WorldWideScience

Sample records for waters mediate structural

  1. Water-mediated ionic interactions in protein structures

    Indian Academy of Sciences (India)

    ISHWARYA( R SARANI( M KIRTI VAISHNAVI and K SEKAR. Supplementary table 1. List of complete water-mediated ionic interactions formed by different combinations of charged atoms and their corresponding occurrences. S. No. Type.

  2. Water-mediated variability in the structure of relaxed-state haemoglobin

    International Nuclear Information System (INIS)

    Kaushal, Prem Singh; Sankaranarayanan, R.; Vijayan, M.

    2008-01-01

    Partial dehydration of high-salt horse methaemoglobin crystals tends to shift the structure from the R state to the R2 state, in agreement with previous observations that movements in the molecule resulting from changes in water content mimic those involved in protein action. The crystal structure of high-salt horse methaemoglobin has been determined at environmental relative humidities (r.h.) of 88, 79, 75 and 66%. The molecule is in the R state in the native and the r.h. 88% crystals. At r.h. 79%, the water content of the crystal is reduced and the molecule appears to move towards the R2 state. The crystals undergo a water-mediated transformation involving a doubling of one of the unit-cell parameters and an increase in water content when the environmental humidity is further reduced to r.h. 75%. The water content is now similar to that in the native crystals and the molecules are in the R state. The crystal structure at r.h. 66% is similar, but not identical, to that at r.h. 75%, but the solvent content is substantially reduced and the molecules have a quaternary structure that is in between those corresponding to the R and R2 states. Thus, variation in hydration leads to variation in the quaternary structure. Furthermore, partial dehydration appears to shift the structure from the R state to the R2 state. This observation is in agreement with the earlier conclusion that the changes in protein structure that accompany partial dehydration are similar to those that occur during protein action

  3. Structural, mutagenic and in silico studies of xyloglucan fucosylation in Arabidopsis thaliana suggest a water-mediated mechanism.

    Science.gov (United States)

    Urbanowicz, Breeanna R; Bharadwaj, Vivek S; Alahuhta, Markus; Peña, Maria J; Lunin, Vladimir V; Bomble, Yannick J; Wang, Shuo; Yang, Jeong-Yeh; Tuomivaara, Sami T; Himmel, Michael E; Moremen, Kelley W; York, William S; Crowley, Michael F

    2017-09-01

    The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely because of the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase 1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2-fucosyl residues to xyloglucan side chains - a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X-ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable the sufficient production of the enzyme for X-ray crystallography, which reveals the structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. The lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water-mediated fucosylation mechanism facilitated by an H-bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Structure-mediated nanoscopy

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew Rafael; Aabo, Thomas

    2013-01-01

    of optimal light-sculpting techniques [4] with the use of optimized shapes in micro-robotics structures [5]. Micro-fabrication processes such as two-photon photo-polymerization offer three-dimensional resolutions for creating custom-designed monolithic microstructures that can be equipped with optical...... that are utilized in conventional optical trapping and manipulation. We took this approach to extend the opto-mechanical light-force driven capabilities by including functionalised mechanisms to the fabricated monolithic structures. Aided by collaborators who fabricated test structures with built-in waveguides...

  5. Interactive ion-mediated sap flow regulation in olive and laurel stems: physicochemical characteristics of water transport via the pit structure.

    Science.gov (United States)

    Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, TaeJoo; Lee, Sang Joon

    2014-01-01

    Sap water is distributed and utilized through xylem conduits, which are vascular networks of inert pipes important for plant survival. Interestingly, plants can actively regulate water transport using ion-mediated responses and adapt to environmental changes. However, ionic effects on active water transport in vascular plants remain unclear. In this report, the interactive ionic effects on sap transport were systematically investigated for the first time by visualizing the uptake process of ionic solutions of different ion compositions (K+/Ca2+) using synchrotron X-ray and neutron imaging techniques. Ionic solutions with lower K+/Ca2+ ratios induced an increased sap flow rate in stems of Olea europaea L. and Laurus nobilis L. The different ascent rates of ionic solutions depending on K+/Ca2+ ratios at a fixed total concentration increases our understanding of ion-responsiveness in plants from a physicochemical standpoint. Based on these results, effective structural changes in the pit membrane were observed using varying ionic ratios of K+/Ca2+. The formation of electrostatically induced hydrodynamic layers and the ion-responsiveness of hydrogel structures based on Hofmeister series increase our understanding of the mechanism of ion-mediated sap flow control in plants.

  6. Water Transport Mediated by Other Membrane Proteins.

    Science.gov (United States)

    Huang, Boyue; Wang, Hongkai; Yang, Baoxue

    2017-01-01

    Water transport through membrane is so intricate that there are still some debates. (Aquaporins) AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters , however, are also concerned in water homeotatsis. Urea transporter B (UT-B) has a single-channel water permeability that is similar to AQP1. Cystic fibrosis transmembrane conductance regulator (CFTR ) was initially thought as a water channel but now not believed to transport water directly. By cotranporters, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs .

  7. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  8. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  9. Water structure around trehalose

    Energy Technology Data Exchange (ETDEWEB)

    Pagnotta, S.E. [Dipartimento di Fisica ' E. Amaldi' , Universita di Roma Tre, Via della Vasca Navale 84, 00146 Roma (Italy); CNISM-CNR, Unita di Roma Tre, Via della Vasca Navale 84, 00146 Roma (Italy)], E-mail: pagnotta@fis.uniroma3.it; Ricci, M.A.; Bruni, F. [Dipartimento di Fisica ' E. Amaldi' , Universita di Roma Tre, Via della Vasca Navale 84, 00146 Roma (Italy); McLain, S. [ISIS Facility, Rutherford Appleton Laboratories, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Magazu, S. [Dipartimento di Fisica, Universita di Messina, C. da Papardo 31, 98166 Messina (Italy)

    2008-04-18

    A diluted solution of trehalose in water has been investigated by means of neutron diffraction with isotopic H/D substitution of the water hydrogens. Data have been analyzed in terms of site-site radial distribution functions, via the EPSR simulation code. This is the first time that the capabilities of this data refinement method are tested against neutron diffraction data of a complex carbohydrate molecule. A small perturbation of water hydration shell and short hydrogen bonds between trehalose oxygens and water hydrogens has been evidenced.

  10. Capital Structure: Target Adjustment Model and a Mediation Moderation Model with Capital Structure as Mediator

    OpenAIRE

    Abedmajid, Mohammed

    2015-01-01

    This study consists of two models. Model one is conducted to check if there is a target adjustment toward optimal capital structure, in the context of Turkish firm listed on the stock market, over the period 2003-2014. Model 2 captures the interaction between firm size, profitability, market value and capital structure using the moderation mediation model. The results of model 1 have shown that there is a partial adjustment of the capital structure to reach target levels. The results of...

  11. The structure of liquid water

    International Nuclear Information System (INIS)

    Marin, B.

    1969-01-01

    We have tried to expose a bibliography so complete as possible on structure of liquid water. One synthesis of the different models of water structure is presently impossible, so, we have exposed the main properties of water. We have pointed out the new hypotheses on the electronic structure of water molecule and on the theory of hydrogen bond. After that, we have put together the studies of structure by spectroscopy and given the main deductions of some workers on this subject. We have also exposed the characteristics of processes: relaxation and dielectric constant, influence of temperature on structure. At last, we have considered briefly the partition and thermodynamic functions established from the various models proposed. (author) [fr

  12. Proton Transfer in Nucleobases is Mediated by Water

    Energy Technology Data Exchange (ETDEWEB)

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  13. Activism and the Online Mediation Opportunity Structure

    DEFF Research Database (Denmark)

    Uldam, Julie

    2013-01-01

    The annual United Nations (UN) Framework Convention on Climate Change conferences provides a transnational mediation opportunity structure for activist networks to contest policies that favor market-based models for solving the climate crisis. Online technologies, including commercial social media......, have arguably increased possibilities for being involved in protests on a transnational level. However, this article shows how online modes of action privilege lobbying tactics over civil disobedience tactics, arguing that the former is often incommensurate with an anticapitalist climate approach...... to climate change activism. This impedes possibilities for using online media to protest at the radical end of the climate justice movement spectrum. This article explores this interrelationship between activist demands and (online) modes of action through a focus on the mobilization efforts of London...

  14. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  15. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  16. Mediated water electrolysis in biphasic systems.

    Science.gov (United States)

    Scanlon, Micheál D; Peljo, Pekka; Rivier, Lucie; Vrubel, Heron; Girault, Hubert H

    2017-08-30

    The concept of efficient electrolysis by linking photoelectrochemical biphasic H 2 evolution and water oxidation processes in the cathodic and anodic compartments of an H-cell, respectively, is introduced. Overpotentials at the cathode and anode are minimised by incorporating light-driven elements into both biphasic reactions. The concepts viability is demonstrated by electrochemical H 2 production from water splitting utilising a polarised water-organic interface in the cathodic compartment of a prototype H-cell. At the cathode the reduction of decamethylferrocenium cations ([Cp 2 *Fe (III) ] + ) to neutral decamethylferrocene (Cp 2 *Fe (II) ) in 1,2-dichloroethane (DCE) solvent takes place at the solid electrode/oil interface. This electron transfer process induces the ion transfer of a proton across the immiscible water/oil interface to maintain electroneutrality in the oil phase. The oil-solubilised proton immediately reacts with Cp 2 *Fe (II) to form the corresponding hydride species, [Cp 2 *Fe (IV) (H)] + . Subsequently, [Cp 2 *Fe (IV) (H)] + spontaneously undergoes a chemical reaction in the oil phase to evolve hydrogen gas (H 2 ) and regenerate [Cp 2 *Fe (III) ] + , whereupon this catalytic Electrochemical, Chemical, Chemical (ECC') cycle is repeated. During biphasic electrolysis, the stability and recyclability of the [Cp 2 *Fe (III) ] + /Cp 2 *Fe (II) redox couple were confirmed by chronoamperometric measurements and, furthermore, the steady-state concentration of [Cp 2 *Fe (III) ] + monitored in situ by UV/vis spectroscopy. Post-biphasic electrolysis, the presence of H 2 in the headspace of the cathodic compartment was established by sampling with gas chromatography. The rate of the biphasic hydrogen evolution reaction (HER) was enhanced by redox electrocatalysis in the presence of floating catalytic molybdenum carbide (Mo 2 C) microparticles at the immiscible water/oil interface. The use of a superhydrophobic organic electrolyte salt was critical to

  17. Relationship between mediation analysis and the structured life course approach

    Science.gov (United States)

    Howe, Laura D; Smith, Andrew D; Macdonald-Wallis, Corrie; Anderson, Emma L; Galobardes, Bruna; Lawlor, Debbie A; Ben-Shlomo, Yoav; Hardy, Rebecca; Cooper, Rachel; Tilling, Kate; Fraser, Abigail

    2016-01-01

    Abstract Many questions in life course epidemiology involve mediation and/or interaction because of the long latency period between exposures and outcomes. In this paper, we explore how mediation analysis (based on counterfactual theory and implemented using conventional regression approaches) links with a structured approach to selecting life course hypotheses. Using theory and simulated data, we show how the alternative life course hypotheses assessed in the structured life course approach correspond to different combinations of mediation and interaction parameters. For example, an early life critical period model corresponds to a direct effect of the early life exposure, but no indirect effect via the mediator and no interaction between the early life exposure and the mediator. We also compare these methods using an illustrative real-data example using data on parental occupational social class (early life exposure), own adult occupational social class (mediator) and physical capability (outcome). PMID:27681097

  18. Relationship between mediation analysis and the structured life course approach.

    Science.gov (United States)

    Howe, Laura D; Smith, Andrew D; Macdonald-Wallis, Corrie; Anderson, Emma L; Galobardes, Bruna; Lawlor, Debbie A; Ben-Shlomo, Yoav; Hardy, Rebecca; Cooper, Rachel; Tilling, Kate; Fraser, Abigail

    2016-08-01

    Many questions in life course epidemiology involve mediation and/or interaction because of the long latency period between exposures and outcomes. In this paper, we explore how mediation analysis (based on counterfactual theory and implemented using conventional regression approaches) links with a structured approach to selecting life course hypotheses. Using theory and simulated data, we show how the alternative life course hypotheses assessed in the structured life course approach correspond to different combinations of mediation and interaction parameters. For example, an early life critical period model corresponds to a direct effect of the early life exposure, but no indirect effect via the mediator and no interaction between the early life exposure and the mediator. We also compare these methods using an illustrative real-data example using data on parental occupational social class (early life exposure), own adult occupational social class (mediator) and physical capability (outcome). © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  19. Mediator structure and rearrangements required for holoenzyme formation.

    Science.gov (United States)

    Tsai, Kuang-Lei; Yu, Xiaodi; Gopalan, Sneha; Chao, Ti-Chun; Zhang, Ying; Florens, Laurence; Washburn, Michael P; Murakami, Kenji; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J

    2017-04-13

    The conserved Mediator co-activator complex has an essential role in the regulation of RNA polymerase II transcription in all eukaryotes. Understanding the structure and interactions of Mediator is crucial for determining how the complex influences transcription initiation and conveys regulatory information to the basal transcription machinery. Here we present a 4.4 Å resolution cryo-electron microscopy map of Schizosaccharomyces pombe Mediator in which conserved Mediator subunits are individually resolved. The essential Med14 subunit works as a central backbone that connects the Mediator head, middle and tail modules. Comparison with a 7.8 Å resolution cryo-electron microscopy map of a Mediator-RNA polymerase II holoenzyme reveals that changes in the structure of Med14 facilitate a large-scale Mediator rearrangement that is essential for holoenzyme formation. Our study suggests that access to different conformations and crosstalk between structural elements are essential for the Mediator regulation mechanism, and could explain the capacity of the complex to integrate multiple regulatory signals.

  20. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction...

  1. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  2. Ambient iron-mediated aeration (IMA) for water reuse.

    Science.gov (United States)

    Deng, Yang; Englehardt, James D; Abdul-Aziz, Samer; Bataille, Tristan; Cueto, Josenrique; De Leon, Omar; Wright, Mary E; Gardinali, Piero; Narayanan, Aarthi; Polar, Jose; Tomoyuki, Shibata

    2013-02-01

    Global water shortages caused by rapidly expanding population, escalating water consumption, and dwindling water reserves have rendered water reuse a strategically significant approach to meet current and future water demand. This study is the first to our knowledge to evaluate the technical feasibility of iron-mediated aeration (IMA), an innovative, potentially economical, holistic, oxidizing co-precipitation process operating at room temperature, atmospheric pressure, and neutral pH, for water reuse. In the IMA process, dissolved oxygen (O₂) was continuously activated by zero-valent iron (Fe⁰) to produce reactive oxygen species (ROS) at ambient pH, temperature, and pressure. Concurrently, iron sludge was generated as a result of iron corrosion. Bench-scale tests were conducted to study the performance of IMA for treatment of secondary effluent, natural surface water, and simulated contaminated water. The following removal efficiencies were achieved: 82.2% glyoxylic acid, ~100% formaldehyde as an oxidation product of glyoxylic acid, 94% of Ca²⁺ and associated alkalinity, 44% of chemical oxygen demand (COD), 26% of electrical conductivity (EC), 98% of di-n-butyl phthalate (DBP), 80% of 17β-estradiol (E2), 45% of total nitrogen (TN), 96% of total phosphorus (TP), 99.8% of total Cr, >90% of total Ni, 99% of color, 3.2 log removal of total coliform, and 2.4 log removal of E. Coli. Removal was attributed principally to chemical oxidation, precipitation, co-precipitation, coagulation, adsorption, and air stripping concurrently occurring during the IMA treatment. Results suggest that IMA is a promising treatment technology for water reuse. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Water cooling of RF structures

    International Nuclear Information System (INIS)

    Battersby, G.; Zach, M.

    1994-06-01

    We present computer codes for heat transfer in water cooled rf cavities. RF parameters obtained by SUPERFISH or analytically are operated on by a set of codes using PLOTDATA, a command-driven program developed and distributed by TRIUMF [1]. Emphasis is on practical solutions with designer's interactive input during the computations. Results presented in summary printouts and graphs include the temperature, flow, and pressure data. (authors). 4 refs., 4 figs

  4. Kinetics of water-mediated proton transfer in our atmosphere

    International Nuclear Information System (INIS)

    Loerting, T.

    2000-07-01

    Variational transition state theory and multidimensional tunneling methods on hybrid density functional theory generated hypersurfaces have been used to investigate the temperature dependence of the reaction rate constants of water-mediated proton transfer reactions relevant to the chemistry of our atmosphere, namely the hydration of sulfur dioxide and sulfur trioxide and the decomposition of chlorine nitrate. Highly accurate reaction barriers were calculated using ab initio methods taking into account most of the electron correlation, namely CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ and G2(MP2). On comparing the determined rate constants with laboratory and atmospheric data, the following points could be established: All of the investigated reactions are highly sensitive to changes in humidity, as water acts as efficient catalyst, i.e., the barrier to the reaction is reduced drastically. Present-day atmospheric chemistry can only be explained when a limited number of water molecules is available for the formation of molecular clusters. Both in the troposphere and in the stratosphere SO 3 is hydrated rather than SO 2 . SO 2 emissions have to be oxidized, therefore, before being subject to hydration. A mechanism involving two or three water molecules is relevant for the production of sulfate aerosols, which play a decisive role in the context of global climate change and acid rain. A third water molecule has the function of assisting double-proton transfer rather than acting as active participant in triple-proton transfer in the case of the hydration of sulfur oxides. The observed ozone depletion above Arctica and Antarctica can be explained either by decomposition of chlorine nitrate in the presence of three water molecules (triple proton transfer) or by decomposition of chlorine nitrate in the presence of one molecule of HCl and one molecule of water (double proton transfer). The preassociation reaction required for homogeneous gas-phase conversion of chlorine

  5. Assessing Mediation Using Marginal Structural Models in the Presence of Confounding and Moderation

    Science.gov (United States)

    Coffman, Donna L.; Zhong, Wei

    2012-01-01

    This article presents marginal structural models with inverse propensity weighting (IPW) for assessing mediation. Generally, individuals are not randomly assigned to levels of the mediator. Therefore, confounders of the mediator and outcome may exist that limit causal inferences, a goal of mediation analysis. Either regression adjustment or IPW…

  6. Structural Insights into Ail-Mediated Adhesion in Yersinia pestis

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Satoshi; Lukacik, Petra; Barnard, Travis J.; Noinaj, Nicholas; Felek, Suleyman; Tsang, Tiffany M.; Krukonis, Eric S.; Hinnebusch, B. Joseph; Buchanan, Susan K. (Michigan); (NIH); (Michigan-Med)

    2012-01-30

    Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.

  7. Novel water-soluble curcumin derivative mediating erectile signaling.

    Science.gov (United States)

    Abdel Aziz, Mohamed Talaat; El Asmer, Mohammed F; Rezq, Ameen; Kumosani, Taha Abdullah; Mostafa, Samya; Mostafa, Taymour; Atta, Hazem; Abdel Aziz Wassef, Mohamed; Fouad, Hanan H; Rashed, Laila; Sabry, Dina; Hassouna, Amira A; Senbel, Amira; Abdel Aziz, Ahmed

    2010-08-01

    Curcumin is an inducer of heme oxygenase enzyme-1 (HO-1) that is involved in erectile signaling via elevating cyclic guanosine monophosphate (cGMP)levels. To assess the effect of oral administration of a water-soluble long-acting curcumin derivative on erectile signaling. Two hundred and thirty six male white albino rats were divided into four groups; group 1 (N = 20) includes control. Group 2 (N = 72) was equally divided into four subgroups; subgroup 1 received pure curcumin (10 mg/kg), subgroup 2 received the long-acting curcumin derivative (2 mg/kg), subgroup 3 received the long-acting curcumin derivative (10 mg/kg), and subgroup 4 received sildenafil (4 mg/kg). Subgroups were sacrificed after the first, second, and third hour. Group 3 (N = 72) was equally divided into the same four subgroups already mentioned and were sacrificed after 24 hours, 48 hours, and 1 week. Group 4 (N = 72) was subjected to intracavernosal pressure (ICP) measurements 1 hour following oral administration of the same previous doses in the same rat subgroups. Cavernous tissue HO enzyme activity, cGMP, and ICP. In group 2, there was a significant progressive maintained elevation of HO activity and cGMP tissue levels starting from the first hour in subgroups 3 and 4, whereas, the rise in HO activity and cGMP started from second hour regarding the other rat subgroups. Sildenafil effect decreased after 3 hours. In group 3, there was a significant maintained elevation of HO activity and cGMP tissue levels extended to 1 week as compared to controls for all rat subgroups that received both forms of curcumin. In group 4, long-acting curcumin derivative exhibited more significant potentiation of intracavernosal pressure as compared to control and to the pure curcumin. Water-soluble long-acting curcumin derivative could mediate erectile function via upregulating cavernous tissue cGMP. © 2009 International Society for Sexual Medicine.

  8. AFM Structural Characterization of Drinking Water Biofilm ...

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  9. Assessing mediation using marginal structural models in the presence of confounding and moderation

    OpenAIRE

    Coffman, Donna L.; Zhong, Wei

    2012-01-01

    This paper presents marginal structural models (MSMs) with inverse propensity weighting (IPW) for assessing mediation. Generally, individuals are not randomly assigned to levels of the mediator. Therefore, confounders of the mediator and outcome may exist that limit causal inferences, a goal of mediation analysis. Either regression adjustment or IPW can be used to take confounding into account, but IPW has several advantages. Regression adjustment of even one confounder of the mediator and ou...

  10. Perspective on the structure of liquid water

    International Nuclear Information System (INIS)

    Nilsson, A.; Pettersson, L.G.M.

    2011-01-01

    Graphical abstract: Liquid water can be described in a fluctuating inhomogeneous picture with two local structural motifs that are spatially separated. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds giving higher density (yellow), which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations (blue), i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. Highlights: ► Two components maximizing either enthalpy (tetrahedral, low-density) or entropy (non-specific H-bonding, higher density). ► Interconvert discontinuously and ratio depends on temperature. ► Density fluctuations on 1 nm length scale. ► Increasing size in supercooled region. ► Connection to Widom line and 2nd critical point. - Abstract: We present a picture that combines discussions regarding the thermodynamic anomalies in ambient and supercooled water with recent interpretations of X-ray spectroscopy and scattering data of water in the ambient regime. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds, which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations, i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. The two local structures are connected to the liquid–liquid critical point hypothesis in supercooled water corresponding to high density liquid and low density liquid. We will discuss the interpretation of X-ray absorption spectroscopy, X-ray emission

  11. Modeling Equity for Alternative Water Rate Structures

    Science.gov (United States)

    Griffin, R.; Mjelde, J.

    2011-12-01

    The rising popularity of increasing block rates for urban water runs counter to mainstream economic recommendations, yet decision makers in rate design forums are attracted to the notion of higher prices for larger users. Among economists, it is widely appreciated that uniform rates have stronger efficiency properties than increasing block rates, especially when volumetric prices incorporate intrinsic water value. Yet, except for regions where water market purchases have forced urban authorities to include water value in water rates, economic arguments have weakly penetrated policy. In this presentation, recent evidence will be reviewed regarding long term trends in urban rate structures while observing economic principles pertaining to these choices. The main objective is to investigate the equity of increasing block rates as contrasted to uniform rates for a representative city. Using data from four Texas cities, household water demand is established as a function of marginal price, income, weather, number of residents, and property characteristics. Two alternative rate proposals are designed on the basis of recent experiences for both water and wastewater rates. After specifying a reasonable number (~200) of diverse households populating the city and parameterizing each household's characteristics, every household's consumption selections are simulated for twelve months. This procedure is repeated for both rate systems. Monthly water and wastewater bills are also computed for each household. Most importantly, while balancing the budget of the city utility we compute the effect of switching rate structures on the welfares of households of differing types. Some of the empirical findings are as follows. Under conditions of absent water scarcity, households of opposing characters such as low versus high income do not have strong preferences regarding rate structure selection. This changes as water scarcity rises and as water's opportunity costs are allowed to

  12. Brain structure mediates the association between height and cognitive ability.

    Science.gov (United States)

    Vuoksimaa, Eero; Panizzon, Matthew S; Franz, Carol E; Fennema-Notestine, Christine; Hagler, Donald J; Lyons, Michael J; Dale, Anders M; Kremen, William S

    2018-05-11

    Height and general cognitive ability are positively associated, but the underlying mechanisms of this relationship are not well understood. Both height and general cognitive ability are positively associated with brain size. Still, the neural substrate of the height-cognitive ability association is unclear. We used a sample of 515 middle-aged male twins with structural magnetic resonance imaging data to investigate whether the association between height and cognitive ability is mediated by cortical size. In addition to cortical volume, we used genetically, ontogenetically and phylogenetically distinct cortical metrics of total cortical surface area and mean cortical thickness. Height was positively associated with general cognitive ability and total cortical volume and cortical surface area, but not with mean cortical thickness. Mediation models indicated that the well-replicated height-general cognitive ability association is accounted for by individual differences in total cortical volume and cortical surface area (highly heritable metrics related to global brain size), and that the genetic association between cortical surface area and general cognitive ability underlies the phenotypic height-general cognitive ability relationship.

  13. Appropriate administrative structures in harnessing water resources ...

    African Journals Online (AJOL)

    Appropriate administrative structures in harnessing water resources for sustainable growth in Nigeria. Lekan Oyebande. Abstract. No Abstract. Journal of Mining and Geology Vol. 42(1) 2006: 21-30. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  14. Killing mediated spatial structure in V. Cholerae biofilms

    Science.gov (United States)

    Yanni, David

    Most bacteria live in biofilms, which are implicated in 60 - 80 % of microbial infections in the body. The spatial structure of a biofilm confers advantages to its member-cells, such as antibiotic resistance, and is strongly affected by competition between strains and taxa. However, A complete picture of how competition affects the self-organized structure of these complex, far-from-equilibrium systems, is yet to emerge. To that end, we investigate phase separation dynamics driven by T6SS-facilitated bacterial warfare in a system composed of two strains of mutually antagonistic V. cholerae. T6SS is a contact mediated killing mechanism present in 25 % of all gram negative bacteria, and has been shown by recent work to play a major role in the spatial assortment of biofilms. T6SS events induce lysis, causing variations in local mechanical pressure, and acting as thermalizing events. We study cells immobilized in biofilms at the air-solid interface, so our experimental system represents a different type active matter, wherein activity is due to cell death and reproduction, not mobility. Here, we show how that activity imposes a constraint of minimal curvature on strain-strain interfaces; an effective Laplace pressure is characterized which governs interfacial dynamics.

  15. Habitat structure mediates biodiversity effects on ecosystem properties.

    Science.gov (United States)

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  16. Climate mediates the effects of disturbance on ant assemblage structure

    Science.gov (United States)

    Gibb, Heloise; Sanders, Nathan J.; Dunn, Robert R.; Watson, Simon; Photakis, Manoli; Abril, Silvia; Andersen, Alan N.; Angulo, Elena; Armbrecht, Inge; Arnan, Xavier; Baccaro, Fabricio B.; Bishop, Tom R.; Boulay, Raphael; Castracani, Cristina; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A.; Enríquez, Martha L.; Fayle, Tom M.; Feener, Donald H.; Fitzpatrick, Matthew C.; Gómez, Crisanto; Grasso, Donato A.; Groc, Sarah; Heterick, Brian; Hoffmann, Benjamin D.; Lach, Lori; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Majer, Jonathan; Menke, Sean B.; Mezger, Dirk; Mori, Alessandra; Munyai, Thinandavha C.; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M.; de Souza, Jorge L. P.; Tista, Melanie; Vasconcelos, Heraldo L.; Vonshak, Merav; Parr, Catherine L.

    2015-01-01

    Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk. PMID:25994675

  17. Factors mediating the restoration of structurally degraded soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Schjønning, Per

    with the ability of soils to perform these functions. The present study examines the roles of clay mineralogy, native organic matter, and exogenous organic material on the restoration of structurally degraded soils. Totally seven soils from Denmark and Ghana - five soils dominated by illites, one kaolinitic soil...... the incubation period, structural stability estimated as the amount of water-dispersible clay decreased with prevailing moisture content, and native organic matter. Also, microbial activity significantly increased with addition of exogenous organic matter. At the end of incubation, there was significant...... macroaggregation, decreased bulk density, and increased equivalent pore diameter and tortuosity (derived from measurements of soil-gas diffusivity and soil-air permeability) for all soils. Although aggregate friability was not affected by clay type, aggregate workability was highest for the kaolinitic soil...

  18. Analysis of fluid structural instability in water

    International Nuclear Information System (INIS)

    Piccirillo, N.

    1997-02-01

    Recent flow testing of stainless steel hardware in a high pressure/high temperature water environment produced an apparent fluid-structural instability. The source of instability was investigated by studying textbook theory and by performing NASTRAN finite element analyses. The modal analyses identified the mode that was being excited, but the flutter instability analysis showed that the design is stable if minimal structural damping is present. Therefore, it was suspected that the test hardware was the root cause of the instability. Further testing confirmed this suspicion

  19. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  20. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I.; Marini, Monica; Das, Gobind; Elshenawy, Mohamed; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed Abdelmaboud; Stingl, Ulrich; Merzaban, Jasmeen; Di Fabrizio, Enzo M.; Hamdan, Samir

    2018-01-01

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  1. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

    Science.gov (United States)

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I; Marini, Monica; Das, Gobind; Elshenawy, Mohamed M; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed A; Stingl, Ulrich; Merzaban, Jasmeen S; Di Fabrizio, Enzo; Hamdan, Samir M

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  2. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  3. Water-mediated tautomerization of cytosine to the rare imino form: An ab initio dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Fogarasi, Geza [Institute of Chemistry, Eotvos University, H-1518 Budapest, Pf. 32. (Hungary)], E-mail: fg@chem.elte.hu

    2008-06-16

    Tautomerism in nucleotide bases is one of the possible mechanisms of mutation of DNA. In spite of numerous studies on the structure and energy of cytosine tautomers, little information is available on the process of proton transfer itself. We present here Born-Oppenheimer dynamics calculations, with the potential surface obtained 'on the fly' from ab initio quantum chemistry (QC) and the atoms moving classically. In search for water-mediated tautomerization the monohydrated complex was studied, running about 300 trajectories each of 3000-5000 points of 1 fs steps. One single trajectory has been found to lead to tautomerization. Although the QC method used in the simulations was inevitably modest (B3LYP/3-21G), higher-level test calculations along the same trajectory suggest that the simulation grasped the basic mechanism of proton transfer: a concerted, synchronous process characterized by strong coupling between the motions of the two participating hydrogen atoms.

  4. Water-mediated interactions between trimethylamine-N-oxide and urea.

    Science.gov (United States)

    Hunger, Johannes; Ottosson, Niklas; Mazur, Kamila; Bonn, Mischa; Bakker, Huib J

    2015-01-07

    The amphiphilic osmolyte trimethylamine-N-oxide (TMAO) is commonly found in natural organisms, where it counteracts biochemical stress associated with urea in aqueous environments. Despite the important role of TMAO as osmoprotectant, the mechanism behind TMAO's action has remained elusive. Here, we study the interaction between urea, TMAO, and water in solution using broadband (100 MHz-1.6 THz) dielectric spectroscopy. We find that the previously reported tight hydrogen bonds between 3 water molecules and the hydrophilic amine oxide group of TMAO, remain intact at all investigated concentrations of urea, showing that no significant hydrogen bonding occurs between the two co-solutes. Despite the absence of direct TMAO-urea interactions, the solute reorientation times of urea and TMAO show an anomalous nonlinear increase with concentration, for ternary mixtures containing equal amounts of TMAO and urea. The nonlinear increase of the reorientation correlates with changes in the viscosity, showing that the combination of TMAO and urea cooperatively enhances the hydrogen-bond structure of the ternary solutions. This nonlinear increase is indicative of water mediated interaction between the two solutes and is not observed if urea is combined with other amphiphilic solutes.

  5. [Crystallographic evaluation of structural changes in water].

    Science.gov (United States)

    Farashchuk, N F; Rakhmanin, Yu A; Savostikova, O N; Telenkova, O G

    2014-01-01

    The study of the structural state of tap water that has been stored for two days in the packaging materials of various type and in different conditions, was performed with the use of crystallographic method for the investigation of liquids based on a special approach for dehydration of the drop, which is a fixed thin "slice" of the examines liquid. Most organized crystallographic pattern was shown to observe in a drop of water after treatment Bioptron lamp (content of liquid-crystal associates (LCA)--6.90 ± 0.23), and stored in a silver vessel (content LCA--6.28 ± 0.17), and the least organized, almost amorphous precipitate is formed in a drop of water stored in plastic containers (content LCA--2.92 ± 0.15%). Basing on the obtained results, it can be concluded that the crystallographic method can be used for the identification of qualitative changes occurring in liquid water under the influence of various physical factors, for the identification of the rationality of the use of hereafter sophisticated quantitative techniques.

  6. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    Science.gov (United States)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  7. Structure of steam water mixture spray

    International Nuclear Information System (INIS)

    Mitsuhashi, Yuki; Mizutani, Hiroya; Sanada, Toshiyuki; Saito, Takayuki

    2008-01-01

    The flow structure of steam and water mixture spray is studied both numerically and experimentally. The velocity and pressure profiles of the single phase flow are calculated using numerical methods. Using calculated flow fields, the droplet behavior is predicted by the one-way interaction model. This numerical analysis clarifies that the droplets are still accelerated after they are sprayed from the nozzle. In the experiments, the spray of the mixture is observed by using ultra high-speed video camera, and the velocity field is measured by using PIV technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, mixing process of steam and water, and atomization process of liquid film are observed through the transparent nozzle. The high-speed photography observation reveals that the flow inside the nozzle forms the annular flow and the most of the liquid film is atomized at the nozzle outlet. Finally, the optimum method of processing mixture of steam and water is proposed. (author)

  8. Mediation pathways and effects of green structures on respiratory mortality via reducing air pollution

    OpenAIRE

    Shen, Yu-Sheng; Lung, Shih-Chun Candice

    2017-01-01

    Previous studies have shown both health and environmental benefits of green spaces, especially in moderating temperature and reducing air pollution. However, the characteristics of green structures have been overlooked in previous investigations. In addition, the mediation effects of green structures on respiratory mortality have not been assessed. This study explores the potential mediation pathways and effects of green structure characteristics on respiratory mortality through temperature, ...

  9. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.

    2016-10-31

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  10. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.; Sommers, J. M.; Viasus, C. J.; Wang, C. H T; Peneau, V.; Gambarotta, S.; Vidjayacoumar, B.; Al-Bahily, K. A.

    2016-01-01

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  11. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

    Science.gov (United States)

    De Rosa, Margherita; La Manna, Pellegrino; Talotta, Carmen; Soriente, Annunziata; Gaeta, Carmine; Neri, Placido

    2018-04-01

    In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively the substrates isolating they from the reaction environment. In addition, the synthetic versatilities of these macrocycles permits to introduce useful functional groups in close proximity of the hydrophobic binding sites. Regarding the cyclodextrins (CDs), we have here reviewed the their most recent uses as organocatalysts for the synthesis of heterocyclic compounds, in multi-component reactions and in carbon-carbon bond forming reactions. Examples have been reported in which CD catalysts are able to drive the regiochemistry of common organic reactions. In addition, cyclodextrins bearing catalytically active chiral groups, have shown excellent enantioselectivity in the catalysis of organic reactions. Recently reported results have shown that calixarene derivatives are able to accelerate organic reaction under "on-water" conditions with a significant selectivity toward the reactants. Under "on-water conditions" the hydrophobic effect, induced by insoluble calixarene derivatives, forces the reactants and the catalyst to aggregate and thus accelerating the reaction between them thanks to an amplification of weak secondary interactions. Regarding the use of water-soluble calixarene organocatalysts, we have here reviewed their role in the acceleration of common organic reactions.

  12. Anaerobic manganese- or iron-mediated pharmaceutical degradation in water

    NARCIS (Netherlands)

    Liu, Wenbo

    2018-01-01

    Pharmaceutical compounds, originating mainly from industrial production and public consumption, are detected at extremely low levels (ng·L-1 –µg·L-1) in groundwater, surface water, and wastewater. So far, the adverse effects of pharmaceuticals and their intermediates have been widely reported,

  13. Modeling elephant-mediated cascading effects of water point closure

    NARCIS (Netherlands)

    Hilbers, J.P.; Langevelde, van F.; Prins, H.H.T.; Grant, C.C.; Peel, M.; Coughenour, M.B.; Knegt, de H.J.; Slotow, R.; Smit, I.; Kiker, G.A.; Boer, de W.F.

    2015-01-01

    Wildlife management to reduce the impact of wildlife on their habitat can be done in several ways, among which removing animals (by either culling or translocation) is most often used. There are however alternative ways to control wildlife densities, such as opening or closing water points. The

  14. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

    Directory of Open Access Journals (Sweden)

    Margherita De Rosa

    2018-04-01

    Full Text Available In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively the substrates isolating they from the reaction environment. In addition, the synthetic versatilities of these macrocycles permits to introduce useful functional groups in close proximity of the hydrophobic binding sites. Regarding the cyclodextrins (CDs, we have here reviewed the their most recent uses as organocatalysts for the synthesis of heterocyclic compounds, in multi-component reactions and in carbon-carbon bond forming reactions. Examples have been reported in which CD catalysts are able to drive the regiochemistry of common organic reactions. In addition, cyclodextrins bearing catalytically active chiral groups, have shown excellent enantioselectivity in the catalysis of organic reactions. Recently reported results have shown that calixarene derivatives are able to accelerate organic reaction under “on-water” conditions with a significant selectivity toward the reactants. Under “on-water conditions” the hydrophobic effect, induced by insoluble calixarene derivatives, forces the reactants and the catalyst to aggregate and thus accelerating the reaction between them thanks to an amplification of weak secondary interactions. Regarding the use of water-soluble calixarene organocatalysts, we have here reviewed their role in the acceleration of

  15. Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures.

    Science.gov (United States)

    Hilgers, Roelant; Vincken, Jean-Paul; Gruppen, Harry; Kabel, Mirjam A

    2018-02-05

    Laccase-mediator systems (LMS) have been widely studied for their capacity to oxidize the nonphenolic subunits of lignin (70-90% of the polymer). The phenolic subunits (10-30% of the polymer), which can also be oxidized without mediators, have received considerably less attention. Consequently, it remains unclear to what extent the presence of a mediator influences the reactions of the phenolic subunits of lignin. To get more insight in this, UHPLC-MS was used to study the reactions of a phenolic lignin dimer (GBG), initiated by a laccase from Trametes versicolor , alone or in combination with the mediators HBT and ABTS. The role of HBT was negligible, as its oxidation by laccase occurred slowly in comparison to that of GBG. Laccase and laccase/HBT oxidized GBG at a comparable rate, resulting in extensive polymerization of GBG. In contrast, laccase/ABTS converted GBG at a higher rate, as GBG was oxidized both directly by laccase but also by ABTS radical cations, which were rapidly formed by laccase. The laccase/ABTS system resulted in Cα oxidation of GBG and coupling of ABTS to GBG, rather than polymerization of GBG. Based on these results, we propose reaction pathways of phenolic lignin model compounds with laccase/HBT and laccase/ABTS.

  16. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  17. Water-mediated ionic interactions in protein structures

    Indian Academy of Sciences (India)

    oxygen atoms present in the N- and C-terminals of the protein chains were ... program HBPLUS (McDonald and Thornton 1999) to check for hydrogen bonds ..... a crucial role in the communication between the subunits. (Royer et al. 1996).

  18. Uranium-mediated electrocatalytic dihydrogen production from water

    Science.gov (United States)

    Halter, Dominik P.; Heinemann, Frank W.; Bachmann, Julien; Meyer, Karsten

    2016-02-01

    Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [((Ad,MeArO)3mes)U] (refs 18 and 19)—the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium—an abundant waste product of the nuclear power industry—could be a valuable resource.

  19. Modeling elephant-mediated cascading effects of water point closure.

    Science.gov (United States)

    Hilbers, Jelle P; Van Langevelde, Frank; Prins, Herbert H T; Grant, C C; Peel, Mike J S; Coughenour, Michael B; De Knegt, Henrik J; Slotow, Rob; Smit, Izak P J; Kiker, Greg A; De Boer, Willem F

    2015-03-01

    Wildlife management to reduce the impact of wildlife on their habitat can be done in several ways, among which removing animals (by either culling or translocation) is most often used. There are, however, alternative ways to control wildlife densities, such as opening or closing water points. The effects of these alternatives are poorly studied. In this paper, we focus on manipulating large herbivores through the closure of water points (WPs). Removal of artificial WPs has been suggested in order to change the distribution of African elephants, which occur in high densities in national parks in Southern Africa and are thought to have a destructive effect on the vegetation. Here, we modeled the long-term effects of different scenarios of WP closure on the spatial distribution of elephants, and consequential effects on the vegetation and other herbivores in Kruger National Park, South Africa. Using a dynamic ecosystem model, SAVANNA, scenarios were evaluated that varied in availability of artificial WPs; levels of natural water; and elephant densities. Our modeling results showed that elephants can indirectly negatively affect the distributions of meso-mixed feeders, meso-browsers, and some meso-grazers under wet conditions. The closure of artificial WPs hardly had any effect during these natural wet conditions. Under dry conditions, the spatial distribution of both elephant bulls and cows changed when the availability of artificial water was severely reduced in the model. These changes in spatial distribution triggered changes in the spatial availability of woody biomass over the simulation period of 80 years, and this led to changes in the rest of the herbivore community, resulting in increased densities of all herbivores, except for giraffe and steenbok, in areas close to rivers. The spatial distributions of elephant bulls and cows showed to be less affected by the closure of WPs than most of the other herbivore species. Our study contributes to ecologically

  20. Structural Differentiation and Ambidexterity: The Mediating Role of Integration Mechanisms

    NARCIS (Netherlands)

    J.J.P. Jansen (Justin); M.P. Tempelaar (Michiel); F.A.J. van den Bosch (Frans); H.W. Volberda (Henk)

    2008-01-01

    textabstractPrior studies have emphasized that structural attributes are crucial to simultaneously pursuing exploration and exploitation, yet our understanding of antecedents of ambidexterity is still limited. Structural differentiation can help ambidextrous organizations to maintain multiple

  1. Structural differentiation and ambidexterity: The mediating role of integration mechanisms

    NARCIS (Netherlands)

    J.J.P. Jansen (Justin); M.P. Tempelaar (Michiel); F.A.J. van den Bosch (Frans); H.W. Volberda (Henk)

    2009-01-01

    textabstractPrior studies have emphasized that structural attributes are crucial to simultaneously pursuing exploration and exploitation, yet our understanding of antecedents of ambidexterity is still limited. Structural differentiation can help ambidextrous organizations to maintain multiple

  2. Ripplon laser through stimulated emission mediated by water waves

    Science.gov (United States)

    Kaminski, Samuel; Martin, Leopoldo L.; Maayani, Shai; Carmon, Tal

    2016-12-01

    Lasers rely on stimulated electronic transition, a quantum phenomenon in the form of population inversion. In contrast, phonon masers depend on stimulated Raman scattering and are entirely classical. Here we extend Raman lasers to rely on capillary waves, which are unique to the liquid phase of matter and relate to the attraction between intimate fluid particles. We fabricate resonators that co-host capillary and optical modes, control them to operate at their non-resolved sideband and observe stimulated capillary scattering and the coherent excitation of capillary resonances at kilohertz rates (which can be heard in audio files recorded by us). By exchanging energy between electromagnetic and capillary waves, we bridge the interfacial tension phenomena at the liquid phase boundary to optics. This approach may impact optofluidics by allowing optical control, interrogation and cooling of water waves.

  3. Shock wave focusing in water inside convergent structures

    Directory of Open Access Journals (Sweden)

    C Wang

    2016-09-01

    Full Text Available Experiments on shock focusing in water-filled convergent structures have been performed. A shock wave in water is generated by means of a projectile, launched from a gas gun, which impacts a water-filled convergent structure. Two types of structures have been tested; a bulk material and a thin shell structure. The geometric shape of the convergent structures is given by a logarithmic spiral, and this particular shape is chosen because it maximizes the amount of energy reaching the focal region. High-speed schlieren photography is used to visualize the shock dynamics during the focusing event. Results show that the fluid-structure interaction between the thin shell structure and the shock wave in the water is different from that of a bulk structure; multiple reflections of the shock wave inside the thin shell are reflected back into the water, thus creating a wave train, which is not observed for shock focusing in a bulk material.

  4. The role of commitment strength in enhancing safe water consumption: mediation analysis of a cluster-randomized trial.

    Science.gov (United States)

    Inauen, Jennifer; Tobias, Robert; Mosler, Hans-Joachim

    2014-11-01

    The objectives of this study were to investigate the importance of commitment strength in the theory of planned behaviour (TPB) and to test whether behaviour change techniques (BCTs) aimed at increasing commitment strength indeed promote switching to arsenic-safe wells by changing commitment strength. A cluster-randomized controlled trial with four arms was conducted to compare an information-only intervention to information plus one, two, or three commitment-enhancing BCTs. Randomly selected households (N = 340) of Monoharganj, Bangladesh, in seven geographically separate areas, whose members were drinking arsenic-contaminated water at baseline and had access to arsenic-safe wells, participated in this trial. The areas were randomly allocated to the four intervention arms. Water consumption behaviour, variables of the TPB, commitment strength, and socio-demographic characteristics were assessed at baseline and at 3-month follow-up by structured face-to-face interviews. Mediation analysis was used to investigate the mechanisms of behaviour change. Changes in commitment strength significantly increased the explanatory power of the TPB to predict well-switching. Commitment-enhancing BCTs - public self-commitment, implementation intentions, and reminders - increased the behaviour change effects of information by up to 50%. Mediation analyses confirmed that the BCTs indeed increased well-switching by increasing commitment strength. Unexpectedly, however, mediation via changes in behavioural intentions was the strongest mechanism of the intervention effects. Commitment is an important construct to consider in water- and health-related behaviour change and may be for other health behaviours as well. BCTs that alter behavioural intentions and commitment strength proved highly effective at enhancing the behaviour change effects of information alone. Statement of contribution What is already known on this subject? Millions of people drink contaminated water even if they

  5. Water stale and structure analysis of Konjac irradiation copolymer

    International Nuclear Information System (INIS)

    Geng Shengrong; Xia Hezhou; Chen Xueling; Ye Lixiu; Hua Yuejin

    2011-01-01

    To study the absorption performance of Konjac-AA copolymer prepared by using irradiation, the water absorption capacity, sorbent speed and water keeping ability were determined, DSC and TEM analysis were used to investigate the water content and structure characters. The results showed that the largest water absorption speed was 16 g · -1 · min -1 at room temperature, and the largest water absorption was 400 times within 60 minutes. The water absorption was affected by granularity, temperature, ion content and ion type, especially the ion type. The water keeping ability was affected by temperature and time, which was up to 35% of absorbed water when the fully water absorbed copolymer was kept under room temperature for 15 d. The free and bounder water content which could be assimilated by the plants was 99.617%. The water stale copolymer has a three-dimensional spiral structure. (authors)

  6. Causal Models for Mediation Analysis: An Introduction to Structural Mean Models.

    Science.gov (United States)

    Zheng, Cheng; Atkins, David C; Zhou, Xiao-Hua; Rhew, Isaac C

    2015-01-01

    Mediation analyses are critical to understanding why behavioral interventions work. To yield a causal interpretation, common mediation approaches must make an assumption of "sequential ignorability." The current article describes an alternative approach to causal mediation called structural mean models (SMMs). A specific SMM called a rank-preserving model (RPM) is introduced in the context of an applied example. Particular attention is given to the assumptions of both approaches to mediation. Applying both mediation approaches to the college student drinking data yield notable differences in the magnitude of effects. Simulated examples reveal instances in which the traditional approach can yield strongly biased results, whereas the RPM approach remains unbiased in these cases. At the same time, the RPM approach has its own assumptions that must be met for correct inference, such as the existence of a covariate that strongly moderates the effect of the intervention on the mediator and no unmeasured confounders that also serve as a moderator of the effect of the intervention or the mediator on the outcome. The RPM approach to mediation offers an alternative way to perform mediation analysis when there may be unmeasured confounders.

  7. Propelling a water drop with the vapor-mediated Marangoni effect

    Science.gov (United States)

    Kim, Seungho; Kim, Ho-Young

    2013-11-01

    We show that a water drop on solid surfaces can be propelled just by placing a volatile alcohol drop nearby. It is found to be because the water-air interface near the alcohol drop mixes with alcohol vapor, thereby locally lowering the surface tension. The surface-tension-gradient induces the motion of the water drop, enabling the trajectory control of water drops through the motion of remote alcohol drops. This vapor-mediated Marangoni effect also gives rise to other interesting interfacial flow phenomena, such as nucleation of holes on a water film and ballooning of a water drop hanging from a syringe needle with the approach of an alcohol drop. We visualize such interfacial dynamics with a high-speed camera and rationalize their salient features by scaling analysis. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).

  8. Structure of water and the thermodynamics of aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nemethy, G.

    1970-10-26

    This report represents the summary of a series of lectures held at the Istituto Superiore di Sanita, Laboratori di Fisica, from 18 September to 26 October 1970. The topics discussed were: Intermolecular forces, the individual water molecule and the hydrogen bond, the structures of the solid phases of water, experimental information on the strucuture of liquid water, theoretical models of water structure, experimental properties and theoretical models of aqueous solutions of nonpolar solutes, polar solutes, and electrolytes, the conformational stability of biological macromolecules.

  9. How Does Silicon Mediate Plant Water Uptake and Loss Under Water Deficiency?

    Directory of Open Access Journals (Sweden)

    Daoqian Chen

    2018-03-01

    Full Text Available In plants, water deficiency can result from a deficit of water from the soil, an obstacle to the uptake of water or the excess water loss; in these cases, the similar consequence is the limitation of plant growth and crop yield. Silicon (Si has been widely reported to alleviate the plant water status and water balance under variant stress conditions in both monocot and dicot plants, especially under drought and salt stresses. However, the underlying mechanism is unclear. In addition to the regulation of leaf transpiration, recently, Si application was found to be involved in the adjustment of root hydraulic conductance by up-regulating aquaporin gene expression and concentrating K in the xylem sap. Therefore, this review discusses the potential effects of Si on both leaf transpiration and root water absorption, especially focusing on how Si modulates the root hydraulic conductance. A growing number of studies support the conclusion that Si application improves plant water status by increasing root water uptake, rather than by decreasing their water loss under conditions of water deficiency. The enhancement of plant water uptake by Si is achievable through the activation of osmotic adjustment, improving aquaporin activity and increasing the root/shoot ratio. The underlying mechanisms of the Si on improving plant water uptake under water deficiency conditions are discussed.

  10. The benzoquinone-mediated electrochemical microbial biosensor for water biotoxicity assay

    International Nuclear Information System (INIS)

    Li, Jiuming; Yu, Yuan; Wang, Yuning; Qian, Jun; Zhi, Jinfang

    2013-01-01

    Graphical abstract: The mediator can participate in microorganism respiration, accept the electrons from respiratory chains, and therefore be reduced by microorganism. The re-oxidization currents of mediators on electrode can reflect the microbial activity, and when respiration is suppressed by toxicants, it can be detected by the resulting change of currents. Unlike other biotoxicity tests, which record the toxic effect after a fixed time for incubation of biocomponents and toxicants, this mediated whole cell biosensor can provide a real-time monitor of the microbial activity during the measurement. -- Abstract: A simple mediated microbial biosensor providing real-time monitoring of water quality and evaluation of biotoxicity was fabricated by entrapping Escherichia coli (E. coli) cells in gelatin on glassy carbon electrode with benzoquinone as the redox mediator. The biotoxicity assay was based on the respiratory activity of E. coli cells estimated by the oxidation current of microbially reduced benzoquinone. The neutrality and lipophilicity rendered benzoquinone better efficiency than ferricyanide in mediated microbial reactions. After the optimization of preparation conditions, the prepared microbial biosensors have measured several common toxicants with different concentrations. In addition, the biotoxicity of binary mixtures of heavy metals and wastewater were investigated. The fabricated biosensor exhibited good repeatability and stability in the biotoxicity measurements

  11. Characterization and mediation of microbial deterioration of concrete bridge structures.

    Science.gov (United States)

    2013-04-01

    Samples obtained from deteriorated bridge structures in Texas were cultured in growth medium containing thiosulfate as an energy source and investigated for acid production, type of acid produced by microbes and the bio-deterioration of concrete cyli...

  12. Climate mediates the effects of disturbance on ant assemblage structure

    Czech Academy of Sciences Publication Activity Database

    Gibb, H.; Sanders, N. J.; Dunn, R. R.; Watson, S.; Photakis, M.; Abril, S.; Andersen, A. N.; Angulo, E.; Armbrecht, I.; Arnan, X.; Baccaro, F. B.; Bishop, T. R.; Boulay, R.; Castracani, C.; Del Toro, I.; Delsinne, T.; Diaz, M.; Donoso, D. A.; Enríquez, M. L.; Fayle, Tom Maurice; Feener Jr., D. H.; Fitzpatrik, M. C.; Gómez, C.; Grasso, D. A.; Groc, S.; Heterick, B.; Hoffmann, B. D.; Lach, L.; Lattke, J.; Leponce, M.; Lessard, J.-P.; Longino, J.; Lucky, A.; Majer, J.; Menke, S. B.; Mezger, D.; Mori, A.; Munyai, T. C.; Paknia, O.; Pearce-Duvet, J.; Pfeiffer, M.; Philpott, S. M.; de Souza, J. L. P.; Tista, M.; Vasconcelos, H. L.; Vonshak, M.; Parr, C. L.

    2015-01-01

    Roč. 282, č. 1808 (2015), article number 20150418 ISSN 0962-8452 Institutional support: RVO:60077344 Keywords : assemblage structure * dominance * global warming Subject RIV: EH - Ecology, Behaviour Impact factor: 4.823, year: 2015

  13. Polyamide membranes with nanoscale Turing structures for water purification

    Science.gov (United States)

    Tan, Zhe; Chen, Shengfu; Peng, Xinsheng; Zhang, Lin; Gao, Congjie

    2018-05-01

    The emergence of Turing structures is of fundamental importance, and designing these structures and developing their applications have practical effects in chemistry and biology. We use a facile route based on interfacial polymerization to generate Turing-type polyamide membranes for water purification. Manipulation of shapes by control of reaction conditions enabled the creation of membranes with bubble or tube structures. These membranes exhibit excellent water-salt separation performance that surpasses the upper-bound line of traditional desalination membranes. Furthermore, we show the existence of high water permeability sites in the Turing structures, where water transport through the membranes is enhanced.

  14. Depressive symptoms, lifestyle structure, and ART adherence among HIV-infected individuals: a longitudinal mediation analysis.

    Science.gov (United States)

    Magidson, Jessica F; Blashill, Aaron J; Safren, Steven A; Wagner, Glenn J

    2015-01-01

    Despite the well-documented relationship between depression and antiretroviral therapy (ART) nonadherence, few studies have identified explanatory pathways through which depression affects adherence. The current study tested lifestyle structure-the degree of organization and routinization of daily activities-as a mediator of this relationship, given previous evidence of lifestyle structure being associated with both depression and ART nonadherence. HIV-infected individuals starting or re-starting ART in the California Collaborative Treatment Group 578 study (n = 199) were assessed over 48 weeks. Adherence was measured using electronic monitoring caps to determine dose timing and doses taken, and viral load was assessed. The mediating role of lifestyle structure was tested using generalized linear mixed-effects modeling and bootstrapping. Lifestyle significantly mediated the relationship between depression and both measures of ART adherence behavior. Interventions that minimize disruptions to lifestyle structure and link adherence to daily activities may be useful for individuals with depression and ART nonadherence.

  15. Can we describe graphene confined water structures as overlapping of approaching graphene-water interfacial structures?

    Energy Technology Data Exchange (ETDEWEB)

    Chialvo, Ariel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vlcek, Lukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-21

    We investigate the microscopic mechanisms of the overlap of interfacial structures in confined fluids and attempt to answer the question whether the confined structures can be predicted from the original density profiles of individual solid-fluid interfaces. For that purpose we perform (globally) isobaricisothermal (locally, grand canonical) molecular dynamics simulations to extract not only the axial distribution functions of the water-sites for the uncoupled graphene-water interfaces, but also those corresponding to the confined aqueous environments over the interplate range 8 ≤ h(Å) ≤ 28 typically at ambient conditions. We have tested two (i.e., an arithmetic and a geometric) superposition approximations for the singlet density of confined water between flat graphene plates, as well as for a combination of flat and corrugated graphene plates. The outcome of this study suggests that the answer to the title’s question is a “yes”, provided that the interplate distance h is large enough to avoid fluid geometric packing frustration.

  16. Structural and functional significance of water permeation through cotransporters

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Gorraitz, Edurne; Her, Ka

    2016-01-01

    Membrane transporters, in addition to their major role as specific carriers for ions and small molecules, can also behave as water channels. However, neither the location of the water pathway in the protein nor their functional importance is known. Here, we map the pathway for water and urea...... through the intestinal sodium/glucose cotransporter SGLT1. Molecular dynamics simulations using the atomic structure of the bacterial transporter vSGLT suggest that water permeates the same path as Na+ and sugar. On a structural model of SGLT1, based on the homology structure of vSGLT, we identified...... to be due to alterations in steric hindrance to water and urea, and/or changes in protein folding caused by mismatching of side chains in the water pathway. Water permeation through SGLT1 and other transporters bears directly on the structural mechanism for the transport of polar solutes through...

  17. Core Mediator structure at 3.4 Å extends model of transcription initiation complex.

    Science.gov (United States)

    Nozawa, Kayo; Schneider, Thomas R; Cramer, Patrick

    2017-05-11

    Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.

  18. Mediation pathways and effects of green structures on respiratory mortality via reducing air pollution.

    Science.gov (United States)

    Shen, Yu-Sheng; Lung, Shih-Chun Candice

    2017-02-23

    Previous studies have shown both health and environmental benefits of green spaces, especially in moderating temperature and reducing air pollution. However, the characteristics of green structures have been overlooked in previous investigations. In addition, the mediation effects of green structures on respiratory mortality have not been assessed. This study explores the potential mediation pathways and effects of green structure characteristics on respiratory mortality through temperature, primary and secondary air pollutants separately using partial least squares model with data from Taiwan. The measurable characteristics of green structure include the largest patch percentage, landscape proportion, aggregation, patch distance, and fragmentation. The results showed that mortality of pneumonia and chronic lower respiratory diseases could be reduced by minimizing fragmentation and increasing the largest patch percentage of green structure, and the mediation effects are mostly through reducing air pollutants rather than temperature. Moreover, a high proportion of but fragmented green spaces would increase secondary air pollutants and enhance health risks; demonstrating the deficiency of traditional greening policy with primary focus on coverage ratio. This is the first research focusing on mediation effects of green structure characteristics on respiratory mortality, revealing that appropriate green structure planning can be a useful complementary strategy in environmental health management.

  19. Water polygons in high-resolution protein crystal structures.

    Science.gov (United States)

    Lee, Jonas; Kim, Sung-Hou

    2009-07-01

    We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 A resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of "stable" water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.

  20. Structure and stability of spiro-cyclic water clusters

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The structure and stability of spiro-cyclic water clusters containing up to 32 water molecules have been ... due to its importance in various real life systems. 1–8. High level ... It is well-known from the crystal structure data- base that the ...

  1. Structural transition in alcohol–water binary mixtures: A ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. The strengthening of the hydrogen bonding (H-bond) network as well as transition from the tetrahedral-like water network to the zigzag chain structure of alcohol upon increasing the alcohol con- centration in ethanol–water and tertiary butanol (TBA) – water mixtures have been studied by using both steady state ...

  2. Enhanced water desalination performance through hierarchically-structured ceramic membranes

    NARCIS (Netherlands)

    Liu, Tong; Lei, Libin; Gu, Jianqiang; Wang, Yao; Winnubst, Louis; Chen, Chusheng; Ye, Chunsong; Chen, Fanglin

    2017-01-01

    Developments of membrane water desalination are impeded by low water vapor flux across the membrane. We present an innovative membrane design to significantly enhance the water vapor flux. A bilayer zirconia-based membrane with a thick hierarchically-structured support and a thin functional layer is

  3. Structure-function relationships in sapwood water transport and storage.

    Science.gov (United States)

    Barbara L. Gartner; Frederick C. Meinzer

    2005-01-01

    Primary production by plants requires the loss of substantial quantities of water when the stomata are open for carbon assimilation. The delivery of that water to the leaves occurs through the xylem. The structure, condition, and quantity of the xylem control not only the transport efficiency but also the release of water from storage. For example, if there is high...

  4. Optimization of cationic lipid mediated gene transfer: structure-function, physico-chemical, and cellular studies.

    Science.gov (United States)

    Carrière, Marie; Tranchant, Isabelle; Niore, Pierre-Antoine; Byk, Gerardo; Mignet, Nathalie; Escriou, Virginie; Scherman, Daniel; Herscovici, Jean

    2002-01-01

    The rationale design aimed at the enhancement of cationic lipid mediated gene transfer is discussed. These improvements are based on the straight evaluation of the structure-activity relationship and on the introduction of new structures. Much attention have been given to the supramolecular structures of the lipid/DNA complexes, to the effect of serum on gene transfer and to the intracellular trafficking of the lipoplexes. Finally new avenue using reducible cationic lipids has been discussed.

  5. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    International Nuclear Information System (INIS)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R.

    2016-01-01

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  6. Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex.

    Science.gov (United States)

    Robinson, Philip J; Trnka, Michael J; Bushnell, David A; Davis, Ralph E; Mattei, Pierre-Jean; Burlingame, Alma L; Kornberg, Roger D

    2016-09-08

    A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

    Science.gov (United States)

    Chen, Shun; Wu, Zhen; Wang, Mingshu; Cheng, Anchun

    2017-10-07

    Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

  8. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  9. Ground water work breakdown structure dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

  10. Ground water work breakdown structure dictionary

    International Nuclear Information System (INIS)

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support

  11. RPA-mediated unfolding of systematically varying G-quadruplex structures.

    Science.gov (United States)

    Ray, Sujay; Qureshi, Mohammad H; Malcolm, Dominic W; Budhathoki, Jagat B; Celik, Uğur; Balci, Hamza

    2013-05-21

    G-quadruplex (GQ) is a noncanonical nucleic acid structure that is formed by guanine rich sequences. Unless it is destabilized by proteins such as replication protein A (RPA), GQ could interfere with DNA metabolic functions, such as replication or repair. We studied RPA-mediated GQ unfolding using single-molecule FRET on two groups of GQ structures that have different loop lengths and different numbers of G-tetrad layers. We observed a linear increase in the steady-state stability of the GQ against RPA-mediated unfolding with increasing number of layers or decreasing loop length. The stability demonstrated by different GQ structures varied by at least three orders of magnitude. Those with shorter loops (less than three nucleotides long) or a greater number of layers (more than three layers) maintained a significant folded population even at physiological RPA concentration (≈1 μM), raising the possibility of physiological viability of such GQ structures. Finally, we measured the transition time between the start and end of the RPA-mediated GQ unfolding process to be 0.35 ± 0.10 s for all GQ constructs we studied, despite significant differences in their steady-state stabilities. We propose a two-step RPA-mediated GQ unfolding mechanism that is consistent with our observations. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Forest, water and people: The roles and limits of mediation in transforming watershed conflict in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Ahmad Dhiaulhaq

    2017-11-01

    Full Text Available This study focuses on watershed management in Northern Thailand, where conflict over forest, land and water-use is a prevailing problem. A characteristic of watershed conflicts is that they are often multifaceted and involve multiple stakeholders with different interests and values, consequently requiring conflict management approaches that are sustainable in their outcomes, including addressing the underlying causes of the conflicts. Drawing from a case study in Mae Tia Mae Tae watershed in Northern Thailand, this study explores how mediation by external third party can contribute to the transformation of conflicts in the watershed and how the broader institutional contexts in which the conflict is embedded shapes the mediation outcomes. The study suggests that co-creation of mutual understanding and recognition of each party’s socio-cultural differences, including land-use practices, are critical in building trust and in how conflict transformation processes moved forward. Moreover, the ability of the mediator in facilitating the establishment of a deliberative institution (i.e. a watershed network committee and agreed rules on forest utilization were also critical in maintaining long-term collaboration in the watershed and potentially preventing other conflicts arising in the future. Some issues, however, may threaten the continuity of the cooperation and sustainability of peace in the watershed, including the lack of structural reform that formally recognizes local people’s rights, insecure land tenure, and the absence of legal recognition for the watershed network committee as a legitimate mechanism for watershed decision making. The paper discusses these findings by comparing it with those from our previous studies in other locations (Cambodia, Indonesia and Western Thailand to strengthen the insights from Northern Thailand. Finally, the research puts forward some recommendations for reforms and to strengthen the use of effective

  13. Landscape structure mediates the effects of a stressor on field vole populations

    DEFF Research Database (Denmark)

    Dalkvist, Trine; Sibly, Richard M.; Topping, Christopher John

    2013-01-01

    Spatio-temporal landscape heterogeneity has rarely been considered in population-level impact assessments. Here we test whether landscape heterogeneity is important by examining the case of a pesticide applied seasonally to orchards which may affect non-target vole populations, using a validated ...... results show that accurate prediction of population impact cannot be achieved without taking account of landscape structure. The specifics of landscape structure and habitat connectivity are likely always important in mediating the effects of stressors....

  14. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    Science.gov (United States)

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of sprinkler structure on water distribution uniformity

    International Nuclear Information System (INIS)

    Xu, M; Li, H; Chen, C; Tu, Q; Liu, J P

    2012-01-01

    Structures of sprinklers play important roles in the uniformity of water distribution. The advances and achievements to improve the distribution uniformity through the innovation in the sprinkler structures at home and abroad were presented in details. Analyses showed that three types of structure can ameliorate the water distribution efficiently. First, novel nozzle structures were applied, including the application of non-circle nozzle and special spread nozzles. Second, new structures of flow channel were used. Third, assistant device was added so as to improve the uneven water distribution, such as an assistant stream interrupter, pressure or flow rate regulator and so on. Compared to domestic sprinklers, sprinklers produced abroad have novel and special structures with better hydraulic performance. Basic theoretical researches should be strengthened and new materials, new manufacturing processes and new technique should be applied. Then new kinds of sprinkler will be produced and the hydraulic performance of sprinklers will be promoted to a higher level.

  16. Structural properties of water around uncharged and charged carbon nanotubes

    International Nuclear Information System (INIS)

    Dezfoli, Amir Reza Ansari; Mehrabian, Mozaffar Ali; Rafsanjani, Hassan Hashemipour

    2013-01-01

    Studying the structural properties of water molecules around the carbon nanotubes is very important in a wide variety of carbon nanotubes applications. We studied the number of hydrogen bonds, oxygen and hydrogen density distributions, and water orientation around carbon nanotubes. The water density distribution for all carbon nanotubes was observed to have the same feature. In water-carbon nanotubes interface, a high-density region of water molecules exists around carbon nanotubes. The results reveal that the water orientation around carbon nanotubes is roughly dependent on carbon nanotubes surface charge. The water molecules in close distances to carbon nanotubes were found to make an HOH plane nearly perpendicular to the water-carbon nanotubes interface for carbon nanotubes with negative surface charge. For uncharged carbon nanotubes and carbon nanotubes with positive surface charge, the HOH plane was in tangential orientation with water-carbon nanotubes interface. There was also a significant reduction in hydrogen bond of water region around carbon nanotubes as compared with hydrogen bond in bulk water. This reduction was very obvious for carbon nanotubes with positive surface charge. In addition, the calculation of dynamic properties of water molecules in water-CNT interface revealed that there is a direct relation between the number of Hbonds and self-diffusion coefficient of water molecules

  17. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...

  18. Structured ecosystem-scale approach to marine water quality management

    CSIR Research Space (South Africa)

    Taljaard, Susan

    2006-10-01

    Full Text Available and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in response to recent advances in policies...

  19. Structures of water molecular nanotube induced by axial tensile strains

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Key Laboratory of Liquid Structures and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University (China)], E-mail: lihuilmy@hotmail.com; Zhang, X.Q. [Physics Department, Ocean University of China, Qingdao (China); Liew, K.M. [Department of Building and Constructions, City University of Hong Kong, Kowloon (Hong Kong); Liu, X.F. [Key Laboratory of Liquid Structures and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University (China)

    2008-10-06

    Five well-ordered nano-ice structures embedded in carbon nanotubes are obtained in this study. These five nano-ice phases all exhibit single walled tubular morphologies, including the pentagon, hexagon ice nanotubes whose structures are quite different from bulk ice. Our simulation results indicate that water molecules tend to rearrange into surface ring structures to reduce the number of free OH groups. The structural behavior of these ice nanotubes inside CNTs subject to axial stress is also investigated. The ice nanotubes tend to be drawn to ice nanorings or ice nanospring during the mechanical stretching. The distribution function exhibits typical order-to-disorder transition of the water network confined in carbon nanotube during the stretching. By analysis, we suggest that it is unlikely that additional water molecules will enter the tubes because of the increased volume available if the tubes are stretched at contact with a water reservoir.

  20. Hydrogen/deuterium substitution methods: understanding water structure in solution

    International Nuclear Information System (INIS)

    Soper, A.K.

    1993-01-01

    The hydrogen/deuterium substitution method has been used for different applications, such as the short range order between water molecules in a number of different environments (aqueous solutions of organic molecules), or to study the partial structure factors of water at high pressure and temperature. The absolute accuracy that can be obtained remains uncertain, but important qualitative information can be obtained on the local organization of water in aqueous solution. Some recent results with pure water, methanol and dimethyl sulphoxide (DMSO) solutions are presented. It is shown that the short range water structure is not greatly affected by most solutes except at high concentrations and when the solute species has its own distinctive interaction with water (such as a dissolved small ion). 3 figs., 14 refs

  1. Temporal modelling of ballast water discharge and ship-mediated invasion risk to Australia.

    Science.gov (United States)

    Cope, Robert C; Prowse, Thomas A A; Ross, Joshua V; Wittmann, Talia A; Cassey, Phillip

    2015-04-01

    Biological invasions have the potential to cause extensive ecological and economic damage. Maritime trade facilitates biological invasions by transferring species in ballast water, and on ships' hulls. With volumes of maritime trade increasing globally, efforts to prevent these biological invasions are of significant importance. Both the International Maritime Organization and the Australian government have developed policy seeking to reduce the risk of these invasions. In this study, we constructed models for the transfer of ballast water into Australian waters, based on historic ballast survey data. We used these models to hindcast ballast water discharge over all vessels that arrived in Australian waters between 1999 and 2012. We used models for propagule survival to compare the risk of ballast-mediated propagule transport between ecoregions. We found that total annual ballast discharge volume into Australia more than doubled over the study period, with the vast majority of ballast water discharge and propagule pressure associated with bulk carrier traffic. As such, the ecoregions suffering the greatest risk are those associated with the export of mining commodities. As global marine trade continues to increase, effective monitoring and biosecurity policy will remain necessary to combat the risk of future marine invasion events.

  2. Identification of structural relaxation in the dielectric response of water

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Kisliuk, Alexander; Solokov, Alexei P.

    2016-01-01

    One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we...... unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols....

  3. Structures of water molecules in carbon nanotubes under electric fields

    International Nuclear Information System (INIS)

    Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-01-01

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate

  4. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  5. A QM/MM refinement of an experimental DNA structure with metal-mediated base pairs.

    Science.gov (United States)

    Kumbhar, Sadhana; Johannsen, Silke; Sigel, Roland K O; Waller, Mark P; Müller, Jens

    2013-10-01

    A series of hybrid quantum mechanical/molecular mechanical (QM/MM) calculations was performed on models of a DNA duplex with artificial silver(I)-mediated imidazole base pairs. The optimized structures were compared to the original experimental NMR structure (Nat. Chem. 2 (2010) 229-234). The metal⋯metal distances are significantly shorter (~0.5Å) in the QM/MM model than in the original NMR structure. As a result, argentophilic interactions are feasible between the silver(I) ions of neighboring metal-mediated base pairs. Using the computationally determined metal⋯metal distances, a re-refined NMR solution structure of the DNA duplex was obtained. In this new NMR structure, all experimental constraints remain fulfilled. The new NMR structure shows less deviation from the regular B-type conformation than the original one. This investigation shows that the application of QM/MM models to generate additional constraints to be used during NMR structural refinements represents an elegant approach to obtaining high-resolution NMR structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange

    OpenAIRE

    Pennington, Luke F.; Tarchevskaya, Svetlana; Brigger, Daniel; Sathiyamoorthy, Karthik; Graham, Michelle T.; Nadeau, Kari Christine; Eggel, Alexander; Jardetzky, Theodore S.

    2016-01-01

    Omalizumab is a widely used therapeutic anti-IgE antibody. Here we report the crystal structure of the omalizumab-Fab in complex with an IgE-Fc fragment. This structure reveals the mechanism of omalizumab-mediated inhibition of IgE interactions with both high- and low-affinity IgE receptors, and explains why omalizumab selectively binds free IgE. The structure of the complex also provides mechanistic insight into a class of disruptive IgE inhibitors that accelerate the dissociation of the hig...

  7. Mediation in dyadic data at the level of the dyads: a Structural Equation Modeling approach.

    Science.gov (United States)

    Ledermann, Thomas; Macho, Siegfried

    2009-10-01

    An extended version of the Common Fate Model (CFM) is presented to estimate and test mediation in dyadic data. The model can be used for distinguishable dyad members (e.g., heterosexual couples) or indistinguishable dyad members (e.g., homosexual couples) if (a) the variables measure characteristics of the dyadic relationship or shared external influences that affect both partners; if (b) the causal associations between the variables should be analyzed at the dyadic level; and if (c) the measured variables are reliable indicators of the latent variables. To assess mediation using Structural Equation Modeling, a general three-step procedure is suggested. The first is a selection of a good fitting model, the second a test of the direct effects, and the third a test of the mediating effect by means of bootstrapping. The application of the model along with the procedure for assessing mediation is illustrated using data from 184 couples on marital problems, communication, and marital quality. Differences with the Actor-Partner Interdependence Model and the analysis of longitudinal mediation by using the CFM are discussed.

  8. STRUCTURAL AND STRATEGIC ASPECTS OF PROFESSIONALLY ORIENTED SPEECH OF A PSYCHOLOGIST MEDIATOR

    Directory of Open Access Journals (Sweden)

    Iryna Levchyk

    2016-12-01

    Full Text Available The article presents characteristic speech patterns of psychologist-mediator on the basis of five staged model of his professional speech behavior that involves the following five speech activities: introductory talks with the conflict parties; clarifying of the parties’ positions; finding the optimal solution to the problem; persuasion in the legality of a compromise; execution of the agreement between the parties. Each of these stages of the mediation process in terms of mental and speech activities of a specialist have been analyzed and subsequently the structure of mediator’s communication has been derived. The concept of a "strategy of verbal behavior" considering professional activity of a psychologist-mediator has been described in terms of its correlation with the type of negotiation behaviors of disputants. The basic types of opponents’ behavior in negotiations ‒ namely avoidance, concession, denial, aggression have been specified. The compliance of strategy of speech of mediator’s behavior to his chosen style of mediation has been discovered. The tactics and logic of mediator’s speech behavior according to the stages of mediation conversation have been determined. It has been found out that the mediator’s tactics implies application of specific professional speech skills to conduct a dialogue in accordance with the chosen strategy as well as emotional and verbal reaction of conflict sides in the process of communication.

  9. Structures of transcription pre-initiation complex with TFIIH and Mediator.

    Science.gov (United States)

    Schilbach, S; Hantsche, M; Tegunov, D; Dienemann, C; Wigge, C; Urlaub, H; Cramer, P

    2017-11-09

    For the initiation of transcription, RNA polymerase II (Pol II) assembles with general transcription factors on promoter DNA to form the pre-initiation complex (PIC). Here we report cryo-electron microscopy structures of the Saccharomyces cerevisiae PIC and PIC-core Mediator complex at nominal resolutions of 4.7 Å and 5.8 Å, respectively. The structures reveal transcription factor IIH (TFIIH), and suggest how the core and kinase TFIIH modules function in the opening of promoter DNA and the phosphorylation of Pol II, respectively. The TFIIH core subunit Ssl2 (a homologue of human XPB) is positioned on downstream DNA by the 'E-bridge' helix in TFIIE, consistent with TFIIE-stimulated DNA opening. The TFIIH kinase module subunit Tfb3 (MAT1 in human) anchors the kinase Kin28 (CDK7), which is mobile in the PIC but preferentially located between the Mediator hook and shoulder in the PIC-core Mediator complex. Open spaces between the Mediator head and middle modules may allow access of the kinase to its substrate, the C-terminal domain of Pol II.

  10. Water relations, thallus structure and photosynthesis in Negev Desert lichens

    Science.gov (United States)

    Palmer, R. J. Jr; Friedmann, E. I.

    1990-01-01

    The role of lichen thallus structure in water relations and photosynthesis was studied in Ramalina maciformis (Del.) Bory and Teloschistes lacunosus (Rupr.) Sav. Water-vapour adsorption and photosynthesis are dependent upon thallus integrity and are significantly lower in crushed thalli. Cultured phycobiont (Trebouxia sp.) cells are capable of photosynthesis over the same relative humidity range (> 80% RH) as are intact lichens. Thus, water-vapour adsorption by the thallus and physiological adaptation of the phycobiont contribute to the ability of these lichens to photosynthesize in an arid environment. Despite differences in their anatomical structure and water-uptake characteristics, their CO2 incorporation is similar. The two lichens use liquid water differently and they occupy different niches.

  11. Water-mediated electrochemical nano-writing on thin ceria films

    International Nuclear Information System (INIS)

    Yang, Nan; Doria, Sandra; Tebano, Antonello; Licoccia, Silvia; Balestrino, Giuseppe; Kumar, Amit; Arruda, Thomas M; Jesse, Stephen; Ivanov, Ilia N; Baddorf, Arthur P; Strelcov, Evgheni; Kalinin, Sergei V; Jang, Jae Hyuck; Borisevich, Albina Y

    2014-01-01

    Bias dependent mechanisms of irreversible cathodic and anodic processes on a pure CeO 2 film are studied using modified atomic force microscopy (AFM). For a moderate positive bias applied to the AFM tip an irreversible electrochemical reduction reaction is found, associated with significant local volume expansion. By changing the experimental conditions we are able to deduce the possible role of water in this process. Simultaneous detection of tip height and current allows the onset of conductivity and the electrochemical charge transfer process to be separated, further elucidating the reaction mechanism. The standard anodic/cathodic behavior is recovered in the high bias regime, where a sizable transport current flows between the tip and the film. These studies give insight into the mechanisms of the tip-induced electrochemical reactions as mediated by electronic currents, and into the role of water in these processes, as well as providing a different approach for electrochemical nano-writing. (paper)

  12. Gas-phase water-mediated equilibrium between methylglyoxal and its geminal diol

    Science.gov (United States)

    Axson, Jessica L.; Takahashi, Kaito; De Haan, David O.; Vaida, Veronica

    2010-01-01

    In aqueous solution, aldehydes, and to a lesser extent ketones, hydrate to form geminal diols. We investigate the hydration of methylglyoxal (MG) in the gas phase, a process not previously considered to occur in water-restricted environments. In this study, we spectroscopically identified methylglyoxal diol (MGD) and obtained the gas-phase partial pressures of MG and MGD. These results, in conjunction with the relative humidity, were used to obtain the equilibrium constant, KP, for the water-mediated hydration of MG in the gas phase. The Gibbs free energy for this process, ΔG°, obtained as a result, suggests a larger than expected gas-phase diol concentration. This may have significant implications for understanding the role of organics in atmospheric chemistry. PMID:20142510

  13. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water

    Energy Technology Data Exchange (ETDEWEB)

    Sapkota, Ajaya; Anceno, Alfredo J; Dutta, Joydeep [Center of Excellence in Nanotechnology, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand); Baruah, Sunandan; Shipin, Oleg V, E-mail: alfredo.anceno@cemagref.fr, E-mail: joy@ait.ac.th [Environmental Engineering and Management, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand)

    2011-05-27

    The inactivation of model microbes in aqueous matrix by visible light photocatalysis as mediated by ZnO nanorods was investigated. ZnO nanorods were grown on glass substrate following a hydrothermal route and employed in the inactivation of gram-negative Escherichia coli and gram-positive Bacillus subtilis in MilliQ water. The concentration of Zn{sup 2+} ions in the aqueous matrix, bacterial cell membrane damage, and DNA degradation at post-exposure were also studied. The inactivation efficiencies for both organisms under light conditions were about two times higher than under dark conditions across the cell concentrations assayed. Anomalies in supernatant Zn{sup 2+} concentration were observed under both conditions as compared to control treatments, while cell membrane damage and DNA degradation were observed only under light conditions. Inactivation under dark conditions was hence attributed to the bactericidal effect of Zn{sup 2+} ions, while inactivation under light conditions was due to the combined effects of Zn{sup 2+} ions and photocatalytically mediated electron injection. The reduction of pathogenic bacterial densities by the photocatalytically active ZnO nanorods in the presence of visible light implies potential ex situ application in water decontamination at ambient conditions under sunlight.

  14. Interplay of Phonon and Exciton-Mediated Superconductivity in Hybrid Semiconductor-Superconductor Structures

    Science.gov (United States)

    Skopelitis, Petros; Cherotchenko, Evgenia D.; Kavokin, Alexey V.; Posazhennikova, Anna

    2018-03-01

    We predict a strong enhancement of the critical temperature in a conventional Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a bosonic condensate of exciton polaritons. The effect depends strongly on the ratio of the cutoff frequencies for phonon and exciton-polariton mediated BCS superconductivity, respectively. We also discuss a possible design of hybrid semiconductor-superconductor structures suitable for the experimental observation of such an effect.

  15. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    OpenAIRE

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection.

  16. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    Science.gov (United States)

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512

  17. Structural and mechanical properties of glassy water in nanoscale confinement.

    Science.gov (United States)

    Lombardo, Thomas G; Giovambattista, Nicolás; Debenedetti, Pablo G

    2009-01-01

    We investigate the structure and mechanical properties of glassy water confined between silica-based surfaces with continuously tunable hydrophobicity and hydrophilicity by computing and analyzing minimum energy, mechanically stable configurations (inherent structures). The structured silica substrate imposes long-range order on the first layer of water molecules under hydrophobic confinement at high density (p > or = 1.0 g cm(-3)). This proximal layer is also structured in hydrophilic confinement at very low density (p approximately 0.4 g cm(-3)). The ordering of water next to the hydrophobic surface greatly enhances the mechanical strength of thin films (0.8 nm). This leads to a substantial stress anisotropy; the transverse strength of the film exceeds the normal strength by 500 MPa. The large transverse strength results in a minimum in the equation of state of the energy landscape that does not correspond to a mechanical instability, but represents disruption of the ordered layer of water next to the wall. In addition, we find that the mode of mechanical failure is dependent on the type of confinement. Under large lateral strain, water confined by hydrophilic surfaces preferentially forms voids in the middle of the film and fails cohesively. In contrast, water under hydrophobic confinement tends to form voids near the walls and fails by loss of adhesion.

  18. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  19. Leader Empowering Behaviours and Work Engagement: The Mediating Role of Structural Empowerment.

    Science.gov (United States)

    Cziraki, Karen; Laschinger, Heather

    2015-09-01

    Reports of poor working conditions persist amid ongoing healthcare restructuring. Simultaneously, nursing shortage threats continue as the nursing population ages. Leadership strategies that create empowering working conditions are likely to retain nurses who are eligible to retire, and attract future nurses to the profession. Several studies have focused on leader behaviours and structural empowerment in recent years and how these impact the work environment and staff engagement. Correlations among leader empowering behaviours, structural empowerment and work engagement have been demonstrated (Laschinger et al. 1999; Peachey 2002); however, there is a gap in the empirical literature as to how leader empowering behaviours influence nurses' work engagement by creating structurally empowering work environments. Kanter's (1977, 1993) structural empowerment theory was used to test this proposition using data from a cross-sectional study of 322 Ontario staff nurses. Mediation analysis revealed that structural empowerment partially mediated the influence of leader empowering behaviours on work engagement. The implications for healthcare managers and leaders are discussed with a view to the recruitment and retention of nursing staff, by fostering greater work engagement. Copyright © 2015 Longwoods Publishing.

  20. Global efficiency of structural networks mediates cognitive control in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Rok Berlot

    2016-12-01

    Full Text Available Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localised white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI.Methods: 25 patients with MCI and 20 age, sex and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI. Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusions: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive

  1. Bond-Valence Constraints on Liquid Water Structure

    International Nuclear Information System (INIS)

    Bickmore, Barry R.; Rosso, Kevin M.; Brown, I. David; Kerisit, Sebastien N.

    2009-01-01

    The recent controversy about the structure of liquid water pits a new model involving water molecules in relatively stable rings-and-chains structures against the standard model that posits water molecules in distorted tetrahedral coordination. Molecular dynamics (MD) simulations 'both classical and ab initio' almost uniformly support the standard model, but since none of them can yet reproduce all the anomalous properties of water, they leave room for doubt. We argue that it is possible to evaluate these simulations by testing them against their adherence to the bond-valence model, a well known, and quantitatively accurate, empirical summary of the behavior of atoms in the bonded networks of inorganic solids. Here we use the results of ab initio molecular dynamics simulations of ice, water, and several solvated aqueous species to show that the valence sum rule (the first axiom of the bond-valence model,) is followed in both solid and liquid bond networks. We then test MD simulations of water, employing several popular potential models, against this criterion and the experimental O-O radial distribution function. It appears that most of those tested cannot satisfy both criteria well, except TIP4P and TIP5P. If the valence sum rule really can be applied to simulated liquid structures, then it follows that the bonding behaviors of atoms in liquids are in some ways identical to those in solids. We support this interpretation by showing that the simulations produce O-H-O geometries completely consistent with the range of geometries available in solids, and the distributions of instantaneous valence sums reaching the atoms in both the ice and liquid water simulations are essentially identical. Taken together, this is powerful evidence in favor of the standard distorted tetrahedral model of liquid water structure

  2. The effect of the water tariff structures on the water consumption in Mallorcan hotels

    Science.gov (United States)

    Deyà-Tortella, Bartolomé; Garcia, Celso; Nilsson, William; Tirado, Dolores

    2016-08-01

    Tourism increases water demand, especially in coastal areas and on islands, and can also cause water shortages during the dry season and the degradation of the water supply. The aim of this study is to evaluate the impact of water price structures on hotel water consumption on the island of Mallorca (Spain). All tourist municipalities on the island use different pricing structures, such as flat or block rates, and different tariffs. This exogenous variation is used to evaluate the effect of prices on water consumption for a sample of 134 hotels. The discontinuity of the water tariff structure and the fixed rate, which depends on the number of hotel beds, generate endogeneity problems. We propose an econometric model, an instrumental variable quantile regression for within artificial blocks transformed data, to solve both problems. The coefficients corresponding to the price variables are not found to be significantly different from zero. The sign of the effect is negative, but the magnitude is negligible: a 1% increase in all prices would reduce consumption by an average of only 0.024%. This result is probably due to the small share of water costs with respect to the total hotel operational costs (around 4%). Our regression model concludes that the introduction of water-saving initiatives constitutes an effective way to reduce consumption.

  3. The influence of Critical Zone structure on runoff paths, seasonal water storage, and ecosystem composition

    Science.gov (United States)

    Hahm, W. J.; Dietrich, W. E.; Rempe, D.; Dralle, D.; Dawson, T. E.; Lovill, S.; Bryk, A.

    2017-12-01

    Understanding how subsurface water storage mediates water availability to ecosystems is crucial for elucidating linkages between water, energy, and carbon cycles from local to global scales. Earth's Critical Zone (the CZ, which extends from the top of the vegetation canopy downward to fresh bedrock) includes fractured and weathered rock layers that store and release water, thereby contributing to ecosystem water supplies, and yet are not typically represented in land-atmosphere models. To investigate CZ structural controls on water storage dynamics, we intensively studied field sites in a Mediterranean climate where winter rains arrive months before peak solar energy availability, resulting in strong summertime ecosystem reliance on stored subsurface water. Intra-hillslope and catchment-wide observations of CZ water storage capacity across a lithologic boundary in the Franciscan Formation of the Northern California Coast Ranges reveal large differences in the thickness of the CZ and water storage capacity that result in a stark contrast in plant community composition and stream behavior. Where the CZ is thick, rock moisture storage supports forest transpiration and slow groundwater release sustains baseflow and salmon populations. Where the CZ is thin, limited water storage is used by an oak savanna ecosystem, and streams run dry in summer due to negligible hillslope drainage. At both sites, wet season precipitation replenishes the dynamic storage deficit generated during the summer dry season, with excess winter rains exiting the watersheds via storm runoff as perched groundwater fracture flow at the thick-CZ site and saturation overland flow at the thin-CZ site. Annual replenishment of subsurface water storage even in severe drought years may lead to ecosystem resilience to climatic perturbations: during the 2011-2015 drought there was not widespread forest die-off in the study area.

  4. Structure-based analysis of CysZ-mediated cellular uptake of sulfate

    Science.gov (United States)

    Assur Sanghai, Zahra; Liu, Qun; Clarke, Oliver B; Belcher-Dufrisne, Meagan; Wiriyasermkul, Pattama; Giese, M Hunter; Leal-Pinto, Edgar; Kloss, Brian; Tabuso, Shantelle; Love, James; Punta, Marco; Banerjee, Surajit; Rajashankar, Kanagalaghatta R; Rost, Burkhard; Logothetis, Diomedes; Quick, Matthias; Hendrickson, Wayne A

    2018-01-01

    Sulfur, most abundantly found in the environment as sulfate (SO42-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO42- at the molecular level is limited. CysZ has been described as a SO42- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO42- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO42- across membranes. CysZ structures from three different bacterial species display a hitherto unknown fold and have subunits organized with inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. Mutational studies highlight the functional relevance of conserved CysZ residues. PMID:29792261

  5. Water-insoluble Silk Films with Silk I Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  6. Contact angles of wetting and water stability of soil structure

    Science.gov (United States)

    Kholodov, V. A.; Yaroslavtseva, N. V.; Yashin, M. A.; Frid, A. S.; Lazarev, V. I.; Tyugai, Z. N.; Milanovskiy, E. Yu.

    2015-06-01

    From the soddy-podzolic soils and typical chernozems of different texture and land use, dry 3-1 mm aggregates were isolated and sieved in water. As a result, water-stable aggregates and water-unstable particles composing dry 3-1 mm aggregates were obtained. These preparations were ground, and contact angles of wetting were determined by the static sessile drop method. The angles varied from 11° to 85°. In most cases, the values of the angles for the water-stable aggregates significantly exceeded those for the water-unstable components. In terms of carbon content in structural units, there was no correlation between these parameters. When analyzing the soil varieties separately, the significant positive correlation between the carbon content and contact angle of aggregates was revealed only for the loamy-clayey typical chernozem. Based on the multivariate analysis of variance, the value of contact wetting angle was shown to be determined by the structural units belonging to water-stable or water-unstable components of macroaggregates and by the land use type. In addition, along with these parameters, the texture has an indirect effect.

  7. Evidence for aquaporin-mediated water transport in nematocytes of the jellyfish Pelagia noctiluca.

    Science.gov (United States)

    Marino, Angela; Morabito, Rossana; La Spada, Giuseppina; Adragna, Norma C; Lauf, Peter K

    2011-01-01

    Nematocytes, the stinging cells of Cnidarians, have a cytoplasm confined to a thin rim. The main cell body is occupied by an organoid, the nematocyst, containing the stinging tubule and venom. Exposed to hypotonic shock, nematocytes initially swell during an osmotic phase (OP) and then undergo regulatory volume decrease (RVD) driven by K(+), Cl(-) and obligatory water extrusion mechanisms. The purpose of this report is to characterize the OP. Nematocytes were isolated by the NaSCN/Ca(2+) method from tentacles of the jellyfish Pelagia noctiluca, collected in the Strait of Messina, Italy. Isolated nematocytes were subjected to hyposmotic shock in 65% artificial seawater (ASW) for 15 min. The selective aquaporin water channel inhibitor HgCl(2) (0.1-25 μM) applied prior to osmotic shock prevented the OP and thus RVD. These effects were attenuated in the presence of 1mM dithiothreitol (DTT), a mercaptide bond reducing agent. AgNO(3) (1 μM) and TEA (tetraethylammonium, 100 μM), also reported to inhibit water transport, did not alter the OP but significantly diminished RVD, suggesting different modes of action for the inhibitors tested. Based on estimates of the nematocyte surface area and volume, and OP duration, a relative water permeability of ~10(-7) cm/sec was calculated and the number of putative aquaporin molecules mediating the OP was estimated. This water permeability is 3-4 orders of magnitude lower in comparison to higher order animals and may constitute an evolutionary advantage for Cnidarian survival. Copyright © 2011 S. Karger AG, Basel.

  8. Carrier Mediated Distribution System (CAMDIS): a new approach for the measurement of octanol/water distribution coefficients.

    Science.gov (United States)

    Wagner, Bjoern; Fischer, Holger; Kansy, Manfred; Seelig, Anna; Assmus, Frauke

    2015-02-20

    Here we present a miniaturized assay, referred to as Carrier-Mediated Distribution System (CAMDIS) for fast and reliable measurement of octanol/water distribution coefficients, log D(oct). By introducing a filter support for octanol, phase separation from water is facilitated and the tendency of emulsion formation (emulsification) at the interface is reduced. A guideline for the best practice of CAMDIS is given, describing a strategy to manage drug adsorption at the filter-supported octanol/buffer interface. We validated the assay on a set of 52 structurally diverse drugs with known shake flask log D(oct) values. Excellent agreement with literature data (r(2) = 0.996, standard error of estimate, SEE = 0.111), high reproducibility (standard deviation, SD < 0.1 log D(oct) units), minimal sample consumption (10 μL of 100 μM DMSO stock solution) and a broad analytical range (log D(oct) range = -0.5 to 4.2) make CAMDIS a valuable tool for the high-throughput assessment of log D(oc)t. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Regulatory Focus as a Mediator of the Influence of Initiating Structure and Servant Leadership on Employee Behavior

    Science.gov (United States)

    Neubert, Mitchell J.; Kacmar, K. Michele; Carlson, Dawn S.; Chonko, Lawrence B.; Roberts, James A.

    2008-01-01

    In this research, the authors test a model in which the regulatory focus of employees at work mediates the influence of leadership on employee behavior. In a nationally representative sample of 250 workers who responded over 2 time periods, prevention focus mediated the relationship of initiating structure to in-role performance and deviant…

  10. Species-specific intrinsic water use efficiency and its mediation of carbon assimilation during the drought

    Science.gov (United States)

    Yi, K.; Wenzel, M. K.; Maxwell, J. T.; Novick, K. A.; Gray, A.; Roman, D. T.

    2015-12-01

    Drought is expected to occur more frequently and intensely in the future, and many studies have suggested frequent and intense droughts can significantly alter carbon and water cycling in forest ecosystems, consequently decreasing the ability of forests to assimilate carbon. Predicting the impact of drought on forest ecosystem processes requires an understanding of species-specific responses to drought, especially in eastern US where species composition is highly dynamic. An emerging approach for describing species-specific drought response is to classify the plant water use strategy into isohydric and anisohydric behaviors. Trees utilizing isohydric behavior regulate water potential by closing stomata to reduce water loss during drought conditions, while anisohydric trees allow water potential to drop by sustaining stomatal conductance, but with the risk of hydraulic failure caused by cavitation of xylem tissues. Since catastrophic cavitation occurs infrequently in the relatively wet eastern U.S., we hypothesize that 1) tree growth of isohydric trees will be more limited during the drought than the anisohydric trees due to decreased stomatal conductance, but 2) variation in intrinsic water use efficient (iWUE) during drought in isohydric trees will mediate the effects of drought on carbon assimilation. We will test these hypotheses by 1) analyzing tree-ring chronologies and dendrometer data on productivity, and 2) estimating intrinsic water use efficiency (iWUE) at multiple scales by analyzing gas exchange data for the leaf-level, inter-annual variability of d13C in tree stem cores for the tree-level, and eddy covariance technique for the stand-level. Our study site is the Morgan-Monroe State Forest (Indiana, USA). A 46 m flux tower has been continuously recording the carbon, water and energy fluxes, and tree diameter has been measured every 2 weeks using dendrometers, since 1998. Additional research, including gas exchange measurements performed during the

  11. Structure of liquid water at high pressures and temperatures

    CERN Document Server

    Eggert, J H; Loubeyre, P

    2002-01-01

    We report quantitatively accurate structure-factor and radial-distribution-function measurements of liquid water in a diamond-anvil cell (DAC) using x-ray diffraction. During the analysis of our diffraction data, we found it possible (and necessary) to also determine the density. Thus, we believe we present the first-ever diffraction-based determination of a liquid structure factor and equation of state in a DAC experiment.

  12. Effect of Magnesium Oxide Nanoparticles on Water Glass Structure

    Directory of Open Access Journals (Sweden)

    Bobrowski A.

    2012-09-01

    Full Text Available An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide on the structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgO in propanol and ethanol were introduced in the same mass content (5wt.% and structural changes were determined by measurement of the FT-IR absorption spectra.

  13. Freely floating structures trapping time-harmonic water waves (revisited)

    OpenAIRE

    Kuznetsov, Nikolay; Motygin, Oleg

    2014-01-01

    We study the coupled small-amplitude motion of the mechanical system consisting of infinitely deep water and a structure immersed in it. The former is bounded above by a free surface, whereas the latter is formed by an arbitrary finite number of surface-piercing bodies floating freely. The mathematical model of time-harmonic motion is a spectral problem in which the frequency of oscillations serves as the spectral parameter. It is proved that there exist axisymmetric structures consisting of ...

  14. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  15. Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics.

    Science.gov (United States)

    Lang, Shuang-Yan; Xiao, Rui-Juan; Gu, Lin; Guo, Yu-Guo; Wen, Rui; Wan, Li-Jun

    2018-06-08

    Lithium-sulfur batteries possess favorable potential for energy-storage applications due to their high specific capacity and the low cost of sulfur. Intensive understanding of the interfacial mechanism, especially the polysulfide formation and transformation under complex electrochemical environment, is crucial for the build-up of advanced batteries. Here we report the direct visualization of interfacial evolution and dynamic transformation of the sulfides mediated by the lithium salts via real-time atomic force microscopy monitoring inside a working battery. The observations indicate that the lithium salts influence the structures and processes of sulfide deposition/decomposition during discharge/charge. Moreover, the distinct ion interaction and diffusion in electrolytes manipulate the interfacial reactions determining the kinetics of the sulfide transformation. Our findings provide deep insights into surface dynamics of lithium-sulfur reactions revealing the salt-mediated mechanisms at nanoscale, which contribute to the profound understanding of the interfacial processes for the optimized design of lithium-sulfur batteries.

  16. Evidence for water-mediated mechanisms in coral–algal interactions

    Science.gov (United States)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral–algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral–algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. PMID:27512146

  17. Iron-mediated soil carbon response to water-table decline in an alpine wetland

    Science.gov (United States)

    Wang, Yiyun; Wang, Hao; He, Jin-Sheng; Feng, Xiaojuan

    2017-06-01

    The tremendous reservoir of soil organic carbon (SOC) in wetlands is being threatened by water-table decline (WTD) globally. However, the SOC response to WTD remains highly uncertain. Here we examine the under-investigated role of iron (Fe) in mediating soil enzyme activity and lignin stabilization in a mesocosm WTD experiment in an alpine wetland. In contrast to the classic `enzyme latch' theory, phenol oxidative activity is mainly controlled by ferrous iron [Fe(II)] and declines with WTD, leading to an accumulation of dissolvable aromatics and a reduced activity of hydrolytic enzyme. Furthermore, using dithionite to remove Fe oxides, we observe a significant increase of Fe-protected lignin phenols in the air-exposed soils. Fe oxidation hence acts as an `iron gate' against the `enzyme latch' in regulating wetland SOC dynamics under oxygen exposure. This newly recognized mechanism may be key to predicting wetland soil carbon storage with intensified WTD in a changing climate.

  18. Structure of human insulin monomer in water/acetonitrile solution

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elzbieta [National Medicines Institute (Poland); Tarnowska, Anna; Kawecki, Robert [Institute of Organic Chemistry Polish Academy of Sciences (Poland); Kozerski, Lech [National Medicines Institute (Poland)], E-mail: lkoz@icho.edu.pl

    2008-01-15

    Here we present evidence that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. An NMR-derived human insulin monomer structure in H{sub 2}O/CD{sub 3}CN, 65/35 vol%, pH 3.6 is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Acta Crystallogr. 2003 Sec. D59, 474) and with NMR structures in water and organic cosolvent. Detailed analysis using PFGSE NMR, temperature-dependent NMR, dilution experiments and CSI proves that the structure is monomeric in the concentration and temperature ranges 0.1-3 mM and 10-30 deg. C, respectively. The presence of long-range interstrand NOEs, as found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Starting from structures calculated by the program CYANA, two different molecular dynamics simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER{sub V}C), or including a generalized Born solvent model (AMBER{sub G}B)

  19. Structure of human insulin monomer in water/acetonitrile solution

    International Nuclear Information System (INIS)

    Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elzbieta; Tarnowska, Anna; Kawecki, Robert; Kozerski, Lech

    2008-01-01

    Here we present evidence that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. An NMR-derived human insulin monomer structure in H 2 O/CD 3 CN, 65/35 vol%, pH 3.6 is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Acta Crystallogr. 2003 Sec. D59, 474) and with NMR structures in water and organic cosolvent. Detailed analysis using PFGSE NMR, temperature-dependent NMR, dilution experiments and CSI proves that the structure is monomeric in the concentration and temperature ranges 0.1-3 mM and 10-30 deg. C, respectively. The presence of long-range interstrand NOEs, as found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Starting from structures calculated by the program CYANA, two different molecular dynamics simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER V C), or including a generalized Born solvent model (AMBER G B)

  20. Skin lipid structure controls water permeability in snake molts.

    Science.gov (United States)

    Torri, Cristian; Mangoni, Alfonso; Teta, Roberta; Fattorusso, Ernesto; Alibardi, Lorenzo; Fermani, Simona; Bonacini, Irene; Gazzano, Massimo; Burghammer, Manfred; Fabbri, Daniele; Falini, Giuseppe

    2014-01-01

    The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A structured ecosystem-scale approach to marine water quality ...

    African Journals Online (AJOL)

    These, in turn, created the need for holistic and integrated frameworks within which to design and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in ...

  2. Tempered Water Lower Port Connector Structural Analysis Verification

    International Nuclear Information System (INIS)

    CREA, B.A.

    2000-01-01

    Structural analysis of the lower port connection of the Tempered Water System of the Cold Vacuum Drying Facility was performed. Subsequent detailed design changes to enhance operability resulted in the need to re-evaluate the bases of the original analysis to verify its continued validity. This evaluation is contained in Appendix A of this report. The original evaluation is contained in Appendix B

  3. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Graves, H.L.

    1987-01-01

    The basic problem consists of a liner flexible structure situated at or near the surface of a soil half-space. In keeping with typical small strain seismic analyses, the soil skeleton is represented as a linear medium in which all potential nonlinearities are at most lumped together into an equivalent hysteretic damping modulus. In addition, the ground water level is located at some depth relatively close to the structure, and in a position to impact on the seismic response of the facility. In order to estimate the response of this oil-water system, the two-phased medium formulation of Biot was used to treat the response of the solids and water as two separate linear media, coupled together through soil permeability and volume effects. (orig./HP)

  4. Structure of bound water and refinement of acid metmyoglobin

    International Nuclear Information System (INIS)

    Raghaven, N.V.; Schoenborn, B.P.

    1982-06-01

    The structure of myoglobin has been determined by x-ray diffraction for the acidmet, deoxy, and the oxy forms. Neutron diffraction work, done in this laboratory, has demonstrated that hydrogen and deuterium positions can be located. In addition to the localization of H and D, neutron diffraction provides a unique method for studying the water structure because of the strong scattering ability of D 2 O. The scattering factor of deuterium is nearly twice as large as that of hydrogen, and it increases the visibility of water molecules in Fourier maps, so that in a neutron map a water molecule appears about three times as strong as in an equivalent electron-density map. (DT)

  5. Crystal structure mediates mode of cell death in TiO2 nanotoxicity

    International Nuclear Information System (INIS)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C.; Jiang, Jingkun; Biswas, Pratim; Schlager, John J.; Hussain, Saber M.

    2009-01-01

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO 2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO 2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO 2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO 2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO 2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  6. Crystal structure mediates mode of cell death in TiO{sub 2} nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C. [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States); Jiang, Jingkun; Biswas, Pratim [Washington University in St. Louis, Department of Energy, Environmental, and Chemical Engineering (United States); Schlager, John J.; Hussain, Saber M., E-mail: Saber.Hussain@wpafb.af.mi [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2009-08-15

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO{sub 2} have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO{sub 2} toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO{sub 2} nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO{sub 2} nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO{sub 2} nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  7. Structure of the floating water bridge and water in an electric field.

    Science.gov (United States)

    Skinner, Lawrie B; Benmore, Chris J; Shyam, Badri; Weber, J K R; Parise, John B

    2012-10-09

    The floating water bridge phenomenon is a freestanding rope-shaped connection of pure liquid water, formed under the influence of a high potential difference (approximately 15 kV). Several recent spectroscopic, optical, and neutron scattering studies have suggested that the origin of the bridge is associated with the formation of anisotropic chains of water molecules in the liquid. In this work, high energy X-ray diffraction experiments have been performed on a series of floating water bridges as a function of applied voltage, bridge length, and position within the bridge. The two-dimensional X-ray scattering data showed no direction-dependence, indicating that the bulk water molecules do not exhibit any significant preferred orientation along the electric field. The only structural changes observed were those due to heating, and these effects were found to be the same as for bulk water. These X-ray scattering measurements are supported by molecular dynamics (MD) simulations which were performed under electric fields of 10(6) V/m and 10(9) V/m. Directional structure factor calculations were made from these simulations parallel and perpendicular to the E-field. The 10(6) V/m model showed no significant directional-dependence (anisotropy) in the structure factors. The 10(9) V/m model however, contained molecules aligned by the E-field, and had significant structural anisotropy.

  8. THE MEDIATING ROLE OF SCIENCE MUSEUM IN STRUCTURING AND SYNTHESIS OF LEARNING

    Directory of Open Access Journals (Sweden)

    Fanny Angulo Delgado

    2016-10-01

    Full Text Available Understanding the mediating role of science museum in learning scientific content in school, it involves reflecting on the contributions of research to the question of what and how people learn in non-conventional educational settings. It has been shown that most people spend less than 3% of their lives learning in school, which emphasizes the importance of conceptualizing what they are and how much of their learning take place. While that question is resolved, it speaks at this bioassay on the complementary relationship between the museum and the school, as both institutions share the same educational purpose, but differ in the ways of achieving it. The science museum joins the class as a mediator that facilitates student learning as part of an education that promotes understanding of the phenomena of the world through models, which means that school learning goes in stages, one of which is that students have opportunity to structure new knowledge and synthesize on its own model. For this it is necessary that students speak, read, listen and write in science class, while the thought is expressed in language to attest to the facts. These communication skills arise in science class as indicators of mediation exercised by the museum and allow us to understand that it takes place in at least two dimensions: museographic and didactics.

  9. Emotion dysregulation mediates the relationship between child maltreatment and psychopathology: A structural equation model.

    Science.gov (United States)

    Jennissen, Simone; Holl, Julia; Mai, Hannah; Wolff, Sebastian; Barnow, Sven

    2016-12-01

    The present study investigated the mediating effects of emotion dysregulation on the relationship between child maltreatment and psychopathology. An adult sample (N=701) from diverse backgrounds of psychopathology completed the Childhood Trauma Questionnaire (CTQ), the Difficulties in Emotion Regulation Scale (DERS), the Brief Symptom Inventory (BSI), and the negative affect subscale of the Positive and Negative Affect Schedule (PANAS) in a cross-sectional online survey. Correlational analyses showed that all types of child maltreatment were uniformly associated with emotion dysregulation, and dimensions of emotion dysregulation were strongly related to psychopathology. Limited access to strategies for emotion regulation emerged as the most powerful predictor. Structural equation modeling analyses revealed that emotion dysregulation partially mediated the relationship between child maltreatment and psychopathology, even after controlling for shared variance with negative affect. These findings emphasize the importance of emotion dysregulation as a possible mediating mechanism in the association between child maltreatment and later psychopathology. Additionally, interventions targeting specific emotion regulation strategies may be effective to reduce psychopathology in victims of child maltreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Water-assisted nitrogen mediated crystallisation of ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Muydinov, R. [Technical University Berlin, Institute of Semiconducting- and High-Frequency Technologies, Einsteinufer 25, 10587 Berlin (Germany); Steigert, A. [Helmholtz-Zentrum Berlin, Institute of Heterogeneous Material Systems, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Schönau, S.; Ruske, F. [Helmholtz-Zentrum Berlin, Institute of Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany); Kraehnert, R.; Eckhardt, B. [Technical University Berlin, Institute of Technical Chemistry, Straße des 17. Juni 124, 10623 Berlin (Germany); Lauermann, I. [Helmholtz-Zentrum Berlin, Institute of Heterogeneous Material Systems, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Szyszka, B. [Technical University Berlin, Institute of Semiconducting- and High-Frequency Technologies, Einsteinufer 25, 10587 Berlin (Germany)

    2015-09-01

    Nitrogen mediated crystallisation (NMC) being performed in oxygen atmosphere at T ≥ 600 °C is an effective approach to obtain very well (00l)-textured ZnO films. A use of NMC-seed layers remarkably improves electrical transport properties of subsequently deposited ZnO:Al contacts. In this work, crystallisation of quasi-amorphous, nitrogen doped ZnO seed layers has been performed using water vapours at overpressure and temperatures around 100 °C. This approach allows employment of soda-lime float-glass or temperature sensitive film stacks as a substrate. We propose here possible mechanism of water-assisted NMC and grope for optimised crystallisation conditions on the basis of optical, microscopic, and textural investigation. Low temperature water-assisted crystallisation of 20 nm thick ZnO layers was compared with high temperature annealing methods in terms of composition, microstructure and crystallinity. Electrical properties such as electron Hall mobility (μ{sub e}), concentration of free electrons (N{sub e}) and sheet resistance (R{sub sh}) have been evaluated and compared for functional ZnO:Al films obtained on glass and on differently crystallised NMC-seed layers. It was found that the crystallised with water assistance at low temperature ZnO seed layers provide comparable improvement in crystallinity and electrical properties of subsequently grown functional ZnO:Al films with respect to the ones crystallised at high temperature. Use of optimised water-assisted crystallisation of seed layers has allowed decreasing R{sub sh} of thin (130–270 nm) functional ZnO:Al films twice compared to the glass substrate. Both provide this effect: increase in μ{sub e} and increase of N{sub e}. - Highlights: • Amorphous ZnO:N films can be crystallised in autoclave at temperatures around 100 °C. • Such water-assisted crystallisation provides well-crystalline ZnO seed layers. • Use of these seed layers resulted in stress-free ZnO:Al contacts with twice lower R

  11. Promotion of Water-mediated Carbon Removal by Nanostructured Barium Oxide/nickel Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    L Yang; Y Choi; W Qin; H Chen; K Blinn; M Liu; P Liu; J Bai; T Tyson; M Liu

    2011-12-31

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C{sub 3}H{sub 8}, CO and gasified carbon fuels at 750 C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.

  12. The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide.

    Science.gov (United States)

    Soler-Crespo, Rafael A; Gao, Wei; Mao, Lily; Nguyen, Hoang T; Roenbeck, Michael R; Paci, Jeffrey T; Huang, Jiaxing; Nguyen, SonBinh T; Espinosa, Horacio D

    2018-06-05

    Graphene oxide (GO), whose highly tunable surface chemistry enables the formation of strong interfacial hydrogen bond networks, has garnered increasing interest in the design of devices that operate in the presence of water. For instance, previous studies have suggested that controlling GO's surface chemistry leads to enhancements in interfacial shear strength, allowing engineers to manage deformation pathways and control failure mechanisms. However, these previous reports have not explored the role of ambient humidity, and only offer extensive chemical modifications to GO's surface as the main pathway to control GO's interfacial properties. Herein, through atomic force microscopy experiments on GO-GO interfaces, the adhesion energy and interfacial shear strength of GO were measured as a function of ambient humidity. Experimental evidence shows that adhesion energy and interfacial shear strength can be improved by a factor of two to three when GO is exposed to moderate (~30% water wt.) water content. Furthermore, complementary molecular dynamics simulations uncovered the mechanisms by which these nanomaterial interfaces achieve their properties. They reveal that the strengthening mechanism arises from the formation of strongly interacting hydrogen bond networks, driven by the chemistry of the GO basal plane and intercalated water molecules between two GO surfaces. In summary, the methodology and findings here reported provide pathways to simultaneously optimize GO's interfacial and in-plane mechanical properties, by tailoring the chemistry of GO and accounting for water content, in engineering applications such as sensors, filtration membranes, wearable electronics, and structural materials.

  13. Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH.

    Science.gov (United States)

    Mazille, F; Schoettl, T; Klamerth, N; Malato, S; Pulgarin, C

    2010-05-01

    Photocatalytic degradation of phenol, nalidixic acid, mixture of pesticides, and another of emerging contaminants in water was mediated by TiO(2) and iron oxide immobilized on functionalized polyvinyl fluoride films (PVF(f)-TiO(2)-Fe oxide) in a compound parabolic collector (CPC) solar photoreactor. During degradation, little iron leaching (compounds and less efficient for six other compounds. The significant reactivity differences between tested compounds were assigned to the differences in structure namely that the presence of complexing or chelating groups enhanced the rates. PVF(f)-TiO(2)-Fe oxide photoactivity gradually increased during 20 days of experiments. X-ray photoelectron spectroscopy (XPS) measurements revealed significant changes on the catalyst surface. These analyses confirm that during photocatalysis mediated by PVF(f)-TiO(2)-Fe oxide, some iron leaching led to enlargement of the TiO(2) surface exposed to light, increasing its synergy with iron oxides and leading to enhanced pollutant degradation.

  14. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils

    Science.gov (United States)

    Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent

    2018-04-01

    In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.

  15. An RNA secondary structure bias for non-homologous reverse transcriptase-mediated deletions in vivo

    DEFF Research Database (Denmark)

    Duch, Mogens; Carrasco, Maria L; Jespersen, Thomas

    2004-01-01

    Murine leukemia viruses harboring an internal ribosome entry site (IRES)-directed translational cassette are able to replicate, but undergo loss of heterologous sequences upon continued passage. While complete loss of heterologous sequences is favored when these are flanked by a direct repeat......, deletion mutants with junction sites within the heterologous cassette may also be retrieved, in particular from vectors without flanking repeats. Such deletion mutants were here used to investigate determinants of reverse transcriptase-mediated non-homologous recombination. Based upon previous structural...... result from template switching during first-strand cDNA synthesis and that the choice of acceptor sites for non-homologous recombination are guided by non-paired regions. Our results may have implications for recombination events taking place within structured regions of retroviral RNA genomes...

  16. Structural Insights into Triglyceride Storage Mediated by Fat Storage-Inducing Transmembrane (FIT) Protein 2

    Science.gov (United States)

    Gross, David A.; Snapp, Erik L.; Silver, David L.

    2010-01-01

    Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2) belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9)AAA) in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9)AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation. PMID:20520733

  17. Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT protein 2.

    Directory of Open Access Journals (Sweden)

    David A Gross

    2010-05-01

    Full Text Available Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2 belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9AAA in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation.

  18. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    Science.gov (United States)

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.

  19. Hemi-fused structure mediates and controls fusion and fission in live cells.

    Science.gov (United States)

    Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul; Wen, Peter J; Krystofiak, Evan S; Villarreal, Seth A; Chiang, Hsueh-Cheng; Kachar, Bechara; Wu, Ling-Gang

    2016-06-23

    Membrane fusion and fission are vital for eukaryotic life. For three decades, it has been proposed that fusion is mediated by fusion between the proximal leaflets of two bilayers (hemi-fusion) to produce a hemi-fused structure, followed by fusion between the distal leaflets, whereas fission is via hemi-fission, which also produces a hemi-fused structure, followed by full fission. This hypothesis remained unsupported owing to the lack of observation of hemi-fusion or hemi-fission in live cells. A competing fusion hypothesis involving protein-lined pore formation has also been proposed. Here we report the observation of a hemi-fused Ω-shaped structure in live neuroendocrine chromaffin cells and pancreatic β-cells, visualized using confocal and super-resolution stimulated emission depletion microscopy. This structure is generated from fusion pore opening or closure (fission) at the plasma membrane. Unexpectedly, the transition to full fusion or fission is determined by competition between fusion and calcium/dynamin-dependent fission mechanisms, and is notably slow (seconds to tens of seconds) in a substantial fraction of the events. These results provide key missing evidence in support of the hemi-fusion and hemi-fission hypothesis in live cells, and reveal the hemi-fused intermediate as a key structure controlling fusion and fission, as fusion and fission mechanisms compete to determine the transition to fusion or fission.

  20. The structure of liquid water; La structure de l'eau liquide

    Energy Technology Data Exchange (ETDEWEB)

    Marin, B [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    We have tried to expose a bibliography so complete as possible on structure of liquid water. One synthesis of the different models of water structure is presently impossible, so, we have exposed the main properties of water. We have pointed out the new hypotheses on the electronic structure of water molecule and on the theory of hydrogen bond. After that, we have put together the studies of structure by spectroscopy and given the main deductions of some workers on this subject. We have also exposed the characteristics of processes: relaxation and dielectric constant, influence of temperature on structure. At last, we have considered briefly the partition and thermodynamic functions established from the various models proposed. (author) [French] Nous nous sommes proposes d'ecrire une bibliographie aussi complete que possible sur la structure de l'eau liquide. Apres avoir rappele les differentes tentatives d'etablissement de modele de structure, et s'etre rendu compte qu'une synthese s'averait impossible, il nous est apparu souhaitable d'exposer les principales proprietes de l'eau. C'est ainsi que nous avons donne les hypotheses les plus recentes sur la structure electronique de la molecule d'eau ainsi que celles concernant la theorie de la liaison hydrogene. Puis nous avons rassemble les etudes de structure par spectroscopie et fourni les deductions auxquelles les divers auteurs sont arrives. Nous avons egalement expose les caracteristiques des processus tels que: relaxation et constante dielectrique, l'influence de la temperature sur la structure et enfin nous avons donne brievement les fonctions de partition et les grandeurs thermodynamiques etablies a partir des divers modeles proposes. (auteur)

  1. Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy.

    Science.gov (United States)

    Jiang, Tao; Zhang, Li Min; Chen, Xiangyu; Han, Chang Bao; Tang, Wei; Zhang, Chi; Xu, Liang; Wang, Zhong Lin

    2015-12-22

    Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy.

  2. Structural conceptual models of water-conducting features at Aespoe

    International Nuclear Information System (INIS)

    Bossart, P.; Mazurek, M.; Hermansson, Jan

    1998-01-01

    Within the framework of the Fracture Classification and Characterization Project (FCC), water conducting features (WCF) in the Aespoe tunnel system and on the surface of Aespoe Island are being characterized over a range of scales. The larger-scale hierarchies of WCF are mostly constituted of fault arrays, i.e. brittle structures that accommodated episodes of shear strain. The smaller-scale WCF (contained within blocks 1 m. Structural evidence indicates that the fractures within the TRUE-1 block constitute an interconnected system with a pronounced anisotropy

  3. Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.

    Science.gov (United States)

    Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen

    2017-04-01

    Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.

  4. Induced activity in accelerator structures, air and water

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport front the activation region to the release point. (18 refs).

  5. Dropwise chains as the elements of water fog spatial structure

    International Nuclear Information System (INIS)

    Shavlov, A.V.; Sokolov, I.V.; Romanyuk, S.N.; Dzhumandzhi, V.A.

    2013-01-01

    Video images of water fog drops were acquired under standard atmospheric conditions with weak turbulence of the environment. Pair correlation functions of the drops were performed and traces of the spatial arrangement of the drops inside the fog determined. The fog structure carriers are the drop chains with a fixed interdroplet distance. The possible influence of the drop chains on the shear viscosity and fog surface tension has been analysed.

  6. Soil-structure interaction Vol.3. Influence of ground water

    Energy Technology Data Exchange (ETDEWEB)

    Costantino, C J

    1986-04-01

    This study has been performed for the Nuclear Regulatory Commission (NRC) by the Structural Analysis Division of Brookhaven National Laboratory (BNL). The study was conducted during the fiscal year 1965 on the program entitled 'Benchmarking of Structural Engineering Problems' sponsored by NRC. The program considered three separate but complementary problems, each associated with the soil-structure interaction (551) phase of the seismic response analysis of nuclear plant facilities. The reports, all entitled Soil-Structure Interaction, are presented in three separate volumes, namely: Vol. 1 Influence of Layering by AJ Philippacopoulos, Vol. 2 Influence of Lift-Off by C.A. Miller, Vol. 3 Influence of Ground Water by C.J. Costantino. The two problems presented in Volumes 2 and 3 were conducted at the City University of New York (CUNY) under subcontract to BNL. This report, Volume 3 of the report, presents a summary of the first year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program was developed for the two-phased formulation of the combined soil-water problem. This formulation is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were generated for the two-dimensional plane problem of a rigid surface footing moving against a saturated linear soil. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translational response to increase over the frequency range of interest, as

  7. Induced activity in accelerator structures, air and water

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport from the activation region to the release point. (author)

  8. Thermomechanical finite element analysis of hot water boiler structure

    Directory of Open Access Journals (Sweden)

    Živković Dragoljub S.

    2012-01-01

    Full Text Available The paper presents an application of the Finite Elements Method for stress and strain analysis of the hot water boiler structure. The aim of the research was to investigate the influence of the boiler scale on the thermal stresses and strains of the structure of hot water boilers. Results show that maximum thermal stresses appear in the zone of the pipe carrying wall of the first reversing chamber. This indicates that the most critical part of the boiler are weld spots of the smoke pipes and pipe carrying plate, which in the case of significant scale deposits can lead to cracks in the welds and water leakage from the boiler. The nonlinear effects were taken into account by defining the bilinear isotropic hardening model for all boiler elements. Temperature dependency was defined for all relevant material properties, i. e. isotropic coefficient of thermal expansion, Young’s modulus, and isotropic thermal conductivity. The verification of the FEA model was performed by comparing the measured deformations of the hot water boiler with the simulation results. As a reference object, a Viessmann - Vitomax 200 HW boiler was used, with the installed power of 18.2 MW. CAD modeling was done within the Autodesk Inventor, and stress and strain analysis was performed in the ANSYS Software.

  9. Structure of Mesozooplankton Communities in the Coastal Waters of Morocco

    Science.gov (United States)

    Lidvanov, V. V.; Grabko, O. G.; Kukuev, E. I.; Korolkova, T. G.

    2018-03-01

    Mero- and holoplanktonic organisms from 23 large taxa have been detected in the coastal waters of Morocco. Seven Cladocera species and 164 Copepoda species were identified. Copepod fauna mostly consisted of oceanic epipelagic widely tropical species, but the constant species group (frequency of occurrence over 50%) included neritic and neritic-oceanic widely tropical species. The neritic community that formed a biotopic association with coastal upwelling waters and the distant-neritic community associated with Canary Current waters were the two major communities detected. The former community was characterized by a high abundance and biomass (5700 ind./m3 and 260 mg/m3) and predominance of neritic species. The trophic structure was dominated by thin filter feeders, mixed-food consumers, and small grabbers; the species structure was dominated by Paracalanus indicus, Acartia clausi, and Oncaea curta; the indices of species diversity (3.07 bit/ind.) and evenness (0.63) were relatively low. The latter community was characterized by low abundance and biomass (1150 ind./m3 and 90 mg/m3); variable biotopic, trophic, and species structure; and higher Shannon indices (3.99 bit/ind.) and Pielou (0.75). Seasonal variation of the abundance of organisms was not detected in the communities. Anomalous mesozooplankton states were observed in summer 1998 and winter 1998-1999.

  10. Gas hydrate inhibition by perturbation of liquid water structure

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  11. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Lung, R.H.; Graves, H.L.

    1987-01-01

    The study of structural response to seismic inputs has been extensively studied and, particularly with the advent of the growth of digital computer capability, has lead to the development of numerical methods of analysis which are used as standard tools for the design of structures. One aspect of the soil-structure interaction (SSI) process which has not been developed to the same degree of sophistication is the impact of ground water (or pure water) on the response of the soil-structure system. There are very good reasons for his state of affairs, however, not the least of which is the difficulty of incorporating the true constitutive behavior of saturated soils into the analysis. At the large strain end of the spectrum, the engineer is concerned with the potential development of failure conditions under the structure, and is typically interested in the onset of liquefaction conditions. The current state of the art in this area is to a great extent based on empirical methods of analysis which were developed from investigations of limited failure data from specific sites around the world. Since it is known that analytic solutions are available for only the simplest of configurations, a numerical finite element solution process was developed. Again, in keeping with typical SSI analyses, in order to make the finite element approach yield resonable results, a comparable transmitting boundary formulation was included in the development. The purpose of the transmitting boundary is, of course, to allow for the treatment of extended soil/water half-space problems. For the calculations presented herein, a simple one dimensional transmitting boundary model was developed and utilized

  12. Solvation structures of lithium halides in methanol–water mixtures

    International Nuclear Information System (INIS)

    Sarkar, Atanu; Dixit, Mayank Kumar; Tembe, B.L.

    2015-01-01

    Highlights: • Potentials of mean force for Li + -halides are calculated in methanol–water mixtures. • Stable CIP for x methanol = 1.0 becomes unstable at and below x methanol = 0.75. • The Li + ion is preferentially solvated by methanol molecules. • The halide ions are preferentially solvated by water molecules. - Abstract: The potentials of mean force (PMFs) for the ion pairs, Li + −Cl − , Li + −Br − and Li + −I − have been calculated in five methanol–water compositions. The results obtained are verified by trailing the trajectories and calculating the ion pair distance residence times. Local structures around the ions are studied using the radial distribution functions, density profiles, orientational correlation functions, running coordination numbers and excess coordination numbers. The major change in PMF is observed as the methanol mole fraction (x methanol ) is changed from 1.0 to 0.75. The stable contact ion pair occurring for x methanol = 1.0 becomes unstable at and below x methanol = 0.75. The preferential solvation data show that the halide ions are always preferentially solvated by water molecules. Although the lithium ion is preferentially solvated by methanol molecules, there is significant affinity towards water molecules as well

  13. Radical O-O coupling reaction in diferrate-mediated water oxidation studied using multireference wave function theory.

    Science.gov (United States)

    Kurashige, Yuki; Saitow, Masaaki; Chalupský, Jakub; Yanai, Takeshi

    2014-06-28

    The O-O (oxygen-oxygen) bond formation is widely recognized as a key step of the catalytic reaction of dioxygen evolution from water. Recently, the water oxidation catalyzed by potassium ferrate (K2FeO4) was investigated on the basis of experimental kinetic isotope effect analysis assisted by density functional calculations, revealing the intramolecular oxo-coupling mechanism within a di-iron(vi) intermediate, or diferrate [Sarma et al., J. Am. Chem. Soc., 2012, 134, 15371]. Here, we report a detailed examination of this diferrate-mediated O-O bond formation using scalable multireference electronic structure theory. High-dimensional correlated many-electron wave functions beyond the one-electron picture were computed using the ab initio density matrix renormalization group (DMRG) method along the O-O bond formation pathway. The necessity of using large active space arises from the description of complex electronic interactions and varying redox states both associated with two-center antiferromagnetic multivalent iron-oxo coupling. Dynamic correlation effects on top of the active space DMRG wave functions were additively accounted for by complete active space second-order perturbation (CASPT2) and multireference configuration interaction (MRCI) based methods, which were recently introduced by our group. These multireference methods were capable of handling the double shell effects in the extended active space treatment. The calculations with an active space of 36 electrons in 32 orbitals, which is far over conventional limitation, provide a quantitatively reliable prediction of potential energy profiles and confirmed the viability of the direct oxo coupling. The bonding nature of Fe-O and dual bonding character of O-O are discussed using natural orbitals.

  14. Triple oxygen isotope systematics of structurally bonded water in gypsum

    Science.gov (United States)

    Herwartz, Daniel; Surma, Jakub; Voigt, Claudia; Assonov, Sergey; Staubwasser, Michael

    2017-07-01

    The triple oxygen isotopic composition of gypsum mother water (gmw) is recorded in structurally bonded water in gypsum (gsbw). Respective fractionation factors have been determined experimentally for 18O/16O and 17O/16O. By taking previous experiments into account we suggest using 18αgsbw-gmw = 1.0037; 17αgsbw-gmw = 1.00195 and θgsbw-gmw = 0.5285 as fractionation factors in triple oxygen isotope space. Recent gypsum was sampled from a series of 10 ponds located in the Salar de Llamara in the Atacama Desert, Chile. Total dissolved solids (TDS) in these ponds show a gradual increase from 23 g/l to 182 g/l that is accompanied by an increase in pond water 18O/16O. Gsbw falls on a parallel curve to the ambient water from the saline ponds. The offset is mainly due to the equilibrium fractionation between gsbw and gmw. However, gsbw represents a time integrated signal biased towards times of strong evaporation, hence the estimated gmw comprises elevated 18O/16O compositions when compared to pond water samples taken on site. Gypsum precipitation is associated with algae mats in the ponds with lower salinity. No evidence for respective vital effects on the triple oxygen isotopic composition of gypsum hydration water is observed, nor are such effects expected. In principle, the array of δ18Ogsbw vs. 17Oexcess can be used to: (1) provide information on the degree of evaporation during gypsum formation; (2) estimate pristine meteoric water compositions; and (3) estimate local relative humidity which is the controlling parameter of the slope of the array for simple hydrological situations. In our case study, local mining activities may have decreased deep groundwater recharge, causing a recent change of the local hydrology.

  15. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    International Nuclear Information System (INIS)

    Romano, Sebastian A.; Linden, Rafael; Silva, Jerson L.; Foguel, Debora

    2009-01-01

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrP c ), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrP c with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr P c and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrP c :hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr P c 143-153 beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrP c . Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr P c 143-153 beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr P c , and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr P c :hop/STI 1 interaction, consistent with the hypothesis that Pr P c scaffolds multiprotein signaling complexes at the cell surface. (author)

  16. Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange

    Science.gov (United States)

    Pennington, Luke F.; Tarchevskaya, Svetlana; Brigger, Daniel; Sathiyamoorthy, Karthik; Graham, Michelle T.; Nadeau, Kari Christine; Eggel, Alexander; Jardetzky, Theodore S.

    2016-01-01

    Omalizumab is a widely used therapeutic anti-IgE antibody. Here we report the crystal structure of the omalizumab–Fab in complex with an IgE-Fc fragment. This structure reveals the mechanism of omalizumab-mediated inhibition of IgE interactions with both high- and low-affinity IgE receptors, and explains why omalizumab selectively binds free IgE. The structure of the complex also provides mechanistic insight into a class of disruptive IgE inhibitors that accelerate the dissociation of the high-affinity IgE receptor from IgE. We use this structural data to generate a mutant IgE-Fc fragment that is resistant to omalizumab binding. Treatment with this omalizumab-resistant IgE-Fc fragment, in combination with omalizumab, promotes the exchange of cell-bound full-length IgE with omalizumab-resistant IgE-Fc fragments on human basophils. This combination treatment also blocks basophil activation more efficiently than either agent alone, providing a novel approach to probe regulatory mechanisms underlying IgE hypersensitivity with implications for therapeutic interventions. PMID:27194387

  17. Building Collaborative Structures for Teachers' Autonomy and Self-Efficacy: The Mediating Role of Participative Management and Learning Culture

    Science.gov (United States)

    Lu, Jiafang; Jiang, Xinhui; Yu, Huen; Li, Dongyu

    2015-01-01

    This study focused on the collaborative structure-building behavior of school principals and examined how such behavior affects teacher empowerment. More important, it tested the mediating effects of participative management and learning culture. By collecting nested data from 104 schools in Hong Kong and adopting multilevel structural equation…

  18. Water linked 3D coordination polymers: Syntheses, structures and applications

    Science.gov (United States)

    Singh, Suryabhan; Bhim, Anupam

    2016-12-01

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H2O)(H2O)]n1, [Pb(OBA)(μ-H2O)]n2 [where OBA=4,4'-Oxybis(benzoate)] and [Pb(SDBA)(H2O)]n.1/4DMF 3 (SDBA=4,4'-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]n4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives.

  19. Urban water infrastructure asset management - a structured approach in four water utilities.

    Science.gov (United States)

    Cardoso, M A; Silva, M Santos; Coelho, S T; Almeida, M C; Covas, D I C

    2012-01-01

    Water services are a strategic sector of large social and economic relevance. It is therefore essential that they are managed rationally and efficiently. Advanced water supply and wastewater infrastructure asset management (IAM) is key in achieving adequate levels of service in the future, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution. This paper presents a methodology for supporting the development of urban water IAM, developed during the AWARE-P project as well as an appraisal of its implementation in four water utilities. Both water supply and wastewater systems were considered. Due to the different contexts and features of the utilities, the main concerns vary from case to case; some problems essentially are related to performance, others to risk. Cost is a common deciding factor. The paper describes the procedure applied, focusing on the diversity of drivers, constraints, benefits and outcomes. It also points out the main challenges and the results obtained through the implementation of a structured procedure for supporting urban water IAM.

  20. HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses.

    Science.gov (United States)

    Pigna, Eva; Renzini, Alessandra; Greco, Emanuela; Simonazzi, Elena; Fulle, Stefania; Mancinelli, Rosa; Moresi, Viviana; Adamo, Sergio

    2018-02-24

    Denervation triggers numerous molecular responses in skeletal muscle, including the activation of catabolic pathways and oxidative stress, leading to progressive muscle atrophy. Histone deacetylase 4 (HDAC4) mediates skeletal muscle response to denervation, suggesting the use of HDAC inhibitors as a therapeutic approach to neurogenic muscle atrophy. However, the effects of HDAC4 inhibition in skeletal muscle in response to long-term denervation have not been described yet. To further study HDAC4 functions in response to denervation, we analyzed mutant mice in which HDAC4 is specifically deleted in skeletal muscle. After an initial phase of resistance to neurogenic muscle atrophy, skeletal muscle with a deletion of HDAC4 lost structural integrity after 4 weeks of denervation. Deletion of HDAC4 impaired the activation of the ubiquitin-proteasome system, delayed the autophagic response, and dampened the OS response in skeletal muscle. Inhibition of the ubiquitin-proteasome system or the autophagic response, if on the one hand, conferred resistance to neurogenic muscle atrophy; on the other hand, induced loss of muscle integrity and inflammation in mice lacking HDAC4 in skeletal muscle. Moreover, treatment with the antioxidant drug Trolox prevented loss of muscle integrity and inflammation in in mice lacking HDAC4 in skeletal muscle, despite the resistance to neurogenic muscle atrophy. These results reveal new functions of HDAC4 in mediating skeletal muscle response to denervation and lead us to propose the combined use of HDAC inhibitors and antioxidant drugs to treat neurogenic muscle atrophy.

  1. Coplanar capacitance sensors for detecting water intrusion in composite structures

    International Nuclear Information System (INIS)

    Nassr, Amr A; El-Dakhakhni, Wael W; Ahmed, Wael H

    2008-01-01

    Composite materials are becoming more affordable and widely used for retrofitting, rehabilitating and repairing reinforced concrete structures designed and constructed under older specifications. However, the mechanical properties and long-term durability of composite materials may degrade severely in the presence of water intrusion. This study presents a new non-destructive evaluation (NDE) technique for detecting the water intrusion in composite structures by evaluating the dielectric properties of different composite system constituent materials. The variation in the dielectric signatures was employed to design a coplanar capacitance sensor with high sensitivity to detect such defects. An analytical model was used to study the effect of the sensor geometry on the output signal and to optimize sensor design. A finite element model was developed to validate analytical results and to evaluate other sensor design-related parameters. Experimental testing of a concrete specimen wrapped with composite laminate and containing a series of pre-induced water intrusion defects was conducted in order to validate the concept of the new technique. Experimental data showed excellent agreement with the finite element model predictions and confirmed sensor performance

  2. Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature

    Science.gov (United States)

    Litman, Yair; Donadio, Davide; Ceriotti, Michele; Rossi, Mariana

    2018-03-01

    Water molecules adsorbed on inorganic substrates play an important role in several technological applications. In the presence of light atoms in adsorbates, nuclear quantum effects (NQEs) influence the structural stability and the dynamical properties of these systems. In this work, we explore the impact of NQEs on the dissociation of water wires on stepped Pt(221) surfaces. By performing ab initio molecular dynamics simulations with van der Waals corrected density functional theory, we note that several competing minima for both intact and dissociated structures are accessible at finite temperatures, making it important to assess whether harmonic estimates of the quantum free energy are sufficient to determine the relative stability of the different states. We thus perform ab initio path integral molecular dynamics (PIMD) in order to calculate these contributions taking into account the conformational entropy and anharmonicities at finite temperatures. We propose that when adsorption is weak and NQEs on the substrate are negligible, PIMD simulations can be performed through a simple partition of the system, resulting in considerable computational savings. We then calculate the full contribution of NQEs to the free energies, including also anharmonic terms. We find that they result in an increase of up to 20% of the quantum contribution to the dissociation free energy compared with the harmonic estimates. We also find that the dissociation process has a negligible contribution from tunneling but is dominated by zero point energies, which can enhance the rate of dissociation by three orders of magnitude. Finally we highlight how both temperature and NQEs indirectly impact dipoles and the redistribution of electron density, causing work function changes of up to 0.4 eV with respect to static estimates. This quantitative determination of the change in the work function provides a possible approach to determine experimentally the most stable configurations of water

  3. THE EFFECTS OF HOSPITAL QUALITY OF CARE ON PATIENT BELONGING: STRUCTURAL EQUALITY MODEL AND MEDIATION

    Directory of Open Access Journals (Sweden)

    Ali Rıza FİRUZAN

    2017-09-01

    Full Text Available The aim of the study is to measure the effects of perceived and expected service quality levels on patient loyalty. In total, 370 patients participated in this research. The Structural Equation Modeling (SEM method to test the causal relationship model. The corresponding model in the study emerged as acceptable fit with the model. The result of the study indicate that perceived service quality and patient loyalty are statistically significant and positively related to each other. Additionally, perceived service quality has found to be an important mediator between expected service quality and patient loyalty. After patients have treatment in corresponding hospital, they have been affected by service quality as mush as cost of medication. As patient satisfaction increases, their loyalty increases. It is suggested to hospital management that they might course of action to patients for improving Reliability and Assurance SERVQUAL factors

  4. Investigation of structural responses of breakwaters for green water based on fluid-structure interaction analysis

    Directory of Open Access Journals (Sweden)

    Chi-Seung Lee

    2012-06-01

    Full Text Available In the present study, the structural response of breakwaters installed on container carriers against green water impact loads was numerically investigated on the basis of the fluid-structure interaction analysis. A series of numerical studies is carried out to induce breakwater collapse under such conditions, whereby a widely accepted fluid-structure interaction analysis technique is adopted to realistically consider the phenomenon of green water impact loads. In addition, the structural behaviour of these breakwaters under green water impact loads is investigated simultaneously throughout the transient analysis. A verification study of the numerical results is performed using data from actual collapse incidents of breakwaters on container carriers. On the basis of the results of a series of numerical analyses, the pressure distribution of green water was accurately predicted with respect to wave mass and velocity. It is expected that the proposed analytical methodology and predicted pressure distribution could be used as a practical guideline for the design of breakwaters on container carriers.

  5. Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity.

    Science.gov (United States)

    Nicoludis, John M; Lau, Sze-Yi; Schärfe, Charlotta P I; Marks, Debora S; Weihofen, Wilhelm A; Gaudet, Rachelle

    2015-11-03

    Clustered protocadherin (Pcdh) proteins mediate dendritic self-avoidance in neurons via specific homophilic interactions in their extracellular cadherin (EC) domains. We determined crystal structures of EC1-EC3, containing the homophilic specificity-determining region, of two mouse clustered Pcdh isoforms (PcdhγA1 and PcdhγC3) to investigate the nature of the homophilic interaction. Within the crystal lattices, we observe antiparallel interfaces consistent with a role in trans cell-cell contact. Antiparallel dimerization is supported by evolutionary correlations. Two interfaces, located primarily on EC2-EC3, involve distinctive clustered Pcdh structure and sequence motifs, lack predicted glycosylation sites, and contain residues highly conserved in orthologs but not paralogs, pointing toward their biological significance as homophilic interaction interfaces. These two interfaces are similar yet distinct, reflecting a possible difference in interaction architecture between clustered Pcdh subfamilies. These structures initiate a molecular understanding of clustered Pcdh assemblies that are required to produce functional neuronal networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Does white matter structure or hippocampal volume mediate associations between cortisol and cognitive ageing?

    Science.gov (United States)

    Cox, Simon R.; MacPherson, Sarah E.; Ferguson, Karen J.; Royle, Natalie A.; Maniega, Susana Muñoz; Hernández, Maria del C. Valdés; Bastin, Mark E.; MacLullich, Alasdair M.J.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    Elevated glucocorticoid (GC) levels putatively damage specific brain regions, which in turn may accelerate cognitive ageing. However, many studies are cross-sectional or have relatively short follow-up periods, making it difficult to relate GCs directly to changes in cognitive ability with increasing age. Moreover, studies combining endocrine, MRI and cognitive variables are scarce, measurement methods vary considerably, and formal tests of the underlying causal hypothesis (cortisol → brain → cognition) are absent. In this study, 90 men, aged 73 years, provided measures of fluid intelligence, processing speed and memory, diurnal and reactive salivary cortisol and two measures of white matter (WM) structure (WM hyperintensity volume from structural MRI and mean diffusivity averaged across 12 major tracts from diffusion tensor MRI), hippocampal volume, and also cognitive ability at age 11. We tested whether negative relationships between cognitive ageing differences (over more than 60 years) and salivary cortisol were significantly mediated by WM and hippocampal volume. Significant associations between reactive cortisol at 73 and cognitive ageing differences between 11 and 73 (r = −.28 to −.36, p cognition associations (cognitive ageing differences from childhood to the early 70s, partly via brain WM structure. PMID:26298692

  7. Urban "accidental" wetlands mediate water quality and heat exposure for homeless populations in a desert city

    Science.gov (United States)

    Palta, M.

    2015-12-01

    In urban settings where humans interact in complex ways with ecosystems, there may be hidden or unanticipated benefits (services) or harm (disservices) conferred by the built environment. We examined interactions of a highly vulnerable population, the homeless, with urban waterways and wetlands in the desert city of Phoenix, Arizona, U.S.A. Climate change models project increases in heat, droughts, and extreme floods for the southwestern U.S. These projected changes pose a number of problems for sustainability and quality of future water supply, and the ability of human populations to mitigate heat stress and avoid fatalities. Urban wetlands that are created "accidentally" (by water pooling in abandoned areas of the landscape) have many structural (e.g., soils and hydrology) and functional (e.g., high denitrification) elements that mimic natural, unaltered aquatic systems. Accidental wetland systems in the dry bed of the Salt River, fed by storm and waste water from urban Phoenix, are located within economically depressed sections of the city, and show the potential for pollutant and heat mitigation. We used a mixed-method socio-ecological approach to examine wetland ecosystem functions and the ways in which homeless populations utilize Salt River wetlands for ecosystem services. Interviews and trash surveys indicated that homeless people are accessing and utilizing the wetlands as a source of running water, for sanitary and heat mitigation services, and for recreation and habitation. Environmental monitoring demonstrated that the wetlands can provide a reliable source of running water, nutrient and pathogen removal, heat mitigation, and privacy, but they may also pose a health risk to individuals coming in contact with the water through drinking or bathing. Whether wetlands provided a net benefit vs. harm varied according to site, season, and particular service, and several tradeoffs were identified. For example, heat is highest during the summer storm season

  8. Water linked 3D coordination polymers: Syntheses, structures and applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suryabhan, E-mail: sbs.bhu@gmail.com; Bhim, Anupam

    2016-12-15

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H{sub 2}O)(H{sub 2}O)]{sub n}1, [Pb(OBA)(μ-H{sub 2}O)]{sub n}2 [where OBA=4,4’-Oxybis(benzoate)] and [Pb(SDBA)(H{sub 2}O)]{sub n}.1/4DMF 3 (SDBA=4,4’-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]{sub n}4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH{sub 4} at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives. - Graphical abstract: Three new CPs based on Cd and Pb, have been synthesized and characterized. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol. Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives. - Highlights: • Three new CPs based on Cd and Pb, have been synthesized and characterized. • A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. • One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. • Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives.

  9. Studies on melt-water-structure interaction during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.; Okkonen, T.J.; Bui, V.A.; Nourgaliev, R.R.; Andersson, J.

    1996-10-01

    Results of a series of studies, on melt-water-structure interactions which occur during the progression of a core melt-down accident, are described. The emphasis is on the in-vessel interactions and the studies are both experimental and analytical. Since, the studies performed resulted in papers published in proceedings of the technical meetings, and in journals, copies of a set of selected papers are attached to provide details. A summary of the results obtained is provided for the reader who does not, or cannot, venture into the perusal of the attached papers. (au)

  10. Studies on melt-water-structure interaction during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Dinh, T.N.; Okkonen, T.J.; Bui, V.A.; Nourgaliev, R.R.; Andersson, J. [Royal Inst. of Technology, Div. of Nucl. Power Safety, Stockholm (Sweden)

    1996-10-01

    Results of a series of studies, on melt-water-structure interactions which occur during the progression of a core melt-down accident, are described. The emphasis is on the in-vessel interactions and the studies are both experimental and analytical. Since, the studies performed resulted in papers published in proceedings of the technical meetings, and in journals, copies of a set of selected papers are attached to provide details. A summary of the results obtained is provided for the reader who does not, or cannot, venture into the perusal of the attached papers. (au).

  11. A One-Dimensional Hydrodynamic and Water Quality Model for a Water Transfer Project with Multihydraulic Structures

    OpenAIRE

    Yujun Yi; Caihong Tang; Zhifeng Yang; Shanghong Zhang; Cheng Zhang

    2017-01-01

    The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon), which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movem...

  12. Glutathione-mediated detoxification of halobenzoquinone drinking water disinfection byproducts in T24 cells.

    Science.gov (United States)

    Li, Jinhua; Wang, Wei; Zhang, Hongquan; Le, X Chris; Li, Xing-Fang

    2014-10-01

    Halobenzoquinones (HBQs) are a new class of drinking water disinfection byproducts (DBPs) and are capable of producing reactive oxygen species and causing oxidative damage to proteins and DNA in T24 human bladder carcinoma cells. However, the exact mechanism of the cytotoxicity of HBQs is unknown. Here, we investigated the role of glutathione (GSH) and GSH-related enzymes including glutathione S-transferase (GST) and glutathione peroxidase (GPx) in defense against HBQ-induced cytotoxicity in T24 cells. The HBQs are 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), 2,3,6-trichloro-1,4-benzoquinone (TriCBQ), and 2,6-dibromobenzoquinone (DBBQ). We found that depletion of cellular GSH could sensitize cells to HBQs and extracellular GSH supplementation could attenuate HBQ-induced cytotoxicity. HBQs caused significant cellular GSH depletion and increased cellular GST activities in a concentration-dependent manner. Our mass spectrometry study confirms that HBQs can conjugate with GSH, explaining in part the mechanism of GSH depletion by HBQs. The effects of HBQs on GPx activity are compound dependent; DCMBQ and DBBQ decrease cellular GPx activities, whereas DCBQ and TriCBQ have no significant effects. Pearson correlation analysis shows that the cellular GSH level is inversely correlated with ROS production and cellular GST activity in HBQ-treated cells. These results support a GSH and GSH-related enzyme-mediated detoxification mechanism of HBQs in T24 cells. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Simulating liquid water for determining its structural and transport properties

    International Nuclear Information System (INIS)

    Arismendi-Arrieta, Daniel; Medina, Juan S.; Fanourgakis, George S.; Prosmiti, Rita; Delgado-Barrio, Gerardo

    2014-01-01

    Molecular dynamics simulations are carried out for calculating structural and transport properties of pure liquid water, such as radial distribution functions and self-diffusion and viscosity coefficients, respectively. We employed reparameterized versions of the ab initio water potential by Niesar, Clementi and Corongiu (NCC). In order to investigate the role of the electrostatic contribution, the partial charges of the NCC model are adjusted so that to reproduce the dipole moment values of the SPC/E, SPC/Fw and TIP4P/2005 water models. The single and collective transport coefficients are obtained by employing the Green–Kubo relations at various temperatures. Additionally, in order to overcome convergence difficulties arising from the long correlation times of the stress-tensor autocorrelation functions, a previously reported fitting scheme was employed. The present results indicate that there is a significant relationship between the dipole moment value of the model, and the calculated transport coefficients. We found that by adjusting the molecular dipole moment of the NCC to the value of the TIP4P/2005, the obtained values for the self-diffusion and viscosity coefficients are in better agreement with experiment, compared to the values obtained with the original NCC model. Even though the predictions of the present model exhibits an overall correct behavior, we conclude that further improvements are still required. In order to achieve that, a careful reparameterization of the repulsion–dispersion terms of the potential model is proposed. Also, the effect of the inclusion of many-body effects such as polarizability, should also be investigated. - Highlights: ► Transport properties of liquid water are important in bio-simulations. ► Self-diffusion coefficient, shear and bulk viscosities calculations from NVE molecular dynamics simulations. ► Their comparison with experimental data provides information on intermolecular forces, and serve to develop water

  14. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    International Nuclear Information System (INIS)

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-01-01

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H_2O_2 concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K_C_A_T and K_C_A_T/K_M values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H_2O_2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H_2O_2 concentration, while the optimal pH and H_2O_2 concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL"−"1 SBP in 30 min reaction time, while an HRP dose of 0.3 U mL"−"1 was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K_C_A_T) and catalytic efficiency (K_C_A_T/K_M) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment.

  15. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhua; Peng, Jianbiao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhang, Ya [Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of the People’s Republic of China, Nanjing 210042 (China); Ji, Yuefei [College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095 (China); Shi, Huanhuan; Mao, Liang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Gao, Shixiang, E-mail: ecsxg@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-06-05

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H{sub 2}O{sub 2} concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K{sub CAT} and K{sub CAT}/K{sub M} values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H{sub 2}O{sub 2} concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H{sub 2}O{sub 2} concentration, while the optimal pH and H{sub 2}O{sub 2} concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL{sup −1} SBP in 30 min reaction time, while an HRP dose of 0.3 U mL{sup −1} was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K{sub CAT}) and catalytic efficiency (K{sub CAT}/K{sub M}) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water

  16. The Structure of Sea Water and Gelatinous Water in the Deep Ocean

    Science.gov (United States)

    Peltzer, E. T.; Walz, P. M.; Wojciechowicz, M.; Brewer, P. G.

    2016-12-01

    Gelatinous life forms are common in the deep sea and are able to maintain a careful combination of body integrity and easy fluidity of motion over a wide range of T and P. They accomplish this in part by modifying the molecular structure of water. Both the transparent body of the organism (the mesoglea) and the structure of the immediate surrounding sea water were investigated by in situ laser Raman spectroscopy at depths from 300m to 2,800m. The structure of water is reasonably well known; the basic unit is a hydrogen bonded pentamer with defined stretching and bending modes. The spectrum of the bending band is separable into two components while the stretching band spectrum is composed of five components representing both intra- and inter-molecular vibrations. The effect of temperature on the various vibrational modes is complex. While the effect of pressure on the bending modes is small, but the effect of temperature and pressure on the stretching modes is significant and can be modeled as a van `t Hoff function. Our in situ experiments were conducted using MBARI's ROV Ventana and ROV Doc Ricketts. We collected cnidarians and ctenophores into a 6 L glass detritus sampler fitted with a metal grid plate. Once the animal was captured, we introduced argon gas through the lid of the sampler displacing the contained sea water and leaving a motionless sea water free specimen for spectroscopy. The laser beam was focused through the glass wall of the container and the focal point adjusted to be inside the gelatinous body. Our results very clearly show that:i) The gelatinous mass effectively excludes salts with zero sulfate ion being detected.ii) The water bending modes are absent from the gelatinous spectra.iii) The water stretching modes are highly modified from the typical 5 band liquid pentamer structure with only 3 vibrational modes observable. These results stand in marked contrast to the familiar household gelatin which is typically derived from bovine sources

  17. Structure and dynamics of interfacial water. Role of hydratation water in the globular proteins dynamics

    International Nuclear Information System (INIS)

    Zanotti, J.M.

    1997-01-01

    This memoir includes five chapters. In the first chapter, are given the elements of the neutrons scattering theory that is used in this study. the second chapter is devoted to a general presentation of the interaction between biological macro molecule and water. The third part is dedicated to the study of the structure and the dynamics of interfacial water in the neighbouring of model systems, the vycor and the amorphous carbon. The results presented in this part are compared with these one relative to water dynamics at the C-phycocyanin surface. This study makes the object of the fourth chapter. Then, in the fifth and last chapter are discussed the results relative to the role of hydratation on the parv-albumin dynamics for which have been combined the neutron quasi elastic incoherent scattering and the nuclear magnetic resonance of the carbon 13 solid in natural abundance

  18. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Sebastian A.; Linden, Rafael [Universidade Federal do Rio de Janeiro (IBCCF/UFRl), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho; Cordeiro, Yraima; Rocha e Lima, Luis M.T. da [Universidade Federal do Rio de Janeiro (FF/UFRl), RJ (Brazil). Fac. de Farmacia; Lopes, Marilene H. [Instituto Ludwig de Pesquisa de Cancer, Sao Paulo, SP (Brazil); Silva, Jerson L.; Foguel, Debora [Universidade Federal do Rio de Janeiro (IBqM/UFRl), RJ (Brazil). Inst. de Bioquimica Medica

    2009-07-01

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrP{sup c}), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrP{sup c} with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr P{sup c} and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrP{sup c}:hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr P{sup c}{sub 143-153} beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrP{sup c}. Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr P{sup c}{sub 143-153} beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr P{sup c}, and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr P{sup c}:hop/STI 1 interaction, consistent with the hypothesis that Pr P{sup c} scaffolds multiprotein signaling complexes at the cell surface. (author)

  19. Structural Equation Model of Smartphone Addiction Based on Adult Attachment Theory: Mediating Effects of Loneliness and Depression.

    Science.gov (United States)

    Kim, EunYoung; Cho, Inhyo; Kim, Eun Joo

    2017-06-01

    This study investigated the mediating effects of loneliness and depression on the relationship between adult attachment and smartphone addiction in university students. A total of 200 university students participated in this study. The data was analysed using descriptive statistics, correlation analysis, and structural equation modeling. There were significant positive relationships between attachment anxiety, loneliness, depression, and smartphone addiction. However, attachment anxiety was not significantly correlated with smartphone addiction. The results also showed that loneliness did not directly mediate between attachment anxiety and smartphone addiction. In addition, loneliness and depression serially mediated between attachment anxiety and smartphone addiction. The results suggest there are mediating effects of loneliness and depression in the relationship between attachment anxiety and smartphone addiction. The hypothesized model was found to be a suitable model for predicting smartphone addiction among university students. Future study is required to find a causal path to prevent smartphone addiction among university students. Copyright © 2017. Published by Elsevier B.V.

  20. Ebullition, Plant-Mediated Transport, and Subsurface Horizontal Water Flow Dominate Methane Transport in an Arctic Sphagnum Bog

    Science.gov (United States)

    Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.

    2017-12-01

    Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.

  1. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump.

    Science.gov (United States)

    Vargiu, Attilio Vittorio; Ramaswamy, Venkata Krishnan; Malvacio, Ivana; Malloci, Giuliano; Kleinekathöfer, Ulrich; Ruggerone, Paolo

    2018-04-01

    Efflux pumps of the Resistance-Nodulation-cell Division superfamily confer multi-drug resistance to Gram-negative bacteria. The most-studied polyspecific transporter belonging to this class is the inner-membrane trimeric antiporter AcrB of Escherichia coli. In previous studies, a functional rotation mechanism was proposed for its functioning, according to which the three monomers undergo concerted conformational changes facilitating the extrusion of substrates. However, the molecular determinants and the energetics of this mechanism still remain unknown, so its feasibility must be proven mechanistically. A computational protocol able to mimic the functional rotation mechanism in AcrB was developed. By using multi-bias molecular dynamics simulations we characterized the translocation of the substrate doxorubicin driven by conformational changes of the protein. In addition, we estimated for the first time the free energy profile associated to this process. We provided a molecular view of the process in agreement with experimental data. Moreover, we showed that the conformational changes occurring in AcrB enable the formation of a layer of structured waters on the internal surface of the transport channel. This water layer, in turn, allows for a fairly constant hydration of the substrate, facilitating its diffusion over a smooth free energy profile. Our findings reveal a new molecular mechanism of polyspecific transport whereby water contributes by screening potentially strong substrate-protein interactions. We provided a mechanistic understanding of a fundamental process related to multi-drug transport. Our results can help rationalizing the behavior of other polyspecific transporters and designing compounds avoiding extrusion or inhibitors of efflux pumps. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. In vitro screening of durum wheat against water-stress mediated through polyethylene glycol

    Directory of Open Access Journals (Sweden)

    Nadia Sandra Kacem

    2017-06-01

    Full Text Available Three durum wheat (Triticum durum Desf. genotypes with three levels of drought tolerance were screened in order to evaluate their response to water stress at callus induction and plant regeneration levels. Significant differences were observed among the genotypes, and polyethylene glycol (PEG levels used, and their interactions were however, significant for all the studied characters. Increase in PEG concentration increased the time required for callus initiation and reduced the number of calli frequency of embryogenic structures and number of plants regenerated, showing the adverse effect of PEG on the somatic embryogenesis developmental., under in vitro conditions tested, and Djenah Khetifa was the most tolerant genotype, followed by Oued Zenati and Waha. This pattern was per their drought tolerance behavior under field conditions. Principal component analysis (PCA showed that 95.56% of the total variation was explained by the first two principal components. Biplot analysis allowed the stress-tolerant genotype to be distinguished from the two less tolerant genotypes. Time required for callus initiation was strongly negatively correlated with all other studied traits. These traits can be recommended as suitable selection criteria for screening drought-tolerant genotypes. The selected cells and plants will provide a tool for determining the mechanisms involved in tolerance to water stress.

  3. COUNTRY OF ORIGIN EFFECT ON ORGANIZATIONAL INNOVATION IN MALAYSIA: THE MEDIATING ROLE OF STRUCTURE

    Directory of Open Access Journals (Sweden)

    Aizzat Mohd. Nasurdin

    2004-01-01

    Full Text Available The two main objectives of this study are: first, to determine whether the level of innovation (technological and process, product and administrative varies by country of origin, and second, to investigate the influence of country of origin on organizational innovation (technological and process, product and administrative via the mediating role played by organizational structure (formalization and centralization, among firms operating in Malaysia. Statistical analyses of the 80 multinational corporations and 43 locally-owned firms and joint-ventures using ANOVA revealed that significant differences do exist in terms of their innovation levels. Firms from the West (American multinationals and European multinationals had higher levels of technological and process innovation compared to firms from the East (Eastern multinationals plus local companies and joint-ventures. Regarding product innovation, American multinationals were found to be more innovative compared to European multinationals and firms from the East (Eastern multinationals plus local firms and joint-ventures. In terms of administrative innovation, American multinationals were found to be most innovative followed by European multinationals, and lastly, firms from the East (Eastern multinationals plus local companies and joint-ventures. Additionally, country of origin had no indirect effect on the three forms of innovation via structure. Implications and suggestions for future research are discussed.

  4. Structural characterization of the exopolysaccharides from water kefir.

    Science.gov (United States)

    Fels, Lea; Jakob, Frank; Vogel, Rudi F; Wefers, Daniel

    2018-06-01

    Water kefir is a beverage which is produced by initiating fermentation of a fruit extract/sucrose solution with insoluble kefir grains. Exopolysaccharides that are formed from sucrose play a major role in the kefir grain formation, but the exopolysaccharides in the kefir beverage and the detailed structural composition of the whole kefir grains have not been studied yet. Therefore, kefir grains and the corresponding kefir beverage were analyzed for exopolysaccharides by multiple chromatographic approaches and two-dimensional NMR spectroscopy. Furthermore, different fractionation techniques were applied to obtain further information about the exopolysaccharides. The exopolysaccharide-fraction of the investigated kefir beverage was predominantly composed of O3- and O2-branched dextrans as well as lower amounts of levans. The insoluble dextrans from the kefir grains were mostly O3-branched and contained an elevated portion of 1,3-linked glucose units compared to the soluble dextrans. The structurally different exopolysaccharides in water kefir suggest the involvement of multiple bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Influence of organobentonite structure on toluene adsorption from water solution

    Directory of Open Access Journals (Sweden)

    Nuria Vidal

    2012-12-01

    Full Text Available Due to increase water pollution by organic compound derived from hydrocarbons such as toluene, several alternative technologies for remediation of polluted water have been originated. In this work natural bentonites were modified with cetyltrimethylammonium (CTMA+ for obtaining organophilic bentonites. The obtained CTMA-bentonites would be suitable for use as adsorbents of toluene present in water. The influence of structural characteristics of CTMA-bentonites on their adsorption capacity was studied. It was shown that adsorption of toluene depended on homogeneous interlayer space associated with arrangements of CTMA+ paraffin-monolayer and bilayer models, accompanied by a high degree ordering of the carbon chain of organic cation in both arrangements. However, packing density would not have an evident influence on the retention capacity of these materials. The solids obtained were characterized by chemical analysis, X-ray diffractions and infrared spectroscopy. Toluene adsorption was measured by UV-visible spectrophotometer. Adsorption capacity was studied by determining adsorption isotherms and adsorption coefficient calculation. The adsorption isotherms were straight-line indicating a partition phenomenon of toluene between the aqueous and organic phase present in organophilic bentonites.

  6. Flow structure of steam-water mixed spray

    International Nuclear Information System (INIS)

    Sanada, Toshiyuki; Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki

    2010-01-01

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  7. Flow structure of steam-water mixed spray

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Toshiyuki, E-mail: ttsanad@ipc.shizuoka.ac.j [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan); Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan)

    2010-12-15

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  8. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate.

    Science.gov (United States)

    Lelkes, Zoltán; Abdurakhmanova, Shamsiiat; Porkka-Heiskanen, Tarja

    2017-09-18

    The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate. © 2017 European Sleep Research Society.

  9. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    Directory of Open Access Journals (Sweden)

    Hitoshi Miyakawa

    Full Text Available Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH, which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms

  10. INDIUM AND ZINC MEDIATED ONE-ATOM CARBOCYCLE ENLARGEMENT IN WATER. (R822668)

    Science.gov (United States)

    AbstractSix-, seven-, eight-membered rings are enlarged by one carbon-atom into seven-, eight- and nine-membered ring derivatives respectively, via indium or zinc mediated reactions in aqueous medium.

  11. Structure design of water discharge surge tank of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Fang; Hou Shuqiang

    2015-01-01

    Drainage is an important function of water discharge surge tank in nuclear power plant. There is little wall and beam inside the water discharge surge tank due to the requirement of major work, which is different from the general structure. Taking water discharge surge tank of nuclear power plant for example, concerned problems are expatiated in the structure scheme of water discharge surge tank, and important structural components are analyzed. Structural analysis model is established by ANSYS finite element analysis. A comprehensive and numerical analysis is performed for different combinations of structural model, and the internal force of structure is extracted. Finally, suggestions for design of similar structure are proposed. (authors)

  12. Structural transition in Ge growth on Si mediated by sub-monolayer carbon

    International Nuclear Information System (INIS)

    Itoh, Yuhki; Hatakeyama, Shinji; Washio, Katsuyoshi

    2014-01-01

    Ge growth on Si mediated by sub-monolayer (ML) carbon (C) covered directly on Si surface was studied. C and Ge layers were grown on Si(100) substrates by using solid-source molecular beam epitaxy system. After Si surface cleaning by heating up to 900 °C, C up to 0.45 ML was deposited and then 10 to 15-nm-thick Ge were deposited. Reflection high energy electron diffraction patterns after sub-ML C deposition changed from streaks to halo depending on C coverage. The Ge dots were formed at low C coverage of 0.08–0.16 ML. Octagonal dots had three same facet planes of (001), (111), and (113) and consisted of the mixture of single crystals with dislocations along [111]. This is due to the event that the incorporation of small amount of C into Si surface gave rise to a strain. As a result, Si surface weaved Si(100) 2 × 1 with Si-C c(4 × 4) and Ge atoms adsorbed selectively on Si(100) 2 × 1 forming dome-shaped dots. A drastic structural transition from dots to films occurred at C coverage of 0.20 ML. The Ge films, consisting of relaxed poly- and amorphous-Ge, formed at C coverage of 0.20–0.45 ML. This is because a large amount of Si-C bonds induced strong compressive strain and surface roughening. In consequence, the growth mode changed from three-dimensional (3D) to 2D due to the reduction of Ge diffusion length. - Highlights: • Ge growth on Si mediated by sub-monolayer (ML) carbon (C) was studied. • Ge dots were formed at low C coverage of 0.08–0.16 ML. • Drastic structural transition from dots to films occurred at C coverage of 0.20 ML. • Ge films consisted of relaxed poly- and amorphous-Ge at C coverage of 0.20–0.45 ML

  13. Structure and decoy-mediated inhibition of the SOX18/Prox1-DNA interaction.

    Science.gov (United States)

    Klaus, Miriam; Prokoph, Nina; Girbig, Mathias; Wang, Xuecong; Huang, Yong-Heng; Srivastava, Yogesh; Hou, Linlin; Narasimhan, Kamesh; Kolatkar, Prasanna R; Francois, Mathias; Jauch, Ralf

    2016-05-05

    The transcription factor (TF) SOX18 drives lymphatic vessel development in both embryogenesis and tumour-induced neo-lymphangiogenesis. Genetic disruption of Sox18 in a mouse model protects from tumour metastasis and established the SOX18 protein as a molecular target. Here, we report the crystal structure of the SOX18 DNA binding high-mobility group (HMG) box bound to a DNA element regulating Prox1 transcription. The crystals diffracted to 1.75Å presenting the highest resolution structure of a SOX/DNA complex presently available revealing water structure, structural adjustments at the DNA contact interface and non-canonical conformations of the DNA backbone. To explore alternatives to challenging small molecule approaches for targeting the DNA-binding activity of SOX18, we designed a set of five decoys based on modified Prox1-DNA. Four decoys potently inhibited DNA binding of SOX18 in vitro and did not interact with non-SOX TFs. Serum stability, nuclease resistance and thermal denaturation assays demonstrated that a decoy circularized with a hexaethylene glycol linker and terminal phosphorothioate modifications is most stable. This SOX decoy also interfered with the expression of a luciferase reporter under control of a SOX18-dependent VCAM1 promoter in COS7 cells. Collectively, we propose SOX decoys as potential strategy for inhibiting SOX18 activity to disrupt tumour-induced neo-lymphangiogenesis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Parent-Child Relations and Peer Associations as Mediators of the Family Structure--Substance Use Relationship

    Science.gov (United States)

    Crawford, Lizabeth A.; Novak, Katherine B.

    2008-01-01

    Using data from the National Education Longitudinal Survey of 1988, the authors assess the extent to which adolescents' levels of parental attachment and opportunities for participating in delinquent activities mediate the family structure--substance use relationship. A series of hierarchical regressions supported the hypotheses that high levels…

  15. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2

    NARCIS (Netherlands)

    Zanden, J.J. van; Wortelboer, H.M.; Bijlsma, S.; Punt, A.; Usta, M.; Bladeren, P.J.V.; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2005-01-01

    In the present study, the effects of a large series of flavonoids on multidrug resistance proteins (MRPs) were studied in MRP1 and MRP2 transfected MDCKII cells. The results were used to define the structural requirements of flavonoids necessary for potent inhibition of MRP1- and MRP2-mediated

  16. Structural Equation Model of Smartphone Addiction Based on Adult Attachment Theory: Mediating Effects of Loneliness and Depression

    OpenAIRE

    EunYoung Kim, PhD; Inhyo Cho, PhD; Eun Joo Kim, PhD

    2017-01-01

    Purpose: This study investigated the mediating effects of loneliness and depression on the relationship between adult attachment and smartphone addiction in university students. Methods: A total of 200 university students participated in this study. The data was analysed using descriptive statistics, correlation analysis, and structural equation modeling. Results: There were significant positive relationships between attachment anxiety, loneliness, depression, and smartphone addiction. ...

  17. Electron Transfer Mediator Effects in Water Oxidation Catalysis by Solution and Surface-Bound Ruthenium Bpy-Dicarboxylate Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, Matthew V.; Sherman, Benjamin D.; Marquard, Seth L.; Fang, Zhen; Ashford, Dennis L.; Wee, Kyung-Ryang; Gold, Alexander S.; Alibabaei, Leila; Rudd, Jennifer A.; Coggins, Michael K.; Meyer, Thomas J.

    2015-11-12

    Electrocatalytic water oxidation by the catalyst, ruthenium 2,2'-bipyridine-6,6'-dicarboxylate (bda) bis-isoquinoline (isoq), [Ru(bda)(isoq)2], 1, was investigated at metal oxide electrodes surface-derivatized with electron transfer (ET) mediators. At indium-doped tin oxide (ITO) in pH 7.2 in H2PO4–/HPO42– buffers in 0.5 M NaClO4 with added acetonitrile (MeCN), the catalytic activity of 1 is enhanced by the surface-bound redox mediators [Ru (4,4'-PO3H2-bpy)(4,4'-R-bpy)2]2+ (RuPbpyR22+, R = Br, H, Me, or OMe, bpy = 2,2'-bipyridine). Rate-limiting ET between the Ru3+ form of the mediator and the RuIV(O) form in the [RuV/IV(O)]+/0 couple of 1 is observed at relatively high concentrations of HPO42– buffer base under conditions where O···O bond formation is facilitated by atom-proton transfer (APT). For the solution [Ru(bpy)3]3+/2+ mediator couple and 1 as the catalyst, catalytic currents vary systematically with the concentration of mediator and the HPO42– buffer base concentration. Electron transfer mediation of water oxidation catalysis was also investigated on nanoparticle TiO2 electrodes co-loaded with catalyst [Ru(bda)(py-4-O(CH2)3-PO3H2)2], 2, (py = pyridine) and RuPbpyR22+ (R = H, Me, or OMe) with an interplay between rate-limiting catalyst oxidation and rate-limiting O···O bond formation by APT. Lastly, the co-loaded assembly RuPbpyR22+ + 2 has been investigated in a dye-sensitized photoelectrosynthesis cell for water splitting.

  18. How Structure-Directing Agents Control Nanocrystal Shape: Polyvinylpyrrolidone-Mediated Growth of Ag Nanocubes.

    Science.gov (United States)

    Qi, Xin; Balankura, Tonnam; Zhou, Ya; Fichthorn, Kristen A

    2015-11-11

    The importance of structure-directing agents (SDAs) in the shape-selective synthesis of colloidal nanostructures has been well documented. However, the mechanisms by which SDAs actuate shape control are poorly understood. In the polyvinylpyrrolidone (PVP)-mediated growth of {100}-faceted Ag nanocrystals, this capability has been attributed to preferential binding of PVP to Ag(100). We use molecular dynamics simulations to probe the mechanisms by which Ag atoms add to Ag(100) and Ag(111) in ethylene glycol solution with PVP. We find that PVP induces kinetic Ag nanocrystal shapes by regulating the relative Ag fluxes to these facets. Stronger PVP binding to Ag(100) leads to a larger Ag flux to Ag(111) and cubic nanostructures through two mechanisms: enhanced Ag trapping by more extended PVP films on Ag(111) and a reduced free-energy barrier for Ag to cross lower-density films on Ag(111). These flux-regulating capabilities depend on PVP concentration and chain length, consistent with experiment.

  19. Synthesis and structural characterization of carboxyethylpyrrole-modified proteins: mediators of age-related macular degeneration.

    Science.gov (United States)

    Lu, Liang; Gu, Xiaorong; Hong, Li; Laird, James; Jaffe, Keeve; Choi, Jaewoo; Crabb, John; Salomon, Robert G

    2009-11-01

    Protein modifications in which the epsilon-amino group of lysyl residues is incorporated into a 2-(omega-carboxyethyl)pyrrole (CEP) are mediators of age-related macular degeneration (AMD). They promote both angiogenesis into the retina ('wet AMD') and geographic retinal atrophy ('dry AMD'). Blood levels of CEPs are biomarkers for clinical prognosis of the disease. To enable mechanistic studies of their role in promoting AMD, for example, through the activation of B- and T-cells, interaction with receptors, or binding with complement proteins, we developed an efficient synthesis of CEP derivatives, that is especially effective for proteins. The structures of tryptic peptides derived from CEP-modified proteins were also determined. A key finding is that 4,7-dioxoheptanoic acid 9-fluorenylmethyl ester reacts with primary amines to provide 9-fluorenylmethyl esters of CEP-modified proteins that can be deprotected in situ with 1,8-diazabicyclo[5.4.0]undec-7-ene without causing protein denaturation. The introduction of multiple CEP-modifications with a wide variety of CEP:protein ratios is readily achieved using this strategy.

  20. Community Structure Of Reef Fish In Eastern Luwu Water Territory

    Directory of Open Access Journals (Sweden)

    Henny Tribuana Cinnawara

    2015-01-01

    Full Text Available Abstract One bio-indicators the condition of coral reefs is a presence of reef fish. The purpose of research is to determine species composition abundance distribution and structure of reef fish communities in these waters. Data collection was conducted in April at six locations in the north and the south eastern Luwu. Mechanical Underwater Visual Cencus UVC and transect method Line intercept Transec LIT with SCUBA equipment used for research data collection. Total reef fish species collected as many as 366 species belonging to 31 families consisting of 150 species of fish target fish consumption 10 species of indicator fish indicator species 206 types of major fissh. The most dominant indicator type of fish is Chaetodon octofasciatus while the major dominant family Pomacentridae Labridae and Apogonidae. Diversity index values ranged from 2.145 to 3.408. Dominance index C is in the range of 0.056 to 0.298. The result is expected to be a reference literature as basic data for the management of reef fish especially in the waters of eastern Luwu.

  1. Impressed current cathodic protection of deep water structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.

    that the cathodic protection design approaches for shallow water may not be adequate for deeper water. This paper discusses on environmental factors encountered in deep water and their effect on cathodic protection behaviour of steel. Further, current CP design...

  2. [Mediator processes in the brain structures in the late periods after external and combined exposure to ionizing radiation].

    Science.gov (United States)

    Taĭts, M Iu; Dudina, T V; Kandybo, T S; Elkina, A I

    1990-01-01

    In experiments with mature Wistar male rats it was shown that X-radiation of 12.9 mCi/kg and the combined effect of X-rays and 131I of 6.5 mCi/kg changed the rate of mediator processes in the structures responsible for the hypothalamic function regulation. At remote times (6 months) following irradiation differences were observed in the discoordination of mediator interrelations associated with the peculiarities of the indirect effect of external and combined irradiation implemented via endocrine mechanism system.

  3. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity

    Science.gov (United States)

    McAdam, Scott A. M.

    2017-01-01

    Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated. PMID:29113039

  4. Conserved water-mediated H-bonding dynamics of catalytic Asn ...

    Indian Academy of Sciences (India)

    Prakash

    Extensive energy minimization and molecular dynamics simulation studies up to 2 ns ... Conserved water in molecular recognition; MD simulation; plant cysteine protease ..... Mustata G and Briggs J M 2004 Cluster analysis of water molecules.

  5. Drinking water to reduce alcohol craving? A randomized controlled study on the impact of ghrelin in mediating the effects of forced water intake in alcohol addiction.

    Science.gov (United States)

    Koopmann, Anne; Lippmann, Katharina; Schuster, Rilana; Reinhard, Iris; Bach, Patrick; Weil, Georg; Rietschel, Marcella; Witt, Stephanie H; Wiedemann, Klaus; Kiefer, Falk

    2017-11-01

    Recent data suggest that ghrelin is involved in the pathophysiology of alcohol use disorders, affecting alcohol self-administration and craving. Gastric ghrelin secretion is reduced by stomach distension. We now tested the hypothesis whether the clinically well-known effects of high-volume water intake on craving reduction in alcoholism is mediated by acute changes in ghrelin secretion. In this randomized human laboratory study, we included 23 alcohol-dependent male inpatient subjects who underwent alcohol cue exposure. Participants of the intervention group drank 1000ml of mineral water within 10min directly thereafter, compared to the participants of the control group who did not. Craving and plasma concentrations of acetylated ghrelin were measured ten times during the 120min following the alcohol cue exposure session. In the intervention group, a significant decrease in acetylated ghrelin in plasma compared to the control group was observed. This decrease was correlated to a reduction in patients' subjective level of craving. In the control group, no decrease of acetylated ghrelin in plasma and no association between alcohol craving and changes in plasma concentrations of acetylated ghrelin were observed. Our results present new evidence that the modulation in the ghrelin system by oral water intake mediates the effects of volume intake with craving reduction in alcohol use disorders. Hence, in addition to pharmacological interventions with ghrelin antagonists, the reduction of physiological ghrelin secretion might be a target for future interventions in the treatment of alcohol craving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Promoting inclusive water governance and forecasting the structure of water consumption based on compositional data: A case study of Beijing.

    Science.gov (United States)

    Wei, Yigang; Wang, Zhichao; Wang, Huiwen; Yao, Tang; Li, Yan

    2018-09-01

    Water is centrally important for agricultural security, environment, people's livelihoods, and socio-economic development, particularly in the face of extreme climate changes. Due to water shortages in many cities, the conflicts between various stakeholders and sectors over water use and allocation are becoming more common and intense. Effective inclusive governance of water use is critical for relieving water use conflicts. In addition, reliable forecasting of the structure of water usage among different sectors is a basic need for effective water governance planning. Although a large number of studies have attempted to forecast water use, little is known about the forecasted structure and trends of water use in the future. This paper aims to develop a forecasting model for the structure of water usage based on compositional data. Compositional data analysis is an effective approach for investigating the internal structure of a system. A host of data transformation methods and forecasting models were adopted and compared in order to derive the best-performing model. According to mean absolute percent error for compositional data (CoMAPE), a hyperspherical-transformation-based vector autoregression model for compositional data (VAR-DRHT) is the best-performing model. The proportions of the agricultural, industrial, domestic and environmental water will be 6.11%, 5.01%, 37.48% and 51.4% by 2020. Several recommendations for water inclusive development are provided to give a better account for the optimization of the water use structure, alleviation of water shortages, and improving stake holders' wellbeing. Overall, although we focus on groundwater, this study presents a powerful framework broadly applicable to resource management. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water

    Science.gov (United States)

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  8. Reduction of Sodium Arsenite-Mediated Adverse Effects in Mice using Dietary Supplementation of Water Hyacinth (Eichornia crassipes) Root Powder.

    Science.gov (United States)

    Sarker, Rim Sabrina Jahan; Ahsan, Nazmul; Hossain, Khaled; Ghosh, Paritosh Kumar; Ahsan, Chowdhury Rafiqul; Akhand, Anwarul Azim

    2012-07-01

    In this study, we evaluated the protective effects of water Hyacinth Root Powder (HRP) on arsenic-mediated toxic effects in mice. Swiss albino mice, used in this study, were divided into four different groups (for each group n=5). The control group was supplied with normal feed and water, Arsenic group (As-group) was supplied with normal feed plus arsenic (sodium arsenite)-containing water, and arsenic+hyacinth group (As+Hy group) was supplied with feed supplemented with HRP plus arsenic water. The remaining Hy-group was supplied with feed supplemented with HRP plus normal water. Oral administration of arsenic reduced the normal growth of the mice as evidenced by weight loss. Interestingly, tip of the tails of these mice developed wound that caused gradual reduction of the tail length. Supplementation of HRP in feed significantly prevented mice growth retardation and tail wounding in As+Hy group mice. However, the growth pattern in Hy-group mice was observed to be almost similar to that of the control group indicating that HRP itself has no toxic or negative effect in mice. Ingested arsenic also distorted the shape of the blood cells and elevated the serum enzymes such as lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and serum glutamic pyruvic transaminase (SGPT). Importantly, elevation of these enzymes and distortion of blood cell shape were partially reduced in mice belong to As+Hy group, indicating HRP-mediated reduction of arsenic toxicity. Therefore, the preventive effect of hyacinth root on arsenic-poisoned mice suggested the future application of hyacinth to reduce arsenic toxicity in animal and human.

  9. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    Science.gov (United States)

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.

  10. Assemblage structure: an overlooked component of human-mediated species movements among freshwater ecosystems

    Directory of Open Access Journals (Sweden)

    D. Andrew R. Drake

    2014-04-01

    Full Text Available The spread and impact of alien species among freshwater ecosystems has increased with global trade and human movement; therefore, quantifying the role of anthropogenic and ecological factors that increase the risk of invasion is an important conservation goal. Two factors considered as null models when assessing the potential for invasion are colonization pressure (i.e., the number of species introduced and propagule pressure [i.e., the number (propagule size, and frequency (propagule number, of individuals of each species introduced]. We translate the terminology of species abundance distributions to the invasion terminology of propagule size and colonization size (PS and CS, respectively. We conduct hypothesis testing to determine the underlying statistical species abundance distribution for zooplankton assemblages transported between freshwater ecosystems; and, on the basis of a lognormal distribution, construct four hypothetical assemblages spanning assemblage structure, rank-abundance gradient (e.g., even vs uneven, total abundance (of all species combined, and relative contribution of PS vs CS. For a given CS, many combinations of PS and total abundance can occur when transported assemblages conform to a lognormal species abundance distribution; therefore, for a given transportation event, many combinations of CS and PS are possible with potentially different ecological outcomes. An assemblage exhibiting high PS but low CS (species poor, but highly abundant may overcome demographic barriers to establishment, but with lower certainty of amenable environmental conditions in the recipient region; whereas, the opposite extreme, high CS and low PS (species rich, but low abundance per species may provide multiple opportunities for one of n arriving species to circumvent environmental barriers, albeit with lower potential to overcome demographic constraints. Species abundance distributions and the corresponding influence of CS and PS are some of

  11. Structural plasticity mediates distinct GAP-dependent GTP hydrolysis mechanisms in Rab33 and Rab5.

    Science.gov (United States)

    Majumdar, Soneya; Acharya, Abhishek; Prakash, Balaji

    2017-12-01

    The classical GTP hydrolysis mechanism, as seen in Ras, employs a catalytic glutamine provided in cis by the GTPase and an arginine supplied in trans by a GTPase activating protein (GAP). The key idea emergent from a large body of research on small GTPases is that GTPases employ a variety of different hydrolysis mechanisms; evidently, these variations permit diverse rates of GTPase inactivation, crucial for temporal regulation of different biological processes. Recently, we unified these variations and argued that a steric clash between active site residues (corresponding to positions 12 and 61 of Ras) governs whether a GTPase utilizes the cis-Gln or the trans-Gln (from the GAP) for catalysis. As the cis-Gln encounters a steric clash, the Rab GTPases employ the so-called dual finger mechanism where the interacting GAP supplies a trans-Gln for catalysis. Using experimental and computational methods, we demonstrate how the cis-Gln of Rab33 overcomes the steric clash when it is stabilized by a residue in the vicinity. In effect, this demonstrates how both cis-Gln- and trans-Gln-mediated mechanisms could operate in the same GTPase in different contexts, i.e. depending on the GAP that regulates its action. Interestingly, in the case of Rab5, which possesses a higher intrinsic GTP hydrolysis rate, a similar stabilization of the cis-Gln appears to overcome the steric clash. Taken together with the mechanisms seen for Rab1, it is evident that the observed variations in Rab and their GAP partners allow structural plasticity, or in other words, the choice of different catalytic mechanisms. © 2017 Federation of European Biochemical Societies.

  12. BaCO3 mediated modifications in structural and magnetic properties of natural nanoferrites

    Science.gov (United States)

    Widanarto, W.; Jandra, M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.

    2015-04-01

    Preparing M-type barium hexaferrite and improving the magnetic response of natural ferrites by incorporating barium carbonate (BaCO3) is ever-demanding. Series of barium carbonate doped ferrites with composition (100-x)Fe3O4·xBaCO3 (x=0, 10, 20, 30 wt%) are prepared through solid state reaction method and sintered gradually at temperatures of 800 and 1000 °C. Nanoparticles of natural ferrite and commercial BaCO3 are used as raw materials. Impacts of BaCO3 on structural and magnetic properties of these synthesized ferrites are inspected. The obtained ferrites are characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) at room temperature. Uniform barium hexaferrite particles in terms of both morphology and size are not achieved. The average crystallite size of BaFe12O19 is observed to be within 30-600 nm. The sintering process results phase transformation from Fe3O4 (magnetite) to α-Fe2O3 (hematite) and the formation of hexagonal barium ferrite crystals. The occurrence of barium crystal is found to enhance with the increase of BaCO3 concentrations up to 20 wt% and suddenly drop at 30 wt%. Saturation and remanent magnetization of the doped ferrites are significantly augmented up to 16.37 and 8.92 emu g-1, respectively compared to their pure counterpart. Furthermore, the coercivity field is slightly decreased as BaCO3 concentrations are increased. BaCO3 mediated improvements in the magnetic response of natural ferrites are demonstrated.

  13. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction.

    Science.gov (United States)

    Ma, Ming; Grey, François; Shen, Luming; Urbakh, Michael; Wu, Shuai; Liu, Jefferson Zhe; Liu, Yilun; Zheng, Quanshui

    2015-08-01

    The emergence of the field of nanofluidics in the last decade has led to the development of important applications including water desalination, ultrafiltration and osmotic energy conversion. Most applications make use of carbon nanotubes, boron nitride nanotubes, graphene and graphene oxide. In particular, understanding water transport in carbon nanotubes is key for designing ultrafiltration devices and energy-efficient water filters. However, although theoretical studies based on molecular dynamics simulations have revealed many mechanistic features of water transport at the molecular level, further advances in this direction are limited by the fact that the lowest flow velocities accessible by simulations are orders of magnitude higher than those measured experimentally. Here, we extend molecular dynamics studies of water transport through carbon nanotubes to flow velocities comparable with experimental ones using massive crowd-sourced computing power. We observe previously undetected oscillations in the friction force between water and carbon nanotubes and show that these oscillations result from the coupling between confined water molecules and the longitudinal phonon modes of the nanotube. This coupling can enhance the diffusion of confined water by more than 300%. Our results may serve as a theoretical framework for the design of new devices for more efficient water filtration and osmotic energy conversion devices.

  14. Structural analysis of fuel rod applied to pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Danilo P.; Pinheiro, Andre Ricardo M.; Lotto, André A., E-mail: danilo.pinheiro@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The design of fuel assemblies applied to Pressurized Water Reactors (PWR) has several requirements and acceptance criteria that must be attended for licensing. In the case of PWR fuel rods, an important mechanical structural requirement is to keep the radial stability when submitted to the coolant external pressure. In the framework of the Accident Tolerant Fuel (ATF) program new materials have been studied to replace zirconium based alloys as cladding, including iron-based alloys. In this sense, efforts have been made to evaluate the behavior of these materials under PWR conditions. The present work aims to evaluate the collapse cold pressure of a stainless steel thin-walled tube similar to that used as cladding material of fuel rods by means of the comparison of numeric data, and experimental results. As a result of the simulations, it was observed that the collapse pressure has a value intermediate value between those found by regulatory requirements and analytical calculations. The experiment was carried out for the validation of the computational model using test specimens of thin-walled tubes considering empty tube. The test specimens were sealed at both ends by means of welding. They were subjected to a high pressure device until the collapse of the tubes. Preliminary results obtained from experiments with the empty test specimens indicate that the computational model can be validated for stainless steel cladding, considering the difference between collapse pressure indicated in the regulatory document and the actual limit pressure concerning to radial instability of tubes with the studied characteristics. (author)

  15. Structural basis for catalysis at the membrane-water interface.

    Science.gov (United States)

    Dufrisne, Meagan Belcher; Petrou, Vasileios I; Clarke, Oliver B; Mancia, Filippo

    2017-11-01

    The membrane-water interface forms a uniquely heterogeneous and geometrically constrained environment for enzymatic catalysis. Integral membrane enzymes sample three environments - the uniformly hydrophobic interior of the membrane, the aqueous extramembrane region, and the fuzzy, amphipathic interfacial region formed by the tightly packed headgroups of the components of the lipid bilayer. Depending on the nature of the substrates and the location of the site of chemical modification, catalysis may occur in each of these environments. The availability of structural information for alpha-helical enzyme families from each of these classes, as well as several beta-barrel enzymes from the bacterial outer membrane, has allowed us to review here the different ways in which each enzyme fold has adapted to the nature of the substrates, products, and the unique environment of the membrane. Our focus here is on enzymes that process lipidic substrates. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Centrality of the "Mediation" Concept in the Participatory Management of Water Resources

    Science.gov (United States)

    dos Santos, Irenilda Angela; Berlinck, Christian Niel; de Santana Araujo, Symone Christine; Steinke, Ercilia Torres; Steinke, Valdir Adilson; Pianta, Taissa Ferreira; Graebner, Ivete Teresinha; Saito, Carlos Hiroo

    2005-01-01

    This work presents questions related to the viability and the requirements for the implementation of a National Policy of Water Resources in Brazil, and identifies the means to bring about active participation by the population in the management of water resources. While social inequalities may be an impediment to the implementation of full…

  17. Structural Model of the Effect of Psychological Capital on Success with Due to the Mediating Role of Commitment and Satisfaction

    OpenAIRE

    M Golparvar; Z Mirzaie

    2016-01-01

    This research was administered with the aim of investigating structural model of the effect of psychological capital on career success with due to the mediating role of satisfaction and commitment among employees of Telecom Company. Research statistical population was male and female employees of Telecom in Isfahan city, who among them two hundred and eighty five persons were selected using convenience sampling. Research instruments were Nguyen et al. Psychological Capital questionnaire, Nabi...

  18. Water permeability evaluation of hollow cylindrical reinforced concrete structure by means of long-term water penetration test with pressure

    International Nuclear Information System (INIS)

    Fujiwara, Ai; Miura, Norihiko; Konishi, Kazuhiro; Tsuji, Yukikazu

    2005-01-01

    In order to evaluate initial permeability of large concrete structure, hollow cylindrical reinforced concrete structure, having 6 m in outer diameter, 6 m in height, 1 m in thickness, had been tested by means of 0.25 MPa of outside water pressure. As the results, although surface cracking and partial separation of joint had been observed at the inner side, no water permeation through concrete could be happened even after 5.5 years. After this test, concrete core specimen showed less water penetration within the depth of concrete cover of reinforcement. Thus it was verified that this concrete structure had very high water-tightness, and that the initial average water permeability was estimated to be about 1.6 x 10 -12 m/s. (author)

  19. Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention.

    Science.gov (United States)

    Shany-Ur, Tal; Lin, Nancy; Rosen, Howard J; Sollberger, Marc; Miller, Bruce L; Rankin, Katherine P

    2014-08-01

    versus exaggerating deficits, overestimation and underestimation scores were analysed separately, controlling for age, sex, total intracranial volume and extent of actual functional decline. Atrophy related to overestimating one's functioning included bilateral, right greater than left frontal and subcortical regions, including dorsal superior and middle frontal gyri, lateral and medial orbitofrontal gyri, right anterior insula, putamen, thalamus, and caudate, and midbrain and pons. Thus, our patients' tendency to under-represent their functional decline was related to degeneration of domain-general dorsal frontal regions involved in attention, as well as orbitofrontal and subcortical regions likely involved in assigning a reward value to self-related processing and maintaining accurate self-knowledge. The anatomic correlates of underestimation (right rostral anterior cingulate cortex, uncorrected significance level) were distinct from overestimation and had a substantially smaller effect size. This suggests that underestimation or 'tarnishing' may be influenced by non-structural neurobiological and sociocultural factors, and should not be considered to be on a continuum with overestimation or 'polishing' of functional capacity, which appears to be more directly mediated by neural circuit dysfunction. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Spectroscopic Observation of Water-Mediated Deformation of the CARBOXYLATE-M2+ (M= Mg, Ca) Contact Ion Pair

    Science.gov (United States)

    Kelleher, Patrick J.; DePalma, Joseph W.; Johnson, Mark

    2016-06-01

    The binding of alkaline earth dications to the biologically relevant carboxylate ligand has previously been studied using vibrational sum frequency generation (VSFG) spectroscopy of the air-water interface, infrared multiple photon dissociation (IRMPD) spectroscopy of clusters, and DFT methods. These results suggest the presence of both monodentate and bidentate binding motifs of the M2+ ions to the cayboxyl head groups depending on the extent of solvation. We revisit these systems using vibrational predissociation spectroscopy to measure the gas-phase vibrational spectra of the D2-tagged microhydrated [MgOAc(H2O)n=1-5]+ and [CaOAc(H2O)n=1-6]+ clusters. The spectra show that [MgOAc(H2O)n]+ switches from bidentate to monodentate binding promptly at n = 5, while [CaOAc(H2O)n]+ retains its bidentate attachment such that the sixth water molecule initiates the second solvation shell. The difference in binding behavior between these two divalent metal ions is analyzed in the context of the local acidity of the solvent water molecules and the strength of the metal-carboxylate and metal-water interactions. This cluster study provides insight into the chemical physics underlying the unique and surprising impacts of Mg2+ and Ca2+ on the chemistry mediated by sea spray aerosols. Funding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.

  1. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    Science.gov (United States)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  2. Investigation of the Structures and Energy Landscapes of Thiocyanate-Water Clusters

    Directory of Open Access Journals (Sweden)

    Lewis C. Smeeton

    2017-03-01

    Full Text Available The Basin Hopping search method is used to find the global minima (GM and map the energy landscapes of thiocyanate-water clusters, (SCN−(H2On with 3–50 water molecules, with empirical potentials describing the ion-water and water-water interactions. (It should be noted that beyond n = 23, the lowest energy structures were only found in 1 out of 8 searches so they are unlikely to be the true GM but are indicative low energy structures. As for pure water clusters, the low energy isomers of thiocyanate-water clusters show a preponderance of fused water cubes and pentagonal prisms, with the weakly solvated thiocyanate ion lying on the surface, replacing two water molecules along an edge of a water polyhedron and with the sulfur atom in lower coordinated sites than nitrogen. However, by comparison with Density Functional Theory (DFT calculations, the empirical potential is found to overestimate the strength of the thiocyanate-water interaction, especially O–H⋯S, with low energy DFT structures having lower coordinate N and (especially S atoms than for the empirical potential. In the case of these finite ion-water clusters, the chaotropic (“disorder-making” thiocyanate ion weakens the water cluster structure but the water molecule arrangement is not significantly changed.

  3. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.

    Science.gov (United States)

    Sakurai, Shunya; Shimizu, Toshiyuki; Ohto, Umeharu

    2017-10-27

    2,3,7,8-Tetrachlorodibenzo- p -dioxin and related compounds are extraordinarily potent environmental toxic pollutants. Most of the 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix (bHLH) Per-ARNT-Sim (PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, because of the lack of structural information. Here, we determined the structure of the AhRR-ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR-ARNT and AhR-ARNT were similar in the bHLH-PAS-A region, whereas the PAS-B of ARNT in the AhRR-ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA and further suggested the existence of an AhRR-ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. EXPLORING MEDIATING ROLE OF INSTITUTIONAL IMAGE THROUGH A COMPLETE STRUCTURAL EQUATION MODELING (SEM: A PERSPECTVE OF HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Abu Osman

    2018-06-01

    Full Text Available The prime objective of this study is to investigate the mediating role of institutional image between student satisfaction, program quality, and service quality in the context of higher education. To attain this aim, the Nordic model was used as theoretical foundation of the study. The Structural Equation Modeling (SEM was used to analyze the influence of mediating variable and hypotheses testing. The population of this study was fourth-year business students of nine 'grade one' private universities in Bangladesh. Data (n=310 were gathered from students pursuing studies at different private universities in Bangladesh. The findings of this study revealed that image occupied full mediation role between student satisfaction and service quality. Furthermore, it also disclosed that the direct path of student satisfaction and service quality was not statistically significant. These exceptional findings indicate that academic experts should promote the institutional image, student satisfaction and program quality rigorously in order to enhance service quality of education. The outcomes of this study would provide substantial benefits to both practitioners and academics, especially in the context of private higher education. There is a deficiency of indirect link between student satisfaction, program quality and service quality. This study has integrated institutional image as a mediating variable to fulfill the deficiency between student satisfaction, program quality, and service quality.

  5. Dynamics and structure of water-bitumen mixtures

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Greenfield, Michael L.; Hansen, Jesper Schmidt

    2016-01-01

    Systems of Cooee bitumen and water up to 4% mass are studied by molecular dynamics simulations. The cohesive energy density of the system is shown to decrease with an increasing water content. This decrease is due mainly to an increase in the interaction energy which is not high enough to counter......Systems of Cooee bitumen and water up to 4% mass are studied by molecular dynamics simulations. The cohesive energy density of the system is shown to decrease with an increasing water content. This decrease is due mainly to an increase in the interaction energy which is not high enough...... droplets being more stable at the highest temperature simulated. The droplet is mainly located close to the saturates molecules in bitumen. Finally, it is shown that the water dynamics is much slower in bitumen than in pure water because it is governed by the diffusion of the droplet and not of the single...

  6. Slow Dynamics and Structure of Supercooled Water in Confinement

    Directory of Open Access Journals (Sweden)

    Gaia Camisasca

    2017-04-01

    Full Text Available We review our simulation results on properties of supercooled confined water. We consider two situations: water confined in a hydrophilic pore that mimics an MCM-41 environment and water at interface with a protein. The behavior upon cooling of the α relaxation of water in both environments is well interpreted in terms of the Mode Coupling Theory of glassy dynamics. Moreover, we find a crossover from a fragile to a strong regime. We relate this crossover to the crossing of the Widom line emanating from the liquid-liquid critical point, and in confinement we connect this crossover also to a crossover of the two body excess entropy of water upon cooling. Hydration water exhibits a second, distinctly slower relaxation caused by its dynamical coupling with the protein. The crossover upon cooling of this long relaxation is related to the protein dynamics.

  7. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Kazumi

    1998-01-01

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  8. A One-Dimensional Hydrodynamic and Water Quality Model for a Water Transfer Project with Multihydraulic Structures

    Directory of Open Access Journals (Sweden)

    Yujun Yi

    2017-01-01

    Full Text Available The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon, which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movement in this project. Preissmann four-point partial-node implicit scheme was used to solve the governing equations in this study. Water flow and pollutant movement were appropriately simulated and the results indicated that this water quality model was comparable to MIKE 11 and had a good performance and accuracy. Simulation accuracy and model uncertainty were analyzed. Based on the validated water quality model, six pollution scenarios (Q1 = 10 m3/s, Q2 = 30 m3/s, and Q3 = 60 m3/s for volatile phenol (VOP and contaminant mercury (Hg were simulated for the MRP. Emergent pollution accidents were forecasted and changes of water quality were analyzed according to the simulations results, which helped to guarantee continuously transferring water for a large water transfer project.

  9. Detection of Toxoplasma gondii oocysts in different water resources by Loop Mediated Isothermal Amplification (LAMP).

    Science.gov (United States)

    Gallas-Lindemann, Carmen; Sotiriadou, Isaia; Mahmoodi, Mohammad Reza; Karanis, Panagiotis

    2013-02-01

    Human toxoplasmosis is potentially contracted due to consumption of contaminated drinking water and represents an increasing public health risk worldwide. Toxoplasma gondii oocysts can be resistant to standard disinfection processes, including UV radiation. Increased awareness of the risk of waterborne toxoplasmosis outbreaks has led to an increase in research interest in the detection of oocysts in environmental water systems. Ninety-five environmental water samples from the Lower Rhine area in Germany have been included in the study and examined for the presence of Toxoplasma. Water samples were filtered or flocculated by aluminum sulfate and purified by sucrose density gradient. DNA was then extracted, and the DNA samples were then examined by LAMP analysis. T. gondii DNA was detected in eight out of 83 (9.6%) influent and effluent samples obtained from wastewater treatment plants. All samples (n=12) from the surface, ground, raw and tap waters tested negative. The purpose of this work was to investigate the occurrence and distribution of Toxoplasma oocysts on the Lower Rhine in Germany. Our study provides evidence that the assay is a sensitive, specific, rapid and cost effective method for the detection of T. gondii and is useful for both the investigations of cases of waterborne outbreaks and for identifying the source of contamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Conserved water-mediated hydrogen bond network between TM-I, -II, -VI, and -VII in 7TM receptor activation

    DEFF Research Database (Denmark)

    Nygaard, Rie; Hansen, Louise Valentin; Mokrosinski, Jacek

    2010-01-01

    Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics...... to apparently function as a catching trap for water molecules. Mutational analysis of the beta2-adrenergic receptor demonstrated that the highly conserved polar residues of the hydrogen bond network were all important for receptor signaling but served different functions, some dampening constitutive activity...... (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended...

  11. Moderation and Mediation in Structural Equation Modeling: Applications for Early Intervention Research

    Science.gov (United States)

    Hopwood, Christopher J.

    2007-01-01

    Second-generation early intervention research typically involves the specification of multivariate relations between interventions, outcomes, and other variables. Moderation and mediation involve variables or sets of variables that influence relations between interventions and outcomes. Following the framework of Baron and Kenny's (1986) seminal…

  12. Parental Attachment, Separation-Individuation, and College Student Adjustment: A Structural Equation Analysis of Mediational Effects

    Science.gov (United States)

    Mattanah, Jonathan F.; Hancock, Gregory R.; Brand, Bethany L.

    2004-01-01

    Secure parental attachment and healthy levels of separation-individuation have been consistently linked to greater college student adjustment. The present study proposes that the relation between parental attachment and college adjustment is mediated by healthy separation-individuation. The authors gathered data on maternal and paternal…

  13. Chemical groups and structural characterization of lignin via thiol-mediated demethylation

    Science.gov (United States)

    Lihong Hu; Hui Pan; Yonghong Zhou; Chung-Yun Hse; Chengguo Liu; Baofang Zhang; Bin Xu

    2014-01-01

    A new approach to increase the reactivity of lignin by thiol-mediated demethylation was investigated in this study. Demethylated lignin was characterized by the changes in its hydroxyl and methoxyl groups, molecular weight, and other properties using titration and spectroscopy methods including FT-IR, 1H NMR, UV,and GPC. The total...

  14. ATP-induced conformational changes of nucleotide-binding domains in an ABC transporter. Importance of the water-mediated entropic force.

    Science.gov (United States)

    Hayashi, Tomohiko; Chiba, Shuntaro; Kaneta, Yusuke; Furuta, Tadaomi; Sakurai, Minoru

    2014-11-06

    ATP binding cassette (ABC) proteins belong to a superfamily of active transporters. Recent experimental and computational studies have shown that binding of ATP to the nucleotide binding domains (NBDs) of ABC proteins drives the dimerization of NBDs, which, in turn, causes large conformational changes within the transmembrane domains (TMDs). To elucidate the active substrate transport mechanism of ABC proteins, it is first necessary to understand how the NBD dimerization is driven by ATP binding. In this study, we selected MalKs (NBDs of a maltose transporter) as a representative NBD and calculated the free-energy change upon dimerization using molecular mechanics calculations combined with a statistical thermodynamic theory of liquids, as well as a method to calculate the translational, rotational, and vibrational entropy change. This combined method is applied to a large number of snapshot structures obtained from molecular dynamics simulations containing explicit water molecules. The results suggest that the NBD dimerization proceeds with a large gain of water entropy when ATP molecules bind to the NBDs. The energetic gain arising from direct NBD-NBD interactions is canceled by the dehydration penalty and the configurational-entropy loss. ATP hydrolysis induces a loss of the shape complementarity between the NBDs, which leads to the dissociation of the dimer, due to a decrease in the water-entropy gain and an increase in the configurational-entropy loss. This interpretation of the NBD dimerization mechanism in concert with ATP, especially focused on the water-mediated entropy force, is potentially applicable to a wide variety of the ABC transporters.

  15. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gaponenko, I., E-mail: iaroslav.gaponenko@unige.ch; Gamperle, L.; Herberg, K.; Muller, S. C.; Paruch, P. [DQMP, University of Geneva, 24 Quai E. Ansermet, 1211 Geneva 4 (Switzerland)

    2016-06-15

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variation of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.

  16. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    Science.gov (United States)

    Gaponenko, I.; Gamperle, L.; Herberg, K.; Muller, S. C.; Paruch, P.

    2016-06-01

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variation of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.

  17. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    International Nuclear Information System (INIS)

    Gaponenko, I.; Gamperle, L.; Herberg, K.; Muller, S. C.; Paruch, P.

    2016-01-01

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variation of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.

  18. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  19. Probing water structure and transport in proton exchange membranes

    NARCIS (Netherlands)

    Ling, X.

    2018-01-01

    Proton exchange membrane fuel cells (PEMFCs) have attracted tremendous attention as alternative energy sources because of their high energy density and practically zero greenhouse gas emission - water is their only direct by-product. Critical to the function of PEMFCs is fast proton and water

  20. Gene structure and expression characteristic of a novel odorant receptor gene cluster in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae).

    Science.gov (United States)

    Wang, S-N; Shan, S; Zheng, Y; Peng, Y; Lu, Z-Y; Yang, Y-Q; Li, R-J; Zhang, Y-J; Guo, Y-Y

    2017-08-01

    Odorant receptors (ORs) expressed in the antennae of parasitoid wasps are responsible for detection of various lipophilic airborne molecules. In the present study, 107 novel OR genes were identified from Microplitis mediator antennal transcriptome data. Phylogenetic analysis of the set of OR genes from M. mediator and Microplitis demolitor revealed that M. mediator OR (MmedOR) genes can be classified into different subfamilies, and the majority of MmedORs in each subfamily shared high sequence identities and clear orthologous relationships to M. demolitor ORs. Within a subfamily, six MmedOR genes, MmedOR98, 124, 125, 126, 131 and 155, shared a similar gene structure and were tightly linked in the genome. To evaluate whether the clustered MmedOR genes share common regulatory features, the transcription profile and expression characteristics of the six closely related OR genes were investigated in M. mediator. Rapid amplification of cDNA ends-PCR experiments revealed that the OR genes within the cluster were transcribed as single mRNAs, and a bicistronic mRNA for two adjacent genes (MmedOR124 and MmedOR98) was also detected in female antennae by reverse transcription PCR. In situ hybridization experiments indicated that each OR gene within the cluster was expressed in a different number of cells. Moreover, there was no co-expression of the two highly related OR genes, MmedOR124 and MmedOR98, which appeared to be individually expressed in a distinct population of neurons. Overall, there were distinct expression profiles of closely related MmedOR genes from the same cluster in M. mediator. These data provide a basic understanding of the olfactory coding in parasitoid wasps. © 2017 The Royal Entomological Society.

  1. In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls

    International Nuclear Information System (INIS)

    Ma Yufei; Qiao Li; Feng Qingling

    2012-01-01

    For the purpose of studying the mediation of organic matrix on the crystallization of calcium carbonate, water soluble matrix (WSM), acid soluble matrix (ASM) and acid insoluble matrix (AIM) were extracted from aragonite pearls and vaterite pearls respectively. Then, in-vitro calcium carbonate crystallization experiments under the control of these six organic matrices were carried out in the present study. Scanning electron microscopy (SEM) was utilized to observe the morphology of CaCO 3 and Raman spectroscopy as a powerful technique was used to distinguish the crystal polymorph. Influences of the six kinds of organic matrices on the calcium carbonate crystal growth are proposed. ASM of vaterite pearls can induce vaterite to crystallize and WSM of aragonite pearls mediates to produce aragonite crystals. The single AIM membranes of the two pearls have no pronounced effect on the CaCO 3 crystallization. Additionally, the crystal size obtained with the additive of WSM of the two kinds of pearls is smaller than that with the additive of ASM. Moreover, self-assembly phenomenon in the biomineralization process and the distorted morphology calcite are observed. Current results demonstrate important aspects of matrix protein-controlled crystallization, which is beneficial to the understanding of nacre biomineralization mechanism. Further study of the precise control of these matrix proteins on CaCO 3 crystal growth is being processed. - Highlights: ► WSM, ASM and AIM are extracted from aragonite pearls and vaterite pearls. ► ASM of vaterite pearl induces vaterite. ► WSM of aragonite pearl mediates to produce aragonite. ► WSM can fine control crystal size smaller than that with the additive of ASM. ► Self-assembly and the distorted calcite existed in the mineralization process.

  2. Water mediated eco-friendly green protocol for one-pot synthesis of ...

    Indian Academy of Sciences (India)

    the synthesis of important products, we describe here a simple, elegant and high yielding protocol for the syn- thesis of α-aminophosphonates in ..... In order to prove the involvement of water in the reac- tion mechanism unambiguously, the ...

  3. Procedure for developing biological input for the design, location, or modification of water-intake structures

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A.; McKenzie, D.H.

    1981-12-01

    To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact and review biological information needed for intake design.

  4. IMPROVING STRUCTURAL INTEGRITY MONITORING CAPABILITY FOR WATER MAINS: COLLABORATION EFFORTS AND OPPORTUNITIES

    Science.gov (United States)

    The structural integrity of the approximately 1,000,000 miles of U.S. water mains is important to both immediate and long-term drinking water quality and availability. As pipes wear out, leaks and main breaks increase, as well as the associated occurrences of water loss and low-...

  5. The constructional design of cooling water discharge structures on German rivers

    International Nuclear Information System (INIS)

    Geldner, P.; Zimmermann, C.

    1975-11-01

    The present compilation of structures for discharging cooling water from power stations into rivers is an attempt to make evident developments in the constructional design of such structures and to give reasons for special structure shapes. A complete collection of all structures built in Germany, however, is difficult to realize because of the large number of power stations. For conventionally heated power stations therefore only a selection was made, while nuclear power stations in operation or under construction could almost completely be taken into account. For want of sufficient quantities of water for river water cooling, projected power stations are now almost exclusively designed for closed-circuit cooling so that the required discharge structures for elutrition water from the cooling towers as well as for the emergency and secondary cooling circuits have to be designed only for small amounts of water. (orig./HP) [de

  6. Mathematical Model to Predict the Permeability of Water Transport in Concrete Structure

    OpenAIRE

    Solomon Ndubuisi Eluozo

    2013-01-01

    Mathematical model to predict the permeability of water transport in concrete has been established, the model is to monitor the rate of water transport in concrete structure. The process of this water transport is based on the constituent in the mixture of concrete. Permeability established a relation on the influence of the micropores on the constituent that made of concrete, the method of concrete placement determine the rate of permeability deposition in concrete structure, permeability es...

  7. Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

    Science.gov (United States)

    Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle

    2017-10-01

    The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  8. Water-mediated influence of a crowded environment on internal vibrations of a protein molecule.

    Science.gov (United States)

    Kuffel, Anna; Zielkiewicz, Jan

    2016-02-14

    The influence of crowding on the protein inner dynamics is examined by putting a single protein molecule close to one or two neighboring protein molecules. The presence of additional molecules influences the amplitudes of protein fluctuations. Also, a weak dynamical coupling of collective velocities of surface atoms of proteins separated by a layer of water is detected. The possible mechanisms of these phenomena are described. The cross-correlation function of the collective velocities of surface atoms of two proteins was decomposed into the Fourier series. The amplitude spectrum displays a peak at low frequencies. Also, the results of principal component analysis suggest that the close presence of an additional protein molecule influences the high-amplitude, low-frequency modes in the most prominent way. This part of the spectrum covers biologically important protein motions. The neighbor-induced changes in the inner dynamics of the protein may be connected with the changes in the velocity power spectrum of interfacial water. The additional protein molecule changes the properties of solvation water and in this way it can influence the dynamics of the second protein. It is suggested that this phenomenon may be described, at first approximation, by a damped oscillator driven by an external random force. This model was successfully applied to conformationally rigid Choristoneura fumiferana antifreeze protein molecules.

  9. water stress mediated changes in growth, physiology and secondary metabolites of desi ajwain (trachyspermum ammi l.)

    International Nuclear Information System (INIS)

    Azhar, N.; Hussain, B.; Abbasi, K.Y.

    2011-01-01

    Biotic and abiotic stresses exert a considerable influence on the production of several secondary metabolites in plants; water stress is one of the most important abiotic stress factors. This study was carried out to elucidate the effect of drought stress on growth, physiology and secondary metabolite production in desi ajwain (Trachyspermum ammi L.). Plants were grown in pots and three drought levels (100%, 80% and 60%) of field capacity were created. The experiment was laid out in complete randomized design (CRD) with three replicates. Data on growth, physiological and biochemical parameters were recorded and analyzed statistically. Physiological parameters like transpiration rate and stomatal conductance decreased concentration increased. The photosynthetic rate showed significantly with increasing water stress levels, but internal CO/sub 2/ non-significant reduction from 100% field capacity to 80% field capacity but increased at 60% field capacity. Growth parameters including plant height, herb fresh and dry weights were reduced significantly with increasing stress levels, while total phenolic contents and chlorophyll contents increased under water stress conditions. These results suggest that cultivation of medicinal plants like desi ajwain under drought stress could enhance the production of secondary metabolites. (author)

  10. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    Science.gov (United States)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  11. Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia

    Science.gov (United States)

    van Emmerik, Tim; Sivapalan, Murugesu; Li, Zheng; Pande, Saket; Savenije, Hubert

    2014-05-01

    Around the world the demand for water resources is growing in order to satisfy rapidly increasing human populations, leading to competition for water between humans and ecosystems. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development and evaluation of effective mediation strategies. We present a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water resources management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resources development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health, which are all connected by feedback mechanisms. The model is used to generate insights into the dominant controls of the trajectory of

  12. The structure of water quality monitoring in the disaster area

    International Nuclear Information System (INIS)

    Yoshida, Nobuo

    2012-01-01

    Described are monitoring systems of water environment at usual times and after the 2011 Tohoku Earthquake and Tsunami Disaster, and measures taken by the Ministry of the Environment (ME) for radioactive substances in the water environment. At usual times, the monitoring of hazardous substance in water environment is conducted by local governments. At/after the Disaster, ME conducted the monitoring investigation concerning the environmental quality standards and toxicants like dioxins in the river, sea and groundwater from late May to late July, 2011 because undesirable effects on health and life of the residents had been feared due to possible leak of hazardous substances in public water area and underground water of victim prefectures, Aomori, Iwate, Miyagi, Fukushima and Ibaraki. As the results, no high contamination due to the Disaster was found, and a part of regions exhibited the slight chemical contamination, where continuous and additional monitoring was to be kept locally with guidance of drinking the concerned well water. ME measured radioactive iodine and cesium at 29 places of Fukushima rivers to find <65 and <30,000 Bq/kg, respectively, of 4 spots of river bed material alone (late May); then Cs 32 Bq/L in water at 1 spot and <26,000 Bq/kg in bed at all places after rain (early July). In groundwater, no radioactive nuclides above were detected in any of 111 places of Fukushima Prefecture (late June to early August). Cs was not found in sea water of 9 places of concerned prefectures, but was in the sea bottom soil, <1,380 Bq/kg (middle June). As well, local governments measured those two radioactive nuclides in water and ambient dose rate of 551 sea bathing beaches (late May to early Oct.) and found only one beach (Iwaki City, Fukushima) inappropriate for swimming play. Hereafter, ME is still to investigate the bed material of public water area and to continue to monitor the marine environment in cooperation with related authorities. (T.T.)

  13. Trends and Consumption Structures of China’s Blue and Grey Water Footprint

    Directory of Open Access Journals (Sweden)

    Huixiao Wang

    2018-04-01

    Full Text Available Water footprint has become a common method to study the water resources utilization in recent years. By using input–output analysis and dilution theory, the internal water footprint, blue water footprint and grey water footprint of China from 2002 to 2012 were estimated, and the consumption structure of water footprint and virtual water trade were analyzed. The results show: (1 From 2002 to 2012, the average annual internal water footprint was 3.83 trillion m3 in China, of which the blue water footprint was 0.25 trillion m3, and the grey water footprint was 3.58 trillion m3 (with Grade III water standard accounting; both the internal water footprint and grey water footprint experienced decreasing trends from 2002 to 2012, except for a dramatic increase in 2010; (2 Average annual virtual blue water footprint was the greatest in agriculture (39.2%, while tertiary industry (27.5% and food and tobacco processing (23.7% were the top two highest for average annual virtual grey water footprint; (3 Virtual blue water footprint in most sectors showed increasing trends due to the increase of final demand, while virtual grey water footprint in most sectors showed decreasing trends due to the decreases of total return water coefficients and conversion coefficients of virtual grey water footprint; (4 For water resources, China was self-reliant: the water used for producing the products and services to meet domestic consumption was taken domestically; meanwhile, China exported virtual water to other countries, which aggravated the water stress in China.

  14. Structural Model of the Effect of Psychological Capital on Success with Due to the Mediating Role of Commitment and Satisfaction

    Directory of Open Access Journals (Sweden)

    M Golparvar

    2016-09-01

    Full Text Available This research was administered with the aim of investigating structural model of the effect of psychological capital on career success with due to the mediating role of satisfaction and commitment among employees of Telecom Company. Research statistical population was male and female employees of Telecom in Isfahan city, who among them two hundred and eighty five persons were selected using convenience sampling. Research instruments were Nguyen et al. Psychological Capital questionnaire, Nabi Job Success (career success Questionnaire, Spector Job Satisfaction Questionnaire and Speier and Venkatesh Organizational Commitment Questionnaire. Data were analyzed using structural equation modeling. Results of structural equation modeling revealed thatin aseriesof sequential relationships, there is a significant effect from psychological capital also on job satisfaction and organizational commitment and there is a significant effect also from job satisfaction and organizational commitment on job success (career success. The results also showed that psychological capital impact on career success was indirectly through job satisfaction and organizational commitment. Overall, the results of this study showed that job satisfaction and organizational commitment were mediating variables in the relationship between psychological capital and career success.

  15. Gratitude mediates the effect of emotional intelligence on subjective well-being: A structural equation modeling analysis.

    Science.gov (United States)

    Geng, Yuan

    2016-11-01

    This study investigated the relationship among emotional intelligence, gratitude, and subjective well-being in a sample of university students. A total of 365 undergraduates completed the emotional intelligence scale, the gratitude questionnaire, and the subjective well-being measures. The results of the structural equation model showed that emotional intelligence is positively associated with gratitude and subjective well-being, that gratitude is positively associated with subjective well-being, and that gratitude partially mediates the positive relationship between emotional intelligence and subjective well-being. Bootstrap test results also revealed that emotional intelligence has a significant indirect effect on subjective well-being through gratitude.

  16. Structural evaluation report of piping and support structure for design-changed hot-water layer system

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    After hot-water layer system had been installed, the verification tests to reduce the radiation level at the top of reactor pool were performed many times. The major goal of this report is to assess the structural integrity on the piping and the support structures of design-changed hot-water layer system. The piping stress analysis was performed by using ADLPIPE program for the pump suction line and the pump discharge line subjected to dead weight, pressure, thermal expansion and seismic loadings. The stress analysis of the support structure was carried out using the reaction forces obtained from the piping stress analysis. The results of structural evaluation for the pipings and the support structures showed that the structural acceptance criteria were satisfied, in compliance with ASME, subsection ND for the piping and subsection NF for the support structures. Therefore based on the results of the analysis and the design, the structural integrity on the piping and the support structures of design-changed hot-water system was proved. (author). 9 refs., 9 tabs., 14 figs

  17. Structural material anomaly detection system using water chemistry data

    International Nuclear Information System (INIS)

    Asakura, Yamato; Nagase, Makoto; Uchida, Shunsuke; Ohsumi, Katsumi.

    1992-01-01

    The concept of an advanced water chemistry diagnosis system for detection of anomalies and preventive maintenance of system components is proposed and put into a concrete form. Using the analogy to a medical inspection system, analyses of water chemistry change will make it possible to detect symptoms of anomalies in system components. Then, correlations between water chemistry change and anomaly occurrence in the components of the BWR primary cooling system are analyzed theoretically. These fragmentary correlations are organized and reduced to an algorithm for the on-line diagnosis system using on-line monitoring data, pH and conductivity. By using actual plant data, the on-line diagnosis model system is verified to be applicable for early and automatic finding of the anomaly cause and for timely supply of much diagnostic information to plant operators. (author)

  18. Structural material anomaly detection system using water chemistry data, (7)

    International Nuclear Information System (INIS)

    Nagase, Makoto; Uchida, Shunsuke; Asakura, Yamato; Ohsumi, Katsumi.

    1993-01-01

    A method to detect small changes in water quality and diagnose their causes by analyzing on-line conductivity and pH data was proposed. Laboratory tests showed that effective noise reduction of measured on-line data could be got by using median filter to detect small changes of conductivity ; a relative change of 0.001 μS/cm was distinguishable. By simulating the changes of pH and conductivity in the reactor water against a small concentration change of sodium ion or sulfate ion in the feedwater, it was found that an adequate elapsed time for the diagnosis was 4 h from the start of the concentration change. A conductivity difference of 0.001 μS/cm in the reactor water made it theoretically possible to distinguish between a sodium ion concentration change of 4.6 ppt and a sulfate ion concentration change of 9.6 ppt in the feedwater. (author)

  19. Emergence of the Coherent Structure of Liquid Water

    Directory of Open Access Journals (Sweden)

    Ivan Bono

    2012-07-01

    Full Text Available We examine in some detail the interaction of water molecules with the radiative electromagnetic field and find the existence of phase transitions from the vapor phase to a condensed phase where all molecules oscillate in unison, in tune with a self-trapped electromagnetic field within extended mesoscopic space regions (Coherence Domains. The properties of such a condensed phase are examined and found to be compatible with the phenomenological properties of liquid water. In particular, the observed value of critical density is calculated with good accuracy.

  20. Water-Mediated Differential Binding of Strontium and Cesium Cations in Fulvic Acid.

    Science.gov (United States)

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2015-08-27

    The migration of potentially harmful radionuclides, such as cesium ((137)Cs) and strontium ((90)Sr), in soil is governed by the chemical and biological reactivity of soil components. Soil organic matter (SOM) that can be modeled through fulvic acid (FA) is known to alter the mobility of radionuclide cations, Cs(+) and Sr(2+). Shedding light on the possible interaction mechanisms at the atomic level of these two ions with FA is thus vital to explain their transport behavior and for the design of new ligands for the efficient extraction of radionuclides. Here we have performed molecular dynamics, metadynamics simulations, and density-functional-theory-based calculations to understand the binding mechanism of Sr(2+) and Cs(+) cations with FA. Our studies predict that interaction of Cs(+) to FA is very weak as compared with Sr(2+). While the water-FA interaction is largely responsible for the weak binding of Cs(+) to FA, leading to the outer sphere complexation of the ion with FA, the interaction between Sr(2+) and FA is stronger and thus can surpass the existing secondary nonbonding interaction between coordinated waters and FA, leading to inner sphere complexation of the ion with FA. We also find that entropy plays a dominant role for Cs(+) binding to FA, whereas Sr(2+) binding is an enthalpy-driven process. Our predicted results are found to be in excellent agreement with the available experimental data on complexation of Cs(+) and Sr(2+) with SOM.

  1. Excitation of triplet states of hypericin in water mediated by hydrotropic cromolyn sodium salt

    Science.gov (United States)

    Keša, Peter; Jancura, Daniel; Kudláčová, Júlia; Valušová, Eva; Antalík, Marián

    2018-03-01

    Hypericin (Hyp) is a hydrophobic pigment found in plants of the genus Hypericum which exhibits low levels of solubility in water. This work shows that the solubility of Hyp can be significantly increased through the addition of cromolyn disodium salt (DSCG). Performed studies using UV-VIS absorption and fluorescence spectroscopies demonstrate that Hyp remains in a predominantly biologically photodynamic active monomeric form in the presence of DSCG at concentrations ranging from 4.6 × 10- 3 to 1.2 × 10- 1 mol·L- 1. The low association constant between Hyp and DSCG (Ka = 71.7 ± 2 M- 1), and the polarity value of 0.3 determined for Hyp in a DSCG-water solution, lead to a suggestion that the monomerization of Hyp in aqueous solution can be explained as a result of the hydrotropic effect of DSCG. This hydrotropic effect is most likely a result of interactions between two relative rigid aromatic rings of DSCG and a delocalized charge on the surface of the Hyp molecule. The triplet-triplet (T-T) electronic transition observed in is Hyp in the presence of DSCG suggests a possible production of reactive oxygen species once Hyp is irradiated with visible light in a DSCG aqueous solution.

  2. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    Science.gov (United States)

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  3. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Ratna Chaturvedi

    Full Text Available The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.

  4. Photochemical Formation of Aerosol in Planetary Atmospheres: Photon and Water Mediated Chemistry of SO_2

    Science.gov (United States)

    Kroll, Jay A.; Donaldson, D. J.; Vaida, Veronica

    2016-06-01

    Sulfur compounds have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere. However, several discrepancies between modeling and observations of the Venusian atmosphere show there are still problems in our fundamental understanding of sulfur chemistry. This is of particular concern due to the important role sulfur compounds play in the formation of aerosols, which have a direct impact on planetary climates, including Earth's. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and will present spectroscopic studies to document such effects. I will present recent work investigating mixtures of SO_2 and water that generate large quantities of aerosol when irradiated with solar UV light, even in the absence of traditional OH chemistry. I will discuss a proposed mechanism for the formation of sulfurous acid (H_2SO_3) and present recent experimental work that supports this proposed mechanism. Additionally, the implications that photon-induced hydration of SO_2 has for aerosol formation in the atmosphere of earth as well as other planetary atmospheres will be discussed.

  5. Biotechnologies based on simple and structured superlight water for use in biopharmaceutical and biocosmetic field

    International Nuclear Information System (INIS)

    Manzatu, I.; Olariu, L.; Rusu, M.; Zamfir, S.

    2000-01-01

    S.C. Biotehnos S.A. has developed studies to obtain structured aqueous solutions to find biotechnologies that were patented both in this country and abroad. An increasing interest concerning the action of superlight water on biological systems as well as the investigation of possibility of incorporating this type of water in pharmaceutical and cosmetic products encouraged research upon the processes of structuring the deuterium depleted water to establish non-conventional modern biotechnologies. Thus, physico-chemical parameters of interest (pH-value, conductivity, redox potential) were determined for the superlight water systems resulting from structuration process. Also, these studies have dealt with the effects of superlight water and structured aqueous solutions upon cellular breeding, studies of major importance in cell physiology

  6. Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.).

    Science.gov (United States)

    Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino

    2012-11-15

    Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Dielectric study on hierarchical water structures restricted in cement and wood materials

    International Nuclear Information System (INIS)

    Abe, Fumiya; Nishi, Akihiro; Saito, Hironobu; Asano, Megumi; Watanabe, Seiei; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Fukuzaki, Minoru; Sudo, Seiichi; Suzuki, Youki

    2017-01-01

    Dielectric relaxation processes for mortar observed by broadband dielectric spectroscopy were analyzed in the drying and hydration processes for an aging sample in the frequency region from 1 MHz up to 2 MHz. At least two processes for structured water in the kHz frequency region and another mHz relaxation process affected by ionic behaviors were observed. Comparison of the relaxation parameters obtained for the drying and hydration processes suggests an existence of hierarchical water structures in the exchange of water molecules, which are originally exchanged from free water observed at around 20 GHz. The water molecules reflected in the lower frequency process of the two kHz relaxation processes are more restricted and take more homogeneous structures than the higher kHz relaxation process. These structured water usually hidden in large ionic behaviors for wood samples was observed by electrodes covered by a thin Teflon film, and hierarchical water structures were also suggested for wood samples. Dielectric spectroscopy technique is an effective tool to analyze the new concept of hierarchical water structures in complex materials. (paper)

  8. A study on the water permeability of concrete structures

    International Nuclear Information System (INIS)

    Loadsman, R.V.C.; Acres, D.H.; Stokes, C.J.; Wadeson, L.

    1988-03-01

    This report forms part of the DoE's research programme on the disposal of nuclear waste. The information available on the permeability of concrete and the effects of various factors on this value are reviewed. The effect of defects on the overall permeability of concrete structures is examined and the recorded performance of a range of existing concrete structures is considered with identification of some of the factors that are significant in practice. Deficiencies in the information available on this subject are identified and recommendations for further work are made including a list of structures suitable for future monitoring. (author)

  9. Water-Mediated Photochemical Treatments for Low-Temperature Passivation of Metal-Oxide Thin-Film Transistors.

    Science.gov (United States)

    Heo, Jae Sang; Jo, Jeong-Wan; Kang, Jingu; Jeong, Chan-Yong; Jeong, Hu Young; Kim, Sung Kyu; Kim, Kwanpyo; Kwon, Hyuck-In; Kim, Jaekyun; Kim, Yong-Hoon; Kim, Myung-Gil; Park, Sung Kyu

    2016-04-27

    The low-temperature electrical passivation of an amorphous oxide semiconductor (AOS) thin-film transistor (TFT) is achieved by a deep ultraviolet (DUV) light irradiation-water treatment-DUV irradiation (DWD) method. The water treatment of the first DUV-annealed amorphous indium-gallium-zinc-oxide (a-IGZO) thin film is likely to induce the preferred adsorption of water molecules at the oxygen vacancies and leads to subsequent hydroxide formation in the bulk a-IGZO films. Although the water treatment initially degraded the electrical performance of the a-IGZO TFTs, the second DUV irradiation on the water-treated devices may enable a more complete metal-oxygen-metal lattice formation while maintaining low oxygen vacancies in the oxide films. Overall, the stable and dense metal-oxygen-metal (M-O-M) network formation could be easily achieved at low temperatures (below 150 °C). The successful passivation of structural imperfections in the a-IGZO TFTs, such as hydroxyl group (OH-) and oxygen vacancies, mainly results in the enhanced electrical performances of the DWD-processed a-IGZO TFTs (on/off current ratio of 8.65 × 10(9), subthreshold slope of 0.16 V/decade, an average mobility of >6.94 cm(2) V(-1) s(-1), and a bias stability of ΔVTH IGZO TFTs.

  10. Water structure near single and multi-layer nanoscopic hydrophobic ...

    Indian Academy of Sciences (India)

    Wintec

    We have performed a series of molecular dynamics simulations of water containing two nano- scopic hydrophobic ..... the simulation for l00 ps for equilibration during which ... was further run for a production phase of 100–200 ps depending on ...

  11. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; van Gaalen FW; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; LWD

    2001-01-01

    Het model TAPWAT (Tool for the Analysis of the Production of drinking WATer), is ontwikkeld om de drinkwaterkwaliteit te beschrijven voor integrale studies in het kader van het planbureau Milieu en Natuur van het RIVM. Het model bestaat uit modules die de individuele zuiveringsstappen van het

  12. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    Science.gov (United States)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  13. Networked Water Citizen Organisations in Spain: Potential for Transformation of Existing Power Structures in Water Management

    Directory of Open Access Journals (Sweden)

    Nuria Hernández-Mora

    2015-06-01

    Full Text Available The shift from hierarchical-administrative water management toward more transparent, multi-level and participated governance approaches has brought about a shifting geography of players, scales of action, and means of influencing decisions and outcomes. In Spain, where the hydraulic paradigm has dominated since the early 1920s, participation in decisions over water has traditionally been limited to a closed water policy community, made up of economic water users, primarily irrigator associations and hydropower generators, civil engineering corps and large public works companies. The river basin planning process under the Water Framework Directive of the European Union presented a promise of transformation, giving access to non-economic water users, environmental concerns and the wider public to water-related information on planning and decision-making. This process coincided with the consolidation of the use of Information and Communication Technologies (ICTs by the water administration, with the associated potential for information and data generation and dissemination. ICTs are also increasingly used by citizen groups and other interested parties as a way to communicate, network and challenge existing paradigms and official discourses over water, in the broader context of the emergence of 'technopolitics'. This paper investigates if and in what way ICTs may be providing new avenues for participated water resources management and contributing to alter the dominating power balance. We critically analyse several examples where networking possibilities provided by ICTs have enabled the articulation of interest groups and social agents that have, with different degrees of success, questioned the existing hegemonic view over water. The critical review of these cases sheds light on the opportunities and limitations of ICTs, and their relation with traditional modes of social mobilisation in creating new means of societal involvement in water

  14. Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Dayana Arias

    2017-11-01

    Full Text Available The formation of minerals such as calcite and struvite through the hydrolysis of urea catalyzed by ureolytic bacteria is a simple and easy way to control mechanisms, which has been extensively explored with promising applications in various areas such as the improvement of cement and sandy materials. This review presents the detailed mechanism of the biominerals production by ureolytic bacteria and its applications to the wastewater, groundwater and seawater treatment. In addition, an interesting application is the use of these ureolytic bacteria in the removal of heavy metals and rare earths from groundwater, the removal of calcium and recovery of phosphate from wastewater, and its potential use as a tool for partial biodesalination of seawater and saline aquifers. Finally, we discuss the benefits of using biomineralization processes in water treatment as well as the challenges to be solved in order to reach a successful commercialization of this technology.

  15. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water.

    Science.gov (United States)

    Song, Bin; Molinero, Valeria

    2013-08-07

    Hydrophobic interactions are responsible for water-driven processes such as protein folding and self-assembly of biomolecules. Microscopic theories and molecular simulations have been used to study association of a pair of methanes in water, the paradigmatic example of hydrophobic attraction, and determined that entropy is the driving force for the association of the methane pair, while the enthalpy disfavors it. An open question is to which extent coarse-grained water models can still produce correct thermodynamic and structural signatures of hydrophobic interaction. In this work, we investigate the hydrophobic interaction between a methane pair in water at temperatures from 260 to 340 K through molecular dynamics simulations with the coarse-grained monatomic water model mW. We find that the coarse-grained model correctly represents the free energy of association of the methane pair, the temperature dependence of free energy, and the positive change in entropy and enthalpy upon association. We investigate the relationship between thermodynamic signatures and structural order of water through the analysis of the spatial distribution of the density, energy, and tetrahedral order parameter Qt of water. The simulations reveal an enhancement of tetrahedral order in the region between the first and second hydration shells of the methane molecules. The increase in tetrahedral order, however, is far from what would be expected for a clathrate-like or ice-like shell around the solutes. This work shows that the mW water model reproduces the key signatures of hydrophobic interaction without long ranged electrostatics or the need to be re-parameterized for different thermodynamic states. These characteristics, and its hundred-fold increase in efficiency with respect to atomistic models, make mW a promising water model for studying water-driven hydrophobic processes in more complex systems.

  16. Structural basis for alpha fetoprotein-mediated inhibition of caspase-3 activity in hepatocellular carcinoma cells.

    Science.gov (United States)

    Lin, Bo; Zhu, Mingyue; Wang, Wenting; Li, Wei; Dong, Xu; Chen, Yi; Lu, Yan; Guo, Junli; Li, Mengsen

    2017-10-01

    Alpha-fetoprotein (AFP) is an early serum growth factor in the foetal liver development and hepatic carcinogenesis; However, the precise biological role of cytoplasmic AFP remains elusive. Although we recently demonstrated that cytoplasmic AFP might interact with caspase-3 and inhibit the signal transduction of apoptosis in human hepatocellular carcinoma (HCC) cells, the details of this interaction are not clear. To reveal the molecular relationship between AFP and caspase-3, we performed molecular docking, co-immunoprecipitation (Co-IP), laser confocal microscopy, site-directed mutagenesis and functional experiments to analyse the key amino acid residues in the binding site of caspase-3. The results of Co-IP, laser confocal microscopy and functional analyses were consistent with the computational model. We also used the model to explain why AFP cannot bind to caspase-8. These results provide the molecular basis for the AFP-mediated inhibition of caspase-3 activity in HCC cells. Altogether, we found that AFP interacts with caspase-3 through precise amino acids, namely loop-4 residues Glu-248, Asp-253 and His-257. The results further demonstrated that AFP plays a critical role in the inhibition of the apoptotic signal transduction that mediated by caspase-3. Thus, AFP might represent a novel biotarget for the therapy of HCC patients. © 2017 UICC.

  17. Patterns, structures and regulations of domestic water cycle systems in China

    Science.gov (United States)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  18. How Do You Get Your Water? Structural Violence Pedagogy and Women's Access to Water

    Science.gov (United States)

    Keefer, Natalie; Bousalis, Rina

    2015-01-01

    In many parts of the less developed world it is women and girls who are expected to provide water for their family. Frequently, young girls are unable to complete school or get jobs because water scarcity means they are forced to walk miles daily to obtain this most basic need. Since the creation of the United Nations Millennium Goals, progress…

  19. Soft photo structuring of porous silicon in water

    Energy Technology Data Exchange (ETDEWEB)

    Juan, M.; Bouillard, J.S.; Plain, J.; Bachelot, R.; Adam, P.M.; Lerondel, G.; Royer, P. [ICD - Laboratoire de Nanotechnologie et d' Instrumentation Optique, CNRS FRE 2848, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes (France)

    2007-05-15

    We report on local photo-induced patterning of porous silicon in water. Scanning probe microscopy images of the sample surface after illumination show that the emission properties as well as the topography are modified according to the interferometric illumination pattern. Local photo-oxidation is believed to be at the origin of these modifications. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Comparison of Novel Carboneous Structures to Treat Nitroaromatic Impacted Water

    Science.gov (United States)

    2015-12-01

    Perfluorinated Compounds from Groundwater using Granular Activated Carbon. University of Colorado. Li, L., Quinlivan, P. A, and Knappe, D. R. U. (2002...and Owens, G. (2009). "Kinetics and thermodynamics of sorption of nitroaromatic compounds to as-grown and oxidized multiwalled carbon nanotubes...used as adsorbents to treat water contaminated by a model nitroaromatic compound , 2,4- dinitrotoluene (DNT). The DNT adsorption capacity of pristine

  1. Predator attack rate evolution in space: the role of ecology mediated by complex emergent spatial structure and self-shading.

    Science.gov (United States)

    Messinger, Susanna M; Ostling, Annette

    2013-11-01

    Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Structure and Dynamics of Urea/Water Mixtures Investigated by Vibrational Spectroscopy and Molecular Dynamics Simulation

    Science.gov (United States)

    Carr, J. K.; Buchanan, L. E.; Schmidt, J. R.; Zanni, M. T.; Skinner, J. L.

    2013-01-01

    Urea/water is an archetypical “biological” mixture, and is especially well known for its relevance to protein thermodynamics, as urea acts as a protein denaturant at high concentration. This behavior has given rise to an extended debate concerning urea’s influence on water structure. Based on a variety of methods and of definitions of water structure, urea has been variously described as a structure-breaker, a structure-maker, or as remarkably neutral towards water. Because of its sensitivity to microscopic structure and dynamics, vibrational spectroscopy can help resolve these debates. We report experimental and theoretical spectroscopic results for the OD stretch of HOD/H2O/urea mixtures (linear IR, 2DIR, and pump-probe anisotropy decay) and for the CO stretch of urea-D4/D2O mixtures (linear IR only). Theoretical results are obtained using existing approaches for water, and a modification of a frequency map developed for acetamide. All absorption spectra are remarkably insensitive to urea concentration, consistent with the idea that urea only very weakly perturbs water structure. Both this work and experiments by Rezus and Bakker, however, show that water’s rotational dynamics are slowed down by urea. Analysis of the simulations casts doubt on the suggestion that urea immobilizes particular doubly hydrogen bonded water molecules. PMID:23841646

  3. Structure and reactivity in amphiphile-water micelles

    International Nuclear Information System (INIS)

    Chevalier, Yves

    1985-01-01

    Following a review of the general properties of micelles, this report contains two parts: - A structural study of octylphosphate micelles. Important structural changes have been evidenced by mean of small angle neutron scattering as the electrical charge of the interface is varied. The NMR relaxation study of the conformation of the hydrocarbon chains has shown that the micellar core is disordered in contrast with the interface which is rather structured. The diffusion motions in the interface and the segmental motions of the chains are fast. - Studies on the reactivity in micelles have been carried out. A large micellar effect on the complexation of transition ions by amphiphilic ligands is evidenced. The problem of solute localization in micelles is developed with few examples. (author) [fr

  4. HKT transporters mediate salt stress resistance in plants: from structure and function to the field.

    Science.gov (United States)

    Hamamoto, Shin; Horie, Tomoaki; Hauser, Felix; Deinlein, Ulrich; Schroeder, Julian I; Uozumi, Nobuyuki

    2015-04-01

    Plant cells are sensitive to salinity stress and do not require sodium as an essential element for their growth and development. Saline soils reduce crop yields and limit available land. Research shows that HKT transporters provide a potent mechanism for mediating salt tolerance in plants. Knowledge of the molecular ion transport and regulation mechanisms and the control of HKT gene expression are crucial for understanding the mechanisms by which HKT transporters enhance crop performance under salinity stress. This review focuses on HKT transporters in monocot plants and in Arabidopsis as a dicot plant, as a guide to efforts toward improving salt tolerance of plants for increasing the production of crops and bioenergy feedstocks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking

    Science.gov (United States)

    Kievit, Rogier A.; Davis, Simon W.; Mitchell, Daniel J.; Taylor, Jason R.; Duncan, John; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Geerligs, Linda; McCarrey, Anna; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, Richard N.A.

    2014-01-01

    Ageing is characterized by declines on a variety of cognitive measures. These declines are often attributed to a general, unitary underlying cause, such as a reduction in executive function owing to atrophy of the prefrontal cortex. However, age-related changes are likely multifactorial, and the relationship between neural changes and cognitive measures is not well-understood. Here we address this in a large (N=567), population-based sample drawn from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data. We relate fluid intelligence and multitasking to multiple brain measures, including grey matter in various prefrontal regions and white matter integrity connecting those regions. We show that multitasking and fluid intelligence are separable cognitive abilities, with differential sensitivities to age, which are mediated by distinct neural subsystems that show different prediction in older versus younger individuals. These results suggest that prefrontal ageing is a manifold process demanding multifaceted models of neurocognitive ageing. PMID:25519467

  6. Impact of soda-lime borosilicate glass composition on water penetration and water structure at the first time of alteration

    International Nuclear Information System (INIS)

    Rebiscoul, D.; Bruguier, F.; Gin, S.; Magnin, V.

    2012-01-01

    In this study, the impact of soda-lime borosilicate glass composition and particularly the effect of charge compensators such Ca and Na and, of network formers such Si and Zr, on water penetration and water structure at the first time of alteration were investigated. Two non-destructive techniques were combined: the Fourier transform infrared spectroscopy in attenuated total reflection geometry to precise the predominant alteration mechanisms and assess the water structure in altered zone and the grazing incidence X-ray reflectometry to determine the thickness of the altered glass zone allowing to calculate the water diffusion coefficients through the glasses. The results of glass alteration at pH = 3 and 30 degrees C have shown that hydrolysis was the predominant mechanism after few seconds for glass having a high amount of non-binding oxygen. For the other glasses, which for the diffusion was the limiting reaction, the calculated water diffusion coefficients were comprised between 10 -21 and 10 -19 m 2 .s -1 and vary as a function of glass composition. An activation energy of 76.9 kJ.mol -1 was calculated and appears to be higher than inert gas diffusion through the glass highlighting that water molecules strongly interact with the glass matrix. (authors)

  7. Water balance and topography predict fire and forest structure patterns

    Science.gov (United States)

    Van R. Kane; James A. Lutz; C. Alina Cansler; Nicholas A. Povak; Derek J. Churchill; Douglas F. Smith; Jonathan T. Kane; Malcolm P. North

    2015-01-01

    Mountainous topography creates fine-scale environmental mosaics that vary in precipitation, temperature, insolation, and slope position. This mosaic in turn influences fuel accumulation and moisture and forest structure. We studied these the effects of varying environmental conditions across a 27,104 ha landscape within Yosemite National Park, California, USA, on the...

  8. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  9. Structural integrity of water reactor pressure boundary components

    International Nuclear Information System (INIS)

    Loss, F.J.

    1977-01-01

    The dynamic fracture toughness was determined as a function of temperature for three-point bend specimens of A533-B, A508-2, and A302-B steels. Crack propagation rates at 288 0 C in a water reactor environment were determined for A533-B and A508-2. Radiation-induced degradation of notch toughness of reactor steels and welds was explored. The ''warm prestress'' occurring in a flawed reactor vessel following a LOCA and operation of ECCS was studied. 25 figures

  10. Seismic evaluation of a cooling water reservoir facility including fluid-structure and soil-structure interaction effects

    International Nuclear Information System (INIS)

    Kabir, A.F.; Maryak, M.E.

    1991-01-01

    Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. guide 1.60 spectrum shape anchored at 0.20g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model. Representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results included in this paper indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir

  11. Lower Colorado River GRP Dams and Water Retention Structures, Arizona, 2012, Arizona Department of Environmental Quality

    Data.gov (United States)

    U.S. Environmental Protection Agency — Location of dams and water retention structures as compiled from multiple sources by the Arizona Department of Environmental Quality (ADEQ). The data are "sensitive"...

  12. Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; RameshBabu, V.; Chandramohan, P.

    relaxing event helps in the development of a strong layered thermal structure while convective mixing due to winter inversions during November to February causes weak thermal gradients in the water column...

  13. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    Science.gov (United States)

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  14. Solid-state Water-mediated Transport Reduction of Nanostructured Iron Oxides

    International Nuclear Information System (INIS)

    Smirnov, Vladimir M.; Povarov, Vladimir G.; Voronkov, Gennadii P.; Semenov, Valentin G.; Murin, Igor' V.; Gittsovich, Viktor N.; Sinel'nikov, Boris M.

    2001-01-01

    The Fe 2+ /Fe 3+ ratio in two-dimensional iron oxide nanosructures (nanolayers with a thickness of 0.3-1.5 nm on silica surface) may be precisely controlled using the transport reduction (TR) technique. The species ≡-O-Fe(OH) 2 and (≡Si-O-) 2 -FeOH forming the surface monolayer are not reduced at 400-600 deg. C because of their covalent bonding to the silica surface, as demonstrated by Moessbauer spectroscopy. Iron oxide microparticles (microstructures) obtained by the impregnation technique, being chemically unbound to silica, are subjected to reduction at T ≥ 500 deg. C with formation of metallic iron in the form of α-Fe. Transport reduction of supported nanostructures (consisting of 1 or 4 monolayers) at T ≥ 600 deg. C produces bulk iron(II) silicate and metallic iron phases. The structural-chemical transformations occurring in transport reduction of supported iron oxide nanolayers are proved to be governed by specific phase processes in the nanostructures themselves

  15. Cold Water Mediates Greater Reductions in Limb Blood Flow than Whole Body Cryotherapy.

    Science.gov (United States)

    Mawhinney, Chris; Low, David A; Jones, Helen; Green, Daniel J; Costello, Joseph T; Gregson, Warren

    2017-06-01

    Cold-water immersion (CWI) and whole body cryotherapy (WBC) are widely used recovery methods in an attempt to limit exercise-induced muscle damage, soreness, and functional deficits after strenuous exercise. The aim of this study was to compare the effects of ecologically valid CWI and WBC protocols on postexercise lower limb thermoregulatory, femoral artery, and cutaneous blood flow responses. Ten males completed a continuous cycle exercise protocol at 70% maximal oxygen uptake until a rectal temperature of 38°C was attained. Participants were then exposed to lower-body CWI (8°C) for 10 min, or WBC (-110°C) for 2 min, in a randomized crossover design. Rectal and thigh skin, deep, and superficial muscle temperatures, thigh, and calf skin blood flow (laser Doppler flowmetry), superficial femoral artery blood flow (duplex ultrasound), and arterial blood pressure were measured before, and for 40 min post, cooling interventions. Greater reductions in thigh skin (CWI, -5.9°C ± 1.8°C; WBC, 0.2°C ± 0.5°C; P < 0.001) and superficial (CWI, -4.4°C ± 1.3°C; WBC, -1.8°C ± 1.1°C; P < 0.001) and deep (CWI, -2.9°C ± 0.8°C; WBC, -1.3°C ± 0.6°C; P < 0.001) muscle temperatures occurred immediately after CWI. Decreases in femoral artery conductance were greater after CWI (CWI, -84% ± 11%; WBC, -59% ± 21%, P < 0.02) and thigh (CWI, -80% ± 5%; WBC, -59% ± 14%, P < 0.001), and calf (CWI, -73% ± 13%; WBC, -45% ± 17%, P < 0.001) cutaneous vasoconstriction was greater after CWI. Reductions in rectal temperature were similar between conditions after cooling (CWI, -0.6°C ± 0.4°C; WBC, -0.6°C ± 0.3°C; P = 0.98). Greater reductions in blood flow and tissue temperature were observed after CWI in comparison with WBC. These novel findings have practical and clinical implications for the use of cooling in the recovery from exercise and injury.

  16. Loss of Progesterone Receptor-Mediated Actions Induce Preterm Cellular and Structural Remodeling of the Cervix and Premature Birth

    Science.gov (United States)

    Yellon, Steven M.; Dobyns, Abigail E.; Beck, Hailey L.; Kurtzman, James T.; Garfield, Robert E.; Kirby, Michael A.

    2013-01-01

    A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone), or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term. PMID:24339918

  17. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  18. Method of repairing incore structure and water sealing chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Toshikazu; Sato, Sukenobu (Hitachi Nuclear Engineering Co. Ltd., Ibaraki (Japan)); Wada, Noriaki; Kurosawa, Koichi; Tsujimura, Hiroshi; Enomoto, Kunio.

    1993-11-26

    An incore-chamber main body comprises a guide tube, an insertion guide, an extensible arm, a device fixing mechanism, a gas supply pipe, a guide driving mechanism and an in-core chamber control device. The in-core chamber main body is installed and secured to an upper flange surface of a shroud. Reactor water is raised to a level below a flange of a reactor pressure vessel while supplying a dry gas from a gas supply pipe to make the inside of the shroud as a gas atmosphere. Subsequently, each of the devices is attached to the top end of the extensible arm, and the guide driving mechanism is operated by the in-core chamber control device to an aimed position for preventive maintenance or repair to conduct positioning and fixing by utilizing the guide tube and the insertion guide. This enables to conduct preventive maintenance or repair in a state where reactor water is present to the outside of the in-core reactor chamber while maintaining the in-core equipment in the gas atmosphere, thereby enabling to reduce operator's exposure dose. (I.N.).

  19. Method of repairing incore structure and water sealing chamber

    International Nuclear Information System (INIS)

    Kikuchi, Toshikazu; Sato, Sukenobu; Wada, Noriaki; Kurosawa, Koichi; Tsujimura, Hiroshi; Enomoto, Kunio.

    1993-01-01

    An incore-chamber main body comprises a guide tube, an insertion guide, an extensible arm, a device fixing mechanism, a gas supply pipe, a guide driving mechanism and an in-core chamber control device. The in-core chamber main body is installed and secured to an upper flange surface of a shroud. Reactor water is raised to a level below a flange of a reactor pressure vessel while supplying a dry gas from a gas supply pipe to make the inside of the shroud as a gas atmosphere. Subsequently, each of the devices is attached to the top end of the extensible arm, and the guide driving mechanism is operated by the in-core chamber control device to an aimed position for preventive maintenance or repair to conduct positioning and fixing by utilizing the guide tube and the insertion guide. This enables to conduct preventive maintenance or repair in a state where reactor water is present to the outside of the in-core reactor chamber while maintaining the in-core equipment in the gas atmosphere, thereby enabling to reduce operator's exposure dose. (I.N.)

  20. Crystal Structure of Cu/Zn Superoxide Dismutase from Taenia Solium Reveals Metal-mediated Self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    A Hernandez-Santoyo; A Landa; E Gonzalez-Mondragon; M Pedraza-Escalona; R Parra-Unda; A Rodriguez-Romero

    2011-12-31

    Taenia solium is the cestode responsible for porcine and human cysticercosis. The ability of this parasite to establish itself in the host is related to its evasion of the immune response and its antioxidant defence system. The latter includes enzymes such as cytosolic Cu/Zn superoxide dismutase. In this article, we describe the crystal structure of a recombinant T. solium Cu/Zn superoxide dismutase, representing the first structure of a protein from this organism. This enzyme shows a different charge distribution at the entrance of the active channel when compared with human Cu/Zn superoxide dismutase, giving it interesting properties that may allow the design of specific inhibitors against this cestode. The overall topology is similar to other superoxide dismutase structures; however, there are several His and Glu residues on the surface of the protein that coordinate metal ions both intra- and intermolecularly. Interestingly, one of these ions, located on the {beta}2 strand, establishes a metal-mediated intermolecular {beta}-{beta} interaction, including a symmetry-related molecule. The factors responsible for the abnormal protein-protein interactions that lead to oligomerization are still unknown; however, high metal levels have been implicated in these phenomena, but exactly how they are involved remains unclear. The present results suggest that this structure could be useful as a model to explain an alternative mechanism of protein aggregation commonly observed in insoluble fibrillar deposits.

  1. The Relationship Between Dynamics and Structure in the Far Infrared Absorption Spectrum of Liquid Water

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K.

    2005-01-14

    Using an intense source of far-infrared radiation, the absorption spectrum of liquid water is measured at a temperature ranging from 269 to 323 K. In the infrared spectrum we observe modes that are related to the local structure of liquid water. Here we present a FIR measured spectrum that is sensitive to the low frequency (< 100cm{sup -1}) microscopic details that exist in liquid water.

  2. Utilization threshold of surface water and groundwater based on the system optimization of crop planting structure

    Directory of Open Access Journals (Sweden)

    Qiang FU,Jiahong LI,Tianxiao LI,Dong LIU,Song CUI

    2016-09-01

    Full Text Available Based on the diversity of the agricultural system, this research calculates the planting structures of rice, maize and soybean considering the optimal economic-social-ecological aspects. Then, based on the uncertainty and randomness of the water resources system, the interval two-stage stochastic programming method, which introduces the uncertainty of the interval number, is used to calculate the groundwater exploitation and the use efficiency of surface water. The method considers the minimum cost of water as the objective of the uncertainty model for surface water and groundwater joint scheduling optimization for different planting structures. Finally, by calculating harmonious entropy, the optimal exploitation utilization interval of surface water and groundwater is determined for optimal cultivation in the Sanjiang Plain. The optimal matching of the planting structure under the economic system is suitable when the mining ratio of the surface is in 44.13%—45.45% and the exploitation utilization of groundwater is in 54.82%—66.86%, the optimal planting structure under the social system is suitable when surface water mining ratio is in 47.84%—48.04% and the groundwater exploitation threshold is in 67.07%—72.00%. This article optimizes the economic-social-ecological-water system, which is important for the development of a water- and food-conserving society and providing a more accurate management environment.

  3. Structure and thermal analysis of the water cooling mask at NSRL front end

    International Nuclear Information System (INIS)

    Zhao Feiyun; Xu Chaoyin; Wang Qiuping; Wang Naxiu

    2003-01-01

    A water cooling mask is an important part of the front end, usually used for absorbing high power density synchrotron radiation to protect the apparatus from being destroyed by heat load. This paper presents the structure of the water cooling mask and the thermal analysis results of the mask block at NSRL using Program ANSYS5.5

  4. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    2013-01-01

    Water-soluble polysaccharide material, extracted from the stipes of the fruit bodies of Coprinus comatus by hot water, was fractionated by sequential weak anion-exchange and size-exclusion chromatography. The relevant fractions were subjected to structural analysis, including (D/L)

  5. Target specific proteochemometric model development for BACE1 - protein flexibility and structural water are critical in virtual screening.

    Science.gov (United States)

    Manoharan, Prabu; Chennoju, Kiranmai; Ghoshal, Nanda

    2015-07-01

    BACE1 is an attractive target in Alzheimer's disease (AD) treatment. A rational drug design effort for the inhibition of BACE1 is actively pursued by researchers in both academic and pharmaceutical industries. This continued effort led to the steady accumulation of BACE1 crystal structures, co-complexed with different classes of inhibitors. This wealth of information is used in this study to develop target specific proteochemometric models and these models are exploited for predicting the prospective BACE1 inhibitors. The models developed in this study have performed excellently in predicting the computationally generated poses, separately obtained from single and ensemble docking approaches. The simple protein-ligand contact (SPLC) model outperforms other sophisticated high end models, in virtual screening performance, developed during this study. In an attempt to account for BACE1 protein active site flexibility information in predictive models, we included the change in the area of solvent accessible surface and the change in the volume of solvent accessible surface in our models. The ensemble and single receptor docking results obtained from this study indicate that the structural water mediated interactions improve the virtual screening results. Also, these waters are essential for recapitulating bioactive conformation during docking study. The proteochemometric models developed in this study can be used for the prediction of BACE1 inhibitors, during the early stage of AD drug discovery.

  6. Water-use efficiency and relative growth rate mediate competitive interactions in Sonoran Desert winter annual plants.

    Science.gov (United States)

    Gremer, Jennifer R; Kimball, Sarah; Keck, Katie R; Huxman, Travis E; Angert, Amy L; Venable, D Lawrence

    2013-10-01

    A functional approach to investigating competitive interactions can provide a mechanistic understanding of processes driving population dynamics, community assembly, and the maintenance of biodiversity. In Sonoran Desert annual plants, a trade-off between relative growth rate (RGR) and water-use efficiency (WUE) contributes to species differences in population dynamics that promote long-term coexistence. Traits underlying this trade-off explain variation in demographic responses to precipitation as well as life history and phenological patterns. Here, we ask how these traits mediate competitive interactions. • We conducted competition trials for three species occupying different positions along the RGR-WUE trade-off axis and compared the effects of competition at high and low soil moisture. We compared competitive effect (ability to suppress neighbors) and competitive response (ability to withstand competition from neighbors) among species. • The RGR-WUE trade-off predicted shifts in competitive responses at different soil moistures. The high-RGR species was more resistant to competition in high water conditions, while the opposite was true for the high-WUE species. The intermediate RGR species tended to have the strongest impact on all neighbors, so competitive effects did not scale directly with differences in RGR and WUE among competitors. • Our results reveal mechanisms underlying long-term variation in fitness: high-RGR species perform better in years with large, frequent rain events and can better withstand competition under wetter conditions. The opposite is true for high-WUE species. Such resource-dependent responses strongly influence community dynamics and can promote coexistence in variable environments.

  7. Water mediated alterations in gravity signal transform phytofilertation capability in hydroponic plants

    Science.gov (United States)

    Singh, Yogranjan; Singh Marabi, Rakesh; Satpute, Gyanesh Kumar; Mishra, Stuti

    2012-07-01

    signal is generated by the sedimentation of the amyloplasts. This induces a signal transduction pathway that promotes an auxin gradient across the root. The proteinogenic amino acid proline functions as a radical scavenger, electron sink, stabilizer of macromolecules, cell wall component and a metal chelation compound. In order to have most competent option for phytofilteration, the natural biodiversity out of aquatic ecosystem should be better studied. Screening of plants that produce natural chemicals whose structures are similar to the xenobiotic compounds should be the first step of any phytoremediation process. An experimental hydroponic-phytofilteration system with real effluent must give pragmatic information on the real detoxification capacity of the plants and allow determining the appropriate design and size of the future constructed wetland system to clean up the contaminated wastewater to reduce negative impact of eutrophication.

  8. Structural insights into GDP-mediated regulation of a bacterial acyl-CoA thioesterase.

    Science.gov (United States)

    Khandokar, Yogesh B; Srivastava, Parul; Cowieson, Nathan; Sarker, Subir; Aragao, David; Das, Shubagata; Smith, Kate M; Raidal, Shane R; Forwood, Jade K

    2017-12-15

    Thioesterases catalyze the cleavage of thioester bonds within many activated fatty acids and acyl-CoA substrates. They are expressed ubiquitously in both prokaryotes and eukaryotes and are subdivided into 25 thioesterase families according to their catalytic active site, protein oligomerization, and substrate specificity. Although many of these enzyme families are well-characterized in terms of function and substrate specificity, regulation across most thioesterase families is poorly understood. Here, we characterized a TE6 thioesterase from the bacterium Neisseria meningitidis Structural analysis with X-ray crystallographic diffraction data to 2.0-Å revealed that each protein subunit harbors a hot dog-fold and that the TE6 enzyme forms a hexamer with D3 symmetry. An assessment of thioesterase activity against a range of acyl-CoA substrates revealed the greatest activity against acetyl-CoA, and structure-guided mutagenesis of putative active site residues identified Asn 24 and Asp 39 as being essential for activity. Our structural analysis revealed that six GDP nucleotides bound the enzyme in close proximity to an intersubunit disulfide bond interactions that covalently link thioesterase domains in a double hot dog dimer. Structure-guided mutagenesis of residues within the GDP-binding pocket identified Arg 93 as playing a key role in the nucleotide interaction and revealed that GDP is required for activity. All mutations were confirmed to be specific and not to have resulted from structural perturbations by X-ray crystallography. This is the first report of a bacterial GDP-regulated thioesterase and of covalent linkage of thioesterase domains through a disulfide bond, revealing structural similarities with ADP regulation in the human ACOT12 thioesterase. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Structural transition in a lipid-water liquid system

    International Nuclear Information System (INIS)

    Bulavin, L.A.; Solovjov, D.V.; Solovjov, D.V.; Gorshkova, Yu.Je.; Zhigunov, O.M.; Ivan'kov, O.I.; Ivan'kov, O.I.; Gordelij, V.I.; Gordelij, V.I.; Gordelij, V.I.; Gordelij, V.I.; Kuklin, O.I.; Kuklin, O.I.

    2012-01-01

    Small-angle X-ray scattering technique has been used to study multilayer lipid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the 3:1-mixture DPPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in excess water. The temperature dependences of the repetition period for lipid bilayers in the temperature range 20-55 o C are obtained. A comparative analysis of the scattering curves obtained for multilayer membranes showed that, below a temperature of 40 o C , there emerges an additional ordering with a repetition period of 66 A in the lipid mixture, which we associate with the lipid phase separation. A disappearance of the so-called ripple (wave-like) phase of DPPC lipid in the mixture is also observed.

  10. Plasmon mediated inverse Faraday effect in a graphene-dielectric-metal structure.

    Science.gov (United States)

    Bychkov, Igor V; Kuzmin, Dmitry A; Tolkachev, Valentine A; Plaksin, Pavel S; Shavrov, Vladimir G

    2018-01-01

    This Letter shows the features of inverse Faraday effect (IFE) in a graphene-dielectric-metal (GDM) structure. The constants of propagation and attenuation of the surface plasmon-polariton modes are calculated. The effective magnetic field induced by surface plasmon modes in the dielectric due to the IFE is estimated to reach above 1 tesla. The possibility to control the distribution of the magnetic field by chemical potential of graphene is shown. The concept of strain-driven control of the IFE in the structure has been proposed and investigated.

  11. The Effects of Transformational Leadership and Mediating Factors on the Organizational Success Using Structural Equation Modeling: A Case Study.

    Science.gov (United States)

    Ravangard, Ramin; Karimi, Sakine; Farhadi, Payam; Sajjadnia, Zahra; Shokrpour, Nasrin

    This study was undertaken to determine the effects of transformational leadership (TL) and mediating factors on organizational success (OS) from the administrative, financial, and support employees' perspective in teaching hospitals affiliated with Shiraz University of Medical Sciences using structural equation modeling. Three hundred administrative and financial employees were selected, using stratified sampling proportional to size and simple random sampling. Data were collected using 5 questionnaires and analyzed using SPSS 21.0 and Lisrel 8.5 through Pearson correlation coefficient and path analysis and confirmatory factor analysis methods. Results showed that TL had significant positive effects on the 3 mediating factors, including organizational culture (t = 15.31), organizational citizenship behavior (OCB) (t = 10.06), and social capital (t = 10.25). Also, the organizational culture (t = 2.26), OCB (t = 3.48), and social capital (t = 7.41) had significant positive effects on OS. According to the results, TL had an indirect effect on OS. Therefore, organizations can achieve more success by strengthening organizational culture, OCB, and social capital through using transformational leadership style. Therefore, in order to increase OS, the following recommendations are made: supporting and encouraging new ideas in the organization, promoting teamwork, strengthening intergroup and intragroup relationships, planning to strengthen and enrich the social and organizational culture, considering the promotion of social capital in the employee training, establishing a system to give rewards to the employees performing extra-role activities, providing a suitable environment for creative employees, and so on.

  12. Structural and dynamical properties of water confined between two hydrophilic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Di Napoli, Solange, E-mail: dinapoli@tandar.cnea.gov.a [Depto. de Fisica - CAC, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Gamba, Zulema, E-mail: gamba@tandar.cnea.gov.a [Depto. de Fisica - CAC, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina)

    2009-10-01

    The properties of water in the vicinity of surfaces and under confinement have been extensively studied because of the relevance of a quantitative understanding of many processes that not only take place in biological systems, like cells, membranes and microemulsions, but also in many others such as confined water in rocks, ionic channels and interestellar matter. In this work we perform molecular dynamic calculations of the nanoscopic structure of TIP5P model water confined between two hydrophilic surfaces. We calculate the diffusion coefficients and the atomic density profile of water molecules and polar ions in the system as a function of the number of water molecules per amphiphilic (n{sub W}). We also study the dependence of the water layer thickness and the profiles of water dipole orientation with this parameter.

  13. Structural and dynamical properties of water confined between two hydrophilic surfaces

    International Nuclear Information System (INIS)

    Di Napoli, Solange; Gamba, Zulema

    2009-01-01

    The properties of water in the vicinity of surfaces and under confinement have been extensively studied because of the relevance of a quantitative understanding of many processes that not only take place in biological systems, like cells, membranes and microemulsions, but also in many others such as confined water in rocks, ionic channels and interestellar matter. In this work we perform molecular dynamic calculations of the nanoscopic structure of TIP5P model water confined between two hydrophilic surfaces. We calculate the diffusion coefficients and the atomic density profile of water molecules and polar ions in the system as a function of the number of water molecules per amphiphilic (n W ). We also study the dependence of the water layer thickness and the profiles of water dipole orientation with this parameter.

  14. Global efficiency of structural networks mediates cognitive control in mild cognitive impairment

    NARCIS (Netherlands)

    Berlot, R. (Rok); Metzler-Baddeley, C. (Claudia); M.A. Ikram (Arfan); Jones, D.K. (Derek K.); O'Sullivan, M.J. (Michael J.)

    2016-01-01

    markdownabstract__Background:__ Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. __Objective:__ To determine the contribution of both localized white

  15. Disturbance and productivity interactions mediate stability of forest composition and structure

    Science.gov (United States)

    Christopher D. O' Connor; Donald A. Falk; Ann M. Lynch; Thomas W. Swetnam; Craig P. Wilcox

    2017-01-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with...

  16. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Vicky Goler-Baron

    2011-01-01

    Full Text Available Multidrug resistance (MDR is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and

  17. Novel Structures for the Excess Electron State of the Water Hexamer and the Interaction Forces Governing the Structures

    International Nuclear Information System (INIS)

    Lee, S.; Kim, J.; Lee, S.J.; Kim, K.S.

    1997-01-01

    The geometrical and electronic structures of partially hydrated electron systems, in particular, the water hexamer, which have been controversial for decades, have been clarified by an exhaustive search for possible low-lying energy structures. Several competing interaction forces governing the conformation have been examined for the first time. The low-lying energy structures are hybrid (or partially internal and partially surface) excess electron states. Our prediction is evidenced from excellent agreements with available experimental data. The vertical electron-detachment energies are mainly determined by the number of dangling H atoms (H d ) . copyright 1997 The American Physical Society

  18. Structures of nanoparticles prepared from oil-in-water emulsions.

    Science.gov (United States)

    Sjöström, B; Kaplun, A; Talmon, Y; Cabane, B

    1995-01-01

    Hydrophobic substances were dissolved in an organic solvent and emulsified with an aqueous solution at very high shear. Droplets of very small sizes (50-100 nm) were obtained by using surfactants which were combinations of lecithins and bile salts. After emulsification, the organic solvent was removed by evaporation, yielding stable dispersions of solid particles. The sizes, shapes, and structures of the particles were examined through quasi-elastic light scattering, small-angle neutron scattering and cryotransmission electron microscopy. Cholesterol acetate particles stabilized by lecithin and bile salts were found to be platelets of 10-20 nm thickness and 80 nm diameter. Cholesteryl acetate particles stabilized with POE-(20)-sorbitan monolaurate were dense spherical globules of diameter 100 nm. Particles with a composition similar to the endogenously occurring, lipoprotein, LDL, were large spherical globules studded with small vesicles. The subsequent evolution of the cholesteryl acetate dispersion upon aging was examined. There was no transfer of cholesteryl acetate between particles nor to large crystals. However, some aggregation of the particles was observed when the volume fraction of the particles in the aqueous dispersion exceeded 0.05. Thus, the structure of the nanoparticles obtained through deswelling of emulsion droplets changes according to the nature of the emulsifiers and to the composition of the hydrophobic substances which they contain.

  19. Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional

    OpenAIRE

    Su, Julius T.; Xu, Xin; Goddard, William A., III

    2004-01-01

    We predict structures and energies of water clusters containing up to 19 waters with X3LYP, an extended hybrid density functional designed to describe noncovalently bound systems as accurately as covalent systems. Our work establishes X3LYP as the most practical ab initio method today for calculating accurate water cluster structures and energies. We compare X3LYP/aug-cc-pVTZ energies to the most accurate theoretical values available (n = 2−6, 8), MP2 with basis set superposition error (BSSE)...

  20. Sensitivity analysis for linear structural equation models, longitudinal mediation with latent growth models and blended learning in biostatistics education

    Science.gov (United States)

    Sullivan, Adam John

    In chapter 1, we consider the biases that may arise when an unmeasured confounder is omitted from a structural equation model (SEM) and sensitivity analysis techniques to correct for such biases. We give an analysis of which effects in an SEM are and are not biased by an unmeasured confounder. It is shown that a single unmeasured confounder will bias not just one but numerous effects in an SEM. We present sensitivity analysis techniques to correct for biases in total, direct, and indirect effects when using SEM analyses, and illustrate these techniques with a study of aging and cognitive function. In chapter 2, we consider longitudinal mediation with latent growth curves. We define the direct and indirect effects using counterfactuals and consider the assumptions needed for identifiability of those effects. We develop models with a binary treatment/exposure followed by a model where treatment/exposure changes with time allowing for treatment/exposure-mediator interaction. We thus formalize mediation analysis with latent growth curve models using counterfactuals, makes clear the assumptions and extends these methods to allow for exposure mediator interactions. We present and illustrate the techniques with a study on Multiple Sclerosis(MS) and depression. In chapter 3, we report on a pilot study in blended learning that took place during the Fall 2013 and Summer 2014 semesters here at Harvard. We blended the traditional BIO 200: Principles of Biostatistics and created ID 200: Principles of Biostatistics and epidemiology. We used materials from the edX course PH207x: Health in Numbers: Quantitative Methods in Clinical & Public Health Research and used. These materials were used as a video textbook in which students would watch a given number of these videos prior to class. Using surveys as well as exam data we informally assess these blended classes from the student's perspective as well as a comparison of these students with students in another course, BIO 201

  1. Mediators of maternal depression and family structure on child BMI: parenting quality and risk factors for child overweight.

    Science.gov (United States)

    McConley, Regina L; Mrug, Sylvie; Gilliland, M Janice; Lowry, Richard; Elliott, Marc N; Schuster, Mark A; Bogart, Laura M; Franzini, Luisa; Escobar-Chaves, Soledad L; Franklin, Frank A

    2011-02-01

    Risk factors for child obesity may be influenced by family environment, including maternal depression, family structure, and parenting quality. We tested a path model in which maternal depression and single parent status are associated with parenting quality, which relates to three risk factors for child obesity: diet, leisure, and sedentary behavior. Participants included 4,601 5th-grade children and their primary caregivers who participated in the Healthy Passages study. Results showed that associations of maternal depression and single parenthood with child BMI are mediated by parenting quality and its relation to children's leisure activity and sedentary behavior. Interventions for child obesity may be more successful if they target family environment, particularly parenting quality and its impact on children's active and sedentary behaviors.

  2. Integrating Water, Actors, and Structure to Study Socio-Hydro-Ecological Systems

    Science.gov (United States)

    Hale, R. L.; Armstrong, A.; Baker, M. A.; Bedingfield, S.; Betts, D.; Buahin, C. A.; Buchert, M.; Crowl, T.; Dupont, R.; Endter-Wada, J.; Flint, C.; Grant, J.; Hinners, S.; Horns, D.; Horsburgh, J. S.; Jackson-Smith, D.; Jones, A. S.; Licon, C.; Null, S. E.; Odame, A.; Pataki, D. E.; Rosenberg, D. E.; Runburg, M.; Stoker, P.; Strong, C.

    2014-12-01

    Urbanization, climate uncertainty, and ecosystem change represent major challenges for managing water resources. Water systems and the forces acting upon them are complex, and there is a need to understand and generically represent the most important system components and linkages. We developed a framework to facilitate understanding of water systems including potential vulnerabilities and opportunities for sustainability. Our goal was to produce an interdisciplinary framework for water resources research to address water issues across scales (e.g., city to region) and domains (e.g., water supply and quality, urban and transitioning landscapes). An interdisciplinary project (iUTAH - innovative Urban Transitions and Aridregion Hydro-sustainability) with a large (N=~100), diverse team having expertise spanning the hydrologic, biological, ecological, engineering, social, planning, and policy sciences motivated the development of this framework. The framework was developed through review of the literature, meetings with individual researchers, and workshops with participants. The Structure-Water-Actor Framework (SWAF) includes three main components: water (quality and quantity), structure (natural, built, and social), and actors (individual and organizational). Key linkages include: 1) ecological and hydrological processes, 2) ecosystem and geomorphic change, 3) planning, design, and policy, 4) perceptions, information, and experience, 5) resource access, and 6) operational water use and management. Our expansive view of structure includes natural, built, and social components, allowing us to examine a broad set of tools and levers for water managers and decision-makers to affect system sustainability and understand system outcomes. We validate the SWAF and illustrate its flexibility to generate insights for three research and management problems: green stormwater infrastructure in an arid environment, regional water supply and demand, and urban river restoration

  3. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer

    NARCIS (Netherlands)

    Keramat, A.; Tijsseling, A.S.; Hou, Q.; Ahmadi, A.

    2011-01-01

    Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using

  4. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer

    NARCIS (Netherlands)

    Keramat, A.; Tijsseling, A.S.; Hou, Q.; Ahmadi, A.

    2012-01-01

    Fluid–structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using

  5. Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123

    Energy Technology Data Exchange (ETDEWEB)

    An, Sojin [Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States; Yoon, Jungmin [Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Graduate school of Nanoscience and Technology (World Class University), KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Kim, Hanseong [Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States; Song, Ji-Joon [Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Graduate school of Nanoscience and Technology (World Class University), KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Cho, Uhn-soo [Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States

    2017-10-16

    Kap123, a major karyopherin protein of budding yeast, recognizes the nuclear localization signals (NLSs) of cytoplasmic histones H3 and H4 and translocates them into the nucleus during DNA replication. Mechanistic questions include H3- and H4-NLS redundancy toward Kap123 and the role of the conserved diacetylation of cytoplasmic H4 (K5ac and K12ac) in Kap123-mediated histone nuclear translocation. Here, we report crystal structures of full-length Kluyveromyces lactis Kap123 alone and in complex with H3- and H4-NLSs. Structures reveal the unique feature of Kap123 that possesses two discrete lysine-binding pockets for NLS recognition. Structural comparison illustrates that H3- and H4-NLSs share at least one of two lysine-binding pockets, suggesting that H3- and H4-NLSs are mutually exclusive. Additionally, acetylation of key lysine residues at NLS, particularly H4-NLS diacetylation, weakens the interaction with Kap123. These data support that cytoplasmic histone H4 diacetylation weakens the Kap123-H4-NLS interaction thereby facilitating histone Kap123-H3-dependent H3:H4/Asf1 complex nuclear translocation.

  6. Structural basis for the Nanos-mediated recruitment of the CCR4–NOT complex and translational repression

    Science.gov (United States)

    Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa

    2014-01-01

    The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4–NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1–3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1–3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1–3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4–NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4–NOT complex as the main effector complex for Nanos function. PMID:24736845

  7. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression.

    Science.gov (United States)

    Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa

    2014-04-15

    The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4-NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1-3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1-3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1-3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4-NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4-NOT complex as the main effector complex for Nanos function.

  8. Spectral structure of mesoscale winds over the water

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Vincent, Claire Louise; Larsen, Søren Ejling

    2013-01-01

    to describe the spectral slope transition as well as the limit for application of the Taylor hypothesis. The stability parameter calculated from point measurements, the bulk Richardson number, is found insufficient to represent the various atmospheric structures that have their own spectral behaviours under...... spectra show universal characteristics, in agreement with the findings in literature, including the energy amplitude and the −5/3 spectral slope in the mesoscale range transitioning to a slope of −3 for synoptic and planetary scales. The integral time-scale of the local weather is found to be useful...... different stability conditions, such as open cells and gravity waves. For stationary conditions, the mesoscale turbulence is found to bear some characteristics of two-dimensional isotropy, including (1) very minor vertical variation of spectra; (2) similar spectral behaviour for the along- and across...

  9. [Mass maritime casualty incidents in German waters: structures and resources].

    Science.gov (United States)

    Castan, J; Paschen, H-R; Wirtz, S; Dörges, V; Wenderoth, S; Peters, J; Blunk, Y; Bielstein, A; Kerner, T

    2012-07-01

    The Central Command for Maritime Emergencies was founded in Germany in 2003 triggered by the fire on board of the cargo ship "Pallas" in 1998. Its mission is to coordinate and direct measures at or above state level in maritime emergency situations in the North Sea and the Baltic Sea. A special task in this case is to provide firefighting and medical care. To face these challenges at sea emergency doctors and firemen have been specially trained. This form of organization provides a concept to counter mass casualty incidents and peril situations at sea. Since the foundation of the Central Command for Maritime Emergencies there have been 5 operations for firefighting units and 4 for medical response teams. Assignments and structure of the Central Command for Maritime Emergencies are unique in Europe.

  10. Mechanics of structures and maintenance of pressurized water reactors

    International Nuclear Information System (INIS)

    Hutin, J.P.

    1992-01-01

    Electricite de France nowadays has in operation 34 units of 900 MW and 17 units of 1300 MW of PWR. Since the first unit was run, this means that more than 350 reactor-years have been performed, to which should be added the experience already gained on fossil fuel or natural uranium plants. This enabled EDF to build its own philosophy and a strategy for maintenance that are best suited for the specific requirements of the hardware with which the actual nuclear boilers are made-up. This philosophy and strategy rest upon an analysis which calls widely for the mechanics of structures, to such an extent that major decisions concerning maintenance depend on the ability that one has for resolving problems within the scope of that discipline

  11. Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis

    International Nuclear Information System (INIS)

    Pimblott, S.M.; Mozumder, A.

    1991-01-01

    A procedure for the calculation of entity-specific ionization and excitation probabilities for water radiolysis at low linear energy transfer (LET) has been developed. The technique pays due attention to the effects of the ionization threshold and the energy dependence of the ionization efficiency. The numbers of primary ionizations and excitations are not directly proportional to the spur energy. At a given spur energy, ionization follows a binomial distribution subject to an energetically possible maximum. The excitation distribution for a spur of given energy and with a given number of ionizations is given by a geometric series. The occurrence probabilities depend upon the cross sections of ionization, excitation, and other inferior processes. Following the low-LET radiolysis of liquid water the most probable spurs contain one ionization, two ionizations, or one ionization and one excitation, while in water vapor they contain either one ionization or one excitation. In liquid water the most probable outcomes for spurs corresponding to the most probable energy loss (22 eV) and to the mean energy loss (38 eV) are one ionization and one excitation, and two ionizations and one excitation, respectively. In the vapor, the most probable energy loss is 14 eV which results in one ionization or one excitation and the mean energy loss is 34 eV for which the spur of maximum probability contains one ionization and two excitations. The total calculated primary yields for low-LET radiolysis are in approximate agreement with experiment in both phases

  12. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    Science.gov (United States)

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  13. Porphyrin mediated photo-modification of the structure and function of human serum albumin

    Science.gov (United States)

    Rozinek, Sarah C.

    Photosensitization reactions involve irradiating (with visible light) molecules with a high efficiency for either electron transfer or entering an excited triplet state (photosensitizer). Such reactions are applied to photodynamic cancer therapy, many medical laser-treatments, and a potential array of disinfection and pest elimination techniques. To understand the biophysical mechanisms of how these applications are effective at the protein level, the group of Dr. Brancaleon (UTSA) has investigated the irradiation of several dye-protein combinations, and discovered effects on protein structure and function. To further that work, we have investigated irradiation of the protein, human serum albumin (HSA), photosensitized by either protoporphyrin IX (PPIX) or meso-tetrakis(4-sulfonatophenyl)porphyrin (TSPP). HSA is the most abundant plasma protein, making it a likely substrate in PDT, and it possesses a specific binding pocket for iron-PPIX (heme) and possibly other porphyrin derivatives. The results of our research are summarized as follows. First, a thorough characterization of the binding of each photosensitizer to albumin was completed, elucidating a probable binding location for TSPP. Next, fluorescence lifetime emission of the single tryptophan residue, alongside circular dichroism, found tertiary structural changes around tryptophan and an overall 20% decrease in protein secondary structure after irradiation with TSPP bound. Finally, to determine if protein function was lost after photosensitization, size exclusion chromatography found modified albumin still recognizable by its receptor-protein, and comparative ex vivo up-take studies revealed that modified albumin is not processed the same way as native albumin in live tapeworm larva (Mesocestoides corti). Thus we found that visible light can induce partial unfolding of a protein by using a photo-activated ligand. These small structural modifications were sufficient to affect the protein's biological function.

  14. Effect of Water-Cement Ratio on Pore Structure and Strength of Foam Concrete

    Directory of Open Access Journals (Sweden)

    Zhongwei Liu

    2016-01-01

    Full Text Available Foam concrete with different dry densities (400, 500, 600, 700, and 800 kg/m3 was prepared from ordinary Portland cement (P.O.42.5R and vegetable protein foaming agent by adjusting the water-cement ratio through the physical foaming method. The performance of the cement paste adopted, as well as the structure and distribution of air pores, was characterized by a rheometer, scanning electron microscope, vacuum water saturation instrument, and image analysis software. Effects of the water-cement ratio on the relative viscosity of the cement paste, as well as pore structure and strength of the hardened foam concrete, were discussed. Results showed that water-cement ratio can influence the size, distribution, and connectivity of pores in foam concrete. The compressive strength of the foam concrete showed an inverted V-shaped variation law with the increase in water-cement ratio.

  15. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures.

    Science.gov (United States)

    Helmig, Sarah; Gothelf, Kurt Vesterager

    2017-10-23

    Signal transfer is central to the controlled exchange of information in biology and advanced technologies. Therefore, the development of reliable, long-range signal transfer systems for artificial nanoscale assemblies is of great scientific interest. We have designed such a system for the signal transfer between two connected DNA nanostructures, using the hybridization chain reaction (HCR). Two sets of metastable DNA hairpins, one of which is immobilized at specific points along tracks on DNA origami structures, are polymerized to form a continuous DNA duplex, which is visible using atomic force microscopy (AFM). Upon addition of a designed initiator, the initiation signal is efficiently transferred more than 200 nm from a specific location on one origami structure to an end point on another origami structure. The system shows no significant loss of signal when crossing from one nanostructure to another and, therefore, has the potential to be applied to larger multi-component DNA assemblies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    Science.gov (United States)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-01

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO2), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  17. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  18. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    International Nuclear Information System (INIS)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-01

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO 2 ), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO 2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance

  19. The structure of the interface in the solvent mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Levadny, V.G.

    1987-08-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dipolar layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note we discuss the role of solvation of surface dipolar groups. We propose an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance if the surface dipolar groups are immersed deep enough in the solvent and how the long-range oscillative mode disappears when the surface is but weakly solvated. (author). 35 refs, 5 figs

  20. The structure of the interface in the solvent-mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Kornyshev, A.A.; Levadny, V.G.

    1988-01-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar-surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dypolar-layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so-called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note it is discussed the role of solvation of surface dipolar groups. It is proposed an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance, if the surface dipolar groups are immersed deep enough in the solvent, and how the long-range oscillative mode disappears when the surface is but weakly solvated

  1. Structure and dynamics in liquid water from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Wernet, Philippe

    2009-01-01

    Oxygen K-edge x-ray absorption spectra of water are discussed. The spectra of gas-phase water, liquid water and ice illustrate the sensitivity of oxygen K-edge x-ray absorption spectroscopy to hydrogen bonding in water. Transmission mode spectra of amorphous and crystalline ice are compared to x-ray Raman spectra of ice. The good agreement consolidates the experimental spectrum of crystalline ice and represents an incentive for theoretical calculations of the oxygen K-edge absorption spectrum of crystalline ice. Time-resolved infrared-pump and x-ray absorption probe results are finally discussed in the light of this structural interpretation.

  2. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  3. Characterisation of fluid-structure interaction for water impact of composite panels

    Directory of Open Access Journals (Sweden)

    M Battley

    2016-09-01

    Full Text Available Hydrodynamic loads can be very significant for high performance marine vessels. Water impact of panels, known as "slamming", typically generates high magnitude short duration pressure pulses that move across the structure. In the case of compliant panels there can be significant coupling between the pressures and the structural responses. While there has been significant development of numerical methods to simulate this type of fluid-structure interaction there is only very limited experimental data available for validation of the simulation approaches. This paper describes an experimental study of sandwich composite panels subjected to water slamming impacts. The results demonstrate that compliant panels subjected to water slamming impacts experience different pressures than rigid panels, and have different structural responses than predicted by traditional uniform pressure based analysis approaches. The study also characterizes the significant effects that the dimensions of pressure transducers and data acquisition sampling rates have on the measured pressures.

  4. Uncommon structure making/breaking behaviour of cholinium taurate in water

    International Nuclear Information System (INIS)

    Gadžurić, Slobodan; Tot, Aleksandar; Armaković, Stevan; Armaković, Sanja; Panić, Jovana; Jović, Branislav; Vraneš, Milan

    2017-01-01

    Highlights: • Structuring of water in cholinium taurate ionic liquids was studied. • Nature of interactions were discussed. • Structure breaking properties were observed below and structure making properties above 300 K. • Molecular dynamics confirmed conclusions derived from experiments. - Abstract: Synthesis, volumetric and transport properties of the new third generation ionic liquid cholinium taurate, [Chol][Tau], are reported. Density, viscosity and electrical conductivity measurements of diluted aqueous solution of [Chol][Tau] were performed, while from the theoretical aspects density functional theory (DFT) calculations and molecular dynamics (MD) simulations have been applied in order to understand the nature of interactions and water structuring in the studied system. DFT approach was used to understand geometry and non-covalent interactions between [Chol] + and [Tau] − ions, while radial distribution functions (RDFs) obtained after MD simulations were applied in order to determine the parts of the ionic liquid that are most responsible for the interaction with water.

  5. Comparison of water degradation of YBaCuO superconducting films made from different structures

    International Nuclear Information System (INIS)

    Chang, C.; Tsai, J.A.

    1988-01-01

    Immersion of YBaCuO superconducting films in water has shown a large difference in degradation between structures with and without silver. For the structures containing silver layers and depositing at a high temperature, superconducting films with zero resistance at 87 K remain superconductive at 77 K after 5 h immersion in water, with an increase in room-temperature film resistance by a factor of 4; the contact resistance remains low after 60 h of immersion, allowing the measurement at low temperatures. For the structures containing no silver and depositing at room temperature, the contact resistance rapidly increases with immersion times, making the measurement at 77 K difficult after 5 min of immersion. Changes in the sharpness of the superconductive transition, and structures of the films due to the water immersion are also compared

  6. New potentional of high-speed water jet technology for renovating concrete structures

    Science.gov (United States)

    Bodnárová, L.; Sitek, L.; Hela, R.; Foldyna, J.

    2011-06-01

    The paper discusses the background and results of research focused on the action of a high-speed water jet on concrete with different qualities. The sufficient and careful removal of degraded concrete layers is very important for the renovation of concrete structures. High-speed water jet technology is one of the most common methods used for removing degraded concrete layers. Different types of high-speed water jets were tested in the experimental part. The classical technology of a single continuous water jet generated with one nozzle was tested as well as the technology of revolving water jets generated by multiple nozzles (used mainly for the renovation of larger areas). A continuous flat water jet and pulsating flat water jet were tested the first time, because the connection of a water jet with the acoustic generator of a pulsating jet offers new possibilities for the use of a water jet (see [1] and [2]). A water jet with such a modification is capable of efficient action and can even be used for cutting solid concrete with a relatively low consumption of energy. A flat pulsating water jet which can be newly used for renovation seems to be a promising technology.

  7. Validating spatial structure in canopy water content using geostatistics

    Science.gov (United States)

    Sanderson, E. W.; Zhang, M. H.; Ustin, S. L.; Rejmankova, E.; Haxo, R. S.

    1995-01-01

    Heterogeneity in ecological phenomena are scale dependent and affect the hierarchical structure of image data. AVIRIS pixels average reflectance produced by complex absorption and scattering interactions between biogeochemical composition, canopy architecture, view and illumination angles, species distributions, and plant cover as well as other factors. These scales affect validation of pixel reflectance, typically performed by relating pixel spectra to ground measurements acquired at scales of 1m(exp 2) or less (e.g., field spectra, foilage and soil samples, etc.). As image analysis becomes more sophisticated, such as those for detection of canopy chemistry, better validation becomes a critical problem. This paper presents a methodology for bridging between point measurements and pixels using geostatistics. Geostatistics have been extensively used in geological or hydrogeolocial studies but have received little application in ecological studies. The key criteria for kriging estimation is that the phenomena varies in space and that an underlying controlling process produces spatial correlation between the measured data points. Ecological variation meets this requirement because communities vary along environmental gradients like soil moisture, nutrient availability, or topography.

  8. Brain structural properties predict psychologically mediated hypoalgesia in an 8-week sham acupuncture treatment for migraine.

    Science.gov (United States)

    Liu, Jixin; Mu, Junya; Liu, Qianqian; Dun, Wanghuan; Zhang, Ming; Tian, Jie

    2017-09-01

    Neuroimaging studies described brain structural changes that comprise the mechanisms underlying individual differences in migraine development and maintenance. However, whether such interindividual variability in migraine was observed in a pretreatment scan is a predisposition for subsequent hypoalgesia to placebo treatment that remains largely unclear. Using T1-weighted imaging, we investigated this issue in 50 healthy controls (HC) and 196 patients with migraine without aura (MO). An 8-week double-blinded, randomized, placebo-controlled acupuncture was used, and we only focused on the data from the sham acupuncture group. Eighty patients participated in an 8-weeks sham acupuncture treatment, and were subdivided (50% change in migraine days from baseline) into recovering (MOr) and persisting (MOp) patients. Optimized voxel-based morphometry (VBM) and functional connectivity analysis were performed to evaluate brain structural and functional changes. At baseline, MOp and MOr had similar migraine activity, anxiety and depression; reduced migraine days were accompanied by decreased anxiety in MOr. In our findings, the MOr group showed a smaller volume in the left medial prefrontal cortex (mPFC), and decreased mPFC-related functional connectivity was found in the default mode network. Additionally, the reduction in migraine days after placebo treatment was significantly associated with the baseline gray matter volume of the mPFC which could also predict post-treatment groups with high accuracy. It indicated that individual differences for the brain structure in the pain modulatory system at baseline served as a substrate on how an individual facilitated or diminished hypoalgesia responses to placebo treatment in migraineurs. Hum Brain Mapp 38:4386-4397, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2015-03-03

    Laser ablation of organic compounds has been investigated for almost 30 years now, either in the framework of pulse laser deposition for the assembling of new materials or in the context of chemical sensing. Various monitoring techniques such as atomic and molecular fluorescence, time-of-flight mass spectrometry, and optical emission spectroscopy have been used for plasma diagnostics in an attempt to understand the spectral signature and potential origin of gas-phase ions and fragments from organic plasmas. Photochemical and photophysical processes occurring within these systems are generally much more complex than those suggested by observation of optical emission features. Together with laser ablation parameters, the structural and chemical-physical properties of molecules seem to be closely tied to the observed phenomena. The present manuscript, for the first time, discusses the role of molecular structure in the optical emission of organic plasmas. Factors altering the electronic distribution within the organic molecule have been found to have a direct impact on its ensuing optical emissions. The electron structure of an organic molecule, resulting from the presence, nature, and position of its atoms, governs the breakage of the molecule and, as a result, determines the extent of atomization and fragmentation that has proved to directly impact the emissions of CN radicals and C2 dimers. Particular properties of the molecule respond more positively depending on the laser irradiation wavelength, thereby redirecting the ablation process through photochemical or photothermal decomposition pathways. It is of paramount significance for chemical identification purposes how, despite the large energy stored and dissipated by the plasma and the considerable number of transient species formed, the emissions observed never lose sight of the original molecule.

  10. Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding.

    Science.gov (United States)

    Orgel, Joseph P R O; Eid, Aya; Antipova, Olga; Bella, Jordi; Scott, John E

    2009-09-15

    Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM). With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein) and binding sites in the d and e(1) bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1) bands). This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  11. Decorin core protein (decoron shape complements collagen fibril surface structure and mediates its binding.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    2009-09-01

    Full Text Available Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM. With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein and binding sites in the d and e(1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1 bands. This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  12. Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission.

    Directory of Open Access Journals (Sweden)

    Pascale Schellenberger

    2011-05-01

    Full Text Available Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV, a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP, carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.

  13. Structural Basis for Eculizumab-Mediated Inhibition of the Complement Terminal Pathway

    DEFF Research Database (Denmark)

    Schatz-Jakobsen, Janus Asbjørn; zhang, yuchun; Johnson, Krista

    2016-01-01

    the structural observations of the interaction are supported by the reduced ability of a subset of these mutated antibodies to inhibit MAC formation as tested in a hemolysis assay. Our results suggest that eculizumab functions by sterically preventing C5 from binding to convertases and explain the exquisite......Eculizumab is a humanized monoclonal antibody approved for treatment of patients with paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uraemic syndrome. Eculizumab binds complement component C5 and prevents its cleavage by C5 convertases, inhibiting release of both...

  14. Charitable giving and reflexive individuals: How personal reflexivity mediates between structure and agency.

    Science.gov (United States)

    Sanghera, Balihar

    2017-03-01

    This article examines how individuals are reflexive beings who interpret the world in relation to things that matter to them, and how charitable acts are evaluated and embedded in their lives with different degrees of meaning and importance. Rather than framing the discussion of charitable practices in terms of an altruism/egoism binary or imputing motivations and values to social structures, the article explains how reflexivity is an important and neglected dimension of social practices, and how it interacts with sympathy, sentiments and discourses to shape giving. The study also shows that there are different modes of reflexivity, which have varied effects on charity and volunteering.

  15. Structural analysis and modeling of water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    Roshan Zamir, M.

    2000-01-01

    An important aspect of the design and analysis of nuclear reactor is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system under normal and emergency operating conditions. To achieve these objectives and in order to provide a suitable computer code based on fundamental material properties for design and study of the thermal-mechanical behavior of water reactor fuel rods during their irradiation life and also to demonstrate the fuel rod design and modeling for students, The KIANA-1 computer program has been developed by the writer at Amir-Kabir university of technology with support of Atomic Energy Organization of Iran. KIANA-1 is an integral one-dimensional computer program for the thermal and mechanical analysis in order to predict fuel rods performance and also parameter study of Zircaloy-clad UO 2 fuel rod during steady state conditions. The code has been designed for the following main objectives: To give a solution for the steady state heat conduction equation for fuel as a heat source and clad by using finite difference, control volume and semi-analytical methods in order to predict the temperature profile in the fuel and cladding. To predict the inner gas pressures due to the filling gases and released gaseous fission products. To predict the fission gas production and release by using a simple diffusion model based on the Booth models and an empirical model. To calculate the fuel-clad gap conductance for cracked fuel with partial contact zones to a closed gap with strong contact. To predict the distribution of stress in three principal directions in the fuel and sheet by assuming one-dimensional plane strain and asymmetric idealization. To calculate the strain distribution in three principal directions and the corresponding deformation in the fuel and cladding. For this purpose the permanent strain such as creep or plasticity as well as the thermoelastic deformation and also the swelling, densification, cracking

  16. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective

    Directory of Open Access Journals (Sweden)

    Nicholas P. Greene

    2018-05-01

    Full Text Available The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.

  17. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective

    Science.gov (United States)

    Greene, Nicholas P.; Kaplan, Elise; Crow, Allister; Koronakis, Vassilis

    2018-01-01

    The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking. PMID:29892271

  18. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests

    International Nuclear Information System (INIS)

    Bi, Jian; Knyazikhin, Yuri; Choi, Sungho; Park, Taejin; Barichivich, Jonathan; Ciais, Philippe; Fu, Rong; Ganguly, Sangram; Hall, Forrest; Hilker, Thomas; Huete, Alfredo; Jones, Matthew; Kimball, John; Lyapustin, Alexei I; Mõttus, Matti; Nemani, Ramakrishna R; Piao, Shilong; Poulter, Benjamin; Saleska, Scott R

    2015-01-01

    Resolving the debate surrounding the nature and controls of seasonal variation in the structure and metabolism of Amazonian rainforests is critical to understanding their response to climate change. In situ studies have observed higher photosynthetic and evapotranspiration rates, increased litterfall and leaf flushing during the Sunlight-rich dry season. Satellite data also indicated higher greenness level, a proven surrogate of photosynthetic carbon fixation, and leaf area during the dry season relative to the wet season. Some recent reports suggest that rainforests display no seasonal variations and the previous results were satellite measurement artefacts. Therefore, here we re-examine several years of data from three sensors on two satellites under a range of sun positions and satellite measurement geometries and document robust evidence for a seasonal cycle in structure and greenness of wet equatorial Amazonian rainforests. This seasonal cycle is concordant with independent observations of solar radiation. We attribute alternative conclusions to an incomplete study of the seasonal cycle, i.e. the dry season only, and to prognostications based on a biased radiative transfer model. Consequently, evidence of dry season greening in geometry corrected satellite data was ignored and the absence of evidence for seasonal variation in lidar data due to noisy and saturated signals was misinterpreted as evidence of the absence of changes during the dry season. Our results, grounded in the physics of radiative transfer, buttress previous reports of dry season increases in leaf flushing, litterfall, photosynthesis and evapotranspiration in well-hydrated Amazonian rainforests. (letter)

  19. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    Science.gov (United States)

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  20. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  1. FOOD PROCESSING TECHNOLOGY AS A MEDIATOR OF FUNCTIONALITY. STRUCTURE-PROPERTY-PROCESS RELATIONSHIPS

    Directory of Open Access Journals (Sweden)

    Ester Betoret

    2015-02-01

    Full Text Available During the last years, the food industry has been facing technical and economic changes both in society and in the food processing practices, paying high attention to food products that meet the consumers´ demands. In this direction, the study areas in food process and products have evolved mainly from safety to other topics such as quality, environment or health. The improvement of the food products is now directed towards ensuring nutritional and specific functional benefits. Regarding the processes evolution, they are directed to ensure the quality and safety of environmentally friendly food products produced optimizing the use of resources, minimally affecting or even enhancing their nutritional and beneficial characteristics. The product structure both in its raw form and after processing plays an important role maintaining, enhancing and delivering the bioactive compounds in the appropriate target within the organism. The aim of this review is to make an overview on some synergistic technologies that can constitute a technological process to develop functional foods, enhancing the technological and/or nutritional functionality of the food products in which they are applied. More concretely, the effect of homogenization, vacuum impregnation and drying operations on bioactive compounds have been reviewed, focusing on the structure changes produced and its relationship on the product functionality, as well as on the parameters and the strategies used to quantify and increase the achieved functionality.

  2. Silver ions-mediated conformational switch: facile design of structure-controllable nucleic acid probes.

    Science.gov (United States)

    Wang, Yongxiang; Li, Jishan; Wang, Hao; Jin, Jianyu; Liu, Jinhua; Wang, Kemin; Tan, Weihong; Yang, Ronghua

    2010-08-01

    Conformationally constraint nucleic acid probes were usually designed by forming an intramolecular duplex based on Watson-Crick hydrogen bonds. The disadvantages of these approaches are the inflexibility and instability in complex environment of the Watson-Crick-based duplex. We report that this hydrogen bonding pattern can be replaced by metal-ligation between specific metal ions and the natural bases. To demonstrate the feasibility of this principle, two linear oligonucleotides and silver ions were examined as models for DNA hybridization assay and adenosine triphosphate detection. The both nucleic acids contain target binding sequences in the middle and cytosine (C)-rich sequences at the lateral portions. The strong interaction between Ag(+) ions and cytosines forms stable C-Ag(+)-C structures, which promises the oligonucleotides to form conformationally constraint formations. In the presence of its target, interaction between the loop sequences and the target unfolds the C-Ag(+)-C structures, and the corresponding probes unfolding can be detected by a change in their fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using Ag(+) ion complexes instead of traditional Watson-Crick-based duplex. In particular, the intrinsic feature of the metal-ligation motif facilitates the design of functional nucleic acids probes by independently varying the concentration of Ag(+) ions in the medium.

  3. Flow and coherent structures around circular cylinders in shallow water

    Science.gov (United States)

    Zeng, Jie; Constantinescu, George

    2017-06-01

    Eddy-resolving numerical simulations are conducted to investigate the dynamics of the large-scale coherent structures around a circular cylinder in an open channel under very shallow flow conditions where the bed friction significantly affects the wake structure. Results are reported for three test cases, for which the ratio between the cylinder diameter, D, and the channel depth, H, is D/H = 10, 25, and 50, respectively. Simulation results show that a horseshoe vortex system forms in all test cases and the dynamics of the necklace vortices is similar to that during the breakaway sub-regime observed for cases when a laminar horseshoe vortex forms around the base of the cylinder. Given the shallow conditions and turbulence in the incoming channel flow, the necklace vortices occupy a large fraction of the flow depth (they penetrate until the free surface in the shallower cases with D/H = 25 and 50). The oscillations of the necklace vortices become less regular with increasing polar angle magnitude and can induce strong amplification of the bed shear stress beneath their cores. Strong interactions are observed between the legs of the necklace vortices and the eddies shed in the separated shear layers in the cases with D/H = 25 and 50. In these two cases, a vortex-street type wake is formed and strong three-dimensional effects are observed in the near-wake flow. A secondary instability in the form of arrays of co-rotating parallel horizontal vortices develops. Once the roller vortices get away from the cylinder, the horizontal vortices in the array orient themselves along the streamwise direction. This instability is not present for moderately shallow conditions (e.g., D/H ≈ 1) nor for very shallow cases when the wake changes to an unsteady bubble type (e.g., D/H = 50). For cases when this secondary instability is present, the horizontal vortices extend vertically over a large fraction of the flow depth and play an important role in the vertical mixing of fluid

  4. Participation Structures as a Mediational Means: Learning Balinese Gamelan in the United States through Intent Participation, Mediated Discourse, and Distributed Cognition

    Science.gov (United States)

    Jocuns, Andrew

    2009-01-01

    Participation has presented a complex unit of analysis for interactional sociolinguistics. In this study I add another dimension to participation by considering recent theories related to sociocultural activity theory--mediated discourse analysis and distributed cognition. Drawing on examples from "maguru panggul", the traditional…

  5. Spatial organization and drivers of the virtual water trade: a community-structure analysis

    International Nuclear Information System (INIS)

    D’Odorico, Paolo; Carr, Joel; Laio, Francesco; Ridolfi, Luca

    2012-01-01

    The trade of agricultural commodities can be associated with a virtual transfer of the local freshwater resources used for the production of these goods. Thus, trade of food products virtually transfers large amounts of water from areas of food production to far consumption regions, a process termed the ‘globalization of water’. We consider the (time-varying) community structure of the virtual water network for the years 1986–2008. The communities are groups of countries with dense internal connections, while the connections are sparser among different communities. Between 1986 and 2008, the ratio between virtual water flows within communities and the total global trade of virtual water has continuously increased, indicating the existence of well defined clusters of virtual water transfers. In some cases (e.g. Central and North America and Europe in recent years) the virtual water communities correspond to geographically coherent regions, suggesting the occurrence of an ongoing process of regionalization of water resources. However, most communities also include countries located on different ‘sides’ of the world. As such, geographic proximity only partly explains the community structure of virtual water trade. Similarly, the global distribution of people and wealth, whose effect on the virtual water trade is expressed through simple ‘gravity models’, is unable to explain the strength of virtual water communities observed in the past few decades. A gravity model based on the availability of and demand for virtual water in different countries has higher explanatory power, but the drivers of the virtual water fluxes are yet to be adequately identified. (letter)

  6. [Biological testing of water with different structural states in rats and frogs].

    Science.gov (United States)

    Farashchuk, N F; Mikhaylova, R I; Telenkova, O G

    2014-01-01

    The effect of water samples with different structural states on some physiological indices of white laboratory rats, 5 groups of 10 animals (5 females and 5 males) and frogs has been studied. The investigation was performed for 1 month. For the determination of the content of liquid crystal associates (LCA) in water samples there was used the dilatometric method, the performance of experimental animals was studied by the swimming test (up to total fatigue). The performed experiment on growing rats with the use of water with varying degrees of structuredness showed that according to the weight gain there were optimal water "Lekor" and tap water, treated with Bioptron (the content of the structured fraction is 5.06 +/- 0.09% and 6.9 +/- 0.23%, respectively). On physical performance the best indices were in animals consumed water treated with the Bioptron lamp. In performance of experiments on frogs it was found that cardiac function in animals under experimental conditions over time weakens spontaneously: heart rate and cardiac output decline. Therefore, the effect of different water samples on the cardiac function was assessed on the intensity of its decrease for 15 minutes. In the experimental study of the effect of water with different content of LCA on heart rate and cardiac output of the frog it was found that the optimum level of structuredness of water is within the range of 5.06 +/- 0.09% (in water "Lekor") - 6.9 +/- 0.23% (tap water treated with Bioptron). All the other water samples, the content of nanocrystals in which was below or above this range, has a pronounced inhibitory effect on the heart performance of the frog.

  7. Association between Body Image Dissatisfaction and Self-Rated Health, as Mediated by Physical Activity and Eating Habits: Structural Equation Modelling in ELSA-Brasil.

    Science.gov (United States)

    de Oliveira da Silva, Patricia; Miguez Nery Guimarães, Joanna; Härter Griep, Rosane; Caetano Prates Melo, Enirtes; Maria Alvim Matos, Sheila; Del Carmem Molina, Maria; Maria Barreto, Sandhi; de Jesus Mendes da Fonseca, Maria

    2018-04-18

    This study investigated whether the association between body image dissatisfaction and poor self-rated health is mediated by insufficient physical activity and unhealthy eating habits. The participants were 6727 men and 8037 women from the baseline (2008–2010) of the Longitudinal Study of Adult Health (Estudo Longitudinal de Saúde do Adulto, ELSA-Brasil). Structural equation modelling was used. Associations were found between body image dissatisfaction and poor self-rated health in both sexes. Insufficient physical activity was a mediator. However, unhealthy eating habits were found to exert a mediator effect only via insufficient physical activity. Body image dissatisfaction was found to associate, both directly and possibly indirectly, with poor self-rated health, mediated by insufficient physical activity and unhealthy eating habits. Accordingly, encouraging physical activity and healthy eating can contribute to reducing body image dissatisfaction and favour better self-rated health.

  8. The geomorphic legacy of water and erosion control structures in a semiarid rangeland watershed

    Science.gov (United States)

    Nichols, Mary H.; Magirl, Christopher S.; Sayre, N.F.; Shaw, Jeremy R.

    2018-01-01

    Control over water supply and distribution is critical for agriculture in drylands where manipulating surface runoff often serves the dual purpose of erosion control. However, little is known of the geomorphic impacts and legacy effects of rangeland water manipulation infrastructure, especially if not maintained. This study investigated the geomorphic impacts of structures such as earthen berms, water control gates, and stock tanks, in a semiarid rangeland in the southwestern USA that is responding to both regional channel incision that was initiated over a century ago, and a more recent land use change that involved cattle removal and abandonment of structures. The functional condition of remnant structures was inventoried, mapped, and assessed using aerial imagery and lidar data. Headcut initiation, scour, and channel incision associated with compromised lateral channel berms, concrete water control structures, floodplain water spreader berms, and stock tanks were identified as threats to floodplains and associated habitat. Almost half of 27 identified lateral channel berms (48%) have been breached and 15% have experienced lateral scour; 18% of 218 shorter water spreader berms have been breached and 17% have experienced lateral scour. A relatively small number of 117 stock tanks (6%) are identified as structurally compromised based on analysis of aerial imagery, although many currently do not provide consistent water supplies. In some cases, the onset of localized disturbance is recent enough that opportunities for mitigation can be identified to alter the potentially damaging erosion trajectories that are ultimately driven by regional geomorphic instability. Understanding the effects of prior land use and remnant structures on channel and floodplain morphologic condition is critical because both current land management and future land use options are constrained by inherited land use legacy effects.

  9. Structural basis for Marburg virus VP35-mediated immune evasion mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramanan, Parameshwaran; Edwards, Megan R.; Shabman, Reed S.; Leung, Daisy W.; Endlich-Frazier, Ariel C.; Borek, Dominika M.; Otwinowski, Zbyszek; Liu, Gai; Huh, Juyoung; Basler, Christopher F.; Amarasinghe, Gaya K. [Sinai; (WU-MED); (UTSMC)

    2013-07-22

    Filoviruses, marburgvirus (MARV) and ebolavirus (EBOV), are causative agents of highly lethal hemorrhagic fever in humans. MARV and EBOV share a common genome organization but show important differences in replication complex formation, cell entry, host tropism, transcriptional regulation, and immune evasion. Multifunctional filoviral viral protein (VP) 35 proteins inhibit innate immune responses. Recent studies suggest double-stranded (ds)RNA sequestration is a potential mechanism that allows EBOV VP35 to antagonize retinoic-acid inducible gene-I (RIG-I) like receptors (RLRs) that are activated by viral pathogen–associated molecular patterns (PAMPs), such as double-strandedness and dsRNA blunt ends. Here, we show that MARV VP35 can inhibit IFN production at multiple steps in the signaling pathways downstream of RLRs. The crystal structure of MARV VP35 IID in complex with 18-bp dsRNA reveals that despite the similar protein fold as EBOV VP35 IID, MARV VP35 IID interacts with the dsRNA backbone and not with blunt ends. Functional studies show that MARV VP35 can inhibit dsRNA-dependent RLR activation and interferon (IFN) regulatory factor 3 (IRF3) phosphorylation by IFN kinases TRAF family member-associated NFkb activator (TANK) binding kinase-1 (TBK-1) and IFN kB kinase e (IKKe) in cell-based studies. We also show that MARV VP35 can only inhibit RIG-I and melanoma differentiation associated gene 5 (MDA5) activation by double strandedness of RNA PAMPs (coating backbone) but is unable to inhibit activation of RLRs by dsRNA blunt ends (end capping). In contrast, EBOV VP35 can inhibit activation by both PAMPs. Insights on differential PAMP recognition and inhibition of IFN induction by a similar filoviral VP35 fold, as shown here, reveal the structural and functional plasticity of a highly conserved virulence factor.

  10. Insight to structural subsite recognition in plant thiol protease-inhibitor complexes : Understanding the basis of differential inhibition and the role of water

    Directory of Open Access Journals (Sweden)

    Mukhopadhayay Bishnu P

    2001-09-01

    Full Text Available Abstract Background This work represents an extensive MD simulation / water-dynamics studies on a series of complexes of inhibitors (leupeptin, E-64, E-64-C, ZPACK and plant cysteine proteases (actinidin, caricain, chymopapain, calotropin DI of papain family to understand the various interactions, water binding mode, factors influencing it and the structural basis of differential inhibition. Results The tertiary structure of the enzyme-inhibitor complexes were built by visual interactive modeling and energy minimization followed by dynamic simulation of 120 ps in water environment. DASA study with and without the inhibitor revealed the potential subsite residues involved in inhibition. Though the interaction involving main chain atoms are similar, critical inspection of the complexes reveal significant differences in the side chain interactions in S2-P2 and S3-P3 pairs due to sequence differences in the equivalent positions of respective subsites leading to differential inhibition. Conclusion The key finding of the study is a conserved site of a water molecule near oxyanion hole of the enzyme active site, which is found in all the modeled complexes and in most crystal structures of papain family either native or complexed. Conserved water molecules at the ligand binding sites of these homologous proteins suggest the structural importance of the water, which changes the conventional definition of chemical geometry of inhibitor binding domain, its shape and complimentarity. The water mediated recognition of inhibitor to enzyme subsites (Pn...H2O....Sn of leupeptin acetyl oxygen to caricain, chymopapain and calotropinDI is an additional information and offer valuable insight to potent inhibitor design.

  11. Structure and Conceptual Design of a Water-Hammering-Type Honsang for Restoration

    Directory of Open Access Journals (Sweden)

    Yong Sam Lee

    2012-06-01

    Full Text Available We analyzed the manufacturing procedure, specifications, repair history, and details of celestial movements of the water-hammering type Honsang (celestial globe. Results from our study on the remaining Honsangs in China and Japan and on the reconstruction models in Korea were applied to our conceptual design of the water-hammering type Honsang. A Honui (armillary sphere and Honsang using the water-hammering method were manufactured in Joseon in 1435 (the 17th year of King Sejong. Jang Yeong-Sil developed the Honsang system based on the water-operation method of Shui yün i hsiang t’ai in China. Water-operation means driving water wheels using a water flow. The most important factor in this type of operation is the precision of the water clock and the control of the water wheel movement. The water-hammering type Honsang in Joseon probably adopted the Cheonhyeong (天衡; oriental escapement device system of Shui yün i hsiang t’ai in China and the overflow mechanism of Jagyeongnu (striking clepsydra in Joseon, etc. In addition to the Cheonryun system, more gear instruments were needed to stage the rotation of the Honsang globe and the sun’s movement. In this study, the water-hammering mechanism is analyzed in the structure of a water clock, a water wheel, the Cheonhyeong system, and the Giryun system, as an organically working operation mechanism. We expect that this study will serve as an essential basis for studies on Heumgyeonggaknu, the water-operating astronomical clock, and other astronomical clocks in the middle and latter parts of the Joseon dynasty.

  12. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    International Nuclear Information System (INIS)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and 3 H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by α-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S 2 episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. 3 H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system

  13. A Coincidence Detection Mechanism Controls PX-BAR Domain-Mediated Endocytic Membrane Remodeling via an Allosteric Structural Switch.

    Science.gov (United States)

    Lo, Wen-Ting; Vujičić Žagar, Andreja; Gerth, Fabian; Lehmann, Martin; Puchkov, Dymtro; Krylova, Oxana; Freund, Christian; Scapozza, Leonardo; Vadas, Oscar; Haucke, Volker

    2017-11-20

    Clathrin-mediated endocytosis occurs by bending and remodeling of the membrane underneath the coat. Bin-amphiphysin-rvs (BAR) domain proteins are crucial for endocytic membrane remodeling, but how their activity is spatiotemporally controlled is largely unknown. We demonstrate that the membrane remodeling activity of sorting nexin 9 (SNX9), a late-acting endocytic PX-BAR domain protein required for constriction of U-shaped endocytic intermediates, is controlled by an allosteric structural switch involving coincident detection of the clathrin adaptor AP2 and phosphatidylinositol-3,4-bisphosphate (PI(3,4)P 2 ) at endocytic sites. Structural, biochemical, and cell biological data show that SNX9 is autoinhibited in solution. Binding to PI(3,4)P 2 via its PX-BAR domain, and concomitant association with AP2 via sequences in the linker region, releases SNX9 autoinhibitory contacts to enable membrane constriction. Our results reveal a mechanism for restricting the latent membrane remodeling activity of BAR domain proteins to allow spatiotemporal coupling of membrane constriction to the progression of the endocytic pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Design and synthesis of structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization chemistry

    Institute of Scientific and Technical Information of China (English)

    Dong Jinyong

    2006-01-01

    Functionalization of polyolefins is an industrially important yet scientifically challenging research subject.This paper summarizes our recent effort to access structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization.In one approach,polypropylenes containing side chain functional groups of controlled concentrations were obtained by Ziegler-Natta-catalyzed copolymerization of propylene in combination with either living anionic or controlled radical polymerization of polar monomers.The copolymerization of propylene with 1,4-divinylbenzene using an isospecific MgC12-supported TIC14 catalyst yielded potypropylenes containing pendant styrene moieties.Both metalation reaction with n-butyllithium and hydrochlorination reaction with dry hydrogen chloride selectively and quantitatively occurred at the pendant reactive sites,generating polymeric benzyllithium and 1-chloroethylbenzene species.These species initiated living anionic polymerization of styrene(S)and atom transfer radical polymerization(in the presence of CuC1 and pentamethyldiethylenetriamine) of methyl methacrylate(MMA),respectively,resulting in functional polypropylene graft copolymers(PP-g-PS and PP-g-PMMA)with controllable graft lengths.In another approach,chain end-functionalized polypropylenes containing a terminal OH-group with controlled molecular weights were directly prepared by propylene polymerization with a metaUocene catalyst through a selective aluminum chain transfer reaction.Both approaches proved to be desirable polyolefin functionalization routes in terms of efficiency and polymer structure controllability.

  15. Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection.

    Science.gov (United States)

    Gong, Xin; Qian, Hongwu; Zhou, Xinhui; Wu, Jianping; Wan, Tao; Cao, Pingping; Huang, Weiyun; Zhao, Xin; Wang, Xudong; Wang, Peiyi; Shi, Yi; Gao, George F; Zhou, Qiang; Yan, Nieng

    2016-06-02

    Niemann-Pick disease type C (NPC) is associated with mutations in NPC1 and NPC2, whose gene products are key players in the endosomal/lysosomal egress of low-density lipoprotein-derived cholesterol. NPC1 is also the intracellular receptor for Ebola virus (EBOV). Here, we present a 4.4 Å structure of full-length human NPC1 and a low-resolution reconstruction of NPC1 in complex with the cleaved glycoprotein (GPcl) of EBOV, both determined by single-particle electron cryomicroscopy. NPC1 contains 13 transmembrane segments (TMs) and three distinct lumenal domains A (also designated NTD), C, and I. TMs 2-13 exhibit a typical resistance-nodulation-cell division fold, among which TMs 3-7 constitute the sterol-sensing domain conserved in several proteins involved in cholesterol metabolism and signaling. A trimeric EBOV-GPcl binds to one NPC1 monomer through the domain C. Our structural and biochemical characterizations provide an important framework for mechanistic understanding of NPC1-mediated intracellular cholesterol trafficking and Ebola virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A Structural Model of Depression Based on Interpersonal Relationships: The Mediating Role of Coping Strategies and Loneliness.

    Science.gov (United States)

    Majd Ara, Elahe; Talepasand, Siavash; Rezaei, Ali Mohammad

    2017-06-01

    The present study was conducted with the aim of examining the structural model of interpersonal relationships and depression using coping strategies and loneliness as mediators. Using multistage random sampling, 301 high-school students were selected from Minudasht city, Iran. The participants were aksed to complete the Network of Relationships Inventory (NRI); the Ways of Coping Questionnaire (Lazarus and Folkman); the Children's Loneliness Scale (CLS); and the Depression, Anxiety, and Stress Scale (DASS-21). Structural equation modeling was used to examine the pattern of direct and indirect effects. Findings of the present study show that the data are well fitted to the model. The indirect effect of the positive quality of relationships was significant on depression through loneliness. Moreover, the indirect effects of the negative quality of relationships on depression through loneliness and through emotion-focused coping strategies were statistically significant. Although the effect of loneliness and emotion-focused coping strategies on depression was significant, problem-focused coping strategies did not have a significant effect on depression. Additionally, the findings suggested that the indirect effect through loneliness on depression was stronger compared with the indirect effect through emotion-focused coping strategies. The positive or negative quality of interpersonal relationships, loneliness, and emotion-focused coping strategy can significantly predict depression.

  17. Ethical Leadership, Leader-Member Exchange and Feedback Seeking: A Double-Moderated Mediation Model of Emotional Intelligence and Work-Unit Structure

    Science.gov (United States)

    Qian, Jing; Wang, Bin; Han, Zhuo; Song, Baihe

    2017-01-01

    This research elucidates the role of ethical leadership in employee feedback seeking by examining how and when ethical leadership may exert a positive influence on feedback seeking. Using matched reports from 64 supervisors and 265 of their immediate employees from a hotel group located in a major city in China, we proposed and tested a moderated mediation model that examines leader-member exchange (LMX) as the mediator and emotional intelligence as well as work-unit structure as double moderators in the relationships between ethical leadership and followers’ feedback-seeking behavior from supervisors and coworkers. Our findings indicated that (1) LMX mediated the positive relationship between ethical leadership and feedback seeking from both ethical leaders and coworkers, and (2) emotional intelligence and work-unit structure served as joint moderators on the mediated positive relationship in such a way that the relationship was strongest when the emotional intelligence was high and work-unit structure was more of an organic structure rather than a mechanistic structure. PMID:28744251

  18. Molecular Structure and Dynamics in Thin Water Films at the Silica and Graphite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Argyris, Dr. Dimitrios [University of Oklahoma; Tummala, Dr. Naga Rajesh [University of Oklahoma; StrioloDr., A [Vanderbilt University; Cole, David R [ORNL

    2008-01-01

    The structure and dynamic properties of interfacial water at the graphite and silica solid surfaces were investigated using molecular dynamics simulations. The effect of surface properties on the characteristics of interfacial water was quantified by computing density profiles, radial distribution functions, surface density distributions, orientation order parameters, and residence and reorientation correlation functions. In brief, our results show that the surface roughness, chemical heterogeneity, and surface heterogeneous charge distribution affect the structural and dynamic properties of the interfacial water molecules, as well as their rate of exchange with bulk water. Most importantly, our results indicate the formation of two distinct water layers at the SiO2 surface covered by a large density of hydroxyl groups. Further analysis of the data suggests a highly confined first layer where the water molecules assume preferential hydrogen-down orientation and a second layer whose behavior and characteristics are highly dependent on those of the first layer through a well-organized hydrogen bond network. The results suggest that water-water interactions, in particular hydrogen bonds, may be largely responsible for macroscopic interfacial properties such as adsorption and contact angle.

  19. Social network community structure and the contact-mediated sharing of commensal E. coli among captive rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Balasubramaniam, Krishna; Beisner, Brianne; Guan, Jiahui; Vandeleest, Jessica; Fushing, Hsieh; Atwill, Edward; McCowan, Brenda

    2018-01-01

    In group-living animals, heterogeneity in individuals' social connections may mediate the sharing of microbial infectious agents. In this regard, the genetic relatedness of individuals' commensal gut bacterium Escherichia coli may be ideal to assess the potential for pathogen transmission through animal social networks. Here we use microbial phylogenetics and population genetics approaches, as well as host social network reconstruction, to assess evidence for the contact-mediated sharing of E. coli among three groups of captively housed rhesus macaques ( Macaca mulatta ), at multiple organizational scales. For each group, behavioral data on grooming, huddling, and aggressive interactions collected for a six-week period were used to reconstruct social network communities via the Data Cloud Geometry (DCG) clustering algorithm. Further, an E. coli isolate was biochemically confirmed and genotypically fingerprinted from fecal swabs collected from each macaque. Population genetics approaches revealed that Group Membership, in comparison to intrinsic attributes like age, sex, and/or matriline membership of individuals, accounted for the highest proportion of variance in E. coli genotypic similarity. Social network approaches revealed that such sharing was evident at the community-level rather than the dyadic level. Specifically, although we found no links between dyadic E. coli similarity and social contact frequencies, similarity was significantly greater among macaques within the same social network communities compared to those across different communities. Moreover, tests for one of our study-groups confirmed that E. coli isolated from macaque rectal swabs were more genotypically similar to each other than they were to isolates from environmentally deposited feces. In summary, our results suggest that among frequently interacting, spatially constrained macaques with complex social relationships, microbial sharing via fecal-oral, social contact-mediated routes may

  20. Mediating effects of body composition between physical activity and body esteem in Hong Kong adolescents: a structural equation modeling approach.

    Science.gov (United States)

    Mak, Kwok-Kei; Cerin, Ester; McManus, Alison M; Lai, Ching-Man; Day, Jeffrey R; Ho, Sai-Yin

    2016-01-01

    This study investigated the mediating role of body mass index (BMI) in the relationship between physical activity and body esteem in adolescents. Nine hundred and five Hong Kong Chinese students aged 12-18 years participated in a cross-sectional study in 2007. Students' BMI was computed as an indicator of their body composition. Their physical activity level and body esteem were examined using the Physical Activity Rating for Children and Youth (PARCY) and Body Esteem Scale (BES), respectively. Structural equation modelling was used to investigate the mediating effects of BMI and physical activity in predicting body esteem, with stratification by sex. The overall fit of the hypothesized models was satisfactory in boys (NFI = 0.94; NNFI = 0.88; CFI = 0.95; RMSEA = 0.07) and girls (NFI = 0.89; NNFI = 0.77; CFI = 0.91; RMSEA = 0.11). When BMI was considered as a mediator, higher physical activity had a significant negative total effect on body esteem in boys, but not in girls. The indirect effect of higher physical activity on body esteem via BMI was positive in boys, but negative in girls. Regular physical activity may help overweight adolescents, especially boys, improve their body esteem. Kinesiologists and health professionals could explore the use of physical activity prescriptions for weight management, aiming at body esteem improvement in community health programs for adolescents. Among Western adolescents, negative body esteem is more pervasive in girls than in boys. There are consistent findings of the association between higher body mass index and lower body esteem in adolescents, but the association between physical activity and body esteem are equivocal. A negative association between body mass index and body esteem was found in both Hong Kong adolescent boys and girls. The indirect effect of physical activity on body esteem via body mass index was positive in Hong Kong adolescent boys, but negative in girls.

  1. Highly efficient water-mediated approach to access benzazoles: metal catalyst and base-free synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles.

    Science.gov (United States)

    Bala, Manju; Verma, Praveen Kumar; Sharma, Deepika; Kumar, Neeraj; Singh, Bikram

    2015-05-01

    An efficient water-catalyzed method has been developed for the synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles in one step. The present method excludes the usage of toxic metal catalysts and bases to produce benzazoles in good to excellent yields. An efficient and versatile water-mediated method has been established for the synthesis of various 2-arylbenzazoles. The present protocol excludes the usage of any catalyst and additive provided excellent selectivities and yields with high functional group tolerance for the synthesis of 2-arylated benzimidazoles, benzoxazoles, and benzothiazoles. Benzazolones were also synthesized using similar reaction protocol.

  2. Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances.

    Science.gov (United States)

    Junker, Laura Verena; Kleiber, Anita; Jansen, Kirstin; Wildhagen, Henning; Hess, Moritz; Kayler, Zachary; Kammerer, Bernd; Schnitzler, Jörg-Peter; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo

    2017-01-10

    For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO 2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change.

  3. Structure of smAKAP and its regulation by PKA-mediated phosphorylation

    Science.gov (United States)

    Burgers, Pepijn P.; Bruystens, Jessica; Burnley, Rebecca J.; Nikolaev, Viacheslav O.; Keshwani, Malik; Wu, Jian; Janssen, Bert J. C.; Taylor, Susan S.; Heck, Albert J. R.; Scholten, Arjen

    2016-01-01

    The A-kinase anchoring protein (AKAP) smAKAP has three extraordinary features; it is very small, it is anchored directly to membranes by acyl motifs, and it interacts almost exclusively with the type I regulatory subunits (RI) of cAMP-dependent kinase (PKA). Here, we determined the crystal structure of smAKAP’s A-kinase binding domain (smAKAP-AKB) in complex with the dimerization/docking (D/D) domain of RIα which reveals an extended hydrophobic interface with unique interaction pockets that drive smAKAP’s high specificity for RI subunits. We also identify a conserved PKA phosphorylation site at Ser66 in the AKB domain which we predict would cause steric clashes and disrupt binding. This correlates with in vivo colocalization and fluorescence polarization studies, where Ser66 AKB phosphorylation ablates RI binding. Hydrogen/deuterium exchange studies confirm that the AKB helix is accessible and dynamic. Furthermore, full-length smAKAP as well as the unbound AKB is predicted to contain a break at the phosphorylation site, and circular dichroism measurements confirm that the AKB domain loses its helicity following phosphorylation. As the active site of PKA’s catalytic subunit does not accommodate α-helices, we predict that the inherent flexibility of the AKB domain enables its phosphorylation by PKA. This represents a novel mechanism, whereby activation of anchored PKA can terminate its binding to smAKAP affecting the regulation of localized cAMP signaling events. PMID:27028580

  4. Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1.

    Directory of Open Access Journals (Sweden)

    Taisuke Nishimura

    2012-02-01

    Full Text Available Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2 as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.

  5. Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1.

    Science.gov (United States)

    Nishimura, Taisuke; Molinard, Guillaume; Petty, Tom J; Broger, Larissa; Gabus, Caroline; Halazonetis, Thanos D; Thore, Stéphane; Paszkowski, Jerzy

    2012-02-01

    Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.

  6. Further studies on the structural requirements for mast cell degranulating (MCD) peptide-mediated histamine release.

    Science.gov (United States)

    Buku, A; Price, J A

    2001-12-01

    Mast cell degranulating (MCD) peptide was modified in its two disulfide bridges and in the two arginine residues in order to measure the ability of these analogs to induce histamine release from mast cells in vitro. Analogs prepared were [Ala(3,15)]MCD, [Ala(5,19)]MCD, [Orn(16)]MCD, and [Orn(7,16)]MCD. Their histamine-releasing activity was determined spectrofluorometrically with peritoneal mast cells. The monocyclic analogs in which the cysteine residues were replaced pairwise with alanine residues showed three-to ten-fold diminished histamine-releasing activity respectively, compared with the parent MCD peptide. Substantial increases in activity were observed where arginine residues were replaced by ornithines. The ornithine-mono substituted analog showed an almost six-fold increase and the ornithine-doubly substituted analog three-fold increase in histamine-releasing activity compared with the parent MCD peptide. The structural changes associated with these activities were followed by circular dichroism (CD) spectroscopy. Changes in the shape and ellipticity of the CD spectra reflected a role for the disulfide bonds and the two arginine residues in the overall conformation and biological activity of the molecule.

  7. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.

    Science.gov (United States)

    Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet

    2012-12-01

    The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.

  8. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice.

    Science.gov (United States)

    Shen, Rongxin; Wang, Lan; Liu, Xupeng; Wu, Jiang; Jin, Weiwei; Zhao, Xiucai; Xie, Xianrong; Zhu, Qinlong; Tang, Huiwu; Li, Qing; Chen, Letian; Liu, Yao-Guang

    2017-11-03

    Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice (Oryza sativa L.) subspecies. Here we show that structural changes and copy number variation at the Sc locus confer japonica-indica hybrid male sterility. The japonica allele, Sc-j, contains a pollen-essential gene encoding a DUF1618-domain protein; the indica allele, Sc-i, contains two or three tandem-duplicated ~ 28-kb segments, each carrying an Sc-j-homolog with a distinct promoter. In Sc-j/Sc-i hybrids, the high-expression of Sc-i in sporophytic cells causes suppression of Sc-j expression in pollen and selective abortion of Sc-j-pollen, leading to transmission ratio distortion. Knocking out one or two of the three Sc-i copies by CRISPR/Cas9 rescues Sc-j expression and male fertility. Our results reveal the gene dosage-dependent allelic suppression as a mechanism of hybrid incompatibility, and provide an effective approach to overcome the reproductive barrier for hybrid breeding.

  9. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer

    Science.gov (United States)

    Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan

    2018-03-01

    Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.

  10. Irreversible Change of the Pore Structure of ZIF-8 in Carbon Dioxide Capture with Water Coexistence

    DEFF Research Database (Denmark)

    Liu, Huang; Guo, Ping; Regueira Muñiz, Teresa

    2016-01-01

    The performance of zeolitic imidazolate framework 8 (ZIF-8) for CO2 capture under three different conditions (wetted ZIF-8, ZIF-8/water slurry, and ZIF-8/water-glycol slurry) was systemically investigated. This investigation included the study of the pore structure stability of ZIF-8 by using X......-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman detection technologies. Our results show that the CO2 adsorption ability of ZIF-8 could be substantially increased under the existence of liquid water. However, the structure characterization of the recovered ZIF-8...... showed an irreversible change of its framework, which occurs during the CO2 capture process. It was found that there is an irreversible chemical reaction among ZIF-8, water, and CO2, which creates both zinc carbonate (or zinc carbonate hydroxides) and single 2-methylimidazole crystals, and therefore...

  11. Structure and Dynamics of Water on Aqueous Barium Ion and the {001} Barite Surface

    International Nuclear Information System (INIS)

    Stack, Andrew G.; Rustad, James R.

    2007-01-01

    The structure of water and its dynamics affect a number of fundamental properties of an interface. Yet, these properties are often inaccessible experimentally and computational studies including solvent are comparatively few. Here, we estimate the structure and kinetics of water exchange of aqueous barium ions and barium ions within the {001} barite surface using molecular dynamics and the reactive flux method. For the aqueous ion, the Ba-O distance to water in the first hydration shell was found to be 280 pm with a coordination number of 8.3, and the best estimate of the exchange rate constant is 4.8 x 10 9 s -1 , closely matching experimental estimates. For the barite surface, the first shell water distance was 282 pm, with a coordination number of 0.9 and the best estimate of the rate constant for exchange is 1.7 x 10 10 s -1 , 3.5 times faster than that of the aqueous ion.

  12. Experimental Observation of Bulk Liquid Water Structure in ``No Man's Land''

    Science.gov (United States)

    Sellberg, Jonas; McQueen, Trevor; Huang, Congcong; Loh, Duane; Laksmono, Hartawan; Sierra, Raymond; Hampton, Christina; Starodub, Dmitri; Deponte, Daniel; Martin, Andrew; Barty, Anton; Wikfeldt, Thor; Schlesinger, Daniel; Pettersson, Lars; Beye, Martin; Nordlund, Dennis; Weiss, Thomas; Feldkamp, Jan; Caronna, Chiara; Seibert, Marvin; Messerschmidt, Marc; Williams, Garth; Boutet, Sebastien; Bogan, Michael; Nilsson, Anders

    2013-03-01

    Experiments on pure bulk water below about 235 K have so far been difficult: water crystallization occurs very rapidly below the homogeneous nucleation temperature of 232 K and above 160 K, leading to a ``no man's land'' devoid of experimental results regarding the structure. Here, we demonstrate a new, general experimental approach to study the structure of liquid states at supercooled conditions below their limit of homogeneous nucleation. We use femtosecond x-ray pulses generated by the LCLS x-ray laser to probe evaporatively cooled droplets of supercooled bulk water and find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 223 K in the previously largely unexplored ``no man's land''. We acknoweledge NSF (CHE-0809324), Office of Basic Energy Sciences, and the Swedish Research Council for financial support.

  13. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  14. Molecular Descriptors Family on Structure Activity Relationships 6. Octanol-Water Partition Coefficient of Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2006-01-01

    Full Text Available Octanol-water partition coefficient of two hundred and six polychlorinated biphenyls was model by the use of an original method based on complex information obtained from compounds structure. The regression analysis shows that best results are obtained in four-varied model (r2 = 0.9168. The prediction ability of the model was studied through leave-one-out analysis (r2cv(loo = 0.9093 and in training and test sets analysis. Modeling the octanol-water partition coefficient of polychlorinated biphenyls by integration of complex structural information provide a stable and performing four-varied model, allowing us to make remarks about relationship between structure of polychlorinated biphenyls and associated octanol-water partition coefficients.

  15. Diffusion under water-saturated conditions in PFA/OPC-based structural concrete

    International Nuclear Information System (INIS)

    Harris, A.W.; Nickerson, A.K.

    1990-05-01

    A substantial proportion of the volume of the UK radioactive waste repository is likely to be composed of materials based on hydraulic cements. This includes the structural components, which are likely to be manufactured from concrete. The mass transport characteristics of dissolved species for a typical structural concrete, based on a mixture of pulverised fuel ash and ordinary Portland cement, have been measured in a water-saturated condition. Both the water permeability and the diffusion parameters (for caesium, strontium and iodide ion and tritiated water diffusion) are low compared to values obtained for other structural concretes. The intrinsic diffusion coefficients for iodide and caesium ions are in the range 2-5x10 -14 m 2 s -1 . There is no evidence of significant sorption of any of the diffusants studied. (author)

  16. Model-based leakage localization in drinking water distribution networks using structured residuals

    OpenAIRE

    Puig Cayuela, Vicenç; Rosich, Albert

    2013-01-01

    In this paper, a new model based approach to leakage localization in drinking water networks is proposed based on generating a set of structured residuals. The residual evaluation is based on a numerical method based on an enhanced Newton-Raphson algorithm. The proposed method is suitable for water network systems because the non-linearities of the model make impossible to derive analytical residuals. Furthermore, the computed residuals are designed so that leaks are decoupled, which impro...

  17. Different integration site structures between L1 protein-mediated retrotransposition in cis and retrotransposition in trans

    Directory of Open Access Journals (Sweden)

    Kojima Kenji K

    2010-07-01

    Full Text Available Abstract Background Long interspersed nuclear element-1 (LINE-1 or L1 is a dominant repetitive sequence in the human genome. Besides mediating its own retrotransposition, L1 can mobilize Alu and messenger RNA (mRNA in trans, and probably also SVA and non-coding RNA. The structures of L1 copies and trans-mobilized retrocopies are variable and can be classified into three categories: full-length; 5'-truncated; and 5'-inverted insertions. These structures may be generated by different 5' integration mechanisms. Results In this study, a method to correctly characterize insertions with short target site duplications (TSDs is developed and extranucleotides, TSDs and microhomologies (MHs at junctions were analysed for the three types of insertions. Only 5'-truncated L1 insertions were found to be associated with short TSDs. Both full-length and 5'-truncated retrotransposed sequences in trans, including Alu, SVA and mRNA retrocopies and also full-length and 5'-inverted L1, were not associated with short TSDs, indicating the difference of 5' attachment between retrotransposition in cis and retrotransposition in trans. Target sequence analysis suggested that short TSDs were generated in an L1 endonuclease-dependent manner. The MHs were longer for 5'-inverted L1 than for 5'-truncated L1, indicating less dependence on annealing in 5'-truncated L1 insertions. Conclusions The results suggest that insertions flanked by short TSDs occur more often coupled with the insertion of 5'-truncated L1 than with those of other types of insertions in vivo. The method used in this study can be used to characterize elements without any apparent boundary structures.

  18. Branched ZnO wire structures for water collection inspired by cacti.

    Science.gov (United States)

    Heng, Xin; Xiang, Mingming; Lu, Zhihui; Luo, Cheng

    2014-06-11

    In this work, motivated by an approach used in a cactus to collect fog, we have developed an artificial water-collection structure. This structure includes a large ZnO wire and an array of small ZnO wires that are branched on the large wire. All these wires have conical shapes, whose diameters gradually increase from the tip to the root of a wire. Accordingly, a water drop that is condensed on the tip of each wire is driven to the root by a capillary force induced by this diameter gradient. The lengths of stem and branched wires in the synthesized structures are in the orders of 1 mm and 100 μm, respectively. These dimensions are, respectively, comparable to and larger than their counterparts in the case of a cactus. Two groups of tests were conducted at relative humidity of 100% to compare the amounts of water collected by artificial and cactus structures within specific time durations of 2 and 35 s, respectively. The amount of water collected by either type of structures was in the order of 0.01 μL. However, on average, what has been collected by the artificial structures was 1.4-5.0 times more than that harvested by the cactus ones. We further examined the mechanism that a cactus used to absorb a collected water drop into its stem. On the basis of the gained understanding, we developed a setup to successfully collect about 6 μL of water within 30 min.

  19. Structure and Dynamics in Formamide-(H2O)3: A Water Pentamer Analogue.

    Science.gov (United States)

    Blanco, Susana; Pinacho, Pablo; López, Juan Carlos

    2017-12-21

    Water self-association dominates the formation of microsolvated molecular clusters which may give rise to complex structures resembling those of pure water clusters. We present a rotational study of the complex formamide-(H 2 O) 3 formed in a supersonic jet and several monosubstituted isotopologues. Formamide and water molecules form a four-body sequential cycle through N-H···O, O-H···O, and O-H···O═C hydrogen bonds, resulting in a chiral structure with a nonplanar skeleton that can be overlapped to that of water pentamer. The analysis of the 14 N-nucleus quadrupole coupling effects shows the depletion of the electron density of the N atom lone pair with respect to the bare formamide that affects the amide group C-N and C═O distances. The study of the observed tunneling doublets shows that formamide-(H 2 O) 3 follows a path to invert its structure driven by the flipping of water subunits and passing through successive nonplanar configurations, a motion reminiscent of the pseudorotation of water pentamer.

  20. Polymer Structure and Water States in Salt-Containing Polyampholyte Hydrogels

    Science.gov (United States)

    Li, Xinda; Elliott, Janet A. W.; Lee, Byeongdu; Chung, Hyun-Joong

    The phase behavior of water in hydrogels has broad impact on various applications, such as lubrication, adhesion, and electrical conductivity, as well as the hydrogel's low temperature properties. The status of the water molecules is correlated to the structure of the polymer chains in the hydrogel. In this study, the structure and water status of a model charge-balanced polyampholyte poly(4-vinylbenzenesulfonate-co-[3-(methacryloylamino) propyl] trimethylammonium chloride), were investigated by using differential scanning calorimetry (DSC) and small-angle x-ray scattering (SAXS). A globular network structure suggested by SAXS results dictated the depression of the freezing point of water in the hydrogel, as supported by the DSC results. The polyampholyte chains undergo an irreversible collapse during dialysis in deionized water. Such collapsed hydrogels are not able to prevent freezing of water molecules. The results of both synthesis condition and post-synthesis treatments for polyampholyte hydrogels provide us insights to design optimal polyampholyte hydrogels for low temperature applications.

  1. Numerical simulation and structural optimization of the inclined oil/water separator.

    Directory of Open Access Journals (Sweden)

    Liqiong Chen

    Full Text Available Improving the separation efficiency of the inclined oil/water separator, a new type of gravity separation equipment, is of great importance. In order to obtain a comprehensive understanding of the internal flow field of the separation process of oil and water within this separator, a numerical simulation based on Euler multiphase flow analysis and the realizable k-ε two equation turbulence model was executed using Fluent software. The optimal value ranges of the separator's various structural parameters used in the numerical simulation were selected through orthogonal array experiments. A field experiment on the separator was conducted with optimized structural parameters in order to validate the reliability of the numerical simulation results. The research results indicated that the horizontal position of the dispenser, the hole number, and the diameter had significant effects on the oil/water separation efficiency, and that the longitudinal position of the dispenser and the position of the weir plate had insignificant effects on the oil/water separation efficiency. The optimal structural parameters obtained through the orthogonal array experiments resulted in an oil/water separation efficiency of up to 95%, which was 4.996% greater than that realized by the original structural parameters.

  2. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    International Nuclear Information System (INIS)

    Holt, J.K.; Herberg, J.L.; Wu, Y.; Schwegler, E.; Mehta, A.

    2009-01-01

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  3. Stomatal structure and physiology do not explain differences in water use among montane eucalypts.

    Science.gov (United States)

    Gharun, Mana; Turnbull, Tarryn L; Pfautsch, Sebastian; Adams, Mark A

    2015-04-01

    Understanding the regulation of water use at the whole-tree scale is critical to advancing the utility of physiological ecology, for example in its role in predictive hydrology of forested catchments. For three eucalypt species that dominate high-elevation catchments in south-eastern Australia, we examined if whole-tree water use could be related to three widely discussed regulators of water use: stomatal anatomy, sensitivity of stomata [i.e. stomatal conductance (g(s))] to environmental influences, and sapwood area. While daily tree water use varied sixfold among species, sap velocity and sapwood area varied in parallel. Combined, stomatal structure and physiology could not explain differences in species-specific water use. Species which exhibited the fastest (Eucalyptus delegatensis) and slowest (Eucalyptus pauciflora) rates of water use both exhibited greater capacity for physiological control of g(s) [indicated by sensitivity to vapour pressure deficit (VPD)] and a reduced capacity to limit g(s) anatomically [indicated by greater potential g(s) (g(max))]. Conversely, g(s) was insensitive to VPD and g(max) was lowest for Eucalyptus radiata, the species showing intermediate rates of water use. Improved knowledge of stomatal anatomy will help us to understand the capacity of species to regulate leaf-level water loss, but seems likely to remain of limited use for explaining rates of whole-tree water use in montane eucalypts at the catchment scale.

  4. Structural Models of Water and Ice Regarding the Energy of Hydrogen Bonding

    OpenAIRE

    Ignat Ignatov; Oleg Mosin

    2015-01-01

    In this review it is reported about the research on the structure of water and ice and intermolecular water cyclic associates (clusters) with general formula (Н2О)n and their charged ionic clusters [(Н2О)n]+ and [(Н2О)n]- by means of computer modelling and spectroscopy methods as 1Н-NMR, IR-spectroscopy, DNES, EXAFS-spectroscopy, X-Ray and neurons diffraction. The computer calculation of polyhedral nanoclusters (Н2О)n, where n = 3–20 are carried out. Based on this data the main structural mat...

  5. Method to study water hammer with fluid-structure interaction in spatial pipe

    International Nuclear Information System (INIS)

    Xi Zhide; Ma Jianzhong; Sun Lei

    2013-01-01

    The theory of coupling 4-function models and its solution approach are first introduced in this paper, and the method of CFD to calculate fluid-structure interaction is also introduced. Finally, the model in related reference is applied with this method to simulate the process of water hammer. By CFD calculation for the classical water hammer, the numerical scheme and grid are selected, and the results of CFD are compared with reference. The results show that the method in this paper can be used in more complex pipe system to simulate the water hammer effect. (authors)

  6. The changes of macroscopic features and microscopic structures of water under influence of magnetic field

    International Nuclear Information System (INIS)

    Pang Xiaofeng; Deng Bo

    2008-01-01

    Influences of magnetic field on microscopic structures and macroscopic properties of water are studied by the spectrum techniques of infrared, Raman, visible, ultraviolet lights and X-ray. From these investigations, we know that the magnetic fields change the distribution of molecules and electrons, cause displacements and polarization of molecules and atoms, result in changes of dipole-moment transition and vibrational states of molecules and variation of transition probability of electrons, but does not alter the constitution of molecules and atoms. These are helpful in seeking the mechanism of magnetization of water. Meanwhile, we also measure the changed rules of the surface tension force, soaking effect or angle of contact, viscosity, rheology features, refraction index, dielectric constant and electric conductivity of magnetized water relative to that of pure water. The results show that the magnetic fields increase the soaking degree and hydrophobicity of water to materials, depress its surface-tension force, diminish the viscosity of war, enhance the feature of plastic flowing of water, and increase the refraction index, dielectric constant and electric conductivity of water after magnetization. These changes are caused by the above changes of microscopic structures under the action of magnetic field. Therefore, our studies are significant in science and has practical value of applications

  7. Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Spagnoli, D.; Gilbert, B.; Waychunas, G.A.; Banfield, J. F.

    2009-05-15

    Compared with macroscopic surfaces, the structure of water around nanoparticles is difficult to probe directly. We used molecular dynamics simulations to investigate the effects of particle size and morphology on the time-averaged structure and the dynamics of water molecules around two sizes of hematite ({alpha}-Fe{sub 2}O{sub 3}) nanoparticles. Interrogation of the simulations via atomic density maps, radial distribution functions and bound water residence times provide insight into the relationships between particle size and morphology and the behavior of interfacial water. Both 1.6 and 2.7 nm particles are predicted to cause the formation of ordered water regions close to the nanoparticle surface, but the extent of localization and ordering, the connectivity between regions of bound water, and the rates of molecular exchange between inner and outer regions are all affected by particle size and morphology. These findings are anticipated to be relevant to understanding the rates of interfacial processes involving water exchange and the transport of aqueous ions to surface sites.

  8. Structure of ionic liquid-water mixtures at interfaces: x-ray and neutron reflectometry studies

    International Nuclear Information System (INIS)

    Lauw, Yansen; Rodopoulos, Theo; Horne, Mike; Follink, Bart; Hamilton, Bill; Knott, Robert; Nelson, Andy

    2009-01-01

    Full text: Fundamental studies on the effect of water in ionic liquids are necessary since the overall performance of ionic liquids in many industrial applications is often hampered by the presence of water.[1] Based on this understanding, the surface and interfacial structures of 1-butyl-1methylpyrrolidinium trifluoromethylsulfonylimide [C4mpyr][NTf2] ionic liquid-water mixtures were probed using x-ray and neutron reflectometry techniques. At the gas-liquid surface, a thick cation+water layer was detected next to the phase boundary, followed by an increasing presence of anion towards the bulk. The overall thickness of the surface exhibits non-monotonic trends with an increasing water content, which explains similar phenomenological trends in surface tension reported in the literature.[2] At an electrified interface, the interfacial structure of pure ionic liquids probed by neutron reflectometry shows similar trends to those predicted by a mean-field model.[3] However, the presence of water within the electrical double-layer is less obvious, although it is widely known that water reduces electrochemical window of ionic liquids. To shed light on this issue, further studies are currently in progress.

  9. Molecular Structure and Dynamics of Water on Pristine and Strained Phosphorene: Wetting and Diffusion at Nanoscale.

    Science.gov (United States)

    Zhang, Wei; Ye, Chao; Hong, Linbi; Yang, Zaixing; Zhou, Ruhong

    2016-12-06

    Phosphorene, a newly fabricated two-dimensional (2D) nanomaterial, has emerged as a promising material for biomedical applications with great potential. Nonetheless, understanding the wetting and diffusive properties of bio-fluids on phosphorene which are of fundamental importance to these applications remains elusive. In this work, using molecular dynamics (MD) simulations, we investigated the structural and dynamic properties of water on both pristine and strained phosphorene. Our simulations indicate that the diffusion of water molecules on the phosphorene surface is anisotropic, with strain-enhanced diffusion clearly present, which arises from strain-induced smoothing of the energy landscape. The contact angle of water droplet on phosphorene exhibits a non-monotonic variation with the transverse strain. The structure of water on transverse stretched phosphorene is demonstrated to be different from that on longitudinal stretched phosphorene. Moreover, the contact angle of water on strained phosphorene is proportional to the quotient of the longitudinal and transverse diffusion coefficients of the interfacial water. These findings thereby offer helpful insights into the mechanism of the wetting and transport of water at nanoscale, and provide a better foundation for future biomedical applications of phosphorene.

  10. Hydrate phase equilibrium and structure for (methane + ethane + tetrahydrofuran + water) system

    International Nuclear Information System (INIS)

    Sun Changyu; Chen Guangjin; Zhang Lingwei

    2010-01-01

    The separation of methane and ethane through forming hydrate is a possible choice in natural gas, oil processing, or ethylene producing. The hydrate formation conditions of five groups of (methane + ethane) binary gas mixtures in the presence of 0.06 mole fraction tetrahydrofuran (THF) in water were obtained at temperatures ranging from (277.7 to 288.2) K. In most cases, the presence of THF in water can lower the hydrate formation pressure of (methane + ethane) remarkably. However, when the composition of ethane is as high as 0.832, it is more difficult to form hydrate than without THF system. Phase equilibrium model for hydrates containing THF was developed based on a two-step hydrate formation mechanism. The structure of hydrates formed from (methane + ethane + THF + water) system was also determined by Raman spectroscopy. When THF concentration in initial aqueous solution was only 0.06 mole fraction, the coexistence of structure I hydrate dominated by ethane and structure II hydrate dominated by THF in the hydrate sample was clearly demonstrated by Raman spectroscopic data. On the contrary, only structure II hydrate existed in the hydrate sample formed from (methane + ethane + THF + water) system when THF concentration in initial aqueous solution was increased to 0.10 mole fraction. It indicated that higher THF concentration inhibited the formation of structure I hydrate dominated by ethane and therefore lowered the trapping of ethane in hydrate. It implies a very promising method to increase the separation efficiency of methane and ethane.

  11. The ecological effects of water level fluctuation and phosphate enrichment in mesotrophic peatlands are strongly mediated by soil chemistry

    NARCIS (Netherlands)

    Mettrop, I.S.; Rutte, M.D.; Kooijman, A.M.; Lamers, L.P.M.

    2015-01-01

    Since the re-establishment of a more natural water regime is considered by water management in wetlands with artificially stable water levels, the biogeochemical and ecological effects of water level fluctuation with different nutrient loads should be investigated. This is particularly important for

  12. Structural analysis on mutation residues and interfacial water molecules for human TIM disease understanding

    Science.gov (United States)

    2013-01-01

    Background Human triosephosphate isomerase (HsTIM) deficiency is a genetic disease caused often by the pathogenic mutation E104D. This mutation, located at the side of an abnormally large cluster of water in the inter-subunit interface, reduces the thermostability of the enzyme. Why and how these water molecules are directly related to the excessive thermolability of the mutant have not been investigated in structural biology. Results This work compares the structure of the E104D mutant with its wild type counterparts. It is found that the water topology in the dimer interface of HsTIM is atypical, having a "wet-core-dry-rim" distribution with 16 water molecules tightly packed in a small deep region surrounded by 22 residues including GLU104. These water molecules are co-conserved with their surrounding residues in non-archaeal TIMs (dimers) but not conserved across archaeal TIMs (tetramers), indicating their importance in preserving the overall quaternary structure. As the structural permutation induced by the mutation is not significant, we hypothesize that the excessive thermolability of the E104D mutant is attributed to the easy propagation of atoms' flexibility from the surface into the core via the large cluster of water. It is indeed found that the B factor increment in the wet region is higher than other regions, and, more importantly, the B factor increment in the wet region is maintained in the deeply buried core. Molecular dynamics simulations revealed that for the mutant structure at normal temperature, a clear increase of the root-mean-square deviation is observed for the wet region contacting with the large cluster of interfacial water. Such increase is not observed for other interfacial regions or the whole protein. This clearly suggests that, in the E104D mutant, the large water cluster is responsible for the subunit interface flexibility and overall thermolability, and it ultimately leads to the deficiency of this enzyme. Conclusions Our study

  13. Shock modon: a new type of coherent structure in rotating shallow water.

    Science.gov (United States)

    Lahaye, Noé; Zeitlin, Vladimir

    2012-01-27

    We show that a new type of coherent structure, a shock modon, exists in a rotating shallow water model at large Rossby numbers. It is a combination of an asymmetric vortex dipole with a stationary hydraulic jump. The structure is long living, despite the energy dissipation by the hydraulic jump, and moving along a circular path. Collisions of shock modons can be elastic, or lead to formation of shock tripoles.

  14. Building Adaptive Capacity with the Delphi Method and Mediated Modeling for Water Quality and Climate Change Adaptation in Lake Champlain Basin

    Science.gov (United States)

    Coleman, S.; Hurley, S.; Koliba, C.; Zia, A.; Exler, S.

    2014-12-01

    Eutrophication and nutrient pollution of surface waters occur within complex governance, social, hydrologic and biophysical basin contexts. The pervasive and perennial nutrient pollution in Lake Champlain Basin, despite decades of efforts, exemplifies problems found across the world's surface waters. Stakeholders with diverse values, interests, and forms of explicit and tacit knowledge determine water quality impacts through land use, agricultural and water resource decisions. Uncertainty, ambiguity and dynamic feedback further complicate the ability to promote the continual provision of water quality and ecosystem services. Adaptive management of water resources and land use requires mechanisms to allow for learning and integration of new information over time. The transdisciplinary Research on Adaptation to Climate Change (RACC) team is working to build regional adaptive capacity in Lake Champlain Basin while studying and integrating governance, land use, hydrological, and biophysical systems to evaluate implications for adaptive management. The RACC team has engaged stakeholders through mediated modeling workshops, online forums, surveys, focus groups and interviews. In March 2014, CSS2CC.org, an interactive online forum to source and identify adaptive interventions from a group of stakeholders across sectors was launched. The forum, based on the Delphi Method, brings forward the collective wisdom of stakeholders and experts to identify potential interventions and governance designs in response to scientific uncertainty and ambiguity surrounding the effectiveness of any strategy, climate change impacts, and the social and natural systems governing water quality and eutrophication. A Mediated Modeling Workshop followed the forum in May 2014, where participants refined and identified plausible interventions under different governance, policy and resource scenarios. Results from the online forum and workshop can identify emerging consensus across scales and sectors

  15. High-resolution crystal structure of Streptococcus pyogenes β-NAD{sup +} glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Young; An, Doo Ri; Yoon, Hye-Jin [Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Hyoun Sook [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Sang Jae [Seoul National University, Seoul 151-742 (Korea, Republic of); Im, Ha Na; Jang, Jun Young [Seoul National University, Seoul 151-747 (Korea, Republic of); Suh, Se Won, E-mail: sewonsuh@snu.ac.kr [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-747 (Korea, Republic of)

    2013-11-01

    The crystal structure of the complex between the C-terminal domain of Streptococcus pyogenes β-NAD{sup +} glycohydrolase and an endogenous inhibitor for SPN was determined at 1.70 Å. It reveals that the interface between the two proteins is highly rich in water molecules. One of the virulence factors produced by Streptococcus pyogenes is β-NAD{sup +} glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38–451) and the full-length IFS (residues 1–161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPN{sub ct}–IFS complex, which consists of the SPN C-terminal domain (SPN{sub ct}; residues 193–451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPN{sub ct} and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope.

  16. High-resolution crystal structure of Streptococcus pyogenes β-NAD+ glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface

    International Nuclear Information System (INIS)

    Yoon, Ji Young; An, Doo Ri; Yoon, Hye-Jin; Kim, Hyoun Sook; Lee, Sang Jae; Im, Ha Na; Jang, Jun Young; Suh, Se Won

    2013-01-01

    The crystal structure of the complex between the C-terminal domain of Streptococcus pyogenes β-NAD + glycohydrolase and an endogenous inhibitor for SPN was determined at 1.70 Å. It reveals that the interface between the two proteins is highly rich in water molecules. One of the virulence factors produced by Streptococcus pyogenes is β-NAD + glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38–451) and the full-length IFS (residues 1–161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPN ct –IFS complex, which consists of the SPN C-terminal domain (SPN ct ; residues 193–451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPN ct and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope

  17. Impact of curved shaped energy dissipaters downstream of head structures on both water energy dissipation and irrigation water quality

    Directory of Open Access Journals (Sweden)

    Ashour Mohamed A.

    2015-03-01

    Full Text Available Using energy dissipaters on the soled aprons downstream of head structures is the main technique for accelerating hydraulic jump formation and dissipating a great amount of the residual harmful kinetic energy occurring downstream of head structures. In this paper, an experimental study was conducted to investigate some untested shapes of curved dissipaters with different angles of curvature and arrangements from two points of view. The first is to examine its efficiency in dissipating the kinetic water energy. The second is to examine the most effective shape and arrangement obtained from the aforementioned step in enriching the flow with dissolved oxygen for enhancement of the irrigation water quality. The study was held in the irrigation and hydraulic laboratory of the Civil Department, Faculty of Engineering, Assiut University, using a movable bed tilting channel 20 m long, 30 cm wide, and 50 cm high, using 21 types of curved dissipaters with different arrangements. A total of 660 runs were carried out. Results were analysed, tabulated and graphically presented, and new formulas were introduced to estimate the energy dissipation ratio, as well as the DO concentrations. Results in general showed that the dissipater performance is more tangible in dissipating the residual energy when the curvature is in the opposite direction to that of the flow. Also, the energy loss ratio increases with an increase in curvature angle (θ, until it reaches (θ = 120°, then it decreases again. The study also showed that using three rows of dissipaters give nearly the same effect as using four rows, concerning both the relative energy dissipation and dissolved oxygen content. So, it is recommended to use three rows of the curved dissipater with the angle of curvature (θ = 120° in the opposite direction to that of the flow to obtain the maximum percentage of water energy dissipation downstream of head structures, and maximum dissolved oxygen content too

  18. Hostile Attribution Bias Mediates the Relationship Between Structural Variations in the Left Middle Frontal Gyrus and Trait Angry Rumination

    Directory of Open Access Journals (Sweden)

    Yueyue Wang

    2018-04-01

    Full Text Available Angry rumination is a common mental phenomenon which may lead to negative social behaviors such as aggression. Although numerous neuroimaging studies have focused on brain area activation during angry rumination, to our knowledge no study has examined the neuroanatomical and cognitive mechanisms of this process. In this study, we conducted a voxel-based morphometry analysis, using a region of interest analysis to identify the structural and cognitive mechanisms underlying individual differences in trait angry rumination (as measured by the Angry Rumination Scale in a sample of 82 undergraduate students. We found that angry rumination was positively correlated with gray matter density in the left middle frontal gyrus (left-MFG, which is implicated in inhibition control, working memory, and emotional regulation. The mediation analysis further revealed that hostile attribution bias (as measured by the Social Information Processing–Attribution Bias Questionnaire acted as a cognitive mechanism underlying the positive association between the left-MFG gray matter density and trait angry rumination. These findings suggest that hostile attribution bias may contribute to trait angry rumination, while the left-MFG may play an important role in the development of hostile attribution bias and trait angry rumination. The study reveals the brain mechanisms of trait angry rumination and plays a role in revealing the cognitive mechanisms of the development of trait angry rumination.

  19. The Effects of Supervisors' Support and Mediating Factors on the Nurses' Job Performance Using Structural Equation Modeling: A Case Study.

    Science.gov (United States)

    Ravangard, Ramin; Yasami, Shamim; Shokrpour, Nasrin; Sajjadnia, Zahra; Farhadi, Payam

    2015-01-01

    Nurses are the largest group and an important part of the providers in the health care systems that who a key role in hospitals. Any defect and deficiency in their work can result in irreversible outcomes. This study aimed to determine the effect of supervisors' support and mediating factors on the job performance (JOBPER) of 400 nurses working in the teaching hospitals affiliated to Shiraz University of Medical Sciences, using structural equation modeling. The results showed that the supervisor's support had a significant negative effect on work-family conflict (t = -2.57) and a positive effect on organizational commitment (t = 4.03); Work-family conflict had a significant positive effect on job stress (t = 11.24) and a negative effect on organizational commitment (t = -3.35) and JOBPER (t = -2.29). Family-work conflict had a positive effect on job stress (t = 4.48) and a negative effect on organizational commitment (t = -2.54). Finally, job stress had a negative effect (t = -3.30), and organizational commitment showed a positive effect (t = 5.96) on the studied nurses' JOBPER. According to the results, supervisor's support could influence JOBPER through reducing work-family conflict and increasing organizational commitment. Therefore, to improve the nurses' JOBPER in the hospitals, some strategies are recommended.

  20. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  1. Social and Structural Patterns of Drought-Related Water Conservation and Rebound

    Science.gov (United States)

    Gonzales, Patricia; Ajami, Newsha

    2017-12-01

    Water use practices and conservation are the result of complex sociotechnical interactions of political, economic, hydroclimatic, and social factors. While the drivers of water demand have been extensively studied, they have traditionally been applied to models that assume stationary relationships between these various factors, and usually do not account for potential societal changes in response to increased scarcity awareness. For example, following a period of sustained low demand such as during a drought, communities often increase water use during a hydrologically wet period, a phenomenon known as "rebounding" water use. Previous experiences show the extent of this rebound is not a straightforward function of policy and efficiency improvements, but may also reflect short-term or long-lasting change in community behavior, which are not easily captured by models that assume stationarity. In this work, we develop a system dynamics model to represent water demand as a function of both structural and social factors. We apply this model to the analysis of three diverse water utilities in the San Francisco Bay Area between 1980 and 2017, identifying drought response trends and drivers over time. Our model is consistent with empirical patterns and historical context of water use in California, and provides important insights on the rebound phenomenon that can be extended to other locations. This comparative assessment indicates that policies, public outreach, and better data availability have played a key role in raising public awareness of water scarcity, especially with the raise of the internet era in recent years.

  2. Structural and Functional Insight of Sphingosine 1-Phosphate-Mediated Pathogenic Metabolic Reprogramming in Sickle Cell Disease.

    Science.gov (United States)

    Sun, Kaiqi; D'Alessandro, Angelo; Ahmed, Mostafa H; Zhang, Yujin; Song, Anren; Ko, Tzu-Ping; Nemkov, Travis; Reisz, Julie A; Wu, Hongyu; Adebiyi, Morayo; Peng, Zhangzhe; Gong, Jing; Liu, Hong; Huang, Aji; Wen, Yuan Edward; Wen, Alexander Q; Berka, Vladimir; Bogdanov, Mikhail V; Abdulmalik, Osheiza; Han, Leng; Tsai, Ah-Lim; Idowu, Modupe; Juneja, Harinder S; Kellems, Rodney E; Dowhan, William; Hansen, Kirk C; Safo, Martin K; Xia, Yang

    2017-11-10

    Elevated sphingosine 1-phosphate (S1P) is detrimental in Sickle Cell Disease (SCD), but the mechanistic basis remains obscure. Here, we report that increased erythrocyte S1P binds to deoxygenated sickle Hb (deoxyHbS), facilitates deoxyHbS anchoring to the membrane, induces release of membrane-bound glycolytic enzymes and in turn switches glucose flux towards glycolysis relative to the pentose phosphate pathway (PPP). Suppressed PPP causes compromised glutathione homeostasis and increased oxidative stress, while enhanced glycolysis induces production of 2,3-bisphosphoglycerate (2,3-BPG) and thus increases deoxyHbS polymerization, sickling, hemolysis and disease progression. Functional studies revealed that S1P and 2,3-BPG work synergistically to decrease both HbA and HbS oxygen binding affinity. The crystal structure at 1.9 Å resolution deciphered that S1P binds to the surface of 2,3-BPG-deoxyHbA and causes additional conformation changes to the T-state Hb. Phosphate moiety of the surface bound S1P engages in a highly positive region close to α1-heme while its aliphatic chain snakes along a shallow cavity making hydrophobic interactions in the "switch region", as well as with α2-heme like a molecular "sticky tape" with the last 3-4 carbon atoms sticking out into bulk solvent. Altogether, our findings provide functional and structural bases underlying S1P-mediated pathogenic metabolic reprogramming in SCD and novel therapeutic avenues.

  3. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    Energy Technology Data Exchange (ETDEWEB)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.

  4. Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose.

    Science.gov (United States)

    Blumer-Schuette, Sara E; Alahuhta, Markus; Conway, Jonathan M; Lee, Laura L; Zurawski, Jeffrey V; Giannone, Richard J; Hettich, Robert L; Lunin, Vladimir V; Himmel, Michael E; Kelly, Robert M

    2015-04-24

    A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tāpirins," origin from Māori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tāpirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tāpirins are specific to these extreme thermophiles. Tāpirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tāpirins for cellulose. Crystallization of a cellulose-binding truncation from one tāpirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tāpirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.

  5. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  6. Characterization of a Novel Water Pocket Inside the Human Cx26 Hemichannel Structure

    Science.gov (United States)

    Araya-Secchi, Raul; Perez-Acle, Tomas; Kang, Seung-gu; Huynh, Tien; Bernardin, Alejandro; Escalona, Yerko; Garate, Jose-Antonio; Martínez, Agustin D.; García, Isaac E.; Sáez, Juan C.; Zhou, Ruhong

    2014-01-01

    Connexins (Cxs) are a family of vertebrate proteins constituents of gap junction channels (GJCs) that connect the cytoplasm of adjacent cells by the end-to-end docking of two Cx hemichannels. The intercellular transfer through GJCs occurs by passive diffusion allowing the exchange of water, ions, and small molecules. Despite the broad interest to understand, at the molecular level, the functional state of Cx-based channels, there are still many unanswered questions regarding structure-function relationships, perm-selectivity, and gating mechanisms. In particular, the ordering, structure, and dynamics of water inside Cx GJCs and hemichannels remains largely unexplored. In this work, we describe the identification and characterization of a believed novel water pocket—termed the IC pocket—located in-between the four transmembrane helices of each human Cx26 (hCx26) monomer at the intracellular (IC) side. Using molecular dynamics (MD) simulations to characterize hCx26 internal water structure and dynamics, six IC pockets were identified per hemichannel. A detailed characterization of the dynamics and ordering of water including conformational variability of residues forming the IC pockets, together with multiple sequence alignments, allowed us to propose a functional role for this cavity. An in vitro assessment of tracer uptake suggests that the IC pocket residue Arg-143 plays an essential role on the modulation of the hCx26 hemichannel permeability. PMID:25099799

  7. Structural integrity investigation for RPV with various cooling water levels under pressurized melting pool

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-03-01

    Full Text Available The strategy denoted as in-vessel retention (IVR is widely used in severe accident (SA management by most advanced nuclear power plants. The essence of IVR mitigation is to provide long-term external water cooling in maintaining the reactor pressure vessel (RPV integrity. Actually, the traditional IVR concept assumed that RPV was fully submerged into the water flooding, and the melting pool was depressurized during the SA. The above assumptions weren't seriously challenged until the occurrence of Fukushima accident on 2011, suggesting the structural behavior had not been appropriately assessed. Therefore, the paper tries to address the structure-related issue on determining whether RPV safety can be maintained or not with the effect of various water levels and internal pressures created from core meltdown accident. In achieving it, the RPV structural behaviors are numerically investigated in terms of several field parameters, such as temperature, deformation, stress, plastic strain, creep strain, and total damage. Due to the presence of high temperature melt on the inside and water cooling on the outside, the RPV failure is governed by the failure mechanisms of creep, thermal-plasticity and plasticity. The creep and plastic damages are interacted with each other, which further accelerate the failure process. Through detailed investigation, it is found that the internal pressure as well as water levels plays an important role in determining the RPV failure time, mode and site.

  8. The role of burnout syndrome as a mediator for the effect of psychosocial risk factors on the intensity of musculoskeletal disorders: a structural equation modeling approach.

    Science.gov (United States)

    Gholami, Tahereh; Pahlavian, Ahmad Heidari; Akbarzadeh, Mahdi; Motamedzade, Majid; Moghaddam, Rashid Heidari

    2016-01-01

    This study examined the hypothesis that burnout syndrome mediates effects of psychosocial risk factors and intensity of musculoskeletal disorders (MSDs) among hospital nurses. The sample was composed of 415 nurses from various wards across five hospitals of Iran's Hamedan University of Medical Sciences. Data were collected through three questionnaires: job content questionnaire, Maslach burnout inventory and visual analogue scale. Results of structural equation modeling with a mediating effect showed that psychosocial risk factors were significantly related to changes in burnout, which in turn affects intensity of MSDs.

  9. Application of cultured human mast cells (CHMC) for the design and structure-activity relationship of IgE-mediated mast cell activation inhibitors.

    Science.gov (United States)

    Argade, Ankush; Bhamidipati, Somasekhar; Li, Hui; Carroll, David; Clough, Jeffrey; Keim, Holger; Sylvain, Catherine; Rossi, Alexander B; Coquilla, Christina; Issakani, Sarkiz D; Masuda, Esteban S; Payan, Donald G; Singh, Rajinder

    2015-01-01

    Here we report the optimization of small molecule inhibitors of human mast cell degranulation via anti-IgE-mediated tryptase release following cross-linking and activation of IgE-loaded FcεR1 receptors. The compounds are selective upstream inhibitors of FcεR1-dependent human mast cell degranulation and proved to be devoid of activity in downstream ionomycin mediated degranulation. Structure-activity relationship (SAR) leading to compound 26 is outlined. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 76 FR 43230 - National Pollutant Discharge Elimination System-Cooling Water Intake Structures at Existing...

    Science.gov (United States)

    2011-07-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 122 and 125 [EPA-HQ-OW-2008-0667, FRL-9441-8] RIN 2040-AE95 National Pollutant Discharge Elimination System--Cooling Water Intake Structures at Existing Facilities and Phase I Facilities AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule...

  11. Sonneratiaceae (concluded). Sonneratiaceae and other mangrove-swamp families, anatomical structure and water relations

    NARCIS (Netherlands)

    Reinders-Gouwentak, C.A.

    1948-01-01

    The question whether tidal and non-tidal members of a family have a separate wood anatomical structure would be examined best in such genera as embrace both types. The sequel to this examination, whether any such differences are connected with peculiarities in the water relations of the plants,

  12. Atomic-scale structures of interfaces between phyllosilicate edges and water

    NARCIS (Netherlands)

    Liu, X.; Lu, X.; Meijer, E.J.; Wang, R.; Zhou, H.

    2012-01-01

    We report first-principles molecular dynamics (FPMD) studies on the structures of interfaces between phyllosilicate edges and water. Using FPMD, the substrates and solvents are simulated at the same first-principles level, and the thermal motions are sampled via molecular dynamics. Both the neutral

  13. Institutional and structural barriers for implementing on-farm water saving irrigation systems

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Boesen, Mads Vejlby; Ørum, Jens Erik

    2013-01-01

    institutional and structural barriers for shifting to more water efficient technologies on farms. To deal with the lack of incentives, a holistic and multidisciplinary assessment approach has been taken to cover the various parameters that may influence farmers' choice of technology. A case study analysis has...

  14. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    Science.gov (United States)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  15. Destabilization of the hydrogen-bond structure of water by the osmolyte trimethylamine N-oxide

    NARCIS (Netherlands)

    Rezus, Y.L.A.; Bakker, H.J.

    2009-01-01

    We use femtosecond mid-infrared pump−probe spectroscopy to investigate the effects of the osmolyte trimethylamine N-oxide (TMAO) on the structural dynamics of water. As a comparison, we also investigate the effects of other amphiphilic molecules: tetramethylurea (TMU), urea, proline, and

  16. Water hammer with fluid-structure interaction in thick-walled pipes

    NARCIS (Netherlands)

    Tijsseling, A.S.

    2007-01-01

    A one-dimensional mathematical model is presented which describes the acoustic behaviour of thick-walled liquid-filled pipes. The model is based on conventional water-hammer and beam theories. Fluid–structure interaction (FSI) is taken into account. The equations governing straight pipes are derived

  17. Structure and stability of triglyceride monolayers on water and mica surfaces

    NARCIS (Netherlands)

    Zdravkova, A.N.; van der Eerden, J.P.J.M.

    2007-01-01

    The structure and the stability of tripalmitin (PPP), tristearin (SSS), and triarachidin (AAA) monolayers at the air-water interface are investigated with the Langmuir method. The Langmuir-Blodgett (LB) layers obtained by deposition on mica were investigated with atomic force microscopy (AFM). Our

  18. The effect of water content on the magnetic and structural properties of goethite

    International Nuclear Information System (INIS)

    Betancur, J.D.; Barrero, C.A.; Greneche, J.M.; Goya, G.F.

    2004-01-01

    We have studied the effect of water content on the magnetic and structural properties of goethite. For that purpose, four samples were prepared using two different hydrothermal methods, one of them is derived on the Fe(II) precursors and the other one from Fe(III) precursors. The samples were characterized by X-ray diffraction (XRD), TGA, BET, FTIR, Moessbauer spectrometry at RT, 77 and 4.2 K and ZFC and FC curves. The results suggest that the goethites from the Fe(II) precursors are less crystalline, have higher water contents and do not show magnetic ordered structure at RT in comparison to the goethites from the Fe(III) precursors. The goethites from the last systems exhibit good crystallinity, low water content and magnetic ordering at room temperature. Our results suggest that both structural and adsorbed water contents reduce the magnetic hyperfine field at 4.2 K. A linear correlation with regression coefficient of 0.91 between the saturation hyperfine field and both the structural hydroxyl content and the surface area could be derived

  19. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Encapsulating fly ash and acidic process waste water in brick structure

    International Nuclear Information System (INIS)

    Koseoglu, K.; Polat, M.; Polat, H.

    2010-01-01

    Fly ash contains metals such as cadmium, iron, lead, aluminum and zinc in its structure in appreciable amounts. These metals can leach out into surface and ground waters if fly ash is not properly disposed of. A similar problem also exists for acidic process waste waters discharged by numerous industries. The purpose of this study was to utilize such wastes as additives in the production of construction quality bricks for the purpose of waste elimination. The bricks produced were subjected to flexural strength and water retention capacity tests along with heavy metal leaching experiments in order to determine the applicability of the procedure and the best possible recipes. This paper summarizes the results obtained in these tests along with the possible mechanisms involved in stabilizing the two wastes in the brick structure.

  1. Income, Economic Structure and Trade: Impacts on Recent Water Use Trends in the European Union

    Directory of Open Access Journals (Sweden)

    Rosa Duarte

    2018-01-01

    Full Text Available From the mid-1990s to the recent international economic crisis, the European Union (EU27 experienced a significant economic growth and a flat population increase. During these years, the water resources directly used by the EU countries displayed a growing but smooth trend. However, European activities intensively demanded water resources throughout the whole global supply chain. The growth rate of embodied water use was three times higher than the growth in water directly used by these economies. This was mainly due to the large upsurge of virtual water imports in the EU (e.g., about 25% of the change in water imports in the world was directly linked to the increasing imports in the EU27 countries. In this context, we analyze water use changes in the EU27 from 1995 to 2009, combining the production and consumption perspectives. To that aim, we use the environmentally extended input-output approach to obtain the volume of water embodied in domestic production and in trade flows at the sector and country levels. In the empirical analysis, we utilize multi-regional input-output data from the World Input Output Database. In addition, by means of a structural decomposition analysis we identify and quantify the factors explaining changes in these trends. We focus both on the role of domestic production and trade and estimate the associated intensity, technology and scale effects. This analysis is done for different clusters, identifying singular patterns depending on income criteria. Our results confirm the boost of demand growth in that period, the positive but negligible effect of structural change, and the decline in water intensity which, however, was not enough to compensate the effects on water associated to the economic expansion in the period. These findings also point at a gradual substitution of domestic water use for virtual water imports. More concretely, in most countries the food industry tended to reduce its backward linkages with the

  2. Protonic charge defect structures in floating water bridges observed as Zundel and Eigen solvation arrangements

    Science.gov (United States)

    Teschke, Omar; de Castro, Jose Roberto; Valente Filho, Juracyr Ferraz; Soares, David Mendez

    2017-10-01

    Protonic arrangements were detected in water bridge structures using confocal Raman microscopy, and the spectra show two formed structures. The measured Raman spectra were modified using the voltage applied to the bridge structure, which changed the proportion of these two species. Initially, for a 6.3 kV applied voltage, there was a measurable increase in the bridge current above the Ohmic contribution and the observed Raman spectrum of this new injected specie corresponded to the computed spectrum for the Zundel protonic arrangement. As the voltage further increases a contribution from the Eigen proton solvation specie is added to the measured spectrum.

  3. Microscopic dynamics of water around unfolded structures of barstar at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Somedatta; Chakraborty, Kaushik; Khatua, Prabir; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-02-07

    The breaking of the native structure of a protein and its influences on the dynamic response of the surrounding solvent is an important issue in protein folding. In this work, we have carried out atomistic molecular dynamics simulations to unfold the protein barstar at two different temperatures (400 K and 450 K). The two unfolded forms obtained at such high temperatures are further studied at room temperature to explore the effects of nonuniform unfolding of the protein secondary structures along two different pathways on the microscopic dynamical properties of the surface water molecules. It is demonstrated that though the structural transition of the protein in general results in less restricted water motions around its segments, but there are evidences of formation of new conformational motifs upon unfolding with increasingly confined environment around them, thereby resulting in further restricted water mobility in their hydration layers. Moreover, it is noticed that the effects of nonuniform unfolding of the protein segments on the relaxation times of the protein–water (PW) and the water–water (WW) hydrogen bonds are correlated with hindered hydration water motions. However, the kinetics of breaking and reformation of such hydrogen bonds are found to be influenced differently at the interface. It is observed that while the effects of unfolding on the PW hydrogen bond kinetics seem to be minimum, but the kinetics involving the WW hydrogen bonds around the protein segments exhibit noticeably heterogeneous characteristics. We believe that this is an important observation, which can provide valuable insights on the origin of heterogeneous influence of unfolding of a protein on the microscopic properties of its hydration water.

  4. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress.

    Science.gov (United States)

    Salinas, Carlos; Handford, Michael; Pauly, Markus; Dupree, Paul; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.

  5. Structural and energetic properties of La3+ in water/DMSO mixtures

    Science.gov (United States)

    Montagna, Maria; Spezia, Riccardo; Bodo, Enrico

    2017-11-01

    By using molecular dynamics based on a custom polarizable force field, we have studied the solvation of La3+ in an equimolar mixture of dimethylsulfoxide (DMSO) with water. An extended structural analysis has been performed to provide a complete picture of the physical properties at the basis of the interaction of La3+ with both solvents. Through our simulations we found that, very likely, the first solvation shell in the mixture is not unlike the one found in pure water or pure DMSO and contains 9 solvent molecules. We have also found that the solvation is preferentially due to DMSO molecules with the water initially present in first shell quickly leaving to the bulk. The dehydration process of the first shell has been analyzed by both plain MD simulations and a constrained dynamics approach; the free energy profiles for the extraction of water from first shell have also been computed.

  6. SFG study on potential-dependent structure of water at Pt electrode/electrolyte solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei [Physical Chemistry Laboratory, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2008-10-01

    Structure of water at Pt/electrolyte solution interface was investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at ca. 3200 cm{sup -1} and ca. 3400 cm{sup -1}, which are known to be due to the symmetric OH stretching (U{sub 1}) of tetrahedrally coordinated, i.e., strongly hydrogen bonded 'ice-like' water, and the asymmetric OH stretching (U{sub 3}) of water molecules in a more random arrangement, i.e., weakly hydrogen bonded 'liquid-like' water, respectively. The SFG intensity strongly depended on electrode potential. Several possibilities are suggested for the potential dependence of the SFG intensity. (author)

  7. Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Kim, Eunae; Yeom, Min Sun

    2014-01-01

    Molecular dynamics simulations were performed to understand the structural arrangement of water molecules around highly charged nanoparticles under aqueous conditions. The effect of two highly charged nanoparticles on the solvation charge asymmetry has been examined. We calculated the radial distribution functions of the components of water molecules around nanoparticles which have four charge types at two different salt concentrations. Even though the distributions of water molecules surrounding a sodium ion and a chloride ion are hardly affected by the charges of nanoparticles and the salt concentrations, those around highly charged nanoparticles are strongly influenced by the charges of nanoparticles, but hardly by the charges of nanoparticles and salt concentrations. We find that the distributions of hydrogen atoms in water molecules around one highly charged nanoparticle are dependent on the magnitude of the nanoparticle charge

  8. Structure and crystallinity of water dispersible photoactive nanoparticles for organic solar cells

    DEFF Research Database (Denmark)

    Pedersen, Emil Bøje Lind; Pedersen, M.C.; Simonsen, Søren Bredmose

    2015-01-01

    Water based inks would be a strong advantage for large scale production of organic photovoltaic devices. Formation of water dispersible nanoparticles produced by the Landfester method is a promising route to achieve such inks. We provide new insights into the key ink properties of poly(3-hexylthi......Water based inks would be a strong advantage for large scale production of organic photovoltaic devices. Formation of water dispersible nanoparticles produced by the Landfester method is a promising route to achieve such inks. We provide new insights into the key ink properties of poly(3......-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles such as the internal structure and crystallinity of the dispersed nanoparticles and the previously unreported drastic changes that occur when the inks are cast into a film. We observe through transmission electron...

  9. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    Science.gov (United States)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  10. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.

    Science.gov (United States)

    Temleitner, László; Pusztai, László; Schweika, Werner

    2007-08-22

    The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.

  11. Influence of cholesterol and ceramide VI on the structure of multilamellar lipid membranes at water exchange

    International Nuclear Information System (INIS)

    Ryabova, N. Yu.; Kiselev, M. A.; Balagurov, A. M.

    2010-01-01

    The structural changes in the multilamellar lipid membranes of dipalmitoylphosphatidylcholine (DPPC)/cholesterol and DPPC/ceramide VI binary systems during hydration and dehydration have been studied by neutron diffraction. The effect of cholesterol and ceramide on the kinetics of water exchange in DPPC membranes is characterized. Compared to pure DPPC, membranes of binary systems swell faster during hydration (with a characteristic time of ∼30 min). Both compounds, ceramide VI and cholesterol, similarly affect the hydration of DPPC membranes, increasing the repeat distance due to the bilayer growth. However, in contrast to cholesterol, ceramide significantly reduces the thickness of the membrane water layer. The introduction of cholesterol into a DPPC membrane slows down the change in the parameters of the bilayer internal structure during dehydration. In the DPPC/ceramide VI/cholesterol ternary system (with a molar cholesterol concentration of 40%), cholesterol is partially released from the lamellar membrane structure into the crystalline phase.

  12. Multistep Cylindrical Structure Analysis at Normal Incidence Based on Water-Substrate Broadband Metamaterial Absorbers

    Science.gov (United States)

    Fang, Chonghua

    2018-01-01

    A new multistep cylindrical structure based on water-substrate broadband metamaterial absorbers is designed to reduce the traditional radar cross-section (RCS) of a rod-shaped object. The proposed configuration consists of two distinct parts. One of these components is formed by a four-step cylindrical metal structure, whereas the other one is formed by a new water-substrate broadband metamaterial absorber. The designed structure can significantly reduce the radar cross section more than 10 dB from 4.58 to 18.42 GHz which is the 86.5 % bandwidth of from C-band to 20 GHz. The results of measurement show reasonably good accordance with the simulated ones, which verifies the ability and effect of the proposed design.

  13. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States); Zhu, Hao [The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ (United States); Department of Chemistry, Rutgers University, Camden, NJ (United States); Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia [NovaMechanics Ltd., Nicosia (Cyprus); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States)

    2013-10-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function.

  14. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    International Nuclear Information System (INIS)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh; Zhu, Hao; Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R 2 = 0.71, STL R 2 = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R 2 = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function. • The results

  15. Slowing the Starch Digestion by Structural Modification through Preparing Zein/Pectin Particle Stabilized Water-in-Water Emulsion.

    Science.gov (United States)

    Chen, Jia-Feng; Guo, Jian; Zhang, Tao; Wan, Zhi-Li; Yang, Juan; Yang, Xiao-Quan

    2018-04-25

    Slowing the digestion of starch is one of the dominant concerns in the food industry. A colloidal structural modification strategy for solving this problem was proposed in this work. Due to thermodynamic incompatibility between two biopolymers, water/water emulsion of waxy corn starch (WCS) droplets dispersed in a continuous aqueous guar gum (GG) was prepared, and zein particles (ZPs), obtained by antisolvent precipitation and pectin modification, were used as stabilizer. As the ratio of zein to pectin in the particles was 1:1, their wetting properties in the two polysaccharides were similar, which made them accumulate at the interface and cover the WCS-rich droplets. The analysis of digestibility curves indicated that a rapid (rate constant k 1 : 0.145 min -1 ) and a slow phase ( k 2 : 0.022 min -1 ) existed during WCS digestion. However, only one slow phase ( k 2 : 0.019 min -1 ) was found in the WCS/GG emulsion, suggesting that this structure was effective in slowing starch digestion.

  16. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing

    Science.gov (United States)

    Hu, Xiao; Shmelev, Karen; Sun, Lin; Gil, Eun-Seok; Park, Sang-Hyug; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4°C (alpha-helix dominated silk I structure), to highest content of ~60% crystallinity at 100°C (beta-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature controlled regulation of water vapor, to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods which use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties. PMID:21425769

  17. Working conditions, burnout and stress symptoms in university professors: validating a structural model of the mediating effect of perceived personal competence.

    Science.gov (United States)

    Avargues Navarro, María Luisa; Borda Mas, Mercedes; López Jiménez, Ana María

    2010-05-01

    The purpose of this study has been to test, with a sample of 193 Professors of the University of Seville, a structural model on the mediating role of personal perceived competence in the appearance of burnout syndrome and stress symptoms under potentially stressful work conditions. The instruments used to evaluate were a socio-demographic and work-related data questionnaire, The Maslach Burnout Inventory (M.B.I.), The Labour Scale of Stress and the Magallanes Stress Scale. The model of strategy implementation and LISREL 8.71 were used. The estimated model was adjusted satisfactorily, ascertaining the mediating effect of perceived competence in the effect exerted by the work conditions studied on the depersonalization and personal fulfillment, as well as in the appearance of stress symptoms. The effect on the emotional exhaustion dimension was not confirmed. The latter also acted on the estimated model as a mediating variable, facilitating the negative impact of stressors on emotional exhaustion, depersonalization and personal accomplishment.

  18. The structure of the pelagic food web in relation to water column structure in the Skagerrak

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Kaas, H.; Kruse, B.

    1990-01-01

    by a doming of the pycnocline, with a deep mixed layer along the periphery and a very shallow pycnocline in central parts. Average phytoplankton size increased with the depth of the upper mixed layer, and the central stratified area was characterized by small flagellates while large and chain-forming diatoms...... on particle surface area rather than particle volume or chl a, and showed a distributional pattern that was nearly the inverse of the distribution of copepod activity. That is, peak bacterial growth rates occurred in central, stratified parts and lower rates were found along the margin with a deep mixed layer....... Thus a 'microbial loop' type of food web seemed to be evolving in the central, strongly stratified parts of the Skagerrak, while a shorter 'classical' type of food web appeared to dominate along the margin. The relation between food web structure and vertical mixing processes observed on oceanwide...

  19. Design Concept of Dialyzer Biomaterials: How to Find Biocompatible Polymers Based on the Biointerfacial Water Structure.

    Science.gov (United States)

    Tanaka, Masaru

    2017-01-01

    Although various types of materials have been used widely in dialyzers, most biomaterials lack the desired functional properties to interface with blood and have not been engineered for optimum performance. Therefore, there is increasing demand to develop novel materials to address such problems in the dialysis arena. Numerous parameters of polymeric biomaterials can affect biocompatibility in a controlled manner. The mechanisms responsible for the biocompatibility of polymers at the molecular level have not been clearly demonstrated, although many theoretical and experimental efforts have been made to try and understand them. Moreover, water interactions have been recognized as fundamental for the blood response to contact with polymers. We have proposed the 'intermediate water' concept and hypothesized that intermediate water, which prevents the proteins and blood cells from directly contacting the polymer surface, or nonfreezing water on the polymer surface, plays an important role in the biocompatibility of polymers. This chapter provides an overview of the recent experimental progress of biocompatible polymers measured by thermal, spectroscopic, and surface force techniques. Additionally, it highlights recent developments in the use of biocompatible polymeric biomaterials for dialyzers and provides an overview of the progress made in the design of multifunctional biomedical polymers by controlling the biointerfacial water structure through precision polymer synthesis. Key Messages: Intermediate water was found only in hydrated biopolymers (proteins, polysaccharides, and nucleic acids, DNA and RNA) and hydrated biocompatible synthetic polymers. Intermediate water could be one of the main screening factors for the design of appropriate dialyzer materials. © 2017 S. Karger AG, Basel.

  20. Structure of water in mesoporous organosilica by calorimetry and inelastic neutron scattering

    Science.gov (United States)

    Levy, Esthy; Kolesnikov, Alexander I.; Li, Jichen; Mastai, Yitzhak

    2009-01-01

    In this paper, we describe the preparation of mesoporous organosilica samples with hydrophilic or hydrophobic organic functionality inside the silica channel. We synthesized mesoporous organosilica of identical pore sizes based on two different organic surface functionality namely hydrophobic (based on octyltriethoxysilane OTES) and hydrophilic (3-aminopropyltriethoxysilane ATES) and MCM-41 was used as a reference system. The structure of water/ice in those porous silica samples have been investigated over a range temperatures by differential scanning calorimetry (DSC) and inelastic neutron scattering (INS). INS study revealed that water confined in hydrophobic mesoporous organosilica shows vibrational behavior strongly different than bulk water. It consists of two states: water with strong and weak hydrogen bonds (with ratio 1:2.65, respectively), compared to ice-Ih. The corresponding O-O distances in these water states are 2.67 and 2.87 Ǻ, which strongly differ compared to ice-Ih (2.76 Ǻ). INS spectra for water in hydrophilic mesoporous organosilica ATES show behavior similar to bulk water, but with greater degree of disorder.

  1. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    Science.gov (United States)

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  2. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers.

    Science.gov (United States)

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong

    2018-06-01

    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2006-01-01

    Full Text Available Shallow water tables near-streams often lead to saturated, overland flow generating areas in catchments in humid climates. While these saturated areas are assumed to be principal biogeochemical hot-spots and important for issues such as non-point pollution sources, the spatial and temporal behavior of shallow water tables, and associated saturated areas, is not completely understood. This study demonstrates how geostatistical methods can be used to characterize the spatial and temporal variation of the shallow water table for the near-stream region. Event-based and seasonal changes in the spatial structure of the shallow water table, which influences the spatial pattern of surface saturation and related runoff generation, can be identified and used in conjunction to characterize the hydrology of an area. This is accomplished through semivariogram analysis and indicator kriging to produce maps combining soft data (i.e., proxy information to the variable of interest representing general shallow water table patterns with hard data (i.e., actual measurements that represent variation in the spatial structure of the shallow water table per rainfall event. The area used was a hillslope in the Catskill Mountains region of New York State. The shallow water table was monitored for a 120 m×180 m near-stream region at 44 sampling locations on 15-min intervals. Outflow of the area was measured at the same time interval. These data were analyzed at a short time interval (15 min and at a long time interval (months to characterize the changes in the hydrologic behavior of the hillslope. Indicator semivariograms based on binary-transformed ground water table data (i.e., 1 if exceeding the time-variable median depth to water table and 0 if not were created for both short and long time intervals. For the short time interval, the indicator semivariograms showed a high degree of spatial structure in the shallow water table for the spring, with increased range

  4. The structural and dynamic characteristics of a water-polimer high-speed jet

    Directory of Open Access Journals (Sweden)

    Андрій Володимирович Погребняк

    2017-07-01

    Full Text Available The aim is to study the structural and dynamic characteristics of the water-polymer jet, what is of decisive importance for understanding the nature of the abnormally high cutting ability. A complex study of the structure and dynamics of a water-polymer high-speed jet has been carried out. Analysis of the photographs of jets of aqueous PEO solution indicates that adding polyethylene oxide (PEO into water results in a significant increase in the initial sections of the water-polymer jet, which characterizes the quality of its formation, and leads to compactness due to a reduction of its diameter. The obtained experimental data made it possible to propose a relationship for determining the dimensionless value of the initial sections of jets of aqueous PEO solutions of different concentration and molecular mass of PEO, taking into account the real parameters of the jet forming head. Investigation of changes in the energy capabilities of water-polymer jets, which were estimated by the force of the jet impact on the steel obstacle, made it possible to establish the features of their dynamics. The obtained experimental data explain the nature of the change in the cutting properties of the water-polymer jet as a function of the distance between the surface of the material that is being cut and the cut of the nozzle. If the distance from the nozzle to the surface of the material is less than the size of the initial sections of the water-polymer jet, an increase in the diameter of the nozzle outlet hole will lead to a reduction in the depth of the cut. If, however, the distance from the nozzle to the surface of the material approaches or exceeds the size of the main part of the water-polymer jet, then the depth of the cut will increase with increasing diameter of the nozzle at a constant pressure. The use of structural and dynamic characteristics of water-polymer jets is substantiated when establishing rational parameters of equipment for water

  5. Interactions between soil texture, water, and nutrients control patterns of biocrusts abundance and structure

    Science.gov (United States)

    Young, Kristina; Bowker, Matthew; Reed, Sasha; Howell, Armin

    2017-04-01

    Heterogeneity in the abiotic environment structures biotic communities by controlling niche space and parameters. This has been widely observed and demonstrated in vascular plant and other aboveground communities. While soil organisms are presumably also strongly influenced by the physical and chemical dimensions of the edaphic environment, there are fewer studies linking the development, structure, productivity or function of surface soil communities to specific edaphic gradients. Here, we use biological soil crusts (biocrusts) as a model system to determine mechanisms regulating community structure of soil organisms. We chose soil texture to serve as an edaphic gradient because of soil texture's influence over biocrust distribution on a landscape level. We experimentally manipulated texture in constructed soil, and simultaneously manipulated two main outcomes of texture, water and nutrient availability, to determine the mechanism underlying texture's influence on biocrust abundance and structure. We grew biocrust communities from a field-sourced inoculum on four different soil textures, sieved from the same parent soil material, manipulating watering levels and nutrient additions across soil textures in a full-factorial design over a 5-month period of time. We measured abundance and structure of biocrusts over time, and measured two metrics of function, N2 fixation rates and soil stabilization, at the conclusion of the experiment. Our results showed finer soil textures resulted in faster biocrust community development and dominance by mosses, whereas coarser textures grew more slowly and had biocrust communities dominated by cyanobacteria and lichen. Additionally, coarser textured soils contained cyanobacterial filaments significantly deeper into the soil profile than fine textured soils. N2-fixation values increased with increasing moss cover and decreased with increasing cyanobacterial cover, however, the rate of change depended on soil texture and water amount

  6. Roles of water in protein structure and function studied by molecular liquid theory.

    Science.gov (United States)

    Imai, Takashi

    2009-01-01

    The roles of water in the structure and function of proteins have not been completely elucidated. Although molecular simulation has been widely used for the investigation of protein structure and function, it is not always useful for elucidating the roles of water because the effect of water ranges from atomic to thermodynamic level. The three-dimensional reference interaction site model (3D-RISM) theory, which is a statistical-mechanical theory of molecular liquids, can yield the solvation structure at the atomic level and calculate the thermodynamic quantities from the intermolecular potentials. In the last few years, the author and coworkers have succeeded in applying the 3D-RISM theory to protein aqueous solution systems and demonstrated that the theory is useful for investigating the roles of water. This article reviews some of the recent applications and findings, which are concerned with molecular recognition by protein, protein folding, and the partial molar volume of protein which is related to the pressure effect on protein.

  7. Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure.

    Science.gov (United States)

    Yang, Chao; Xi, Xin; Yu, Zhiguo; Cao, Haicheng; Li, Jing; Lin, Shan; Ma, Zhanhong; Zhao, Lixia

    2018-02-14

    On the basis of the laterally porous GaN, we designed and fabricated a composite porous GaN structure with both well-ordered lateral and vertical holes. Compared to the plane GaN, the composite porous GaN structure with the combination of the vertical holes can help to reduce UV reflectance and increase the saturation photocurrent during water splitting by a factor of ∼4.5. Furthermore, we investigated the underlying mechanism for the enhancement of the water splitting performance using a finite-difference time-domain method. The results show that the well-ordered vertical holes can not only help to open the embedded pore channels to the electrolyte at both sides and reduce the migration distance of the gas bubbles during the water splitting reactions but also help to modulate the light field. Using this composite porous GaN structure, most of the incident light can be modulated and trapped into the nanoholes, and thus the electric fields localized in the lateral pores can increase dramatically as a result of the strong optical coupling. Our findings pave a new way to develop GaN photoelectrodes for highly efficient solar water splitting.

  8. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    International Nuclear Information System (INIS)

    Bayer, I.S.; Steele, A.; Martorana, P.J.; Loth, E.

    2010-01-01

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D 5 ), dodecamethylcyclohexasiloxane (D 6 ) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155 o and low contact angle hysteresis ( o ). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  9. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, I.S., E-mail: ibayer1@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Steele, A.; Martorana, P.J. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Loth, E. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, VA 22904 (United States)

    2010-11-15

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D{sub 5}), dodecamethylcyclohexasiloxane (D{sub 6}) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155{sup o} and low contact angle hysteresis (<8{sup o}). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  10. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2008-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., increased shutdown radiation, generation of defects in materials of major components and fuel claddings, and increased volume of radwaste sources. Corrosion behavior is greatly affected by water quality and differs according to the water quality values and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of the key issues that determine corrosion-related problems, but it is not the only issue. Most corrosion-related phenomena, e.g., flow accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., the electrochemical corrosion potential (ECP), conductivities and pH. The most important electroch