, thalamus, and caudate, and midbrain and pons. Thus, our patients' tendency to under-represent their functional decline was related to degeneration of domain-general dorsal frontal regions involved in attention, as well as orbitofrontal and subcortical regions likely involved in assigning a reward value to self-related processing and maintaining accurate self-knowledge. The anatomic correlates of underestimation (right rostral anterior cingulate cortex, uncorrected significance level) were distinct from overestimation and had a substantially smaller effect size. This suggests that underestimation or 'tarnishing' may be influenced by non-structural neurobiological and sociocultural factors, and should not be considered to be on a continuum with overestimation or 'polishing' of functional capacity, which appears to be more directly mediated by neural circuit dysfunction.

  2. Conserved water-mediated hydrogen bond network between TM-I, -II, -VI, and -VII in 7TM receptor activation

    DEFF Research Database (Denmark)

    Nygaard, Rie; Hansen, Louise Valentin; Mokrosinski, Jacek;

    2010-01-01

    Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics...... to apparently function as a catching trap for water molecules. Mutational analysis of the beta2-adrenergic receptor demonstrated that the highly conserved polar residues of the hydrogen bond network were all important for receptor signaling but served different functions, some dampening constitutive activity...... (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended...

  3. Structure and dynamics of water in mixed solutions including laponite and PEO

    Science.gov (United States)

    Morikubo, Satoshi; Sekine, Yurina; Ikeda-Fukazawa, Tomoko

    2011-01-01

    To investigate the structure and dynamics of water in mixed solutions including laponite clay particles and poly(ethylene oxide) (PEO), we measured the Raman spectra of the mixed solutions in the temperature range 283-313 K. The results show that the vibrational energies of the O-H stretching modes in the mixed solutions depend on the water content and temperature. The energy shifts of the O-H stretching modes are attributed to changes in the water structure. By applying a structural model of bulk water to the spectra in the O-H stretching region, the local structures of water in the solutions were analyzed. The result shows that the formation probability of hydrogen bonds in the solutions decreases as the water content decreases. Laponite and PEO have effects to disrupt the network structure of hydrogen bonds between water molecules. Further, it was found that laponite and PEO cause increase in the strength of hydrogen bonds of surrounding water,although the strength of the hydrogen bonds increases with the order water-laponite laponite-PEO mixed solutions has a less-networked structure with strong hydrogen bonds compared with bulk water.

  4. Size-dependent water structures in carbon nanotubes.

    Science.gov (United States)

    Ohba, Tomonori

    2014-07-28

    Water surrounded by hydrophobic interfaces affects a variety of chemical reactions and biological activities. Carbon nanotubes (CNTs) can be used to investigate the behavior of water at hydrophobic interfaces. Here, we determined the fundamental unit of water by evaluating the ice-like cluster formation of water in the limited hydrophobic nanospaces of CNTs, using X-ray diffraction and molecular simulation analysis. The water in CNTs with a diameter of 1 nm had fewer hydrogen bonds than bulk water under ambient conditions. In CNTs with diameters of 2 and 3 nm, water formed nanoclusters even under ambient conditions, because of prolific hydrogen bonding; predominant ice-like cluster formation was induced in the 2-3 nm nanospaces. The results confirming the cluster formation in the CNTs also demonstrated that the critical cluster size was 0.8-3.4 nm. The fundamental cluster size was 0.8 nm; these results indicated that 0.8 nm clusters are the fundamental units of water assemblies.

  5. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  6. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  7. Bursting Money Bins, the ice and water structure

    CERN Document Server

    Bagnoli, Franco

    2016-01-01

    That water expands when freezing is a well-known fact, and it is at the basis of an experiment that is often involuntary performed with beer bottles in freezers. But why does the water behave this way? And, more difficult, how can one illustrate this phenomenon in simple terms?

  8. Dynamics and structure of water-bitumen mixtures

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Greenfield, Michael L.; Hansen, Jesper Schmidt

    2016-01-01

    Systems of Cooee bitumen and water up to 4% mass are studied by molecular dynamics simulations. The cohesive energy density of the system is shown to decrease with an increasing water content. This decrease is due mainly to an increase in the interaction energy which is not high enough to counter...

  9. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  10. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  11. An insight to conserved water molecular dynamics of catalytic and structural Zn(+2) ions in matrix metalloproteinase 13 of human.

    Science.gov (United States)

    Chakrabarti, Bornali; Bairagya, Hridoy R; Mallik, Payel; Mukhopadhyay, Bishnu P; Bera, Asim K

    2011-02-01

    Matrix Metalloproteinase (MMP)--13 or Collagenase--3 plays a significant role in the formation and remodeling of bone, tumor invasion and causes osteoarthritis. Water molecular dynamic studies of the five (1XUC, 1XUD, 1XUR, 456C, 830C) PDB and solvated structures of MMP-13 in human have been carried out upto 5 ns on assigning the differential charges (+2, +1, +0.5 e) to both the Zinc ions. The MM and MD-studies have revealed the coordination of three water molecules (W(H), W(I) and W(S)) to Zn(c) and one water to Zn(s). The transition of geometry around the Znc from tetrahedral to octahedral via trigonal bipyramidal, and for Zn(s) from tetrahedral to trigonal bipyramidal are seem interesting. Recognition of two zinc ions through water molecular bridging (Zn(c) - W(H) (W(1))...W(2)....W(3)....H(187) Zn(s)) and the stabilization of variable coordination geometries around metal ions may indicate the possible involvement of Zn(c) ...Zn(s) coupled mechanism in the catalytic process. So the hydrophilic topology and stereochemistry of water mediated coupling between Zn-ions may provide some plausible hope towards the design of some bidentate/polydentate bridging ligands or inhibitors for MMP-13.

  12. Structural characterization and in vitro inhibitory activities in P-selectin-mediated leukocyte adhesion of polysaccharide fractions isolated from the roots of Physalis alkekengi.

    Science.gov (United States)

    Tong, Haibin; Wang, Ruifei; Liu, Ximing; Wang, Guiyun; Du, Fengguo; Zeng, Xianlu

    2011-08-01

    Selectin-mediated leukocyte initial attachment and rolling over vessel endothelial surface are crucial steps for inflammatory responses. As P-selectin is a promising target for anti-inflammation therapeutic strategy, recent works have focused on searching for more potent and non-toxic P-selectin antagonists among various natural carbohydrate products. Here, we isolated three water-soluble polysaccharide fractions (PPS-1, PPS-2 and PPS-3) from the roots of Physalis alkekengi by DEAE-cellulose and Sephacryl S-200 chromatography. Their physicochemical and structural characterizations were determined by chemical methods, GC (gas chromatography), HPLC (high performance liquid chromatography), FT-IR (Fourier transform infrared spectrometry), partial acid hydrolysis, methylation and GC-MS (gas chromatography-mass spectrometry) analyses. The inhibitory capacity of the polysaccharide fractions in P-selectin-mediated leukocyte adhesion was evaluated by flow cytometric, static adhesion and laminar flow assays. Results showed that different polysaccharide fractions possess distinct physicochemical and structural properties, including carbohydrate, protein and uronic acid contents, molecular weight, monosaccharide composition and glycosidic linkage type. Among the polysaccharide fractions, PPS-2 could effectively block the interaction between P-selectin and its native ligand.

  13. Internal structure-mediated ultrafast energy transfer in self-assembled polymer-blend dots

    Science.gov (United States)

    Wang, Lei; Wu, Chang-Feng; Wang, Hai-Yu; Wang, Ya-Feng; Chen, Qi-Dai; Han, Wei; Qin, Wei-Ping; McNeill, Jason; Sun, Hong-Bo

    2013-07-01

    Applications of polymeric semiconductors in organic electronics and biosensors depend critically on the nature of energy transfer in these materials. Important questions arise as to how this long-range transport degrades in amorphous condensed solids which are most amenable to low-cost optoelectronic devices and how fast energy transfer could occur. Here, we address these in disordered, densely packed nanoparticles made from green-light-harvesting host polymers (PFBT) and deep-red-emitting dopant polymers (PF-DBT5). By femtosecond selective excitation of donor (BT) units, we study in detail the internal structure-mediated energy transfer to uniformly distributed, seldom acceptor (DBT) units. It has been unambiguously demonstrated that the creation of interchain species is responsible for the limitation of bulk exciton diffusion length in polymer materials. This interchain Förster resonance energy transfer (FRET) becomes a preferred and dominant channel, and near 100% energy transfer efficiency could be achieved at high acceptor concentrations (>10 wt%). Side-chain carboxylic acid groups in functionalized polymer-blend dots slightly slow down the FRET rate, but it could not affect the Förster radius and FRET efficiency. These findings imply that a greater understanding of the role of interchain species could be an efficient approach to improve the cell efficiency.Applications of polymeric semiconductors in organic electronics and biosensors depend critically on the nature of energy transfer in these materials. Important questions arise as to how this long-range transport degrades in amorphous condensed solids which are most amenable to low-cost optoelectronic devices and how fast energy transfer could occur. Here, we address these in disordered, densely packed nanoparticles made from green-light-harvesting host polymers (PFBT) and deep-red-emitting dopant polymers (PF-DBT5). By femtosecond selective excitation of donor (BT) units, we study in detail the internal

  14. Influence of water drained from mines on the chemical structure of the water in the Buchaksko-Kiev deposits

    Energy Technology Data Exchange (ETDEWEB)

    Pasechnyi, V.G.

    1987-06-01

    Explains that mine water drainage systems play a leading role in causing changes to the hydrodynamics and hydrogeochemistry of underground waters. Describes an investigation into the chemical structure of the underground waters in the Western Donbass performed with the aim of developing methods of protecting the waters. The analyses took place during the period 1962-1982 using multiple models and a Faktor computer and concentrated mainly on studying the balance of Na/sup +/, K/sup +/, Ca/sup 2 +/, Mg/sup 2 +/, Cl/sup -/, and HCO/sub 3//sup -/ in the water. The results showed that the overall ion concentration in the water fell during this period, but the level of hydrocarbonate ions rose and there was an increase in the proportional content of Na/sup +/ and Cl/sup -/ ions. This pollution could have serious consequences for agriculture.

  15. 30 CFR 77.216-3 - Water, sediment, or slurry impoundments and impounding structures; inspection requirements...

    Science.gov (United States)

    2010-07-01

    ... structures; inspection requirements; correction of hazards; program requirements. (a) All water, sediment, or... water, sediment, or slurry impoundment which meets the requirements of § 77.216(a) shall adopt a program... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment, or slurry impoundments...

  16. BaCO3 mediated modifications in structural and magnetic properties of natural nanoferrites

    Science.gov (United States)

    Widanarto, W.; Jandra, M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.

    2015-04-01

    Preparing M-type barium hexaferrite and improving the magnetic response of natural ferrites by incorporating barium carbonate (BaCO3) is ever-demanding. Series of barium carbonate doped ferrites with composition (100-x)Fe3O4·xBaCO3 (x=0, 10, 20, 30 wt%) are prepared through solid state reaction method and sintered gradually at temperatures of 800 and 1000 °C. Nanoparticles of natural ferrite and commercial BaCO3 are used as raw materials. Impacts of BaCO3 on structural and magnetic properties of these synthesized ferrites are inspected. The obtained ferrites are characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) at room temperature. Uniform barium hexaferrite particles in terms of both morphology and size are not achieved. The average crystallite size of BaFe12O19 is observed to be within 30-600 nm. The sintering process results phase transformation from Fe3O4 (magnetite) to α-Fe2O3 (hematite) and the formation of hexagonal barium ferrite crystals. The occurrence of barium crystal is found to enhance with the increase of BaCO3 concentrations up to 20 wt% and suddenly drop at 30 wt%. Saturation and remanent magnetization of the doped ferrites are significantly augmented up to 16.37 and 8.92 emu g-1, respectively compared to their pure counterpart. Furthermore, the coercivity field is slightly decreased as BaCO3 concentrations are increased. BaCO3 mediated improvements in the magnetic response of natural ferrites are demonstrated.

  17. 30 CFR 77.216-4 - Water, sediment or slurry impoundments and impounding structures; reporting requirements...

    Science.gov (United States)

    2010-07-01

    ....216-4 Water, sediment or slurry impoundments and impounding structures; reporting requirements... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment or slurry impoundments and impounding structures; reporting requirements; certification. 77.216-4 Section 77.216-4 Mineral...

  18. 76 FR 69292 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Science.gov (United States)

    2011-11-08

    ... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY... Staff Guidance (LR-ISG), LR- ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water.'' This LR-ISG revises the guidance in the Standard Review Plan...

  19. 77 FR 27815 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Science.gov (United States)

    2012-05-11

    ... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY..., ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water.'' This LR-ISG... Power Plants (SRP-LR) and Generic Aging Lessons Learned (GALL) Report for the aging management...

  20. Procedure for developing biological input for the design, location, or modification of water-intake structures

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A.; McKenzie, D.H.

    1981-12-01

    To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact and review biological information needed for intake design.

  1. Drosophila big brain does not act as a water channel, but mediates cell adhesion.

    Science.gov (United States)

    Tatsumi, Kimiko; Tsuji, Shoji; Miwa, Hideki; Morisaku, Toshinori; Nuriya, Mutsuo; Orihara, Minako; Kaneko, Kazunari; Okano, Hideyuki; Yasui, Masato

    2009-06-18

    The neurogenic gene Drosophila big brain (bib) has a high sequence homology to aquaporin-4. However, its cellular functions in Drosophila neurogenesis have remained elusive. Here we investigated cell adhesion, and the ion and water permeability of Bib. The adhesive function was examined by a cell aggregation assay using L cells. Bib-transfected L cells formed aggregated clusters, while control-L cells remained as a single cell suspension. Ion permeation was not confirmed in L cells stably expressing Bib. When expressed in COS7 cells, Bib exhibited limited water permeability. This newly found cell adhesive function of Bib may be important for Drosophila neurogenesis.

  2. Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock.

    Science.gov (United States)

    Osterberg, Fredrik; Morris, Garrett M; Sanner, Michel F; Olson, Arthur J; Goodsell, David S

    2002-01-01

    Protein motion and heterogeneity of structural waters are approximated in ligand-docking simulations, using an ensemble of protein structures. Four methods of combining multiple target structures within a single grid-based lookup table of interaction energies are tested. The method is evaluated using complexes of 21 peptidomimetic inhibitors with human immunodeficiency virus type 1 (HIV-1) protease. Several of these structures show motion of an arginine residue, which is essential for binding of large inhibitors. A structural water is also present in 20 of the structures, but it must be absent in the remaining one for proper binding. Mean and minimum methods perform poorly, but two weighted average methods permit consistent and accurate ligand docking, using a single grid representation of the target protein structures. Copyright 2001 Wiley-Liss, Inc.

  3. A simple mediation and negotiation support tool for water management in the Netherlands

    NARCIS (Netherlands)

    Janssen, R.H.H.; Goosen, H.; Omtzigt, N.

    2006-01-01

    When the stakes of stakeholders are not properly incorporated during early phases of a planning process, it may later give rise to severe conflicts. The issue of how to deal with stakeholders in regional water management has been a subject of ongoing debate in the Netherlands. This paper promotes a

  4. Spectrophotometric determination of trace amounts of uranium(VI) in water samples after mixed micelle-mediated extraction.

    Science.gov (United States)

    Madrakian, Tayyebeh; Afkhami, Abbas; Mousavi, Afrouz

    2007-02-15

    A cloud point extraction process using mixed micelle of the cationic surfactant CTAB and non-ionic surfactant TritonX-114 to extract uranium(VI) from aqueous solutions was investigated. The method is based on the color reaction of uranium with pyrocatechol violet in the presence of potassium iodide in hexamethylenetetramine buffer media and mixed micelle-mediated extraction of complex. The optimal extraction and reaction conditions (e.g. surfactant concentration, reagent concentration, effect of time) were studied and the analytical characteristics of the method (e.g. limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 0.20-10.00ng mL(-1) of uranium(VI) ion and the detection limit of the method is 0.06ng mL(-1). The interference effect of some anions and cations was also tested. The method was applied to the determination of uranium(VI) in tap water, waste-water and well water samples.

  5. Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics

    Science.gov (United States)

    Chen, Liang; Shao, Hezhu; Zhou, Xufeng; Liu, Guoqiang; Jiang, Jun; Liu, Zhaoping

    2016-06-01

    Rechargeable aqueous metal-ion batteries made from non-flammable and low-cost materials offer promising opportunities in large-scale utility grid applications, yet low voltage and energy output, as well as limited cycle life remain critical drawbacks in their electrochemical operation. Here we develop a series of high-voltage aqueous metal-ion batteries based on `M+/N+-dual shuttles' to overcome these drawbacks. They utilize open-framework indium hexacyanoferrates as cathode materials, and TiP2O7 and NaTi2(PO4)3 as anode materials, respectively. All of them possess strong rate capability as ultra-capacitors. Through multiple characterization techniques combined with ab initio calculations, water-mediated cation intercalation of indium hexacyanoferrate is unveiled. Water is supposed to be co-inserted with Li+ or Na+, which evidently raises the intercalation voltage and reduces diffusion kinetics. As for K+, water is not involved in the intercalation because of the channel space limitation.

  6. Protein-spanning water networks and implications for prediction of protein-protein interactions mediated through hydrophobic effects.

    Science.gov (United States)

    Cui, Di; Ou, Shuching; Patel, Sandeep

    2014-12-01

    Hydrophobic effects, often conflated with hydrophobic forces, are implicated as major determinants in biological association and self-assembly processes. Protein-protein interactions involved in signaling pathways in living systems are a prime example where hydrophobic effects have profound implications. In the context of protein-protein interactions, a priori knowledge of relevant binding interfaces (i.e., clusters of residues involved directly with binding interactions) is difficult. In the case of hydrophobically mediated interactions, use of hydropathy-based methods relying on single residue hydrophobicity properties are routinely and widely used to predict propensities for such residues to be present in hydrophobic interfaces. However, recent studies suggest that consideration of hydrophobicity for single residues on a protein surface require accounting of the local environment dictated by neighboring residues and local water. In this study, we use a method derived from percolation theory to evaluate spanning water networks in the first hydration shells of a series of small proteins. We use residue-based water density and single-linkage clustering methods to predict hydrophobic regions of proteins; these regions are putatively involved in binding interactions. We find that this simple method is able to predict with sufficient accuracy and coverage the binding interface residues of a series of proteins. The approach is competitive with automated servers. The results of this study highlight the importance of accounting of local environment in determining the hydrophobic nature of individual residues on protein surfaces.

  7. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    Science.gov (United States)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  8. Water structures inside and outside single-walled carbon nanotubes under perpendicular electric field

    Institute of Scientific and Technical Information of China (English)

    Zhen XU; Guo-hui HU; Zhi-liang WANG; Zhe-wei ZHOU

    2014-01-01

    The structures of water inside and outside (6,6), (8,8), and (10,10) single-walled carbon nanotubes (SWCNTs) under an electric field perpendicular to the tube axis are investigated by molecular dynamics simulations. The results show that dipole reorientation induced by electric field plays a significant role on the structures of confined water inside and outside SWCNTs. Inside SWCNTs, the average water occupancy and the average number of hydrogen bonds (H-bonds) per water molecule decrease as the electric intensity increases. Because the field intensity is sufficiently strong, the initial water structures inside the SWCNTs are destroyed, and the isolated water clusters are found. Outside SWCNTs, the azimuthal distributions of the density and the average number of H-bonds per water molecule around the solid walls become more and more asymmetric as the electric intensity increases. The percentages of water molecules involved in 0-5 H-bonds for all the three types of SWCNTs under different field intensities are displayed. The results show that those water molecules involved with most H-bonds are the most important to hold the original structures. When the electric field direction is parallel with the original preferred orientation, the density and the H-bond connections in water will be increased; when the electric field direction is perpendicular to the original preferred orientation, the density and the H-bond connections in water will be decreased.

  9. IS JOB SATISFACTION MEDIATING THE RELATIONSHIP BETWEEN COMPENSATION STRUCTURE AND ORGANISATIONAL COMMITMENT? A STUDY IN THE MALAYSIAN POWER UTILITY

    OpenAIRE

    Ida Irdawaty Ibrahim; Ali Boerhaneoddin

    2010-01-01

    The study examines job satisfaction to mediate the relationship between compensation structure and organisational commitment on 62 respondents, working across job positions and classifications in a power utility-based organisation, in the Peninsula Malaysia. Previous studies in the field of organisational psychology has shown the importance of compensation as one of the main organisational factor that affect organisational effectiveness, but studies have also shown that there were no direct l...

  10. Neurotensin receptor-1 inducible palmitoylation is required for efficient receptor-mediated mitogenic-signaling within structured membrane microdomains

    OpenAIRE

    2011-01-01

    Neurotensin receptor-1 (NTSR-1) is a G-protein coupled receptor (GPCR) that has been recently identified as a mediator of cancer progression. NTSR-1 and its endogenous ligand, neurotensin (NTS), are co-expressed in several breast cancer cell lines and breast cancer tumor samples. Based on our previously published study demonstrating that intact structured membrane microdomains (SMDs) are required for NTSR-1 mitogenic signaling, we hypothesized that regulated receptor palmitoylation is respons...

  11. Water induced size and structure phase transition of CdS crystals and their photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoyan [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Xi, Yi, E-mail: yxi6@cqu.edu.cn [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Hu, Chenguo; Wang, Xue [Department of Applied Physics, Chongqing University, Chongqing 400044 (China)

    2013-02-15

    Graphical abstract: Excellent photocatalytic activity in degradation of RhB was found with the hexagonal CdS nanorods growing along [0 0 0 1] direction, which is a result of the exposed (0 0 0 1) facets in the ends. Display Omitted Highlights: ► CdS microwires and nanorods were attained by a modified CHM approach. ► The phase transition (cubic to hexagonal) was achieved by tuning the amount of H{sub 2}O. ► Excellent photocatalytic activity was found with the hexagonal CdS. ► Hexagonal CdS has the better catalytic property due to more (0 0 0 1) facets exposed. -- Abstract: Single-crystalline CdS microwires (mixed cubic and hexagonal phase) and nanorods (pure hexagonal phase) were synthesized by a modified composite-hydroxide-mediated (CHM) approach. Photocatalytic degradation of rhodamine B with the CdS nanorods was studied under the simulated sunlight irradiation. Crystalline phase transition from cubic to hexagonal phase was achieved by adding a small amount of water in the melts. The phase structures and morphologies of the prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area of electron diffraction (SAED) and scanning electron microscopy (SEM), respectively. The results show that the pure hexagonal phase structure could be obtained with 5 mL or more than 5 mL water added in the composite-hydroxide melts. The band–gap of the hexagonal nanorods was 2.435 eV observed from UV–vis reflection spectrum. Compared with the CdS nanoparticles (mixed cubic and hexagonal phase), we found that the hexagonal phase structure CdS nanorods revealed much better photocatalytic activity owing to the exposure of (0 0 0 1) polar facet on the end. It is expected that the present research may offer useful guidance to the potential application of CdS in the treatment of environmental pollution.

  12. Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates.

    Science.gov (United States)

    Mosaddeghi, Hamid; Alavi, Saman; Kowsari, M H; Najafi, Bijan

    2012-11-14

    We use molecular dynamics simulations to study the structure, dynamics, and transport properties of nano-confined water between parallel graphite plates with separation distances (H) from 7 to 20 Å at different water densities with an emphasis on anisotropies generated by confinement. The behavior of the confined water phase is compared to non-confined bulk water under similar pressure and temperature conditions. Our simulations show anisotropic structure and dynamics of the confined water phase in directions parallel and perpendicular to the graphite plate. The magnitude of these anisotropies depends on the slit width H. Confined water shows "solid-like" structure and slow dynamics for the water layers near the plates. The mean square displacements (MSDs) and velocity autocorrelation functions (VACFs) for directions parallel and perpendicular to the graphite plates are calculated. By increasing the confinement distance from H = 7 Å to H = 20 Å, the MSD increases and the behavior of the VACF indicates that the confined water changes from solid-like to liquid-like dynamics. If the initial density of the water phase is set up using geometric criteria (i.e., distance between the graphite plates), large pressures (in the order of ~10 katm), and large pressure anisotropies are established within the water. By decreasing the density of the water between the confined plates to about 0.9 g cm(-3), bubble formation and restructuring of the water layers are observed.

  13. Coactivators p300 and CBP maintain the identity of mouse embryonic stem cells by mediating long-range chromatin structure.

    Science.gov (United States)

    Fang, Fang; Xu, Yifeng; Chew, Kai-Khen; Chen, Xi; Ng, Huck-Hui; Matsudaira, Paul

    2014-07-01

    Master transcription factors Oct4, Sox2, and Nanog are required to maintain the pluripotency and self-renewal of embryonic stem cells (ESCs) by regulating a specific transcriptional network. A few other transcription factors have been shown to be important in ESCs by interacting with these master transcription factors; however, little is known about the transcriptional mechanisms regulated by coregulators (coactivators and corepressors). In this study, we examined the function of two highly homologous coactivators, p300 and CREB-binding protein (CBP), in ESCs. We find that these two coactivators play redundant roles in maintaining the undifferentiated state of ESCs. They are recruited by Nanog through physical interaction to Nanog binding loci, mediating the formation of long-range chromatin looping structures, which is essential to maintain ESC-specific gene expression. Further functional studies reveal that the p300/CBP binding looping fragments contain enhancer activities, suggesting that the formation of p300/CBP-mediated looping structures may recruit distal enhancers to create a concentration of factors for the transcription activation of genes that are involved in self-renewal and pluripotency. Overall, these results provide a total new insight into the transcriptional regulation mechanism of coactivators p300 and CBP in ESCs, which is important in maintaining self-renewal and pluripotency, by mediating the formation of higher order chromosome structures.

  14. Diffusion and structure of water in polymers containing N-vinyl-2-pyrrolidone.

    Science.gov (United States)

    Wan, Ling-Shu; Huang, Xiao-Jun; Xu, Zhi-Kang

    2007-02-08

    Poly(N-vinyl-2-pyrrolidone) (PVP), a water-soluble polymer, is known for its excellent biocompatibility. It is generally recognized that the properties of polymers may be profoundly affected by the structure of water absorbed in them. In this study, Fourier transform infrared (FT-IR) in attenuated total reflection (ATR) and transmission mode was performed to examine the diffusion and structure of water in PVP and its copolymers. The obtained spectra were analyzed using two-dimensional (2D) IR with the aid of density functional theory (DFT) calculations. The 2D IR of time-resolved FT-IR/ATR spectra shows that type II water between 3300 and 3500 cm(-1) occurs earlier during the water absorption process, which is also demonstrated by transmission FT-IR at the initial stage of water absorption. Conversely, type II water changes last when desorption takes place. Results from DFT calculations indicate that type II water might be monomeric or dimeric water molecules interacting with a carbonyl group in the pyrrolidone moiety. Furthermore, it is found that vibrations less than 3300 cm(-1) (type I water) arise from water molecules involved in a carbonyl group interacting with more than two water molecules. It is reasonable that the transmission FT-IR spectra of film with an extra low water amount hardly show vibration bands below 3300 cm(-1); however, this region is distinct in the FT-IR/ATR spectra of fully swollen film. In addition, vibration bands between 3800 and 3500 cm(-1) (type III water) are assigned to free water or water with relatively weak hydrogen bonding, as supported by the transmission FT-IR spectra of polyacrylonitrile (PAN) and the calculation results. Therefore, the diffusion process and the structures of water in PVP and its copolymers can be successfully accessed on the basis of the 2D IR analysis and DFT calculations.

  15. Solvent mediated stabilisation of dissolution at the resorcinol-water interface

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.; Sahudin, S. [Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2010-02-15

    Experimental evidence suggests dissolution along the polar c-axis of {alpha}-resorcinol in water preferentially occurs at the {l_brace}011{r_brace} surface. In an attempt to understand the mechanism by which solvent influences this process, dissolution at the resorcinol {l_brace}011{r_brace} and {l_brace}011{r_brace} surfaces has been studied using molecular dynamics simulations. Our computations indicate dissolution at the two faces is dependent upon solvent behaviour at the crystal surface, where strong water-crystal interactions serve to stabilise the crystal surface and retard dissolution. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Water mediated construction of trisubstituted pyrazoles/isoxazoles library using ketene dithioacetals.

    Science.gov (United States)

    Savant, Mahesh M; Pansuriya, Akshay M; Bhuva, Chirag V; Kapuriya, Naval; Patel, Anil S; Audichya, Vipul B; Pipaliya, Piyush V; Naliapara, Yogesh T

    2010-01-01

    A small molecule library of alkyl, sulfone, and carboxamide functionalized pyrazoles and isoxazoles has been developed via a rapid sequential condensation of various alpha-acylketene dithioacetals (1a-o) with hydrazine hydrate or hydroxylamine hydrochloride, followed by oxidation of sulfide to sulfone using water as the reaction medium. An efficient and safe oxidation of sulfides (4/5a-o) to the corresponding sulfones (6/7a-o) using sodium per borate system in aqueous medium is reported. The concise and two step synthesis of trisubstituted pyrazoles and isoxazoles was investigated under variety of reaction condition. The newly developed methodology has the advantage of excellent yield and chemical purity with short reaction time using water as a solvent.

  17. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath.

    Directory of Open Access Journals (Sweden)

    Sandeep K Kasoji

    Full Text Available A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation.

  18. An Ultrasound Mediated Green Synthesis of Benzimidazolylthiounsaturatednitriles Using Water as a Green Solvent

    Directory of Open Access Journals (Sweden)

    Sadhu Srinivas Rao

    2014-01-01

    Full Text Available Reaction of 2-cyanothiomethylbenzimidazole  1 with an aromatic aldehydes in water under ultrasonic irradiation for 10–13 min gave the corresponding unsaturated nitriles 2a–h which is an efficient and simple method under green conditions. The unsaturated nitrile derivatives were obtained in 86–98% yield with a short reaction time without any tedious workup procedures.

  19. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath

    Science.gov (United States)

    Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  20. In-cell infection: a novel pathway for Epstein-Barr virus infection mediated by cell-in-cell structures.

    Science.gov (United States)

    Ni, Chao; Chen, Yuhui; Zeng, Musheng; Pei, Rongjuan; Du, Yong; Tang, Linquan; Wang, Mengyi; Hu, Yazhuo; Zhu, Hanyu; He, Meifang; Wei, Xiawei; Wang, Shan; Ning, Xiangkai; Wang, Manna; Wang, Jufang; Ma, Li; Chen, Xinwen; Sun, Qiang; Tang, Hong; Wang, Ying; Wang, Xiaoning

    2015-07-01

    Epstein-Barr virus (EBV) can infect both susceptible B lymphocytes and non-susceptible epithelial cells (ECs). Viral tropism analyses have revealed two intriguing means of EBV infection, either by a receptor-mediated infection of B cells or by a cell-to-cell contact-mediated infection of non-susceptible ECs. Herein, we report a novel "in-cell infection" mechanism for EBV infection of non-susceptible ECs through the formation of cell-in-cell structures. Epithelial CNE-2 cells were invaded by EBV-infected Akata B cells to form cell-in-cell structures in vitro. Such unique cellular structures could be readily observed in the specimens of nasopharyngeal carcinoma. Importantly, the formation of cell-in-cell structures led to the autonomous activation of EBV within Akata cells and subsequent viral transmission to CNE-2 cells, as evidenced by the expression of viral genes and the presence of virion particles in CNE-2 cells. Significantly, EBV generated from in-cell infected ECs displayed altered tropism with higher infection efficacy to both B cells and ECs. In addition to CNE-2 tumor cells, cell-in-cell structure formation could also mediate EBV infection of NPEC1-Bmi1 cells, an immortalized nasopharyngeal epithelial cell line. Furthermore, efficient infection by this mechanism involved the activation of the PI3K/AKT signaling pathway. Thus, our study identified "in-cell infection" as a novel mechanism for EBV infection. Given the diversity of virus-infected cells and the prevalence of cell-in-cell structures during chronic infection, we speculate that "in-cell infection" is likely a general mechanism for EBV and other viruses to infect non-susceptible ECs.

  1. Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention

    Science.gov (United States)

    Shany-Ur, Tal; Lin, Nancy; Rosen, Howard J.; Sollberger, Marc; Miller, Bruce L.

    2014-01-01

    overlooking versus exaggerating deficits, overestimation and underestimation scores were analysed separately, controlling for age, sex, total intracranial volume and extent of actual functional decline. Atrophy related to overestimating one’s functioning included bilateral, right greater than left frontal and subcortical regions, including dorsal superior and middle frontal gyri, lateral and medial orbitofrontal gyri, right anterior insula, putamen, thalamus, and caudate, and midbrain and pons. Thus, our patients’ tendency to under-represent their functional decline was related to degeneration of domain-general dorsal frontal regions involved in attention, as well as orbitofrontal and subcortical regions likely involved in assigning a reward value to self-related processing and maintaining accurate self-knowledge. The anatomic correlates of underestimation (right rostral anterior cingulate cortex, uncorrected significance level) were distinct from overestimation and had a substantially smaller effect size. This suggests that underestimation or ‘tarnishing’ may be influenced by non-structural neurobiological and sociocultural factors, and should not be considered to be on a continuum with overestimation or ‘polishing’ of functional capacity, which appears to be more directly mediated by neural circuit dysfunction. PMID:24951639

  2. Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia

    Science.gov (United States)

    van Emmerik, Tim; Sivapalan, Murugesu; Li, Zheng; Pande, Saket; Savenije, Hubert

    2014-05-01

    Around the world the demand for water resources is growing in order to satisfy rapidly increasing human populations, leading to competition for water between humans and ecosystems. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development and evaluation of effective mediation strategies. We present a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water resources management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resources development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health, which are all connected by feedback mechanisms. The model is used to generate insights into the dominant controls of the trajectory of

  3. The Bubble Transport Mechanism: Indications for a bubble-mediated transfer of microorganisms from the sediment into the water column

    Science.gov (United States)

    Schmale, Oliver; Stolle, Christian; Schneider von Deimling, Jens; Leifer, Ira; Kießlich, Katrin; Krause, Stefan; Frahm, Andreas; Treude, Tina

    2015-04-01

    Gas releasing seep areas are known to impact the methane biogeochemistry in the surrounding sediment and water column. Due to microbial processes most of the methane is oxidized under anaerobic and aerobic conditions before the greenhouse gas can escape into the atmosphere. However, methane gas bubbles can largely bypass this microbial filter mechanism, enabling highly efficient transport of methane from the sediment towards the sea surface. Studies in the water column surrounding hydrocarbon seeps indicated an elevated abundance of methanotrophic microorganism in the near field of gas bubble plumes. The enhanced methane concentration in the seep-affected water column stimulates the activity of methane oxidizers and leads to a rapid rise in the abundance of methane-oxidizing microorganisms in the aging plume water. In our study we hypothesized that a bubble-mediated transport mechanisms between the benthic and pelagic habitats represents an exchange process, which transfers methanotrophic microorganisms from the sediment into the water column, a process we termed the "Bubble Transport Mechanism". This mechanism could eventually influence the pelagic methanotrophic community, thereby indirectly providing feedback mechanisms for dissolved methane concentrations in the water column and thus impacting the sea/atmosphere methane flux. To test our hypothesis, field studies were conducted at the "Rostocker Seep" site (Coal Oil Point seep area, California, USA). Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was a newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the

  4. Numerical simulation of the floor water-inrush in working face influenced by fault structure

    Institute of Scientific and Technical Information of China (English)

    CHENG Jiu-long; CAO Ji-sheng; XU Jin-peng; YU Shi-jian; TIAN Li

    2007-01-01

    Used numerical simulation method to study the floor water-inrush mechanism in working face which was influenced by fault structure, and set up many kinds of models and performs numerical calculation by fully using large finite element soft-ANSYS and element birth-death method. The results show that the more high the underground water pressure, the more big the floor displacement and possibility of water-inrush; the floor which has fault structure is more prone to water-inrush than the floor which not has fault structure, the floor which has multi-groups cracks is more prone to water-inrush than the floor which has single-group cracks. The numerical simulation result forecasts the water-inrush in working face preferably.

  5. Networked Water Citizen Organisations in Spain: Potential for Transformation of Existing Power Structures in Water Management

    Directory of Open Access Journals (Sweden)

    Nuria Hernández-Mora

    2015-06-01

    Full Text Available The shift from hierarchical-administrative water management toward more transparent, multi-level and participated governance approaches has brought about a shifting geography of players, scales of action, and means of influencing decisions and outcomes. In Spain, where the hydraulic paradigm has dominated since the early 1920s, participation in decisions over water has traditionally been limited to a closed water policy community, made up of economic water users, primarily irrigator associations and hydropower generators, civil engineering corps and large public works companies. The river basin planning process under the Water Framework Directive of the European Union presented a promise of transformation, giving access to non-economic water users, environmental concerns and the wider public to water-related information on planning and decision-making. This process coincided with the consolidation of the use of Information and Communication Technologies (ICTs by the water administration, with the associated potential for information and data generation and dissemination. ICTs are also increasingly used by citizen groups and other interested parties as a way to communicate, network and challenge existing paradigms and official discourses over water, in the broader context of the emergence of 'technopolitics'. This paper investigates if and in what way ICTs may be providing new avenues for participated water resources management and contributing to alter the dominating power balance. We critically analyse several examples where networking possibilities provided by ICTs have enabled the articulation of interest groups and social agents that have, with different degrees of success, questioned the existing hegemonic view over water. The critical review of these cases sheds light on the opportunities and limitations of ICTs, and their relation with traditional modes of social mobilisation in creating new means of societal involvement in water

  6. Dielectric study on hierarchical water structures restricted in cement and wood materials

    Science.gov (United States)

    Abe, Fumiya; Nishi, Akihiro; Saito, Hironobu; Asano, Megumi; Watanabe, Seiei; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Fukuzaki, Minoru; Sudo, Seiichi; Suzuki, Youki

    2017-04-01

    Dielectric relaxation processes for mortar observed by broadband dielectric spectroscopy were analyzed in the drying and hydration processes for an aging sample in the frequency region from 1 MHz up to 2 MHz. At least two processes for structured water in the kHz frequency region and another mHz relaxation process affected by ionic behaviors were observed. Comparison of the relaxation parameters obtained for the drying and hydration processes suggests an existence of hierarchical water structures in the exchange of water molecules, which are originally exchanged from free water observed at around 20 GHz. The water molecules reflected in the lower frequency process of the two kHz relaxation processes are more restricted and take more homogeneous structures than the higher kHz relaxation process. These structured water usually hidden in large ionic behaviors for wood samples was observed by electrodes covered by a thin Teflon film, and hierarchical water structures were also suggested for wood samples. Dielectric spectroscopy technique is an effective tool to analyze the new concept of hierarchical water structures in complex materials.

  7. The crystal structure of the AhRR/ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.

    Science.gov (United States)

    Sakurai, Shunya; Shimizu, Toshiyuki; Ohto, Umeharu

    2017-09-13

    2,3,7,8-Tetrachlorodibenzo-p-dioxin and related compounds (TCDDs) are extraordinarily potent environmental toxic pollutants. Most of the TCDD toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix-Per-ARNT-Sim (bHLH-PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, due to the lack of structural information. Here, we determined the structure of the AhRR/ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR/ARNT and AhR/ARNT were similar in the bHLH-PAS-A region, while the PAS-B of ARNT in the AhRR/ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA, and further suggested the existence of an AhRR/ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  8. Resistivity tomography study on samples with water-bearing structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The apparent resistivity of the samples with water-bearing configuration was measured by an electrode-array and 2-D resistivity images of these samples were reconstructed then. The obtained series of tomograms reveal the distribution and its variation of true resistivity within the samples caused by the changes of crack and liquid distribution. Applying this method to the simulation experiment on the electrical properties of rocks, the fracturing and water filling process, which produces the electrical changes, can be brought to light clearly.

  9. Emergence of the Coherent Structure of Liquid Water

    Directory of Open Access Journals (Sweden)

    Ivan Bono

    2012-07-01

    Full Text Available We examine in some detail the interaction of water molecules with the radiative electromagnetic field and find the existence of phase transitions from the vapor phase to a condensed phase where all molecules oscillate in unison, in tune with a self-trapped electromagnetic field within extended mesoscopic space regions (Coherence Domains. The properties of such a condensed phase are examined and found to be compatible with the phenomenological properties of liquid water. In particular, the observed value of critical density is calculated with good accuracy.

  10. Bursting money bins, the ice and water structure

    Science.gov (United States)

    Bagnoli, Franco

    2015-05-01

    In the classic comics by Carl Barks, "The Big Bin on Killmotor Hill" [1], Uncle Scrooge, trying to defend his money bin from the Beagle Boys, follows a suggestion by Donald Duck, and fills the bin with water. Unfortunately, that night is going be the coldest one in the history of Ducksburg. The water freezes, bursting the "ten-foot walls'' of the money bin, and finally the gigantic cube of ice and dollars slips down the hill up to the Beagle Boys lot.

  11. Nanoscale Distribution of Sulfonic Acid Groups Determines Structure and Binding of Water in Nafion Membranes

    Science.gov (United States)

    Ling, Xiao; Bonn, Mischa

    2016-01-01

    Abstract The connection between the nanoscale structure of two chemically equivalent, yet morphologically distinct Nafion fuel‐cell membranes and their macroscopic chemical properties is demonstrated. Quantification of the chemical interactions between water and Nafion reveals that extruded membranes have smaller water channels with a reduced sulfonic acid head group density compared to dispersion‐cast membranes. As a result, a disproportionally large amount of non‐bulk water molecules exists in extruded membranes, which also exhibit larger proton conductivity and larger water mobility compared to cast membranes. The differences in the physicochemical properties of the membranes, that is, the chemical constitution of the water channels and the local water structure, and the accompanying differences in macroscopic water and proton transport suggest that the chemistry of nanoscale channels is an important, yet largely overlooked parameter that influences the functionality of fuel‐cell membranes. PMID:26895211

  12. Water Structure in Trichosanthin Crystal at 1.73 Resolution

    Institute of Scientific and Technical Information of China (English)

    高奔; 马星奇; 王耀萍; 陈世芝; 吴伸; 董贻诚

    1994-01-01

    The water-structure model in Trichosanthin crystal is presented,and 133 water moleculesare included and 118 water molecules are hydrogen-bonded to protein.In the interior of Trichosanthin,thereare four discrete internal water molecules,among which two water molecules W251 and W252 are separated-ly hydrogen-bonded to the side-chain groupsof 156Gln and 157Ser in the distorted segment of A5 helix andplay a role in maintaining the conformation of the active site.The comparative result of water structures incrystals indicates that when approaching the protein,the ribosome induces a conformational change in theresidues of the active site,which leads to an appropriate alignment of catalytic groups as well as the optimalconformation for the catalysis,and activates a water molecule (W257) to participate in the ribosome inactiva-tion.

  13. Collagen fibers mediate MRI-detected water diffusion and anisotropy in breast cancers.

    Science.gov (United States)

    Kakkad, Samata; Zhang, Jiangyang; Akhbardeh, Alireza; Jacob, Desmond; Krishnamachary, Balaji; Solaiyappan, Meiyappan; Jacobs, Michael A; Raman, Venu; Leibfritz, Dieter; Glunde, Kristine; Bhujwalla, Zaver M

    2016-10-01

    Collagen 1 (Col1) fibers play an important role in tumor interstitial macromolecular transport and cancer cell dissemination. Our goal was to understand the influence of Col1 fibers on water diffusion, and to examine the potential of using noninvasive diffusion tensor imaging (DTI) to indirectly detect Col1 fibers in breast lesions. We previously observed, in human MDA-MB-231 breast cancer xenografts engineered to fluoresce under hypoxia, relatively low amounts of Col1 fibers in fluorescent hypoxic regions. These xenograft tumors together with human breast cancer samples were used here to investigate the relationship between Col1 fibers, water diffusion and anisotropy, and hypoxia. Hypoxic low Col1 fiber containing regions showed decreased apparent diffusion coefficient (ADC) and fractional anisotropy (FA) compared to normoxic high Col1 fiber containing regions. Necrotic high Col1 fiber containing regions showed increased ADC with decreased FA values compared to normoxic viable high Col1 fiber regions that had increased ADC with increased FA values. A good agreement of ADC and FA patterns was observed between in vivo and ex vivo images. In human breast cancer specimens, ADC and FA decreased in low Col1 containing regions. Our data suggest that a decrease in ADC and FA values observed within a lesion could predict hypoxia, and a pattern of high ADC with low FA values could predict necrosis. Collectively the data identify the role of Col1 fibers in directed water movement and support expanding the evaluation of DTI parameters as surrogates for Col1 fiber patterns associated with specific tumor microenvironments as companion diagnostics and for staging.

  14. Atmospheric depression-mediated water temperature changes affect the vertical movement of chum salmon Oncorhynchus keta.

    Science.gov (United States)

    Kitagawa, Takashi; Hyodo, Susumu; Sato, Katsufumi

    2016-08-01

    The Sanriku coastal area, Japan, is one of the southern-most natural spawning regions of chum salmon Oncorhynchus keta. Here, we report their behavioral response to changes in ambient temperature after the passage of an atmospheric depression during the early spawning season. Before the passage, all electrically tagged fish moved vertically for several hours to depths below the shallow thermocline at >100 m. However, during the atmospheric depression, the salmon shortened the duration of their vertical movements and spent most time at the surface. The water column was homogenous at energy cost during migration.

  15. Patterns, structures and regulations of domestic water cycle systems in China

    Science.gov (United States)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  16. Nickel-oxido structure of a water-oxidizing catalyst film.

    Science.gov (United States)

    Risch, Marcel; Klingan, Katharina; Heidkamp, Jonathan; Ehrenberg, David; Chernev, Petko; Zaharieva, Ivelina; Dau, Holger

    2011-11-21

    The atomic structure of an electrodeposited Ni catalyst film is dominated by extensive di-μ-oxido bridging between Ni(III/IV) ions, as revealed by X-ray absorption spectroscopy. The structure is surprisingly similar to that of an analogous Co-based film and colloidal Mn-based catalysts. Structural requirements for water oxidation are discussed.

  17. Ordered water structure at hydrophobic graphite interfaces observed by 4D, ultrafast electron crystallography

    Science.gov (United States)

    Yang, Ding-Shyue; Zewail, Ahmed H.

    2009-01-01

    Interfacial water has unique properties in various functions. Here, using 4-dimensional (4D), ultrafast electron crystallography with atomic-scale spatial and temporal resolution, we report study of structure and dynamics of interfacial water assembly on a hydrophobic surface. Structurally, vertically stacked bilayers on highly oriented pyrolytic graphite surface were determined to be ordered, contrary to the expectation that the strong hydrogen bonding of water on hydrophobic surfaces would dominate with suppressed interfacial order. Because of its terrace morphology, graphite plays the role of a template. The dynamics is also surprising. After the excitation of graphite by an ultrafast infrared pulse, the interfacial ice structure undergoes nonequilibrium “phase transformation” identified in the hydrogen-bond network through the observation of structural isosbestic point. We provide the time scales involved, the nature of ice-graphite structural dynamics, and relevance to properties related to confined water. PMID:19246378

  18. Mediating gel formation from structurally controlled poly(electrolytes) through multiple "head-to-body" electrostatic interactions.

    Science.gov (United States)

    Srour, Hassan; Ratel, Olivier; Leocmach, Mathieu; Adams, Emma A; Denis-Quanquin, Sandrine; Appukuttan, Vinukrishnan; Taberlet, Nicolas; Manneville, Sébastien; Majesté, Jean-Charles; Carrot, Christian; Andraud, Chantal; Monnereau, Cyrille

    2015-01-01

    Tuning the chain-end functionality of a short-chain cationic homopolymer, owing to the nature of the initiator used in the atom transfer radical polymerization (ATRP) polymerization step, can be used to mediate the formation of a gel of this poly(electrolyte) in water. While a neutral end group gives a solution of low viscosity, a highly homogeneous gel is obtained with a phosphonate anionic moiety, as characterized by rheometry and diffusion nuclear magnetic resonance (NMR). This novel type of supramolecular control over poly(electrolytic) gel formation could find potential use in a variety of applications in the field of electro-active materials.

  19. Structural characterization of the ternary complex that mediates termination of NF-κB signaling by IκBα.

    Science.gov (United States)

    Mukherjee, Sulakshana P; Quintas, Pedro O; McNulty, Reginald; Komives, Elizabeth A; Dyson, H Jane

    2016-05-31

    The transcription factor NF-κB is used in many systems for the transduction of extracellular signals into the expression of signal-responsive genes. Published structural data explain the activation of NF-κB through degradation of its dedicated inhibitor IκBα, but the mechanism by which NF-κB-mediated signaling is turned off by its removal from the DNA in the presence of newly synthesized IκBα (termed stripping) is unknown. Previous kinetic studies showed that IκBα accelerates NF-κB dissociation from DNA, and a transient ternary complex between NF-κB, its cognate DNA sequence, and IκBα was observed. Here we structurally characterize the >100-kDa ternary complex by NMR and negative stain EM and show a modeled structure that is consistent with the measurements. These data provide a structural basis for previously unidentified insights into the molecular mechanism of stripping.

  20. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1.

    Science.gov (United States)

    Zhou, Mengying; Li, Yini; Hu, Qi; Bai, Xiao-Chen; Huang, Weiyun; Yan, Chuangye; Scheres, Sjors H W; Shi, Yigong

    2015-11-15

    The apoptotic protease-activating factor 1 (Apaf-1) controls the onset of many known forms of intrinsic apoptosis in mammals. Apaf-1 exists in normal cells as an autoinhibited monomer. Upon binding to cytochrome c and dATP, Apaf-1 oligomerizes into a heptameric complex known as the apoptosome, which recruits and activates cell-killing caspases. Here we present an atomic structure of an intact mammalian apoptosome at 3.8 Å resolution, determined by single-particle, cryo-electron microscopy (cryo-EM). Structural analysis, together with structure-guided biochemical characterization, uncovered how cytochrome c releases the autoinhibition of Apaf-1 through specific interactions with the WD40 repeats. Structural comparison with autoinhibited Apaf-1 revealed how dATP binding triggers a set of conformational changes that results in the formation of the apoptosome. Together, these results constitute the molecular mechanism of cytochrome c- and dATP-mediated activation of Apaf-1.

  1. Do biomass fuel use and consumption of unsafe water mediate educational inequalities in stillbirth risk? An analysis of the 2007 Ghana Maternal Health Survey.

    Science.gov (United States)

    Amegah, A Kofi; Näyhä, Simo; Jaakkola, Jouni J K

    2017-02-07

    Numerous studies have explored the association between educational inequalities and stillbirth but most have failed to elaborate how low educational attainment leads to an increased risk of stillbirth. We hypothesised that use of biomass fuels and consumption of unsafe water related to low educational attainment could explain the stillbirth burden in Ghana attributable to socioeconomic disadvantage. Data from the 2007 Ghana Maternal Health Survey, a nationally representative population-based survey were analysed for this study. Of the10 370 women aged 15-49 years interviewed via structured questionnaires for the survey, 7183 primiparous and multiparous women qualified for inclusion in the present study. In a logistic regression analysis that adjusted for age, area of residence, marital status and ethnicity of women, lower maternal primary education was associated with a 62% (OR=1.62; 95% CI 1.04 to 2.52) increased lifetime risk of stillbirth. Biomass fuel use and consumption of unsafe water mediated 18% and 8% of the observed effects, respectively. Jointly these two exposures explained 24% of the observed effects. The generalised additive modelling revealed a very flat inverted spoon-shaped smoothed curve which peaked at low levels of schooling (2-3 years) and confirms the findings from the logistic regression analysis. Our results show that biomass fuel use and unsafe water consumption could be important pathways through which low maternal educational attainment leads to stillbirths in Ghana and similar developing countries. Addressing educational inequalities in developing countries is thus essential for ensuring household choices that curtail environmental exposures and help improve pregnancy outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Do biomass fuel use and consumption of unsafe water mediate educational inequalities in stillbirth risk? An analysis of the 2007 Ghana Maternal Health Survey

    Science.gov (United States)

    Näyhä, Simo; Jaakkola, Jouni J K

    2017-01-01

    Background Numerous studies have explored the association between educational inequalities and stillbirth but most have failed to elaborate how low educational attainment leads to an increased risk of stillbirth. We hypothesised that use of biomass fuels and consumption of unsafe water related to low educational attainment could explain the stillbirth burden in Ghana attributable to socioeconomic disadvantage. Methods Data from the 2007 Ghana Maternal Health Survey, a nationally representative population-based survey were analysed for this study. Of the10 370 women aged 15–49 years interviewed via structured questionnaires for the survey, 7183 primiparous and multiparous women qualified for inclusion in the present study. Results In a logistic regression analysis that adjusted for age, area of residence, marital status and ethnicity of women, lower maternal primary education was associated with a 62% (OR=1.62; 95% CI 1.04 to 2.52) increased lifetime risk of stillbirth. Biomass fuel use and consumption of unsafe water mediated 18% and 8% of the observed effects, respectively. Jointly these two exposures explained 24% of the observed effects. The generalised additive modelling revealed a very flat inverted spoon-shaped smoothed curve which peaked at low levels of schooling (2–3 years) and confirms the findings from the logistic regression analysis. Conclusions Our results show that biomass fuel use and unsafe water consumption could be important pathways through which low maternal educational attainment leads to stillbirths in Ghana and similar developing countries. Addressing educational inequalities in developing countries is thus essential for ensuring household choices that curtail environmental exposures and help improve pregnancy outcomes. PMID:28174221

  3. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; van Gaalen FW; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; LWD

    2001-01-01

    Het model TAPWAT (Tool for the Analysis of the Production of drinking WATer), is ontwikkeld om de drinkwaterkwaliteit te beschrijven voor integrale studies in het kader van het planbureau Milieu en Natuur van het RIVM. Het model bestaat uit modules die de individuele zuiveringsstappen van het

  4. Water-Mediated Photochemical Treatments for Low-Temperature Passivation of Metal-Oxide Thin-Film Transistors.

    Science.gov (United States)

    Heo, Jae Sang; Jo, Jeong-Wan; Kang, Jingu; Jeong, Chan-Yong; Jeong, Hu Young; Kim, Sung Kyu; Kim, Kwanpyo; Kwon, Hyuck-In; Kim, Jaekyun; Kim, Yong-Hoon; Kim, Myung-Gil; Park, Sung Kyu

    2016-04-27

    The low-temperature electrical passivation of an amorphous oxide semiconductor (AOS) thin-film transistor (TFT) is achieved by a deep ultraviolet (DUV) light irradiation-water treatment-DUV irradiation (DWD) method. The water treatment of the first DUV-annealed amorphous indium-gallium-zinc-oxide (a-IGZO) thin film is likely to induce the preferred adsorption of water molecules at the oxygen vacancies and leads to subsequent hydroxide formation in the bulk a-IGZO films. Although the water treatment initially degraded the electrical performance of the a-IGZO TFTs, the second DUV irradiation on the water-treated devices may enable a more complete metal-oxygen-metal lattice formation while maintaining low oxygen vacancies in the oxide films. Overall, the stable and dense metal-oxygen-metal (M-O-M) network formation could be easily achieved at low temperatures (below 150 °C). The successful passivation of structural imperfections in the a-IGZO TFTs, such as hydroxyl group (OH-) and oxygen vacancies, mainly results in the enhanced electrical performances of the DWD-processed a-IGZO TFTs (on/off current ratio of 8.65 × 10(9), subthreshold slope of 0.16 V/decade, an average mobility of >6.94 cm(2) V(-1) s(-1), and a bias stability of ΔVTH < 2.5 V), which show more than a 30% improvement over the simple DUV-treated a-IGZO TFTs.

  5. Three-dimensional water impact at normal incidence to a blunt structure

    Science.gov (United States)

    Chatjigeorgiou, I. K.; Cooker, M. J.; Korobkin, A. A.

    2016-08-01

    The three-dimensional water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is three-dimensional and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are the main concern in this study.

  6. How Do You Get Your Water? Structural Violence Pedagogy and Women's Access to Water

    Science.gov (United States)

    Keefer, Natalie; Bousalis, Rina

    2015-01-01

    In many parts of the less developed world it is women and girls who are expected to provide water for their family. Frequently, young girls are unable to complete school or get jobs because water scarcity means they are forced to walk miles daily to obtain this most basic need. Since the creation of the United Nations Millennium Goals, progress…

  7. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Ratna Chaturvedi

    Full Text Available The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.

  8. Structures and ultrafast dynamics of interfacial water assemblies on smooth hydrophobic surfaces

    Science.gov (United States)

    Yang, Ding-Shyue; He, Xing

    2017-09-01

    Using time-averaged and ultrafast electron diffraction, structures and ultrafast dynamics of interfacial water assemblies on smooth hydrophobic surfaces are reported. The lack of hydrophilic interaction and topographical template effect from the support surface leads to the formation of small, mostly randomly-oriented, ice crystallites with the cubic structure. Dynamically, following the substrate photoexcitation, interfacial water assemblies undergo four stages of changes-ultrafast melting, nonequilibrium isotropic phase transformation, annealing, and restructuring-which are closely correlated with the substrate dynamics. The connectivity and cooperative nature of the hydrogen-bonded network is considered crucial for water assemblies to withstand large structural motions without sublimation on ultrashort times.

  9. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells.

    Science.gov (United States)

    Yang, Lei; Choi, YongMan; Qin, Wentao; Chen, Haiyan; Blinn, Kevin; Liu, Mingfei; Liu, Ping; Bai, Jianming; Tyson, Trevor A; Liu, Meilin

    2011-06-21

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C(3)H(8), CO and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H(2)O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.

  10. Analysis on Impact Factors of Water Utilization Structure in Tianjin, China

    Directory of Open Access Journals (Sweden)

    Conglin Zhang

    2016-03-01

    Full Text Available Water is an essential foundation for socio-economic development and environmental protection. As such, it is very critical for a city’s sustainable development. This study analyzed the changes in water utilization structure and its impact factors using water consumption data for agricultural, industrial, domestic and ecological areas in the city of Tianjin, China from 2004 to 2013. On this base, the evolution law and impact factors of water utilization structure were depicted by information entropy and grey correlation respectively. These analyses lead to three main results. First, the total amount of water consumption in Tianjin increased slightly from 2004 to 2013. Second, the information entropy and equilibrium degree peaked in 2010. From 2004 to 2010, the water utilization structure tended to be more disordered and balanced. Third, the economic and social factors seemed to influence the water utilization structure, while the main impact factors were industrial structure, per capita green area, cultivated area, effective irrigation area, rural electricity consumption, animal husbandry output, resident population, per capita domestic water etc.

  11. Parental Attachment, Separation-Individuation, and College Student Adjustment: A Structural Equation Analysis of Mediational Effects

    Science.gov (United States)

    Mattanah, Jonathan F.; Hancock, Gregory R.; Brand, Bethany L.

    2004-01-01

    Secure parental attachment and healthy levels of separation-individuation have been consistently linked to greater college student adjustment. The present study proposes that the relation between parental attachment and college adjustment is mediated by healthy separation-individuation. The authors gathered data on maternal and paternal…

  12. Structural Characteristics of Computer-Mediated Language: A Comparative Analysis of InterChange Discourse.

    Science.gov (United States)

    Ko, Kwang-Kyu

    1996-01-01

    Compares one form of synchronous computer-mediated communication, Daedalus InterChange, with analogous spoken and written corpora. Finds that the InterChange discourse mode is not merely intermediate between speaking and writing; rather the electronic medium uniquely fosters some behaviors and inhibits others, in support of the view that physical…

  13. Subtle Effects of Aliphatic Alcohol Structure on Water Extraction and Solute Aggregation in Biphasic Water/ n -Dodecane

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Andrew W.; Qiao, Baofu; Chiarizia, Renato; Ferru, Geoffroy; Forbes, Tori; Ellis, Ross J.; Soderholm, L.

    2017-04-03

    Organic phase aggregation behavior of 1-octanol and its structural isomer, 2-ethylhexanol, in a biphasic n-dodecane water system is studied with a combination of physical measurement, small-angle X-ray scattering (SAXS), and atomistic molecular dynamic simulations. Physical properties of the organic phases are probed following their mixing and equilibration with immiscible water phases. Studies reveal that the interfacial tension decreases as a function of increasing alcohol concentration over the solubility range of the alcohol with no evidence for a critical aggregate concentration (cac). An uptake of water into the organic phases is quantified, as a function of alcohol content, by Karl Fischer titrations. The extraction of water into dodecane was further assessed as a function of alcohol concentration via the slope-analysis method sometimes employed in chemical separations. This provides a qualitative understanding of solute (water/alcohol) aggregation in the organic phase. The physical results are supported by analyses of SAXS data that reveals an emergence of aggregates in n-dodecane at elevated alcohol concentrations. The observed aggregate structure is dependent on the alcohol tail group geometry, consistent with surfactant packing parameter. The formation of these aggregates is discussed at a molecular level, where alcohol-alcohol and alcohol-water H-bonding interactions likely dominate the occurrence and morphology of the aggregates.

  14. Relationships between benthic diatom assemblages’ structure and selected environmental parameters in Slovak water reservoirs (Slovakia, Europe

    Directory of Open Access Journals (Sweden)

    Fidlerová D.

    2016-01-01

    Full Text Available The main objective of the present study is to describe the structure of benthic diatom communities in 23 water reservoirs in Slovakia classified as heavily modified water bodies. Environmental variables together with biological data obtained during the routine biomonitoring of water reservoirs in Slovakia were explored and analysed to understand variability of benthic diatom communities and their relationships with environmental variables in order to obtain an integrated knowledge about their relevance as bioindicators for the Water Framework Directive-compliant ecological potential assessment. This study summarizes results from a four-year monitoring programme of water reservoirs surveyed during the period of 2011–2014. The performed survey and statistical analyses revealed the following: (i two main groups of reservoirs could be distinguished based on the purpose of their main use (multipurpose or drinking water-supply use; (ii multipurpose and drinking water-supply reservoirs differed in benthic diatom community structure, diatom water quality indices as well as in the principal environmental gradients structuring the diatom communities; (iii 5 distinct sub-groups of reservoirs could be identified differing in terms of diatom species composition and several environmental parameters; (iv the most significant environmental variables in explaining differences in diatom species composition in multipurpose reservoirs were mean depth and mean annual flow; in drinking water-supply reservoirs conductivity and water transparency.

  15. Effect of Water Concentration on the Molecular Structure of Polyacrylate Gels

    Science.gov (United States)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    2015-03-01

    Recent studies have suggested pervaporation to be a promising alternative method for separation of aqueous solution of alcohol compared to distillation based separation processes. The ability to tune the hydrophobic/hydrophilic character makes polyacrylate gels attractive candidate materials for separating water-alcohol mixture by pervaporation. Experimentally, it is observed that the amount of water absorbed in the gel i.e. the degree of swelling of the gel shows a large variation with polymer chemistry. Relatively few studies exist highlighting the effects of water concentration on the membrane separation efficiency which in turn is directly related to the internal molecular structure of the water rich membranes. In this regard, an all-atom molecular dynamics (MD) simulation is employed to study water structure in polyacrylate gels. As a first step, polyacrylate copolymer systems with varying degree of hydrophobicity are prepared using the simulated annealing polymerization technique. Atomistic structures of gels containing different amounts of water are also prepared. Effect of water content on the acrylate-water system microstructure is determined by characterizing the packing of water molecules as well as the hydrogen bonding in these systems. In addition, the change in dynamics of water molecules due to the interactions with polymer is captured by monitoring the auto-correlation function of their dipole vector.

  16. Soft photo structuring of porous silicon in water

    Energy Technology Data Exchange (ETDEWEB)

    Juan, M.; Bouillard, J.S.; Plain, J.; Bachelot, R.; Adam, P.M.; Lerondel, G.; Royer, P. [ICD - Laboratoire de Nanotechnologie et d' Instrumentation Optique, CNRS FRE 2848, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes (France)

    2007-05-15

    We report on local photo-induced patterning of porous silicon in water. Scanning probe microscopy images of the sample surface after illumination show that the emission properties as well as the topography are modified according to the interferometric illumination pattern. Local photo-oxidation is believed to be at the origin of these modifications. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Structural exploration of water, nitrate/water, and oxalate/water clusters with basin-hopping method using a compressed sampling technique.

    Science.gov (United States)

    Liu, Yi-Rong; Wen, Hui; Huang, Teng; Lin, Xiao-Xiao; Gai, Yan-Bo; Hu, Chang-Jin; Zhang, Wei-Jun; Huang, Wei

    2014-01-16

    Exploration of the low-lying structures of atomic or molecular clusters remains a fundamental problem in nanocluster science. Basin hopping is typically employed in conjunction with random motion, which is a perturbation of a local minimum structure. We have combined two different sampling technologies, "random sampling" and "compressed sampling", to explore the potential energy surface of molecular clusters. We used the method to study water, nitrate/water, and oxalate/water cluster systems at the MP2/aug-cc-pVDZ level of theory. An isomer of the NO3(-)(H2O)3 cluster molecule with a 3D structure was lower in energy than the planar structure, which had previously been reported by experimental study as the lowest-energy structure. The lowest-energy structures of the NO3(-)(H2O)5 and NO3(-)(H2O)7 clusters were found to have structures similar to pure (H2O)8 and (H2O)10 clusters, which contradicts previous experimental result by Wang et al.(J. Chem. Phys. 2002, 116, 561-570). The new minimum energy structures for C2O4(2-)(H2O)5 and C2O4(2-)(H2O)6 are found by our calculations.

  18. Hydrogen-bonding-mediated vesicular assembly of functionalized naphthalene-diimide-based bolaamphiphile and guest-induced gelation in water.

    Science.gov (United States)

    Molla, Mijanur Rahaman; Ghosh, Suhrit

    2012-08-06

    This paper describes the spontaneous vesicular assembly of a naphthalene-diimide (NDI)-based non-ionic bolaamphiphile in aqueous medium by using the synergistic effects of π-stacking and hydrogen bonding. Site isolation of the hydrogen-bonding functionality (hydrazide), a strategy that has been adopted so elegantly in nature, has been executed in this system to protect these moieties from the bulk water so that the distinct role of hydrogen bonding in the self-assembly of hydrazide-functionalized NDI building blocks could be realized, even in aqueous solution. Furthermore, the electron-deficient NDI-based bolaamphiphile could engage in donor-acceptor (D-A) charge-transfer (CT) interactions with a water-insoluble electron-rich pyrene donor by virtue of intercalation of the latter chromophore in between two NDI building blocks. Remarkably, even when pyrene was located between two NDI blocks, intermolecular hydrogen-bonding networks between the NDI-linked hydrazide groups could be retained. However, time-dependent AFM studies revealed that the radius of curvature of the alternately stacked D-A assembly increased significantly, thereby leading to intervesicular fusion, which eventually resulted in rupturing of the membrane to form 1D fibers. Such 2D-to-1D morphological transition produced CT-mediated hydrogels at relatively higher concentrations. Instead of pyrene, when a water-soluble carboxylate-functionalized pyrene derivative was used as the intercalator, non-covalent tunable in-situ surface-functionalization could be achieved, as evidenced by the zeta-potential measurements.

  19. More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport.

    Science.gov (United States)

    Nardini, Andrea; Salleo, Sebastiano; Jansen, Steven

    2011-10-01

    Major restrictions to the hydraulic conductance of xylem (K(XYL)) in vascular plants have traditionally been attributed to anatomical constraints. More recently, changes in the cationic concentration of xylem sap have been suggested to be responsible for short-term changes in K(XYL) based on data for 35 dicot species, and very few gymnosperms and ferns, indicating that xylem water transport may no longer be considered as an entirely passive process. Recent studies have revealed that this so-called ionic effect: (i) varies from little or no increase to >30%, (ii) is species specific, (iii) changes on a seasonal basis, (iv) depends on the cationic concentration, (v) is enhanced in embolized stems, and (vi) is positively correlated with vessel grouping. Furthermore, the ionic effect has been suggested to play functional roles in planta with respect to: (i) phloem-mediated control of xylem hydraulic properties, (ii) compensation of cavitation-induced loss of hydraulic conductance, with the result of optimizing light and water utilization, and (iii) differential regulation of water delivery to branches exposed to different levels of light. Pits are likely to play a key role in the ionic effect, which has largely been explained as a consequence of the poly-electrolytic nature and hydrogel properties of the pectic matrix of interconduit pit membranes, despite little evidence that pit membrane pectins remain present after cell hydrolysis. More research is needed to address the ionic effect in more species, physico-chemical properties of pit membranes, and how the ionic effect may increase xylem hydraulic conductance 'on demand'.

  20. Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices.

    Science.gov (United States)

    Kanakaraju, Devagi; Motti, Cherie A; Glass, Beverley D; Oelgemöller, Michael

    2016-09-01

    Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.

  1. Optical Kerr effect of liquid water: a new insight into the vibrational and structural dynamics

    CERN Document Server

    Taschin, A; Eramo, R; Righini, R; Torre, R

    2013-01-01

    The liquid and supercooled states of water show a series of anomalies whose nature is lively debated. A key role is attributed to the formation of structural aggregations induced by critical phenomena occurring deep in the supercooled region, not experimentally accessible for bulk water. This explain why, despite the numerous experimental investigations, the nature of water anomalies and the hidden critical processes remain elusive. Here we present a time-resolved optical Kerr effect investigation of the vibrational and relaxation processes in supercooled bulk water. The experiment measures the water intermolecular vibrations and the structural relaxation process in an extended temperature range, and with unpreceded data quality. A mode-coupling analysis of the experimental data allows the characterization of the intermolecular vibrational modes and of their interplay with the structural relaxation process.

  2. Low-Density Water Structure Observed in a Nanosegregated Cryoprotectant Solution at Low Temperatures from 285 to 238 K

    OpenAIRE

    Towey, JJ; Soper, AK; Dougan, L.

    2016-01-01

    The structure of liquid water is defined by its molecular association through hydrogen bonding. Two different structures have been proposed for liquid water at low temperatures: low-density liquid (LDL) and high-density liquid (HDL) water. Here, we demonstrate a platform that can be exploited to experimentally probe the structure of liquid water in equilibrium at temperatures down to 238 K. We make use of a cryoprotectant molecule, glycerol, that, when mixed with water, lowers the freezing te...

  3. Algal growth and community structure in a mixed-culture system using coal seam gas water as the water source.

    Science.gov (United States)

    Buchanan, Jessica J; Slater, Frances R; Bai, Xue; Pratt, Steven

    2013-01-01

    Coal seam gas (CSG) is being touted as a transition fuel as the world moves towards low-carbon economies. However, the development of CSG reserves will generate enormous volumes of saline water. In this work, we investigate the potential of using this saline water to support mass algae production. Water and brine from a CSG water treatment facility (1.6 and 11.6 g total dissolved solids per litre (TDS L(-1)) respectively) were inoculated with algal biomass from freshwater and seawater environments and supplemented with nutrients in open, fed-batch reactors. Significant algal growth was recorded, with maximum specific growth rates in CSG water and CSG brine of 0.20 +/- 0.05 d(-1) and 0.26 +/- 0.04 d(-1) respectively. These maximum specific growth rates were equal to or greater than specific growth rates in deionized water and seawater diluted to the same salinity. However, algal growth lag time in CSG brine was between 7 and 9 times longer than in other waters. Microscopy and terminal-restriction fragment length polymorphism (T-RFLP) were used to monitor community structure in the reactors. The same few algal species dominated all of the reactors, except for the CSG brine reactor at day 15. This result indicates that conditions in CSG brine select for different species of algae compared to seawater of the same salinity and other waters tested. The findings suggest that mass algae production in CSG water is feasible but algae community composition may be a function of CSG water chemistry. This has implications for the downstream use of algae.

  4. Trend of urban system structure under the restriction of water and land resources in Xinjiang

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaolei; LEI Jun

    2006-01-01

    On the basis of studies on water and land resources affecting urban development and urban system structure in Xinjiang, this paper analyzes the utilization status and shortage of urban water resources. It is considered that both the consumption and waste of urban water resources are in an increase trend. Most cities and towns in Xinjiang are in shortage of water resources, however, waste of water resources are serious, especially in small towns. The development of the megapolis and moderate cities is evidently restricted by limited land resources. Though there are relatively large spaces of expanding the small cities and towns, the output benefits of water and land resources are low. In order to achieve the ordinal expansion of urban system structure in Xinjiang, it is suggested to take the urban spatial development pattern of "one circle and three belts" and the resources-economized strategy in the rapid development of urbanization.

  5. Permanent dissipative structures in water: the matrix of life? Experimental evidences and their quantum origin.

    Science.gov (United States)

    Elia, V; Germano, R; Napoli, E

    2015-01-01

    This paper presents a short review of the evidence - both experimental and theoretical - of the formation of dissipative structures in liquid water induced by three kinds of physical perturbations having a low energy content: extremely diluted solution (EDS), iteratively filtered water (IFW), and iteratively nafionated water (INW). Particular attention is devoted to the very recent discovery that such structures are tremendously persistent even in the solid phase: large ponderal quantities of supramolecular aggregates of water (with each nucleus hundreds of nanometers in size) have been observed - at ambient pressure and temperature - using easily-reproducible experimental methods. The nature of these dissipative structures is analyzed and explained in terms of the thermodynamics of far-from-equilibrium systems and irreversible processes, showing their spontaneous quantum origin. Are these kinds of structures the matrix itself of life?.

  6. Probing structural changes of proteins incorporated into water-in-oil emulsions

    DEFF Research Database (Denmark)

    Jorgensen, Lene; van de Weert, Marco; Vermehren, Charlotte;

    2004-01-01

    The applicability of different techniques, that is, Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), and intrinsic tryptophan fluorescence, for probing the structural changes of proteins in the water-in-oil emulsions are investigated using nondefatted bovine...

  7. System A and B Water Control Structure (WCS) Use in 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This memo outlines the opening and closing of water control structures on St. Vincent National Wildlife Refuge in 2002. Wcs’s were opened for heavy rain in January...

  8. Effects of Proposed Water Control Structure at Prime Hook National Wildlife Refuge 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The United States Fish and Wildlife Service is studying the feasibility of constructing a water control structure on the Prime Hook National Wildlife Refuge. The...

  9. Lower Colorado River GRP Dams and Water Retention Structures, Arizona, 2012, Arizona Department of Environmental Quality

    Data.gov (United States)

    U.S. Environmental Protection Agency — Location of dams and water retention structures as compiled from multiple sources by the Arizona Department of Environmental Quality (ADEQ). The data are "sensitive"...

  10. Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; RameshBabu, V.; Chandramohan, P.

    Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam has been examined in relation to the flow field and surface winds utilizing the hourly data of temperature and currents taken at a fixed location over a...

  11. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  12. Structural elucidation of rapid solution-mediated phase transitions in pharmaceutical solids using in situ synchrotron SAXS/WAXS.

    Science.gov (United States)

    Boetker, Johan; Rades, Thomas; Rantanen, Jukka; Hawley, Adrian; Boyd, Ben J

    2012-09-01

    In situ elucidation of kinetics of solution-mediated phase transformations using direct structural determination has been achieved using synchrotron SAXS/WAXS radiation. Using theophylline as a model drug with known phase transformation from anhydrate to monohydrate form in aqueous conditions within a few minutes, the kinetics of the structural transition were resolved at the second scale, and the results achieved agreed well with those determined using indirect approaches such as Raman spectroscopy. The recrystallization of the monohydrate in situ (due to its lower solubility) from dissolved anhydrate solution (higher solubility) is demonstrated directly, highlighting a major issue for such compounds in application. The technique has the additional benefit of having the potential to identify intermediate structures which are not readily achievable with in situ spectroscopic techniques, as well as being amenable to high throughput approaches.

  13. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    S Truschel; D Sengupta; A Foote; A Heroux; M Macbeth; A Linstedt

    2011-12-31

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  14. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Truschel, S.T.; Heroux, A.; Sengupta, D.; Foote, A.; Macbeth, M. R.; Linstedt, A. D.

    2011-06-10

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  15. Guidance manual for the input of biological information to water-intake-structure design

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A.; Simmons, M.A.; McKenzie, D.H.

    1981-12-01

    This manual is intended to provide guidance to the biologist who is asked to provide biological input during the construction or subsequent alteration of a water intake structure. Examples of the types of biological information that might be included in intake design are presented. Procedures for quantifying biological information and defining specific tasks that will generate quantifiable data are discussed. Procedures described apply both to new and modified water intake structures.

  16. Water balance and topography predict fire and forest structure patterns

    Science.gov (United States)

    Van R. Kane; James A. Lutz; C. Alina Cansler; Nicholas A. Povak; Derek J. Churchill; Douglas F. Smith; Jonathan T. Kane; Malcolm P. North

    2015-01-01

    Mountainous topography creates fine-scale environmental mosaics that vary in precipitation, temperature, insolation, and slope position. This mosaic in turn influences fuel accumulation and moisture and forest structure. We studied these the effects of varying environmental conditions across a 27,104 ha landscape within Yosemite National Park, California, USA, on the...

  17. Structural Integrity of Water Reactor Pressure Boundary Components.

    Science.gov (United States)

    1980-08-01

    tests of reference steels of the NRC light water reactor, pressure vessel irradiation dosimetry program. SECURITY CLAS5IICATION 0PHiS PA6GMbn" Dfat ...multiple specimen R- curve approach; NRL emphasis was on the SSC procedure as it is being developed for hot- cell testing of irradiated materials. MULTIPLE...a second autoclave, capable of testing 50 or 100 mm (2T or 4T) thick CT or WOL specimens, was installed in a hot cell and a test was started on 2T-CT

  18. Structural and water-holding characteristics of untreated and ensiled chicory root pulp

    NARCIS (Netherlands)

    Ramasamy, U.; Gruppen, H.; Schols, H.A.

    2013-01-01

    Cell wall polysaccharides (CWPs) from chicory root pulp (CRP) and the effect of ensiling on CWP structure to reduce the water-holding capacity (WHC) were studied. Sequential extractions of CRP showed that hot water extraction solubilized arabinan-rich pectin and inulin, each representing 6% of all

  19. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    2013-01-01

    Water-soluble polysaccharide material, extracted from the stipes of the fruit bodies of Coprinus comatus by hot water, was fractionated by sequential weak anion-exchange and size-exclusion chromatography. The relevant fractions were subjected to structural analysis, including (D/L) monosaccharide/me

  20. Structural and water-holding characteristics of untreated and ensiled chicory root pulp

    NARCIS (Netherlands)

    Ramasamy, U.; Gruppen, H.; Schols, H.A.

    2013-01-01

    Cell wall polysaccharides (CWPs) from chicory root pulp (CRP) and the effect of ensiling on CWP structure to reduce the water-holding capacity (WHC) were studied. Sequential extractions of CRP showed that hot water extraction solubilized arabinan-rich pectin and inulin, each representing 6% of all C

  1. The structure and circulation of intermediate, deep and bottom water masses of the North Atlantic

    Science.gov (United States)

    Khmelnitskaya, Olga

    2014-05-01

    Water mass is one of the basic concepts of oceanography. Changing the characteristics of the main water masses in the North Atlantic can be causes of climate variability. The purpose of the present study is a quantitative assessment of the characteristics of water masses using the Optimum multiparameter (OMP) analysis. OMP analysis of water masses is a continuation of the thermohaline analysis. To study water mass mixing besides temperature and salinity such advanced features as concentration of nutrients, CFCs, isotopes, Redfield ratios and potential vorticity are used. Mathematically the OMP analysis is a system of linear equations for each point of the observations. Using four parameters of the water masses one can find the ratio of five water masses in the volume of water being under investigation. To study the structure of the North Atlantic Ocean we were identified eight major water masses: 1) ABW - Antarctic Bottom Water; 2) DSOW - Denmark Strait Overflow Water; 3) ISOW - Iceland-Scotland Overflow Water; 4) LSW - Labrador Sea Water; 5) MW - Mediterranean Water; 6) AIW - Antarctic Intermediate Water; 7) SPMW - Subpolar Mode Water; 8) STMW - Subtropical Mode Water. Percentage of each water mass was calculated for each section. Upon solving equation systems a data array was performed using the algorithm written in Fortran. The calculations were performed for 12 oceanographic sections made in the North Atlantic (24-64°N) in 1980-2004. We investigated the water masses located deeper than 500 m where there are practically no seasonal changes. On analysis of the water mass percentage in the vertical water sections pathways of intermediate and deep waters can be traced. Comparison of the percentage in the different sections gives an indication of the variability in the intermediate and deep circulation. We calculated the volume of each water mass in the North Atlantic Ocean (24-64°N, 0-77°W) below 500 meters on the basis of data on the percentage of water masses

  2. Genetic analysis of transgenome structure and size of chromosome—mediated gene transfer lines

    Institute of Scientific and Technical Information of China (English)

    XUWeIMING

    1992-01-01

    The TK-selected chromosome-mediate gene transfer lines were analysed using DNA dot blot method G-11 banding and in situ hybridization.The results showed that CMGT can provide a wide variety of intermediate size of the transgenome from greater than 80,000kb to less than 2,000kb,Some of transfectants are intergrated into mouse chromosome which can be detected by G-11 banding and in situ hybridization.

  3. Water-mediated and instantaneous transfer of graphene grown at 220 °C enabled by a plasma

    Science.gov (United States)

    van der Laan, Timothy; Kumar, Shailesh; Ostrikov, Kostya (Ken)

    2015-12-01

    Atomically thin graphene holds exceptional promise to enable new functionalities and drastically improve performance of electronic, energy, sensing, and bio-medical devices. One of the most promising approaches to device-compatible graphene synthesis is chemical vapour deposition on a copper catalyst; this technique however is limited by very high temperatures (~900 °C) and a lack of control as well as post-growth separation from the catalyst. We demonstrate and explain how, through the use of a plasma, a graphene film containing single layer graphene can be grown at temperature as low as 220 °C, the process can be controlled and an instant and water-mediated decoupling mechanism is realised. Potential use of our films in flexible transparent conductive films, electrical devices and magneto-electronics is demonstrated. Considering the benefits of catalyst reuse, energy efficiency, simplicity, and environmental friendliness, we present this versatile plasma process as a viable alternative to many existing graphene production approaches.Atomically thin graphene holds exceptional promise to enable new functionalities and drastically improve performance of electronic, energy, sensing, and bio-medical devices. One of the most promising approaches to device-compatible graphene synthesis is chemical vapour deposition on a copper catalyst; this technique however is limited by very high temperatures (~900 °C) and a lack of control as well as post-growth separation from the catalyst. We demonstrate and explain how, through the use of a plasma, a graphene film containing single layer graphene can be grown at temperature as low as 220 °C, the process can be controlled and an instant and water-mediated decoupling mechanism is realised. Potential use of our films in flexible transparent conductive films, electrical devices and magneto-electronics is demonstrated. Considering the benefits of catalyst reuse, energy efficiency, simplicity, and environmental friendliness, we

  4. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  5. Mechanisms of Lin28-Mediated miRNA and mRNA Regulation—A Structural and Functional Perspective

    Science.gov (United States)

    Mayr, Florian; Heinemann, Udo

    2013-01-01

    Lin28 is an essential RNA-binding protein that is ubiquitously expressed in embryonic stem cells. Its physiological function has been linked to the regulation of differentiation, development, and oncogenesis as well as glucose metabolism. Lin28 mediates these pleiotropic functions by inhibiting let-7 miRNA biogenesis and by modulating the translation of target mRNAs. Both activities strongly depend on Lin28’s RNA-binding domains (RBDs), an N-terminal cold-shock domain (CSD) and a C-terminal Zn-knuckle domain (ZKD). Recent biochemical and structural studies revealed the mechanisms of how Lin28 controls let-7 biogenesis. Lin28 binds to the terminal loop of pri- and pre-let-7 miRNA and represses their processing by Drosha and Dicer. Several biochemical and structural studies showed that the specificity of this interaction is mainly mediated by the ZKD with a conserved GGAGA or GGAGA-like motif. Further RNA crosslinking and immunoprecipitation coupled to high-throughput sequencing (CLIP-seq) studies confirmed this binding motif and uncovered a large number of new mRNA binding sites. Here we review exciting recent progress in our understanding of how Lin28 binds structurally diverse RNAs and fulfills its pleiotropic functions. PMID:23939427

  6. Mechanisms of Lin28-mediated miRNA and mRNA regulation--a structural and functional perspective.

    Science.gov (United States)

    Mayr, Florian; Heinemann, Udo

    2013-08-09

    Lin28 is an essential RNA-binding protein that is ubiquitously expressed in embryonic stem cells. Its physiological function has been linked to the regulation of differentiation, development, and oncogenesis as well as glucose metabolism. Lin28 mediates these pleiotropic functions by inhibiting let-7 miRNA biogenesis and by modulating the translation of target mRNAs. Both activities strongly depend on Lin28's RNA-binding domains (RBDs), an N-terminal cold-shock domain (CSD) and a C-terminal Zn-knuckle domain (ZKD). Recent biochemical and structural studies revealed the mechanisms of how Lin28 controls let-7 biogenesis. Lin28 binds to the terminal loop of pri- and pre-let-7 miRNA and represses their processing by Drosha and Dicer. Several biochemical and structural studies showed that the specificity of this interaction is mainly mediated by the ZKD with a conserved GGAGA or GGAGA-like motif. Further RNA crosslinking and immunoprecipitation coupled to high-throughput sequencing (CLIP-seq) studies confirmed this binding motif and uncovered a large number of new mRNA binding sites. Here we review exciting recent progress in our understanding of how Lin28 binds structurally diverse RNAs and fulfills its pleiotropic functions.

  7. Mechanisms of Lin28-Mediated miRNA and mRNA Regulation—A Structural and Functional Perspective

    Directory of Open Access Journals (Sweden)

    Udo Heinemann

    2013-08-01

    Full Text Available Lin28 is an essential RNA-binding protein that is ubiquitously expressed in embryonic stem cells. Its physiological function has been linked to the regulation of differentiation, development, and oncogenesis as well as glucose metabolism. Lin28 mediates these pleiotropic functions by inhibiting let-7 miRNA biogenesis and by modulating the translation of target mRNAs. Both activities strongly depend on Lin28’s RNA-binding domains (RBDs, an N-terminal cold-shock domain (CSD and a C-terminal Zn-knuckle domain (ZKD. Recent biochemical and structural studies revealed the mechanisms of how Lin28 controls let-7 biogenesis. Lin28 binds to the terminal loop of pri- and pre-let-7 miRNA and represses their processing by Drosha and Dicer. Several biochemical and structural studies showed that the specificity of this interaction is mainly mediated by the ZKD with a conserved GGAGA or GGAGA-like motif. Further RNA crosslinking and immunoprecipitation coupled to high-throughput sequencing (CLIP-seq studies confirmed this binding motif and uncovered a large number of new mRNA binding sites. Here we review exciting recent progress in our understanding of how Lin28 binds structurally diverse RNAs and fulfills its pleiotropic functions.

  8. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth.

    Science.gov (United States)

    Yellon, Steven M; Dobyns, Abigail E; Beck, Hailey L; Kurtzman, James T; Garfield, Robert E; Kirby, Michael A

    2013-01-01

    A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone), or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term.

  9. Soil Surface Structure: A key factor for the degree of soil water repellency

    Science.gov (United States)

    Ahn, S.; Doerr, S. H.; Douglas, P.; Bryant, R.; Hamlett, C.; McHale, G.; Newton, M.; Shirtcliffe, N.

    2012-04-01

    Despite of considerable efforts, the degree of water repellency has not always been fully explained by chemical property of soil (termed hydrophobicity). That might be because the structure of a soil surface was not considered properly, which is another main factor determining the severity of soil water repellency. Surface structure has only recently been considered in soil science, whilst it has been paid attention for several decades in materials science due to its relevance to industrial applications. In this contribution, comparison of critical contact angles measured on different surface structures (made with glass beads, glass shards and beach sands) is presented and the effect of surface structure on manifestation of soil water repellency is discussed in terms of several different variables such as the individual particles shape, and areal and structural factors of the actual surface.

  10. Target specific proteochemometric model development for BACE1 - protein flexibility and structural water are critical in virtual screening.

    Science.gov (United States)

    Manoharan, Prabu; Chennoju, Kiranmai; Ghoshal, Nanda

    2015-07-01

    BACE1 is an attractive target in Alzheimer's disease (AD) treatment. A rational drug design effort for the inhibition of BACE1 is actively pursued by researchers in both academic and pharmaceutical industries. This continued effort led to the steady accumulation of BACE1 crystal structures, co-complexed with different classes of inhibitors. This wealth of information is used in this study to develop target specific proteochemometric models and these models are exploited for predicting the prospective BACE1 inhibitors. The models developed in this study have performed excellently in predicting the computationally generated poses, separately obtained from single and ensemble docking approaches. The simple protein-ligand contact (SPLC) model outperforms other sophisticated high end models, in virtual screening performance, developed during this study. In an attempt to account for BACE1 protein active site flexibility information in predictive models, we included the change in the area of solvent accessible surface and the change in the volume of solvent accessible surface in our models. The ensemble and single receptor docking results obtained from this study indicate that the structural water mediated interactions improve the virtual screening results. Also, these waters are essential for recapitulating bioactive conformation during docking study. The proteochemometric models developed in this study can be used for the prediction of BACE1 inhibitors, during the early stage of AD drug discovery.

  11. Gratitude mediates the effect of emotional intelligence on subjective well-being: A structural equation modeling analysis.

    Science.gov (United States)

    Geng, Yuan

    2016-11-03

    This study investigated the relationship among emotional intelligence, gratitude, and subjective well-being in a sample of university students. A total of 365 undergraduates completed the emotional intelligence scale, the gratitude questionnaire, and the subjective well-being measures. The results of the structural equation model showed that emotional intelligence is positively associated with gratitude and subjective well-being, that gratitude is positively associated with subjective well-being, and that gratitude partially mediates the positive relationship between emotional intelligence and subjective well-being. Bootstrap test results also revealed that emotional intelligence has a significant indirect effect on subjective well-being through gratitude.

  12. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties

    Science.gov (United States)

    Bica, Doina; Vékás, Ladislau; Avdeev, Mikhail V.; Marinică, Oana; Socoliuc, Vlad; Bălăsoiu, Maria; Garamus, Vasil M.

    2007-04-01

    Magnetic fluids (MFs), prepared by chemical co-precipitation followed by double layer steric and electrostatic (combined) stabilization of magnetite nanoparticles dispersed in water, are presented. Several combinations of surfactants with different chain lengths (lauric acid (LA), myristic acid (MA), oleic acid (OA) and dodecyl-benzene-sulphonic acid (DBS)) were used, such as LA+LA, MA+MA, LA+DBS, MA+DBS, OA+DBS, OA+OA and DBS+DBS. Static light scattering, transmission electron microscopy, small angle neutron scattering, magnetic and magneto-rheological measurements revealed that MFs with MA+MA or LA+LA biocompatible double layer covered magnetite nanoparticles are the most stable colloidal systems among the investigated samples, and thus suitable for biomedical applications.

  13. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bica, Doina [Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy, Timisoara Division, Bd. Mihai Viteazul 24, 300223 Timisoara (Romania); Vekas, Ladislau [Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy, Timisoara Division, Bd. Mihai Viteazul 24, 300223 Timisoara (Romania) and National Centre for Engineering of Systems with Complex Fluids, University Politehnica Timisoara, Bd. Mihai Viteazul 1, 300222 Timisoara (Romania)]. E-mail: vekas@acad-tim.tm.edu.ro; Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Marinica, Oana [National Centre for Engineering of Systems with Complex Fluids, University Politehnica Timisoara, Bd. Mihai Viteazul 1, 300222 Timisoara (Romania); Socoliuc, Vlad [National Institute R and D for Electrochemistry and Condensed Matter, Str. Diaconu Coressi 144, 300588 Timisoara (Romania); Balasoiu, Maria [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Garamus, Vasil M. [GKSS Research Centre, Geesthacht (Germany)

    2007-04-15

    Magnetic fluids (MFs), prepared by chemical co-precipitation followed by double layer steric and electrostatic (combined) stabilization of magnetite nanoparticles dispersed in water, are presented. Several combinations of surfactants with different chain lengths (lauric acid (LA), myristic acid (MA), oleic acid (OA) and dodecyl-benzene-sulphonic acid (DBS)) were used, such as LA+LA, MA+MA, LA+DBS, MA+DBS, OA+DBS, OA+OA and DBS+DBS. Static light scattering, transmission electron microscopy, small angle neutron scattering, magnetic and magneto-rheological measurements revealed that MFs with MA+MA or LA+LA biocompatible double layer covered magnetite nanoparticles are the most stable colloidal systems among the investigated samples, and thus suitable for biomedical applications.

  14. Attachment insecurities, maladaptive perfectionism, and eating disorder symptoms: a latent mediated and moderated structural equation modeling analysis across diagnostic groups.

    Science.gov (United States)

    Dakanalis, Antonios; Timko, C Alix; Zanetti, M Assunta; Rinaldi, Lucio; Prunas, Antonio; Carrà, Giuseppe; Riva, Giuseppe; Clerici, Massimo

    2014-01-30

    Although 96-100% of individuals with eating disorders (EDs) report insecure attachment, the specific mechanisms by which adult insecure attachment dimensions affect ED symptomatology remain to date largely unknown. This study examined maladaptive perfectionism as both a mediator and a moderator of the relationship between insecure attachment (anxiety and avoidance) and ED symptomatology in a clinical, treatment seeking, sample. Insecure anxious and avoidant attachment, maladaptive perfectionism, and ED symptomatology were assessed in 403 participants from three medium size specialized care centres for EDs in Italy. Structural equation modeling indicated that maladaptive perfectionism served as mediator between both insecure attachment patterns and ED symptomatology. It also interacted with insecure attachment to predict higher levels of ED symptoms - highlighting the importance of both insecure attachment patterns and maladaptive aspects of perfectionism as treatment targets. Multiple-group comparison analysis did not reveal differences across diagnostic groups (AN, BN, EDNOS) in mediating, main and interaction effects of perfectionism. These findings are consistent with recent discussions on the classification and treatment of EDs that have highlighted similarities between ED diagnostic groups and could be viewed through the lens of the Trans-theoretical Model of EDs. Implications for future research and intervention are discussed.

  15. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure.

    Science.gov (United States)

    Kumaratilake, L M; Ferrante, A; Robinson, B S; Jaeger, T; Poulos, A

    1997-10-01

    Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species.

  16. A structural analysis of executive functions and socioeconomic status in school-age children: cognitive factors as effect mediators.

    Science.gov (United States)

    Arán-Filippetti, Vanessa; Richaud de Minzi, María Cristina

    2012-01-01

    Socioeconomic status (SES) is a well-known predictor of cognitive achievement and executive functioning, although the underlying cognitive mediating processes remain unclear. The authors analyze the association between different socioeconomic indicators and the executive functions (EF) of schoolchildren and the possible cognitive mediating factors of this association. The sample included 254 children aged 7-12 years from different SES. The researchers employed a battery of tests to evaluate EF, including the Kaufman Brief Intelligence Test task to measure intelligence, and the Matching Familiar Figures Test-20 to assess the reflexivity-impulsivity (R-I) cognitive style. The results indicate a significant effect of SES on all tested EF. Stepwise regression analysis showed that maternal education level and housing conditions were significant predictors of the majority of EF. Structural equation modeling showed that, although SES had effects on intelligence quotient (IQ), R-I cognitive style, and EF, the association between SES and EF is partly explained by cognitive impulsivity but not by IQ scores. Results are discussed in terms of the mediating cognitive variables that may explain the association between SES and EF and their implications for designing effective intervention programs in schools.

  17. Primary acoustic signal structure during free falling drop collision with a water surface

    Energy Technology Data Exchange (ETDEWEB)

    Chashechkin, Yu. D., E-mail: chakin@ipmnet.ru; Prokhorov, V. E., E-mail: prohorov@ipmnet.ru [Russian Academy of Sciences, Ishlinskii Institute for Problems in Mechanics (Russian Federation)

    2016-04-15

    Consistent optical and acoustic techniques have been used to study the structure of hydrodynamic disturbances and acoustic signals generated as a free falling drop penetrates water. The relationship between the structures of hydrodynamic and acoustic perturbations arising as a result of a falling drop contacting with the water surface and subsequent immersion into water is traced. The primary acoustic signal is characterized, in addition to stably reproduced features (steep leading edge followed by long decay with local pressure maxima), by irregular high-frequency packets, which are studied for the first time. Reproducible experimental data are used to recognize constant and variable components of the primary acoustic signal.

  18. Integrating Water, Actors, and Structure to Study Socio-Hydro-Ecological Systems

    Science.gov (United States)

    Hale, R. L.; Armstrong, A.; Baker, M. A.; Bedingfield, S.; Betts, D.; Buahin, C. A.; Buchert, M.; Crowl, T.; Dupont, R.; Endter-Wada, J.; Flint, C.; Grant, J.; Hinners, S.; Horns, D.; Horsburgh, J. S.; Jackson-Smith, D.; Jones, A. S.; Licon, C.; Null, S. E.; Odame, A.; Pataki, D. E.; Rosenberg, D. E.; Runburg, M.; Stoker, P.; Strong, C.

    2014-12-01

    Urbanization, climate uncertainty, and ecosystem change represent major challenges for managing water resources. Water systems and the forces acting upon them are complex, and there is a need to understand and generically represent the most important system components and linkages. We developed a framework to facilitate understanding of water systems including potential vulnerabilities and opportunities for sustainability. Our goal was to produce an interdisciplinary framework for water resources research to address water issues across scales (e.g., city to region) and domains (e.g., water supply and quality, urban and transitioning landscapes). An interdisciplinary project (iUTAH - innovative Urban Transitions and Aridregion Hydro-sustainability) with a large (N=~100), diverse team having expertise spanning the hydrologic, biological, ecological, engineering, social, planning, and policy sciences motivated the development of this framework. The framework was developed through review of the literature, meetings with individual researchers, and workshops with participants. The Structure-Water-Actor Framework (SWAF) includes three main components: water (quality and quantity), structure (natural, built, and social), and actors (individual and organizational). Key linkages include: 1) ecological and hydrological processes, 2) ecosystem and geomorphic change, 3) planning, design, and policy, 4) perceptions, information, and experience, 5) resource access, and 6) operational water use and management. Our expansive view of structure includes natural, built, and social components, allowing us to examine a broad set of tools and levers for water managers and decision-makers to affect system sustainability and understand system outcomes. We validate the SWAF and illustrate its flexibility to generate insights for three research and management problems: green stormwater infrastructure in an arid environment, regional water supply and demand, and urban river restoration

  19. Effect of monoglyceride structure and cholesterol content on water permeability of the droplet bilayer.

    Science.gov (United States)

    Michalak, Zuzanna; Muzzio, Michelle; Milianta, Peter J; Giacomini, Rosario; Lee, Sunghee

    2013-12-23

    The process of water permeation across lipid membranes has significant implications for cellular physiology and homeostasis, and its study may lead to a greater understanding of the relationship between the structure of lipid bilayer and the role that lipid structure plays in water permeation. In this study, we formed a droplet interface bilayer (DIB) by contacting two aqueous droplets together in an immiscible solvent (squalane) containing bilayer-forming surfactant (monoglycerides). Using the DIB model, we present our results on osmotic water permeabilities and activation energy for water permeation of an associated series of unsaturated monoglycerides as the principal component of droplet bilayers, each having the same chain length but differing in the position and number of double bonds, in the absence and presence of a varying concentration of cholesterol. Our findings suggest that the tailgroup structure in a series of monoglyceride bilayers is seen to affect the permeability and activation energy for the water permeation process. Moreover, we have also established the insertion of cholesterol into the droplet bilayer, and have detected its presence via its effect on water permeability. The effect of cholesterol differs depending on the type of monoglyceride. We demonstrate that the DIB can be employed as a convenient model membrane to rapidly explore subtle structural effects on bilayer water permeability.

  20. Water mediated alterations in gravity signal transform phytofilertation capability in hydroponic plants

    Science.gov (United States)

    Singh, Yogranjan; Singh Marabi, Rakesh; Satpute, Gyanesh Kumar; Mishra, Stuti

    2012-07-01

    signal is generated by the sedimentation of the amyloplasts. This induces a signal transduction pathway that promotes an auxin gradient across the root. The proteinogenic amino acid proline functions as a radical scavenger, electron sink, stabilizer of macromolecules, cell wall component and a metal chelation compound. In order to have most competent option for phytofilteration, the natural biodiversity out of aquatic ecosystem should be better studied. Screening of plants that produce natural chemicals whose structures are similar to the xenobiotic compounds should be the first step of any phytoremediation process. An experimental hydroponic-phytofilteration system with real effluent must give pragmatic information on the real detoxification capacity of the plants and allow determining the appropriate design and size of the future constructed wetland system to clean up the contaminated wastewater to reduce negative impact of eutrophication.

  1. Mitigation of blast loadings on structures by an anti-blast plastic water wall

    Institute of Scientific and Technical Information of China (English)

    张力; 陈力; 方秦; 张亚栋

    2016-01-01

    Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. The maximum reduction of peak reflected overpressure reaches up to 94.53%, as well as 36.3% of the minimum peak reflected overpressure reduction in the scaled distance ranging from 1.71 m/kg1/3 to 3.42 m/kg1/3. Parametric studies were also carried out. The effects of the scaled gauge height, water/charge scaled distance (the distance between the explosive charge and the water wall), water wall scaled height and water/structure scaled distance (the distance between the water wall and the structure) were systematically investigated and compared with the usual rigid anti-blast wall. It is concluded that these parameters affect the mitigation effects of plastic water wall on blast loadings significantly, which is basically consistent to the trend of usual rigid anti-blast wall. Some formulae are also derived based on the numerical and test results, providing a simple but reliable prediction model to evaluate the peak overpressure of mitigated blast loadings on the structures.

  2. First-principles study of the structure of water layers on flat and stepped Pb electrodes.

    Science.gov (United States)

    Lin, Xiaohang; Evers, Ferdinand; Groß, Axel

    2016-01-01

    On the basis of perodic density functional theory (DFT) calculations, we have addressed the geometric structures and electronic properties of water layers on flat and stepped Pb surfaces. In contrast to late d-band metals, on Pb(111) the energy minimum structure does not correspond to an ice-like hexagonal arrangement at a coverage of 2/3, but rather to a distorted structure at a coverage of 1 due to the larger lattice constant of Pb. At stepped Pb surfaces, the water layers are pinned at the step edge and form a complex network consisting of rectangles, pentagons and hexagons. The thermal stability of the water layers has been studied by using ab initio molecular dynamics simulations (AIMD) at a temperature of 140 K. Whereas the water layer on Pb(111) is already unstable at this temperature, the water layers on Pb(100), Pb(311), Pb(511) and Pb(711) exhibit a higher stability because of stronger water-water interactions. The vibrational spectra of the water layers at the stepped surfaces show a characteristic splitting into three modes in the O-H stretch region.

  3. [Preliminary study on the changes of bacterial community structure in Qingcaosha Reservoir during water storage period].

    Science.gov (United States)

    Peng, Qing; Xie, Bing; Yuan, Qi; Huang, Zhi-Ting; Cui, Lu-Lu; Wang, Wen-Ting

    2012-10-01

    In order to investigate the changes in water quality and the bacterial community structure in Qingcaosha Reservoir during water storage and supply period, the microorganisms in water body were studied by microbial culture counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DEEG) technique. Results showed that the water quality had been improved significantly and the nitrogen and phosphorus concentrations significantly reduced after the Yangtze River water flowed into the reservoir. The number of culturable microorganisms in the influent and the reservoir changed with the seasons, and there were more microorganisms in the influent than these in the reservoir during spring and summer, and fewer in autumn and winter, and the precipitation of suspended microorganisms in the water caused the increase of organic matter content in the sediment. PCR-DGGE results showed that bacterial community structure in the reservoir changed with the seasons, and the microbial community diversity was the highest in summer and the lowest in autumn. The cluster analysis showed that the similarity of microbial community structure of water and sediment samples was 62% , which might be due to the contribution of the precipitation of the suspended microorganisms. The dominant microbial species in water had high similarity with alpha, beta-Proteobacteria, Flavobacterium, Rheinheimera, Prochlorococcus, Synechococcus and Marine metagenome, indicating that Qingcaosha Reservoir faced the risk of algae bloom and seawater intrusion. The results provide the fundamental understanding on reservoir operation and can be used as reference for future studies.

  4. Effect of water on the structure of a prototype ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Borodin, Oleg; Price, David L.; Aoun, Bachir; González, Miguel A.; Hooper, Justin B.; Kofu, Maiko; Kohara, Shinji; Yamamuro, Osamu; Saboungi, Marie-Louise

    2016-09-14

    The influence of water on the structure of a prototype ionic liquid (IL) 1-octyl-3-methyimidazolium tetrafluoroborate (C8mimBF4) is examined in the IL-rich regime using high-energy x-ray diffraction (HEXRD) and molecular dynamics (MD) simulations. A many-body polarizable force field APPLE&P was developed for C8mimBF4 water mixture. It predicts structure factors of pure IL and IL-water mixture in excellent agreement with the HEXRD experiments. The MD results provide detailed insights into the structural changes from the partial structure factors, 2-D projections of the simulation box and 3-D distribution functions. Water partitioning with IL and its competition with BF4- for complexing the imidazolium rings was examined. The added water molecules occupy a diffuse coordination shell around the imidazolium ring but are not present around the alkyl tail. The strong coordination of the fluorine atoms of the BF4- anions to the imidazolium ring is not significantly changed by the addition of water. These results are consistent with the very small differences in the average structure between the pure IL and the mixture.

  5. Dielectric relaxation time and structure of bound water in biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Mashimo, S.; Kuwabara, S.; Yagihara, S.; Higasi, K.

    1987-12-03

    The dielectric behavior of living tissues and a number of biological materials was examined by new equipment of the time domain reflectometry method in a wide frequency range of 10/sup 7/-10/sup 10/ Hz. The authors found two peaks of Debye absorption around 100 MHz and 20 GHz for all the materials. The low-frequency absorption is probably due to bound water while the high-frequency absorption to free water. From the observed relaxation times of bound water a hypothesis is ventured on the structure of bound water and its relaxation mechanism.

  6. Effect of Water-Cement Ratio on Pore Structure and Strength of Foam Concrete

    Directory of Open Access Journals (Sweden)

    Zhongwei Liu

    2016-01-01

    Full Text Available Foam concrete with different dry densities (400, 500, 600, 700, and 800 kg/m3 was prepared from ordinary Portland cement (P.O.42.5R and vegetable protein foaming agent by adjusting the water-cement ratio through the physical foaming method. The performance of the cement paste adopted, as well as the structure and distribution of air pores, was characterized by a rheometer, scanning electron microscope, vacuum water saturation instrument, and image analysis software. Effects of the water-cement ratio on the relative viscosity of the cement paste, as well as pore structure and strength of the hardened foam concrete, were discussed. Results showed that water-cement ratio can influence the size, distribution, and connectivity of pores in foam concrete. The compressive strength of the foam concrete showed an inverted V-shaped variation law with the increase in water-cement ratio.

  7. Prediction Technology of Buried Water-Bearing Structures in Coal Mines Using Transient Electromagnetic Method

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-hai; YUE Jian-hua; LIU Shu-cai

    2007-01-01

    Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore, it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields, the principle of transient electromagnetic method used in detecting buried water-bearing structures in coal mines in advance, is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive, highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems.

  8. Rapid and sensitive detection of human astrovirus in water samples by loop-mediated isothermal amplification with hydroxynaphthol blue dye

    Science.gov (United States)

    2014-01-01

    Background The aim of this paper was to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for rapid, sensitive and inexpensive detection of astrovirus. Results The detection limit of LAMP using in vitro RNA transcripts was 3.6×10 copies·μL-1, which is as sensitive as the presently used PCR assays. However, the LAMP products could be identified as different colors with the naked eye following staining with hydroxynaphthol blue dye (HNB). No cross-reactivity with other gastroenteric viruses (rotavirus and norovirus) was observed, indicating the relatively high specificity of LAMP. The RT-LAMP method with HNB was used to effectively detect astrovirus in reclaimed water samples. Conclusions The LAMP technique described in this study is a cheap, sensitive, specific and rapid method for the detection of astrovirus. The RT-LAMP method can be simply applied for the specific detection of astrovirus and has the potential to be utilized in the field as a screening test. PMID:24524254

  9. Embryo sexing and sex chromosomal chimerism analysis by loop-mediated isothermal amplification in cattle and water buffaloes.

    Science.gov (United States)

    Hirayama, Hiroki; Kageyama, Soichi; Moriyasu, Satoru; Sawai, Ken; Minamihashi, Akira

    2013-01-01

    In domestic animals of the family Bovidae, sex preselection of offspring has been demanded for convenience of milk/beef production and animal breeding. Development of the nonsurgical embryo transfer technique and sexing methods of preimplantation embryos made it possible. Sexing based on detection of Y chromosome-specific DNA sequences is considered the most reliable method to date. PCR enables amplification of a target sequence from a small number of blastomeres. However, it requires technical skill and is time consuming. Furthermore, PCR has the risk of false positives because of DNA contamination during handling of the PCR products in duplicate PCR procedures and/or electrophoresis. Therefore, for embryo sexing to become widely used in the cattle embryo transfer industry, a simple, rapid and precise sexing method needs to be developed. Loop-mediated isothermal amplification (LAMP) is a novel DNA amplification method, and the reaction is carried out under isothermal conditions (range, 60 to 65 C) using DNA polymerase with strand displacement activity. When the target DNA is amplified by LAMP, a white precipitate derived from magnesium pyrophosphate (a by-product of the LAMP reaction) is observed. It is noteworthy that LAMP does not need special reagents or electrophoresis to detect the amplified DNA. This review describes the development and application of an embryo sexing method using LAMP in cattle and water buffaloes.

  10. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources

    Science.gov (United States)

    Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell

    2010-01-01

    Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...

  11. Spin orbit interaction of light mediated by scattering from plasmonic nano-structures

    CERN Document Server

    Soni, Jalpa; Mansha, Shampy; Gupta, S Dutta; Banerjee, Ayan; Ghosh, Nirmalya

    2012-01-01

    The spin orbit interactions (SOI) of light mediated by single scattering from plasmon resonant metal nanoparticles (nanorods and nanospheres) are investigated using explicit theory based on Jones and Stokes-Mueller polarimetry formalism. The individual SOI effects are analyzed and interpreted via the Mueller matrix-derived, polarimetry characteristics, namely, diattenuation d and retardance {\\delta}. The results demonstrate that each of the contributing SOI effects can be controllably enhanced by exploiting the interference of two neighboring modes in plasmonic nanostructures (orthogonal electric dipolar modes in rods or electric dipolar and quadrupolar modes in spheres).

  12. Novel Structures for the Excess Electron State of the Water Hexamer and the Interaction Forces Governing the Structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Kim, J.; Lee, S.J.; Kim, K.S. [Department of Chemistry and Center for Biofunctional Molecules, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784 (Korea)

    1997-09-01

    The geometrical and electronic structures of partially hydrated electron systems, in particular, the water hexamer, which have been controversial for decades, have been clarified by an exhaustive search for possible low-lying energy structures. Several competing interaction forces governing the conformation have been examined for the first time. The low-lying energy structures are hybrid (or partially internal and partially surface) excess electron states. Our prediction is evidenced from excellent agreements with available experimental data. The vertical electron-detachment energies are mainly determined by the number of dangling H atoms (H{sub d} ) . {copyright} {ital 1997} {ital The American Physical Society}

  13. Probing Membrane Protein Structure Using Water Polarization Transfer Solid-State NMR

    Science.gov (United States)

    Williams, Jonathan K.; Hong, Mei

    2014-01-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane peptide of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. PMID:25228502

  14. Structural Characterization of Biogenic Manganese Oxides Produced in Sea Water

    Science.gov (United States)

    Webb, S. M.; Bargar, J. R.; Tebo, B. M.

    2003-12-01

    Manganese oxides have been coined as the "scavengers of the sea" and play important roles in both marine and freshwater systems. Natural manganese oxide nanoparticles and grain coatings are ubiquitous in the environment and profoundly impact the quality of sediments via their ability to degrade and sequester contaminants. These oxides are believed to form dominantly via oxidation of Mn(II) by marine and freshwater bacteria and have extremely high sorptive capacities for heavy metals. We have used XANES, EXAFS, and synchrotron (SR)-XRD techniques to study biogenic manganese oxides produced by spores of the marine Bacillus sp., strain SG-1 in seawater as a function of reaction time under fully in-situ conditions. The primary biogenic solid-phase Mn oxide product is a hexagonal layered phyollomanganate with an oxidation state similar to that in delta-MnO2. XRD data show the biooxides to have a phyllomanganate 10 basal plane spacing, suggesting the interlayer is hydrated and contains calcium. As the experiment continues, the initial biooxide changes to show triclinic symmetry. Fits to these EXAFS spectra suggest the octahedral layers have low Mn octahedral site vacancies in the lattice and the latyers bend to accommodate Jahn-Teller distortions creating the change in symmetry. The oxides observed in this study as models of Mn(II) bio-oxidation may be representative of the most abundant manganese oxide phase suspended in the oxic and sub-oxic zones of the oceanic water column.

  15. Kinetics of the water adsorption driven structural transformationof ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goodell, C.M.; Gilbert, B.; Weigand, S.J.; Banfield, J.F.

    2007-08-01

    Nanoparticles of certain materials can respond structurally to changes in their surface environments. We have previously shown that methanol, water adsorption, and aggregation-disaggregation can change the structure of 3 nm diameter zinc sulfide (ZnS). However, in prior observations of water-driven structure change, aggregation may also have taken place. Therefore, we investigated the structural consequences of water adsorption alone on anhydrous nanoparticles that were dried to minimize changes in aggregation. Using simultaneously collected small- and wide-angle x-ray scattering (SAXS/WAXS) data, we show that water vapor adsorption alone drives a structural transformation in ZnS nanoparticles in the temperature range 22-40 C. The transition kinetics are strongly temperature dependent, with an activation energy of 58.1 {+-} 9.8 kJ/mol, consistent with atom displacement rather than bond breaking. At 50 C, aggregate restructuring occurred, increasing the transition kinetics beyond the rate expected for water adsorption alone. The observation of isosbestic points in the WAXS data suggests that the particles do not transform continuously between the initial and final structural state but rather undergo an abrupt change from a less ordered to a more ordered state.

  16. Contribution to the modelling and simulation of aircraft structures impacting on water

    OpenAIRE

    Toso, Nathalie Renée Solange

    2009-01-01

    The impact on water of aeronautical structures is of concern as soon as an aircraft is designed to operate over sea. For the need of the ditching certification, it can be summarised that the structure should be able to land on water and float long enough to enable the passengers and crew members to evacuate. Until the middle of the 90's, compliance to the regulations was mainly shown by tests performed in a basin using a mock-up structure completed by relative simple theoretical evaluations o...

  17. The Effect of Heat on Structural Characteristics and Water Absorption Behavior of Agave Fibers

    Science.gov (United States)

    Saikia, Dip

    2008-04-01

    The structural characteristics and water absorptions behavior agave fibers were investigated over a range of temperature by using XRD, IR, TG and gravimetric methods. Three distinct thermal processes were observed during heating the fiber in the temperature range 310-760 K in air, oxygen and nitrogen invariably. The cellulose structures of the fibers were unaffected on heating up to 450 K. The samples showed thermal decomposition processes beyond 500 K. Fibers displayed a two-stage diffusion behavior. The structural parameters and kinetic of water absorption of the fibers at specific temperatures were analyzed.

  18. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket.

    Science.gov (United States)

    Debler, Erik W; Müller, Roger; Hilvert, Donald; Wilson, Ian A

    2009-11-03

    Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes Asp(H35) and Glu(L34) to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the Glu(L34) to alanine mutant, leads to an impressive 10(9)-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations.

  19. The water mass structure and transports in the Atlantic Subpolar Gyre

    Science.gov (United States)

    García-Ibáñez, Maribel I.; Pardo, Paula C.; Carracedo, Lidia I.; Mercier, Herlé; Lherminier, Pascale; Ríos, Aida F.; Pérez, Fiz F.

    2014-05-01

    The water mass structure, mixing and spreading in the North Atlantic Subpolar Gyre (SPG) were analyzed by means of an extended Optimum MultiParameter (eOMP) approach over the six repeats of the WOCE A25 hydrographic line located at the southern boundary of this gyre. The data includes the Fourex (4x) line taken in 1997 and the five repeat sections of the OVIDE line taken every other year from 2002 to 2010. We proposed 10 water masses, defined by their thermohaline properties (potential temperature and salinity), oxygen and nutrients (nitrate, phosphate and silicate), to resolve the water mass structure of the SPG. The eOMP enables to decompose the transports by water mass quantitatively. Our model provides water mass distributions that are able to reproduce the input data of potential temperature, salinity and silicate with r2>0.997 and of oxygen, nitrate and phosphate with r2>0.96. By combining the velocity field and the water mass structure across each section we provide the relative contribution of each water mass to the Meridional Overturning Circulation (MOC) and we evaluate the water mass transformation in the North Atlantic. The MOC upper limb during OVIDE (2002-2010) is constituted by the northward transports of the central waters (9.4 Sv; 1 Sv = 106 m3 s-1), the Subarctic Intermediate Water (SAIW, 2.8 Sv) and the Subpolar Mode Water (SPMW) of the Iceland Basin (2.1 Sv). The MOC lower limb is constituted by the southward transports of the Iceland-Scotland Overflow Water (ISOW, 2.9 Sv), the Denmark Strait Overflow Water (DSOW, 2.5 Sv), the Polar Intermediate Water (PIW, 0.8 Sv), the Labrador Sea Water (LSW, 3.6 Sv) and the SPMW of the Irminger Sea (4.7 Sv). These results contrast with those obtained for the 1997, cruise developed after a period of high NAO index. The greater MOC strength in 1997 resulted in greater northward transports of central waters (17.5 Sv), while the SAIW transports remained approximately unchanged. The increase of the northward

  20. New potentional of high-speed water jet technology for renovating concrete structures

    Science.gov (United States)

    Bodnárová, L.; Sitek, L.; Hela, R.; Foldyna, J.

    2011-06-01

    The paper discusses the background and results of research focused on the action of a high-speed water jet on concrete with different qualities. The sufficient and careful removal of degraded concrete layers is very important for the renovation of concrete structures. High-speed water jet technology is one of the most common methods used for removing degraded concrete layers. Different types of high-speed water jets were tested in the experimental part. The classical technology of a single continuous water jet generated with one nozzle was tested as well as the technology of revolving water jets generated by multiple nozzles (used mainly for the renovation of larger areas). A continuous flat water jet and pulsating flat water jet were tested the first time, because the connection of a water jet with the acoustic generator of a pulsating jet offers new possibilities for the use of a water jet (see [1] and [2]). A water jet with such a modification is capable of efficient action and can even be used for cutting solid concrete with a relatively low consumption of energy. A flat pulsating water jet which can be newly used for renovation seems to be a promising technology.

  1. Spectral structure of mesoscale winds over the water

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Vincent, Claire Louise; Larsen, Søren Ejling

    2013-01-01

    to describe the spectral slope transition as well as the limit for application of the Taylor hypothesis. The stability parameter calculated from point measurements, the bulk Richardson number, is found insufficient to represent the various atmospheric structures that have their own spectral behaviours under...... spectra show universal characteristics, in agreement with the findings in literature, including the energy amplitude and the −5/3 spectral slope in the mesoscale range transitioning to a slope of −3 for synoptic and planetary scales. The integral time-scale of the local weather is found to be useful...... different stability conditions, such as open cells and gravity waves. For stationary conditions, the mesoscale turbulence is found to bear some characteristics of two-dimensional isotropy, including (1) very minor vertical variation of spectra; (2) similar spectral behaviour for the along- and across...

  2. Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water.

    Science.gov (United States)

    Draper, David E

    2013-12-01

    The functional forms of many RNAs have compact architectures. The placement of phosphates within such structures must be influenced not only by the strong electrostatic repulsion between phosphates, but also by networks of interactions between phosphates, water, and mobile ions. This review first explores what has been learned of the basic thermodynamic constraints on these arrangements from studies of hydration and ions in simple DNA molecules, and then gives an overview of what is known about ion and water interactions with RNA structures. A brief survey of RNA crystal structures identifies several interesting architectures in which closely spaced phosphates share hydration shells or phosphates are buried in environments that provide intramolecular hydrogen bonds or site-bound cations. Formation of these structures must require strong coupling between the uptake of ions and release of water.

  3. Characterisation of fluid-structure interaction for water impact of composite panels

    Directory of Open Access Journals (Sweden)

    M Battley

    2016-09-01

    Full Text Available Hydrodynamic loads can be very significant for high performance marine vessels. Water impact of panels, known as "slamming", typically generates high magnitude short duration pressure pulses that move across the structure. In the case of compliant panels there can be significant coupling between the pressures and the structural responses. While there has been significant development of numerical methods to simulate this type of fluid-structure interaction there is only very limited experimental data available for validation of the simulation approaches. This paper describes an experimental study of sandwich composite panels subjected to water slamming impacts. The results demonstrate that compliant panels subjected to water slamming impacts experience different pressures than rigid panels, and have different structural responses than predicted by traditional uniform pressure based analysis approaches. The study also characterizes the significant effects that the dimensions of pressure transducers and data acquisition sampling rates have on the measured pressures.

  4. Hydrophobic core/hydrophilic shell structured mesoporous silica nanospheres: enhanced adsorption of organic compounds from water.

    Science.gov (United States)

    Li, Shuru; Jiao, Xuan; Yang, Hengquan

    2013-01-29

    Inspired by the structure features of micelle, we attempt to synthesize a novel functionalized mesoporous silica nanosphere consisting of a hydrophobic core and a hydrophilic shell. The obtained solid materials were structurally confirmed by N(2) sorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Their compositions were characterized by Fourier transfer infrared spectroscopy (FT-IR), solid state NMR, X-ray photoelectron spectroscopy (XPS), and elemental analysis. Its fundamental properties such as dispersibility in water or organic phase, wettability, and adsorption ability toward hydrophobic organics in water were investigated. It was revealed that these important properties could be facilely adjusted through varying structure and composition. In particular, these materials showed much better adsorption ability toward hydrophobic organic molecules in water than conventional monofunctionalized mesoporous materials, owing to possessing the hydrophobic/hydrophilic domain-segregated and hierarchically functionalized mesoporous structures. The intriguing properties would make mesoporous materials more accessible to many important applications, especially in aqueous systems.

  5. Crystal Structure of the ERp44-Peroxiredoxin 4 Complex Reveals the Molecular Mechanisms of Thiol-Mediated Protein Retention.

    Science.gov (United States)

    Yang, Kai; Li, De-Feng; Wang, Xi'e; Liang, Jinzhao; Sitia, Roberto; Wang, Chih-Chen; Wang, Xi

    2016-10-04

    ERp44 controls the localization and transport of diverse proteins in the early secretory pathway. The mechanisms that allow client recognition and the source of the oxidative power for forming intermolecular disulfides are as yet unknown. Here we present the structure of ERp44 bound to a client, peroxiredoxin 4. Our data reveal that ERp44 binds the oxidized form of peroxiredoxin 4 via thiol-disulfide interchange reactions. The structure explains the redox-dependent recognition and characterizes the essential non-covalent interactions at the interface. The ERp44-Prx4 covalent complexes can be reduced by glutathione and protein disulfide isomerase family members in the ER, allowing the two components to recycle. This work provides insights into the mechanisms of thiol-mediated protein retention and indicates the key roles of ERp44 in this biochemical cycle to optimize oxidative folding and redox homeostasis.

  6. Prevalence of plasmid-mediated multidrug resistance determinants in fluoroquinolone-resistant bacteria isolated from sewage and surface water.

    Science.gov (United States)

    Osińska, Adriana; Harnisz, Monika; Korzeniewska, Ewa

    2016-06-01

    Fluoroquinolones (FQs) are fully synthetic broad-spectrum antibacterial agents that are becoming increasingly popular in the treatment of clinical and veterinary infections. Being excreted during treatment, mostly as active compounds, their biological action is not limited to the therapeutic site, but it is moved further as resistance selection pressure into the environment. Water environment is an ideal medium for the aggregation and dissemination of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs), which can pose a serious threat to human health. Because of this, the aim of this study was to determine the number of fluoroquinolone-resistant bacteria (FQRB) and their share in total heterotrophic plate counts (HPC) in treated wastewater (TWW), and upstream and downstream river water (URW, DRW) samples where TWW is discharged. The spread of plasmid-mediated quinolone resistance (PMQR) determinants and the presence/absence of resistance genes to other most popular antibiotic groups (against tetracyclines and beta-lactams) in selected 116 multiresistant isolates were investigated. The share of FQRB in total HPC in all samples was rather small and ranged from 0.7 % in URW samples to 7.5 % in TWW. Bacteria from Escherichia (25.0 %), Acinetobacter (25.0 %), and Aeromonas (6.9 %) genera were predominant in the FQRB group. Fluoroquinolone resistance was mostly caused by the presence of the gene aac(6')-1b-cr (91.4 %). More rarely reported was the occurrence of qnrS, qnrD, as well as oqxA, but qnrA, qnrB, qepA, and oqxB were extremely rarely or never noted in FQRB. The most prevalent bacterial genes connected with beta-lactams' resistance in FQRB were bla TEM, bla OXA, and bla CTX-M. The bla SHV was less common in the community of FQRB. The occurrence of bla genes was reported in almost 29.3 % of FQRB. The most abundant tet genes in FQRB were tet(A), tet(L), tet(K), and tet(S). The prevalence of tet genes was observed in 41.4

  7. Ozone Resistance, Water Permeability, and Concrete Adhesion of Metallic Films Sprayed on a Concrete Structure for Advanced Water Purification

    Directory of Open Access Journals (Sweden)

    Jin-Ho Park

    2017-03-01

    Full Text Available We evaluated the applicability of metal spray coating as a waterproofing/corrosion protection method for a concrete structure used for water purification. We carried out an ozone resistance test on four metal sprays and evaluated the water permeability and bond strength of the metals with superior ozone resistance, depending on the surface treatment method. In the ozone resistance test, four metal sprays and an existing ozone-proof paint were considered. In the experiment on the water permeability and bond strength depending on the surface treatment method, the methods of no treatment, surface polishing, and two types of pore sealing agents were considered. The results showed that the sprayed titanium had the best ozone resistance. Applying a pore sealing agent provided the best adhesion performance, of about 3.2 MPa. Applying a pore sealing agent also provided the best waterproofing performance. Scanning electron microscope analysis showed that applying a pore sealing agent resulted in an excellent waterproofing performance because a coating film formed on top of the metal spray coating. Thus, when using a metal spray as waterproofing/corrosion protection for a water treatment concrete structure, applying a pore sealing agent on top of a film formed by spraying titanium was concluded to be the most appropriate method.

  8. Genetic Structure of Water Chestnut Beetle: Providing Evidence for Origin of Water Chestnut

    Science.gov (United States)

    Qin, Jing; Lu, Ming-Xing; Du, Yu-Zhou

    2016-01-01

    Water chestnut beetle (Galerucella birmanica Jacoby) is a pest of the water chestnut (Trapa natans L.). To analyze the phylogeny and biogeography of the beetle and provide evidence for the origin of T. natans in China, we conducted this by using three mitochondrial genes (COI, COII and Cytb) and nuclear ITS2 ribosomal DNA of G. birmanica. As for mtDNA genes, the beetle could be subdivided into three groups: northeastern China (NEC), central-northern-southern China (CC-NC-SC) and southwestern China (SWC) based on SAMOVA, phylogenetic analyses and haplotype networks. But for ITS2, no obvious lineages were obtained but individuals which were from NEC region clustered into one clade, which might be due to sequence conservation of ITS2. Significant genetic variation was observed among the three groups with infrequent gene flow between groups, which may have been restricted due to natural barriers and events in the Late Pleistocene. Based on our analyses of genetic variation in the CC-NC-SC geographical region, the star-like haplotype networks, approximate Bayesian computation, niche modelling and phylogeographic variation of the beetle, we concluded that the beetle population has been lasting in the lower, central reaches of the Yangtze River Basin with its host plant, water chestnut, which is consistent with archaeological records. Moreover, we speculate that the CC-NC-SC population of G. birmanica may have undergone a period of expansion coincident with domestication of the water chestnut approximately 113,900–126,500 years ago. PMID:27459279

  9. Structural modeling and analysis of dengue-mediated inhibition of interferon signaling pathway.

    NARCIS (Netherlands)

    Aslam, B; Ahmad, J; Ali, a; Paracha, R Z; Tareen, S H K; Khusro, S; Ahmad, T; Muhammad, S a; Niazi6 And V Azevedo, U

    2015-01-01

    Dengue virus (DENV) belongs to the family Flaviviridae and can cause major health problems worldwide, including dengue fever and dengue shock syndrome. DENV replicon in human cells inhibits interferon alpha and beta with the help of its non-structural proteins. Non-structural protein 5 (NS5) of DENV

  10. Structural Reproduction of Social Networks in Computer-Mediated Communication Forums

    Science.gov (United States)

    Stefanone, M. A.; Gay, G.

    2008-01-01

    This study explores the relationship between the structure of an existing social network and the structure of an emergent discussion-board network in an undergraduate university class. Thirty-one students were issued with laptop computers that remained in their possession for the duration of the semester. While using these machines, participants'…

  11. Crystal structure of Mox-1, a unique plasmid-mediated class C β-lactamase with hydrolytic activity towards moxalactam.

    Science.gov (United States)

    Oguri, Takuma; Furuyama, Takamitsu; Okuno, Takashi; Ishii, Yoshikazu; Tateda, Kazuhiro; Bonomo, Robert A; Shimizu-Ibuka, Akiko

    2014-07-01

    Mox-1 is a unique plasmid-mediated class C β-lactamase that hydrolyzes penicillins, cephalothin, and the expanded-spectrum cephalosporins cefepime and moxalactam. In order to understand the unique substrate profile of this enzyme, we determined the X-ray crystallographic structure of Mox-1 β-lactamase at a 1.5-Å resolution. The overall structure of Mox-1 β-lactamase resembles that of other AmpC enzymes, with some notable exceptions. First, comparison with other enzymes whose structures have been solved reveals significant differences in the composition of amino acids that make up the hydrogen-bonding network and the position of structural elements in the substrate-binding cavity. Second, the main-chain electron density is not observed in two regions, one containing amino acid residues 214 to 216 positioned in the Ω loop and the other in the N terminus of the B3 β-strand corresponding to amino acid residues 303 to 306. The last two observations suggest that there is significant structural flexibility of these regions, a property which may impact the recognition and binding of substrates in Mox-1. These important differences allow us to propose that the binding of moxalactam in Mox-1 is facilitated by the avoidance of steric clashes, indicating that a substrate-induced conformational change underlies the basis of the hydrolytic profile of Mox-1 β-lactamase.

  12. Vortex magnetic structure in framboidal magnetite reveals existence of water droplets in an ancient asteroid.

    Science.gov (United States)

    Kimura, Yuki; Sato, Takeshi; Nakamura, Norihiro; Nozawa, Jun; Nakamura, Tomoki; Tsukamoto, Katsuo; Yamamoto, Kazuo

    2013-01-01

    The majority of water has vanished from modern meteorites, yet there remain signatures of water on ancient asteroids. How and when water disappeared from the asteroids is important, because the final fluid-concentrated chemical species played critical roles in the early evolution of organics and in the final minerals in meteorites. Here we show evidence of vestigial traces of water based on a nanometre-scale palaeomagnetic method, applying electron holography to the framboids in the Tagish Lake meteorite. The framboids are colloidal crystals composed of three-dimensionally ordered magnetite nanoparticles and therefore are only able to form against the repulsive force induced by the surface charge of the magnetite as a water droplet parches in microgravity. We demonstrate that the magnetites have a flux closure vortex structure, a unique magnetic configuration in nature that permits the formation of colloidal crystals just before exhaustion of water from a local system within a hydrous asteroid.

  13. Structural motion of water-resisting key strata lying on overburden

    Institute of Scientific and Technical Information of China (English)

    PU Hai; MIAO Xie-xing; YAO Bang-hua; TIAN Mu-jun

    2008-01-01

    Water-preserved mining is one of the important parts of the 'Green Mining' technological system. The purpose of wa-ter-preserved mining is to prevent water from bursting out in coal mines and thus to protect water resources. The principle of wa-ter-resisting key strata (WKS) is proposed to establish a model capable of guiding and developing water-preserved mining technol-ogy. The experimental model of the WKS is constructed following requirements of the Data Image Correlative Method (DICM).Five experimental schemes are designed according to different combined patterns of the WKS. The water-resisting performance of the WKS is analyzed from observation of structural stability. All of them provide referential value for water-preserved mining.

  14. Predator attack rate evolution in space: the role of ecology mediated by complex emergent spatial structure and self-shading.

    Science.gov (United States)

    Messinger, Susanna M; Ostling, Annette

    2013-11-01

    Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics.

  15. Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling.

    Science.gov (United States)

    Grishaev, Alexander; Guo, Liang; Irving, Thomas; Bax, Ad

    2010-11-10

    A new procedure, AXES, is introduced for fitting small-angle X-ray scattering (SAXS) data to macromolecular structures and ensembles of structures. By using explicit water models to account for the effect of solvent, and by restricting the adjustable fitting parameters to those that dominate experimental uncertainties, including sample/buffer rescaling, detector dark current, and, within a narrow range, hydration layer density, superior fits between experimental high resolution structures and SAXS data are obtained. AXES results are found to be more discriminating than standard Crysol fitting of SAXS data when evaluating poorly or incorrectly modeled protein structures. AXES results for ensembles of structures previously generated for ubiquitin show improved fits over fitting of the individual members of these ensembles, indicating these ensembles capture the dynamic behavior of proteins in solution.

  16. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  17. iSAW: Integrating Structure, Actors, and Water to study socio-hydro-ecological systems

    Science.gov (United States)

    Hale, Rebecca L.; Armstrong, Andrea; Baker, Michelle A.; Bedingfield, Sean; Betts, David; Buahin, Caleb; Buchert, Martin; Crowl, Todd; Dupont, R. Ryan; Ehleringer, James R.; Endter-Wada, Joanna; Flint, Courtney; Grant, Jacqualine; Hinners, Sarah; Horsburgh, Jeffery S.; Jackson-Smith, Douglas; Jones, Amber S.; Licon, Carlos; Null, Sarah E.; Odame, Augustina; Pataki, Diane E.; Rosenberg, David; Runburg, Madlyn; Stoker, Philip; Strong, Courtenay

    2015-03-01

    Urbanization, climate, and ecosystem change represent major challenges for managing water resources. Although water systems are complex, a need exists for a generalized representation of these systems to identify important components and linkages to guide scientific inquiry and aid water management. We developed an integrated Structure-Actor-Water framework (iSAW) to facilitate the understanding of and transitions to sustainable water systems. Our goal was to produce an interdisciplinary framework for water resources research that could address management challenges across scales (e.g., plot to region) and domains (e.g., water supply and quality, transitioning, and urban landscapes). The framework was designed to be generalizable across all human-environment systems, yet with sufficient detail and flexibility to be customized to specific cases. iSAW includes three major components: structure (natural, built, and social), actors (individual and organizational), and water (quality and quantity). Key linkages among these components include: (1) ecological/hydrologic processes, (2) ecosystem/geomorphic feedbacks, (3) planning, design, and policy, (4) perceptions, information, and experience, (5) resource access and risk, and (6) operational water use and management. We illustrate the flexibility and utility of the iSAW framework by applying it to two research and management problems: understanding urban water supply and demand in a changing climate and expanding use of green storm water infrastructure in a semi-arid environment. The applications demonstrate that a generalized conceptual model can identify important components and linkages in complex and diverse water systems and facilitate communication about those systems among researchers from diverse disciplines.

  18. Validating spatial structure in canopy water content using geostatistics

    Science.gov (United States)

    Sanderson, E. W.; Zhang, M. H.; Ustin, S. L.; Rejmankova, E.; Haxo, R. S.

    1995-01-01

    Heterogeneity in ecological phenomena are scale dependent and affect the hierarchical structure of image data. AVIRIS pixels average reflectance produced by complex absorption and scattering interactions between biogeochemical composition, canopy architecture, view and illumination angles, species distributions, and plant cover as well as other factors. These scales affect validation of pixel reflectance, typically performed by relating pixel spectra to ground measurements acquired at scales of 1m(exp 2) or less (e.g., field spectra, foilage and soil samples, etc.). As image analysis becomes more sophisticated, such as those for detection of canopy chemistry, better validation becomes a critical problem. This paper presents a methodology for bridging between point measurements and pixels using geostatistics. Geostatistics have been extensively used in geological or hydrogeolocial studies but have received little application in ecological studies. The key criteria for kriging estimation is that the phenomena varies in space and that an underlying controlling process produces spatial correlation between the measured data points. Ecological variation meets this requirement because communities vary along environmental gradients like soil moisture, nutrient availability, or topography.

  19. Water absorption characteristics and structural properties of rice for sake brewing.

    Science.gov (United States)

    Mizuma, Tomochika; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2008-09-01

    This study investigated the water absorption curve characteristics and structural properties of rice used for sake brewing. The parameter values in the water absorption rate equation were calculated using experimental data. Differences between sample parameters for rice used for sake brewing and typical rice were confirmed. The water absorption curve for rice suitable for sake brewing showed a quantitatively sharper turn in the S-shaped water absorption curve than that of typical rice. Structural characteristics, including specific volume, grain density, and powdered density of polished rice, were measured by a liquid substitution method using a Gay-Lussac pycnometer. In addition, we calculated internal porosity from whole grain and powdered grain densities. These results showed that a decrease in internal porosity resulted from invasion of water into the rice grain, and that a decrease in the grain density affected expansion during the water absorption process. A characteristic S-shape water absorption curve for rice suitable for sake brewing was related to the existence of an invisible Shinpaku-like structure.

  20. Temperature dependence of the structure of protein hydration water and the liquid-liquid transition.

    Science.gov (United States)

    Accordino, S R; Malaspina, D C; Rodriguez Fris, J A; Alarcón, L M; Appignanesi, G A

    2012-03-01

    We study the temperature dependence of the structure and orientation of the first hydration layers of the protein lysozyme and compare it with the situation for a model homogeneous hydrophobic surface, a graphene sheet. We show that in both cases these layers are significantly better structured than bulk water. The geometrical constraint of the interface makes the water molecules adjacent to the surface lose one water-water hydrogen bond and expel the fourth neighbors away from the surface, lowering local density. We show that a decrease in temperature improves the ordering of the hydration water molecules, preserving such a geometrical effect. For the case of graphene, this favors an ice Ih-like local structuring, similar to the water-air interface but in the opposite way along the c axis of the basal plane (while the vicinal water molecules of the air interface orient a hydrogen atom toward the surface, the oxygens of the water molecules close to the graphene plane orient a lone pair in such a direction). In turn, the case of the first hydration layers of the lysozyme molecule is shown to be more complicated, but still displaying signs of both kinds of behavior, together with a tendency of the proximal water molecules to hydrogen bond to the protein both as donors and as acceptors. Additionally, we make evident the existence of signatures of a liquid-liquid transition (Widom line crossing) in different structural parameters at the temperature corresponding to the dynamic transition incorrectly referred to as "the protein glass transition."

  1. Complex governance structures and incoherent policies: Implementing the EU water framework directive in Sweden.

    Science.gov (United States)

    Söderberg, Charlotta

    2016-12-01

    Contemporary processes of environmental policymaking in general span over several territorial tiers. This also holds for the EU Water Framework Directive system of environmental quality standards (EQS), which are part of a complex multi-level institutional landscape, embracing both EU, national and sub-national level. Recent evaluations show that many EU member states, including Sweden, have not reached the ecological goals for water in 2015. Departing from theories on policy coherence and multi-level governance, this paper therefore analyses Swedish water governance as a case to further our understanding of policy implementation in complex governance structures: how does policy coherence (or the lack thereof) affect policy implementation in complex governance structures? To answer this question, the paper maps out the formal structure of the water governance system, focusing on power directions within the system, analyses policy coherence in Swedish water governance through mapping out policy conflicts between the EQS for water and other goals/regulations and explore how they are handled by national and sub-national water bureaucrats. The study concludes that without clear central guidance, 'good ecological status' for Swedish water will be difficult to achieve since incoherent policies makes policy implementation inefficient due to constant power struggles between different authorities, and since environmental goals are often overridden by economic and other societal goals. Further research is needed in order to explore if similar policy conflicts between water quality and other objectives occur in other EU member states and how bureaucrats handle such conflicts in different institutional settings. This study of the Swedish case indicates that the role of the state as a navigator and rudder-holder is important in order to improve policy implementation in complex governance structures - otherwise; bureaucrats risk being lost in an incoherent archipelago of

  2. Disentangling the effects of water chemistry and substratum structure on moss-dwelling unicellular and multicellular micro-organisms in spring-fens

    Directory of Open Access Journals (Sweden)

    Michal HORSÁK

    2011-09-01

    Full Text Available Water chemistry is known to be one of the most important factors controlling species composition of many macro-organisms in wetlands. It is unclear to what extent micro-organisms respond to water chemistry as compared to chemistry-mediated substratum structure. We explored how the assemblages of different groups of micro-organisms in bryophyte tufts of spring-fens were determined by water chemistry and substratum structure. The aim was to compare unicellular autotrophic diatoms, unicellular heterotrophic testate amoebae and multicellular heterotrophic monogonont rotifers. Assemblages of all three groups showed a strong compositional gradient correlated with water pH and conductivity, calcium concentration and dominance of Sphagnum. While a second strong gradient in species composition of diatoms and testate amoebae was explained by factors such as substratum structure and water content, that of rotifers remained unexplained. Unlike the other two groups, testate amoeba assemblages were significantly determined by phosphates. Nitrates and iron were important species composition determinants for diatoms. Rotifers differed from the other groups in that they did not respond significantly to silica, iron or nutrients. When variation caused by substratum characteristics and water chemistry were partitioned out, testate amoebae were controlled more by substratum, while rotifers and diatoms were controlled more by water chemistry. Variation explained by individual effects of substratum or water chemistry, as compared to shared effects, was much lower for rotifers than for testate amoebae and diatoms. Our results show that, in semi-terrestrial ecosystems, pH and calcium concentrations are generally the main drivers of variation in species composition of unicellular and multicellular microorganisms, mirroring well described patterns for macro-organisms, providing support for general ecological hypotheses. Other water chemistry variables differed between

  3. Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly.

    Science.gov (United States)

    Williams, David S; Patil, Avinash J; Mann, Stephen

    2014-05-14

    Molecularly crowded, polyelectrolyte/ribonucleotide-enriched membrane-free coacervate droplets are transformed into membrane-bounded sub-divided vesicles by using a polyoxometalate-mediated surface-templating procedure. The coacervate to vesicle transition results in reconstruction of the coacervate micro-droplets into novel three-tiered micro-compartments comprising a semi-permeable negatively charged polyoxometalate/polyelectrolyte outer membrane, a sub-membrane coacervate shell, and an internal aqueous lumen. We demonstrate that organic dyes, ssDNA, magnetic nanoparticles and enzymes can be concentrated into the interior of the micro-compartments by sequestration into the coacervate micro-droplets prior to vesicle formation. The vesicle-encapsulated proteins are inaccessible to proteases in the external medium, and can be exploited for the spatial localization and coupling of two-enzyme cascade reactions within single or between multiple populations of hybrid vesicles dispersed in aqueous media.

  4. Comment on "Structure and dynamics of liquid water on rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Wesolowski, David J [ORNL; Sofo, Jorge O. [Pennsylvania State University; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Zhang, Zhan [Argonne National Laboratory (ANL); Mamontov, Eugene [ORNL; Predota, M. [University of South Bohemia, Czech Republic; Kumar, Nitin [ORNL; Kubicki, James D. [Pennsylvania State University; Kent, Paul R [ORNL; Vlcek, Lukas [ORNL; Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Fenter, Paul [Argonne National Laboratory (ANL); Cummings, Peter T [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Skelton, A A [Vanderbilt University; Rosenqvist, Jorgen K [ORNL

    2012-01-01

    Liu and co-workers [Phys. Rev. B 82, 161415 (2010)] discussed the long-standing debate regarding whether H2O molecules on the defect-free (110) surface of rutile ( -TiO2) sorb associatively, or there is dissociation of some or all first-layer water to produce hydroxyl surface sites. They conducted static density functional theory (DFT) and DFT molecular dynamics (DFT-MD) investigations using a range of cell configurations and functionals. We have reproduced their static DFT calculations of the influence of crystal slab thickness on water sorption energies. However, we disagree with several assertions made by these authors: (a) that second-layer water structuring and hydrogen bonding to surface oxygens and adsorbed water molecules are weak ; (b) that translational diffusion of water molecules in direct contact with the surface approaches that of bulk liquid water; and (c) that there is no dissociation of adsorbed water at this surface in contact with liquid water. These assertions directly contradict our publishedwork, which compared synchrotron x-ray crystal truncation rod, second harmonic generation, quasielastic neutron scattering, surface charge titration, and classical MD simulations of rutile (110) single-crystal surfaces and (110)-dominated powders in contact with bulk water, and (110)-dominated rutile nanoparticles with several monolayers of adsorbed water.

  5. Double hydrogen bond mediating self-assembly structure of cyanides on metal surface

    Science.gov (United States)

    Wang, Zhongping; Xiang, Feifei; Lu, Yan; Wei, Sheng; Li, Chao; Liu, Xiaoqing; Liu, Lacheng; Wang, Li

    2016-10-01

    Cyanides with different numbers of -C≡N, 1,2,4,5-Tetracyanobenzene (TCNB) and 2,3-Dicyanonaphthalene (2,3-DCN) deposited on Ag(111) and Ag(110) surfaces, have been investigated by room temperature scanning tunneling microscopy (RTSTM), respectively. High resolution STM images show double hydrogen bond is the main driving force to form variety of self-assembly structures, indicating the double hydrogen bond affects the electron distribution of cyanides and leads to a more stable structure with lower energy. In addition, the difference between Ag(111) and Ag(110) surfaces in their lattice structure induces a bigger assembly structural change of 2,3-DCN than that of 1,2,4,5-TCNB, which confirms the fact that the opposite double hydrogen bond formation formed by 1,2,4,5-TCNB is more stable than the neighboring double hydrogen bond formation formed by molecule 2,3-DCN.

  6. The apparent contact angle of water droplet on the micro-structured hydrophobic surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The apparent contact angle of Cassie-Baxter state water droplets can be calculated by the existing theoretical formula, but due to the defects of the micro-structured hydrophobic surface and some inevitable tiny disturbances in the experiment, Cassie-Baxter state water droplets will appear partly in Wenzel state, that is, the mixed state water droplets. In this paper, apparent contact angles of Cassie-Baxter state and mixed state water droplets on micro-structured hydrophobic surfaces are compared. The research shows that if the projected area fraction of water-solid F in the Cassie-Baxter formula is replaced by the local projected area fraction of water-solid F′, the apparent contact angles of water droplets in both Cassie-Baxter state and the mixed state can be calculated. Further experimental results indicate that the contact state of water droplets nearby the outermost three-phase contact line plays a more important role in determining the apparent contact angle. This conclusion is significant to the understanding of the apparent contact angle and wetting property.

  7. Formation of raiding parties for intergroup violence is mediated by social network structure

    OpenAIRE

    Glowacki, Luke; Isakov, Alexander; Wrangham, Richard W.; McDermott, Rose; Fowler, James H.; Christakis, Nicholas A.

    2016-01-01

    The social network structure of a small-scale society is crucial to formation of raiding parties involved in violent between-group raids. We mapped the social networks among Nyangatom men in a defined area of Ethiopia and ascertained membership in 39 intergroup raiding parties over 3 y. Although a small set of leaders initiated raids, they were not especially crucial for the composition of the raiding parties; instead, aspects of social network structure served to determine group composition ...

  8. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport

    Energy Technology Data Exchange (ETDEWEB)

    Long, Feng; Su, Chih-Chia; Zimmermann, Michael T.; Boyken, Scott E.; Rajashankar, Kanagalaghatta R.; Jernigan, Robert L.; Yu, Edward W. (Cornell); (Iowa State)

    2010-09-23

    Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs - three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.

  9. Insight to structural subsite recognition in plant thiol protease-inhibitor complexes : Understanding the basis of differential inhibition and the role of water

    Directory of Open Access Journals (Sweden)

    Mukhopadhayay Bishnu P

    2001-09-01

    Full Text Available Abstract Background This work represents an extensive MD simulation / water-dynamics studies on a series of complexes of inhibitors (leupeptin, E-64, E-64-C, ZPACK and plant cysteine proteases (actinidin, caricain, chymopapain, calotropin DI of papain family to understand the various interactions, water binding mode, factors influencing it and the structural basis of differential inhibition. Results The tertiary structure of the enzyme-inhibitor complexes were built by visual interactive modeling and energy minimization followed by dynamic simulation of 120 ps in water environment. DASA study with and without the inhibitor revealed the potential subsite residues involved in inhibition. Though the interaction involving main chain atoms are similar, critical inspection of the complexes reveal significant differences in the side chain interactions in S2-P2 and S3-P3 pairs due to sequence differences in the equivalent positions of respective subsites leading to differential inhibition. Conclusion The key finding of the study is a conserved site of a water molecule near oxyanion hole of the enzyme active site, which is found in all the modeled complexes and in most crystal structures of papain family either native or complexed. Conserved water molecules at the ligand binding sites of these homologous proteins suggest the structural importance of the water, which changes the conventional definition of chemical geometry of inhibitor binding domain, its shape and complimentarity. The water mediated recognition of inhibitor to enzyme subsites (Pn...H2O....Sn of leupeptin acetyl oxygen to caricain, chymopapain and calotropinDI is an additional information and offer valuable insight to potent inhibitor design.

  10. Cooperative protein structural dynamics of homodimeric hemoglobin linked to water cluster at subunit interface revealed by time-resolved X-ray solution scattering.

    Science.gov (United States)

    Kim, Jong Goo; Muniyappan, Srinivasan; Oang, Key Young; Kim, Tae Wu; Yang, Cheolhee; Kim, Kyung Hwan; Kim, Jeongho; Ihee, Hyotcherl

    2016-03-01

    Homodimeric hemoglobin (HbI) consisting of two subunits is a good model system for investigating the allosteric structural transition as it exhibits cooperativity in ligand binding. In this work, as an effort to extend our previous study on wild-type and F97Y mutant HbI, we investigate structural dynamics of a mutant HbI in solution to examine the role of well-organized interfacial water cluster, which has been known to mediate intersubunit communication in HbI. In the T72V mutant of HbI, the interfacial water cluster in the T state is perturbed due to the lack of Thr72, resulting in two less interfacial water molecules than in wild-type HbI. By performing picosecond time-resolved X-ray solution scattering experiment and kinetic analysis on the T72V mutant, we identify three structurally distinct intermediates (I1, I2, and I3) and show that the kinetics of the T72V mutant are well described by the same kinetic model used for wild-type and F97Y HbI, which involves biphasic kinetics, geminate recombination, and bimolecular CO recombination. The optimized kinetic model shows that the R-T transition and bimolecular CO recombination are faster in the T72V mutant than in the wild type. From structural analysis using species-associated difference scattering curves for the intermediates, we find that the T-like deoxy I3 intermediate in solution has a different structure from deoxy HbI in crystal. In addition, we extract detailed structural parameters of the intermediates such as E-F distance, intersubunit rotation angle, and heme-heme distance. By comparing the structures of protein intermediates in wild-type HbI and the T72V mutant, we reveal how the perturbation in the interfacial water cluster affects the kinetics and structures of reaction intermediates of HbI.

  11. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth.

    Directory of Open Access Journals (Sweden)

    Steven M Yellon

    Full Text Available A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone, or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term.

  12. Bioinorganic chemistry of Parkinson's disease: structural determinants for the copper-mediated amyloid formation of alpha-synuclein.

    Science.gov (United States)

    Binolfi, Andrés; Rodriguez, Esaú E; Valensin, Daniela; D'Amelio, Nicola; Ippoliti, Emiliano; Obal, Gonzalo; Duran, Rosario; Magistrato, Alessandra; Pritsch, Otto; Zweckstetter, Markus; Valensin, Gianni; Carloni, Paolo; Quintanar, Liliana; Griesinger, Christian; Fernández, Claudio O

    2010-11-15

    The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinson's disease (PD). A central, unresolved question in the pathophysiology of PD relates to the role of AS-metal interactions in amyloid fibril formation and neurodegeneration. Our previous works established a hierarchy in alpha-synuclein-metal ion interactions, where Cu(II) binds specifically to the protein and triggers its aggregation under conditions that might be relevant for the development of PD. Two independent, non-interacting copper-binding sites were identified at the N-terminal region of AS, with significant difference in their affinities for the metal ion. In this work we have solved unknown details related to the structural binding specificity and aggregation enhancement mediated by Cu(II). The high-resolution structural characterization of the highest affinity N-terminus AS-Cu(II) complex is reported here. Through the measurement of AS aggregation kinetics we proved conclusively that the copper-enhanced AS amyloid formation is a direct consequence of the formation of the AS-Cu(II) complex at the highest affinity binding site. The kinetic behavior was not influenced by the His residue at position 50, arguing against an active role for this residue in the structural and biological events involved in the mechanism of copper-mediated AS aggregation. These new findings are central to elucidate the mechanism through which the metal ion participates in the fibrillization of AS and represent relevant progress in the understanding of the bioinorganic chemistry of PD.

  13. Crystal Structure of Cu/Zn Superoxide Dismutase from Taenia Solium Reveals Metal-mediated Self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    A Hernandez-Santoyo; A Landa; E Gonzalez-Mondragon; M Pedraza-Escalona; R Parra-Unda; A Rodriguez-Romero

    2011-12-31

    Taenia solium is the cestode responsible for porcine and human cysticercosis. The ability of this parasite to establish itself in the host is related to its evasion of the immune response and its antioxidant defence system. The latter includes enzymes such as cytosolic Cu/Zn superoxide dismutase. In this article, we describe the crystal structure of a recombinant T. solium Cu/Zn superoxide dismutase, representing the first structure of a protein from this organism. This enzyme shows a different charge distribution at the entrance of the active channel when compared with human Cu/Zn superoxide dismutase, giving it interesting properties that may allow the design of specific inhibitors against this cestode. The overall topology is similar to other superoxide dismutase structures; however, there are several His and Glu residues on the surface of the protein that coordinate metal ions both intra- and intermolecularly. Interestingly, one of these ions, located on the {beta}2 strand, establishes a metal-mediated intermolecular {beta}-{beta} interaction, including a symmetry-related molecule. The factors responsible for the abnormal protein-protein interactions that lead to oligomerization are still unknown; however, high metal levels have been implicated in these phenomena, but exactly how they are involved remains unclear. The present results suggest that this structure could be useful as a model to explain an alternative mechanism of protein aggregation commonly observed in insoluble fibrillar deposits.

  14. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  15. Ants mediate the structure of phytotelm communities in an ant-garden bromeliad

    OpenAIRE

    Céréghino, Régis; Leroy, Céline; Dejean,Alain; Corbara, Bruno

    2010-01-01

    International audience; The main theories explaining the biological diversity of rain forests often confer a limited understanding of the contribution of interspecific interactions to the observed patterns. We show how two-species mutualisms can affect much larger segments of the invertebrate community in tropical rain forests. Aechmea mertensii (Bromeliaceae) is both a phytotelm (plant-held water) and an ant-garden epiphyte. We studied the influence of its associated ant species (Pachycondyl...

  16. Irreversible Change of the Pore Structure of ZIF-8 in Carbon Dioxide Capture with Water Coexistence

    DEFF Research Database (Denmark)

    Liu, Huang; Guo, Ping; Regueira Muñiz, Teresa

    2016-01-01

    showed an irreversible change of its framework, which occurs during the CO2 capture process. It was found that there is an irreversible chemical reaction among ZIF-8, water, and CO2, which creates both zinc carbonate (or zinc carbonate hydroxides) and single 2-methylimidazole crystals, and therefore......The performance of zeolitic imidazolate framework 8 (ZIF-8) for CO2 capture under three different conditions (wetted ZIF-8, ZIF-8/water slurry, and ZIF-8/water-glycol slurry) was systemically investigated. This investigation included the study of the pore structure stability of ZIF-8 by using X...... the pore structure of ZIF-8 collapses. It is suggested therefore that care must be taken when using ZIF-8 or products containing ZIF-8 for gas capture, gas separation, or other applications where both water and acid gases coexist....

  17. Towards rapid on-site phage-mediated detection of generic Escherichia coli in water using luminescent and visual readout.

    Science.gov (United States)

    Burnham, Sean; Hu, Jing; Anany, Hany; Brovko, Lubov; Deiss, Frederique; Derda, Ratmir; Griffiths, Mansel W

    2014-09-01

    Wild-type T4 bacteriophage and recombinant reporter lac Z T4 bacteriophage carrying the β-galactosidase gene were used for detection of generic Escherichia coli by monitoring the release of β-galactosidase upon phage-mediated cell lysis. The reaction was performed on a paper-based portable culture device to limit the diffusion of reagents and, hence, increase the sensitivity of the assay, and to avoid handling large sample volumes, making the assay suitable for on-site analysis. Chromogenic (chlorophenol red-β-D-galactopyranoside, CPRG) and bioluminescent (6-O-β-galactopyranosyl-luciferin, Beta-Glo(®)) β-galactosidase substrates were tested in the assay. Water samples were first filtered through 0.45-μm pore size filters to concentrate bacteria. The filters were then placed into the paper-based device containing nutrient medium and incubated at 37 °C for 4 h. Bacteriophage with the respective indicator substrate was added to the device, and signal (color, luminescence) development was recorded with a digital camera, luminometer, or luminescence imaging device. It was demonstrated that as low as 40 or visually within 8 h when wild-type T4 bacteriophage or recombinant lacZ T4 bacteriophage were used in the assay, respectively. Application of the bioluminescent β-galactosidase substrate allowed reliable detection of <10 cfu ml(-1) within 5.5 h. The specificity of the assay was demonstrated using a panel of microorganisms including Aeromonas hydrophila, Enterobacter cloacae, E. coli, and Salmonella Typhimurium.

  18. Low-Density Water Structure Observed in a Nanosegregated Cryoprotectant Solution at Low Temperatures from 285 to 238 K.

    Science.gov (United States)

    Towey, J J; Soper, A K; Dougan, L

    2016-05-19

    The structure of liquid water is defined by its molecular association through hydrogen bonding. Two different structures have been proposed for liquid water at low temperatures: low-density liquid (LDL) and high-density liquid (HDL) water. Here, we demonstrate a platform that can be exploited to experimentally probe the structure of liquid water in equilibrium at temperatures down to 238 K. We make use of a cryoprotectant molecule, glycerol, that, when mixed with water, lowers the freezing temperature of the solution nonmonotonically with glycerol concentration. We use a combination of neutron diffraction measurements and computational modeling to examine the structure of water in glycerol-water liquid mixtures at low temperatures from 285 to 238 K. We confirm that the mixtures are nanosegregated into regions of glycerol-rich and water-rich clusters. We examine the water structure and reveal that, at the temperatures studied here, water forms a low-density water structure that is more tetrahedral than the structure at room temperature. We postulate that nanosegregation allows water to form a low-density structure that is protected by an extensive and encapsulating glycerol interface.

  19. Molecular Descriptors Family on Structure Activity Relationships 6. Octanol-Water Partition Coefficient of Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2006-01-01

    Full Text Available Octanol-water partition coefficient of two hundred and six polychlorinated biphenyls was model by the use of an original method based on complex information obtained from compounds structure. The regression analysis shows that best results are obtained in four-varied model (r2 = 0.9168. The prediction ability of the model was studied through leave-one-out analysis (r2cv(loo = 0.9093 and in training and test sets analysis. Modeling the octanol-water partition coefficient of polychlorinated biphenyls by integration of complex structural information provide a stable and performing four-varied model, allowing us to make remarks about relationship between structure of polychlorinated biphenyls and associated octanol-water partition coefficients.

  20. Monitoring fire impacts in soil water repellency and structure stability during 6 years

    Directory of Open Access Journals (Sweden)

    A.J. Gordillo-Rivero

    2013-05-01

    Full Text Available Wildfires induce a series of soil changes affecting their physical and chemical properties and the hydrological and erosive response. Two of the properties that are commonly affected by burning are soil water repellency and structural stability. This paper carries out the study and monitoring of water repellency and soil structural stability during a period of 6 years after fire in calcareous soils of southern Spain in different aggregate size fractions (<2, 1-2, 0.5-1 and 0.25-0.5 mm. During this time, it was observed that both properties showed different tendencies in different aggregate size fractions. It was observed that water repellency increased after fire especially in the finer fractions (0.25-0.5 mm. Structural stability increased significantly after the fire and was progressively reduced during the experimental period.

  1. Theoretical Structures of Triflic Acid-Water Clusters and the Molecular Mechanism of Proton Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Paddison, S.J.; Pratt, L.R.; Zawodzinski, T.A.

    1998-11-01

    Structural and energetic information required for recently proposed quasi-chemical theories of solution chemistry have been obtained for clusters of water with triflic acid, CF{sub 3}SO{sub 3}H(H{sub 2}O){sub n} for n=1-6. Quantum mechanical calculations on the clusters indicate that the acid proton does not dissociate with n=1 or 2 hydrating water molecules, but does dissociate for n>=3 water molecule partners. The computed minimum energy structures indicate that both ''Eigen'' (H{sub 9}O{sub 4}{sup +}) (n=3,4,6) and ''Zundel'' (H{sub 5}O{sub 2}{sup +}) (n=5) structures are likely to play a role in the molecular mechanism of acid dissociation in Nafion{reg_sign}.

  2. The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf

    Science.gov (United States)

    2008-01-01

    E. Richardson, 2008, Field verification of a CFD model for wave transformation and breaking in the surf zone, J. Waterw. Port Coastal Engrg., 134(2...The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf Dr. Thomas C. Lippmann Center for Coastal...wave- and tidally-driven shallow water flows in the shallow depths of the inner shelf and surf zone. OBJECTIVES 1. Theoretical investigations of

  3. Structural transition in alcohol-water binary mixtures: A spectroscopic study

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Piue Ghoshal; Ranjit Biswas

    2008-03-01

    The strengthening of the hydrogen bonding (H-bond) network as well as transition from the tetrahedral-like water network to the zigzag chain structure of alcohol upon increasing the alcohol concentration in ethanol-water and tertiary butanol (TBA) - water mixtures have been studied by using both steady state and time resolved spectroscopy. Absorption and emission characteristics of coumarin 153 (C153), a widely used non-reactive solvation probe, have been monitored to investigate the structural transition in these binary mixtures. The effects of the hydrogen bond (H-bond) network with alcohol concentration are revealed by a minimum in the peak frequency of the absorption spectrum of C153 which occur at alcohol mole fraction ∼ 0.10 for water-ethanol and at ∼ 0.04 for water-TBA mixtures. These are the mole fractions around which several thermodynamic properties of these mixtures show anomalous change due to the enhancement of H-bonding network. While the strengthening of H-bond network is revealed by the absorption spectra, the emission characteristics show the typical non-ideal alcohol mole fraction dependence at all concentrations. The time resolved anisotropy decay of C153 has been found to be bi-exponential at all alcohol mole fractions. The sharp change in slopes of average rotational correlation time with alcohol mole fraction indicates the structural transition in the environment around the rotating solute. The changes in slopes occur at mole fraction ∼ 0.10 for TBA-water and at ∼ 0.2 for ethanol-water mixtures, which are believed to reflect alcohol mole fraction induced structural changes in these alcohol-water binary mixtures.

  4. Model-based Leakage Localization in Drinking Water Distribution Networks using Structured Residuals

    OpenAIRE

    Rosich, Albert; Puig, Vicenç

    2013-01-01

    In this paper, a new model based approach to leakage localization in drinking water networks is proposed based on generating a set of structured residuals. The residual evaluation is based on a numerical method based on an enhanced Newton-Raphson algorithm. The proposed method is suitable for water network systems because the non-linearities of the model make impossible to derive analytical residuals. Furthermore, the computed residuals are designed so that leaks are decoupled, which impro...

  5. Thermally-nucleated self-assembly of water and alcohol into stable structures at hydrophobic interfaces.

    OpenAIRE

    Voïtchovsky, Kislon; Giofrè, Daniele; José Segura, Juan; Stellacci, Francesco; Ceriotti, Michele

    2016-01-01

    At the interface with solids, the mobility of liquid molecules tends to be reduced compared with bulk, often resulting in increased local order due to interactions with the surface of the solid. At room temperature, liquids such as water and methanol can form solvation structures, but the molecules remain highly mobile, thus preventing the formation of long-lived supramolecular assemblies. Here we show that mixtures of water with methanol can form a novel type of interfaces with hydrophobic s...

  6. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals

    Science.gov (United States)

    Gârlea, Ioana C.; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G. A. L.; Lettinga, M. Pavlik; Koenderink, Gijsje H.; Mulder, Bela M.

    2016-06-01

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  7. Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts.

    Science.gov (United States)

    Gong, Peng; Kortus, Matthew G; Nix, Jay C; Davis, Ralph E; Peersen, Olve B

    2013-01-01

    RNA-dependent RNA polymerases play a vital role in the growth of RNA viruses where they are responsible for genome replication, but do so with rather low fidelity that allows for the rapid adaptation to different host cell environments. These polymerases are also a target for antiviral drug development. However, both drug discovery efforts and our understanding of fidelity determinants have been hampered by a lack of detailed structural information about functional polymerase-RNA complexes and the structural changes that take place during the elongation cycle. Many of the molecular details associated with nucleotide selection and catalysis were revealed in our recent structure of the poliovirus polymerase-RNA complex solved by first purifying and then crystallizing stalled elongation complexes. In the work presented here we extend that basic methodology to determine nine new structures of poliovirus, coxsackievirus, and rhinovirus elongation complexes at 2.2-2.9 Å resolution. The structures highlight conserved features of picornaviral polymerases and the interactions they make with the template and product RNA strands, including a tight grip on eight basepairs of the nascent duplex, a fully pre-positioned templating nucleotide, and a conserved binding pocket for the +2 position template strand base. At the active site we see a pre-bound magnesium ion and there is conservation of a non-standard backbone conformation of the template strand in an interaction that may aid in triggering RNA translocation via contact with the conserved polymerase motif B. Moreover, by engineering plasticity into RNA-RNA contacts, we obtain crystal forms that are capable of multiple rounds of in-crystal catalysis and RNA translocation. Together, the data demonstrate that engineering flexible RNA contacts to promote crystal lattice formation is a versatile platform that can be used to solve the structures of viral RdRP elongation complexes and their catalytic cycle intermediates.

  8. Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts.

    Directory of Open Access Journals (Sweden)

    Peng Gong

    Full Text Available RNA-dependent RNA polymerases play a vital role in the growth of RNA viruses where they are responsible for genome replication, but do so with rather low fidelity that allows for the rapid adaptation to different host cell environments. These polymerases are also a target for antiviral drug development. However, both drug discovery efforts and our understanding of fidelity determinants have been hampered by a lack of detailed structural information about functional polymerase-RNA complexes and the structural changes that take place during the elongation cycle. Many of the molecular details associated with nucleotide selection and catalysis were revealed in our recent structure of the poliovirus polymerase-RNA complex solved by first purifying and then crystallizing stalled elongation complexes. In the work presented here we extend that basic methodology to determine nine new structures of poliovirus, coxsackievirus, and rhinovirus elongation complexes at 2.2-2.9 Å resolution. The structures highlight conserved features of picornaviral polymerases and the interactions they make with the template and product RNA strands, including a tight grip on eight basepairs of the nascent duplex, a fully pre-positioned templating nucleotide, and a conserved binding pocket for the +2 position template strand base. At the active site we see a pre-bound magnesium ion and there is conservation of a non-standard backbone conformation of the template strand in an interaction that may aid in triggering RNA translocation via contact with the conserved polymerase motif B. Moreover, by engineering plasticity into RNA-RNA contacts, we obtain crystal forms that are capable of multiple rounds of in-crystal catalysis and RNA translocation. Together, the data demonstrate that engineering flexible RNA contacts to promote crystal lattice formation is a versatile platform that can be used to solve the structures of viral RdRP elongation complexes and their catalytic cycle

  9. Branched ZnO wire structures for water collection inspired by cacti.

    Science.gov (United States)

    Heng, Xin; Xiang, Mingming; Lu, Zhihui; Luo, Cheng

    2014-06-11

    In this work, motivated by an approach used in a cactus to collect fog, we have developed an artificial water-collection structure. This structure includes a large ZnO wire and an array of small ZnO wires that are branched on the large wire. All these wires have conical shapes, whose diameters gradually increase from the tip to the root of a wire. Accordingly, a water drop that is condensed on the tip of each wire is driven to the root by a capillary force induced by this diameter gradient. The lengths of stem and branched wires in the synthesized structures are in the orders of 1 mm and 100 μm, respectively. These dimensions are, respectively, comparable to and larger than their counterparts in the case of a cactus. Two groups of tests were conducted at relative humidity of 100% to compare the amounts of water collected by artificial and cactus structures within specific time durations of 2 and 35 s, respectively. The amount of water collected by either type of structures was in the order of 0.01 μL. However, on average, what has been collected by the artificial structures was 1.4-5.0 times more than that harvested by the cactus ones. We further examined the mechanism that a cactus used to absorb a collected water drop into its stem. On the basis of the gained understanding, we developed a setup to successfully collect about 6 μL of water within 30 min.

  10. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic.

    Science.gov (United States)

    Kirchhausen, Tom; Owen, David; Harrison, Stephen C

    2014-05-01

    Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation.

  11. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces.

    Science.gov (United States)

    Wagner, P; Fürstner, R; Barthlott, W; Neinhuis, C

    2003-04-01

    Many plant surfaces are water-repellent because of a complex 3-dimensional microstructure of the epidermal cells (papillae) and a superimposed layer of hydrophobic wax crystals. Due to its surface tension, water does not spread on such surfaces but forms spherical droplets that lie only on the tips of the microstructures. Studying six species with heavily microstructured surfaces by a new type of confocal light microscopy, the number, height, and average distance of papillae per unit area were measured. These measurements were combined with those of an atomic force microscope which was used to measure the exposed area of the fine-structure on individual papillae. According to calculations based upon these measurements, roughening results in a reduction of the contact area of more than 95% compared with the projected area of a water droplet. By applying water/methanol solutions of decreasing surface tension to a selection of 33 water-repellent species showing different types of surface structures, the critical value at which wetting occurs was determined. The results impressively demonstrated the importance of roughening on different length scales for water-repellency, since extremely papillose surfaces, having an additional wax layer, are able to resist up to 70% methanol. Surfaces that lack papillae or similar structures on the same length scale are much more easily wetted.

  12. Structured Ionomer Thin Films at Water Interface: Molecular Dynamics Simulation Insight.

    Science.gov (United States)

    Aryal, Dipak; Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S

    2017-09-08

    Controlling the structure and dynamics of thin films of ionizable polymers at water interfaces is critical to their many applications. As the chemical diversity within one polymer is increased, controlling the structure and dynamics of the polymer, which is a key to their use, becomes a challenge. Here molecular dynamics simulations (MD) are used to obtain molecular insight into the structure and dynamics of thin films of one such macromolecule at the interface with water. The polymer consists of an ABCBA topology with randomly sulfonated polystyrene (C), tethered symmetrically to flexible poly(ethylene-r-propylene) blocks (B), and end-capped by a poly(t-butylstyrene) block (A). The compositions of the interfacial and bulk regions of thin films of the ABCBA polymers are followed as a function of exposure time to water. We find that interfacial rearrangements take place where buried ionic segments migrate toward the water interface. The hydrophobic blocks collapse and rearrange to minimize their exposure to water. The water that initially drives interfacial reengagements breaks the ionic clusters within the film, forming a dynamic hydrophilic internal network within the hydrophobic segments.

  13. The Structure, Density, and Local Environment Distribution in Ab Initio Liquid Water

    Science.gov (United States)

    Santra, Biswajit; Distasio, Robert A., Jr.; Wu, Xifan; Car, Roberto

    2014-03-01

    We have performed extensive ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions in the canonical (NVT) and isothermal-isobaric (NPT) ensembles to understand the individual and collective importance of exact exchange, van der Waals interactions, and nuclear quantum effects on the structural properties of liquid water. AIMD simulations which include these effects result in oxygen-oxygen radial distribution functions which are in excellent agreement with experiments and a liquid water structure having an equilibrium density within 1% of the experimental value of 1 g/cm3. A detailed analysis of the distribution of local structure in ambient liquid water has revealed that the inherent potential energy surface is bimodal with respect to high- and low-density molecular environments, consistent with the existence of polymorphism in the amorphous phases of water. With these findings in mind, the methodology presented herein overcomes the well-known limitations of semi-local density functional theory (GGA-DFT) providing a detailed and accurate microscopic description of ambient liquid water. DOE: DE-SC0008626, DOE: DE-SC0005180, NSF: CHE-0956500.

  14. Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level.

    Science.gov (United States)

    Zhang, Li; Liu, Zhipei; Ren, Tao; Wu, Pan; Shen, Jia-Wei; Zhang, Wei; Wang, Xinping

    2014-11-25

    Understanding the behavior of fluorocarbon surfactants at the air/water interface is crucial for many applications, such as lubricants, paints, cosmetics, and fire-fighting foams. In this study, molecular dynamics (MD) simulations were employed to investigate the microscopic properties of non-ionic fluorocarbon surfactants at the air/water interface. Several properties, including the distribution of head groups, the distribution probability of the tilt angle between hydrophobic tails with respect to the xy plane, and the order parameter of surfactants, were computed to probe the structure of hydrophobic surfactants at the air/water interface. The effects of the monomer structure on interfacial phenomena of non-ionic surfactants were investigated as well. It is observed that the structure of fluorocarbon surfactants at the air/water interface is more ordered than that of hydrocarbons, which is dominated by the van der Waals interaction between surfactants and water molecules. However, replacing one or two CF2 with one or two CH2 group does not significantly influence the interfacial structure, suggesting that hydrocarbons may be promising alternatives to perfluorinated surfactants.

  15. Numerical simulation and structural optimization of the inclined oil/water separator.

    Directory of Open Access Journals (Sweden)

    Liqiong Chen

    Full Text Available Improving the separation efficiency of the inclined oil/water separator, a new type of gravity separation equipment, is of great importance. In order to obtain a comprehensive understanding of the internal flow field of the separation process of oil and water within this separator, a numerical simulation based on Euler multiphase flow analysis and the realizable k-ε two equation turbulence model was executed using Fluent software. The optimal value ranges of the separator's various structural parameters used in the numerical simulation were selected through orthogonal array experiments. A field experiment on the separator was conducted with optimized structural parameters in order to validate the reliability of the numerical simulation results. The research results indicated that the horizontal position of the dispenser, the hole number, and the diameter had significant effects on the oil/water separation efficiency, and that the longitudinal position of the dispenser and the position of the weir plate had insignificant effects on the oil/water separation efficiency. The optimal structural parameters obtained through the orthogonal array experiments resulted in an oil/water separation efficiency of up to 95%, which was 4.996% greater than that realized by the original structural parameters.

  16. Numerical simulation and structural optimization of the inclined oil/water separator.

    Science.gov (United States)

    Chen, Liqiong; Wu, Shijuan; Lu, Hongfang; Huang, Kun; Zhao, Lijie

    2015-01-01

    Improving the separation efficiency of the inclined oil/water separator, a new type of gravity separation equipment, is of great importance. In order to obtain a comprehensive understanding of the internal flow field of the separation process of oil and water within this separator, a numerical simulation based on Euler multiphase flow analysis and the realizable k-ε two equation turbulence model was executed using Fluent software. The optimal value ranges of the separator's various structural parameters used in the numerical simulation were selected through orthogonal array experiments. A field experiment on the separator was conducted with optimized structural parameters in order to validate the reliability of the numerical simulation results. The research results indicated that the horizontal position of the dispenser, the hole number, and the diameter had significant effects on the oil/water separation efficiency, and that the longitudinal position of the dispenser and the position of the weir plate had insignificant effects on the oil/water separation efficiency. The optimal structural parameters obtained through the orthogonal array experiments resulted in an oil/water separation efficiency of up to 95%, which was 4.996% greater than that realized by the original structural parameters.

  17. Microscopic structure and gas-gas critical line of the Ar-water system

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, M.A. [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy)]. E-mail: riccim@fis.uniroma3.it; Mancinelli, R. [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy); Lu Russo, M. [ESRF, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble (France); Botti, A. [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy); Bruni, F. [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy); Soper, A.K. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2006-11-15

    The dependence of the derivative of the gas-gas critical temperature on the microscopic structure of a mixture is analyzed using neutron diffraction on the Ar-water system at two solute concentrations. At low Ar concentration the critical line departs from the critical point of the solvent with negative derivative: at a microscopic level this corresponds to a repulsive solute-solvent interaction, keeping Ar atoms outside the first water-water neighboring shell. As the solute concentration increases at constant temperature and pressure, the critical temperature goes through a minimum and eventually Ar atoms enter the first neighbor water shell. At this point, no H-bonding between water molecules is visible.

  18. IR spectroscopic investigation of the structure of water-fuel microemulsion for diesel engines

    Science.gov (United States)

    Vettegren', V. I.; Mamalimov, R. I.; Lozhkin, V. N.; Morozov, V. A.; Lozhkina, O. V.; Pimenov, Yu. A.

    2016-09-01

    The structures of a microemulsion formed by a surfactant (ammonium oleate), water drops of a linear size of 1-3 µm, and a diesel fuel has been investigated using IR spectroscopy. It has been found that ammonium oleate molecules in the microemulsion are dissociated on the positive NH4 + ion and the negative ion of the remaining part of the molecule, which forms the hydrogen bond with water molecules. This increases the rate of water, evaporation and leads to the more complete combustion of the diesel fuel. As a result, the concentration of harmful nitrogen oxides and soot particles in the exhaust gas of the diesel engine decreases.

  19. Perfectionism mediated the relationship between brain structure variation and negative emotion in a nonclinical sample.

    Science.gov (United States)

    Wu, Di; Wang, Kangcheng; Wei, Dongtao; Chen, Qunlin; Du, Xue; Yang, Junyi; Qiu, Jiang

    2017-02-01

    In maladaptive respects, perfectionism reflects an individual's concern over making mistakes and doubting the quality of his or her own actions excessively, which would affect one's emotion. However, little is known about the neural mechanisms associated with the perfectionism and negative affect. In this study, voxel-based morphometry was performed to identify the brain regions underlying individual differences in perfectionism, which was measured by the Chinese Frost Multidimensional Perfectionism Scale (CFMPS), in a large sample of nonclinical young adults. Our results showed that the two subdimensions of the perfectionism, concern over mistakes (CM) and doubts about actions (DA), were both positively correlated with the self-reported anxiety and depression as well as the gray matter volume (GMV) in the anterior cingulate cortex (ACC), a pivotal brain region in cognitive control, affective state, and regulation. Moreover, CM, DA, and organization scores were respectively correlated with distributed brain regions involved in multiple cognitive and emotion processes. Our results furthermore revealed that the score of DA acted a mediational mechanism underlying the relationship between the GMV of ACC and self-rating negative affect (anxiety and depression). Taken together, these results might suggest the neuroanatomical basis of perfectionism and the association among the perfectionism, negative emotion, and brain architecture. This study emphasized that perfectionism could play a crucial role in the arousal of negative affect.

  20. The Effects of Transformational Leadership and Mediating Factors on the Organizational Success Using Structural Equation Modeling: A Case Study.

    Science.gov (United States)

    Ravangard, Ramin; Karimi, Sakine; Farhadi, Payam; Sajjadnia, Zahra; Shokrpour, Nasrin

    This study was undertaken to determine the effects of transformational leadership (TL) and mediating factors on organizational success (OS) from the administrative, financial, and support employees' perspective in teaching hospitals affiliated with Shiraz University of Medical Sciences using structural equation modeling. Three hundred administrative and financial employees were selected, using stratified sampling proportional to size and simple random sampling. Data were collected using 5 questionnaires and analyzed using SPSS 21.0 and Lisrel 8.5 through Pearson correlation coefficient and path analysis and confirmatory factor analysis methods. Results showed that TL had significant positive effects on the 3 mediating factors, including organizational culture (t = 15.31), organizational citizenship behavior (OCB) (t = 10.06), and social capital (t = 10.25). Also, the organizational culture (t = 2.26), OCB (t = 3.48), and social capital (t = 7.41) had significant positive effects on OS. According to the results, TL had an indirect effect on OS. Therefore, organizations can achieve more success by strengthening organizational culture, OCB, and social capital through using transformational leadership style. Therefore, in order to increase OS, the following recommendations are made: supporting and encouraging new ideas in the organization, promoting teamwork, strengthening intergroup and intragroup relationships, planning to strengthen and enrich the social and organizational culture, considering the promotion of social capital in the employee training, establishing a system to give rewards to the employees performing extra-role activities, providing a suitable environment for creative employees, and so on.

  1. Optimization of industrial structure based on water environmental carrying capacity in Tieling City.

    Science.gov (United States)

    Yue, Qiang; Hou, Limin; Wang, Tong; Wang, Liusuo; Zhu, Yue; Wang, Xiu; Cheng, Xilei

    2015-01-01

    A system dynamics optimization model of the industrial structure of Tieling City based on water environmental carrying capacity has been established. This system is divided into the following subsystems: water resources, economics, population, contaminants, and agriculture and husbandry. Three schemes were designed to simulate the model from 2011 to 2020, and these schemes were compared to obtain an optimal social and economic development model in Tieling City. Policy recommendations on industrial structure optimization based on the optimal solution provide scientific decision-making advice to develop a strong and sustainable economy in Tieling.

  2. Stock structure of Atlantic herring Clupea harengus in the Norwegian Sea and adjacent waters

    DEFF Research Database (Denmark)

    Pampoulie, Christophe; Slotte, Aril; Oskarsson, Guomundur J.;

    2015-01-01

    The genetic structure of Atlantic herring Clupea harengus L. was investigated in its north-easterly distribution in the Norwegian Sea and adjacent waters, using 23 neutral and one non-neutral (Cpa111) microsatellite loci. Fish from the suspected 2 main populations-the Norwegian spring-spawning he......The genetic structure of Atlantic herring Clupea harengus L. was investigated in its north-easterly distribution in the Norwegian Sea and adjacent waters, using 23 neutral and one non-neutral (Cpa111) microsatellite loci. Fish from the suspected 2 main populations-the Norwegian spring...

  3. Phytocenotic structure and physico-chemical properties of a small water body in agricultural landscape

    Directory of Open Access Journals (Sweden)

    Joanna Sender

    2014-07-01

    Full Text Available Small water bodies, until recently considered as wasteland, are an essential element of the so-called small water retention. Their main use can vary significantly, but they always play a positive role by increasing water resources and enhancing the natural values of the landscape. Moreover, by increasing bio- diversity thanks to plants forming habitats for many species of flora and fauna, small water bodies act as a biofilter, improving water quality. But these small reservoirs belong to the groups of waters that are most exposed to damage, especially within the catchment area. Because of the invaluable role of small farmland water bodies, a study was undertaken to investigate their phytocenotic structure. In addition, an attempt was made to assess the level of threats and to indicate their role in the development of habitat conditions. The investigated reservoir was created in 2007. Before that time, it functioned as a part of the Zemborzycki reservoir, as they were close to each other. Almost the entire surrounding of this small reservoir consisted of farmland. In 2011 a revitalization project was carried out in the reservoir. Plants typical for wetland habitats were mainly introduced, while synanthropic vegetation was removed. Based on chemical and physical analyses, it can be concluded that the investigated reservoir serves as a natural biofilter thanks to the qualitative and quantitative changes in the structure of macrophytes. After the revitalization project, the investigated pond gained new aesthetic and ecological qualities.

  4. Molecular Structure and Dynamics of Water on Pristine and Strained Phosphorene: Wetting and Diffusion at Nanoscale

    Science.gov (United States)

    Zhang, Wei; Ye, Chao; Hong, Linbi; Yang, Zaixing; Zhou, Ruhong

    2016-12-01

    Phosphorene, a newly fabricated two-dimensional (2D) nanomaterial, has emerged as a promising material for biomedical applications with great potential. Nonetheless, understanding the wetting and diffusive properties of bio-fluids on phosphorene which are of fundamental importance to these applications remains elusive. In this work, using molecular dynamics (MD) simulations, we investigated the structural and dynamic properties of water on both pristine and strained phosphorene. Our simulations indicate that the diffusion of water molecules on the phosphorene surface is anisotropic, with strain-enhanced diffusion clearly present, which arises from strain-induced smoothing of the energy landscape. The contact angle of water droplet on phosphorene exhibits a non-monotonic variation with the transverse strain. The structure of water on transverse stretched phosphorene is demonstrated to be different from that on longitudinal stretched phosphorene. Moreover, the contact angle of water on strained phosphorene is proportional to the quotient of the longitudinal and transverse diffusion coefficients of the interfacial water. These findings thereby offer helpful insights into the mechanism of the wetting and transport of water at nanoscale, and provide a better foundation for future biomedical applications of phosphorene.

  5. Exploring Mediating Effect of Metacognitive Awareness on Comprehension of Science Texts through Structural Equation Modeling Analysis

    Science.gov (United States)

    Wang, Jing-Ru; Chen, Shin-Feng

    2014-01-01

    This study used a Chinese-language version of the Index of Science Reading Awareness (ISRA) to investigate metacognitive awareness and the Reading Comprehension of Science Test (RCST) to explore comprehension of science text by Taiwanese students. Structural equation modeling (SEM) results confirmed the validity of the underlying models of…

  6. Global efficiency of structural networks mediates cognitive control in mild cognitive impairment

    NARCIS (Netherlands)

    Berlot, R. (Rok); Metzler-Baddeley, C. (Claudia); M.A. Ikram (Arfan); Jones, D.K. (Derek K.); O'Sullivan, M.J. (Michael J.)

    2016-01-01

    markdownabstract__Background:__ Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. __Objective:__ To determine the contribution of both localized white m

  7. Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances.

    Science.gov (United States)

    Junker, Laura Verena; Kleiber, Anita; Jansen, Kirstin; Wildhagen, Henning; Hess, Moritz; Kayler, Zachary; Kammerer, Bernd; Schnitzler, Jörg-Peter; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo

    2017-01-10

    For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change.

  8. Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances

    Science.gov (United States)

    Junker, Laura Verena; Kleiber, Anita; Jansen, Kirstin; Wildhagen, Henning; Hess, Moritz; Kayler, Zachary; Kammerer, Bernd; Schnitzler, Jörg-Peter; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo

    2017-01-01

    For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change. PMID:28071755

  9. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Vicky Goler-Baron

    Full Text Available Multidrug resistance (MDR is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and

  10. Temperature-Independent Nuclear Quantum Effects on the Structure of Water

    Science.gov (United States)

    Kim, Kyung Hwan; Pathak, Harshad; Späh, Alexander; Perakis, Fivos; Mariedahl, Daniel; Sellberg, Jonas A.; Katayama, Tetsuo; Harada, Yoshihisa; Ogasawara, Hirohito; Pettersson, Lars G. M.; Nilsson, Anders

    2017-08-01

    Nuclear quantum effects (NQEs) have a significant influence on the hydrogen bonds in water and aqueous solutions and have thus been the topic of extensive studies. However, the microscopic origin and the corresponding temperature dependence of NQEs have been elusive and still remain the subject of ongoing discussion. Previous x-ray scattering investigations indicate that NQEs on the structure of water exhibit significant temperature dependence [Phys. Rev. Lett. 94, 047801 (2005), 10.1103/PhysRevLett.94.047801]. Here, by performing wide-angle x-ray scattering of H2O and D2O droplets at temperatures from 275 K down to 240 K, we determine the temperature dependence of NQEs on the structure of water down to the deeply supercooled regime. The data reveal that the magnitude of NQEs on the structure of water is temperature independent, as the structure factor of D2O is similar to H2O if the temperature is shifted by a constant 5 K, valid from ambient conditions to the deeply supercooled regime. Analysis of the accelerated growth of tetrahedral structures in supercooled H2O and D2O also shows similar behavior with a clear 5 K shift. The results indicate a constant compensation between NQEs delocalizing the proton in the librational motion away from the bond and in the OH stretch vibrational modes along the bond. This is consistent with the fact that only the vibrational ground state is populated at ambient and supercooled conditions.

  11. Structure and adsorption of water in non-uniform cylindrical nanopores

    Science.gov (United States)

    Lakatos, Greg; Torrie, Glenn; Patey, Gren

    2010-03-01

    Grand canonical Monte Carlo simulations are used to examine the adsorption and structure of water in the interior of cylindrical nanopores with non-uniform surfaces. Nanopores with radii in the range of 0.45 to 1.2nm are considered, and the axial symmetry of the nanopores is broken by varying the radius as a function of position along the pore axis, or by introducing regions where the strength of the water-nanopore interaction is reduced. Water in filled pores with a 0.6nm radius, exists in either a weakly structured fluid-like state, or a structured polarized state, with a pentagonal cross section. This structured state can be disrupted by creating hydrophobic regions on the nanopore surface, and the degree of disruption can be controlled by adjusting the size of these regions. Similarly, spatial variation in the nanopore radius can produce two condensation transitions, and vapor-liquid, and solid-liquid co-existences at points along the filling isotherm. This ability to control water structure through nanopore surface modification holds promise for the development of tunable nanoscale fluid conduits and storage devices.

  12. Water structure-forming capabilities are temperature shifted for different models.

    Science.gov (United States)

    Shevchuk, Roman; Prada-Gracia, Diego; Rao, Francesco

    2012-06-28

    A large number of water models exist for molecular simulations. They differ in the ability to reproduce specific features of real water instead of others, like the correct temperature for the density maximum or the diffusion coefficient. Past analysis mostly concentrated on ensemble quantities, while few data were reported on the different microscopic behavior. Here, we compare seven widely used classical water models (SPC, SPC/E, TIP3P, TIP4P, TIP4P-Ew, TIP4P/2005, and TIP5P) in terms of their local structure-forming capabilities through hydrogen bonds for temperatures ranging from 210 to 350 K by the introduction of a set of order parameters taking into account the configuration of up to the second solvation shell. We found that all models share the same structural pattern up to a temperature shift. When this shift is applied, all models overlap onto a master curve. Interestingly, increased stabilization of fully coordinated structures extending to at least two solvation shells is found for models that are able to reproduce the correct position of the density maximum. Our results provide a self-consistent atomic-level structural comparison protocol, which can be of help in elucidating the influence of different water models on protein structure and dynamics.

  13. Sensitivity analysis for linear structural equation models, longitudinal mediation with latent growth models and blended learning in biostatistics education

    Science.gov (United States)

    Sullivan, Adam John

    In chapter 1, we consider the biases that may arise when an unmeasured confounder is omitted from a structural equation model (SEM) and sensitivity analysis techniques to correct for such biases. We give an analysis of which effects in an SEM are and are not biased by an unmeasured confounder. It is shown that a single unmeasured confounder will bias not just one but numerous effects in an SEM. We present sensitivity analysis techniques to correct for biases in total, direct, and indirect effects when using SEM analyses, and illustrate these techniques with a study of aging and cognitive function. In chapter 2, we consider longitudinal mediation with latent growth curves. We define the direct and indirect effects using counterfactuals and consider the assumptions needed for identifiability of those effects. We develop models with a binary treatment/exposure followed by a model where treatment/exposure changes with time allowing for treatment/exposure-mediator interaction. We thus formalize mediation analysis with latent growth curve models using counterfactuals, makes clear the assumptions and extends these methods to allow for exposure mediator interactions. We present and illustrate the techniques with a study on Multiple Sclerosis(MS) and depression. In chapter 3, we report on a pilot study in blended learning that took place during the Fall 2013 and Summer 2014 semesters here at Harvard. We blended the traditional BIO 200: Principles of Biostatistics and created ID 200: Principles of Biostatistics and epidemiology. We used materials from the edX course PH207x: Health in Numbers: Quantitative Methods in Clinical & Public Health Research and used. These materials were used as a video textbook in which students would watch a given number of these videos prior to class. Using surveys as well as exam data we informally assess these blended classes from the student's perspective as well as a comparison of these students with students in another course, BIO 201

  14. Mediators of maternal depression and family structure on child BMI: parenting quality and risk factors for child overweight.

    Science.gov (United States)

    McConley, Regina L; Mrug, Sylvie; Gilliland, M Janice; Lowry, Richard; Elliott, Marc N; Schuster, Mark A; Bogart, Laura M; Franzini, Luisa; Escobar-Chaves, Soledad L; Franklin, Frank A

    2011-02-01

    Risk factors for child obesity may be influenced by family environment, including maternal depression, family structure, and parenting quality. We tested a path model in which maternal depression and single parent status are associated with parenting quality, which relates to three risk factors for child obesity: diet, leisure, and sedentary behavior. Participants included 4,601 5th-grade children and their primary caregivers who participated in the Healthy Passages study. Results showed that associations of maternal depression and single parenthood with child BMI are mediated by parenting quality and its relation to children's leisure activity and sedentary behavior. Interventions for child obesity may be more successful if they target family environment, particularly parenting quality and its impact on children's active and sedentary behaviors.

  15. Interfacial and physico-chemical properties of polymer-supported CdSZnS nanocomposites and their role in the visible-light mediated photocatalytic splitting of water.

    Science.gov (United States)

    Deshpande, Aparna; Shah, Pallavi; Gholap, R S; Gupta, Narendra M

    2009-05-01

    Nano-composite CdSZnS moieties coated over polyester strip were found to exhibit better visible-light-mediated photo-activity for splitting of water, as compared to corresponding pure CdS or ZnS containing coupons. This increase in activity depended upon the mol ratio of the two component sulphides in a particular sample. HRTEM experiments revealed the presence of 1-3 nm size CdS particles embedded over larger size ZnS clusters, the composite samples thus functioning as a highly dispersed guest-host system. In the case of CdS and ZnS dispersed individually over polyester, average crystallite size was found to be around 5 and 15 nm, respectively. A blue shift was observed in the UV-vis absorption spectrum of CdS on addition of ZnS, in conformation with the quantum size effects. Powder XRD, electron diffraction and XPS studies showed that the nanocomposites were comprised of the face-centered cubic (alpha) phases of both CdS and ZnS in a close contact with each other. At the same time, certain solid solution phases, i.e. Cd(1-x)Zn(x)S, were generated at the interfaces of these two semiconductors. Our study demonstrates that the increase in the number of reaction sites due to smaller size of CdS particles and the micro-structural properties associated with the nanostructured CdS or CdS/ZnS interfaces may together play a vital role in the augmented catalytic activity of CdSZnS composite photocatalysts.

  16. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships

    Directory of Open Access Journals (Sweden)

    Di Pietro A.

    1999-01-01

    Full Text Available Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp, a plasma membrane ATP-binding cassette (ABC transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR. In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.

  17. Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites.

    Science.gov (United States)

    Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Vaudin, Mark D; Skrtic, Drago; Antonucci, Joseph M; Hoffman, Kathleen M; Giuseppetti, Anthony A; Ilavsky, Jan

    2014-10-01

    To investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to local structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. For the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified. Copyright © 2014 Academy of Dental Materials. All rights reserved.

  18. Structural basis of HutP-mediated transcription anti-termination.

    Science.gov (United States)

    Kumar, Penmetcha K R; Kumarevel, Thirumananseri; Mizuno, Hiroshi

    2006-02-01

    Bacteria often use anti-terminator proteins to sense a specific metabolite signal and direct RNA polymerase to either terminate transcription or transcribe the downstream genes of an operon. Although many proteins that regulate various operons using this mechanism have been identified, insights into their activation processes before cognate mRNA binding have remained obscure. HutP from Bacillus subtilis regulates the hut operon by an anti-termination mechanism. Recently, several crystal structures of HutP [apo-HutP, HutP-L-histidine (and histidine analog), HutP-L-histidine-Mg(2+) and HutP-L-histidine-Mg(2+)-RNA] have been reported. These structural and functional studies of HutP have revealed how the protein undergoes conformational changes in response to two key components: L-histidine and Mg(2+) ions.

  19. Structural Basis for Eculizumab-Mediated Inhibition of the Complement Terminal Pathway

    DEFF Research Database (Denmark)

    Schatz-Jakobsen, Janus Asbjørn; zhang, yuchun; Johnson, Krista

    2016-01-01

    the proinflammatory metabolite C5a and formation of the membrane attack complex via C5b. Here we present the crystal structure of the complex between C5 and a Fab fragment with the same sequence as eculizumab at a resolution of 4.2 Å. Five complementarity determining regions (CDRs) contact the C5 MG7 domain, which......Eculizumab is a humanized monoclonal antibody approved for treatment of patients with paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uraemic syndrome. Eculizumab binds complement component C5 and prevents its cleavage by C5 convertases, inhibiting release of both...... contains the entire epitope. A complete mutational scan of the sixty-six CDR residues identified twenty-eight residues as important for the C5-eculizumab interaction, and the structure of the complex offered an explanation for the reduced C5-binding observed for these mutant antibodies. Furthermore...

  20. Thermodynamic, diffusional, and structural anomalies in rigid-body water models.

    Science.gov (United States)

    Agarwal, Manish; Alam, Mohammad Parvez; Chakravarty, Charusita

    2011-06-02

    Structural, density, entropy, and diffusivity anomalies of the TIP4P/2005 model of water are mapped out over a wide range of densities and temperatures. The locus of temperatures of maximum density