WorldWideScience

Sample records for water-use efficiency wue

  1. From leaf to whole-plant water use efficiency (WUE in complex canopies: Limitations of leaf WUE as a selection target

    Directory of Open Access Journals (Sweden)

    Hipólito Medrano

    2015-06-01

    Full Text Available Plant water use efficiency (WUE is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of food production in these areas. Given that climate change predictions include increases in temperature and drought in semiarid regions, improving crop WUE is mandatory for global food production. WUE is commonly measured at the leaf level, because portable equipment for measuring leaf gas exchange rates facilitates the simultaneous measurement of photosynthesis and transpiration. However, when those measurements are compared with daily integrals or whole-plant estimates of WUE, the two sometimes do not agree. Scaling up from single-leaf to whole-plant WUE was tested in grapevines in different experiments by comparison of daily integrals of instantaneous water use efficiency [ratio between CO2 assimilation (AN and transpiration (E; AN/E] with midday AN/E measurements, showing a low correlation, being worse with increasing water stress. We sought to evaluate the importance of spatial and temporal variation in carbon and water balances at the leaf and plant levels. The leaf position (governing average light interception in the canopy showed a marked effect on instantaneous and daily integrals of leaf WUE. Night transpiration and respiration rates were also evaluated, as well as respiration contributions to total carbon balance. Two main components were identified as filling the gap between leaf and whole plant WUE: the large effect of leaf position on daily carbon gain and water loss and the large flux of carbon losses by dark respiration. These results show that WUE evaluation among genotypes or treatments needs to be revised.

  2. Contrasting water-use efficiency (WUE) responses of a potato mapping population and capability of modified ball-berry model to predict stomatal conductance and WUE measured at different environmental conditions

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Kørup, Kirsten; Kristensen, K.

    2015-01-01

    Potatoes (Solanum tuberosum L.) are drought-sensitive and more efficient water use, while maintaining high yields is required. Here, water-use efficiency (WUE) of a mapping population comprising 144 clones from a cross between 90-HAF-01 (Solanum tuberosum1) and 90-HAG-15 (S. tuberosum2 × S....... sparsipilum) was measured on well-watered plants under controlled-environment conditions combining three levels of each of the factors: [CO2], temperature, light, and relative humidity in growth chambers. The clones were grouped according to their photosynthetic WUE (pWUE) and whole-plant WUE (wpWUE) during...... (34 %) and dry matter accumulation (55 %, P water use (16 %). The pWUE correlated negatively to the ratio between leaf-internal and leaf-external [CO2] (R2 = -0.86 in 2010 and R2 = -0.83 in 2011, P

  3. QTL analysis by sequencing of Water Use Efficiency (WUE) in potato

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sønderkær, Mads; Sørensen, Kirsten Kørup

    2013-01-01

    The traditional approach to potato breeding, the classical “mate and phenotype” approach is relatively costly and because phenotyping and growth capacity is limited, this are being slowly replaced by Marker Assisted Selection (MAS) breeding schemes. MAS is based on the presence of DNA polymorphic.......sparsipilum), phenotyped for water use efficiency. This population has also previously been phenotyped for the total glycoalkaloid (TGA) content....... and time consuming process. Here, a novel method for Quantitative Trait Locus (QTL) analysis has been developed, that allows for development of specific markers by use of genomic sequence reads and the recently published reference genome sequence for potato. Prior to sequencing the mapping population...

  4. Phenotypic selection on leaf WUE and related ecophysiological traits for natural populations of desert sunflowers

    NARCIS (Netherlands)

    Donovan, L.A.; Rosenthal, D.R.; Dudley, S.A.; Ludwig, F.

    2007-01-01

    Plant water-use efficiency (WUE) is expected to affect plant fitness and thus be under natural selection in arid habitats. Although many natural population studies have assessed plant WUE, only a few related WUE to fitness. The further determination of whether selection on WUE is direct or indirect

  5. Wind increases leaf water use efficiency.

    Science.gov (United States)

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  6. A preliminary investigation of the water use efficiency of sweet ...

    African Journals Online (AJOL)

    Fresh and dry aboveground biomass yield, stalk yield and stalk Brix % were measured at final harvest. Theoretical ethanol yield was calculated from fresh stalk yield and Brix %. Water use for the two growing seasons was 415 mm at Ukulinga and 398 mm at Hatfield. The ethanol water use efficiency (WUE) values for the ...

  7. Evapotranspiration and water use efficiency of different grass ...

    African Journals Online (AJOL)

    Evapotranspiration (Et) and water use efficiency (WUE) were determined for each of seven grass species during the 1986/87 seasons. The highest and lowest mean daily Et of 2, 39 and 1, 66 mm were recorded respectively for Themeda triandra and Sporobolus fimbriatus. Between species, the average Et for the two ...

  8. Hydrological cycle and water use efficiency of veld in different ...

    African Journals Online (AJOL)

    Hydraulic non-floating lysimeters were used to determine the evapotranspiration (Et) and water use efficiency (W.U.E.) of veld in different successional stages for the period September 1978 to June 1979. In addition runoff of the various successional stages was recorded on runoff plots.Averages of 1,018 litres, 1,258 litres ...

  9. Cassava productivity linked to potassium's influence on water use efficiency

    NARCIS (Netherlands)

    Ezui, K.S.; Franke, A.C.; Leffelaar, P.A.; Giller, K.E.

    2017-01-01

    This paper presents the results of field studies conducted in Togo (Djakakope and Sevekpota) to assess the effect of potassium (K) on cassava yield, water use efficiency (WUE) and transpiration as affected by nitrogen (N) and phosphorus (P) availability under rainfed conditions. It was shown that an

  10. Selection of black poplars for water use efficiency

    OpenAIRE

    Orlović Saša S.; Pajević Slobodanka P.; Krstić Borivoj Đ.

    2002-01-01

    Photosynthesis, transpiration, water use efficiency (WUE) and biomass production have been investigated in nine black poplar clones (section Aigeiros) in three field experiments. Eastern cottonwood clones (Populus deltoides) had the highest net photosynthesis and water use efficiency. European black poplar clones had the highest transpiration intensity. Correlation analysis showed that net photosynthesis was in a high positive correlation with biomass. Medium negative correlations existed bet...

  11. Understanding the Spatiotemporal Variability of Inherent Water Use Efficiency

    Science.gov (United States)

    Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus

    2015-04-01

    The global carbon and water cycles are coupled via plant physiology. However, the resulting spatial and temporal covariability of both fluxes on a global scale lacks sufficient understanding. This is required to estimate the impact of atmospheric drought on photosynthesis in water-limited ecosystems. Water use efficiency (WUE) is an essential ecosystem diagnostic defined as the ratio between gross primary productivity (GPP) and transpiration (T). WUE is known to vary with vapour-pressure deficit (VPD) and therefore also in time. The inherent water use efficiency (iWUE) accounts for the VPD effect on WUE and aims at representing a largely time-invariant ecosystem property. However, different ways of describing the functional response of iWUE to VPD are found in the literature. One established iWUE definition was proposed by Beer et al. (2009) and takes the form of iWUE = GPP--VPD- . T (1) A similar definition can be derived from stomatal conductance theories such as Katul et al. (2010) and takes the form of √ -- GPP---VPD- iWUE = T . (2) Here, we use eddy covariance measurements from the FLUXNET database to evaluate both approaches for a globally representative set of biomes including tropical, temperate and semi-arid ecosystems. Testing both definitions in a model-data fusion setup indicated that (2) is more consistent with FLUXNET observations than (1). However, there still remains considerable temporal variability of iWUE which is linked to seasonal changes in VPD. To explore up to which extent the temporal variability of iWUE may be related to the prescribed functional responses to VPD, we treated the exponent of VPD as a global parameter, here termed γ. When γ = 1 the functional response is equivalent to (1), while when γ = 0.5 it corresponds to formulation of model (2)). The global estimate was found to be significantly lower than 0.5, which would have been expected from stomatal conductance theory at leaf level. We assessed whether adding γ as site

  12. Water use efficiency and functional traits of a semiarid shrubland

    Science.gov (United States)

    Perez-Priego, Oscar; Lopez-Ballesteros, Ana; Sánchez-Cañete, Enrique P.; Serrano-Ortiz, Penélope; Carrara, Arnaud; Palomares-Palacio, Agustí; Oyonarte, Cecilio; Domingo, Francisco; Kowalski, Andrew S.

    2013-04-01

    In semiarid climates, water is the fundamental factor determining ecosystem productivity and thereby the capacity for carbon sequestration. Increased water use efficiency (WUE), the ratio of carbon dioxide assimilation (canopy photosynthesis, Pc) to water transpired (canopy evaporation, Ec), is assumed to be an adaptive strategy for sclerophyll shrublands to improve productivity and stress resistance in water-limited environments. However, the real complexity of WUE lies in its dependence on both plant physiological traits (e.g. stomatal resistance, photosynthetic capacity, leaf chemical composition, structure) and on environmental conditions (e.g. atmospheric CO2 concentration, vapour pressure deficit, temperature, light, soil water availability). We used a transient-state closed canopy-chamber to characterise CO2 and water vapour exchanges at the whole plant scale under different environmental conditions and phenological stages. Diurnal and seasonal variations in Pc, Ec and WUE were explained by both physiological and environmental variables. All species showed symmetric patterns in both Pc and Ec when not water limited, but asymmetry during summer drought when leaf water potential was low. During drought, grasses (Festuca sp.) showed a marked decline in functioning (Pc and Ec), whereas shrubs (Genista sp., Hormathophylla sp.) maintained spring-like assimilation rates all morning until stomatal controls shut down gas exchanges. While grasses showed the highest WUE when not water limited, their near senescence during summer drought yielded the lowest WUE. Shrubs showed reduced WUE under moderate drought stress, in contradiction to the assumptions made in global ecosystem models. The importance of the appropriate time-scale for calculating WUE (daily versus hourly), together with water use strategies and ecological functions of individual species, will be further discussed.

  13. Variation in water-use efficiency and its relation to carbon isotope ratio in cotton

    International Nuclear Information System (INIS)

    Saranga, Y.; Flash, I.; Yakir, D.

    1998-01-01

    Cotton (Gossypium spp.) is often exposed to drought, which adversely affects both yield and quality. Improved water-use efficiency (WUE = total dry matter produced or yield harvested / water used) is expected to reduce these adverse effects. Genetic variability in WUE and its association with photosynthetic rate and carbon isotope ratio (13C/12C) in cotton are reported in this paper. WUE of six cotton cultivars--G. hirsutum L., G. barbadense L., and an interspecific F1 hybrid (G. hirsutum x G. barbadense, ISH), was examined under two irrigation regimes in two field trials. The greatest WUE was obtained by two G. hirsutum cultivars (2.55 g dry matter or 1.12 g seed-cotton L-1 H2O) the ISH obtained similar or somewhat lower values, and that G. barbadense cultivars and one G. hirsutum cultivar exhibited the lowest values (2.1 g dry matter or 0.8 to 0.85 g seed-cotton L-1 H2O). These results indicate that different cotton cultivars may have evolved different environmental adaptations that affect their WUE. Photosynthetic rate was correlated with WUE in only a few cases emphasizing the limitation of this parameter as a basis for estimating crop WUE. Under both trials WUE was positively correlated with carbon isotope ratio, indicating the potential of this technique as a selection criterion for improving cotton WUE

  14. Water Use and Water-Use Efficiency of Three Perennial Bioenergy Grass Crops in Florida

    Directory of Open Access Journals (Sweden)

    Jerry M. Bennett

    2012-10-01

    Full Text Available Over two-thirds of human water withdrawals are estimated to be used for agricultural production, which is expected to increase as demand for renewable liquid fuels from agricultural crops intensifies. Despite the potential implications of bioenergy crop production on water resources, few data are available on water use of perennial bioenergy grass crops. Therefore, the objective of this study was to compare dry matter yield, water use, and water-use efficiency (WUE of elephantgrass, energycane, and giant reed, grown under field conditions for two growing seasons in North Central Florida. Using scaled sap flow sensor data, water use ranged from about 850 to 1150 mm during the growing season, and was generally greater for giant reed and less for elephantgrass. Despite similar or greater water use by giant reed, dry biomass yields of 35 to 40 Mg ha−1 were significantly greater for energycane and elephantgrass, resulting in greater WUE. Overall, water use by the bioenergy crops was greater than the rainfall received during the study, indicating that irrigation will be needed in the region to achieve optimal yields. Species differ in water use and WUE and species selection can play an important role with regard to potential consequences for water resources.

  15. Water Use Efficiency of China's Terrestrial Ecosystems and Responses to Drought

    Science.gov (United States)

    Liu, Y.; Xiao, J.; Ju, W.; Zhou, Y.; Wang, S.; Wu, X.

    2015-12-01

    Yibo Liu1, 2, Jingfeng Xiao2, Weimin Ju3, Yanlian Zhou4, Shaoqiang Wang5, Xiaocui Wu31 Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China, 2Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA, 3 International Institute for Earth System Sciences, Nanjing University, Nanjing, 210023, China, 4 School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China, 5 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China's terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg-1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. "Turning-points" were observed for southern China where moderate and extreme drought reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate

  16. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  17. [Foliar water use efficiency of Platycladus orientalis sapling under different soil water contents].

    Science.gov (United States)

    Zhang, Yong E; Yu, Xin Xiao; Chen, Li Hua; Jia, Guo Dong; Zhao, Na; Li, Han Zhi; Chang, Xiao Min

    2017-07-18

    The determination of plant foliar water use efficiency will be of great value to improve our understanding about mechanism of plant water consumption and provide important basis of regional forest ecosystem management and maintenance, thus, laboratory controlled experiments were carried out to obtain Platycladus orientalis sapling foliar water use efficiency under five different soil water contents, including instantaneous water use efficiency (WUE gs ) derived from gas exchange and short-term water use efficiency (WUE cp ) caculated using carbon isotope model. The results showed that, controlled by stomatal conductance (g s ), foliar net photosynthesis rate (P n ) and transpiration rate (T r ) increased as soil water content increased, which both reached maximum va-lues at soil water content of 70%-80% field capacity (FC), while WUE gs reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). Both δ 13 C of water-soluble leaf and twig phloem material achieved maximum values at the lowest soil water content (35%-45% FC). Besides, δ 13 C values of leaf water-soluble compounds were significantly greater than that of phloem exudates, indicating that there was depletion in 13 C in twig phloem compared with leaf water-soluble compounds and no obvious fractionation in the process of water-soluble material transportation from leaf to twig. Foliar WUE cp also reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). There was some difference between foliar WUE gs and WUE cp under the same condition, and the average difference was 0.52 mmol·m -2 ·s -1 . The WUE gs had great space-time variability, by contrast, WUE cp was more representative. It was concluded that P. orientalis sapling adapted to drought condition by increasing water use efficiency and decreasing physiological activity.

  18. Clonal variability for water use efficiency and carbon isotope discrimination ( 13C) in selected clones of a few Eucalyptus species

    CSIR Research Space (South Africa)

    Mohan Raju, B

    2011-11-01

    Full Text Available and develop high water use efficient clones to cultivate under water limited environments. The major objective was to assess the eucalyptus clones for variability in WUE and to determine the relationship between WUE and carbon isotope discrimination ( 13C...

  19. Grazing Effects on Water Use Efficiency on a Mongolian Desert Steppe

    Science.gov (United States)

    Shao, C.; Chen, J.; Li, L.; John, R.; Ouyang, Z.

    2015-12-01

    Ecosystem-level water use efficiency (WUE), defined as the ratio of gross primary production (GPP) to evapotranspiration (ET), was assessed by continuous and simultaneous direct eddy-covariance (EC) measurements of carbon and water fluxes on adjacent pastures of grazed (DS) and ungrazed steppes (FS) in the Mongolia Plateau for a two-year period from 2010 to 2012. We found that the WUE was well positively linear correlated (r2=0.90) with the GEP both in the DS and FS. Due to our desert steppe was very sensitive to the precipitation, WUE was co-varied with the precipitation. WUE increased with the GEP increase under good water conditions, when the GEP reached its maximal value (DS: 3 g C m-2, FS: 2 g C m-2), the WUE was suppressed and kept a stable value during the peak growing season. Both GEP and WUE was near zero when the soil moisture was lower. We also found that the WUE was negatively correlated with ET. The WUE was higher in GS than that in FS. The mean seasonal WUE was 0.93 in GS and 0.54 g C kg-1 H2O in FS, with a peak monthly WUE of 1.32 in GS and 0.73 g C kg-1 H2O in FS, respectively. The difference between GS and FS mainly caused by that the ET was changed with the GEP during the entire growing season. This suggests the importance of both plant population dynamics and water statues should be considered in WUE studies.

  20. Water use efficiency in a primary subtropical evergreen forest in Southwest China.

    Science.gov (United States)

    Song, Qing-Hai; Fei, Xue-Hai; Zhang, Yi-Ping; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Wu, Chuan-Sheng; Lu, Zhi-Yun; Luo, Kang; Gao, Jin-Bo; Liu, Yu-Hong

    2017-02-20

    We calculated water use efficiency (WUE) using measures of gross primary production (GPP) and evapotranspiration (ET) from five years of continuous eddy covariance measurements (2009-2013) obtained over a primary subtropical evergreen broadleaved forest in southwestern China. Annual mean WUE exhibited a decreasing trend from 2009 to 2013, varying from ~2.28 to 2.68 g C kg H 2 O -1 . The multiyear average WUE was 2.48 ± 0.17 (mean ± standard deviation) g C kg H 2 O -1 . WUE increased greatly in the driest year (2009), due to a larger decline in ET than in GPP. At the diurnal scale, WUE in the wet season reached 5.1 g C kg H 2 O -1 in the early morning and 4.6 g C kg H 2 O -1 in the evening. WUE in the dry season reached 3.1 g C kg H 2 O -1 in the early morning and 2.7 g C kg H 2 O -1 in the evening. During the leaf emergence stage, the variation of WUE could be suitably explained by water-related variables (relative humidity (RH), soil water content at 100 cm (SWC_100)), solar radiation and the green index (Sgreen). These results revealed large variation in WUE at different time scales, highlighting the importance of individual site characteristics.

  1. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Mikkelsen, Teis Nørgaard; Ibrom, Andreas

    2012-01-01

    The aim of this study was to evaluate the extent to which water use efficiency (WUE) at leaf scale can be used to assess WUE at canopy scale, leaf WUE being assumed to be a constant function of vapor pressure deficit and to thus not be dependent upon other environmental factors or varying leaf...... properties. Leaf WUE and its variability and dependencies were assessed using leafgas-exchange measurements obtained during two growing seasons, 1999 and 2000, at the Soroe beech forest study site on Zealand in Denmark. It was found that the VPD-normalized leaf WUE, WUEnormleaf, although dependent...

  2. A role for stomata in regulating water use efficiency in Populus x ...

    African Journals Online (AJOL)

    A role for stomata in regulating water use efficiency in Populus x euramericana and characterization of a related gene, PdERECTA. P Guo, X Xia, WL Yin. Abstract. The physiological mechanism of water use efficiency (WUE) remains elucidated, especially in poplar. We studied WUEi (instantaneous leaf transpiration ...

  3. A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data.

    Science.gov (United States)

    Huang, Ling; He, Bin; Han, Le; Liu, Junjie; Wang, Haiyan; Chen, Ziyue

    2017-12-01

    Ecosystem water-use efficiency (WUE) plays an important role in carbon and water cycles. Currently, the response of WUE to drought disturbance remains controversial. Based on the global ecosystem gross primary productivity (GPP) product and the evapotranspiration product (ET), both of which were retrieved from the moderate resolution imaging spectroradiometer (MODIS), as well as the drought index, this study comprehensively examined the relationship between ecosystem WUE (WUE=GPP/ET) and drought at the global scale. The response of WUE to drought showed large differences in various regions and biomes. WUE for arid ecosystems typically showed a negative response to drought, whereas WUE for humid ecosystems showed both positive and negative response to drought. Legacy effects of drought on ecosystem WUE were observed. Furthermore, ecosystems showed a sensitive response to abrupt changes in hydrological climatic conditions. The transition from wet to dry years should increase ecosystem WUE, and the opposite change in WUE should occur when an ecosystem experiences a transition from dry to wet years. This indicates the resilience of ecosystems to drought disturbance. Knowledge from this study should provide an in-depth understanding of ecosystem strategies for coping with drought. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Sha [Tsinghua Univ., Beijing (China); Yu, Bofu [Griffith Univ., Nathan Queensland (Australia); Schwalm, Christopher R. [Woods Hole Research Center, Falmouth, MA (United States); Northern Arizona Univ., Flagstaff, AZ (United States); Ciais, Philippe [Lab. des Sciences du Climat et de l' Environnement, Gif-sur-Yvette (France); Zhang, Yao [Univ. of Oklahoma, Norman, OK (United States); Fisher, Joshua B. [California Institute of Technology, Pasadena, CA (United States); Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA (United States); Wang, Weile [California State Uni., Monterey Bay, Seasid, CA (United States); Poulter, Benjamin [Montana State Univ., Bozeman, MT (United States); Huntzinger, Deborah N. [Northern Arizona Univ., Flagstaff, AZ (United States); Niu, Shuli [Institute of Geographic Sciences and Natural Resources Research, Beijing (China); Chinese Academy of Sciences (CAS), Beijing (China); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Atul [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ricciuto, Daniel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ito, Akihiko [Tohoku Univ., Sendai (Japan); Wei, Yaxing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huang, Yuefei [Tsinghua Univ., Beijing (China); Qinghai Univ., Xining (China); Wang, Guangqian [Tsinghua Univ., Beijing (China)

    2017-10-18

    Here, water use efficiency (WUE), defined as the ratio of gross primary productivity and evapotranspiration at the ecosystem scale, is a critical variable linking the carbon and water cycles. Incorporating a dependency on vapor pressure deficit, apparent underlying WUE (uWUE) provides a better indicator of how terrestrial ecosystems respond to environmental changes than other WUE formulations. Here we used 20th century simulations from four terrestrial biosphere models to develop a novel variance decomposition method. With this method, we attributed variations in apparent uWUE to both the trend and interannual variation of environmental drivers. The secular increase in atmospheric CO2 explained a clear majority of total variation (66 ± 32%: mean ± one standard deviation), followed by positive trends in nitrogen deposition and climate, as well as a negative trend in land use change. In contrast, interannual variation was mostly driven by interannual climate variability. To analyze the mechanism of the CO2 effect, we partitioned the apparent uWUE into the transpiration ratio (transpiration over evapotranspiration) and potential uWUE. The relative increase in potential uWUE parallels that of CO2, but this direct CO2 effect was offset by 20 ± 4% by changes in ecosystem structure, that is, leaf area index for different vegetation types. However, the decrease in transpiration due to stomatal closure with rising CO2 was reduced by 84% by an increase in leaf area index, resulting in small changes in the transpiration ratio. CO2 concentration thus plays a dominant role in driving apparent uWUE variations over time, but its role differs for the two constituent components: potential uWUE and transpiration.

  5. Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models

    Science.gov (United States)

    Zhou, Sha; Yu, Bofu; Schwalm, Christopher R.; Ciais, Philippe; Zhang, Yao; Fisher, Joshua B.; Michalak, Anna M.; Wang, Weile; Poulter, Benjamin; Huntzinger, Deborah N.; Niu, Shuli; Mao, Jiafu; Jain, Atul; Ricciuto, Daniel M.; Shi, Xiaoying; Ito, Akihiko; Wei, Yaxing; Huang, Yuefei; Wang, Guangqian

    2017-11-01

    Water use efficiency (WUE), defined as the ratio of gross primary productivity and evapotranspiration at the ecosystem scale, is a critical variable linking the carbon and water cycles. Incorporating a dependency on vapor pressure deficit, apparent underlying WUE (uWUE) provides a better indicator of how terrestrial ecosystems respond to environmental changes than other WUE formulations. Here we used 20th century simulations from four terrestrial biosphere models to develop a novel variance decomposition method. With this method, we attributed variations in apparent uWUE to both the trend and interannual variation of environmental drivers. The secular increase in atmospheric CO2 explained a clear majority of total variation (66 ± 32%: mean ± one standard deviation), followed by positive trends in nitrogen deposition and climate, as well as a negative trend in land use change. In contrast, interannual variation was mostly driven by interannual climate variability. To analyze the mechanism of the CO2 effect, we partitioned the apparent uWUE into the transpiration ratio (transpiration over evapotranspiration) and potential uWUE. The relative increase in potential uWUE parallels that of CO2, but this direct CO2 effect was offset by 20 ± 4% by changes in ecosystem structure, that is, leaf area index for different vegetation types. However, the decrease in transpiration due to stomatal closure with rising CO2 was reduced by 84% by an increase in leaf area index, resulting in small changes in the transpiration ratio. CO2 concentration thus plays a dominant role in driving apparent uWUE variations over time, but its role differs for the two constituent components: potential uWUE and transpiration.

  6. Climate and land use controls over terrestrial water use efficiency in monsoon Asia.

    Science.gov (United States)

    Hanqin Tian; Chaoqun Lu; Guangsheng Chen; Xiaofeng Xu; Mingliang Liu; et al

    2011-01-01

    Much concern has been raised regarding how and to what extent climate change and intensive human activities have altered water use efficiency (WUE, amount of carbon uptake per unit of water use) in monsoon Asia. By using a process-based ecosystem model [dynamic land ecosystem model (DLEM)], we examined effects of climate change, land use/cover change, and land...

  7. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes

    International Nuclear Information System (INIS)

    Shi, Hao; Li, Longhui; Eamus, Derek; Cleverly, James; Huete, Alfredo; Yu, Qiang; Beringer, Jason; Van Gorsel, Eva; Hutley, Lindsay

    2014-01-01

    The sensitivity of ecosystem gross primary production (GPP) to availability of water and photosynthetically active radiation (PAR) differs among biomes. Here we investigated variations of ecosystem light-use-efficiency (eLUE: GPP/PAR) and water-use-efficiency (eWUE: GPP/evapotranspiration) among seven Australian eddy covariance sites with differing annual precipitation, species composition and temperature. Changes to both eLUE and eWUE were primarily correlated with atmospheric vapor pressure deficit (VPD) at multiple temporal scales across biomes, with minor additional correlations observed with soil moisture and temperature. The effects of leaf area index on eLUE and eWUE were also relatively weak compared to VPD, indicating an intrinsic dependency of eLUE and eWUE on climate. Additionally, eLUE and eWUE were statistically different for biomes between summer and winter, except eWUE for savannas and the grassland. These findings will improve our understanding of how light- and water-use traits in Australian ecosystems may respond to climate change. (letter)

  9. Improving Water Use Efficiency of Lettuce (Lactuca sativa L.) Using Phosphorous Fertilizers.

    Science.gov (United States)

    Alkhader, Asad M F; Abu Rayyan, Azmi M

    2013-01-01

    A greenhouse pot experiment was conducted to evaluate the effect of phosphorous (P) fertilizers application to an alkaline calcareous soil on the water use efficiency (WUE) of lettuce cultivar "robinson" of iceberg type. Head fresh and dry weights, total water applied and WUE were affected significantly by the P fertilizer type and rate. P fertilizers addition induced a significant enhancement in the WUE and fresh and dry weights of the crop. A local phosphate rock (PR) applied directly was found to be inferior to the other types of P fertilizers (Mono ammonium phosphate (MAP), Single superphosphate (SSP), and Di ammonium phosphate ((DAP)). MAP fertilizer at 375 and 500 kg P2O5/ha application rates recorded the highest significant values of head fresh weight and WUE, respectively.

  10. Competition among warm season C4-cereals influence water use efficiency and competition ratios

    Directory of Open Access Journals (Sweden)

    Amanullah

    2015-12-01

    Full Text Available Water use efficiency (WUE and competition ratio (CR response of three warm season C4-cereals (grasses viz. corn (Zea mays L., cv. Hybrid-5393 VT3, grain sorghum (Sorghum bicolor L. Moench, cv. Hybrid-84G62 PAT, and foxtail millets (Setaria italic, cv. German Strain R in pure and mixed stands under low and high water levels was investigated. The experiment was conducted in pot experiment at Dryland Agriculture Institute, West Texas A&M University, Canyon, Texas, USA, during spring 2010. The objective of this study was to know whether the differences in the competitive ability of different crop species influence WUE or not? The planned mean comparison indicated that the corn WUE was 20, 11, and 6% higher in the mixed stand than in pure stand at 30, 60, and 90 days after emergence (DAE, respectively. The corn plants in pure stand had 91, 72, and 81% higher WUE than the average WUE of sorghum and millets in pure stand at 30, 60, and 90 DAE, respectively. Grain sorghum in pure stand had 70, 32, and 36% higher WUE than that of millets in pure stand at 30, 60, and 90 DAE, respectively. The WUE of three crops in mixed stand was 10 and 8% higher than the two crops mixed stand at the two early stages; but the WUE was 24% less in the three crops mixed stand than the two crops mixed stand at 90 DAE. Corn-mixed stand in two crops (average of corn + sorghum and corn + millets had 78, 74, and 74% higher WUE than the mixed stand of sorghum and millets at 30, 60, and 90 DAE, respectively. Corn and millets mixed stand had 14, 10, and 26% higher WUE than the corn and sorghum mixed stand at 30, 60, and 90 DAE, respectively. The increase in water level decreased WUE at the two late growth stages in all three crop plants. At the early growth stage (30 DAE, WUE increased in all crops at the higher water level. On the basis of CR, corn was found the best competitor, while millets was declared the least competitor in the mixed stands (corn

  11. Gas-exchange, water use efficiency and yield responses of elite potato (Solanum tuberosum L.) cultivars to changes in atmospheric carbon dioxide concentration, temperature and relative humidity

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sørensen, Kirsten Kørup; Nielsen, Kåre Lehmann

    2014-01-01

    photosynthetic water use efficiency (pWUE) by stimulation in net photosynthesis rate (62% and 43% increase of An) with coincident decline in both stomatal conductance (21% and 43% decrease of gs) and leaf transpiration rate (19% and 40% decrease of E) resulting in pWUE increments of 89% and 147%. Furthermore...

  12. Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency.

    Science.gov (United States)

    Jákli, Bálint; Tavakol, Ershad; Tränkner, Merle; Senbayram, Mehmet; Dittert, Klaus

    2017-02-01

    Potassium (K) is crucial for crop growth and is strongly related to stress tolerance and water-use efficiency (WUE). A major physiological effect of K deficiency is the inhibition of net CO 2 assimilation (A N ) during photosynthesis. Whether this reduction originates from limitations either to photochemical energy conversion or biochemical CO 2 fixation or from a limitation to CO 2 diffusion through stomata and the leaf mesophyll is debated. In this study, limitations to photosynthetic carbon gain of sunflower (Helianthus annuus L.) under K deficiency and PEG- induced water deficit were quantified and their implications on plant- and leaf-scale WUE (WUE P , WUE L ) were evaluated. Results show that neither maximum quantum use efficiency (F v /F m ) nor in-vivo RubisCo activity were directly affected by K deficiency and that the observed impairment of A N was primarily due to decreased CO 2 mesophyll conductance (g m ). K deficiency additionally impaired leaf area development which, together with reduced A N , resulted in inhibition of plant growth and a reduction of WUE P . Contrastingly, WUE L was not affected by K supply which indicated no inhibition of stomatal control. PEG-stress further impeded A N by stomatal closure and resulted in enhanced WUE L and high oxidative stress. It can be concluded from this study that reduction of g m is a major response of leaves to K deficiency, possibly due to changes in leaf anatomy, which negatively affects A N and contributes to the typical symptoms like oxidative stress, growth inhibition and reduced WUE P . Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions.

    Directory of Open Access Journals (Sweden)

    Yunqi Wang

    Full Text Available The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE in winter wheat (Triticum aestivum L. were investigated under non-irrigation (W0, no irrigation during growth stage, one time irrigation (W1, irrigation applied at stem elongation and two times irrigation (W2, irrigation applied at stem elongation and anthesis conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%-6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%-34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%-28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition.

  14. Spatial-temporal variation of ecosystem water use efficiency in Beijing’s suburban region

    Science.gov (United States)

    Mi, F.; Zhang, Q.; Zhang, X. C.; Yuan, S. B.; Lu, N.; Yan, N. Na

    2017-08-01

    Suburban ecosystem has multiple functions such as soil conservation and water regulation, which are critical for the welfare of human beings in the city. Water use efficiency (WUE) is an important indicator of ecosystem function that represents the amount of productivity per unit mass of evapotranspiration (ET). Improving WUE of suburban ecosystem is significant to climate regulation by carbon sequestration and water consumption, especially for cities with severe water shortage like Beijing, the capital of China. Based on remote sensing data, this paper examined the spatial and temporal variations in WUE in Beijing’s suburban region from 2002 to 2010. The results showed that the average annual WUE was 0.868 g C mm-1 m-2. It has large spatial variation with the minimum of 0.500 g C mm-1 m-2 in the Miyun District. During the study periods, the area with significant increasing trend of WUE was 63.2% of the total suburban region. In terms of ecosystem type, the value of WUE was following the sequence, deciduous coniferous forest (0.921g C mm-1 m-2) > mixed forest (0.887g C mm-1 m-2) > deciduous broadleaf forest (0.884 g C mm-1 m-2) > shrubland (0.860 g C mm-1 m-2) > evergreen coniferous forest (0.836 g C mm-1 m-2) > grassland (0.830 g C mm-1 m-2). As ET was similar among the ecosystems, the difference in WUE was mainly due to the discrepancy of NPP. We found that NPP significantly correlated with the diversity of ecosystem type (represented by Shannon-Wiener index). Our results suggest that ecological engineering construction, scientific ecosystem type selection, ecosystem diversity improvement and drought-resistant species cultivation are conductive to improve ecosystem WUE in Beijing’s suburban region.

  15. Inheritance of carbon isotope discrimination and water-use efficiency in cowpea

    International Nuclear Information System (INIS)

    Ismail, A.M.; Hall, A.E.

    1993-01-01

    Theory has been developed predicting an association between water-use efficiency (WUE = total biomass/transpiration) and leaf discrimination against 13C carbon isotope discrimination which could be used to indirectly select for WUE in C3 plants. Previous studies indicated variation in WUE and carbon isotope discrimination among genotypes of cowpea [Vigna unguiculata (L.) Walp.] and due to drought. Moreover, a highly significant negative correlation between WUE and carbon isotope discrimination was observed for both genotypic and drought effects, as expected based on theory. Present studies were conducted to investigate whether the inheritance of WUE and carbon isotope discrimination is nuclear or maternal, and whether any dominance is present. Contrasting cowpea accessions and hybrids were grown over 2 yr in two outdoor pot experiments, subjected to wet or dry treatments, and under full irrigation in natural soil conditions in 1 yr. Highly significant differences in WUE were observed among cowpea parents and hybrids, and due to drought, which were strongly and negatively correlated with carbon isotope discrimination as expected based on theory. Data from reciprocal crosses indicated that both WUE and carbon isotope discrimination are controlled by nuclear genes. High WUE and low carbon isotope discrimination exhibited partial dominance under pot conditions. In contrast, high carbon isotope discrimination was partially dominant for plants grown under natural soil conditions but in a similar aerial environment as in the pot studies. We speculate that differences in rooting conditions were responsible for the differences in extent of dominance for carbon isotope discrimination of plants growing under pot conditions compared with natural soil conditions in a similar field aerial environment

  16. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient.

    Directory of Open Access Journals (Sweden)

    Yizhao Chen

    Full Text Available Water-use efficiency (WUE, defined as the ratio of net primary productivity (NPP to evapotranspiration (ET, is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS, to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES. The Aridity Index (AI was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999-2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH with 0.88 gC mm-1 and the lowest was in arid sub-region (AR with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems.

  17. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient.

    Science.gov (United States)

    Chen, Yizhao; Li, Jianlong; Ju, Weimin; Ruan, Honghua; Qin, Zhihao; Huang, Yiye; Jeelani, Nasreen; Padarian, José; Propastin, Pavel

    2017-01-01

    Water-use efficiency (WUE), defined as the ratio of net primary productivity (NPP) to evapotranspiration (ET), is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS), to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES). The Aridity Index (AI) was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999-2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH) with 0.88 gC mm-1 and the lowest was in arid sub-region (AR) with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP) at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems.

  18. Supplemental irrigation to improve wheat production and water use efficiency under rainfed farming conditions

    International Nuclear Information System (INIS)

    Hussain, Q.; Bhatti, A.A.; Ahmad, M.M.

    2007-01-01

    The stochastic behaviors of rainfall pose serious limitations for sustained and profitable crop production in rainfed areas; farmers hesitate to apply fertilizers when they are not sure about rainfall. In view of these limitations a research study was conducted for three years (2003-2006) at field station of Water Resources Research Institute (WRRI), National Agricultural Research Centre(NARC), Islamabad to examine the effects of supplemental irrigation (SI) on wheat production and water use efficiency (WUE). Irrigation treatments employed under the experiment were: i) Rainfed without irrigation and fertilizer application (I/sub 0/); ii) SI of 25 mm was applied to non-fertilizer field at 75% management allowed deficit (MAD)(I/sub 1/); iii) Rainfed with fertilizer application at sowing time (I/sub 2/); and iv) SI of 25 mm was applied at 75% MAD and at the time of fertilizer application as top dressing (I/sub 3/). Supplemental irrigation increased the crop yield during the years 2003-2006 under both fertilizer and non-fertilizer conditions. Increased in grain yield under non-fertilizer conditions (I/sub 1/) ranges between 770-980 kg/ha, which is 27 to 48% higher than the rainfed yield (I/sub 0/). Supplemental irrigation and split application of fertilizer (treatment I/sub 3/) increased in grain yield within the range of 1000-1350 kg/ha, which is 27-49% higher than yield under treatment I/sub 2/. Whereas, due to synergetic effect of supplemental irrigation and fertilizer application, increased in grain yield ranges between 1550-2030 kg/ha, which is 49% to 100% higher than the rainfed and non-fertilizer field. WUE was calculated for rain (WUE/sub r/) for total water (grass: previous soil water storage + rain + irrigation) (WUE/sub g/), for SI water only (WUE/sub si/) and for synergetic effect (SI water + fertilizer application) (WUE/sub sis/) Water use efficiencies namely the WUE/sub r/, WUE/sub g/ and WUE/sub si/ during the period of three years under non fertilizer

  19. Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers.

    Science.gov (United States)

    Donovan, Lisa A; Dudley, Susan A; Rosenthal, David M; Ludwig, Fulco

    2007-05-01

    Plant water-use efficiency (WUE) is expected to affect plant fitness and thus be under natural selection in arid habitats. Although many natural population studies have assessed plant WUE, only a few related WUE to fitness. The further determination of whether selection on WUE is direct or indirect through functionally related traits has yielded no consistent results. For natural populations of two desert annual sunflowers, Helianthus anomalus and H. deserticola, we used phenotypic selection analysis with vegetative biomass as the proxy for fitness to test (1) whether there was direct and indirect selection on WUE (carbon isotope ratio) and related traits (leaf N, area, succulence) and (2) whether direct selection was consistent with hypothesized drought/dehydration escape and avoidance strategies. There was direct selection for lower WUE in mesic and dry H. anomalus populations, consistent with dehydration escape, even though it is the longer lived of the two species. For mesic H. anomalus, direct selection favored lower WUE and higher N, suggesting that plants may be "wasting water" to increase N delivery via the transpiration stream. For the shorter lived H. deserticola in the direr habitat, there was indirect selection for lower WUE, inconsistent with drought escape. There was also direct selection for higher leaf N, succulence and leaf size. There was no direct selection for higher WUE consistent with dehydration avoidance in either species. Thus, in these natural populations of two desert dune species higher fitness was associated with some combination direct and indirect selection for lower WUE, higher leaf N and larger leaf size. Our understanding of the adaptive value of plant ecophysiological traits will benefit from further consideration of related traits such as leaf nitrogen and more tests in natural populations.

  20. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    Directory of Open Access Journals (Sweden)

    Jingting Zhang

    Full Text Available It has long been concerned how crop water use efficiency (WUE responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation and agronomic practices (fertilization and cropping patterns in the semi-arid area of northern China (SAC during two periods, 1983-1999 and 2000-2010 (drier and warmer. Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax in warm-dry environment while reach the stable minimum WUE (WUEmin in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping. Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming.

  1. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    Science.gov (United States)

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983-1999 and 2000-2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming.

  2. Tomato Yield and Water Use Efficiency - Coupling Effects between Growth Stage Specific Soil Water Deficits

    DEFF Research Database (Denmark)

    Chen, Si; Zhenjiang, Zhou; Andersen, Mathias Neumann

    2015-01-01

    To investigate the sensitivity of tomato yield and water use efficiency (WUE) to soil water content at different growth stages, the central composite rotatable design (CCRD) was employed in a five-factor-five-level pot experiment under regulated deficit irrigation. Two regression models concerning...... the effects of stage-specific soil water content on tomato yield and WUE were established. The results showed that the lowest available soil water (ASW) content (around 28%) during vegetative growth stage (here denoted θ1) resulted in high yield and WUE. Moderate (around 69% ASW) during blooming and fruit...... effects of ASW in two growth stages were between θ2 and θ5, θ3. In both cases a moderate θ2 was a precondition for maximum yield response to increasing θ5 and θ3. Sensitivity analysis revealed that yield was most sensitive to soil water content at fruit maturity (θ5). Numerical inspection...

  3. Influence of Drought on Mesophyll Resistance to CO2 Diffusion and its Impact on Water-Use Efficiency in Trees

    Science.gov (United States)

    Guo, J.; Beverly, D.; Cook, C.; Ewers, B. E.; Williams, D. G.

    2015-12-01

    The resistance to CO2 diffusion inside leaves (mesophyll resistance; rm) during photosynthesis is often comparable in magnitude to stomatal diffusion resistance, and varies among species and across environmental conditions. Consequently, photosynthesis is strongly limited by rm at low internal CO2 partial pressures, such that its variation may determine patterns of leaf water-use efficiency (WUE). Reduction in stomatal conductance with drought typically increases WUE, but also decreases photosynthesis. In theory, the decrease in photosynthesis could be countered by reduction in rm while maintaining high WUE. It is still uncertain how drought-related changes in rm affect short- and long-term WUE strategies of different tree species. We conducted field observations of instantaneous WUE and 13C discrimination in two dominant conifer species (Pinus contorta and Picea engelmannii) in SE Wyoming over the seasonal dry-down period in the summer of 2015. rm was examined by on-line 13C discrimination using isotope laser spectroscopy. Controlled environment studies on three conifer species (P. contorta, P. engelmannii, and Abies lasiocarpa) and one angiosperm (Populus tremuloides) are in progress. We hypothesize that the plasticity of rm in response to drought accounts for significant adjustments in photosynthetic capacity and WUE. Needle leaf conifers are known to have relatively high rm, and we expect them to show greater improvements in photosynthesis and WUE when rm is decreased compared to angiosperm tree species.

  4. A Meta-analysis of Plant Photosynthetic Traits and Water-use efficiency Responses to Drought

    Science.gov (United States)

    Zhang, J.

    2017-12-01

    Drought is predicted to become more intense and frequent in many regions of the world in the context of climate change, especially in the semi-arid regions of the Northern Hemisphere. Understanding the plant photosynthetic traits (Pn, Gs and Tr) and water use efficiency (WUE) response to drought is very important with regard to plant growth and productivity, which could reflect the terrestrial primary productivity worldwide. We used a meta-analysis based on studies of a worldwide range and full plant species Pn, Gs, Tr and WUE under drought condition and aimed to determine the responses of Pn, Gs, Tr and WUE of different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Furthermore, reveal the differences from different plant groups (e.g. C3 and C4 plants; annual (A-herbs) and perennial (P-herbs) herbs; conifer, deciduous and evergreen trees) under the same drought intensities. Additionally, we analyzed the relationship between stomatal conductance (Gs) with Pn, Tr and WUE. Our results were as follows: 1) drought decreased the photosynthetic traits with the drought stress increasing, but increased the water use efficiency, and increased to the greatest extent in lianas, compared with herbs, shrubs and trees. 2) Furthermore, C4 plants had an advantage in photosynthesis compared to C3 plants under the same drought conditions. However, the WUE in C4 plants was not promoted as in C3 plants. The photosynthesis traits showed a more substantial decrease in P-herbs than in A-herbs. The drought promoted the WUE in P-herbs, but inhibited it in A-herbs. Compared with conifer and deciduous trees, the photosynthesis traits declined the most in evergreen tree. The WUE in deciduous trees showed a more obvious increase among the three leaf habits. 3) Finally, the Gs showed a close relationship with photosynthesis rate (Pn) and transpiration rate (Tr), which could explain 50% of the

  5. Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits.

    Science.gov (United States)

    Edwards, Christine E; Ewers, Brent E; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2012-05-01

    Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architecture of WUE, reproductive characters, and vegetative traits changed across drought and well-watered conditions, (2) whether traits with distinct developmental bases (e.g. leaf gas exchange versus reproduction) differed in the environmental sensitivity of their genetic architecture, and (3) whether quantitative variation in circadian period was related to drought response in Brassica rapa. Overall, WUE increased in drought, primarily because stomatal conductance, and thus water loss, declined more than carbon fixation. Genotypes with the highest WUE in drought expressed the lowest WUE in well-watered conditions, and had the largest vegetative and floral organs in both treatments. Thus, large changes in WUE enabled some genotypes to approach vegetative and reproductive trait optima across environments. The genetic architecture differed for gas-exchange and vegetative traits across drought and well-watered conditions, but not for floral traits. Correlations between circadian and leaf gas-exchange traits were significant but did not vary across treatments, indicating that circadian period affects physiological function regardless of water availability. These results suggest that WUE is important for drought tolerance in Brassica rapa and that artificial selection for increased WUE in drought will not result in maladaptive expression of other traits that are correlated with WUE.

  6. Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China

    CERN Document Server

    Zhu, Xianjin; Wang, Qiufeng; Hu, Zhongmin; Han, Shijie; Yan, Junhua; Wang, Yanfen; Zhao, Liang

    2014-01-01

    We selected four sites of ChinaFLUX representing four major ecosystem types in China-Changbaishan temperate broad-leaved Korean pine mixed forest (CBS), Dinghushan subtropical evergreen broadleaved forest (DHS), Inner Mongolia temperate steppe (NM), and Haibei alpine shrub-meadow (HBGC)-to study the seasonal dynamics of ecosystem water use efficiency (WUE = GPP/ET, where GPP is gross primary productivity and ET is evapotranspiration) and factors affecting it. Our seasonal dynamics results indicated single-peak variation of WUE in CBS, NM, and HBGC, which were affected by air temperature (Ta) and leaf area index (LAI), through their effects on the partitioning of evapotranspiration (ET) into transpiration (T) (i.e., T/ET). In DHS, WUE was higher at the beginning and the end of the year, and minimum in summer. Ta and soil water content affected the seasonal dynamics of WUE through their effects on GPP/T. Our results indicate that seasonal dynamics of WUE were different because factors affecting the seasonal dyn...

  7. Measured and modeled evidence for a two-fold increase in water use efficiency at an old-growth forest site in the Pacific Northwest

    Science.gov (United States)

    Jiang, Y.; Rastogi, B.; Kim, J. B.; Voelker, S.; Meinzer, F. C.; Still, C. J.

    2017-12-01

    Water use efficiency (WUE), the ratio of carbon uptake to transpiration, has been widely recognized as an important measure of carbon and water cycling in plants, and is used to track forest ecosystem responses to climate change and rising atmospheric CO2concentrations. In this study we used eddy covariance measurement data and Ecosystem Demography model (ED2) simulations to explore the patterns and physiological and biophysical controls of WUE at Wind River Experimental Forest, an old-growth coniferous forest in the Pacific Northwest. We characterized how observed and simulated WUE vary between wet and dry years, and explored the drivers of the differences in WUE between the wet and dry years. Through this explorative process, we evaluated the utility of various ways that WUE have been computed in literature. Measurement-based and simulated WUE at the old-growth forest increased over twofold from 1998 to 2015. The primary driver of this trend is a decreasing trend in evapotranspiration (ET). There were significant inter-annual variations. For example, during drought years, higher air temperature drove increases in early season ET, thereby depleting soil water and decreasing GPP. Lower GPP in turn resulted in lower WUE. This mechanism might drive changes in future carbon and water budgets under warming climate. Our evaluation of multiple WUE metrics demonstrates that each metric has a distinct sensitivity to climate anomalies, but also indicates a robust increasing trend of WUE. Statistical (multiple linear regression) and machine learning (Random Forest) analyses of flux measurements indicated that atmospheric CO2 concentration, air temperature and radiation were the most important predictors of WUE at monthly, daily and half-hourly time scale, respectively. In contrast, WUE mechanism was stable across all time scales in ED2 simulations: vapor pressure deficit was consistently the most important predictor of WUE at the monthly, daily and half-hourly time scales.

  8. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China

    NARCIS (Netherlands)

    Wang, X.B.; Dai, K.; Zhang, D.; Zhang, X.; Wang, Y.; Zhao, Q.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.

    2011-01-01

    Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming

  9. The importance of radiation for semiempirical water-use efficiency models

    Science.gov (United States)

    Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus

    2017-06-01

    Water-use efficiency (WUE) is a fundamental property for the coupling of carbon and water cycles in plants and ecosystems. Existing model formulations predicting this variable differ in the type of response of WUE to the atmospheric vapor pressure deficit of water (VPD). We tested a representative WUE model on the ecosystem scale at 110 eddy covariance sites of the FLUXNET initiative by predicting evapotranspiration (ET) based on gross primary productivity (GPP) and VPD. We found that introducing an intercept term in the formulation increases model performance considerably, indicating that an additional factor needs to be considered. We demonstrate that this intercept term varies seasonally and we subsequently associate it with radiation. Replacing the constant intercept term with a linear function of global radiation was found to further improve model predictions of ET. Our new semiempirical ecosystem WUE formulation indicates that, averaged over all sites, this radiation term accounts for up to half (39-47 %) of transpiration. These empirical findings challenge the current understanding of water-use efficiency on the ecosystem scale.

  10. Biomass production and water use efficiency in perennial grasses during and after drought stress

    DEFF Research Database (Denmark)

    Sørensen, Kirsten Kørup; Lærke, Poul Erik; Sørensen, Helle Baadsgaard

    2018-01-01

    be suitable for assessment of drought stress. There were indications of positive associations between plants carbon isotope composition and water use efficiency (WUE) as well as DM under well-watered conditions. Compared to control, drought-treated plots showed increased growth in the period after drought...... stress. Thus, the drought events did not affect total biomass production (DMtotal) of the whole growing season. During drought stress and the whole growing season, WUE was higher in drought-treated compared to control plots, so it seems possible to save water without loss of biomass. Across soil types, M......Drought is a great challenge to agricultural production, and cultivation of drought-tolerant or water use-efficient cultivars is important to ensure high biomass yields for bio-refining and bioenergy. Here, we evaluated drought tolerance of four C3 species, Dactylis glomerata cvs. Sevenop and Amba...

  11. Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuus L.) subjected to two drought scenarios.

    Science.gov (United States)

    Adiredjo, Afifuddin Latif; Navaud, Olivier; Muños, Stephane; Langlade, Nicolas B; Lamaze, Thierry; Grieu, Philippe

    2014-01-01

    High water use efficiency (WUE) can be achieved by coordination of biomass accumulation and water consumption. WUE is physiologically and genetically linked to carbon isotope discrimination (CID) in leaves of plants. A population of 148 recombinant inbred lines (RILs) of sunflower derived from a cross between XRQ and PSC8 lines was studied to identify quantitative trait loci (QTL) controlling WUE and CID, and to compare QTL associated with these traits in different drought scenarios. We conducted greenhouse experiments in 2011 and 2012 by using 100 balances which provided a daily measurement of water transpired, and we determined WUE, CID, biomass and cumulative water transpired by plants. Wide phenotypic variability, significant genotypic effects, and significant negative correlations between WUE and CID were observed in both experiments. A total of nine QTL controlling WUE and eight controlling CID were identified across the two experiments. A QTL for phenotypic response controlling WUE and CID was also significantly identified. The QTL for WUE were specific to the drought scenarios, whereas the QTL for CID were independent of the drought scenarios and could be found in all the experiments. Our results showed that the stable genomic regions controlling CID were located on the linkage groups 06 and 13 (LG06 and LG13). Three QTL for CID were co-localized with the QTL for WUE, biomass and cumulative water transpired. We found that CID and WUE are highly correlated and have common genetic control. Interestingly, the genetic control of these traits showed an interaction with the environment (between the two drought scenarios and control conditions). Our results open a way for breeding higher WUE by using CID and marker-assisted approaches and therefore help to maintain the stability of sunflower crop production.

  12. Water-use efficiency of a poplar plantation in Northern China

    Science.gov (United States)

    Jie Zhou; Zhiqiang Zhang; Ge sun; Xianrui Fang; Tonggang Zha; Jiquan Chen; Asko Noormets; Junting Guo; Steve McNulty

    2014-01-01

    The water-use efficiency (WUE) of an ecosystem—defined as the gross ecosystem production (GEP) divided by the evapotranspiration (ET)—is an important index for understanding the coupling of water and carbon and quantifying water–carbon trade-offs in forests. An open-path eddy covariance technique and a microclimate measurement system were deployed to investigate the...

  13. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    Science.gov (United States)

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  14. Simulating Water-Use Efficiency of Piceacrassi folia Forest under Representative Concentration Pathway Scenarios in the Qilian Mountains of Northwest China

    Directory of Open Access Journals (Sweden)

    Shouzhang Peng

    2016-07-01

    Full Text Available The current study used the Biome-Bio Geochemical Cycle (Biome-BGC model to simulate water-use efficiency (WUE of Piceacrassi folia (P. crassifolia forest under four representative concentration pathway (RCP scenarios, and investigated the responses of forest WUE to different combinations of climatic changes and CO2 concentrations in the Qilian Mountains of Northwest China. The model was validated by comparing simulated forest net primary productivity and transpiration under current climatic condition with independent field-measured data. Subsequently, the model was used to predict P. crassi folia forest WUE response to different climatic and CO2 change scenarios. Results showed that (1 increases in temperature, precipitation and atmospheric CO2 concentrations led to associated increases in WUE (ranging from 54% to 66% above the reference climate; (2 effect of CO2 concentration (increased WUE from 36% to 42.3% was more significant than that of climate change (increased WUE from 2.4% to 15%; and (3 forest WUE response to future global change was more intense at high elevations than at low ones, with CO2 concentration being the main factor that controlled forest WUE variation. These results provide valuable insight to help understand how these forest types might respond to future changes in climate and atmospheric CO2 concentration.

  15. Ecological interactions and the fitness effect of water-use efficiency: Competition and drought alter the impact of natural MPK12 alleles in Arabidopsis.

    Science.gov (United States)

    Campitelli, Brandon E; Des Marais, David L; Juenger, Thomas E

    2016-04-01

    The presence of substantial genetic variation for water-use efficiency (WUE) suggests that natural selection plays a role in maintaining alleles that affect WUE. Soil water deficit can reduce plant survival, and is likely to impose selection to increase WUE, whereas competition for resources may select for decreased WUE to ensure water acquisition. We tested the fitness consequences of natural allelic variation in a single gene (MPK12) that influences WUE in Arabidopsis, using transgenic lines contrasting in MPK12 alleles, under four treatments; drought/competition, drought/no competition, well-watered/competition, well-watered/no competition. Results revealed an allele × environment interaction: Low WUE plants performed better in competition, resulting from increased resource consumption. Contrastingly, high WUE individuals performed better in no competition, irrespective of water availability, presumably from enhanced water conservation and nitrogen acquisition. Our findings suggest that selection can influence MPK12 evolution, and represents the first assessment of plant fitness resulting from natural allelic variation at a single locus affecting WUE. © 2016 John Wiley & Sons Ltd/CNRS.

  16. Effects of spring prescribed fire on short-term, leaf-level photosynthesis and water use efficiency in longleaf pine

    Science.gov (United States)

    John K. Jackson; Dylan N. Dillaway; Michael C. Tyree; Mary Anne Sword Sayer

    2015-01-01

    Fire is a natural and important environmental disturbance influencing the structure, function, and composition of longleaf pine (Pinus palustris Mill.) ecosystems. However, recovery of young pines to leaf scorch may involve changes in leaf physiology, which could influence leaf water-use efficiency (WUE). This work is part of a larger seasonal...

  17. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions

    NARCIS (Netherlands)

    Lévesque, M.; Siegwolf, R.; Saurer, M.; Eilmann, B.; Rigling, A.

    2014-01-01

    Higher atmospheric CO2 concentrations (ca ) can under certain conditions increase tree growth by enhancing photosynthesis, resulting in an increase of intrinsic water-use efficiency (i WUE) in trees. However, the magnitude of these effects and their interactions with changing climatic conditions are

  18. Effect of warming and nitrogen addition on evapotranspiration and water use efficiency in a wheat-soybean/fallow rotation from 2010 to 2014

    DEFF Research Database (Denmark)

    Liu, Liting; Hu, Chunsheng; Olesen, Jørgen Eivind

    2016-01-01

    Evapotranspiration (ET) and water use efficiency (WUE) are critical indexes in water flux cycles of croplands, being affected by climate change. However, field studies addressing influence of experimental warming on ET and WUE in semi-arid cropland are highly deficient. A two-factor experiment......, including soil temperature [ambient (C) and increased average 1.5 °C (T) at 5 cm soil depth] and nitrogen fertilizer (N) [without (N0) and with 315 kg N ha−1 input (N1)], was conducted from 2010 to 2014 in North China Plain to measure ET and WUE of wheat-soybean/fallow rotation. In the N1 treatment, warming...

  19. Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoliang; Chen, Min; Liu, Yaling; Miralles, Diego G.; Wang, Faming

    2017-05-01

    Aerosols play a crucial role in the climate system, affecting incoming radiation and cloud formation. Based on a modelling framework that couples ecosystem processes with the atmospheric transfer of radiation, we analyze the effect of aerosols on surface incoming radiation, gross primary productivity (GPP), water losses from ecosystems through evapotranspiration (ET) and ecosystem water use efficiency (WUE, defined as GPP/ET) for 2003–2010 and validate them at global FLUXNET sites. The total diffuse radiation increases under relatively low or intermediate aerosol loadings, but decreases under more polluted conditions. We find that aerosol-induced changes in GPP depend on leaf area index, aerosol loading and cloudiness. Specifically, low and moderate aerosol loadings cause increases in GPP for all plant types, while heavy aerosol loadings result in enhancement (decrease) in GPP for dense (sparse) vegetation. On the other hand, ET is mainly negatively affected by aerosol loadings due to the reduction in total incoming radiation. Finally, WUE shows a consistent rise in all plant types under increasing aerosol loadings. Overall, the simulated daily WUE compares well with observations at 43 eddy-covariance tower sites (R2=0.84 and RMSE=0.01gC (kg H2O)-1) with better performance at forest sites. In addition to the increasing portions of diffuse light, the rise in WUE is also favored by the reduction in radiation- and heat-stress caused by the aerosols, especially for wet and hot climates.

  20. Stable Water Use Efficiency under Climate Change of Three Sympatric Conifer Species at the Alpine Treeline.

    Science.gov (United States)

    Wieser, Gerhard; Oberhuber, Walter; Gruber, Andreas; Leo, Marco; Matyssek, Rainer; Grams, Thorsten Erhard Edgar

    2016-01-01

    The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies, and Larix decidua trees from 1975 to 2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE) of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ(13)C and Δ(18)O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI) suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species.

  1. Stable water use efficiency under climate change of three sympatric conifer species at the Alpine treeline

    Directory of Open Access Journals (Sweden)

    Gerhard eWieser

    2016-06-01

    Full Text Available The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies and Larix decidua trees from 1975-2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ13C and Δ18O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species.

  2. Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in U.S. forests

    Science.gov (United States)

    Guerrieri, Rossella; Lepine, Lucie; Asbjornsen, Heidi; Xiao, Jingfeng; Ollinger, Scott V.

    2016-10-01

    Understanding relations among forest carbon (C) uptake and water use is critical for predicting forest-climate interactions. Although the basic properties of tree-water relations have long been known, our understanding of broader-scale patterns is limited by several factors including (1) incomplete understanding of drivers of change in coupled C and water fluxes and water use efficiency (WUE), (2) difficulty in reconciling WUE estimates obtained at different scales, and (3) uncertainty in how evapotranspiration (ET) and WUE vary with other important resources such as nitrogen (N). To address these issues, we examined ET, gross primary production (GPP), and WUE at 11 AmeriFlux sites across North America. Our analysis spanned leaf and ecosystem scales and included foliar δ13C, δ18O, and %N measurements; eddy covariance estimates of GPP and ET; and remotely sensed estimates of canopy %N. We used flux data to derive ecosystem WUE (WUEe) and foliar δ13C to infer intrinsic WUE. We found that GPP, ET, and WUEe scaled with canopy %N, even when environmental variables were considered, and discuss the implications of these relationships for forest-atmosphere-climate interactions. We observed opposing patterns of WUE at leaf and ecosystem scales and examined uncertainties to help explain these opposing patterns. Nevertheless, significant relationship between C isotope-derived ci/ca and GPP indicates that δ13C can be an effective predictor of forest GPP. Finally, we show that incorporating species functional traits—wood anatomy, hydraulic strategy, and foliar %N—into a conceptual model improved the interpretation of Δ13C and δ18O vis-à-vis leaf to canopy water-carbon fluxes.

  3. Cotton Water Use Efficiency under Two Different Deficit Irrigation Scheduling Methods

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Baker

    2015-08-01

    Full Text Available Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE of cotton (Gossypium hirsutum L. In this experiment, conducted at Lubbock, TX, USA in 2014, our objective was to test two canopy temperature based stress indices, each at two different irrigation trigger set points: the Stress Time (ST method with irrigation triggers set at 5.5 (ST_5.5 and 8.5 h (ST_8.5 and the Crop Water Stress Index (CWSI method with irrigation triggers set at 0.3 (CWSI_0.3 and 0.6 (CWSI_0.6. When these irrigation triggers were exceeded on a given day, the crop was deficit irrigated with 5 mm of water via subsurface drip tape. Also included in the experimental design were a well-watered (WW control irrigated at 110% of potential evapotranspiration and a dry land (DL treatment that relied on rainfall only. Seasonal crop water use ranged from 353 to 625 mm across these six treatments. As expected, cotton lint yield increased with increasing crop water use but lint yield WUE displayed asignificant (p ≤ 0.05 peak near 3.6 to 3.7 kg ha−1 mm−1 for the ST_5.5 and CWSI_0.3 treatments, respectively. Our results suggest that WUE may be optimized in cotton with less water than that needed for maximum lint yield.

  4. Radiation and water use efficiencies of two coniferous forest canopies

    Science.gov (United States)

    Lamaud, E.; Brunet, Y.; Berbigier, P.

    1996-12-01

    Two experiments were performed in a confierous forest (maritime pine) in the southwest of France, one in 1994 and the other in 1995. Two sites were chosen, differing by age, height and structure of the trees, as well as the nature of the understorey. In both cases measurements of turbulent fluxes were made at two levels above and within the forest canopy, using sonic anemometers and open-path infrared CO 2-H 2O analysers. The flux differences derived from the two measurement levels allowed the Radiation and Water Use Efficiencies (RUE and WUE, respectively) to be evaluated for both canopy crowns. The results are based on the analysis of about ten days from each experiment. For both campaigns RUE is significantly larger during cloudy conditions when the fraction of diffuse radiation ( {Q id}/{Q i}) increases. An empirical linear relation between RUE and {Q id}/{Q i} is established for each site, with a smaller intercept and a larger slope for the older forest. In clear conditions ( {Q id}/{Q i} < 0.4 ), RUE is about 30 % lower for this forest. Tree photosynthesis, estimated as the net CO 2 flux of the foliated layer F c, appears poorly correlated (r 2 < 0.4) with transpiration (net water vapour flux E). This is shown to result from strong variations in the atmospheric saturation deficit D during both campaigns. At both sites WUE turns out to be a hyperbolic function of D ( {Fc}/{E} = {-k}/{D}). The coefficient k is 50 % larger for the younger forest. This is in agreement with the values obtained for RUE, and indicates that photosynthetic rates decrease with the age of the trees.

  5. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau

    Science.gov (United States)

    Lin, Wen; Liu, Wenzhao; Xue, Qingwu

    2016-12-01

    To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage.

  6. Foliar antitranspirant and soil superabsorbent hydrogel affects photosynthetic gas exchange and water use efficiency of maize grown under low rainfall conditions.

    Science.gov (United States)

    Yang, Wei; Guo, Shi-Wen; Li, Pin-Fang; Song, Ri-Quan; Yu, Jian

    2018-06-08

    Two lysimeter experiments with maize plants were conducted to inquiry the effect of combined superabsorbent polymer (SAP) and fulvic acid (FA) application on photosynthetic gas exchange and water use efficiency (WUE) under deficit irrigation conditions. Soil SAP (45 kg ha -1 ) was applied while sowing, and FA solution (2 g L -1 ) was sprayed onto crop canopy three times at later plant growth periods. Combining SAP and FA application significantly improved plant photosynthesis, chlorophyll contents, and instantaneous WUE, while maintaining the optimal leaf stomatal transpiration. The effect of combined two chemicals use on photosynthesis and leaf instantaneous WUE was superior compared with the effects of their individual applications. As compared with plots not treated with chemicals, soil SAP significantly improved the yield by 12% and grain WUE by 10% when averaged across the two experiments, whereas foliar FA application did not affect yield and grain WUE. In contrast, the combined use of two chemicals significantly increased the yield by 20% and grain WUE by 26%, largely attributed to the increase in grain number. Soil SAP and foliar FA use, under low rainfall conditions, had little influence on crop water consumption but improved plant WUE by enhancing photosynthesis and increasing kernel number. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Seasonal photosynthetic gas exchange and water-use efficiency in a constitutive CAM plant, the giant saguaro cactus (Carnegiea gigantea).

    Science.gov (United States)

    Bronson, Dustin R; English, Nathan B; Dettman, David L; Williams, David G

    2011-11-01

    Crassulacean acid metabolism (CAM) and the capacity to store large quantities of water are thought to confer high water use efficiency (WUE) and survival of succulent plants in warm desert environments. Yet the highly variable precipitation, temperature and humidity conditions in these environments likely have unique impacts on underlying processes regulating photosynthetic gas exchange and WUE, limiting our ability to predict growth and survival responses of desert CAM plants to climate change. We monitored net CO(2) assimilation (A(net)), stomatal conductance (g(s)), and transpiration (E) rates periodically over 2 years in a natural population of the giant columnar cactus Carnegiea gigantea (saguaro) near Tucson, Arizona USA to investigate environmental and physiological controls over carbon gain and water loss in this ecologically important plant. We hypothesized that seasonal changes in daily integrated water use efficiency (WUE(day)) in this constitutive CAM species would be driven largely by stomatal regulation of nighttime transpiration and CO(2) uptake responding to shifts in nighttime air temperature and humidity. The lowest WUE(day) occurred during time periods with extreme high and low air vapor pressure deficit (D(a)). The diurnal with the highest D(a) had low WUE(day) due to minimal net carbon gain across the 24 h period. Low WUE(day) was also observed under conditions of low D(a); however, it was due to significant transpiration losses. Gas exchange measurements on potted saguaro plants exposed to experimental changes in D(a) confirmed the relationship between D(a) and g(s). Our results suggest that climatic changes involving shifts in air temperature and humidity will have large impacts on the water and carbon economy of the giant saguaro and potentially other succulent CAM plants of warm desert environments.

  8. Does plasticity in plant physiological traits explain the rapid increase in water use efficiency? An ecohydrological modeling approach

    Science.gov (United States)

    Mastrotheodoros, Theodoros; Fatichi, Simone; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo

    2016-04-01

    The rise of atmospheric CO2 concentration is expected to stimulate plant productivity by enhancing photosynthesis and reducing stomatal conductance and thus increasing plant water use efficiency (WUE) worldwide. An analysis of eddy covariance flux tower data from 21 forested ecosystems across the north hemisphere detected an unexpectedly large increase in WUE (Keenan et al, 2013), which was six times larger than the increase found by most previous studies based on controlled experiments (e.g., FACE), leaf-scale analyses, and numerical modelling. This increase could be solely attributed to the increase in atmospheric CO2 since other confounding factors were ruled out. Here, we investigate the potential contribution of plant plasticity, reflected in the temporal adjustment of major plant physiological traits, on changes in WUE using the ecohydrological model Tethys and Chloris (T&C). We hypothesize that the increase in WUE can be attributed to small variations in plant physiological traits, undetectable through observations, eventually triggered by the atmospheric CO2 increase. Data from the 21 sites in the above mentioned study are used to force the model. Simulation results with and without plasticity in the physiological traits (i.e., model parameters in our numerical experiments) are compared with the observed trends in WUE. We test several plant adaptation strategies in being effective in explaining the observed increase in WUE using a multifactorial numerical experiment in which we perturb in a systematic way selected plant parameters. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-7.

  9. Water Use Efficiency of Cotton and Wheat Crops at Various Management Allowed Depletion in Lower Indus Basin

    Directory of Open Access Journals (Sweden)

    KHALIFA QASIML AGHARI

    2010-10-01

    Full Text Available This paper deals with contemporary irrigation water management of major crops in Lower Indus Basin of Pakistan. Field experiments were conducted to estimate the optimum WUE (Water Use Efficiency for various MAD (Management Allowed Depletion levels including 55, 65 and 75% for cotton crop, and 45, 55 and 65% for wheat crop. The daily actual crop Etca (Evapotranspiration was observed through gypsum blocks and a drainage Lysimeter. The observed seasonal cotton crops ETca in the experiments were 486, 413, and 397 mm for 55, 65, and 75% MAD levels, respectively. Similarly, wheat crops ETca observed were 363, 359, and 332mm for 45, 55, and 65% MAD levels, respectively. The WUE determined in terms of seed-cotton yield per unit of seasonal water use were 6.0, 6.5, and 5.8kg (ha mm-1 The corresponding values of WUE for wheat were 14.1, 15.0 and 13.4kg (ha mm-1. Hence; the highest WUE was achieved with MAD at 65% for cotton and at 55% for wheat.

  10. The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Iritz, Z.; Lindroth, A.

    2007-01-01

    The effect of water availability on stand-level productivity, transpiration, water use efficiency (WUE) and radiation use efficiency (RUE) is evaluated for different willow clones at stand level. The measurements were made during the growing season 2000 in a 3-year-old plantation in Scania......, southernmost Sweden. Six willow clones were included in the study: L78183, SW Rapp, SW Jorunn, SW Jorr, SW Tora and SW Loden. All clones were exposed to two water treatments: rain-fed, non-irrigated treatment and reduced water availability by reduced soil water recharge. Field measurements of stem sap...... low compared to other results. Generally, all clones, except for Jorunn, seem to be better off concerning biomass production, WUE and RUE than the reference clone. Jorr, Jorunn and Loden also seem to be able to cope with the reduced water availability with increase in the water use efficiency. Tora...

  11. Water-use efficiency and relative growth rate mediate competitive interactions in Sonoran Desert winter annual plants.

    Science.gov (United States)

    Gremer, Jennifer R; Kimball, Sarah; Keck, Katie R; Huxman, Travis E; Angert, Amy L; Venable, D Lawrence

    2013-10-01

    A functional approach to investigating competitive interactions can provide a mechanistic understanding of processes driving population dynamics, community assembly, and the maintenance of biodiversity. In Sonoran Desert annual plants, a trade-off between relative growth rate (RGR) and water-use efficiency (WUE) contributes to species differences in population dynamics that promote long-term coexistence. Traits underlying this trade-off explain variation in demographic responses to precipitation as well as life history and phenological patterns. Here, we ask how these traits mediate competitive interactions. • We conducted competition trials for three species occupying different positions along the RGR-WUE trade-off axis and compared the effects of competition at high and low soil moisture. We compared competitive effect (ability to suppress neighbors) and competitive response (ability to withstand competition from neighbors) among species. • The RGR-WUE trade-off predicted shifts in competitive responses at different soil moistures. The high-RGR species was more resistant to competition in high water conditions, while the opposite was true for the high-WUE species. The intermediate RGR species tended to have the strongest impact on all neighbors, so competitive effects did not scale directly with differences in RGR and WUE among competitors. • Our results reveal mechanisms underlying long-term variation in fitness: high-RGR species perform better in years with large, frequent rain events and can better withstand competition under wetter conditions. The opposite is true for high-WUE species. Such resource-dependent responses strongly influence community dynamics and can promote coexistence in variable environments.

  12. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang-Huai-Hai Valley

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Tao; Congfeng Li; Jingjing Li; Zaisong Ding; Jie Xu; Xuefang Sun; Peilu Zhou; Ming Zhao

    2015-01-01

    A two-year field experiment (2012–2013) was conducted to investigate the effects of two tillage methods and five maize straw mulching patterns on the yield, water consumption, and water use efficiency (WUE) of spring maize (Zea mays L.) in the northern Huang–Huai–Hai valley of China. Compared to rotary tillage, subsoil tillage resulted in decreases in water consumption by 6.3–7.8% and increases in maize yield by 644.5–673.9 kg ha−1, soil water content by 2.9–3.0%, and WUE by 12.7–15.2%. Chopped straw mulching led to higher yield, soil water content, and WUE as well as lower water consumption than prostrate whole straw mulching. Mulching with 50%chopped straw had the largest positive effects on maize yield, soil water content, and WUE among the five mulching treatments. Tillage had greater influence on maize yield than straw mulching, whereas straw mulching had greater influence on soil water content, water consumption, and WUE than tillage. These results suggest that 50%chopped straw mulching with subsoil tillage is beneficial in spring maize production aiming at high yield and high WUE in the Huang–Huai–Hai valley.

  13. Cross-scale interactions affect tree growth and intrinsic water use efficiency and highlight the importance of spatial context in managing forests under global change

    Science.gov (United States)

    Kenneth J. Ruzicka; Klaus J. Puettmann; J. Renée Brooks

    2017-01-01

    Summary1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment to better understand options for managing forests under climate change. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (δ...

  14. Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought.

    Science.gov (United States)

    de Miguel, Marina; Sánchez-Gómez, David; Cervera, María Teresa; Aranda, Ismael

    2012-01-01

    Drought is an important environmental factor in Mediterranean ecosystems affecting seedling recruitment, productivity or susceptibility to fires and pathogens. Studying water use efficiency in these environments is crucial due to its adaptive value allowing trees to cope with low water availability. We studied the phenotypic variability and genetic control of intrinsic water use efficiency (WUE(i)) and related traits in a full-sib family of Pinus pinaster under drought imposition. We detected significant differences in WUE(i) between clones of the same family and moderate heritability estimates that indicate some degree of genetic control over this trait. Stomatal conductance to water vapor was the trait most affected by drought imposition and it showed the strongest influence in WUE(i). Stomatal conductance to water vapor and specific leaf area (SLA) were the traits with highest heritabilities and they showed a significant genetic correlation with WUE(i), suggesting that selection of needles with low SLA values will improve WUE(i) in this species by reducing water losses through stomatal control.

  15. Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China

    Science.gov (United States)

    Zhu, Q.; Jiang, H.; Peng, C.; Liu, J.; Wei, X.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.

    2011-01-01

    Water use efficiency (WUE) is an important variable used in climate change and hydrological studies in relation to how it links ecosystem carbon cycles and hydrological cycles together. However, obtaining reliable WUE results based on site-level flux data remains a great challenge when scaling up to larger regional zones. Biophysical, process-based ecosystem models are powerful tools to study WUE at large spatial and temporal scales. The Integrated BIosphere Simulator (IBIS) was used to evaluate the effects of climate change and elevated CO2 concentrations on ecosystem-level WUE (defined as the ratio of gross primary production (GPP) to evapotranspiration (ET)) in relation to terrestrial ecosystems in China for 2009–2099. Climate scenario data (IPCC SRES A2 and SRES B1) generated from the Third Generation Coupled Global Climate Model (CGCM3) was used in the simulations. Seven simulations were implemented according to the assemblage of different elevated CO2 concentrations scenarios and different climate change scenarios. Analysis suggests that (1) further elevated CO2concentrations will significantly enhance the WUE over China by the end of the twenty-first century, especially in forest areas; (2) effects of climate change on WUE will vary for different geographical regions in China with negative effects occurring primarily in southern regions and positive effects occurring primarily in high latitude and altitude regions (Tibetan Plateau); (3) WUE will maintain the current levels for 2009–2099 under the constant climate scenario (i.e. using mean climate condition of 1951–2006 and CO2concentrations of the 2008 level); and (4) WUE will decrease with the increase of water resource restriction (expressed as evaporation ratio) among different ecosystems.

  16. Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought.

    Science.gov (United States)

    Théroux Rancourt, Guillaume; Éthier, Gilbert; Pepin, Steeve

    2015-02-01

    Improvement of water use efficiency is a key objective to improve the sustainability of cultivated plants, especially fast growing species with high water consumption like poplar. It is well known that water use efficiency (WUE) varies considerably among poplar genotypes, and it was recently suggested that the use of the mesophyll-to-stomatal conductance ratio (gm/gs) would be an appropriate trait to improve WUE. The responses of 7-week-old cuttings of four hybrid poplar clones and one native Balsam poplar (Populus balsamifera L.) to a water stress-recovery cycle were examined to evaluate the relation between the gm/gs ratio and transpiration efficiency (TE), a leaf-level component of WUE. A contrasting gs response to water stress was observed among the five clones, from stomatal closure early on during soil drying up to limited closure in Balsam poplar. However in the hybrids, the decline in gm was consistently delayed by a few days compared with gs. Moreover, in the most water use-efficient hybrids, the recovery following rehydration occurred faster for gm than for gs. Thus, the delay in the response of gm to drought and its faster recovery upon rewatering increased the gm/gs of the hybrids and this ratio scaled positively with TE. Our results support the use of the gm/gs ratio to select genotypes with improved WUE, and the notion that breeding strategies focusing mainly on stomatal responses to soil drying should also look for a strong curvilinearity between net carbon assimilation rate and gs, the indication of a significant increase in gm/gs in the earlier stages of stomatal closure. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Explaining global increases in water use efficiency: why have we overestimated responses to rising atmospheric CO(2 in natural forest ecosystems?

    Directory of Open Access Journals (Sweden)

    Lucas C R Silva

    Full Text Available The analysis of tree-ring carbon isotope composition (δ(13C has been widely used to estimate spatio-temporal variations in intrinsic water use efficiency (iWUE of tree species. Numerous studies have reported widespread increases in iWUE coinciding with rising atmospheric CO(2 over the past century. While this could represent a coherent global response, the fact that increases of similar magnitude were observed across biomes with no apparent effect on tree growth raises the question of whether iWUE calculations reflect actual physiological responses to elevated CO(2 levels.Here we use Monte Carlo simulations to test if an artifact of calculation could explain observed increases in iWUE. We show that highly significant positive relationships between iWUE and CO(2 occur even when simulated data (randomized δ(13C values spanning the observed range are used in place of actual tree-ring δ(13C measurements. From simulated data sets we calculated non-physiological changes in iWUE from 1900 to present and across a 4000 m altitudinal range. This generated results strikingly similar to those reported in recent studies encompassing 22 species from tropical, subtropical, temperate, boreal and mediterranean ecosystems. Only 6 of 49 surveyed case studies showed increases in iWUE significantly higher than predicted from random values.Our results reveal that increases in iWUE estimated from tree-ring δ(13C occur independently of changes in (13C discrimination that characterize physiological responses to elevated CO(2. Due to a correlation with CO(2 concentration, which is used as an independent factor in the iWUE calculation, any tree-ring δ(13C data set would inevitably generate increasing iWUE over time. Therefore, although consistent, previously reported trends in iWUE do not necessarily reflect a coherent global response to rising atmospheric CO(2. We discuss the significance of these findings and suggest ways to distinguish real from artificial

  18. Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings.

    Science.gov (United States)

    Liu, Xiping; Fan, Yangyang; Long, Junxia; Wei, Ruifeng; Kjelgren, Roger; Gong, Chunmei; Zhao, Jun

    2013-03-01

    The efficient use of water and nitrogen (N) to promote growth and increase yield of fruit trees and crops is well studied. However, little is known about their effects on woody plants growing in arid and semiarid areas with limited water and N availability. To examine the effects of water and N supply on early growth and water use efficiency (WUE) of trees on dry soils, one-year-old seedlings of Robinia pseudoacacia were exposed to three soil water contents (non-limiting, medium drought, and severe drought) as well as to low and high N levels, for four months. Photosynthetic parameters, leaf instantaneous WUE (WUEi) and whole tree WUE (WUEb) were determined. Results showed that, independent of N levels, increasing soil water content enhanced the tree transpiration rate (Tr), stomatal conductance (Gs), intercellular CO2 concentration (Ci), maximum net assimilation rate (Amax), apparent quantum yield (AQY), the range of photosynthetically active radiation (PAR) due to both reduced light compensation point and enhanced light saturation point, and dark respiration rate (Rd), resulting in a higher net photosynthetic rate (Pn) and a significantly increased whole tree biomass. Consequently, WUEi and WUEb were reduced at low N, whereas WUEi was enhanced at high N levels. Irrespective of soil water availability, N supply enhanced Pn in association with an increase of Gs and Ci and a decrease of the stomatal limitation value (Ls), while Tr remained unchanged. Biomass and WUEi increased under non-limiting water conditions and medium drought, as well as WUEb under all water conditions; but under severe drought, WUEi and biomass were not affected by N application. In conclusion, increasing soil water availability improves photosynthetic capacity and biomass accumulation under low and high N levels, but its effects on WUE vary with soil N levels. N supply increased Pn and WUE, but under severe drought, N supply did not enhance WUEi and biomass.

  19. Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern USA.

    Science.gov (United States)

    Jennings, Katie A; Guerrieri, Rossella; Vadeboncoeur, Matthew A; Asbjornsen, Heidi

    2016-04-01

    Nitrogen (N) deposition and changing climate patterns in the northeastern USA can influence forest productivity through effects on plant nutrient relations and water use. This study evaluates the combined effects of N fertilization, climate and rising atmospheric CO2on tree growth and ecophysiology in a temperate deciduous forest. Tree ring widths and stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes were used to assess tree growth (basal area increment, BAI) and intrinsic water use efficiency (iWUE) ofQuercus velutinaLamb., the dominant tree species in a 20+ year N fertilization experiment at Harvard Forest (MA, USA). We found that fertilized trees exhibited a pronounced and sustained growth enhancement relative to control trees, with the low- and high-N treatments responding similarly. All treatments exhibited improved iWUE over the study period (1984-2011). Intrinsic water use efficiency trends in the control trees were primarily driven by changes in stomatal conductance, while a stimulation in photosynthesis, supported by an increase in foliar %N, contributed to enhancing iWUE in fertilized trees. All treatments were predominantly influenced by growing season vapor pressure deficit (VPD), with BAI responding most strongly to early season VPD and iWUE responding most strongly to late season VPD. Nitrogen fertilization increasedQ. velutinasensitivity to July temperature and precipitation. Combined, these results suggest that ambient N deposition in N-limited northeastern US forests has enhanced tree growth over the past 30 years, while rising ambient CO2has improved iWUE, with N fertilization and CO2having synergistic effects on iWUE. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones

    International Nuclear Information System (INIS)

    Linderson, Maj-Lena; Iritz, Zinaida; Lindroth, Anders

    2007-01-01

    The effect of water availability on stand-level productivity, transpiration, water use efficiency (WUE) and radiation use efficiency (RUE) is evaluated for different willow clones at stand level. The measurements were made during the growing season 2000 in a 3-year-old plantation in Scania, southernmost Sweden. Six willow clones were included in the study: L78183, SW Rapp, SW Jorunn, SW Jorr, SW Tora and SW Loden. All clones were exposed to two water treatments: rain-fed, non-irrigated treatment and reduced water availability by reduced soil water recharge. Field measurements of stem sap-flow and biometry are up-scaled to stand transpiration and stand dry substance production and used to assess WUE. RUE is estimated from the ratio between the stand dry substance production and the accumulated absorbed photosynthetic active radiation over the growing season. The total stand transpiration rate for the 5 months lies between 100 and 325 mm, which is fairly low compared to the Penman-Monteith transpiration for willow, reaching 400-450 mm for the same period. Mean WUE of all clones and treatments is 5.3 g/kg, which is high compared to earlier studies, while average RUE is 0.31 g/mol, which is slightly low compared to other results. Generally, all clones, except for Jorunn, seem to be better off concerning biomass production, WUE and RUE than the reference clone. Jorr, Jorunn and Loden also seem to be able to cope with the reduced water availability with increase in the water use efficiency. Tora performs significantly better than the other clones concerning both growth and efficiency in light and water use, but the effect of the dry treatment on stem growth shows sensitivity to water availability. The reduced stem growth could be due to a change in allocation patterns

  1. Herbivory mitigation through increased water-use efficiency in a leaf-mining moth-apple tree relationship.

    Science.gov (United States)

    Pincebourde, Sylvain; Frak, Ela; Sinoquet, Hervé; Regnard, Jean Luc; Casas, Jérôme

    2006-12-01

    Herbivory alters plant gas exchange but the effects depend on the type of leaf damage. In contrast to ectophagous insects, leaf miners, by living inside the leaf tissues, do not affect the integrity of the leaf surface. Thus, the effect of leaf miners on CO2 uptake and water-use efficiency by leaves remains unclear. We explored the impacts of the leaf-mining moth Phyllonorycter blancardella (Lepidoptera: Gracillariidae) on light responses of the apple leaf gas exchanges to determine the balance between the negative effects of reduced photosynthesis and potential positive impacts of increased water-use efficiency (WUE). Gas exchange in intact and mined leaf tissues was measured using an infrared gas analyser. The maximal assimilation rate was slightly reduced but the light response of net photosynthesis was not affected in mined leaf tissues. The transpiration rate was far more affected than the assimilation rate in the mine integument as a result of stomatal closure from moderate to high irradiance level. The WUE was about 200% higher in the mined leaf tissues than in intact leaf portions. Our results illustrate a novel mechanism by which plants might minimize losses from herbivore attacks; via trade-offs between the negative impacts on photosynthesis and the positive effects of increased WUE.

  2. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland

    Science.gov (United States)

    Gao, Yao; Markkanen, Tiina; Aurela, Mika; Mammarella, Ivan; Thum, Tea; Tsuruta, Aki; Yang, Huiyi; Aalto, Tuula

    2017-09-01

    The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland) flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET) showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD) increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET) was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The model deficiencies exist

  3. Evaluation of the Effect of Irrigation and Fertilization by Drip Fertigation on Tomato Yield and Water Use Efficiency in Greenhouse

    Directory of Open Access Journals (Sweden)

    Wang Xiukang

    2016-01-01

    Full Text Available The water shortage in China, particularly in Northwest China, is very serious. There is, therefore, great potential for improving the water use efficiency (WUE in agriculture, particularly in areas where the need for water is greatest. A two-season (2012 and 2013 study evaluated the effects of irrigation and fertilizer rate on tomato (Lycopersicum esculentum Mill., cv. “Jinpeng 10” growth, yield, and WUE. The fertilizer treatment significantly influenced plant height and stem diameter at 23 and 20 days after transplanting in 2012 and 2013, respectively. As individual factors, irrigation and fertilizer significantly affected the leaf expansion rate, but irrigation × fertilizer had no statistically significant effect on the leaf growth rate at 23 days after transplanting in 2012. Dry biomass accumulation was significantly influenced by fertilizer in both years, but there was no significant difference in irrigation treatment in 2012. Our study showed that an increased irrigation level increased the fruit yield of tomatoes and decreased the WUE. The fruit yield and WUE increased with the increased fertilizer rate. WUE was more sensitive to irrigation than to fertilization. An irrigation amount of 151 to 208 mm and a fertilizer amount of 454 to 461 kg·ha−1 (nitrogen fertilizer, 213.5–217 kg·ha−1; phosphate fertilizer, 106.7–108 kg·ha−1; and potassium fertilizer, 133.4–135.6 kg·ha−1 were recommended for the drip fertigation of tomatoes in greenhouse.

  4. [Effects of different tillage patterns on soil properties, maize yield and water use efficiency in Weibei Highland, China.

    Science.gov (United States)

    Liu, Dan; Zhang, Xia; Li, Jun; Wang, Xu-Dong

    2018-02-01

    An eight-year field experiment of straw returning was conducted on dark loessial soil in Weibei Highland to investigate the effects of tillage patterns on soil aggregate, soil organic carbon (SOC), corn yield and soil water use efficiency (WUE). There were six tillage patterns, including conventional tillage (CT/CT), no-tillage (NT/NT), subsoiling tillage (ST/ST), no-tillage/subsoiling tillage (NT/ST), conventional tillage/no-tillage (CT/NT) and conventional tillage/subsoiling tillage (CT/ST). The results showed that compared with CT/CT, the patterns of NT/NT, ST/ST and the rotational tillage patterns (NT/ST, CT/NT and CT/ST) decreased the mean mass diameter of soil mechanical stable aggregate. The patterns of NT/NT, ST/ST and NT/ST increased the content of soil water-stable aggregate with the particle size >0.25 mm (WR 0.25 ) and their mean mass diameter, especially in the depth of 20-50 cm. These patterns reduced the proportion of aggregate destruction (PAD). Compared with CT/CT, the patterns of NT/ST, CT/NT, NT/NT and ST/ST increased the content of SOC in 0-10 cm soil layer. The content of SOC decreased as the increases of soil depth for all tillage patterns, but the decrease in SOC of three single tillage patterns (ST/ST, NT/NT and CT/CT) was larger than that of three rotational tillage patterns. Compared with CT/CT, the other five tillage patterns increased soil water storage in 0-200 cm soil profile, crop yield and WUE in maize. The yield and WUE in NT/ST pattern were significantly increased by 15.1% and 27.5%, respectively. Both corn yield and WUE were significantly and positively correlated with soil water storage in 0-200 cm soil profile in field during the cropping and fallow periods. Moreover, soil water storage during the cropping period was positively correlated with WR 0.25 , but negatively correlated with PAD in 0-50 cm soil layer. Particularly, maize yield, WUE and soil water storage during the cropping period were closely related to WR 0.25 in 20

  5. Comparison of evapotranspiration components and water-use efficiency among different land use patterns of temperate steppe in the Northern China pastoral-farming ecotone.

    Science.gov (United States)

    Li, Yuzhe; Fan, Jiangwen; Hu, Zhongmin; Shao, Quanqin; Harris, Warwick

    2016-06-01

    Water-use efficiency (WUE), which links carbon and water cycles, is an important indicator of assessing the interactions between ecosystems and regional climate. Using chamber methods with and without plant removal treatments, we investigated WUE and evapotranspiration (ET) components in three ecosystems with different land-use types in Northern China pastoral-farming ecotone. In comparison, ET of the ecosystems with grazing exclusion and cultivating was 6.7 and 13.4 % higher than that of the ecosystem with free grazing. The difference in ET was primarily due to the different magnitudes of soil water evaporation (E) rather than canopy transpiration (T). Canopy WUE (WUEc, i.e., the ratio of gross primary productivity to T) at the grazing excluded and cultivated sites was 17 and 36 % higher than that at the grazing site. Ecosystem WUE (WUEnep, i.e., the ratio of net ecosystem productivity to ET) at the cultivated site was 34 and 28 % lower in comparison with grazed and grazing excluded stepped, respectively. The varied leaf area index (LAI) of different land uses was correlated with microclimate and ecosystem vapor/carbon exchange. The LAI changing with land uses should be the primary regulation of grassland WUE. These findings facilitate the mechanistic understanding of carbon-water relationships at canopy and ecosystem levels and projection of the effects of land-use change on regional climate and productivity.

  6. Comparison of water-use efficiency estimates based on tree-ring carbon isotopes with simulations of a dynamic vegetation model

    Science.gov (United States)

    Saurer, Matthias; Renato, Spahni; Fortunat, Joos; David, Frank; Kerstin, Treydte; Rolf, Siegwolf

    2015-04-01

    Tree-ring d13C-based estimates of intrinsic water-use efficiency (iWUE, reflecting the ratio of assimilation A to stomatal conductance gs) generally show a strong increase during the industrial period, likely associated with the increase in atmospheric CO2. However, it is not clear, first, if tree-ring d13C-derived iWUE-values indeed reflect actual plant and ecosystem-scale variability in fluxes and, second, what physiological changes were the drivers of the observed iWUE increase, changes in A or gs or both. To address these questions, we used a complex dynamic vegetation model (LPX) that combines process-based vegetation dynamics with land-atmosphere carbon and water exchange. The analysis was conducted for three functional types, representing conifers, oaks, larch, and various sites in Europe, where tree-ring isotope data are available. The increase in iWUE over the 20th century was comparable in LPX-simulations as in tree-ring-estimates, strengthening confidence in these results. Furthermore, the results from the LPX model suggest that the cause of the iWUE increase was reduced stomatal conductance during recent decades rather than increased assimilation. High-frequency variation reflects the influence of climate, like for example the 1976 summer drought, resulting in strongly reduced A and g in the model, particularly for oak.

  7. Assessment of productivity and water use efficiency in three maize (zea mays L.) varieties in Kwabenya-Atomic area

    International Nuclear Information System (INIS)

    Frimpong, J. O.

    2010-06-01

    The production of rain-fed maize in the Kwabenya-Atomic area of the coastal savannah environment of Ghana is limited by low and erratic rainfall. Enhancing maize production in the area will require the use of maize varieties efficient in the use of soil moisture. The study was, therefore, conducted to evaluate three recently released maize varieties (Obatanpa, Mamaba, and Golden Crystal) for their efficiency in the use of soil moisture for total dry matter and grain production and consequently identify the maize varieties suitable for rain-fed production in the Kwabenya-Atomic area. Field experiments were conducted m 2008 during the major and minor cropping seasons at Kwabenya-Atomic area in Ghana using three maize varieties grown at a planting distance of 0.4 m within rows and 0.8 m between rows. The experimental design used was the randomised complete block design in four replicates. Plants were sampled every two weeks throughout the maize growing seasons. Access tubes installed in each sub-plot facilitated simultaneous moisture monitoring with the aid of a neutron probe (CPN (R) 503 Hydroprobe) in a 120 cm soil profile. The moisture content values were used for the estimation of actual evapotranspiration of the maize crop using the water balance approach. Grain yield (GY) and its associated water use efficiency (WUE GY ) were significantly different (P ≤ 0.05) among the maize varieties during the major cropping season with Mamaba producing the highest grain yield of 7250.0 kg ha -1 and WUE GY of 13.2 kg ha -1 mm -1 . For the minor cropping season, no significant difference was observed in grain yield, which ranged between 5800.0 and 7200.0 kg ha -1 , with Obatanpa producing the highest grain yield. No significant difference was observed in WUE GY during the minor cropping season which ranged between 14.6 and 19.1 kg ha -1 mm -1 with Obatanpa having the highest WUE GY . The maize genotype produced similar total dry matter (TDM) during each of the cropping

  8. Response of gross ecosystem productivity, light use efficiency, and water use efficiency of Mongolian steppe to seasonal variations in soil moisture

    Science.gov (United States)

    Li, Sheng-Gong; Eugster, Werner; Asanuma, Jun; Kotani, Ayumi; Davaa, Gombo; Oyunbaatar, Dambaravjaa; Sugita, Michiaki

    2008-03-01

    The examination of vegetation productivity and use of light and water resources is important for understanding the carbon and water cycles in semiarid and arid environments. We made continuous measurements of carbon dioxide and water vapor fluxes over an arid steppe ecosystem in Mongolia by using the eddy covariance (EC) technique. These measurements allow an examination of EC-estimated gross ecosystem productivity (GEP), light use efficiency (LUE), and water use efficiency (WUE) of the steppe. Daily variations of GEP, LUE, and WUE were associated with daily variations of incident photosynthetically active radiation (PAR), ambient temperature (Ta), and vapor pressure deficit (VPD). The magnitudes of these variations were also dependent on canopy development. On the daily basis, GEP linearly correlated with evapotranspiration rate and PAR. LUE correlated positively with leaf area index, Ta, and soil moisture availability but negatively with the surface reflectivity for short-wave solar radiation. Throughout the growing season, both GEP and LUE responded strongly to precipitation-fed soil moisture in the top 20 cm of the soil. An examination of the responses of LUE and WUE to PAR under different soil moisture conditions shows that when soil water availability exceeded VPD, the steppe was most efficient in light use, whereas it was less efficient in water use. The multivariate analysis of variance also suggests that soil moisture availability, especially water status in the upper 20-cm soil layer with dense distribution of grass roots, is the most significant factor that governs GEP, WUE, and LUE. This study provides a preliminary assessment of the use of available water and light by the Mongolian arid steppe ecosystems under seasonally varying soil moisture conditions. A better understanding of these functional responses is required to predict how climate change may affect arid steppe ecosystems.

  9. Impact of organic amendments on soil carbon sequestration, water use efficiency and yield of irrigated wheat

    Directory of Open Access Journals (Sweden)

    Shehzadi, S.

    2017-01-01

    Full Text Available Description of the subject. Soil organic carbon (SOC plays critical role in terrestrial carbon (C cycling and is central to preserving soil quality, food security and environmental protection in agroecosystem. The prevailing soil and climatic conditions of cultivated and irrigated soils in warm semi-arid areas favor the rapid decomposition, mineralization and loss of SOC to the atmosphere which contribute to global warming. One potential strategy to address this C loss is the addition of organic amendments. Objectives. To investigate the effect of four contrasting organic wastes with and without NPK mineral fertilizer on SOC retention, water use efficiency (WUE and wheat yield in irrigated wheat-maize cropping system. Method. A 2-year field experiment was conducted using four organic wastes included municipal solid waste (MSW, farm yard manure (FYM, sugar industry waste (filter cake and maize cropping residues. All wastes were applied at 3 t C·ha-1 alone and with a full or half dose of NPK mineral fertilizer. Results. On average, among organic wastes as sole treatment, highest SOC content in the 0-15 cm layer was recorded in filter cake (6.5 t·ha-1 and MSW (5.9 t·ha-1. Addition of NPK fertilizer along with organic wastes, improved the SOC contents with the highest SOC (7.7 t·ha-1 by filter cake + full NPK treatment followed by the MSW + NPK (6.9 t·ha-1. On average, maximum wheat grain WUE (18 kg·ha-1·mm-1 and grain yield (4.8 t·ha-1 were obtained by MSW + full NPK treatment followed by filter cake + NPK. Conclusions. These results indicate that the targeted addition of organic wastes (filter cake or MSW have the best potential for improving SOC retention, WUE and wheat yield in irrigated maize-wheat cropping system.

  10. Variation for yield, water-use efficiency, and canopy morphology among nine alfalfa germplasms

    International Nuclear Information System (INIS)

    Ray, I.M.; Townsend, M.S.; Henning, J.A.

    1998-01-01

    Alfalfa (Medicago sativa L.) production under irrigated and rainfed conditions may benefit from improvements in water-use efficiency (WUE), the amount of forage and root biomass produced per unit of water transpired. If benefits from improved WUE are to be realized, correlations between important agronomic traits and key physiological traits associated with WUE must be determined. This study characterized variation for dry matter yield, forage maturity, leaf-to-stem ratio (LSR), carbon isotope discrimination (delta), canopy temperature, ash content, and specific leaf mass (SLM) in alfalfa. Associations between traits were also determined. Nine alfalfa germplasms representing eight of the nine historical genetic diversity groups, and a very fall-dormant (VFD) population, were established in seeded, irrigated plots for 2 yr near Las Cruces, NM. Significant variation (P less than or equal to 0.10) was detected for all traits and was greatest for delta and maturity, intermediate for yield, canopy temperature, ash content, and LSR, and least for SLM. The African, Peruvian, and Indian germplasms exhibited a higher delta than either the Turkistan, VFD, M. varia Martyn., or Ladak germplasms. Carbon isotope discrimination was positively correlated with forage yield (r = 0.64; P less than or equal to 0.10; n = 9) and forage maturity (r = 0.66; P less than or equal to 0.05; n = 9). No association was detected between delta and either canopy temperature, ash content, SLM, or LSR. The results indicate that differences in stomatal conductance or photosynthetic capacity exist among the nine populations, and that germplasms with low delta tended to have slower growth and development rates under irrigated conditions. Neither canopy temperature, ash content, nor SLM provided suitable alternate measurements of delta among the nine alfalfa germplasms

  11. Increased water use efficiency does not prevent growth decline of Pinus canariensis in a semi-arid treeline ecotone in Tenerife, Canary Islands (Spain).

    Science.gov (United States)

    Brito, Patricia; Grams, Thorsten E E; Matysssek, Rainer; Jimenez, Maria S; Gonzalez-Rodríguez, Agueda M; Oberhuber, Walter; Wieser, Gerhard

    2016-09-01

    Intrinsic water-use efficiency of Pinus canariensis (Sweet ex Spreng.) growing at a semi-arid treeline has increased during the past 37 years. Tree-ring width by contrast has declined, likely caused by reduced stomatal conductance due to increasing aridity. Rising atmospheric CO 2 concentration ( C a ) has been related to tree growth enhancement accompanied by increasing intrinsic water-use-efficiency (iWUE). Nevertheless, the extent of rising C a on long-term changes in iWUE and growth has remained poorly understood to date in Mediterranean treeline ecosystems. This study aimed to examine radial growth and physiological responses of P. canariensis in relation to rising C a and increasing aridity at treeline in Tenerife, Canary Islands, Spain. We evaluated temporal changes in secondary growth (tree-ring width; TRW) and tree ring stable C isotope signature for assessing iWUE from 1975 through 2011. Precipitation was the main factor controlling secondary growth. Over the last 36 years P. canariensis showed a decline in TRW at enhanced iWUE, likely caused by reduced stomatal conductance due to increasing aridity. Our results indicate that increasing aridity has overridden the potential CO 2 fertilization on tree growth of P. canariensis at its upper distribution limit.

  12. Biomass and biomass water use efficiency in oilseed crop (Brassica juncea L.) under semi-arid microenvironments

    International Nuclear Information System (INIS)

    Adak, Tarun; Kumar, Gopal; Chakravarty, N.V.K.; Katiyar, R.K.; Deshmukh, P.S.; Joshi, H.C.

    2013-01-01

    Biomass production in arid and semi-arid regions requires a special attention owing to spatiotemporal scarcity of irrigation water wherein improved water use efficiency (WUE) of the crop is targeted. Under field conditions, the crop undergoes dynamic changes in near ground or within-canopy microenvironments. This changed microclimatic condition may have an impact on phenological response of the oilseed crop which in turn would affect biomass productivity, economic seed yield and water use efficiency of the crop. Henceforth, quantification of biomass production and its WUE of oilseed Brassica crop is essentially required owing to have better understanding of the crop water requirement under the era of climate change. Following a 2 years field experiment, it was revealed that the changes in leaf area index were explained by about 68–74%. The best fit polynomial third order regression analysis indicated >93% prediction in biomass production as a function of time factor. Improved biomass partitioning into economic sinks was also observed. Small scale change in near ground microenvironment may reduce the prediction of biomass variability to the extent of 3%. The mean ET variations were observed as 2.4, 1.5 and 3.2 mm day −1 during the critical phenological stages. Mean seed yield, biomass WUE and seed yield WUE ranged between 2.71 and 2.87 Mg ha −1 , 11.4 and 13.1 g m −2 mm −1 and 19.3 and 22.9 kg ha −1 mm −1 respectively. Variations in both biomass and seed yield water use efficiencies due to small scale change in near ground microclimates were revealed. -- Highlights: ► Assessing biomass productivity and its water use efficiency under arid and semi-arid regions is important. ► Under field conditions, the crop undergoes dynamic changes in near ground or within-canopy microenvironments. ► We have estimated changes in seasonal ET, within-canopy micrometeorological dynamics. ► Biomass productivity, partitioning and water use efficiencies were

  13. Species-specific intrinsic water use efficiency and its mediation of carbon assimilation during the drought

    Science.gov (United States)

    Yi, K.; Wenzel, M. K.; Maxwell, J. T.; Novick, K. A.; Gray, A.; Roman, D. T.

    2015-12-01

    Drought is expected to occur more frequently and intensely in the future, and many studies have suggested frequent and intense droughts can significantly alter carbon and water cycling in forest ecosystems, consequently decreasing the ability of forests to assimilate carbon. Predicting the impact of drought on forest ecosystem processes requires an understanding of species-specific responses to drought, especially in eastern US where species composition is highly dynamic. An emerging approach for describing species-specific drought response is to classify the plant water use strategy into isohydric and anisohydric behaviors. Trees utilizing isohydric behavior regulate water potential by closing stomata to reduce water loss during drought conditions, while anisohydric trees allow water potential to drop by sustaining stomatal conductance, but with the risk of hydraulic failure caused by cavitation of xylem tissues. Since catastrophic cavitation occurs infrequently in the relatively wet eastern U.S., we hypothesize that 1) tree growth of isohydric trees will be more limited during the drought than the anisohydric trees due to decreased stomatal conductance, but 2) variation in intrinsic water use efficient (iWUE) during drought in isohydric trees will mediate the effects of drought on carbon assimilation. We will test these hypotheses by 1) analyzing tree-ring chronologies and dendrometer data on productivity, and 2) estimating intrinsic water use efficiency (iWUE) at multiple scales by analyzing gas exchange data for the leaf-level, inter-annual variability of d13C in tree stem cores for the tree-level, and eddy covariance technique for the stand-level. Our study site is the Morgan-Monroe State Forest (Indiana, USA). A 46 m flux tower has been continuously recording the carbon, water and energy fluxes, and tree diameter has been measured every 2 weeks using dendrometers, since 1998. Additional research, including gas exchange measurements performed during the

  14. Effect of Mycorrhiza Symbiosis on Yield, Yield Components and Water Use Efficiency of Sesame (Sesamum indicum L. Affected by Different Irrigation Regimes in Mashhad Condition

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2016-02-01

    Full Text Available Introduction Plant association with mycorrhiza has been considered as one of the options to improve input efficiency particularly for water and nutrient - (Allen and Musik, 1993; Bolan, 1991. This has been due to kncreasing the absorbing area of the root and therefore better contact with water and nutrients. Inoculation with mycorrhiza enhances nutrient uptake with low immobility such as phosphorus and solphur-, improve association and could be an option to drought and other environmental abnormalities such as salinity (Rice et al., 2002. Moreover, higher water use efficiency (WUE for crops -has been reported in the literatures (Sekhara and Reddy, 1993.The sustainable use of scarce water resources in Iran is a priority for agricultural development. The pressure of using water in agriculture sector is increasing, so creating ways to improve water-use efficiency and taking a full advantage of available water are crucial. Water stress reduce crop yield by impairing the growth of crop canopy and biomass. Scheduling water application is very crucial for efficient use of drip irrigation system, as excessive irrigation reduces yield, while inadequate irrigation causes water stress and reduces production. The aim of present study was to evaluate the symbiotic effect of mycorrhiza on yield, yield components and water use efficiency of sesame under different irrigation regimes in Mashhad. Material and Methods In order to investigate the impact of inoculation with two species of Arbuscular mycorrhiza fungi on yield, yield components and water use efficiency (WUE of sesame (Sesamum indicum L. under different irrigation regimes, an experiment was conducted as split plot based on a randomized complete block design with three replications during two growing seasons 2009-2010 and 2010-2011 at the Agricultural Research Station, College of Agriculture, Ferdowsi University of Mashhad.. The experimental factors were three irrigation regimes include 2000, 3000 and

  15. Water Use Efficiency in Saline Soils under Cotton Cultivation in the Tarim River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhao

    2015-06-01

    Full Text Available The Tarim River Basin, the largest area of Chinese cotton production, is receiving increased attention because of serious environmental problems. At two experimental stations (Korla and Aksu, we studied the influence of salinity on cotton yield. Soil chemical and physical properties, soil water content, soil total suction and matric suction, cotton yield and water use efficiency under plastic mulched drip irrigation in different saline soils was measured during cotton growth season. The salinity (mS·cm−1 were 17–25 (low at Aksu and Korla, 29–50 (middle at Aksu and 52–62 (high at Aksu for ECe (Electrical conductivity measured in saturation-paste extract of soil over the 100 cm soil profile. The soil water characteristic curves in different saline soils showed that the soil water content (15%–23% at top 40 cm soil, lower total suction power (below 3500 kPa and lower matric suction (below 30 kPa in low saline soil at Korla had the highest water use efficiency (10 kg·ha−1·mm−1 and highest irrigation water use efficiency (12 kg·ha−1·mm−1 and highest yield (6.64 t·ha−1. Higher water content below 30 cm in high saline soil increased the salinity risk and led to lower yield (2.39 t·ha−1. Compared to low saline soils at Aksu, the low saline soil at Korla saved 110 mm irrigation and 103 mm total water to reach 1 t·ha−1 yield and increased water use efficiency by 5 kg·ha−1·mm−1 and 7 kg·ha−1·mm−1 for water use efficiency (WUE and irrigation water use efficiency (IWUE respectively.

  16. Effects of Furrow Irrigation on the Growth, Production, and Water Use Efficiency of Direct Sowing Rice

    Directory of Open Access Journals (Sweden)

    Chunlin He

    2010-01-01

    Full Text Available Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI system to improve water use efficiency (WUE and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI system (continuous flooding irrigation, for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1 a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2 a significant reduction in the reduced materials, such as ferrous ion (Fe2+, and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3 increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.

  17. Effects of furrow irrigation on the growth, production, and water use efficiency of direct sowing rice.

    Science.gov (United States)

    He, Chunlin

    2010-08-03

    Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI) system to improve water use efficiency (WUE) and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI) system (continuous flooding irrigation), for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1) a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2) a significant reduction in the reduced materials, such as ferrous ion (Fe2+), and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3) increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.

  18. Grain Yield and Water Use Efficiency of Five Sorghum Cultivars under Different Irrigation Regimes in Kerman

    Directory of Open Access Journals (Sweden)

    H Vahidi

    2016-02-01

    Full Text Available Introduction Reduction of the forage and grain yield of sorghum genotypes under different levels of deficit irrigation has been reported. The plants that have higher water use efficiency (WUE, have a better chance of survival in arid regions. On average, WUE of sorghum in clay, loamy soil has been reported equal to 1.46 kg m-3. Effects of drought stress and different levels of nitrogen on yield of two cultivars of sorghum were investigated and results showed significant effects on plant height, leaf area index, fresh and dry weight of leaf, dry weight of stem and forage yield. The purpose of this research is to investigate the effect of deficit irrigation on grain yield and WUE of sorghum cultivars in Kerman. Materials and Methods This study has been conducted in the research station of Shahid Bahonar University of Kerman with 56o 58' E longitude, 30o 15' N latitude and 1753.8 altitudes. According to the regional information from 1952 to 2005, the average temperature is 17.1 oC, the average rainfall is 154.1 mm, the average annual relative humidity is 32%. The climate of Kerman according to De Martonne method can be classified as semiarid. The experimental design was split-plot based on RCBD with three replications. Three levels of irrigation (after 50, 80 and 110 mm evaporation from class A pan were assigned to the main plots and the five sub-plots of sorghum cultivars (Speedfeed, Pegah, Payam, Sepideh and Kimia. On the 20th of May all sorghum cultivars were planted at the distance of 10 cm from each other on ridges. On the 7th of October, with considering margins, four square meters of the two middle lines were selected to determine the grain and biological yield. The samples were weighed with a digital scale and heated for 48 hours in the degree of 75 oC-and then the dry weight of each samples were measured again. Finally, the data were analyzed by SAS software (v. 9.1. Comparision of the averages attributes was performed using, Duncan

  19. Effects of Drought on Xylem Anatomy and Water-Use Efficiency of Two Co-Occurring Pine Species

    Directory of Open Access Journals (Sweden)

    Dario Martin-Benito

    2017-09-01

    Full Text Available Exploring how drought influences growth, performance, and survival in different species is crucial to understanding the impacts of climate change on forest ecosystems. Here, we investigate the responses of two co-occurring pines (Pinus nigra and Pinus sylvestris to interannual drought in east-central Spain by dendrochronological and wood anatomical features integrated with isotopic ratios of carbon (δ13C and oxygen (δ18O in tree rings. Our results showed that drought induces both species to allocate less carbon to build tracheid cell-walls but increases tracheid lumen diameters, particularly in the transition wood between early and latewood, potentially maximizing hydraulic conductivity but reducing resistance to embolism at a critical phase during the growing season. The thicker cell-wall-to-lumen ratio in P. nigra could imply that its xylem may be more resistant to bending stress and drought-induced cavitation than P. sylvestris. In contrast, the higher intrinsic water-use efficiency (iWUE in P. sylvestris suggests that it relies more on a water-saving strategy. Our results suggest that narrower cell-walls and reduced growth under drought are not necessarily linked to increased iWUE. At our site P. nigra showed a higher growth plasticity, grew faster and was more competitive than P. sylvestris. In the long term, these sustained differences in iWUE and anatomical characters could affect forest species performance and composition, particularly under increased drought stress.

  20. Selection of drought tolerant and high water use efficient rice cultivars through /sup 13/C isotope discrimination technique

    International Nuclear Information System (INIS)

    Akhtar, J.; Sabir, S.A.; Ashraf, M.Y.; Monneveux, P.; Serraj, R.

    2010-01-01

    Carbon isotope discrimination ('A') has been suggested as an indirect tool for selecting plants having higher water use efficiency (WUE) and yield potential. Enhancing WUE is an important breeding objective as water scarcity is increasing with every passing day. This study was undertaken to assess the genotypic variation and relationship between leaf, straw, grain 'A', grain yield and WUE in eight aromatic rice cultivars grown in lysimeters under three water regimes, in absence of drainage and runoff. Highly significant positive correlations were found between aboveground biomass and WUEB, and grain yield and WUEG, due to the low variation in water consumed by different cultivars. Leaf, straw and grain A showed a consistent variation across treatments and cultivars. Under water stress conditions, both leaf and straw 'A' were positively correlated to grain yield and WUEG. In all the water treatments, WUEG was positively correlated to harvest index and negatively to plant height. All the mutants from Basmati 385 had significantly higher 'A' values as compared to the mutants from Basmati 370. It was concluded that the new cultivar, Basmati 385, represents a better genetic source for 'A' improvement than the old cultivar, Basmati 370. (author)

  1. Genetic Variation of Morphological Traits and Transpiration in an Apple Core Collection under Well-Watered Conditions: Towards the Identification of Morphotypes with High Water Use Efficiency.

    Directory of Open Access Journals (Sweden)

    Gerardo Lopez

    Full Text Available Water use efficiency (WUE is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76 and WUE (0.73 were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water.

  2. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP. In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike. Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2. Average yields of 7.42 t ha(-1 and WUE of 1.84 kg m(-3 were achieved with an average seasonal evapotranspiration (ET of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW and harvest index (HI. Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

  3. Implications of Future Water Use Efficiency for Ecohydrological Responses to Climate Change and Spatial Heterogeneity of Atmospheric CO2 in China

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2013-01-01

    Full Text Available As the atmospheric carbon dioxide (CO2 increases substantially, the spatial distribution of atmospheric CO2 should be considered when estimating the effects of CO2 on the carbon and water cycle coupling of terrestrial ecosystems. To evaluate this effect on future ecohydrological processes, the spatial-temporal patterns of CO2 were established over 1951 - 2099 according to the IPCC emission scenarios SRES A2 and SRES B1. Thereafter, water use efficiency (WUE was used (i.e., Net Primary Production/Evaportranspiration as an indicator to quantify the effects of climate change and uneven CO2 fertilization in China. We carried out several simulated experiments to estimate WUE under different future scenarios using a land process model (Integrated Biosphere Simulator, IBIS. Results indicated that the geographical distributions of averaged WUE have considerable differences under a heterogeneous atmospheric CO2 condition. Under the SRES A2 scenario, WUE decreased slightly with a 5% value in most areas of the southeastern and northwestern China during the 2050s, while decreasing by approximately 15% in southeastern China during the 2090s. During the period of the 2050s under SRES B1 scenario, the change rate of WUE was similar with that under SRES A2 scenario, but the WUE has a more moderate decreasing trend than that under the SRES A2 scenario. In all, the ecosystems in median and low latitude areas had a weakened effect on resisting extreme climate event such as drought. Conversely, the vegetation in a boreal forest had an enhanced buffering capability to tolerate drought events.

  4. Simulation of Stomatal Conductance and Water Use Efficiency of Tomato Leaves Exposed to Different Irrigation Regimes and Air CO2 Concentrations by a Modified "Ball-Berry" Model.

    Science.gov (United States)

    Wei, Zhenhua; Du, Taisheng; Li, Xiangnan; Fang, Liang; Liu, Fulai

    2018-01-01

    Stomatal conductance ( g s ) and water use efficiency ( WUE ) of tomato leaves exposed to different irrigation regimes and at ambient CO 2 ( a [CO 2 ], 400 ppm) and elevated CO 2 ( e [CO 2 ], 800 ppm) environments were simulated using the "Ball-Berry" model (BB-model). Data obtained from a preliminary experiment (Exp. I) was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate ( P n ) was used as an input for the model. Considering the effect of soil water deficits on g s , an equation modifying the slope ( m ) based on the mean soil water potential (Ψ s ) in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both g s and WUE of tomato leaves at each [CO 2 ] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II) where plants were subjected to three irrigation regimes: full irrigation (FI), deficit irrigation (DI), and alternative partial root-zone irrigation (PRI) for 40 days at both a [CO 2 ] and e [CO 2 ] environment. The simulation results indicated that g s was independently acclimated to e [CO 2 ] from P n . The modified BB-model performed better in estimating g s and WUE , especially for PRI strategy at both [CO 2 ] environments. A greater WUE could be seen in plants grown under e [CO 2 ] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting g s and WUE of tomato leaves in various irrigation regimes at both a [CO 2 ] and e [CO 2 ] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO 2 enriched environment.

  5. Genetic Variation of Morphological Traits and Transpiration in an Apple Core Collection under Well-Watered Conditions: Towards the Identification of Morphotypes with High Water Use Efficiency.

    Science.gov (United States)

    Lopez, Gerardo; Pallas, Benoît; Martinez, Sébastien; Lauri, Pierre-Éric; Regnard, Jean-Luc; Durel, Charles-Éric; Costes, Evelyne

    2015-01-01

    Water use efficiency (WUE) is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration) in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76) and WUE (0.73) were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water.

  6. Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season.

    Science.gov (United States)

    Forrester, David I

    2015-03-01

    Mixtures can be more productive than monocultures and may therefore use more water, which may make them more susceptible to droughts. The species interactions that influence growth, transpiration and water-use efficiency (WUE, tree growth per unit transpiration) within a given mixture vary with intra- and inter-annual climatic variability, stand density and tree size, but these effects remain poorly quantified. These relationships were examined in mixtures and monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman. Growth and transpiration were measured between ages 14 and 15 years. All E. globulus trees in mixture that were growing faster than similar sized trees in monocultures had higher WUE, while trees with similar growth rates had similar WUE. By the age of 14 years A. mearnsii trees were beginning to senesce and there were no longer any relationships between tree size and growth or WUE. The relationship between transpiration and tree size did not differ between treatments for either species, so stand-level increases in transpiration simply reflected the larger mean tree size in mixtures. Increasing neighbourhood basal area increased the complementarity effect on E. globulus growth and transpiration. The complementarity effect also varied throughout the year, but this was not related to the climatic seasonality. This study shows that stand-level responses can be the net effect of a much wider range of individual tree-level responses, but at both levels, if growth has not increased for a given species, it appears unlikely that there will be differences in transpiration or WUE for that species. Growth data may provide a useful initial indication of whether mixtures have higher transpiration or WUE, and which species and tree sizes contribute to this effect. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.

    Science.gov (United States)

    Knauer, Jürgen; Zaehle, Sönke; Medlyn, Belinda E; Reichstein, Markus; Williams, Christopher A; Migliavacca, Mirco; De Kauwe, Martin G; Werner, Christiane; Keitel, Claudia; Kolari, Pasi; Limousin, Jean-Marc; Linderson, Maj-Lena

    2018-02-01

    Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G 1 , "stomatal slope") at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G 1 : (i) non-transpirational water fluxes; (ii) aerodynamic conductance; (iii) meteorological deviations between measurement height and canopy surface; (iv) energy balance non-closure; (v) uncertainties in net ecosystem exchange partitioning; and (vi) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G 1 was sufficiently captured with a simple representation. G 1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their

  8. Effect of rooting depth, plant density and planting date on maize (Zea Mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.

    2014-01-01

    Under low and poorly distributed rainfall higher food production can be achieved by increasing crop water use efficiency (WUE) through optimum soil fertility management and selection of deep-rooting cultivars, appropriate plant density and planting dates. We explored AquaCrop's applicability in

  9. Effects of different irrigation regimes on fruit production, oil quality, water use efficiency and agronomic nitrogen use efficiency of pumpkin

    Directory of Open Access Journals (Sweden)

    Javad Hamzei

    2016-05-01

    Full Text Available Effect of different irrigation regimes and nitrogen fertilizer on percentage of grain fatty acids, yield, water and nitrogen use efficiency of pumpkin was studies as split plot based on complete randomized block design with three replications in growing season of 2013. Irrigation treatments (320, 420, 600 and 900 mm ha-1 were se as main plots and nitrogen fertilizer (0, 130, 260, 390 and 520 kg urea ha-1 were allocated in subplots. The effect of irrigation and nitrogen on all traits was significant. Also, interaction of irrigation × nitrogen had significant effect on all traits except WUE and NUE. The Highest values of linoleic fatty acid (33.99%, fruit yield (4.40 kg m-2, grain yield (1.53 kg m-2 and agronomic nitrogen use efficiency (32.27 kg fruit/kg urea were achieved at consumption of 600 mm water ha-1 and application of 390 kg urea ha-1. The highest water use efficiency for fruit and grain yield; 56.61 and 1.10 kg mm-1, were revealed at 600 mm irrigation water ha-1. Between nitrogen levels, maximum and minimum WUE for fruit and grain yield were achieved at 390 kg urea and non application of urea treatments, respectively. Also, maximum agronomic nitrogen efficiency belonged to 390 kg urea and minimum this trait with 33 reductions was revealed at 520 kg urea. Based on the results of this research and with considering of water and nitrogen use efficiency, irrigation of pumpkin plants with 600 mm water ha-1 and consumption of 390 kg urea ha-1 was identified as a suitable treatment.

  10. Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Heng, K.L

    2012-01-01

    Soil water conservation through tillage is widely accepted as one of the ways of improving crop yields in rainfed agriculture. Field experiments were conducted between 2007 and 2009 to evaluate the effects of conservation tillage on the yields and crop water use efficiency of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) in eastern Kenya. Experimental treatments were a combination of three tillage practices and four cropping systems. Tillage practices were tied-ridges, subsoiling-ripping and ox-ploughing. The cropping systems were single crop maize, single crop cowpea, intercropped maize.cowpea and single crop maize with manure. The treatments were arranged in split plots with tillage practices as the main plots and cropping systems as the sub-plots in a Randomized Complete Block Design (RCBD). The results showed that tied-ridge tillage had the greatest plant available water content while subsoiling-ripping tillage had the least in all seasons. Averaged across seasons and cropping season, tillage did not have a significant effects on maize grain yield but it did have a significant effect on crop grain and dry matter water use efficiency (WUE). Nevertheless, maize grain yields and WUE values were generally greater under tied-ridge tillage than under subsoiling-ripping and ox-plough tillages. The yields and WUE of cowpea under subsoiling-ripping tillage were less than those of ox-plough tillage. When averaged across the seasons and tillage systems, the cropping system with the manure treatment increased (P.0.05) maize grain yield, grain WUE and dry matter WUE by 36%, 30%, 26% respectively, compared to treatments without manure. Maize and cowpea when intercropped under ox-plough and ripping tillage systems did not have any yield advantage over the single crop

  11. Water use efficiency and shoot biomass production under water limitation is negatively correlated to the discrimination against 13C in the C3 grasses Dactylis glomerata, Festuca arundinacea and Phalaris arundinacea

    DEFF Research Database (Denmark)

    Mårtensson, Linda-Maria; Carlsson, Georg; Prade, Thomas

    2017-01-01

    Climate change impacts rainfall patterns which may lead to drought stress in rain-fed agricultural systems. Crops with higher drought tolerance are required on marginal land with low precipitation or on soils with low water retention used for biomass production. It is essential to obtain plant...... between discrimination against 13C, season-long water use WUEB, shoot and root biomass production in plants grown under well-watered and water-limited conditions. The grasses were grown in the greenhouse and exposed to two irrigation regimes, which corresponded to 25% and 60% water holding capacity...... breeding tools, which can identify genotypes with improved drought tolerance and water use efficiency (WUE). In C3 plant species, the variation in discrimination against 13C (Δ13C) during photosynthesis has been shown to be a potential indicator for WUE, where discrimination against 13C and WUE were...

  12. Drip and Surface Irrigation Water Use Efficiency of Tomato Crop Using Nuclear Techniques

    International Nuclear Information System (INIS)

    Mellouli, H.J.; Askri, H.; Mougou, R.

    2003-01-01

    Nations in the arid and semi-arid regions, especially the Arab countries, will have to take up an important challenge at the beginning of the 21 st century: increasing food production in order to realise food security for growing population, wile optimising the use of limited water resources. Using and adapting management techniques like the drip irrigation system could obtain the later. This would allow reduction in water losses by bare soil evaporation and deep percolation. Consequently improved water use efficiency could be realised. In this way, this work was conducted as a contribution on the Tunisian national programs on the optimisation of the water use. By mean a field study at Cherfech Experimental Station (30 km from Tunis), the effect of the irrigation system on the water use efficiency (WUE)-by a season tomato crop-was monitored by comparing three treatments receiving equivalent quantities of fertiliser: Fertigation, Drip irrigation and Furrow irrigation. Irrigation was scheduled by mean calculation of the water requirement based on the agro meteorological data, the plant physiological stage and the soil water characteristics (Clay Loam). The plant water consumption (ETR) was determined by using soil water balance method, where rainfall and amount of irrigation water readily measured

  13. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency.

    Science.gov (United States)

    Luo, Qunying; O'Leary, Garry; Cleverly, James; Eamus, Derek

    2018-02-08

    Climate change (CC) presents a challenge for the sustainable development of wheat production systems in Australia. This study aimed to (1) quantify the impact of future CC on wheat grain yield for the period centred on 2030 from the perspectives of wheat phenology, water use and water use efficiency (WUE) and (2) evaluate the effectiveness of changing sowing times and cultivars in response to the expected impacts of future CC on wheat grain yield. The daily outputs of CSIRO Conformal-Cubic Atmospheric Model for baseline and future periods were used by a stochastic weather generator to derive changes in mean climate and in climate variability and to construct local climate scenarios, which were then coupled with a wheat crop model to achieve the two research aims. We considered three locations in New South Wales, Australia, six times of sowing (TOS) and three bread wheat (Triticum aestivum L.) cultivars in this study. Simulation results show that in 2030 (1) for impact analysis, wheat phenological events are expected to occur earlier and crop water use is expected to decrease across all cases (the combination of three locations, six TOS and three cultivars), wheat grain yield would increase or decrease depending on locations and TOS; and WUE would increase in most of the cases; (2) for adaptation considerations, the combination of TOS and cultivars with the highest yield varied across locations. Wheat growers at different locations will require different strategies in managing the negative impacts or taking the opportunities of future CC.

  14. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency

    Science.gov (United States)

    Luo, Qunying; O'Leary, Garry; Cleverly, James; Eamus, Derek

    2018-02-01

    Climate change (CC) presents a challenge for the sustainable development of wheat production systems in Australia. This study aimed to (1) quantify the impact of future CC on wheat grain yield for the period centred on 2030 from the perspectives of wheat phenology, water use and water use efficiency (WUE) and (2) evaluate the effectiveness of changing sowing times and cultivars in response to the expected impacts of future CC on wheat grain yield. The daily outputs of CSIRO Conformal-Cubic Atmospheric Model for baseline and future periods were used by a stochastic weather generator to derive changes in mean climate and in climate variability and to construct local climate scenarios, which were then coupled with a wheat crop model to achieve the two research aims. We considered three locations in New South Wales, Australia, six times of sowing (TOS) and three bread wheat (Triticum aestivum L.) cultivars in this study. Simulation results show that in 2030 (1) for impact analysis, wheat phenological events are expected to occur earlier and crop water use is expected to decrease across all cases (the combination of three locations, six TOS and three cultivars), wheat grain yield would increase or decrease depending on locations and TOS; and WUE would increase in most of the cases; (2) for adaptation considerations, the combination of TOS and cultivars with the highest yield varied across locations. Wheat growers at different locations will require different strategies in managing the negative impacts or taking the opportunities of future CC.

  15. Effects of organic amendments on water use efficiency evaluated by a stable isotope technique. A case study in experimental mine restoration.

    Science.gov (United States)

    Luna Ramos, Lourdes; Delgado Huertas, Antonio; Miralles Mellado, Isabel; Solé Benet, Albert

    2017-04-01

    Water deficit and low infiltration reduce restoration success in semiarid post-mine soils, where high mortality of plants has been observed in early years of the restoration. Species that originate from arid and semi-arid regions are often considered appropriate for xeriscaping, but there have been relatively few direct measurements of main water related parameters as water use efficiency (WUE) in restoration strategies. In this respect, the goal of this study was to analyse the efficiency with which native plants use water when organic amendments and mulches are applied in mine soil restorations. The experimental design was established in a calcareous quarry in Almería (SE Spain), under arid climate. We tested two organic amendments (sewage sludge from water treatment plant and compost from vegetable residues) and gravel mulch. Three plant species were planted in 50 m2 experimental plots: Macrochloa tenacissima, Genista umbellata and Anthyllis cytisoides. Soil moisture was monitored at a depth of 0.1 m during 4 years and at the end of this period stable isotope of Carbon (δ13C), considered as an effective method to evaluate the plant intrinsic WUE, was measured. We did not observe significant differences in soil moisture among the different soil restoration treatments. With regard to WUE, species is the factor most important to establish differences. Anthyllis cytisoides showed the lowest mean δ13C values, indicating low WUE. On the contrary, Macrochloa tenacissima presented high δ13C values. Moreover, species showed higher δ13C values when gravel mulch was applied. To increase WUE in restored soils under arid conditions it is necessary to apply water conservation methods and to use the most appropriate species.

  16. De novo DNA sequence driven bulk segregant analysis of Water Use Efficiency (WUE) in potato without prior knowledge of molecular markers

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sønderkær, Mads; Sørensen, Kirsten Kørup

    2012-01-01

    Population analyzed during the experiments originated from a cross between 90-HAF-01 (S.tuberosum1) and 90-HAG-15 (S.tuberosum2xS.sparsipilum), which was previously evaluated for total glycoalkaloid content (TGA)1. Responses of stomatal conductance to different combinations of light, humidity, CO...

  17. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2017-09-01

    Full Text Available The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The

  18. The Effect of Spectral Quality on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and Lisianthus: An Assessment of Whole Plant Measurements.

    Science.gov (United States)

    Lanoue, Jason; Leonardos, Evangelos D; Ma, Xiao; Grodzinski, Bernard

    2017-01-01

    Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato ( Solanum lycopersicum ) leaves under short-term illumination and lisianthus ( Eustoma grandiflorum ) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H 2 O and CO 2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO 2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.

  19. The Effect of Spectral Quality on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and Lisianthus: An Assessment of Whole Plant Measurements

    Directory of Open Access Journals (Sweden)

    Jason Lanoue

    2017-06-01

    Full Text Available Advancements in light-emitting diode (LED technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato (Solanum lycopersicum leaves under short-term illumination and lisianthus (Eustoma grandiflorum and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H2O and CO2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO2 concentration and a subsequent decrease in water-use-efficiency (WUE when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB and red-white (RW LEDs when compared to a high pressure sodium (HPS light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.

  20. Capability of the "Ball-Berry" model for predicting stomatal conductance and water use efficiency of potato leaves under different irrigation regimes

    DEFF Research Database (Denmark)

    Liu, Fulai; Andersen, Mathias N.; Jensen, Christian Richardt

    2009-01-01

    was used for model parameterization, where measurements of midday leaf gas exchange of potted potatoes were done during progressive soil drying for 2 weeks at tuber initiation and earlier bulking stages. The measured photosynthetic rate (An) was used as an input for the model. To account for the effects......The capability of the ‘Ball-Berry' model (BB-model) in predicting stomatal conductance (gs) and water use efficiency (WUE) of potato (Solanum tuberosum L.) leaves under different irrigation regimes was tested using data from two independent pot experiments in 2004 and 2007. Data obtained from 2004...... of soil water deficits on gs, a simple equation modifying the slope (m) based on the mean soil water potential (Ψs) in the soil columns was incorporated into the original BB-model. Compared with the original BB-model, the modified BB-model showed better predictability for both gs and WUE of potato leaves...

  1. On the global relationships between photosynthetic water-use efficiency, leaf mass per unit area and atmospheric demand in woody and herbaceous plants

    Science.gov (United States)

    Letts, M. G.; Fox, T. A.; Gulias, J.; Galmes, J.; Hikosaka, K.; Wright, I.; Flexas, J.; Awada, T.; Rodriguez-Calcerrada, J.; Tobita, H.

    2013-12-01

    A global dataset was compiled including woody and herbaceous C3 species from forest, Mediterranean and grassland-shrubland ecosystems, to elucidate the dependency of photosynthetic water-use efficiency on vapour pressure deficit (D) and leaf traits. Mean leaf mass per unit area (LMA) was lower and mass-based leaf nitrogen content (Nmass) was higher in herbaceous species. Higher mean stomatal conductance (gs), transpiration rate (E) and net CO2 assimilation rate under light saturating conditions (Amax) were observed in herbs, but photosynthetic and intrinsic water-use efficiencies (WUE = Amax/E and WUEi = Amax/gs) were lower than in woody plants. Woody species maintained stricter stomatal regulation of water loss at low D, resulting in a steeper positive and linear relationship between log D and log E. Herbaceous species possessed very high gs at low D, resulting in higher ratio of substomatal to atmospheric CO2 concentrations (ci/ca) and E, but lower WUE and WUEi than woody plants, despite higher Amax. The lower WUE and higher rates of gas exchange were most pronounced in herbs with low LMA and high Nmass. Photosynthetic water use also differed between species from grassland-shrubland and Mediterranean or forest environments. Water-use efficiency showed no relationship with either D or LMA in grassland-shrubland species, but showed a negative relationship with D in forest and chaparral. The distinct photosynthetic water-use of woody and herbaceous plants is consistent with the opportunistic growth strategy of herbs and the more conservative growth strategy of woody species. Further research is recommended to examine the implications of these functional group and ecosystem differences in the contexts of climate and atmospheric change.

  2. Studies on 13C isotope discrimination for identifying tree provenances efficient in water use under water deficit conditions in Kenya

    International Nuclear Information System (INIS)

    Nyamai, D.O.; Juma, P.O.

    1996-01-01

    Screening for drought resistance traits was conducted in a semi-arid site in Machakos using 11 provenances of Acacia tortilis, 6 provenances of Prosopis juliflora and 4 provenances of Casuarina equisetifolia. Tolerance to drought was assessed by the 13 C isotope discrimination (Δ) technique as well as by determining the waster use efficiency (WUE). Measurements of dry matter and early growth performance were also taken as indicators of drought resistance. The results showed significant differences in the 13 C Isotope discrimination, water use efficiency and dry matter yields by the different provenances tested. Generally, the results indicated that there were significant linear negative relationships between 13 C discrimination with water use efficiency as well as dry matter yield. The results further showed highly significant positive relationship between dry matter yield and water use efficiency. Acacia tortilis provenances from middle East and neighbouring North Eastern Africa region appear to possess the greatest abilities for drought resistance in comparison with those from sub-saharan Africa as indicated by their 13 C Isotope discrimination levels, dry matter yield and water use efficiency. However, Acacia provenance from Israel had the highest drought resistance trail. Prosopis provenance from Costa Rica and Casuarina from Dakar region in Senegal also emerged as the best provenances in terms of drought tolerance as shown by the 13 C isotope discrimination and dry matter traits. (author). 8 refs, 4 figs, 3 tabs

  3. Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA).

    Science.gov (United States)

    Meng, Lai-Sheng; Yao, Shun-Qiao

    2015-09-01

    One goal of modern agriculture is the improvement of plant drought tolerance and water-use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms and engineered alternations of this relationship are not yet fully understood. Moreover, YODA (YDA), which is a MAPKK kinase gene, negatively regulates stomatal development. BR-INSENSITIVE 2 interacts with phosphorylates and inhibits YDA. However, whether YDA is modulated in the transcriptional level is still unclear. Plants lacking ANGUSTIFOLIA3 (AN3) activity have high drought stress tolerance because of low stomatal densities and improved root architecture. Such plants also exhibit enhanced WUE through declining transpiration without a demonstrable reduction in biomass accumulation. AN3 negatively regulated YDA expression at the transcriptional level by target-gene analysis. Chromatin immunoprecipitation analysis indicated that AN3 was associated with a region of the YDA promoter in vivo. YDA mutation significantly decreased the stomatal density and root length of an3 mutant, thus proving the participation of YDA in an3 drought tolerance and WUE enhancement. These components form an AN3-YDA complex, which allows the integration of water deficit stress signalling into the production or spacing of stomata and cell proliferation, thus leading to drought tolerance and enhanced WUE. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Evaluation Effects of Different Planting Systems on Water Use Efficiency, Relative Water Content and some Plant Growth Parameters in Onion (Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Mousa IZADKHAH

    2010-03-01

    Full Text Available To evaluate the effect of different sowing methods on water use efficiency, relative water content and some vegetative growth parameters of onion a study was carried out in the Agriculturalr research Center of East Azarbayjan in 2007-2008 cropping season. The experiment was a factorial by using the randomized complete block design with 4 treaments and 4 replications. The first factor was consistting of two sowing methods, dirct sowing (DS and the transplanting method (TM, the second factor was including two onion cultivars �Azarshahr� (red hull and later maturing and �Gooli-Ghesseh Zanjan� (bright-red, early maturing. Analysis of variance for the measured traits indicated that except for the relative water content (RWC, other traits were significant influenced by the sowing methods. TM had higher values of water use efficiency (WUE, bulbing ratio (BR, aerial leaves length (ALL, leaf area (LA, leaf area index (LAI, leaves dry weight (LDW, leaves fresh weight (LFW and leaves saturation weight (LSW than the DS methods. Maximum WUE (6.07 kg m3 and minimum WU (9381 m3 ha-1 were obtained in TM. However, the lowest WUE (4.19 kg m3 and the highest WU (115921 m3 ha-1 was obtained with DS. In other words, in TM water economizing was 1.5 tim, amount of yield was increased up 15% (in comparison with DS. Also among the cultivars except for the RWC, WUE and BR other traits were significantly. The sowing method x cultivar interaction were not significant. For the studied traits, TM and red �Azarshahr� cv. were better than the DS and �Gooli-Ghesseh Zanjan�, thus thy were identified the best treatments for experiment therefore it is recommended for the places with the same environmental conditions of this experiment.

  5. Tuberous Roots Yield, Transpiration Rate, Stomatal Conductance and Water Use Efficiency of Divergent Cassava Clones as Influenced by Climate and Growth Stage

    International Nuclear Information System (INIS)

    Githunguri, C.M; Chewa, J.A; Ekanayake, I.J

    1999-01-01

    Cassava roots provide a cheap source of dietary energy to millions of people in the tropics. Variations in yield, stomatal conductance, transpiration rate and water use efficiency occur due to various factors. This makes selection of clones with wide ecological adaptation and high yield difficult. The influence of crop age and agroecozones (AEZ) in Nigeria on above parametres were studied. The tested AEZs were Sudan savanna (Minjibir), Southern Guinea savanna (Mokwa) and forest-savanna transition (Ibadan) AEZ. The environment plays a significant role in determining root yield with plant age playing a bigger role at the early stages. Results suggest root development was restricted by low moisture stress. Cassava ought to be harvested at eight months after planting (MAP) rather than at 12 MAP in order to obtain maximum yields. Yields at Mokwa were significantly higher than both Minjibir and Ibadan suggesting that cassava is not a crop for either forest or semi arid zones. During both seasons Minjbir had the highest stomatal conductance trend while Ibadan had the lowest. Stomatal conductance at Minjibir becomes critical at 12 MAP. The highest transpiration rate was recorded at Minijibir at 4 and 12 MAP. The lowest transpiration rate ws observed at Ibadan. The lowest transpiration rate was also observed during drought. There was a close positive close relationship between tuberous roots yield and transpiration. The lowest and highest water use efficiency (WUE) was recorded at 4 and 8 MAP during rains. The lowest and the highest WUE was recorded at Ibadan and Mokwa respectively. The two seasons trends were similar. Clone TMS 50395 had the highest WUE. Tere was close positive relationship between WUE and tuberous roots yield

  6. Review of 'plant available water' aspects of water use efficiency ...

    African Journals Online (AJOL)

    Review of 'plant available water' aspects of water use efficiency under ... model relating the water supply from a layered soil profile to water demand; the ... and management strategies to combat excessive water losses by deep drainage.

  7. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    Science.gov (United States)

    Wang, Li-Fang; Shangguan, Zhou-Ping

    2015-07-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259-7898 kg ha-1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic.

  8. Effect of Drought Stress on Water Use Efficiency and Its Components in Several Genotypes and Cultivars of Foxtail Millet (Setaria italica L.

    Directory of Open Access Journals (Sweden)

    M Khazaei

    2018-05-01

    Full Text Available Introduction According to NASA reports about atmospheric earth conditions, in the 30 years later, 45 countries will face with severe droughts and Iran is in the fourth place in this list. Water shortage is one of the most important limiting factors of production that affects plants growth by changing physiological conditions. Using adapted plants is a proper strategy to deal with the effects of water shortage on the status of water restrictions. Foxtail millet is a C4 plant with good compatibility to dry areas and it has high water use efficiency. In medium stress partial stomata closure reduces transpiration more than photosynthesis in this plant and as a result, increase water use efficiency. Materials and Methods This experiment was carried out as split-plot layout based on randomized complete blocks design with four replications at the Agricultural Research Station, University of Birjand in 2014-2015. The main factor was drought stress in three levels including 100, 75 and 50 percent of plant water requirement (no stress as control, moderate stress and severe stress, respectively and the sub-factor was millet genotype in three levels (including Bastan, KFM5 and KFM20. At four leaf stage, 75 plants per square meter were maintained and applied stress. Water use efficiency, evapotranspiration efficiency, harvest index for seed and ear, economic and biological yield were measured at maturity. . Data were analyzed with the SAS software ver 9.1 and the means were compared with Tukey’s test. Results and Discussion The results showed that water use efficiency (WUE was significantly decreased with increasing the intensity of drought stress in all three genotypes but not evapotranspiration efficiency (ETE, ratio of total dry matter to water used. Bastan cultivar had higher water use efficiency in all stress levels and was more affected under moderate stress while it was less affected under severe stress (33 and 31 percent compared to the control

  9. Water consumption characteristics and water use efficiency of winter wheat under long-term nitrogen fertilization regimes in northwest China.

    Directory of Open Access Journals (Sweden)

    Yangquanwei Zhong

    Full Text Available Water shortage and nitrogen (N deficiency are the key factors limiting agricultural production in arid and semi-arid regions, and increasing agricultural productivity under rain-fed conditions often requires N management strategies. A field experiment on winter wheat (Triticum aestivum L. was begun in 2004 to investigate effects of long-term N fertilization in the traditional pattern used for wheat in China. Using data collected over three consecutive years, commencing five years after the experiment began, the effects of N fertilization on wheat yield, evapotranspiration (ET and water use efficiency (WUE, i.e. the ratio of grain yield to total ET in the crop growing season were examined. In 2010, 2011 and 2012, N increased the yield of wheat cultivar Zhengmai No. 9023 by up to 61.1, 117.9 and 34.7%, respectively, and correspondingly in cultivar Changhan No. 58 by 58.4, 100.8 and 51.7%. N-applied treatments increased water consumption in different layers of 0-200 cm of soil and thus ET was significantly higher in N-applied than in non-N treatments. WUE was in the range of 1.0-2.09 kg/m3 for 2010, 2011 and 2012. N fertilization significantly increased WUE in 2010 and 2011, but not in 2012. The results indicated the following: (1 in this dryland farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic.

  10. Response of water use efficiency and carbon emission to no-tillage and winter wheat genotypes in the North China Plain.

    Science.gov (United States)

    Ren, Yujie; Gao, Chao; Han, Huifang; Li, Quanqi

    2018-04-20

    No-tillage management practices reduce net CO 2 losses from farmland and keep soil from degrading, but also decrease winter wheat grain yield and water use efficiency (WUE) in the North China Plain (NCP). Suitable management practices, namely, the choice of genotypes, could enhance crop yield and WUE; however, how the WUE and CO 2 exchange responds to no-tillage practices and winter wheat genotypes remains unclear. In the 2015-2016 and 2016-2017 winter wheat growing seasons in the NCP, a field experiment was carried out, and tested two tillage methods (no-tillage with mulching and conventional tillage) and two winter wheat genotypes ('Tainong 18' and 'Jimai 22'). The goal of the study was to identify the relationship between winter wheat grain yield, water consumption, and carbon emissions in no-tillage practices. The results showed that, compared to conventional tillage, no-tillage significantly reduced the net CO 2 -C cumulative emissions and water consumption; however, the grain yield was significantly reduced by 6.8% and 12.0% in the first and second growing seasons, respectively. Compared with Jimai 22, Tainong 18 had a compensatory effect on the yield reduction caused by no-tillage. As a result, the yield carbon utilization efficiency (R) and WUE were the highest in no-tillage with Tainong 18 (NT18), and the carbon emission per unit water consumption was the lowest in NT18. The results support the idea that a combination of no-tillage with genotype can improve the regulation of soil carbon emissions and water consumption of winter wheat, thus, providing theoretical support for sustainable crop production and soil development in the NCP. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Ground Field-Based Hyperspectral Imaging: A Preliminary Study to Assess the Potential of Established Vegetation Indices to Infer Variation in Water-Use Efficiency.

    Science.gov (United States)

    Pelech, E. A.; McGrath, J.; Pederson, T.; Bernacchi, C.

    2017-12-01

    Increases in the global average temperature will consequently induce a higher occurrence of severe environmental conditions such as drought on arable land. To mitigate these threats, crops for fuel and food must be bred for higher water-use efficiencies (WUE). Defining genomic variation through high-throughput phenotypic analysis in field conditions has the potential to relieve the major bottleneck in linking desirable genetic traits to the associated phenotypic response. This can subsequently enable breeders to create new agricultural germplasm that supports the need for higher water-use efficient crops. From satellites to field-based aerial and ground sensors, the reflectance properties of vegetation measured by hyperspectral imaging is becoming a rapid high-throughput phenotyping technique. A variety of physiological traits can be inferred by regression analysis with leaf reflectance which is controlled by the properties and abundance of water, carbon, nitrogen and pigments. Although, given that the current established vegetation indices are designed to accentuate these properties from spectral reflectance, it becomes a challenge to infer relative measurements of WUE at a crop canopy scale without ground-truth data collection. This study aims to correlate established biomass and canopy-water-content indices with ground-truth data. Five bioenergy sorghum genotypes (Sorghum bicolor L. Moench) that have differences in WUE and wild-type Tobacco (Nicotiana tabacum var. Samsun) under irrigated and rainfed field conditions were examined. A linear regression analysis was conducted to determine if variation in canopy water content and biomass, driven by natural genotypic and artificial treatment influences, can be inferred using established vegetation indices. The results from this study will elucidate the ability of ground field-based hyperspectral imaging to assess variation in water content, biomass and water-use efficiency. This can lead to improved opportunities to

  12. Relationships between phenotypic variation in osmotic adjustment, water-use efficiency, and drought tolerance of seven cultivars of Lotus corniculatus L.

    Directory of Open Access Journals (Sweden)

    Luis Inostroza

    2015-03-01

    Full Text Available Lotus corniculatus L. is a perennial forage legume species highly-adapted to growth under drought conditions. However, the genetic and physiological mechanisms involved in its adaptive capacity have not been elucidated. The role of osmotic adjustment (OA and water-use efficiency (WUE on the drought tolerance of L. corniculatus was studied in a greenhouse experiment. Seven cultivars of different origin were subjected to two contrasting treatments of available soil water: No water stress (NWS and with water stress (WWS. Xylem water potential (Ψx, osmotic potential (Ψπ, pressure potential (Ψp, relative water content (RWC, stomatal conductance (g s, shoot DM production, water transpiration (T, and WUE (shoot DM/T were measured. Water treatments significantly (P < 0.05 affected plant water status, which was reflected in reduced Ψx, RWC, g s, and transpiration rate in the WWS treatment compared with the NWS treatment. All cultivars showed a high capacity for OA under WWS treatment because Ψπ decreased by approximately 60% and Ψp increased by approximately 30%, compared with the NWS treatment. Cultivars with a higher solute accumulation (low Ψπ value had the lowest DM production under WWS treatment. In contrast, WUE varied greatly among cultivars and was positively associated (R² = 0.88; P < 0.01 with DM production under drought conditions.

  13. Land use history, ecosystem type and species composition drive water use efficiency in annual maize and perennial grasslands in a humid temperate climate

    Science.gov (United States)

    Gelfand, I.; Abraha, M.; Chen, J.; Shao, C.; Su, Y. J.; Hamilton, S. K.; Robertson, G. P.

    2015-12-01

    Water use efficiency (WUE), carbon gained per unit water lost, is a fundamental plant and ecosystem function that regulates plant productivity, global hydrology and carbon cycles. We examined ecosystem (E) and intrinsic (i) WUEs derived from eddy covariance (EC) measurements and plant carbon isotope discrimination, respectively, to study how WUE is affected by land-use history, ecosystem type, and plants community composition. We measured EWUE and iWUE of three perennial grasslands planted to mixed-prairie, switchgrass and brome grass as compared to a fields planted to corn. Each of studied ecosystems was replicated on two fields with contrasting land-use histories: one field was managed under the USDA Conservation Reserve Program (CRP, planted to bromgrass) and another was in conventional agriculture (AGR) corn/soybean rotation for few decades before start of the experiment. In 2009, all but one CRP field were converted to no-till soybean. In 2010, the converted CRP and AGR fields were planted to mixed-prairie (C3 and C4 grasses), switchgrass (C4 grass), and no-till corn (C4 grass). During 2009-2013, we measured carbon and water exchange over each field using an EC technique and sampled plant tissue for 13C isotopes analysis. Land-use history, ecosystem type, and species composition had large effects on EWUEs. Intrinsic WUE of individual C3 grass species, however, was similar across the study period, despite drought in 2012. Corn and brome grass had the highest and lowest overall mean EWUE, 4.1 and 2.2 g C kg-1 H2O, respectively. Restored prairie on former AGR land had a mean EWUE of 3.0 g C kg-1 H2O, significantly greater than on former CRP land with a EWUE of 2.5 g C kg-1 H2O. Land use history had no effect on interannual variability of EWUE of corn. Prairie and switchgrass established on former CRP land exhibited no change of EWUE, as well. Same ecosystems established on former AGR land, oppositely, increased their WUEs over the study period from ~ 2.5 g C kg-1

  14. Water use efficiency by coffee arabica after glyphosate application

    Directory of Open Access Journals (Sweden)

    Felipe Paolinelli de Carvalho

    2014-07-01

    Full Text Available Many coffee growers apply glyphosate in directed applications, but some phytotoxicity has been noted. It is believed some herbicides can exert a direct or indirect negative effect on photosynthesis by reducing the metabolic rate in a way that can affect the water use efficiency. The objective of this study was to investigate the variables related to water use among coffee cultivars subjected to the application of glyphosate and the effects of each dose. The experiment was conducted in a greenhouse using three varieties of coffee (Coffea arabica, Acaiá (MG-6851, Catucaí Amarelo (2SL and Topázio (MG-1190, and three doses of glyphosate (0.0, 115.2 and 460.8 g acid equivalent ha-1, in a factorial 3 x 3 design. At 15 days after application, a reduction in stomatal conductance was observed, and smaller transpiration rate and water use efficiency were found in the fourth leaf at 15 days after application. There was a decrease in the transpiration rate at 45 DAA, with the Acaiá cultivar showing reductions with 115.2 g ha-1. There was transitory reduction in water use efficiency with glyphosate application, but can affect the growth and production. The Acaiá cultivar showed the highest tolerance to glyphosate because the water use efficiency after herbicide application.

  15. Simulation of Stomatal Conductance and Water Use Efficiency of Tomato Leaves Exposed to Different Irrigation Regimes and Air CO2 Concentrations by a Modified “Ball-Berry” Model

    Directory of Open Access Journals (Sweden)

    Zhenhua Wei

    2018-04-01

    Full Text Available Stomatal conductance (gs and water use efficiency (WUE of tomato leaves exposed to different irrigation regimes and at ambient CO2 (a[CO2], 400 ppm and elevated CO2 (e[CO2], 800 ppm environments were simulated using the “Ball-Berry” model (BB-model. Data obtained from a preliminary experiment (Exp. I was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate (Pn was used as an input for the model. Considering the effect of soil water deficits on gs, an equation modifying the slope (m based on the mean soil water potential (Ψs in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both gs and WUE of tomato leaves at each [CO2] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II where plants were subjected to three irrigation regimes: full irrigation (FI, deficit irrigation (DI, and alternative partial root-zone irrigation (PRI for 40 days at both a[CO2] and e[CO2] environment. The simulation results indicated that gs was independently acclimated to e[CO2] from Pn. The modified BB-model performed better in estimating gs and WUE, especially for PRI strategy at both [CO2] environments. A greater WUE could be seen in plants grown under e[CO2] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting gs and WUE of tomato leaves in various irrigation regimes at both a[CO2] and e[CO2] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO2 enriched environment.

  16. Potential of Soil Amendments (Biochar and Gypsum in increasing Water Use Efficiency of Abelmoschus esculentus L. Moench

    Directory of Open Access Journals (Sweden)

    Aniqa eBatool

    2015-09-01

    Full Text Available Water being an essential component for plant growth and development, its scarcity poses serious threat to crops around the world. Climate changes and global warming are increasing the temperature of earth hence becoming an ultimate cause of water scarcity. It is need of the day to use potential soil amendments that could increase the plants’ resistance under such situations. Biochar and gypsum were used in the present study to improve the water use efficiency and growth of Abelmoschus esculentus L. Moench (Lady’s Finger. A six weeks experiment was conducted under greenhouse conditions. Stress treatments were applied after thirty days of sowing. Plant height, leaf area, photosynthesis, transpiration rate, stomatal conductance and water use efficiency were determined weekly under stressed (60% field capacity and non-stressed (100% field capacity conditions. Stomatal conductance and transpiration rate decreased and reached near to zero in stressed plants. Stressed plants also showed resistance to water stress upto five weeks and gradually perished at sixth week. On the other hand, water use efficiency improved in stressed plants containing biochar and gypsum as compared to untreated plants. Biochar alone is a better strategy to promote plant growth and WUE specifically of Abelmoschus esculentus, compared to its application in combination with gypsum.

  17. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis

    Science.gov (United States)

    Anderson, Ray; Skaggs, Todd; Alfieri, Joseph; Kustas, William; Wang, Dong; Ayars, James

    2016-04-01

    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes, Eddy Covariance (EC), can directly measure net, combined water and carbon fluxes (evapotranspiration and net ecosystem exchange/productivity). Analysis of the correlation structure of high frequency EC time series (hereafter flux partitioning or FP) has been proposed to directly partition net EC fluxes into their constituent components using leaf-level water use efficiency (WUE) data to separate stomatal and non-stomatal transport processes. FP has significant logistical and spatial representativeness advantages over other partitioning approaches (e.g. isotopic fluxes, sap flow, microlysimeters), but the performance of the FP algorithm is reliant on the accuracy of the intercellular CO2 (ci) concentration used to parameterize WUE for each flux averaging interval. In this study, we tested several parameterizations for ci as a function of atmospheric CO2 (ca), including (1) a constant ci/ca ratio for C3 and C4 photosynthetic pathway plants, (2) species-specific ci/ca-Vapor Pressure Deficit (VPD) relationships (quadratic and linear), and (3) generalized C3 and C4 photosynthetic pathway ci/ca-VPD relationships. We tested these ci parameterizations at three agricultural EC towers from 2011-present in C4 and C3 crops (sugarcane - Saccharum officinarum L. and peach - Prunus persica), and validated again sap-flow sensors installed at the peach site. The peach results show that the species-specific parameterizations driven FP algorithm came to convergence significantly more frequently (~20% more frequently) than the constant ci/ca ratio or generic C3-VPD relationship. The FP algorithm parameterizations with a generic VPD relationship also had slightly higher transpiration (5 Wm-2

  18. Two tropical conifers show strong growth and water-use efficiency responses to altered CO2 concentration.

    Science.gov (United States)

    Dalling, James W; Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Garcia, Milton; Virgo, Aurelio; Cheesman, Alexander W; Baresch, Andres; Jaramillo, Carlos; Turner, Benjamin L

    2016-11-01

    Conifers dominated wet lowland tropical forests 100 million years ago (MYA). With a few exceptions in the Podocarpaceae and Araucariaceae, conifers are now absent from this biome. This shift to angiosperm dominance also coincided with a large decline in atmospheric CO 2 concentration (c a ). We compared growth and physiological performance of two lowland tropical angiosperms and conifers at c a levels representing pre-industrial (280 ppm), ambient (400 ppm) and Eocene (800 ppm) conditions to explore how differences in c a affect the growth and water-use efficiency (WUE) of seedlings from these groups. Two conifers (Araucaria heterophylla and Podocarpus guatemalensis) and two angiosperm trees (Tabebuia rosea and Chrysophyllum cainito) were grown in climate-controlled glasshouses in Panama. Growth, photosynthetic rates, nutrient uptake, and nutrient use and water-use efficiencies were measured. Podocarpus seedlings showed a stronger (66 %) increase in relative growth rate with increasing c a relative to Araucaria (19 %) and the angiosperms (no growth enhancement). The response of Podocarpus is consistent with expectations for species with conservative growth traits and low mesophyll diffusion conductance. While previous work has shown limited stomatal response of conifers to c a , we found that the two conifers had significantly greater increases in leaf and whole-plant WUE than the angiosperms, reflecting increased photosynthetic rate and reduced stomatal conductance. Foliar nitrogen isotope ratios (δ 15 N) and soil nitrate concentrations indicated a preference in Podocarpus for ammonium over nitrate, which may impact nitrogen uptake relative to nitrate assimilators under high c a SIGNIFICANCE: Podocarps colonized tropical forests after angiosperms achieved dominance and are now restricted to infertile soils. Although limited to a single species, our data suggest that higher c a may have been favourable for podocarp colonization of tropical South America 60

  19. Evaluation of water-use efficiency in foxtail millet (Setaria italica) using visible-near infrared and thermal spectral sensing techniques.

    Science.gov (United States)

    Wang, Meng; Ellsworth, Patrick Z; Zhou, Jianfeng; Cousins, Asaph B; Sankaran, Sindhuja

    2016-05-15

    Water limitations decrease stomatal conductance (g(s)) and, in turn, photosynthetic rate (A(net)), resulting in decreased crop productivity. The current techniques for evaluating these physiological responses are limited to leaf-level measures acquired by measuring leaf-level gas exchange. In this regard, proximal sensing techniques can be a useful tool in studying plant biology as they can be used to acquire plant-level measures in a high-throughput manner. However, to confidently utilize the proximal sensing technique for high-throughput physiological monitoring, it is important to assess the relationship between plant physiological parameters and the sensor data. Therefore, in this study, the application of rapid sensing techniques based on thermal imaging and visual-near infrared spectroscopy for assessing water-use efficiency (WUE) in foxtail millet (Setaria italica (L.) P. Beauv) was evaluated. The visible-near infrared spectral reflectance (350-2500 nm) and thermal (7.5-14 µm) data were collected at regular intervals from well-watered and drought-stressed plants in combination with other leaf physiological parameters (transpiration rate-E, A(net), g(s), leaf carbon isotopic signature-δ(13)C(leaf), WUE). Partial least squares regression (PLSR) analysis was used to predict leaf physiological measures based on the spectral data. The PLSR modeling on the hyperspectral data yielded accurate and precise estimates of leaf E, gs, δ(13)C(leaf), and WUE with coefficient of determination in a range of 0.85-0.91. Additionally, significant differences in average leaf temperatures (~1°C) measured with a thermal camera were observed between well-watered plants and drought-stressed plants. In summary, the visible-near infrared reflectance data, and thermal images can be used as a potential rapid technique for evaluating plant physiological responses such as WUE. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Improving crop water use efficiency using carbon isotope discrimination

    International Nuclear Information System (INIS)

    Serraj, R.

    2006-01-01

    Water scarcity, drought and salinity are among the most important environmental constraints challenging crop productivity in the arid and semi-arid regions of the world, especially the rain-fed production systems. The current challenge is to enhance food security in water-limited and/or salt-affected areas for the benefit of resource-poor farmers in developing countries. There is also an increasing need that water use in agriculture should focus on improvement in the management of existing water resources and enhancing crop water productivity. The method based on carbon-13 discrimination in plant tissues has a potentially important role in the selection and breeding of some crop species for increased water use efficiency in some specific environments. Under various water-limited environments, low delta in the plants, indicating low carbon isotope discrimination has been generally associated with high transpiration efficiency (TE). In contrast, for well-watered environments many positive genotypic correlations have been reported between delta and grain yield indicating potential value in selecting for greater delta in these environments. Few studies have been reported on the impact of selection for delta on adaptation and grain yield in saline environments. Studies of the impact of genetic selection for greater and lower delta are currently coordinated by the Soil and water Management and Crop Nutrition Section (SWMCN) of the Joint FAO/IAEA Division. A Coordinated Research Project (CRP) is currently on-going on the Selection for Greater Agronomic Water-Use Efficiency in Wheat and Rice using Carbon Isotope Discrimination (D1-20 08). The overall objective of this project is to contribute to increasing the agronomic water-use efficiency of wheat and rice production, where agronomic water-use efficiency is defined as grain yield/total water use including both transpiration and evaporation. The CRP is also aiming at increasing wheat productivity under drought and rice

  1. Exploring Northwest China's agricultural water-saving strategy: analysis of water use efficiency based on an SE-DEA model conducted in Xi'an, Shaanxi Province.

    Science.gov (United States)

    Mu, L; Fang, L; Wang, H; Chen, L; Yang, Y; Qu, X J; Wang, C Y; Yuan, Y; Wang, S B; Wang, Y N

    Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004-2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.

  2. Biomass production and water use efficiency of grassland in ...

    African Journals Online (AJOL)

    Using the results from a long-term grazing trial in the Dry Highland Sourveld of the KwaZulu-Natal province, we prepared a water use efficiency value (the ratio of the increment in annual biomass to total annual evapotranspiration) for this rangeland type. Using seasonal biomass measurements recorded between March ...

  3. Studies on water use efficiency of wheat in Egypt

    International Nuclear Information System (INIS)

    Abdou, M.

    1996-01-01

    This experiment was carried out in Ismailia region to investigate water use efficiency of 14 bred wheat cultivars (Triticum aestivum L.) and 4 durum wheat cultivars (T. durum L.). Two irrigation water levels were used, an optimum level of 441 mm and a low level of 271 mm during the growing season using a sprinkler irrigation system. Yield and yield components examined showed significant differences among cultivars. The best cultivar for grain yield was Sakha 8 giving 4850 kg/ha. The lowest yield of 2650 kg/ha was produced by Sohag 3. There were also large genotypic differences among cultivars for water use efficiency. The cultivars that are better in water use efficiency may be used for wheat production in areas in Egypt where rainfall is low, or for use in breeding programmes aimed at incorporating the traits of high water use efficiency with high grain yield. Protein and phytin content of grains were negatively correlated with irrigation water level. (author). 10 refs, 1 fig., 1 tab

  4. Studies on water use efficiency of wheat in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M [Suez Canal Univ., Ismailia (Egypt). Soil and Water Dept.

    1996-07-01

    This experiment was carried out in Ismailia region to investigate water use efficiency of 14 bred wheat cultivars (Triticum aestivum L.) and 4 durum wheat cultivars (T. durum L.). Two irrigation water levels were used, an optimum level of 441 mm and a low level of 271 mm during the growing season using a sprinkler irrigation system. Yield and yield components examined showed significant differences among cultivars. The best cultivar for grain yield was Sakha 8 giving 4850 kg/ha. The lowest yield of 2650 kg/ha was produced by Sohag 3. There were also large genotypic differences among cultivars for water use efficiency. The cultivars that are better in water use efficiency may be used for wheat production in areas in Egypt where rainfall is low, or for use in breeding programmes aimed at incorporating the traits of high water use efficiency with high grain yield. Protein and phytin content of grains were negatively correlated with irrigation water level. (author). 10 refs, 1 fig., 1 tab.

  5. Physiological response, molecular analysis and water use efficiency ...

    African Journals Online (AJOL)

    With a view to study the effects of irrigation scheduling on the water use efficiency and physiological response and molecular basis of maize hybrids of different maturity groups, a field experiment was conducted at Water Management Research Center (WMRC), Belvatagi, University of Agricultural Sciences, Dharwad, India ...

  6. Crop modelling and water use efficiency of protected cucumber

    International Nuclear Information System (INIS)

    El Moujabber, M.; Atallah, Th.; Darwish, T.

    2002-01-01

    Crop modelling is considered an essential tool of planning. The automation of irrigation scheduling using crop models would contribute to an optimisation of water and fertiliser use of protected crops. To achieve this purpose, two experiments were carried. The first one aimed at determining water requirements and irrigation scheduling using climatic data. The second experiment was to establish the influence of irrigation interval and fertigation regime on water use efficiency. The results gave a simple model for the determination of the water requirements of protected cucumber by the use of climatic data: ETc=K* Ep. K and Ep are calculated using climatic data outside the greenhouse. As for water use efficiency, the second experiment highlighted the fact that a high frequency and continuous feeding are highly recommended for maximising yield. (author)

  7. Plastic-Film Mulching for Enhanced Water-Use Efficiency and Economic Returns from Maize Fields in Semiarid China.

    Science.gov (United States)

    Zhang, Peng; Wei, Ting; Cai, Tie; Ali, Shahzad; Han, Qingfang; Ren, Xiaolong; Jia, Zhikuan

    2017-01-01

    Film mulch has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid areas of Northwest China. To find more sustainable and economic film mulch methods for alleviating drought stress in semiarid region, it is necessary to test optimum planting methods in same cultivation conditions. A field experiment was conducted during 2013 and 2014 to evaluate the effects of different plastic film mulch methods on soil water, soil temperature, water use efficiency (WUE), yield and revenue. The treatments included: (i) the control, conventional flat planting without plastic film mulch (CK); (ii) flat planting with maize rows (60 cm spacing) on plastic film mulch (70 cm wide); (iii) furrow planting of maize (60 cm spacing), separated by consecutive plastic film-mulched ridges (each 50 cm wide and 15 cm tall); (iv) furrow planting of maize (60 cm spacing), separated by alternating large and small plastic film-mulched ridges (large ridges: 70 cm wide and 15 cm tall, small ridges 50 cm wide and 10 cm tall); and (v) furrow-flat planting of maize (60 cm spacing) with a large plastic film-mulched ridge (60 cm wide and 15 cm tall) alternating with a flat without plastic film-mulched space (60 cm wide). Topsoil temperature (5-25 cm) was significantly ( p plastic film mulch than the control (CK), and resulted in greater soil water storage (0-200 cm) up to 40 days after planting. Maize grain yield and WUE were significantly ( p < 0.05) higher with the furrow planting methods (consecutive film-mulched ridges and alternating film-mulched ridges) than the check in both years. Maize yield was, on average, 29% ( p < 0.05) greater and 28% ( p < 0.05) greater with these furrow planting methods, while the average WUE increased by 22.8% ( p < 0.05) with consecutive film-mulched ridges and 21.1% ( p < 0.05) with alternating film-mulched ridges. The 2-year average net income increased by 1559, 528, and 350 Chinese Yuan

  8. Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.).

    Science.gov (United States)

    Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino

    2012-11-15

    Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition.

    Science.gov (United States)

    Gattward, James N; Almeida, Alex-Alan F; Souza, José O; Gomes, Fábio P; Kronzucker, Herbert J

    2012-11-01

    In ecological setting, sodium (Na(+)) can be beneficial or toxic, depending on plant species and the Na(+) level in the soil. While its effects are more frequently studied at high saline levels, Na(+) has also been shown to be of potential benefit to some species at lower levels of supply, especially in C4 species. Here, clonal plants of the major tropical C3 crop Theobroma cacao (cacao) were grown in soil where potassium (K(+)) was partially replaced (at six levels, up to 50% replacement) by Na(+), at two concentrations (2.5 and 4.0 mmol(c) dm(-3)). At both concentrations, net photosynthesis per unit leaf area (A) increased more than twofold with increasing substitution of K(+) by Na(+). Concomitantly, instantaneous (A/E) and intrinsic (A/g(s)) water-use efficiency (WUE) more than doubled. Stomatal conductance (g(s)) and transpiration rate (E) exhibited a decline at 2.5 mmol dm(-3), but remained unchanged at 4 mmol dm(-3). Leaf nitrogen content was not impacted by Na(+) supplementation, whereas sulfur (S), calcium (Ca(2+)), magnesium (Mg(2+)) and zinc (Zn(2+)) contents were maximized at 2.5 mmol dm(-3) and intermediate (30-40%) replacement levels. Leaf K(+) did not decline significantly. In contrast, leaf Na(+) content increased steadily. The resultant elevated Na(+)/K(+) ratios in tissue correlated with increased, not decreased, plant performance. The results show that Na(+) can partially replace K(+) in the nutrition of clonal cacao, with significant beneficial effects on photosynthesis, WUE and mineral nutrition in this major perennial C3 crop. Copyright © Physiologia Plantarum 2012.

  10. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  11. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Directory of Open Access Journals (Sweden)

    Q. Cai

    2017-08-01

    Full Text Available A large yield gap exists in rain-fed maize (Zea mays L. production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU and water use efficiency (WUE. Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root ∕ shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season and to mitigate drought risk in dry-land agriculture.

  12. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Fathia El Mokh

    2014-12-01

    Full Text Available Field experiments were conducted on a sandy soil during spring of 2009 and autumn of 2010 in southern Tunisia for evaluating the effects of two drip irrigation methods and three irrigation regimes on soil moisture and salinity, yield and water use efficiency of potato (Solanum tuberosum L.. The surface drip (SDI and subsurface drip (SSDI irrigation methods were used. Irrigation regimes consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI100, 60% (DI60 and 30% (DI30. FI100 was considered as full irrigation while DI60 and DI30 were considered as deficit irrigation regimes. Well water with an ECi of 7.0 dS/m was used for irrigation. Findings are globally consistent between the two experiments. Results show that soil moisture content and salinity were significantly affected by irrigation treatments and methods. Higher soil moisture content and lower soil salinity were maintained with SSDI than SDI for all irrigation treatments. For both irrigation methods, higher salinity and lower moisture content in the root zone are observed under DI60 and DI30 treatments compared to FI100. Potato yields were highest over two cropping periods for the SSDI method although no significant differences were observed with the SDI. Irrigation regimes resulted in significant difference in both irrigation methods on yield and its components. Yields were highest under FI100. Compared to FI100, considerable reductions in potato yields were observed under DI60 and DI30 deficit treatments resulting from a reduction in tubers number/m² and average tuber weight and size. Water use efficiency (WUE was found to vary significantly among irrigation methods and treatments and varied between 5.9 and 20.5 kg/m3. WUE of SSDI method had generally higher values than SDI. The lowest WUE values were observed for the FI100 treatment, while the highest values were obtained under DI30 treatment for both methods. SSDI method provides

  13. Water-use responses of 'living fossil' conifers to CO2 enrichment in a simulated Cretaceous polar environment.

    Science.gov (United States)

    Llorens, Laura; Osborne, Colin P; Beerling, David J

    2009-07-01

    During the Mesozoic, the polar regions supported coniferous forests that experienced warm climates, a CO(2)-rich atmosphere and extreme seasonal variations in daylight. How the interaction between the last two factors might have influenced water use of these conifers was investigated. An experimental approach was used to test the following hypotheses: (1) the expected beneficial effects of elevated [CO(2)] on water-use efficiency (WUE) are reduced or lost during the 24-h light of the high-latitude summer; and (2) elevated [CO(2)] reduces plant water use over the growing season. Measurements of leaf and whole-plant gas exchange, and leaf-stable carbon isotope composition were made on one evergreen (Sequoia sempervirens) and two deciduous (Metasequoia glyptostroboides and Taxodium distichum) 'living fossil' coniferous species after 3 years' growth in controlled-environment simulated Cretaceous Arctic (69 degrees N) conditions at either ambient (400 micromol mol(-1)) or elevated (800 micromol mol(-1)) [CO(2)]. Stimulation of whole-plant WUE (WUE(P)) by CO(2) enrichment was maintained over the growing season for the three studied species but this pattern was not reflected in patterns of WUE inferred from leaf-scale gas exchange measurements (iWUE(L)) and delta(13)C of foliage (tWUE(L)). This response was driven largely by increased rates of carbon uptake, because there was no overall CO(2) effect on daily whole-plant transpiration or whole-plant water loss integrated over the study period. Seasonal patterns of tWUE(L) differed from those measured for iWUE(L). The results suggest caution against over simplistic interpretations of WUE(P) based on leaf isotopic composition. The data suggest that the efficiency of whole-tree water use may be improved by CO(2) enrichment in a simulated high-latitude environment, but that transpiration is relatively insensitive to atmospheric CO(2) in the living fossil species investigated.

  14. Acid deposition and water use efficiency in Appalachian forests

    Science.gov (United States)

    Malcomb, J.

    2017-12-01

    Multiple studies have reported increases in forest water use efficiency in recent decades, but the drivers of these trends remain uncertain. While acid deposition has profoundly altered the biogeochemistry of Appalachian forests in the past century, its impacts on forest water use efficiency have been largely overlooked. Plant ecophysiology literature suggests that plants up-regulate transpiration in response to soil nutrient limitation in order to maintain sufficient mass flow of nutrients. To test the impacts of acid deposition on forest eco-hydrology in central Appalachia, we integrated dendrochronological techniques, including tree ring δ13C analysis, with catchment water balance data from the Fernow Experimental Forest in West Virginia. Tree cores from four species were collected in Fernow Watershed 3, which has received experimental ammonium sulfate additions since 1989, and Watershed 7, an adjacent control catchment. Initial results suggest that acidification treatments have not significantly influenced tree productivity compared to a control watershed, but the effect varies by species, with tulip poplar showing greatest sensitivity to acidification. Climatic water balance, defined as the difference between growing season precipitation and evapotranspiration, is significantly related to annual tree ring growth, suggesting that climate may be driving tree growth trends in chronically acidified Appalachian forests. Tree ring 13C analysis from Fernow cores is underway and these data will be integrated with catchment hydrology data from five other sites in central Appalachia and the U.S. Northeast, representing a range of forest types, soil base saturations, and acid deposition histories. This work will advance understanding of how climate and acid deposition interact to influence forest productivity and water use efficiency, and improve our ability to model carbon and water cycling in forested ecosystems impacted by acid deposition.

  15. Studies on {sup 13}C isotope discrimination for identifying tree provenances efficient in water use under water deficit conditions in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nyamai, D O; Juma, P O [Kenya Forestry Research Inst., Nairobi (Kenya). Agroforestry Research Programme

    1996-07-01

    Screening for drought resistance traits was conducted in a semi-arid site in Machakos using 11 provenances of Acacia tortilis, 6 provenances of Prosopis juliflora and 4 provenances of Casuarina equisetifolia. Tolerance to drought was assessed by the {sup 13}C isotope discrimination ({Delta}) technique as well as by determining the waster use efficiency (WUE). Measurements of dry matter and early growth performance were also taken as indicators of drought resistance. The results showed significant differences in the {sup 13}C Isotope discrimination, water use efficiency and dry matter yields by the different provenances tested. Generally, the results indicated that there were significant linear negative relationships between {sup 13}C discrimination with water use efficiency as well as dry matter yield. The results further showed highly significant positive relationship between dry matter yield and water use efficiency. Acacia tortilis provenances from middle East and neighbouring North Eastern Africa region appear to possess the greatest abilities for drought resistance in comparison with those from sub-saharan Africa as indicated by their {sup 13}C Isotope discrimination levels, dry matter yield and water use efficiency. However, Acacia provenance from Israel had the highest drought resistance trail. Prosopis provenance from Costa Rica and Casuarina from Dakar region in Senegal also emerged as the best provenances in terms of drought tolerance as shown by the {sup 13}C isotope discrimination and dry matter traits. (author). 8 refs, 4 figs, 3 tabs.

  16. Gas exchange variability and water use efficiency of thirty landraces of rice still under cultivation in Kumaun region of the Indian Central Himalaya.

    Science.gov (United States)

    Agnihotri, R K; Palni, L M S; Chandra, Suman; Joshi, S C

    2009-10-01

    Gas exchange characteristics of thirty landraces of rice (Oryza sativa L.) along with an introduced variety VL-206 (recommended high yielding variety for rainfed uplands of the Indian Central Himalaya, ICH), grown in earthen pots and kept in the open at the Institute nursery at Kosi (1150m amsl, 79°38'10″E and 29°38'15″N) were studied. The photosynthetic rate (Pn) and other related parameters were found to vary considerably among landraces. Based on the comparison of Pn of landraces with that of VL-206, these were categorized into two groups: i) high (〉6.0 µmol m(-2)s(-1)), and ii) low (water use efficiency (WUE), mesophyll efficiency (low Ci/gs ratio) and chlorophyll (Chl) content in comparison to landraces in the low Pn group. However, significant differences were not found in the intercellular CO2 concentration (Ci) between landraces belonging to the high and low Pn groups. Differences among landraces were found with regard to dark respiration; landraces with low Pn respired proportionately more of the carbon fixed than those of high Pn group. Based on the studied gas exchange characteristics Saurajubawan, Syaudhan and Taichin, local landraces of rice, may be identified as potential cultivars with high Pn and WUE.

  17. Improving yield and water use efficiency of apple trees through intercrop-mulch of crown vetch (Coronilla varia L.) combined with different fertilizer treatments in the Loess Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, W.; Li, Y.; Gong, Q.; Zhang, H.; Zhao, Z.; Zheng, Z.; Zhai, B.; Wang, Z.

    2016-07-01

    Improving water use efficiency (WUE) and soil fertility is relevant for apple production in drylands. The effects of intercrop-mulch (IM) of crown vetch (Coronilla varia L.) combined with different fertilizer treatments on WUE of apple trees and soil fertility of apple orchards were assessed over three years (2011, 2013 and 2014). A split-plot design was adopted, in which the main treatments were IM and no intercrop-mulch (NIM). Five sub-treatments were established: no fertilization (CK); nitrogen and phosphorus fertilizer (NP); manure (M); N, P and potassium fertilizer (NPK); and NPK fertilizer combined with manure (NPKM). Due to mowing and mulching each month during July–September, the evapotranspiration for IM was 17.3% lower than that of NIM in the dry year of 2013. Additionally, the soil water storage of NPKM treatment was higher than that of CK during the experimental period. Thus, single fruit weight and fruit number per tree increased with IM and NPKM application. Moreover, applying NPKM with IM resulted in the highest yield (on average of three years), which was 73.25% and 130.51% greater than that of CK in IM and NIM, respectively. The WUE of NPKM combined with IM was also the highest in 2013 and 2014 (47.69 and 56.95% greater than applying IM alone). In addition, due to application of IM combined with NPKM, soil organic matter was increased by 25.8% compared with that of CK (in NIM). Additionally, application of IM combined with NPKM obtained more economic net return, compared to other combinations. Therefore, applying NPKM with IM is recommended for improving apple production in this rain-fed agricultural area.

  18. Xylem anatomy correlates with gas exchange, water-use efficiency and growth performance under contrasting water regimes: evidence from Populus deltoides x Populus nigra hybrids.

    Science.gov (United States)

    Fichot, Régis; Laurans, Françoise; Monclus, Romain; Moreau, Alain; Pilate, Gilles; Brignolas, Franck

    2009-12-01

    Six Populus deltoides Bartr. ex Marsh. x P. nigra L. genotypes were selected to investigate whether stem xylem anatomy correlated with gas exchange rates, water-use efficiency (WUE) and growth performance. Clonal copies of the genotypes were grown in a two-plot common garden test under contrasting water regimes, with one plot maintained irrigated and the other one subjected to moderate summer water deficit. The six genotypes displayed a large range of xylem anatomy, mean vessel and fibre diameter varying from about 40 to 60 microm and from 7.5 to 10.5 microm, respectively. Decreased water availability resulted in a reduced cell size and an important rise in vessel density, but the extent of xylem plasticity was both genotype and trait dependent. Vessel diameter and theoretical xylem-specific hydraulic conductivity correlated positively with stomatal conductance, carbon isotope discrimination and growth performance-related traits and negatively with intrinsic WUE, especially under water deficit conditions. Vessel diameter and vessel density measured under water deficit conditions correlated with the relative losses in biomass production in response to water deprivation; this resulted from the fact that a more plastic xylem structure was generally accompanied by a larger loss in biomass production.

  19. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench Genotypes Subjected to Dry-Down

    Directory of Open Access Journals (Sweden)

    Alessandra Fracasso

    2017-05-01

    Full Text Available Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE. This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum.

  20. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench) Genotypes Subjected to Dry-Down.

    Science.gov (United States)

    Fracasso, Alessandra; Magnanini, Eugenio; Marocco, Adriano; Amaducci, Stefano

    2017-01-01

    Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum.

  1. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China.

    Science.gov (United States)

    Wei, Haixia; Luo, Tianxiang; Wu, Bo

    2016-09-01

    In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert-steppe ecotone in northern China. Along rainfall gradients with a moisture index (MI) of 0·17-0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ(13)C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ(13)C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ(13)C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please

  2. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation

    Directory of Open Access Journals (Sweden)

    Hongzhi Zhang

    2017-05-01

    Full Text Available There is a need to optimize water-nitrogen (N applications to increase seed cotton yield and water use efficiency (WUE under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1, deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2, pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3, pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1, 2:8 (N2] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD, root volume density (RVD, root mass density (RMD, and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE.

  3. Ozone decreases soybean productivity and water use efficiency

    Science.gov (United States)

    Betzelberger, A. M.; VanLoocke, A. D.; Ainsworth, E. A.; Bernacchi, C. J.

    2011-12-01

    The combination of population growth and climate change will increase pressure on agricultural and water resources throughout this century. An additional consequence of this growth is an increase in anthropogenic emissions that lead to the formation of tropospheric ozone (O3), which in concert with climate change, poses a significant threat to human health and nutrition. In addition to being an important greenhouse gas, O3 reduces plant productivity, an effect that has been particularly pronounced in soybean, which provides over half of the world's oilseed production. Plant productivity is linked to feedbacks in the climate system, indirectly through the carbon cycle, as well as directly through the partitioning of radiation into heat and moisture fluxes. Soybean, along with maize, comprises the largest ecosystem in the contiguous U.S. Therefore, changes in productivity and water use under increasing O3 could impact human nutrition as well as the regional climate. Soybean response to increasing O3 concentrations was tested under open-air agricultural conditions at the SoyFACE research site. During the 2009 growing season, eight 20 m diameter FACE plots were exposed to different O3 concentrations, ranging from 40 to 200 ppb. Canopy growth (leaf area index) and physiological measurements of leaf photosynthesis and stomatal conductance were taken regularly throughout the growing season. Canopy fluxes of heat and moisture were measured using the residual energy balance micrometeorological technique. Our results indicate that as O3 increased from 40 to 200 ppb, rates of photosynthesis and stomatal conductance decreased significantly. Further, the seed yield decreased by over 60%, while water use decreased by 30% and the water-use-efficiency (yield/water-use) declined by 50%. The growing season average canopy temperatures increased by 1°C and midday temperatures increased by 2°C compared to the control. Warmer and drier canopies may result in a positive feedback on O3

  4. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    Juan F. Velasco-Muñoz

    2018-03-01

    Full Text Available Water use efficiency in agriculture (WUEA has become a priority given increasing limitations on hydric resources. As a result, this area of research has increased in importance, becoming one of the most prolific lines of study. The main aim of this study was to present a review of worldwide WUEA research over the last 30 years. A bibliometric analysis was developed based on the Scopus database. The sample included 6063 articles. The variables analyzed were: articles per year, category, journal, country, institution, author, and keyword. The results indicate that a remarkable growth in the number of articles published per year is occurring. The main category is environmental science and the main journal Agricultural Water Management. The countries with the highest number of articles were China, the United States of America, and India. The institution that published the most articles was the Chinese Academy of Sciences and the authors from China also were the most productive. The most frequently used keywords were irrigation, crop yield, water supply, and crops. The findings of this study can assist researchers in this field by providing an overview of worldwide research.

  5. Dry mass allocation, water use efficiency and delta C-13 in clones of Eucalyptus grandis, E-grandis x camaldulensis and E-grandis x nitens grown under two irrigation regimes

    CSIR Research Space (South Africa)

    Le Roux, D

    1996-05-01

    Full Text Available - cial clones of Eucalyptus grandis W. Hill ex Maiden. implying that less water-use-efficient trees were more productive (Bond and Stock 1990). Similarly, growing season WUE and delta13C were positively correlated in western larch and Eucalyptus globulus... regimes DEBBIE LE ROUX,1,2 WILLIAM D. STOCK,3 WILLIAM J. BOND3 and DAVID MAPHANGA4 1 Division of Forest Science and Technology, CSIR, Pretoria, South Africa 2 Present address: Department of Botany, University of Kansas, Lawrence, KS 66045, USA 3 Department...

  6. Effect of Digestate and Biochar Amendments on Photosynthesis Rate, Growth Parameters, Water Use Efficiency and Yield of Chinese Melon (Cucumis melo L. under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Mohammed M. A. Elbashier

    2018-02-01

    Full Text Available Despite the recent interest in biochar and digestate as soil amendments for improving soil quality and increasing crop production, there is inadequate knowledge of the effect of the combination of biochar and digestate, particularly under saline irrigation conditions. A pot experiment with Chinese melon was conducted in a greenhouse, biochar (5% and digestate (500 mL/pot were used with and without the recommended mineral NPK (Nitrogen, Phosphorus and Potassium fertilizer dose (120-150-150 Kg ha−1. The plants were irrigated with tap water (SL0 and 2 dS/m (SL1 NaCl solution. The growth, photosynthesis rate, water use efficiency (WUE and yield of Chinese melon were affected positively when biochar was combined with digestate amendment, particularly under saline irrigation water with and without mineral NPK fertilizer. The maximum yield under normal water was obtained by digestate (SL0: 218.87 t ha−1 and biochar amendment combined with digestate (SL1: 118.8 t ha−1 under saline water. The maximum WUE values were noticed with the biochar and digestate combination under all water treatments (SL0: 32.2 t ha−1 mm−1 and SL1: 19.6 t ha−1 mm−1. It was concluded that digestate alone was more effective than the use of biochar, particularly with normal water. The combination of biochar with digestate had a significant effect on the Chinese melon growth, photosynthesis rate, water use efficiency and yield under saline irrigation, and it can be used as an alternative fertilizer for mineral NPK fertilizer.

  7. Seasonal and Topographic Variation in Net Primary Productivity and Water Use Efficiency in a Southwest Sky Island Fores

    Science.gov (United States)

    Murphy, P.; Minor, R. L.; Sanchez-Canete, E. P.; Potts, D. L.; Barron-Gafford, G.

    2016-12-01

    Western North American Forests represent an uncertain sink for atmospheric carbon. While understanding of the physical drivers of productivity in these forests has grown in the last decade, the relative influence of topographic position in the complex terrain of montane systems remains understudied. The high-latitude mixed conifer forest ecosystems of the southern Arizona Madrean Sky Islands are characterized by low precipitation, high annual variation in temperature, and heterogeneous topography. Eddy covariance measurements these forests show distinct seasonal trends due to temperature and bi-modal precipitation patterns, but these measurements are unable to resolve potential differences in physiological function on opposing north and south aspects within the footprint of the tower. Most of the year, north aspects receive less energy input due to the oblique angle of incoming solar radiation, leading to a divergence in soil moistures and temperatures. However, overall movement of energy and material is much higher on these north aspects on an annual basis. The implications of these differences for net primary productivity (NPP) and water use efficiency (WUE) are poorly addressed in the literature. We evaluated the relative control that topography has on the physical environment (soil moisture and temperature) and how these factors affect water stress, NPP, and WUE. We combined leaf-level measurements of photosynthesis and transpiration with other physiological and meteorological measurements to determine how the dominant vegetation functions as a result of microclimatic conditions. Initial results from the spring and summer measurement periods suggest topographical differences in microclimate, resulting in differences in NPP in the spring, but not the summer. Also, each of the three species on the same aspect responded differently to the same microclimatic conditions, underscoring interspecific variation at the site. How might these patterns change throughout an

  8. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: sensitivity of future changes to projected climate changes and soil type

    Science.gov (United States)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; O'Leary, Garry; Macadam, Ian; Yang, Yonghui

    2016-02-01

    Wheat production is expected to be affected by climate change through changing components of the crop water balance such as rainfall, evapotranspiration (ET), runoff and drainage. We used the Agricultural Production Systems Simulator (APSIM)-wheat model to simulate the potential impact of climate change on field water balance, ET and water use efficiency (WUE) under the SRES A2 emissions scenario. We ran APSIM with daily climate data statistically downscaled from 18 Global Circulation Models (GCMs). Twelve soil types of varying plant available water holding capacity (PAWC) at six sites across semi-arid southeastern Australia were considered. Biases in the GCM-simulated climate data were bias-corrected against observations for the 1961-1999 baseline period. However, biases in the APSIM output data relative to APSIM simulations forced with climate observations remained. A secondary bias correction was therefore performed on the APSIM outputs. Bias-corrected APSIM outputs for a future period (2021-2040) were compared with APSIM outputs generated using observations for the baseline period to obtain future changes. The results show that effective rainfall was decreased over all sites due to decreased growing season rainfall. ET was decreased through reduced soil evaporation and crop transpiration. There were no significant changes in runoff at any site. The variation in deep drainage between sites was much greater than for runoff, ranging from less than a few millimetres at the drier sites to over 100 mm at the wetter. However, in general, the averaged drainage over different soil types were not significantly different between the baseline (1961-1999) and future period of 2021-2040 ( P > 0.05). For the wetter sites, the variations in the future changes in drainage and runoff between the 18 GCMs were larger than those of the drier sites. At the dry sites, the variation in drainage decreased as PAWC increased. Overall, water use efficiency based on transpiration (WUE

  9. Photosynthetic Water Use Efficiency in it Sorghastrum nutans (C4) and it Solidago canadensis (C3) in Three Soils Along a CO2 Concentration Gradient

    Science.gov (United States)

    Fay, P. A.; Hui, D.; Procter, A.; Johnson, H. B.; Polley, H. W.; Jackson, R. B.

    2006-12-01

    The water use efficiency (WUE) of leaf photosynthetic carbon uptake is a key regulator of ecosystem carbon cycles and is strongly sensitive to atmospheric carbon dioxide concentrations [CO2]. However WUE responses to [CO2] typically differ between C3 and C4 species and may differ on varying soil types because of differences in soil moisture retention and plant uptake efficiency. We measured leaf-level photosynthesis (ACO2), stomatal conductance (gS), and transpiration (E) with an infrared gas analyzer to estimate WUE for the C4 grass Sorghastrum nutans and the C3 forb Solidago canadensis in constructed grassland species assemblages growing in three soils arrayed along a 200 560 ppm [CO2] gradient in the LYCOG Experiment, in central Texas, USA. LYCOG consists of eighty intact soil monoliths (1 m X 1 m X 1.5 m) representing 3 soil series, Austin (Udorthentic Haplustolls, a mollisol), Bastrop (Udic Paleustalfs, a sandy loam alfisol) and Houston Black (Udic Haplusterts, a vertisol). The monoliths were vegetated by transplanting 8 native perennial prairie species (5 grasses and 3 forbs), including S. nutans and S. canadensis. Both are abundant and widespread; S. nutans is a dominant species throughout much of North American tallgrass prairie, and S. canadensis is one of the most abundant and widespread forbs in North America. ACO2, gS, and E were measured three times during the growing season. Dark-adapted chlorophyll fluorescence (FvFm) was measured concurrently to assess photosynthetic capacity, and leaf water potential (Ψ leaf) and soil water content were measured to assess plant water status and soil moisture availability. WUE increased strongly (p< 0.0001) at higher [CO2], due to a combination of decreasing E due to decreased gS (p ≤ 0.0005) and increasing ACO2 (p = 0.0055). This pattern was the same in both species (species x [CO2] ns). There was a corresponding increase in Ψ leaf (p = 0.01) at higher [CO2], but no [CO2] effect on FvFm. E and gS were lower on

  10. Catchment-scale groundwater recharge and vegetation water use efficiency

    Science.gov (United States)

    Troch, P. A. A.; Dwivedi, R.; Liu, T.; Meira, A.; Roy, T.; Valdés-Pineda, R.; Durcik, M.; Arciniega, S.; Brena-Naranjo, J. A.

    2017-12-01

    Precipitation undergoes a two-step partitioning when it falls on the land surface. At the land surface and in the shallow subsurface, rainfall or snowmelt can either runoff as infiltration/saturation excess or quick subsurface flow. The rest will be stored temporarily in the root zone. From the root zone, water can leave the catchment as evapotranspiration or percolate further and recharge deep storage (e.g. fractured bedrock aquifer). Quantifying the average amount of water that recharges deep storage and sustains low flows is extremely challenging, as we lack reliable methods to quantify this flux at the catchment scale. It was recently shown, however, that for semi-arid catchments in Mexico, an index of vegetation water use efficiency, i.e. the Horton index (HI), could predict deep storage dynamics. Here we test this finding using 247 MOPEX catchments across the conterminous US, including energy-limited catchments. Our results show that the observed HI is indeed a reliable predictor of deep storage dynamics in space and time. We further investigate whether the HI can also predict average recharge rates across the conterminous US. We find that the HI can reliably predict the average recharge rate, estimated from the 50th percentile flow of the flow duration curve. Our results compare favorably with estimates of average recharge rates from the US Geological Survey. Previous research has shown that HI can be reliably estimated based on aridity index, mean slope and mean elevation of a catchment (Voepel et al., 2011). We recalibrated Voepel's model and used it to predict the HI for our 247 catchments. We then used these predicted values of the HI to estimate average recharge rates for our catchments, and compared them with those estimated from observed HI. We find that the accuracies of our predictions based on observed and predicted HI are similar. This provides an estimation method of catchment-scale average recharge rates based on easily derived catchment

  11. Incentives and technologies for improving irrigation water use efficiency

    Science.gov (United States)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    from the government irrigation network, with an additional fixed fee of 66.10 euro per ha per season. This is a substantial increase from the 0.17 euro per3 and 17.10 euro per ha fixed fee. The price for individual abstractions has been set at 0.11 euro per m^3. However, these new prices have not yet been approved by the Parliament. Agriculture in Cyprus is highly fragmented. The average farm size is 3.5 ha, while each farm holds on average 5 parcels (agricultural census of 2003). Stakeholder interviews indicated that, in general, small farmers in Cyprus have not considered investments in advanced irrigation scheduling technologies to counter balance the loom of higher water prices. However, the picture is different for large producers. A large citrus producer was interested in testing the ENORASIS technology. The first season of measurements indicated that water can be used more efficiently and that the ENORASIS system provides an important tool for reducing on-farm irrigation water use.

  12. Water use efficiency of tomatoes - in greenhouses and hydroponics

    NARCIS (Netherlands)

    Nederhoff, E.M.; Stanghellini, C.

    2010-01-01

    Massive amounts of water are required for the production of our food, varying from several cubic metres per kilogram of beef to as low as 4 litres per kilogram for tomatoes grown in high-tech glasshouses. This article presents data on Product Water Use (PWU) of some foods and discusses how the water

  13. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. [Reserved] 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN... Water used to achieve energy efficiency. [Reserved] ...

  14. Long-term tree growth rate, water use efficiency, and tree ring nitrogen isotope composition of Pinus massoniana L. in response to global climate change and local nitrogen deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fangfang [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Graduate Univ. of Chinese Academy of Sciences, Beijing (China); Griffith Univ., Nathan, QLD (Australia). Environmental Future Centre; Kuang, Yuanwen; Wen, Dazhi [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Chinese Academy of Sciences, Guangzhou (China). Pearl River Delta Research Centre of Environmental Pollution and Control; Xu, Zhihong [Griffith Univ., Nathan, QLD (Australia). Environmental Future Centre; Li, Jianli; Zuo, Weidong [Agriculture and Forestry Technology Extension Centre, Nanhai District, Guangdong (China); Hou, Enqing [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Graduate Univ. of Chinese Academy of Sciences, Beijing (China)

    2010-12-15

    We aimed to investigate long-term tree growth rates, water use efficiencies (WUE), and tree ring nitrogen (N) isotope compositions ({delta}{sup 15}N) of Masson pine (Pinus massoniana L.) in response to global climate change and local N deposition in Southern China. Tree annual growth rings of Masson pine were collected from four forest sites, viz. South China Botanical Garden (SBG), Xi Qiao Shan (XQS) Forest Park, Ding Hu Shan (DHS) Natural Reserve, and Nan Kun Shan (NKS) Natural Reserve in Southern China. The mean annual basal area increment (BAI), WUE, and {delta}{sup 15}N at every 5-year intervals of Masson pine during the last 50 years were determined. Regression analyses were used to quantify the relationships of BAI and WUE with atmospheric carbon dioxide concentration ([CO{sub 2}]), temperature, rainfall, and tree ring elemental concentrations at the four study sites. Tree BAI showed a quadratic relationship with rising [CO{sub 2}]. The tipping points of [CO{sub 2}] for BAI, the peaks of BAI when the critical [CO{sub 2}] was reached, occurred earlier at the sites of SBG, XQS, and DHS which were exposed to higher temperature, N deposition, and lower mineral nutrient availability, as compared with the tipping points of [CO{sub 2}] for BAI at the site of NKS which had higher rainfall, lower temperature, and better nutritional status. The average tipping point of [CO{sub 2}] at the four sites for the BAI response curves was 356 ppm, after which, the BAI would be expected to decrease quadratically with rising [CO{sub 2}]. The multiple regressions of BAI confirmed the relationships of long-term tree growth rate with rainfall, tree WUE, and nutrients and {delta}{sup 15}N in tree rings. Nonlinear relationships between BAI and tree ring {delta}{sup 15}N at DHS and negatively linear one at NKS reflected the fertilization effect of N deposition on tree growth rate initially, but this effect peaked or became negative once the forest approached or passed the N saturation

  15. Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions

    Directory of Open Access Journals (Sweden)

    Seghatoleslami Mohammadjavad

    2015-03-01

    Full Text Available Normally the productivity of cropping systems in arid and semi- arid regions is very low. The sustainable agricultural systems try to find out environmental friendly technologies based on physical and biological treatments to increase crop production. In this study two irrigation treatments (control and water stress and six methods of fertilizer treatment (control, NPK-F, using magnetic band- M, using silver nano particles- N, M+N and M+N+50% F on performance of ajowan were compared. Results showed that treatments with magnetic field or base fertilizer had more yield compared to the control and silver nanoparticles (N treatments. Application of silver nanoparticles had no positive effect on yield. The highest seed and biomass WUE achieved in base fertilizer or magnetic field treatments. Under water stress treatment, seed WUE significantly increased. In conclusion magnetic field exposure, probably by encourage nutrient uptake efficiency could be applied to reduce fertilizer requirement. On the other hand the cultivation of plants under low MF could be an alternative way of WUE improving.

  16. Effects of phosphorus application on photosynthetic carbon and nitrogen metabolism, water use efficiency and growth of dwarf bamboo (Fargesia rufa) subjected to water deficit.

    Science.gov (United States)

    Liu, Chenggang; Wang, Yanjie; Pan, Kaiwen; Jin, Yanqiang; Li, Wei; Zhang, Lin

    2015-11-01

    Dwarf bamboo (Fargesia rufa Yi), one of the staple foods for the endangered giant pandas, is highly susceptible to water deficit due to its shallow roots. In the face of climate change, maintenance and improvement in its productivity is very necessary for the management of the giant pandas' habitats. However, the regulatory mechanisms underlying plant responses to water deficit are poorly known. To investigate the effects of P application on photosynthetic C and N metabolism, water use efficiency (WUE) and growth of dwarf bamboo under water deficit, a completely randomized design with two factors of two watering (well-watered and water-stressed) and two P regimes (with and without P fertilization) was arranged. P application hardly changed growth, net CO2 assimilation rate (P(n)) and WUE in well-watered plants but significantly increased relative growth rate (RGR) and P(n) in water-stressed plants. The effect of P application on RGR under water stress was mostly associated with physiological adjustments rather than with differences in biomass allocation. P application maintained the balance of C metabolism in well-watered plants, but altered the proportion of nitrogenous compounds in N metabolism. By contrast, P application remarkably increased sucrose-metabolizing enzymes activities with an obvious decrease in sucrose content in water-stressed plants, suggesting an accelerated sucrose metabolism. Activation of nitrogen-metabolizing enzymes in water-stressed plants was attenuated after P application, thus slowing nitrate reduction and ammonium assimilation. P application hardly enlarged the phenotypic plasticity of dwarf bamboo in response to water in the short term. Generally, these examined traits of dwarf bamboo displayed weak or negligible responses to water-P interaction. In conclusion, P application could accelerate P(n) and sucrose metabolism and slow N metabolism in water-stressed dwarf bamboo, and as a result improved RGR and alleviated damage from soil

  17. Water use efficiency studies of Acacia senegal (L.) Willd provenances in Sudan

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, A F; Elamin, K H [Forestry Research Section, Wad Medani (Sudan); Salih, A A [Soil Science Section, Wad Medani (Sudan)

    1996-07-01

    An experiment was conducted in 1989 to screen Acacia senegal L. Willd provenances collected from within the natural gum belt for high water use efficiency. Thirteen provenances were tested for water use efficiency and consequently 6 out of them were selected for further screening. The selection was based on their performance in the preliminary screening. Both the preliminary and the detailed study revealed that provenances 7, 3 and 11 combine high dry matter production with high water use efficiency. Water use efficiency and dry matter production appears to be negatively correlated with root length density and root/shoot ratios. Provenances 7 which exhibited the highest water use efficiency and dry matter yield had the lowest root/shoot ratio and also a low root length density. Based on these studies provenance 7 can be considered a suitable candidate for introduction into gum-belt of Sudan through for rehabilitation of this region. (author). 5 refs, 1 fig., 3 tabs.

  18. Water use efficiency studies of Acacia senegal (L.) Willd provenances in Sudan

    International Nuclear Information System (INIS)

    Mustafa, A.F.; Elamin, K.H.; Salih, A.A.

    1996-01-01

    An experiment was conducted in 1989 to screen Acacia senegal L. Willd provenances collected from within the natural gum belt for high water use efficiency. Thirteen provenances were tested for water use efficiency and consequently 6 out of them were selected for further screening. The selection was based on their performance in the preliminary screening. Both the preliminary and the detailed study revealed that provenances 7, 3 and 11 combine high dry matter production with high water use efficiency. Water use efficiency and dry matter production appears to be negatively correlated with root length density and root/shoot ratios. Provenances 7 which exhibited the highest water use efficiency and dry matter yield had the lowest root/shoot ratio and also a low root length density. Based on these studies provenance 7 can be considered a suitable candidate for introduction into gum-belt of Sudan through for rehabilitation of this region. (author). 5 refs, 1 fig., 3 tabs

  19. Water Use Efficiency and Water Deficit Tolerance Indices in Terminal Growth Stages in Promising Bread Wheat genotypes

    Directory of Open Access Journals (Sweden)

    M. Nazeri

    2016-02-01

    - (Yd/Yp, SSI = (1-(Ydi/Ypi / D, STI = (Ypi×Ysi/ (Yp 2, TOL= Ypi – Ysi In which D is environment stress intensity; Yp, average of grain yield for all genotypes in optimum; Ys, in water limited conditions; Ypi, grain yield of one genotype in optimum; and Ysi, grain yield of one genotype in water limited conditions. Anthesis and physiological maturity were determined by observing of anthers in %50 spikes and changing color of %50 pedancles to yellow, respectively. Results and Discussions The results revealed that water stress (L2 and L3 treatments reduced grain yield (18.6% and 45.3%, respectively. Genotypes V5, V4 and V10 showed maximum water use efficiency (WUE (1.885, 1.756 and 1.833 kg.m-3 respectively. A highly significant relationship was found between grain yield under moisture limited conditions and STI (r = 0.93** and TOL (r = 0.85**. Grain yield under optimum irrigation condition was significantly (r = 0.50** correlated with STI. Therefore, stress tolerance index (STI was more efficient index for estimation the grain yield under either conditions as well as grouping the genotypes with higher grain yield and tolerant to water limited condition. So, stress tolerance index (STI was suitable for classifying the higher yielding genotypes adapted to drought prone environment. Since stress tolerance index (STI was highly and significantly associated with grain yield in both optimum (r = 0.50** and limited moisture (r = 0.93** conditions, it can be used an efficient index for evaluation in the field. Conclusions Our results indicated that genotypes V5, V4 and V10 with high stress tolerance index (STI values and the greatest WUE, had the best performance among the other genotypes, respectively. These cultivars had higher grain yield in both optimum and stress conditions than other genotypes So, these cultivars could be recommended to cultivate for similar conditions.

  20. Fertigation for improved water use efficiency and crop yield

    International Nuclear Information System (INIS)

    Al-Wabel, M.I.; Al-Jaloud, A.A.; Hussain, G.; Karimulla, S.

    2002-01-01

    A greenhouse experiment was carried out at the Al-Muzahmiya Research Station, King Abdulaziz City for Science and Technology, Riyadh, to evaluate the effect of fertigation on cucumber yield. Five labelled N ( 15 N) treatments namely a control, soil application (120 mg N L -1 ), N-1 (60 mg N L -1 ), N-2 (120 mg N L -1 ) and N-3 (180 mg N L -1 ) were tried for their effect on greenhouse cucumber yield. A cucumber cultivar (Figaro F-1) was sown as test crop. The experiment was carried out during the period from April to July, 1997. The mean fresh fruit cucumber yield ranged between 7.73 to 33.74 t ha -1 . Highest yield was obtained with the labelled N application of 180 mg L -1 . The mean ranges for the different elements in the plant leaves were 1.33- 2.70% (N), 0.364-0.515% (P) and 1.57-3.82% (K). Whereas, in the plant shoot these ranges were 1.26-2.42% (N), 0.28-0.49% (P) and 4.74-9.45% (K). The mean content of the different elements in the cucumber fruit was 2.15-3.70% (N), 0.47-0.73% (P) and 4.40-5.23% (K). The soil salinity varied between 2.23-4.66 dS m -1 in the top soil (0-20 cm depth) and 0.95-2.62 dS m -1 in the sub-surface (20-40 cm depth) soil. The application did not affect significantly the soil salinity and was found well below the hazardous limit for most crops. The evolution of the other elements was different.. For example, elements such as Ca, P and K showed an increase while Na showed a decrease, whereas the Mg content did not respond with increasing N application. The soil moisture ranged between 8.06-9.15% (0-20 cm depth) and 5.51-9.36% (20-40 cm depth) and did not show any effect of N application. The nitrogen use efficiency (NUE) varied between 72.70 to 129.53 kg kg -1 N in the different N treatments. The mean 15 N a.e. ranged from 0.010 to 0.844% (leaves), 0.058 to 0.855% (shoots), 0.044 to 0.747 (roots) and 0.07 to 0.823 % (fruits). In conclusion, the mean highest yield of cucumber as fresh fruit was 33.74 t ha -1 , obtained with 180 mg N L

  1. Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm

    Science.gov (United States)

    Genetic diversity in crop germplasm is an important resource for crop improvement, but information on genetic diversity is rare for Jerusalem artichoke, especially for traits related to water use efficiency. The objectives of this study were to investigate genetic variations for water use and water...

  2. Yield and water use efficiency of deficit-irrigated maize in a semi ...

    African Journals Online (AJOL)

    Yield and water use efficiency of deficit-irrigated maize in a semi-arid region of Ethiopia. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE ... African Journal of Food, Agriculture, Nutrition and Development.

  3. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. [Reserved] 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  4. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?

    DEFF Research Database (Denmark)

    Tang, Xuguang; Li, Hengpeng; Desai, Ankur R.

    2015-01-01

    variations that correspond to global climate patterns. The latitudinal trends of global WUE for Earth's major plant functional types reveal two peaks in the Northern Hemisphere not detected by ground-based measurements. One peak is located at 20 degrees similar to 30 degrees N and the other extends a little...... farther north than 51 degrees N. Finally, long-term spatiotemporal trend analysis using satellite-based remote sensing data reveals that land-cover and land-use change in recent years has led to a decline in global WUE. Our study provides a new framework for global research on the interactions between...

  5. The Effect of Different Levels of Irrigation and Nitrogen Fertilizer on Yield and Water Use Efficiency of Potato in Subsurface Drip Irrigation

    Directory of Open Access Journals (Sweden)

    Mohammad Jolaini

    2017-06-01

    Full Text Available Introduction: After wheat, rice and corn, potato is the fourth most important food plant in the world. In comparison with other species, potato is very sensitive to water stress because of its shallow root system: approximately 85% of the root length is concentrated in the upper 0.3-0.4 m of the soil. Several studies showed that drip irrigation is an effective method for enhancing potato yield. Fabeiro et al. (2001 concluded that tuber bulking and ripening stages were found to be the most sensitive stages of water stress with drip irrigation. Water deficit occurring in these two growth stages could result in yield reductions. Wang et al. (2006 investigated the effects of drip irrigation frequency on soil wetting pattern and potato yield. The results indicated that potato roots were not limited in wetted soil volume even when the crop was irrigated at the highest frequency while high frequency irrigation enhanced potato tuber growth and water use efficiency (WUE. Though information about irrigation and N management of this crop is often conflicting in the literature, it is accepted generally that production and quality are highly influenced by both N and irrigation amounts and these requirements are related to the cropping technique. Researches revealed that nitrogen fertilizers play a special role in the growth, production and quality of potatoes. Materials and Methods: A factorial experiment in randomized complete block design with three replications was carried out during two growing seasons. Studied factors were irrigation frequency (I1:2 and I2:4 days interval and nitrogen fertilizer levels (applying 100 (N1, 75 (N2 and 50 (N3 % of the recommended amount. Nitrogen fertilizer was applied through irrigation water. In each plot two rows with within-and between-row spacing of 45 and 105 cm and 20 m length. The amount of nitrogen fertilizer for the control treatment was determined by soil analysis (N1. In all treatments, nitrogen fertilizer

  6. The Effect of Water Stress and Polymer on Water Use Efficiency, Yield and several Morphological Traits of Sunflower under Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    Hossein NAZARLI

    2010-12-01

    Full Text Available In many part of Iran, the reproductive growth stages of sunflower (Helianthus annuus L. are exposed to water deficit stress. Therefore, the investigation of irrigation management in the farm conditions is a necessary element for increasing irrigation efficiency and decreasing water losses. The objective of present study was to investigate the effect of different rates of super absorbent polymer and levels of water stress on water use efficiency (WUE, yield and some morphological traits of sunflower (cultivar Master. Factorial experiment was carried out in completely randomized design with 3 replications. Factors were water stress in three levels (irrigation in 0.75; 0.50 and 0.25% of field capacity and super absorbent polymer in five levels (0; 0.75; 0.150; 2.25; 3 g/kg of soil. Super absorbent polymer was added in eight leaves stage of sunflower to pots in deepness of roots development. Water stress treatment was also applied in this growth stage of sunflower. For stress application, pots were weighted every day and irrigated when soil water received to 0.75; 0.50 and 0.25 of field capacity, respectively. The results of ANOVA indicated that the effect of different rates of super absorbent polymer and different rates of consumed water in all traits were significant. ANOVA also revealed that the interactive effects of two mentioned factors were significant except for seed yield trait. Polynomial model based on the ANOVA results was fitted for each trait. The results indicated that water stress significantly convert in decreasing the number of leaves per plant, chlorophyll content, 100 weight of seeds, seed yield and WUE in sunflower, whereas the application of super absorbent polymer moderated the negative effect of deficit irrigation, especially in high rates of polymer (2.25 and 3 g/kg of soil. The above mentioned rates of polymer have the best effect to all characteristics of sunflower in all levels of water stress treatment. The findings

  7. Evapotranspiración y eficiencia en el uso de agua en intercultivos maíz-soja vs cultivos puros Evapotranspiration and water use efficiency in maize-soybean intercrops and the sole crops

    Directory of Open Access Journals (Sweden)

    Cristian Valenzuela

    2009-12-01

    Full Text Available En este trabajo se evaluó la evapotranspiración real (ETR y la eficiencia en el uso de agua (EUA del intercultivo maíz-soja bajo dos arreglos espaciales y en los respectivos cultivos puros. El experimento se realizó en la Unidad Integrada Balcarce Facultad de Ciencias Agrarias, UNMdP-EEA INTA durante la campaña 2007-08. Los tratamientos fueron: a Intercultivo con dos surcos de soja y uno de maíz (2_1, b intercultivo con tres surcos de soja y dos de maíz (3_2, c maíz puro (M y d soja pura (S. El cultivo de maíz se sembró el 18/10 y el de soja el 3/12. La ETR acumulada entre la emergencia de maíz y la madurez fisiológica de soja fue de 586,7, 564,8, 570,5 y 596,0 mm para 2_1, 3_2, M y S, respectivamente. La EUA en biomasa (EUA B resultó significativamente más alta en M (44,5 kg-1mm-1 que en S (18,6 kg ha-1mm-1, 2_1 (35,3 kg ha-1mm-1 y 3_2 (35,3 kg ha-1mm-1. La EUA B de S fue significativamente menor que en los intercultivos. Las EUA en grano fueron 21,2, 5,5, 16,9 y 17,0 kg ha-1mm-1 para M, S, 2_1 e 3_2, respectivamente. La significancia de las diferencias entre tratamientos coincidió con la descripta para la EUA B.This work studies the real evapotranspiration (RET and the water use efficiency (WUE in a maize-soybean intercrop with two spatial arrangements and in their sole crops. The experiment was conducted in the UIB, FCA-UNMdP EEA INTA during the 2007-2008 season. Treatments were: a 2 rows soybeans and 1 row maize intercrop (2_1, b 3 rows soybean and 2 rows maize intercrop (3_2, c sole maize and d sole soybean. Crops were sown on October 18 (maize and December 3 (soybean. RET accumulated from maize emergence to soybean physiological maturity was 586,7, 564,8, 570,5 y 596,0 mm for 2_1, 3_2, sole maize and sole soybean, respectively. Water use efficiency (WUE as the quotient between accumulated shoot biomass and RET was significantly higher in sole maize (44,5 kg ha-1mm-1 than in sole soybean (18,6 kg ha-1mm-1, 2_1 (35,3 kg ha-1mm

  8. The potential of Vachellia kosiensis (Acacia kosiensis) as a dryland forestry species in terms of its water use, growth rates and resultant water-use efficiency

    CSIR Research Space (South Africa)

    Gush, Mark B

    2017-01-01

    Full Text Available , their correspondingly low water-use rates indicated that the indigenous trees had similar biophysical water-use efficiency values compared with genetically improved introduced tree species and highlighted their potential as an attractive land-use option in appropriate...

  9. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    Science.gov (United States)

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  10. Variable fuzzy assessment of water use efficiency and benefits in irrigation district

    Directory of Open Access Journals (Sweden)

    Ming-hui Wang

    2015-07-01

    Full Text Available In order to scientifically and reasonably evaluate water use efficiency and benefits in irrigation districts, a variable fuzzy assessment model was established. The model can reasonably determine the relative membership degree and relative membership function of the sample indices in each index's standard interval, and obtain the evaluation level of the sample through the change of model parameters. According to the actual situation of the Beitun Irrigation District, which is located in Fuhai County, in Altay City, Xinjiang Uyghur Autonomous Region, five indices were selected as evaluation factors, including the canal water utilization coefficient, field water utilization coefficient, crop water productivity, effective irrigation rate in farmland, and water-saving irrigation area ratio. The water use efficiency and benefits in the Beitun Irrigation District in different years were evaluated with the model. The results showed that the comprehensive evaluation indices from 2006 to 2008 were all at the third level (medium efficiency, while the index in 2009 increased slightly, falling between the second level (relatively high efficiency and third level, indicating an improvement in the water use efficiency and benefits in the Beitun Irrigation District, which in turn showed that the model was reliable and easy to use. This model can be used to assess the water use efficiency and benefits in similar irrigation districts.

  11. Long-term CO2 rise has increased photosynthetic efficiency and water use efficiency but did not stimulate diameter growth of tropical trees

    Science.gov (United States)

    Groenendijk, P.; Zuidema, P.; Sleen, P. V. D.; Vlam, M.; Ehlers, I.; Schleucher, J.

    2014-12-01

    Tropical forests are a crucial component of the global carbon cycle, and their responses to atmospheric changes may shift carbon cycling and climate systems. Dynamic Global Vegetation Models (DGVMs) are the major tools to simulate tropical forest responses to climate change. One of the main determinants of these simulated responses is the effect of CO2 on tropical tree physiology and growth, the 'CO2 fertilization effect'. The paucity of CO2 enrichment experiments in the tropics importantly limits insights into the CO2 fertilization effect as well as the validation of DGVMs. However, use can be made of the 40% rise in atmospheric CO2 concentration since the onset of the Industrial Revolution. The effects of the historical CO2 rise on tree physiology and growth can be obtained from stable isotopes, isotopomers and tree diameter increments obtained in tree-ring studies. We studied the physiological and growth responses of 12 tree species in Bolivia, Cameroon and Thailand to 150 years of CO2 enrichment. Analyses of 13C of wood cellulose revealed strong, long-term increases in leaf intercellular CO2 concentrations for all study species and a marked improvement of intrinsic water use efficiency (iWUE). For a subset of one species per site, we studied the Deuterium isotopomers (isomers with isotopic atoms) of glucose in wood to obtain a direct estimate of the photorespiration-to-photosynthesis ratio. We found that this ratio consistently and strongly decreased over the past century, thus increasing the effeciency and rate of photosynthesis. In spite of these strong physiological responses to increased CO2levels, we did not find evidence for increased tree diameter growth for any of the sites, or for sites combined. Possible reasons for the lack of a growth stimulation include increased (leaf) temperature, insufficient availability of nutrients or a shift in biomass investment in trees. Our results suggest that the strong CO2 fertilization of tropical tree growth often

  12. Effect of Drought Stress on Water Use Efficiency and Root Dry Weight of Wheat (Triticum aesativum L. and Rye (Secale cereale L. in Competition Conditions

    Directory of Open Access Journals (Sweden)

    F Golestani Far

    2017-10-01

    Full Text Available Introduction Deficiency of water during the plant growth is one of the main factors which reduce the crops production around the world. Drought stress is one of the most important tensions that may occur around the low rainfall, high temperature and wind blowing environments. Plant response to this stress depends on the stage of plant growth and drought intensity. Weeds are unwanted and harmful plants with disturbance in agricultural practices which make increase the cost of crop production and reduce the crop yields. Rye (Secale cereal L. is one of the most important weeds at wheat fields in Iran (Baghestani and Atri, 2003. Low expectations, allelopathic effects and similarity of life cycle and morphology, caused increasing of rye density in winter wheat fields. Water use efficiency (WUE as an important physiological characteristic indicates the ability of plants to water stress. WUE may be affected by climatic and soil or plant factors. In plant communities, competition is one of most important physiological topics (Evans et al, 2003. At Inter-specific competition, weeds interfere to absorbing of light, water and nutrients through the adjacency with crop and so affect the growth and yield of crops. Weeds often compete with crops for soil water and reduce the accessibility of water. Competition between weeds and crops decrease the soil moisture and cause water stress which might decrease the weeds and crops growth. When the supply of water is limited, water drainage overlap areas in soil profile could be occurred relatively fast at early of in the crop life cycle. Materials and Methods In order to study the effects of drought stress on water use efficiency and root dry weight of wheat (Triticum aesativum L. and rye (Secale cereale L. in competition conditions, a pot experiment was conducted in the greenhouse of Agriculture Faculty , University of Birjand in 2012. The experiment was arranged as factorial based on completely randomized design

  13. Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Hyungmin Rho

    2018-03-01

    Full Text Available Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions.

  14. Different water use strategies of juvenile and adult Caragana intermedia plantations in the Gonghe Basin, Tibet Plateau.

    Directory of Open Access Journals (Sweden)

    Zhiqing Jia

    Full Text Available In a semi-arid ecosystem, water is one of the most important factors that affect vegetation dynamics, such as shrub plantation. A water use strategy, including the main water source that a plant species utilizes and water use efficiency (WUE, plays an important role in plant survival and growth. The water use strategy of a shrub is one of the key factors in the evaluation of stability and sustainability of a plantation.Caragana intermedia is a dominant shrub of sand-binding plantations on sand dunes in the Gonghe Basin in northeastern Tibet Plateau. Understanding the water use strategy of a shrub plantation can be used to evaluate its sustainability and long-term stability. We hypothesized that C. intermedia uses mainly deep soil water and its WUE increases with plantation age. Stable isotopes of hydrogen and oxygen were used to determine the main water source and leaf carbon isotope discrimination was used to estimate long-term WUE. The root system was investigated to determine the depth of the main distribution. The results showed that a 5-year-old C. intermedia plantation used soil water mainly at a depth of 0-30 cm, which was coincident with the distribution of its fine roots. However, 9- or 25-year-old C. intermedia plantations used mainly 0-50 cm soil depth water and the fine root system was distributed primarily at soil depths of 0-50 cm and 0-60 cm, respectively. These sources of soil water are recharged directly by rainfall. Moreover, the long-term WUE of adult plantations was greater than that of juvenile plantations.The C. intermedia plantation can change its water use strategy over time as an adaptation to a semi-arid environment, including increasing the depth of soil water used for root growth, and increasing long-term WUE.

  15. Different Water Use Strategies of Juvenile and Adult Caragana intermedia Plantations in the Gonghe Basin, Tibet Plateau

    Science.gov (United States)

    Jia, Zhiqing; Zhu, Yajuan; Liu, Liying

    2012-01-01

    Background In a semi-arid ecosystem, water is one of the most important factors that affect vegetation dynamics, such as shrub plantation. A water use strategy, including the main water source that a plant species utilizes and water use efficiency (WUE), plays an important role in plant survival and growth. The water use strategy of a shrub is one of the key factors in the evaluation of stability and sustainability of a plantation. Methodology/Principal Findings Caragana intermedia is a dominant shrub of sand-binding plantations on sand dunes in the Gonghe Basin in northeastern Tibet Plateau. Understanding the water use strategy of a shrub plantation can be used to evaluate its sustainability and long-term stability. We hypothesized that C. intermedia uses mainly deep soil water and its WUE increases with plantation age. Stable isotopes of hydrogen and oxygen were used to determine the main water source and leaf carbon isotope discrimination was used to estimate long-term WUE. The root system was investigated to determine the depth of the main distribution. The results showed that a 5-year-old C. intermedia plantation used soil water mainly at a depth of 0–30 cm, which was coincident with the distribution of its fine roots. However, 9- or 25-year-old C. intermedia plantations used mainly 0–50 cm soil depth water and the fine root system was distributed primarily at soil depths of 0–50 cm and 0–60 cm, respectively. These sources of soil water are recharged directly by rainfall. Moreover, the long-term WUE of adult plantations was greater than that of juvenile plantations. Conclusions The C. intermedia plantation can change its water use strategy over time as an adaptation to a semi-arid environment, including increasing the depth of soil water used for root growth, and increasing long-term WUE. PMID:23029303

  16. Species effect on the water use efficiency of a mixed forest of beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and silver fir (Abies alba Mill.) in Belgium Ardennes.

    Science.gov (United States)

    Soubie, Rémy; Heinesch, Bernard; Aubinet, Marc; Vincke, Caroline

    2010-05-01

    Induced by climate change, intensity and frequency of droughts should be more important for the next century. How does water availability affect the physiology of woody plants at the species and stand scale? Carbon and water vapour fluxes measurements of a mixed forest (deciduous and coniferous) were performed for over ten years by the eddy covariance method in Belgian Ardennes (Aubinet et al, 2001) as a part of the CarboEurope project. Whereas carbon fluxes have been analyzed in detailed and good estimations of the Net Ecosystem Exchange (NEE) and Gross Primary Production (GPP) were obtained, a thorough analysis of water vapour fluxes remains to be done. Improving analysis of water vapour fluxes and monitoring species transpiration will contribute to the estimation of the water use efficiency, WUE, at both the species and stand scale. The WUE well characterizes the vegetation productivity and ecosystem response to environmental factors. It also allows evaluating the sensitivity of temperate woody species to drought. The species concerned are beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and silver fir (Abies alba Mill.). Since summer 2009 we monitor and analyze each species water use by measuring sap flow with the thermal dissipation method (Granier, 1987). Results at the species level will then be upscaled and compared to stand water vapour fluxes measurements obtained by the eddy covariance methodology. Transpiration of each species will be analyzed in relation with their own phenological and ecophysiological attributes, ecosystem soil and atmospheric conditions, to clarify among others their behaviour in case of water deficit. Data are actually analysed, the presented results will concern the 2009, and a part of 2010 growing season.

  17. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  18. Effects of limited irrigation on yield and water use efficiency of two ...

    African Journals Online (AJOL)

    The effects of irrigation on grain yield and water use efficiency was studied on two sequence replaced dryland winter wheat (Triticum aestivum L.) cultivars, Changwu 135 (CW, a new cultivar) and Pingliang 40 (PL, an old cultivar). Field experiments were carried out on Changwu country on Loess Plateau, China. Whereas ...

  19. Biological and water-use efficiencies of sorghum-groundnut intercrop

    African Journals Online (AJOL)

    In order to compare water-use efficiency of sole crops and intercrops, 2 experiments were conducted in 2 consecutive years with sorghum (Sorghum bicolor L. Moench) and groundnut (Arachis hypogaea L.) on a loamy, Grossarenic Paleudult. In a randomized block, split-plot design, sorghum (SS), groundnut (GG), ...

  20. Contrasting effects of invasive insects and fire on ecosystem water use efficiency

    Science.gov (United States)

    K.L. Clark; N.S. Skowronski; M.R. Gallagher; H. Renninger; K.V.R. Schäfer

    2014-01-01

    We used eddy covariance and meteorological measurements to estimate net ecosystem exchange of CO2 (NEE), gross ecosystem production (GEP), evapotranspiration (Et), and ecosystem water use efficiency (WUEe; calculated as GEP / Et during dry canopy conditions) in three upland forests in the New Jersey Pinelands, USA, that were defoliated by gypsy...

  1. Strategies for improving water use efficiency in livestock feed production in rain-fed systems

    NARCIS (Netherlands)

    Kebebe, E.G.; Oosting, S.J.; Haileslassie, A.; Duncan, A.J.; Boer, de I.J.M.

    2015-01-01

    Livestock production is a major consumer of fresh water, and the influence of livestock production on global fresh water resources is increasing because of the growing demand for livestock products. Increasing water use efficiency of livestock production, therefore, can contribute to the overall

  2. Regenerating degraded soils and increasing water use efficiency on vegetable farms in Uruguay through ecological intensification

    NARCIS (Netherlands)

    Alliaume, F.

    2016-01-01

    This thesis investigated alternative soil management strategies for vegetable crop systems and their hypothesized effects on increasing systems resilience by sequestering soil carbon, increasing the efficiency of water use, and reducing erosion. The goal was to contribute knowledge on and tools

  3. Dominant clonal Eucalyptus grandis x urophylla trees use water more efficiently

    Science.gov (United States)

    Marina Shinkai Gentil Otto; Robert M. Hubbard; Dan Binkley; Jose Luis Stape

    2014-01-01

    Wood growth in trees depends on the acquisition of resources, and can vary with tree size leading to a variety of stand dynamics. Typically, larger trees obtain more resources and grow faster than smaller trees, but while light has been addressed more often, few case studies have investigated the contributions of water use and water use efficiency (WUE) within stands...

  4. Dry matter production, seed yield and water use efficiency of some grain legumes grown under different water regimes using nuclear technique

    International Nuclear Information System (INIS)

    Harb, O.M.S.; Salem, M.S.A.; Abdalla, A.A.; Abd-Elwahed, N.M.

    2007-01-01

    Two field experiments were performed in the experimental farm at the Atomic Energy Authority, Inshas, Egypt, during 2002 and 2004 growing seasons to evaluate the responses of dry matter production, seed yield, water use efficiency and root characteristics for three legumes species, i.e. soybean (Glycine max cv. clark), cowpea (Vigna unguiculata cv. Kafr El-Sheikh) and mungbean (Vigna radiate cv. kawmy 1) grown on a new reclaimed sandy soil under different water regimes. The experiments were laid out using a single line source sprinkler irrigation system which allows a gradual variation of irrigation water, i.e. full irrigation (W1), medium water stress (W2) and severe water stress (W3). The obtained results indicated that normal irrigation (W1) gave the highest above ground dry matter production at flowering stage and total dry matter yield at maturity for the tested legumes. Water stress decreased significantly seed yields for all the tested legume seeds. The seed yield of normal watering condition treatment (W1) out yielded seed yield of those irrigated with medium water stress (W2) and severe water stress (W3). Mungbean and cowpea were more adapted to severe water stress than soybean. Most of the reduction in yield arose from a decrease in pod number. Pod number, number of seeds per pod and the thousand seed weight were significantly affected by water stress. The highest water use efficiency based on seed yield or dry matter yield were obtained by exposing the legume plants to medium water stress (W2), while the lowest value was obtained by exposing the plants to severe water stress (W3). There were significant differences in WUE among the tested species, whereas, mungbean showed the highest value in response to water stress, followed by soybean while cowpea showed the lowest value of water use efficiency. Rooting depth was increased under the severe water stress treatment as compared with well watered condition in the tested legume plants. Mungbean had the

  5. Chromosomal location of traits associated with wheat seedling water and phosphorus use efficiency under different water and phosphorus stresses.

    Science.gov (United States)

    Cao, Hong-Xing; Zhang, Zheng-Bin; Sun, Cheng-Xu; Shao, Hong-Bo; Song, Wei-Yi; Xu, Ping

    2009-09-18

    The objective of this study was to locate chromosomes for improving water and phosphorus-deficiency tolerance of wheat at the seedling stage. A set of Chinese Spring-Egyptian Red wheat substitution lines and their parent Chinese Spring (recipient) and Egyptian Red (donor) cultivars were measured to determine the chromosomal locations of genes controlling water use efficiency (WUE) and phosphorus use efficiency (PUE) under different water and phosphorus conditions. The results underlined that chromosomes 1A, 7A, 7B, and 3A showed higher leaf water use efficiency (WUE(l) = Pn/Tr; Pn = photosynthetic rate; Tr = transpiration rate) under W-P (Hoagland solution with 1/2P), -W-P (Hoagland solution with 1/2P and 10% PEG). Chromosomes 7A, 3D, 2B, 3B, and 4B may carry genes for positive effects on individual plant water use efficiency (WUE(p) = biomass/TWC; TWC = total water consumption) under WP (Hoagland solution), W-P and -W-P treatment. Chromosomes 7A and 7D carry genes for PUE enhancement under WP, -WP (Hoagland solution with 10% PEG) and W-P treatment. Chromosome 7A possibly has genes for controlling WUE and PUE simultaneously, which indicates that WUE and PUE may share the same genetic background. Phenotypic and genetic analysis of the investigated traits showed that photosynthetic rate (Pn) and transpiration rate (Tr), Tr and WUE(l) showed significant positive and negative correlations under WP, W-P, -WP and -W-P, W-P, -WP treatments, respectively. Dry mass (DM), WUE(P), PUT (phosphorus uptake) all showed significant positive correlation under WP, W-P and -WP treatment. PUE and phosphorus uptake (PUT = P uptake per plant) showed significant negative correlation under the four treatments. The results might provide useful information for improving WUE and PUE in wheat genetics.

  6. Virtual water trade: an assessment of water use efficiency in the international food trade

    Directory of Open Access Journals (Sweden)

    H. Yang

    2006-01-01

    Full Text Available Amid an increasing water scarcity in many parts of the world, virtual water trade as both a policy instrument and practical means to balance the local, national and global water budget has received much attention in recent years. Building upon the knowledge of virtual water accounting in the literature, this study assesses the efficiency of water use embodied in the international food trade from the perspectives of exporting and importing countries and at the global and country levels. The investigation reveals that the virtual water flows primarily from countries of high crop water productivity to countries of low crop water productivity, generating a global saving in water use. Meanwhile, the total virtual water trade is dominated by green virtual water, which constitutes a low opportunity cost of water use as opposed to blue virtual water. A sensitivity analysis, however, suggests high uncertainties in the virtual water accounting and the estimation of the scale of water saving. The study also raises awareness of the limited effect of water scarcity on the global virtual water trade and the negative implications of the global water saving for the water use efficiency and food security in importing countries and the environment in exporting countries. The analysis shows the complexity in evaluating the efficiency gains in the international virtual water trade. The findings of the study, nevertheless, call for a greater emphasis on rainfed agriculture to improve the global food security and environmental sustainability.

  7. Strategies for improving water use efficiency of livestock production in rain-fed systems.

    Science.gov (United States)

    Kebebe, E G; Oosting, S J; Haileslassie, A; Duncan, A J; de Boer, I J M

    2015-05-01

    Livestock production is a major consumer of fresh water, and the influence of livestock production on global fresh water resources is increasing because of the growing demand for livestock products. Increasing water use efficiency of livestock production, therefore, can contribute to the overall water use efficiency of agriculture. Previous studies have reported significant variation in livestock water productivity (LWP) within and among farming systems. Underlying causes of this variation in LWP require further investigation. The objective of this paper was to identify the factors that explain the variation in LWP within and among farming systems in Ethiopia. We quantified LWP for various farms in mixed-crop livestock systems and explored the effect of household demographic characteristics and farm assets on LWP using ANOVA and multilevel mixed-effect linear regression. We focused on water used to cultivate feeds on privately owned agricultural lands. There was a difference in LWP among farming systems and wealth categories. Better-off households followed by medium households had the highest LWP, whereas poor households had the lowest LWP. The variation in LWP among wealth categories could be explained by the differences in the ownership of livestock and availability of family labor. Regression results showed that the age of the household head, the size of the livestock holding and availability of family labor affected LWP positively. The results suggest that water use efficiency could be improved by alleviating resource constraints such as access to farm labor and livestock assets, oxen in particular.

  8. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  9. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress.

    Science.gov (United States)

    Nason, Mark A; Farrar, John; Bartlett, David

    2007-12-01

    The effects of five strobilurin (beta-methoxyacrylate) fungicides and one triazole fungicide on the physiological parameters of well-watered or water-stressed wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and soya (Glycine max Merr.) plants were compared. Water use efficiency (WUE) (the ratio of rate of transpiration, E, to net rate of photosynthesis, A(n)) of well-watered wheat plants was improved slightly by strobilurin fungicides, but was reduced in water-stressed plants, so there is limited scope for using strobilurins to improve the water status of crops grown under conditions of drought. The different strobilurin fungicides had similar effects on plant physiology but differed in persistence and potency. When applied to whole plants using a spray gun, they reduced the conductance of water through the epidermis (stomatal and cuticular transpiration), g(sw), of leaves. Concomitantly, leaves of treated plants had a lower rate of transpiration, E, a lower intercellular carbon dioxide concentration, c(i), and a lower net rate of photosynthesis, A(n), compared with leaves of control plants or plants treated with the triazole. The mechanism for the photosynthetic effects is not known, but it is hypothesised that they are caused either by strobilurin fungicides acting directly on ATP production in guard cell mitochondria or by stomata responding to strobilurin-induced changes in mesophyll photosynthesis. The latter may be important since, for leaves of soya plants, the chlorophyll fluorescence parameter F(v)/F(m) (an indication of the potential quantum efficiency of PSII photochemistry) was reduced by strobilurin fungicides. It is likely that the response of stomata to strobilurin fungicides is complex, and further research is required to elucidate the different biochemical pathways involved. Copyright (c) 2007 Society of Chemical Industry.

  10. Gas exchanges and water use efficiency in the selection of tomato genotypes tolerant to water stress.

    Science.gov (United States)

    Borba, M E A; Maciel, G M; Fraga Júnior, E F; Machado Júnior, C S; Marquez, G R; Silva, I G; Almeida, R S

    2017-06-20

    Water stress can affect the yield in tomato crops and, despite this, there are few types of research aiming to select tomato genotypes resistant to the water stress using physiological parameters. This experiment aimed to study the variables that are related to the gas exchanges and the efficiency in water use, in the selection of tomato genotypes tolerant to water stress. It was done in a greenhouse, measuring 7 x 21 m, in a randomized complete block design, with four replications (blocks), being five genotypes in the F 2 BC 1 generation, which were previously obtained from an interspecific cross between Solanum pennellii versus S. lycopersicum and three check treatments, two susceptible [UFU-22 (pre-commercial line) and cultivar Santa Clara] and one resistant (S. pennellii). At the beginning of flowering, the plants were submitted to a water stress condition, through irrigation suspension. After that CO 2 assimilation, internal CO 2 , stomatal conductance, transpiration, leaf temperature, instantaneous water use efficiency, intrinsic efficiency of water use, instantaneous carboxylation efficiency, chlorophyll a and b, and the potential leaf water (Ψf) were observed. Almost all variables that were analyzed, except CO 2 assimilation and instantaneous carboxylation efficiency, demonstrated the superiority of the wild accession, S. pennellii, concerning the susceptible check treatments. The high photosynthetic rate and the low stomatal conductance and transpiration, presented by the UFU22/F 2 BC 1 #2 population, allowed a better water use efficiency. Because of that, these physiological characteristics are promising in the selection of tomato genotypes tolerant to water stress.

  11. Influence of planting methods on root development, crop productivity and water use efficiency in maize hybrids Influencia de métodos de siembra sobre el desarrollo radical, productividad y eficiencia del uso del agua en híbridos de maíz

    Directory of Open Access Journals (Sweden)

    Muhammad B. Khan

    2012-12-01

    Full Text Available Optimum planting methods better ensure water and nutrient supply through improved root development resulting in better crop growth and productivity. This study was conducted to evaluate the effects of planting methods on root development, crop allometry, water use efficiency (WUE, productivity and economic returns of different maize (Zea mays L. hybrids. Maize hybrids NK-6621, Pioneer-30Y87, and Pioneer-30Y58 were sown on beds, ridges, and flat surface. Ridge sowing was better followed by bed sowing; while amongst the hybrids, 'Pioneer-30Y87' performed the best. Well-developed root system, with longer primary root, more number of lateral roots and higher root growth rate, was observed in 'Pioneer-30Y87' planted on ridges, which led to higher WUE, grain yield and its related traits. The same hybrid exhibited higher leaf area index and crop growth rate, and maximum net return and benefit:cost ratio sowed on ridges. Overall, the ridge sowing improved root development resulting in better allometry, productivity (5.45 t ha-1, and WUE (1.345 kg m-3, in all the maize hybrids. Although maize hybrids exhibited different response to different planting methods; maximum grain yield (5.63 t ha-1, WUE (1.41 kg m-3, and net economic returns were observed from hybrid Pioneer-30Y87.Métodos óptimos de siembra aseguran mejor suministro de agua y nutrientes a través del mejorado desarrollo de raíces que resulta en mejor crecimiento y productividad de los cultivos. Este estudio se realizó para evaluar los efectos de los métodos de siembra en el desarrollo de las raíces, alometría de cultivos, uso eficiente del agua (WUE, productividad y rentabilidad económica de diferentes híbridos de maíz (Zea mays L.. Híbridos de maíz NK-6621, Pioneer 30Y87, y 30Y58-Pioneer se sembraron en camas, surcos, y superficie plana. La siembra en surco fue mejor, seguida por siembra en cama, mientras entre los híbridos, 'Pioneer 30Y87' tuvo los mejores resultados. Se observ

  12. Diffuse radiation increases global ecosystem-level water-use efficiency

    Science.gov (United States)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  13. Yield and water use efficiency of irrigated soybean in Vojvodina, Serbia

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2012-01-01

    Full Text Available Research was carried out at Rimski Šančevi experiment field of Institute of Field and Vegetable Crops in Novi Sad in the period 1993-2004. The experiment included an irrigated and non-irrigated control treatment. Irrigation water use efficiency (Iwue and evapotranspiration water use efficiency (ETwue were determined in order to assess the effectiveness of irrigation on soybean yield. The average yield increases of soybean due to irrigation practice was 0.82 t ha-1, ranging from 2.465 t ha-1 in years with limited precipitation and higher than average seasonal temperatures (2000 to 0 t ha-1 in rainy years (1996, 1997, 1999. Evapotranspiration water use efficiency (ETwue of soybean ranged from 0.11 kg m-3 to 1.36 kg m-3 with an average value of 0.66 kg m-3, while irrigation water use efficiency (Iwue varied from 0.11 kg m-3 to 1.04 kg m-3 with an average value of 0.56 kg m-3. Effect of irrigation on yield of soybean and results of both ETwue and Iwue which were similar to those obtained from the literature indicate that irrigation schedule of soybean in the study period was properly adapted to plant water requirements and water-physical soil properties. Determined values of ETwue and Iwue could be used for the planning, design and operation of irrigation systems, as well as for improving the production technology of soybean in the region.

  14. Green Fodder Production and Water Use Efficiency of Some Forage Crops under Hydroponic Conditions

    OpenAIRE

    Ghazi N. Al-Karaki; M. Al-Hashimi

    2012-01-01

    The objectives of this study were to evaluate five forage crops (alfalfa (Medicago sativa), barley (Hordeum vulgare), cowpea (Vigna unguiculata), sorghum (Sorghum bicolor), and wheat (Triticum aestivum)) for green fodder production and water use efficiency under hydroponic conditions. The experiment has been conducted under temperature-controlled conditions (24 ± 1°C) and natural window illumination at growth room of Soilless Culture Laboratory, Arabian Gulf University, Manama, Bahrain. The r...

  15. Evaluation of the Yield and Water Use Efficiency of the Cucumber Inside Greenhouses

    Directory of Open Access Journals (Sweden)

    Ahmed Abied Hamza

    2016-03-01

    Full Text Available The need to provide fresh and good quality products during long periods throughout the year lead to the adoption of using greenhouses technology, so protected cropping has become a very popular production system in horticulture especially nowadays in Iraq. Evaluation the crop’s yield, water use efficiency and the irrigation system performance became essential. The main objectives of this research were to evaluate the yield index and the water use efficiency for the cucumber inside the greenhouses, and evaluate the performance of the drip irrigation efficiency inside the greenhouses. To accomplish these goals an experiment was conducted in the field located in AL-Mahawil Township in Babylon province .A set of measurements were recorded daily inside the greenhouses planting with cucumber for two consecutive seasons 2014 and 2015 related to weather parameters, crop evapotranspiration, drip system’s performance, and crop’s production. From the conducted field work inside the greenhouses and the analysis of the field data, the following conclusions were withdrawn: daily cucumber’s crop evapotranspiration was measured using the watermarks sensors, the total crop evapotranspiration for the seasons 2014 and 2015 were: 218.21mm and 281.86mm, respectively. The increasing in the crop evapotranspiration was due to change in weather parameters inside the greenhouses. The cucumber’s yield index for seasons 2014 and 2015 was: 8.87 and 8.53 kg/m2, respectively, which was close values between the two seasons. In this study, the yield index was high comparing with others approaches. The water use efficiency for the seasons 2014 and 2015 were: 23.23 and 18.22 kg/m3, respectively, which were low values comparing with other approaches. The reduction in the water use efficiency was due to the huge quantities of water applied through the seasons. Additionally, the irrigation efficiency for the drip system in this study for the seasons 2014 and 2015 were: 65

  16. Genetic variation in seedling water-use efficiency of Patagonian Cypress populations from contrasting precipitation regimes assessed through carbon isotope discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Pastorino, M. J.; Aparicio, A. G.; Marchelli, P.; Gallo, L. A.

    2012-11-01

    Water-use efficiency (WUE) is a physiological parameter that plays a significant role in the evolutionary dynamics of many forest tree species. It can be estimated indirectly through carbon isotope discrimination (A). In general, plants of more arid origins have lower values of A. In order to study the degree of genetic control of this parameter and the genetic variation in A of Patagonian Cypress seedlings, three Argentinean natural populations chosen to represent two contrasting precipitation regimes were sampled in a common garden trial. The dry situation was represented by two neighboring marginal forest patches from the steppe, while the humid condition was represented by a population with 1,200 mm higher mean annual precipitation. Height (H) and A were measured in 246 five-year-old seedlings from 41 open-pollinated families. The factor family had a significant effect on both variables; however heritability for A was found not to be significant in two out of the three populations. This could be explained by low sample size in one of them and by a real evolutionary effect in the other. An inverse association between H and A was verified, which is interpreted as evidence of an adaptation process at the intra-population level. The studied populations were not shown to discriminate carbon isotopes differently; hence evidence of adaptation to current environmental conditions could not be obtained. On the other hand, the arid populations proved to be quite different in terms of genetic variation, which seems to be the consequence of genetic drift and isolation. (Author) 49 refs.

  17. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Vicente, Mateus Henrique; Zsögön, Agustin; de Sá, Ariadne Felicio Lopo; Ribeiro, Rafael V; Peres, Lázaro E P

    2015-04-01

    Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Estimation of Transpiration and Water Use Efficiency Using Satellite and Field Observations

    Science.gov (United States)

    Choudhury, Bhaskar J.; Quick, B. E.

    2003-01-01

    Structure and function of terrestrial plant communities bring about intimate relations between water, energy, and carbon exchange between land surface and atmosphere. Total evaporation, which is the sum of transpiration, soil evaporation and evaporation of intercepted water, couples water and energy balance equations. The rate of transpiration, which is the major fraction of total evaporation over most of the terrestrial land surface, is linked to the rate of carbon accumulation because functioning of stomata is optimized by both of these processes. Thus, quantifying the spatial and temporal variations of the transpiration efficiency (which is defined as the ratio of the rate of carbon accumulation and transpiration), and water use efficiency (defined as the ratio of the rate of carbon accumulation and total evaporation), and evaluation of modeling results against observations, are of significant importance in developing a better understanding of land surface processes. An approach has been developed for quantifying spatial and temporal variations of transpiration, and water-use efficiency based on biophysical process-based models, satellite and field observations. Calculations have been done using concurrent meteorological data derived from satellite observations and four dimensional data assimilation for four consecutive years (1987-1990) over an agricultural area in the Northern Great Plains of the US, and compared with field observations within and outside the study area. The paper provides substantive new information about interannual variation, particularly the effect of drought, on the efficiency values at a regional scale.

  19. Response of bean cultures' water use efficiency against climate warming in semiarid regions of China.

    Science.gov (United States)

    Guoju, Xiao; Fengju, Zhang; Juying, Huang; Chengke, Luo; Jing, Wang; Fei, Ma; Yubi, Yao; Runyuan, Wang; Zhengji, Qiu

    2016-07-31

    Farm crop growing and high efficiency water resource utilizing are directly influenced by global warming, and a new challenge will be given to food and water resource security. A simulation experiment by farm warming with infrared ray radiator was carried out, and the result showed photosynthesis of broad bean was significantly faster than transpiration during the seedling stage, ramifying stage, budding stage, blooming stage and podding stage when the temperate was increased by 0.5-1.5 °C. But broad bean transpiration was faster than photosynthesis during the budding stage, blooming stage and podding stage when the temperature was increased by 1.5 °C above. The number of grain per hill and hundred-grain weight were significantly increased when the temperature was increased by 0.5-1.0 °C. But they significantly dropped and finally the yield decreased when the temperature was increased by 1.0 °C above. The broad bean yield decreased by 39.2-88.4% when the temperature was increased by 1.5-2.0 °C. The broad bean water use efficiency increased and then decreased with temperature rising. The water use efficiency increased when the temperature was increased by 1.0 °C below, and it quickly decreased when the temperature was increased by 1.0 °C above. In all, global warming in the future will significantly influence the growth, yield and water use efficiency of bean cultures in China's semiarid regions.

  20. Effect of water stress on total biomass, tuber yield, harvest index and water use efficiency in Jerusalem artichoke

    Science.gov (United States)

    The objectives of this study were to determine the effect of drought on tuber yield, total biomass, harvest index, water use efficiency of tuber yield (WUEt) and water use efficiency of biomass (WUEb), and to evaluate the differential responses of Jerusalem artichoke (JA) varieties under drought str...

  1. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    Science.gov (United States)

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  2. Water use efficiency of coriander produced in a low-cost hydroponic system

    Directory of Open Access Journals (Sweden)

    José A. Santos Júnior

    2015-12-01

    Full Text Available ABSTRACT The increase of water use efficiency in crop production is a clear need in areas with restricted access to this resource and, in these cases, the adoption of forms of cultivation contextualized to local conditions are essential. Thus, the implications of the variation in the amount of seeds per cell (0.5, 1.0, 1.5 and 2.0 g and spacing between cells (7.0, 10.0 and 15.0 cm on variables related to consumption and water use efficiency for the production of coriander (cv. Tabocas in a low-cost hydroponic system, an alternative for semiarid regions, were evaluated. A completely randomized experimental design, analysed in 4 x 3 factorial scheme with three replicates, was adopted, and the data were subjected to analysis of variance at 0.05 probability level. It was found that the reduction in the spacing between cells has a better cost-benefit ratio with respect to water consumption, biomass produced and cost of seeds. Therefore, it is recommended the adoption of a spacing of 7.0 cm between cells and the use of 1.0 g seeds per cell; this configuration promoted efficiency of 81.59 g L-1 in shoot green mass production and total mass of 62.4 g coriander bunches.

  3. Long-term nitrogen additions and the intrinsic water-use efficiency of boreal Scots pine.

    Science.gov (United States)

    Marshall, John; Wallin, Göran; Linder, Sune; Lundmark, Tomas; Näsholm, Torgny

    2015-04-01

    Nitrogen fertilization nearly always increases productivity in boreal forests, at least in terms of wood production, but it is unclear how. In a mature (80 yrs. old) Scots pine forest in northern Sweden, we tested the extent to which nitrogen fertilization increased intrinsic photosynthetic water-use efficiency. We measured δ13C both discretely, in biweekly phloem sampling, and continuously, by monitoring of bole respiration. The original experiment was designed as a test of eddy covariance methods and is not therefore strictly replicated. Nonetheless, we compared phloem contents among fifteen trees from each plot and stem respiration from four per plot. The treatments included addition of 100 kg N/ha for eight years and a control. Phloem contents have the advantage of integrating over the whole canopy and undergoing complete and rapid turnover. Their disadvantage is that some have observed isotopic drift with transport down the length of the stem, presumably as a result of preferential export and/or reloading. We also measured the isotopic composition of stem respiration from four trees on each plot using a Picarro G1101-I CRDS attached to the vent flow from a continuous gas-exchange system. We detected consistent differences in δ13C between the treatments in phloem contents. Within each treatment, the phloem δ13C was negatively correlated with antecedent temperature (R2= 0.65) and no other measured climate variable. The isotopic composition of stem CO2 efflux will be compared to that of phloem contents. However, when converted to intrinsic water-use efficiency, the increase amounted to only about 4%. This is a small relative to the near doubling in wood production. Although we were able to detect a clear and consistent increase in water-use efficiency with N-fertilization, it constitutes but a minor cause of the observed increase in wood production.

  4. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasinghe, K S; Kirda, C; Bowen, G D [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section; Zapata, F; Awonaike, K O; Holmgren, E; Arslan, A; De Bisbal, E C; Mohamed, A R.A.G.; Montenegro, A [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit

    1996-07-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of {Delta} with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of {Delta} with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that {Delta} values measured at flowering stage positively correlated with total dry matter production and percent N{sub 2} derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use {Delta} values for screening of leguminous crops for high N{sub 2} fixation potential. {sup 13}C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of {Delta} with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of {Delta} with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. (Abstract Truncated)

  5. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  6. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.; Kirda, C.; Bowen, G.D.; Zapata, F.; Awonaike, K.O.; Holmgren, E.; Arslan, A.; De Bisbal, E.C.; Mohamed, A.R.A.G.; Montenegro, A.

    1996-01-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of Δ with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of Δ with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that Δ values measured at flowering stage positively correlated with total dry matter production and percent N 2 derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use Δ values for screening of leguminous crops for high N 2 fixation potential. 13 C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of Δ with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of Δ with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. While 13 C isotope discrimination may be a valuable tool for identifying annual crops with high water use efficiency and high yield potential, it may be more attractive for tree species considering the long growth periods taken for trees

  7. Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang%新疆草地蒸散与水分利用效率的时空特征

    Institute of Scientific and Technical Information of China (English)

    黄小涛; 罗格平

    2017-01-01

    Aims Xinjiang is located in the hinterland of the Eurasian arid areas,with grasslands widely distributed.Grasslands in Xinjiang provide significant economic and ecological benefits.However,research on evapotranspiration (ET) and water use efficiency (WUE) of the grasslands is still relatively weak.This study aimed to explore the spatio-temporal characteristics on ET and WUE in the grasslands of Xinjiang in the context of climate change.Methods The Biome-BGC model was used to determine the spatio-temporal characteristics of ET and WUE of the grasslands over the period 1979-2012 across different seasons,areas and grassland types in Xinjiang.Important findings The average annual ET in the grasslands of Xinjiang was estimated at 245.7 mm,with interannual variations generally consistent with that of precipitation.Overall,the value of ET was lower than that of precipitation.The higher values of ET mainly distributed in the Tianshan Mountains,Altai Mountains,Altun Mountains and the low mountain areas on the northern slope of Kunlun Mountains.The lower values of ET mainly distributed in the highland areas of Kunlun Mountains and the desert plains.Over the period 1979-2012,average annual ET was 183.2 mm in the grasslands of southern Xinjiang,357.9 mm in the grasslands of the Tianshan Mountains,and 221.3 mm in grasslands of northern Xinjiang.In winter,ET in grasslands of northern Xinjiang was slightly higher than that of Tianshan Mountains.Average annual ET ranked among grassland types as:mid-mountain meadow > swamp meadow > typical grassland > desert grassland > alpine meadow > saline meadow.The highest ET value occurred in summer,and the lowest ET value occurred in winter,with ET in spring being slightly higher than that in autumn.The higher WUE values mainly distributed in the areas of Tianshan Mountains and Altai Mountains.The lower WUE values mainly distributed in the highland areas of Kunlun Mountains and part of the desert plains.The average annual WUE in

  8. Efficiency of water use in sugar beet and processing tomato cropped in Southern Italy

    Directory of Open Access Journals (Sweden)

    Alessandro Vittorio Vonella

    2011-02-01

    Full Text Available A more efficient crop water use in biomass and yield accumulation can represent great water saving in the waterlimited environments. Crop management – irrigation, sowing time, fertilization – could affect water (and irrigation water transformation efficiency in dry matter and commercial yield of beet and tomato in Southern Italy. This field research, carried out in two locations of Southern Italy (Foggia and Vasto in 1998-2002 period, compared for sugar beet irrigation regimes (optimal, 100% of ETc and reduced, 60% of ETc and sowing times (autumnal and spring; for tomato three irrigation regimes were compared, re-establishing 100% (ET100, 66 (ET66 and 33% (ET33 of crop evapotranspiration. Water and irrigation water transformation efficiency in harvestable yield (WUEhdm and IRRWUE hdm, in total dry matter (WUEdm and IRRWUEdm and sucrose (WUEsuc were calculated both at harvest and during crop cycle. The results showed a significant effect of sowing date on WUEhdm and WUEsuc of sugar beet (respectively 2.44 and 2.12 for autumnal sowing and 1.08 and 0.84 kg m-3 for spring sowing. Irrigation regimes did not show significant differences. “Irrigation x sowing times” interaction was significant for WUEdm, with a superiority of reduced vs. optimal only in spring sowing time. In tomato, WUEdm was not affected by the irrigation regime, while WUEhdm in ET66 treatment was more efficient treatment than ET100 (1.19 vs. 1.00 kg m-3. “Year” effect was significant for WUEdm and WUEhdm with lowest values in the driest year. IRRWUE was higher in tomato than in sugar beet, considering dry matter, fresh harvestable product and also from an economic point of view. The temporal analysis of water use efficiency showed WUEdm and WUEhdm greater in the middle of crop cycle in autumnal than in spring sugar beet, but not between the irrigation regimes. In tomato, the ET66 treatment resulted the most efficient in water using, especially at the end of crop cycle

  9. Efficiency of water use in sugar beet and processing tomato cropped in Southern Italy

    Directory of Open Access Journals (Sweden)

    Michele Rinaldi

    2006-09-01

    Full Text Available A more efficient crop water use in biomass and yield accumulation can represent great water saving in the waterlimited environments. Crop management – irrigation, sowing time, fertilization – could affect water (and irrigation water transformation efficiency in dry matter and commercial yield of beet and tomato in Southern Italy. This field research, carried out in two locations of Southern Italy (Foggia and Vasto in 1998-2002 period, compared for sugar beet irrigation regimes (optimal, 100% of ETc and reduced, 60% of ETc and sowing times (autumnal and spring; for tomato three irrigation regimes were compared, re-establishing 100% (ET100, 66 (ET66 and 33% (ET33 of crop evapotranspiration. Water and irrigation water transformation efficiency in harvestable yield (WUEhdm and IRRWUE hdm, in total dry matter (WUEdm and IRRWUEdm and sucrose (WUEsuc were calculated both at harvest and during crop cycle. The results showed a significant effect of sowing date on WUEhdm and WUEsuc of sugar beet (respectively 2.44 and 2.12 for autumnal sowing and 1.08 and 0.84 kg m-3 for spring sowing. Irrigation regimes did not show significant differences. “Irrigation x sowing times” interaction was significant for WUEdm, with a superiority of reduced vs. optimal only in spring sowing time. In tomato, WUEdm was not affected by the irrigation regime, while WUEhdm in ET66 treatment was more efficient treatment than ET100 (1.19 vs. 1.00 kg m-3. “Year” effect was significant for WUEdm and WUEhdm with lowest values in the driest year. IRRWUE was higher in tomato than in sugar beet, considering dry matter, fresh harvestable product and also from an economic point of view. The temporal analysis of water use efficiency showed WUEdm and WUEhdm greater in the middle of crop cycle in autumnal than in spring sugar beet, but not between the irrigation regimes. In tomato, the ET66 treatment resulted the most efficient in water using, especially at the end of crop cycle

  10. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  11. Water use efficiency and integrated water resource management for river basin

    Science.gov (United States)

    Deng, Xiangzheng; Singh, R. B.; Liu, Junguo; Güneralp, Burak

    Water use efficiency and management have attracted increasing attention as water has become scare to challenge the world's sustainable development. Water use efficiency is correlated to the land use and cover changes (LUCC), population distribution, industrial structure, economic development, climate changes, and environmental governance. These factors significantly alter water productivity for water balance through the changes in natural environment and socio-economic system (Wang et al., 2015b). Consequently, dynamics of water inefficiency lower the social welfare of water allocation (Wang et al., 2015b), and induce water management alternation interactively and financially (Wang et al., 2015a). This triggers on actual water price changes through both natural resource and socioeconomic system (Zhou et al., 2015). Therefore, it is very important to figure out a mechanism of water allocation in the course of LUCC (Jin et al., 2015) at a global perspective (Zhao et al., 2015), climate and economic changes of ecosystem service at various spatial and temporal scales (Li et al., 2015).

  12. Linking plant functional trait plasticity and the large increase in forest water use efficiency

    Science.gov (United States)

    Mastrotheodoros, Theodoros; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo; Keenan, Trevor F.; Gentine, Pierre; Gough, Christopher M.; Fatichi, Simone

    2017-09-01

    Elevated atmospheric CO2 concentrations are expected to enhance photosynthesis and reduce stomatal conductance, thus increasing plant water use efficiency. A recent study based on eddy covariance flux observations from Northern Hemisphere forests showed a large increase in inherent water use efficiency (IWUE). Here we used an updated version of the same data set and robust uncertainty quantification to revisit these contemporary IWUE trends. We tested the hypothesis that the observed IWUE increase could be attributed to interannual trends in plant functional traits, potentially triggered by environmental change. We found that IWUE increased by 1.3% yr-1, which is less than previously reported but still larger than theoretical expectations. Numerical simulations with the Tethys-Chloris ecosystem model using temporally static plant functional traits cannot explain this increase. Simulations with plant functional trait plasticity, i.e., temporal changes in model parameters such as specific leaf area and maximum Rubisco capacity, match the observed trends in IWUE. Our results show that trends in plant functional traits, equal to 1.0% yr-1, can explain the observed IWUE trends. Thus, at decadal or longer time scales, trait plasticity could potentially influence forest water, carbon, and energy fluxes with profound implications for both the monitoring of temporal changes in plant functional traits and their representation in Earth system models.

  13. Change in terrestrial ecosystem water-use efficiency over the last three decades.

    Science.gov (United States)

    Huang, Mengtian; Piao, Shilong; Sun, Yan; Ciais, Philippe; Cheng, Lei; Mao, Jiafu; Poulter, Ben; Shi, Xiaoying; Zeng, Zhenzhong; Wang, Yingping

    2015-06-01

    Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem-scale water-use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data-driven models derived from satellite observations and process-oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m(-2)  mm(-1)  yr(-1) under the single effect of rising CO2 ('CO2 '), climate change ('CLIM') and nitrogen deposition ('NDEP'), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE-CO2 shows global increases, (ii) EWUE-CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE-NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data-driven MTE model, however, shows a slight decline of EWUE during the same period (-0.0005 g C m(-2)  mm(-1)  yr(-1) ), which differs from process-model (0.0064 g C m(-2)  mm(-1)  yr(-1) ) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO2 reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data-driven model and the process-oriented models across different ecosystems. Change in water-use efficiency defined from transpiration-based WUEt (GPP/TR) and inherent water-use efficiency (IWUEt , GPP×VPD/TR) in response to rising CO2 , climate change, and nitrogen deposition are also discussed. Our analyses will

  14. Improving the water use efficiency of short rotation coppice (SRC) willows

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, W.; Bonneau, L.; Groves, S.; Armstrong, A.; Lindegard, K.

    2003-07-01

    On the premise that biofuels will make a significant contribution to the UK's renewable energy sources by the year 2010, willow short rotation coppicing is being studied. The high water requirement of willow is seen as a potential problem in the drier regions of the UK and increasing the water use efficiency and/or draught resistance would extend the areas where willow coppicing would be profitable. The first part of the project was to investigate the water use of a number of near-market varieties of willow and evaluate techniques for early drought tolerance screening in a breeding program and for this, field studies were conducted. This report gives some very early results from the preliminary study. Since DTI funding ceased before the one-season study of the three-year program was complete, the results should be regarded as tentative only. The next phase of the program will be funded by DEFRA and will include efforts to identify how a range of high-yielding willows respond to water stress.

  15. Evaluation of Intrinsic Water Use Efficiency and Ecophysiological Modelling on a Potato Dihaploid Mapping Population

    DEFF Research Database (Denmark)

    Topbjerg, Henrik Bak

    of the solution the crop has to be able to tolerate drought. In this study, a dihaploid potato mapping population has been used to investigate clonal performance in intrinsic water use efficiency (WUEi) under progressive drought achieved in greenhouse and under field conditions. The mapping population revealed...... on environmental sustainability. Future growth in the global population predicts that the agricultural output will have to increase considerably if malnutrition and famine are to be prevented. On this basis, the development of crops capable of producing higher yields under water scarce situations is being...... progression in the development of drought tolerant crop cultivars, faster screening methods have to be developed. Here, it was found that the chlorophyll content index could be a useful screening method for higher WUEi under greenhouse conditions. However, such methods must rely on physiological trait...

  16. Photosynthesis and chloroplast genes are involved in water-use efficiency in common bean.

    Science.gov (United States)

    Ruiz-Nieto, Jorge E; Aguirre-Mancilla, César L; Acosta-Gallegos, Jorge A; Raya-Pérez, Juan C; Piedra-Ibarra, Elías; Vázquez-Medrano, Josefina; Montero-Tavera, Victor

    2015-01-01

    A recent proposal to mitigate the effects of climatic change and reduce water consumption in agriculture is to develop cultivars with high water-use efficiency. The aims of this study were to characterize this trait as a differential response mechanism to water-limitation in two bean cultivars contrasting in their water stress tolerance, to isolate and identify gene fragments related to this response in a model cultivar, as well as to evaluate transcription levels of genes previously identified. Keeping CO2 assimilation through a high photosynthesis rate under limited conditions was the physiological response which allowed the cultivar model to maintain its growth and seed production with less water. Chloroplast genes stood out among identified genetic elements, which confirmed the importance of photosynthesis in such response. ndhK, rpoC2, rps19, rrn16, ycf1 and ycf2 genes were expressed only in response to limited water availability. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Interaction of CO2 concentrations and water stress in semiarid plants causes diverging response in instantaneous water use efficiency and carbon isotope composition

    Science.gov (United States)

    Zhao, Na; Meng, Ping; He, Yabing; Yu, Xinxiao

    2017-07-01

    In the context of global warming attributable to the increasing levels of CO2, severe drought may be more frequent in areas that already experience chronic water shortages (semiarid areas). This necessitates research on the interactions between increased levels of CO2 and drought and their effect on plant photosynthesis. It is commonly reported that 13C fractionation occurs as CO2 gas diffuses from the atmosphere to the substomatal cavity. Few researchers have investigated 13C fractionation at the site of carboxylation to cytoplasm before sugars are exported outward from the leaf. This process typically progresses in response to variations in environmental conditions (i.e., CO2 concentrations and water stress), including in their interaction. Therefore, saplings of two typical plant species (Platycladus orientalis and Quercus variabilis) from semiarid areas of northern China were selected and cultivated in growth chambers with orthogonal treatments (four CO2 concentration ([CO2]) × five soil volumetric water content (SWC)). The δ13C of water-soluble compounds extracted from leaves of saplings was determined for an assessment of instantaneous water use efficiency (WUEcp) after cultivation. Instantaneous water use efficiency derived from gas-exchange measurements (WUEge) was integrated to estimate differences in δ13C signal variation before leaf-level translocation of primary assimilates. The WUEge values in P. orientalis and Q. variabilis both decreased with increased soil moisture at 35-80 % of field capacity (FC) and increased with elevated [CO2] by increasing photosynthetic capacity and reducing transpiration. Instantaneous water use efficiency (iWUE) according to environmental changes differed between the two species. The WUEge in P. orientalis was significantly greater than that in Q. variabilis, while an opposite tendency was observed when comparing WUEcp between the two species. Total 13C fractionation at the site of carboxylation to cytoplasm before sugar

  18. Effects of deficit irrigation and partial root-zone drying on soil and plant water status, stomatal conductance, plant growth and water use efficiency in tomato during early fruiting stage

    DEFF Research Database (Denmark)

    Liu, Fulai; Shahnazari, Ali; Jacobsen, S.-E.

    2008-01-01

    The effects of 'partial root-zone drying' (PRD), compared with full irrigation (FI) and deficit irrigation (DI), on soil and plant water status, plant growth and water use efficiency (WUE) were investigated in potted tomatoes (Lycopersicon esculentum L., var. Cedrico) at the early fruiting stage...... system, and the irrigated side of the plants was reversed when volumetric soil water content ( ) of the dry side had decreased to 6%. of FI was about 14%. of DI decreased during the first 4-5 days after the onset of treatment (DAT) and was about 7% and 6% thereafter for DI-70 and DI-50, respectively....... of the wet side in PRD-70 declined during 3-6 DAT and was lower than that of FI by 4-6% thereafter. in both wet and dry sides of PRD-50 was slightly lower than that for PRD-70. After 5 DAT, midday leaf water potential was significantly lower in DI and PRD than in FI plants. FI plants had the highest leaf...

  19. Water Use Efficiency and Its Influencing Factors in China: Based on the Data Envelopment Analysis (DEA—Tobit Model

    Directory of Open Access Journals (Sweden)

    Shuqiao Wang

    2018-06-01

    Full Text Available Water resources are important and irreplaceable natural and economic resources. Achieving a balance between economic prosperity and protection of water resource environments is a major issue in China. This article develops a data envelopment analysis (DEA approach with undesirable outputs by using Seiford’s linear converting method to estimate water use efficiencies for 30 provinces in China, from 2008–2016,and then analyzes the influencing factors while using a DEA-Tobit model. The findings show that the overall water use efficiency of the measured Chinese provinces, when considering sewage emissions as the undesirable output, is 0.582. Thus, most regions still need improvement. Provinces with the highest water efficiency are located in economically developed Eastern China. The spatial pattern of water use efficiency in China is consistent with the general pattern of regional economic development. This study implies that factors like export dependence, technical progress, and educational value have a positive influence on water use efficiency. Further, while industrial structure has had a negative impact, government intervention has had little impact on water use efficiency. These research results will provide a scientific basis for the government to make plans for water resource development, and it may be helpful in improving regional sustainable development.

  20. Expression profiling of Ribosomal Protein gene family in dehydration stress responses and characterization of transgenic rice plants overexpressing RPL23A for water-use efficiency and tolerance to drought and salt stresses

    Science.gov (United States)

    Moin, Mazahar; Bakshi, Achala; Madhav, M. S.; Kirti, P. B.

    2017-11-01

    Our previous findings on the screening of a large-pool of activation tagged rice plants grown under limited water conditions revealed the activation of Ribosomal Protein Large (RPL) subunit genes, RPL6 and RPL23A in two mutants that exhibited high water-use efficiency (WUE) with the genes getting activated by the integrated 4x enhancers (Moin et al., 2016a). In continuation of these findings, we have comprehensively characterized the Ribosomal Protein (RP) gene family including both small (RPS) and large (RPL) subunits, which have been identified to be encoded by at least 70 representative genes; RP-genes exist as multiple expressed copies with high nucleotide and amino acid sequence similarity. The differential expression of all the representative genes in rice was performed under limited water and drought conditions at progressive time intervals in the present study. More than 50% of the RP genes were upregulated in both shoot and root tissues. Some of them exhibited an overlap in the upregulation under both the treatments indicating that they might have a common role in inducing tolerance under limited water and drought conditions. Among the genes that became significantly upregulated in both the tissues and under both the treatments are RPL6, 7, 23A, 24 and 31 and RPS4, 10 and 18a. To further validate the role of RP genes in WUE and inducing tolerance to other stresses, we have raised transgenic plants overexpressing RPL23A in rice. The high expression lines of RPL23A exhibited low Δ13C, increased quantum efficiency along with suitable growth and yield parameters with respect to negative control under the conditions of limited water availability. The constitutive expression of RPL23A was also associated with transcriptional upregulation of many other RPL and RPS genes. The seedlings of RPL23A high expression lines also showed a significant increase in fresh weight, root length, proline and chlorophyll contents under simulated drought and salt stresses. Taken

  1. Water Use Efficiency under Different Tillage and Irrigation Systems for Tomato Farming in Southeastern Brazil

    Science.gov (United States)

    Bhering, S. B.; Fernandes, N. F.; Macedo, J. R.

    2009-04-01

    In the northwest part of Rio de Janeiro state water availability is one of the main limiting factors for human development and crop productivity. In the same way that shortage of freshwater is one of the main problems, the tomato production systems waste water and highly degrade the environment. The search for the water use efficiency is a challenge in tomato sustainable development production systems. This study aimed to contribute towards the development of sustainable production systems for the tomato farming in the northwestern part or Rio de Janeiro state, as well as increase water use efficiency and the improvement of our understanding on the role played by soil and water management practices on soil hydrology, especially on the amount of water available for the plants. The study was carried out at an experimental watershed in the city of São José do Ubá, in the northwestern portion of Rio de Janeiro state. This city has one of the worst human development index (HDI = 0718) of the state, occupying one of the last 6 positions (85 in 91), with serious problems of education, sanitation, water supply and public health. This area is characterized by an extensive steep hilly topography constituted by long convex-concave hillslopes separated by flat valley-bottoms. The original Atlantic Forest was continuously removed for the introduction of farming and grazing activities, which currently dominate the landscape of the region. The combination of such topographic and land-use characteristics tend to generate a variety of erosional processes, including rill and interrill erosion, gullies and even landslides. The average annual rainfall in the area is about 1,171 mm, with most of rain concentrated during the summer season, making December the wetter and July the drier months. The water balance is negative for most of the year, with the exception of the period from November to January. The cultivation in the area is traditionally done using production systems that

  2. Water use efficiency and productivity of habanero pepper (Capsicum chinense Jacq.) based on two transplanting dates.

    Science.gov (United States)

    López-López, Rutilo; Inzunza-Ibarra, Marco Antonio; Sánchez-Cohen, Ignacio; Fierro-Álvarez, Andrés; Sifuentes-Ibarra, Ernesto

    2015-01-01

    Habanero pepper production was assessed with drip irrigation and plastic mulch, based on two transplanting dates. The objectives of the study were: (i) to evaluate the effect of two transplanting dates and the use of plastic mulch on water productivity and habanero pepper fruit yield under drip irrigation conditions; and (ii) to determine the profitability and economic viability of the product in the regional market. The work was conducted in the municipality of Huimanguillo, state of Tabasco, Mexico, in loam soils classified as Eutric Fluvisol. The Jaguar variety of habanero pepper, developed by INIFAP and possessing better genetic and productive characteristics, was used. Two transplanting dates were studied, (i) 30 January 2013 and (ii) 15 February 2013, with and without plastic mulch. The conclusions were: (i) application of irrigation depths based on crop evapotranspiration (ETc) and plastic mulch transplanted on 30 January increased the fruit yield of the crop and improved the benefit-cost ratio of the production system; and (ii) water use efficiency based on the 30 January transplanting date was 8.68 kg m⁻³ of water applied with plastic mulch, 6.51 kg m⁻³ without plastic mulch, and 3.65 kg m⁻³ for the 15 February transplanting date with plastic mulch.

  3. Moss and peat hydraulic properties are optimized to maximise peatland water use efficiency

    Science.gov (United States)

    Kettridge, Nicholas; Tilak, Amey; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatland ecosystems are globally important carbon and terrestrial surface water stores that have formed over millennia. These ecosystems have likely optimised their ecohydrological function over the long-term development of their soil hydraulic properties. Through a theoretical ecosystem approach, applying hydrological modelling integrated with known ecological thresholds and concepts, the optimisation of peat hydraulic properties is examined to determine which of the following conditions peatland ecosystems target during this development: i) maximise carbon accumulation, ii) maximise water storage, or iii) balance carbon profit across hydrological disturbances. Saturated hydraulic conductivity (Ks) and empirical van Genuchten water retention parameter α are shown to provide a first order control on simulated water tensions. Across parameter space, peat profiles with hypothetical combinations of Ks and α show a strong binary tendency towards targeting either water or carbon storage. Actual hydraulic properties from five northern peatlands fall at the interface between these goals, balancing the competing demands of carbon accumulation and water storage. We argue that peat hydraulic properties are thus optimized to maximise water use efficiency and that this optimisation occurs over a centennial to millennial timescale as the peatland develops. This provides a new conceptual framework to characterise peat hydraulic properties across climate zones and between a range of different disturbances, and which can be used to provide benchmarks for peatland design and reclamation.

  4. [Experimental study on crop photosynthesis, transpiration and high efficient water use].

    Science.gov (United States)

    Wang, Huixiao; Liu, Changming

    2003-10-01

    It is well known that the development of water-saving agriculture is a strategic choice for getting rid of the crisis of water shortage. In this paper, the crop photosynthesis, transpiration, stomatic behavior, and their affecting factors were studied in view of increasing the crop water use efficiency. The experimental results showed that there was a parabola relationship between photosynthesis and transpiration. The transpiration at the maximum photosynthesis was a critical value, above which, transpiration was the luxurious part. The luxurious transpiration could be controlled without affecting photosynthetic production. It is possible that the measures for increasing stomatic resistance and preventing transpiration could save water, and improve photosynthesis and yield as well. The photosynthesis rate increased with photosynthetic active radiation, and the light saturation point for photosynthesis existed. The light saturation point of dry treatment was much lower than that of wet treatment, and the relationship between transpiration and radiation was linear. When the photosynthetic active radiation was bigger than 1,000 mumol.m-2.s-1, some treatments could be carried out for decreasing transpiration and improving photosynthesis.

  5. Increasing Water Use Efficiency Comes at a Cost for Norway Spruce

    Directory of Open Access Journals (Sweden)

    Tanja G M Sanders

    2016-11-01

    Full Text Available Intrinsic water use efficiency (WUEi in trees is an indication of the ratio of carbon assimilation to the rate of transpiration. It is generally assumed that it is a response to water availability. In agricultural research, the question of drought tolerance by increased WUEi has been well studied. In general, the increase is a trade-off for productivity and is therefore not desired. For forest trees, this question is less clearly understood. Using stable carbon isotopes derived from tree rings combined with productivity as the product of the annual growth increment and annual density measurements, we compared the change in WUEi over a 15 year period. While WUEi increased over this period, the productivity decreased, causing an opposing trend. The gradient of the correlation between WUEi and productivity varies between provenances and sites. Counterintuitively, the populations at the drier site showed low WUEi values at the beginning of the investigation. Slopes vary with the provenance from Poland showing the least decline in productivity. In general, we found that a decline in productivity aligned with an increase in WUEi.

  6. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine.

    Science.gov (United States)

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-08-09

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.

  7. Impact of Irrigation Method on Water Use Efficiency and Productivity of Fodder Crops in Nepal

    Directory of Open Access Journals (Sweden)

    Ajay K Jha

    2016-01-01

    Full Text Available Improved irrigation use efficiency is an important tool for intensifying and diversifying agriculture in Nepal, resulting in higher economic yield from irrigated farmlands with a minimum input of water. Research was conducted to evaluate the effect of irrigation method (furrow vs. drip on the productivity of nutritious fodder species during off-monsoon dry periods in different elevation zones of central Nepal. A split-block factorial design was used. The factors considered were treatment location, fodder crop, and irrigation method. Commonly used local agronomical practices were followed in all respects except irrigation method. Results revealed that location effect was significant (p < 0.01 with highest fodder productivity seen for the middle elevation site, Syangja. Species effects were also significant, with teosinte (Euchlaena mexicana having higher yield than cowpea (Vigna unguiculata. Irrigation method impacted green biomass yield (higher with furrow irrigation but both methods yielded similar dry biomass, while water use was 73% less under drip irrigation. Our findings indicated that the controlled application of water through drip irrigation is able to produce acceptable yields of nutritionally dense fodder species during dry seasons, leading to more effective utilization and resource conservation of available land, fertilizer and water. Higher productivity of these nutritional fodders resulted in higher milk productivity for livestock smallholders. The ability to grow fodder crops year-round in lowland and hill regions of Nepal with limited water storages using low-cost, water-efficient drip irrigation may greatly increase livestock productivity and, hence, the economic security of smallholder farmers.

  8. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze].

    Science.gov (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song

    2010-06-01

    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P transpiration rate also presented single-peak type, with the daily average value in late June and early August being (3.10 +/- 0.34) mmol H2O x m(-2) x s(-1) and (1.60 +/- 0.26) mmol H2O x m(-2) x s(-1), respectively, and differed significantly (P efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  9. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    Science.gov (United States)

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  10. Assessing the effect of marginal water use efficiency on water use of loblolly pine and sweetgum in ambient and elevated CO2 conditions

    Science.gov (United States)

    Kim, D.; Medvigy, D.; Xu, X.; Oren, R.; Ward, E. J.

    2017-12-01

    Stomata are the common pathways through which diffusion of CO2 and water vapor take place in a plant. Therefore, the responses of stomatal conductance to environmental conditions are important to quantify carbon assimilation and water use of plants. In stomatal optimality theory, plants may adjust the stomatal conductance to maximize carbon assimilation for a given water availability. The carbon cost for unit water loss, marginal water use efficiency (λ), depends on changes in atmospheric CO2 concentration and pre-dawn leaf water potential. The relationship can be described by λ with no water stress (λ0) and the sensitivity of λ to pre-dawn leaf water potential (β0), which may vary by plant functional type. Assessment of sensitivity of tree and canopy water use to those parameters and the estimation of the parameters for individual plant functional type or species are needed. We modeled tree water use of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in ambient and elevated CO2 (+200 µmol mol-1) at the Duke Forest free-air CO2 enrichment (FACE) site with Ecosystem Demography model 2 (ED2), a demographic terrestrial biosphere model that scales up individual-level competition for light, water and nutrients to the ecosystem-level. Simulated sap flux density for different tree size classes and species was compared to observations. The sensitivity analysis with respect to the model's hydraulic parameters was performed. The initial results showed that the impacts of λ on tree water use were greater than other hydraulic traits in the model, such as vertical hydraulic conductivity and leaf and stem capacitance. With 10% increase in λ, modeled water flow from root to leaf decreased by 2.5 and 1.6% for P. taeda and by 7.9 and 5.1% for L. styraciflua in ambient and elevated CO2 conditions, respectively. Values of hydraulic traits (λ0 and β0) for P. taeda and L. styraciflua in ambient an elevated CO2 conditions were also suggested.

  11. Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo.

    Science.gov (United States)

    Loader, N J; Walsh, R P D; Robertson, I; Bidin, K; Ong, R C; Reynolds, G; McCarroll, D; Gagen, M; Young, G H F

    2011-11-27

    Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).

  12. The carbon fertilization effect over a century of anthropogenic CO2 emissions: higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody plants in the US Southwest.

    Science.gov (United States)

    Drake, Brandon L; Hanson, David T; Lowrey, Timothy K; Sharp, Zachary D

    2017-02-01

    From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO 2 concentrations from 270 to 400 mol mol -1 . The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of free-air CO 2 enrichment (FACE) experiments. These experiments have found (i) an increase in internal CO 2 partial pressure (c i ) alongside acclimation of photosynthetic capacity, (ii) variable decreases in stomatal conductance, and (iii) that increases in yield do not increase commensurate with CO 2 concentrations. Our data set, which includes a 115-year-long selection of grasses collected in New Mexico since 1892, is consistent with an increased c i as a response to historical CO 2 increase in the atmosphere, with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity Index (PDSI) for New Mexico indicates a moderate correlation with Δ 13 C (r 2  = 0.32, P < 0.01) before 1950, with no correlation (r 2  = 0.00, P = 0.91) after 1950. These results indicate that increased c i may have conferred some drought resistance to these grasses through increased availability of CO 2 in the event of reduced stomatal conductance in response to short-term water shortage. Comparison with C 3 trees from arid environments (Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments (Bromus and Poa grasses in New Mexico) suggests differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO 2 while wetter environments see increased c i . This study suggests that (i) the observed increases in c i in FACE experiments are consistent with historical CO 2 increases and (ii) the CO 2 increase influences plant sensitivity to water shortage, through either increased WUE or c i in arid and wet environments, respectively. © 2016 John Wiley & Sons Ltd.

  13. Improving the water use efficiency of olive trees growing in water harvesting systems

    Science.gov (United States)

    Berliner, Pedro; Leake, Salomon; Carmi, Gennady; Agam, Nurit

    2017-04-01

    Water is a primary limiting factor for agricultural development in many arid and semi-arid regions in which a runoff generation is a rather frequent event. If conveyed to dyke surrounded plots and ponded, runoff water can thereafter be used for tree production. One of the most promising runoff collection configurations is that of micro-catchments in which water is collected close to the area in which runoff was generated and stored in adjacent shallow pits. The objective of this work was to assess the effect of the geometry of runoff water collection area (shallow pit or trench) on direct evaporative water losses and on the water use efficiency of olive trees grown in them. The study was conducted during the summer of 2013 and 2014. In this study regular micro-catchments with basins of 9 m2 (3 x 3 m) by 0.1 m deep were compared with trenches of one meter deep and one meter wide. Each configuration was replicated three times. One tree was planted in each shallow basin and the distance between trees in the 12 m long trench was four meters. Access tubes for neutron probes were installed in the micro-catchments and trenches (four and seven, respectively) to depths of 2.5 m. Soil water content in the soil profile was monitored periodically throughout drying periods in between simulated runoff events. Transpiration of the trees was estimated from half-hourly sap flow measurements using a Granier system. Total transpiration fluxes were computed for time intervals corresponding to consecutive soil water measurements. During the first year, a large runoff event was simulated by applying once four cubic meters to each plot; and in the second year the same volume of water was split into four applications, simulating a series of small runoff events. In both geometries, trees received the same amount of water per tree. Evaporation from trenches and micro-catchments was estimated as the difference between evapotranspiration obtained computing the differences in total soil water

  14. A role for stomata in regulating water use efficiency in Populus ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... Institute, agricultural water use will increase by 17% in. 2025. However, competition ..... Plasticity to soil water deficit in. Arabidopsis thaliana: ... repeats in gonadotropin receptors determine hormone specificity. EMBO J. 10: ...

  15. Driven Factors Analysis of China’s Irrigation Water Use Efficiency by Stepwise Regression and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Renfu Jia

    2016-01-01

    Full Text Available This paper introduces an integrated approach to find out the major factors influencing efficiency of irrigation water use in China. It combines multiple stepwise regression (MSR and principal component analysis (PCA to obtain more realistic results. In real world case studies, classical linear regression model often involves too many explanatory variables and the linear correlation issue among variables cannot be eliminated. Linearly correlated variables will cause the invalidity of the factor analysis results. To overcome this issue and reduce the number of the variables, PCA technique has been used combining with MSR. As such, the irrigation water use status in China was analyzed to find out the five major factors that have significant impacts on irrigation water use efficiency. To illustrate the performance of the proposed approach, the calculation based on real data was conducted and the results were shown in this paper.

  16. Policy Brief: Enhancing water-use efficiency of thermal power plants in India: need for mandatory water audits

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K. (ed.)

    2012-12-15

    This policy brief discusses the challenges of water availability and opportunity to improve the water use efficiency in industries specially the thermal power plants. It presents TERI’s experience from comprehensive water audits conducted for thermal power plants in India. The findings indicate that there is a significant scope for saving water in the waste water discharge, cooling towers, ash handling systems, and the township water supply. Interventions like recycling wastewater, curbing leakages, increasing CoC (Cycles of concentration) in cooling towers, using dry ash handling etc., can significantly reduce the specific water consumption in power plants. However, the first step towards this is undertaking regular water audits. The policy brief highlights the need of mandatory water audits necessary to understand the current water use and losses as well as identify opportunities for water conservation, reduction in specific water consumption, and an overall improvement in water use efficiency in industries.

  17. Photosynthetic capacity and intrinsic water-use efficiency of Rhizophora mangle at its southernmost western Atlantic range

    Science.gov (United States)

    M.L.G. Soares; M.M.P. Tognella; E. Cuevas; E. Medina

    2015-01-01

    The southernmost presence of Rhizophora mangle in the western Atlantic coast occurs in coastal wetlands between 27 and 28ºS in the State of Santa Catarina, Brazil. We selected mangrove communities at the estuary of Rio Tavares, Florianopolis, and Sonho Beach, Palhosa, for measurement of photosynthetic performance and intrinsic water use efficiency of R. mangle and...

  18. Can a canopy temperature-based stress index enhance water use efficiency in irrigated wine grape under arid conditions?

    Science.gov (United States)

    Enhancement of irrigation water use efficiency and water productivity in arid wine grape production regions is hindered by a lack of automated, real-time methods for monitoring and interpreting vine water status. A normalized, water stress index calculated from real-time vine canopy temperature meas...

  19. Ecosystem-level water-use efficiency inferred from eddy covariance data: definitions, patterns and spatial up-scaling

    Science.gov (United States)

    Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.

    2007-12-01

    In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.

  20. Variation in water-use efficiency and delta-C-13 levels in eucalyptus-grandis clones

    CSIR Research Space (South Africa)

    Olbrich, BW

    1993-10-01

    Full Text Available Water Status, Vol. 2. Centennial of Utah State University, 6 10 July, 1987, Logan, Utah, pp. 307--311. Hubick, K.T., Farquhar, G.D. and Shorter, R., 1986. Correlation between water-use efficiency and carbon isotope...

  1. Evaluating multiple indices of agricultural water use efficiency and productivity to improve comparisons between sites and trends

    Science.gov (United States)

    Levy, M. C.

    2012-12-01

    Approximately 70% of global available freshwater supplies are used in the agricultural sector. Increased demands for water to meet growing population food requirements, and expected changes in the reliability of freshwater supplies due to climate change, threaten the sustainability of water supplies worldwide - not only on farms, but in connected cities and industries. Researchers concerned with agricultural water use sustainability use a variety of theoretical and empirical measures of efficiency and productivity to gain insight into the sustainability of agricultural water use. However, definitions of measures, or indices, vary between different natural and political boundaries, across regions, states and nations and between their respective research, industry, and environmental groups. Index development responds to local data availability and local agendas, and there is debate about the validity of various indices. However, real differences in empirical index measures are not well-understood across the multiple disciplines that study agricultural water use, including engineering and hydrology, agronomy, climate and soil sciences, and economics. Nevertheless reliable, accessible, and generalizable indices are required for planners and policymakers to promote sustainable water use systems. This study synthesizes a set of water use efficiency and productivity indices based on academic, industry and government literature in California and Australia, two locations with similarly water-stressed and valuable agricultural industries under pressure to achieve optimal water use efficiency and productivity. Empirical data at the irrigation district level from the California San Joaquin Valley and Murray Darling Basin states of Victoria and New South Wales in Australia are used to compute indices that estimate efficiency, yield productivity, and economic productivity of agricultural water use. Multiple index estimates of same time-series data demonstrate historical spread

  2. Cytosolic Glutamine Synthetase is Important for Photosynthetic Efficiency and Water Use Efficiency in Potato as Revealed by High Throughput Sequencing QTL analysis

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sørensen, Kirsten Kørup; Andersen, Mathias Neumann

    2015-01-01

    was observed. Two extreme WUE bulks of clones were identified and pools of genomic DNA from them as well as the parents were sequenced and mapped to reference potato genome. Following a novel data analysis approach, two highly resolved QTLs were found on chromosome 1 and 9. Interestingly, three genes encoding...

  3. Managing for water-use efficient wood production in Eucalyptus globulus plantations

    Science.gov (United States)

    Donald A. White; John F. McGrath; Michael G. Ryan; Michael Battaglia; Daniel S. Mendham; Joe Kinal; Geoffrey M. Downes; D. Stuart Crombie; Mark E. Hunt

    2014-01-01

    This paper tests the hypothesis that thinning and nitrogen fertiliser can increase the mass of wood produced per volume of water used (evapotranspiration) by plantations of Eucalyptus globulus. We have called this plantation water productivity (PWPWOOD) and argue that, for a given genotype, this term integrates the effects of management, site and climate on both...

  4. Highly efficient photochemical HCOOH production from CO2 and water using an inorganic system

    Directory of Open Access Journals (Sweden)

    Satoshi Yotsuhashi

    2012-12-01

    Full Text Available We have constructed a system that uses solar energy to react CO2 with water to generate formic acid (HCOOH at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH can be used as a renewable energy source.

  5. Eficiência no uso da água na cana-de-açúcar sob diferentes lâminas de irrigação e níveis de zinco no litoral paraibano Water use efficiency in sugarcane crop under different depths of irrigation and zinc doses in coastal region of Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos H. A. Farias

    2008-09-01

    Full Text Available Esta pesquisa foi conduzida em área experimental da Fazenda Capim II, localizada no Município de Capim - PB, com o intuito de determinar a eficiência no uso da água (EUA pela cana-de-açúcar (Saccharum officinarum L., cultivar SP 79-1011. O delineamento experimental consistiu em blocos casualizados, com três repetições, em esquema fatorial 5 x 5. Os tratamentos referentes à lâmina de irrigação foram: sequeiro; 25; 50; 75 e 100% da ETc (1.026,57 mm com as respectivas precipitações efetivas de 780,06; 713,31; 487,54; 243,71 e 194,51 mm; os níveis de zinco estudados foram 0; 1; 2; 3 e 4 kg ha-1. O equipamento de irrigação utilizado foi do tipo pivô central, com turno de rega de nove dias. A eficiência no uso da água (EUA na produção de colmos e de açúcar aumenta à medida que se eleva a lâmina total de água aplicada à cultura. Para a região norte-paraibana dos tabuleiros costeiros, a EUA na produção de colmo e de açúcar, de forma maximizada, é 7,12 e 0,67 kg m-3, respectivamente.The study was conducted in an experimental area of the Capim II Farm, located in the municipality of Capim - PB, Brazil, with the objective of determining the efficiency in the use of the water (WUE for the sugarcane crop (Saccharum officinarum L., cultivar SP 79-1011. The experimental design consisted of randomized blocks, with three replications in a 5 x 5 factorial design. The irrigation treatments were: rainfed; 25; 50; 75 and 100% of the ETc (1,026.57 mm with the respective effective precipitations of 780.06; 713.31; 487.54; 243.71 and 194.51 mm. The levels of zinc studied were 0; 1; 2; 3 and 4 kg ha-1. The irrigation equipment used in the study was a central pivot with irrigation frequency of nine days. The water use efficiency (WUE of sugarcane crop in terms of cane production and of sugar increased with the depth of water applied. For the Coastal Table Lands of northern Paraiba, the maximized WUE for sugarcane and sugar production is

  6. Water Use Efficiency Improvement against a Backdrop of Expanding City Agglomeration in Developing Countries—A Case Study on Industrial and Agricultural Water Use in the Bohai Bay Region of China

    Directory of Open Access Journals (Sweden)

    Minghao Bai

    2017-02-01

    Full Text Available Most city agglomerations of developing countries face water shortages and pollution due to population growth and industrial aggregation. To meet such water security challenges, policy makers need to evaluate water use efficiency at the regional or basin level because the prosperity of city agglomerations is indispensable to the sustainable development of the region or basin. To solve the issue, this paper adopts a non-directional distance function within the framework of environmental production technology to measure water use efficiency. Based on the distance between actual water use efficiency and the ideal efficiency, it calculates the potential reduction space of water input and pollutants by slack adjustment. Added to the Malmquist index, it forms a non-radial Malmquist water use performance index, which can be divided into technological change and technical efficiency change, to measure dynamic water use efficiency. Further, water use efficiency change is analyzed from the perspectives of technological improvement and institutional construction. Bohai Bay city agglomeration, a typical water-deficient city agglomeration in China, is taken as a case study, and data on water resource, environment, and economy from 2011 to 2014 have been used. In conclusion, there is much space for water use efficiency improvement on the whole. However, even having considered potential reduction space of water input and pollutant discharge under current environmental production technology, it is still not enough to support the city agglomeration’s sustainable development. To relieve current potential water safety hazards, not only technical improvement but also institution innovation for highly efficient water use should be kept accelerating in Bohai Bay region. In terms of urban water management in developing countries, the research conclusion is of theoretical and practical significance.

  7. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique

    2012-03-01

    Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.

  8. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    Science.gov (United States)

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective.

    Science.gov (United States)

    Way, Danielle A; Katul, Gabriel G; Manzoni, Stefano; Vico, Giulia

    2014-07-01

    C4 photosynthesis evolved independently numerous times, probably in response to declining atmospheric CO2 concentrations, but also to high temperatures and aridity, which enhance water losses through transpiration. Here, the environmental factors controlling stomatal behaviour of leaf-level carbon and water exchange were examined across the evolutionary continuum from C3 to C4 photosynthesis at current (400 μmol mol(-1)) and low (280 μmol mol(-1)) atmospheric CO2 conditions. To this aim, a stomatal optimization model was further developed to describe the evolutionary continuum from C3 to C4 species within a unified framework. Data on C3, three categories of C3-C4 intermediates, and C4 Flaveria species were used to parameterize the stomatal model, including parameters for the marginal water use efficiency and the efficiency of the CO2-concentrating mechanism (or C4 pump); these two parameters are interpreted as traits reflecting the stomatal and photosynthetic adjustments during the C3 to C4 transformation. Neither the marginal water use efficiency nor the C4 pump strength changed significantly from C3 to early C3-C4 intermediate stages, but both traits significantly increased between early C3-C4 intermediates and the C4-like intermediates with an operational C4 cycle. At low CO2, net photosynthetic rates showed continuous increases from a C3 state, across the intermediates and towards C4 photosynthesis, but only C4-like intermediates and C4 species (with an operational C4 cycle) had higher water use efficiencies than C3 Flaveria. The results demonstrate that both the marginal water use efficiency and the C4 pump strength increase in C4 Flaveria to improve their photosynthesis and water use efficiency compared with C3 species. These findings emphasize that the advantage of the early intermediate stages is predominantly carbon based, not water related. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (Triticum aestivum L. and T. durum Desf. Varieties Grown in Dry Regions of Jordan

    Directory of Open Access Journals (Sweden)

    Abdul Latief A. Al-Ghzawi

    2018-05-01

    Full Text Available One critical challenge facing the world is the need to satisfy the food requirements of the dramatically growing population. Drought stress is one of the main limiting factors in the wheat-producing regions; therefore, wheat yield stability is a major objective of wheat-breeding programs in Jordan, which experience fluctuating climatic conditions in the context of global climate change. In the current study, a two-year field experiment was conducted for exploring the effect of four different water regimes on the yield, yield components, and stability of three wheat (Triticum aestivum L.; T. durum Desf. Jordanian cultivars as related to Canopy Temperature Depression (CTD, and Chlorophyll Content (measured by Soil-Plant Analysis Development, SPAD. A split plot design was used in this experiment with four replicates. Water treatment was applied as the main factor: with and without supplemental irrigation; 0%, 50%, 75%, and 100% of field capacity were applied. Two durum wheat cultivars and one bread wheat cultivar were split over irrigation treatments as a sub factor. In both growing seasons, supplemental irrigation showed a significant increase in grain yield compared to the rain-fed conditions. This increase in grain yield was due to the significantly positive effect of water availability on yield components. Values of CTD, SPAD, harvest index, and water use efficiency (WUE were increased significantly with an increase in soil moisture and highly correlated with grain yield. Ammon variety produced the highest grain yield across the four water regimes used in this study. This variety was characterized by the least thermal time to maturity and the highest values of CTD and SPAD. It was concluded that Ammon had the highest stability among the cultivars tested. Furthermore, CTD and SPAD can be used as important selection parameters in breeding programs in Jordan to assist in developing high-yielding genotypes under drought and heat stress conditions.

  11. Canopy management and water use efficiency in vineyards under Mediterranean semiarid conditions

    Directory of Open Access Journals (Sweden)

    de la Fuente Mario

    2015-01-01

    In addition, both positive effects of sprawl treatments (crop load and training system resulted in better yield and quality in Mediterranean semiarid conditions under the same inputs (sun, water and soil, causing higher efficiency of natural resources.

  12. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    International Nuclear Information System (INIS)

    Bazza, M.

    1996-01-01

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using 13 C discrimination Δ as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as Δ were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in Δ. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with Δ although the correlation coefficient of grain yield versus Δ was not high ( ** ). The data suggest that while a high Δ value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in Δ and the yield of a cultivar. However, Δ of a genotype can also provide valuable information with respect to plant parameters responsible for the control of Δ and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs, 2 figs, 2 tabs

  13. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bazza, M [Rabat-Institus, Rabat (Morocco). Inst. Agronomique et Veterinaire Hassan II

    1996-07-01

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using {sup 13}C discrimination {Delta} as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as {Delta} were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in {Delta}. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with {Delta} although the correlation coefficient of grain yield versus {Delta} was not high (< 0.45{sup **}). The data suggest that while a high {Delta} value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in {Delta} and the yield of a cultivar. But, {Delta} of a genotype can also provide valuable information with respect to plant parameters responsible for the control of {Delta} and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs,2figs,2tabs.

  14. Modeling the water use efficiency of soybean and maize plants under environmental stresses: application of a synthetic model of photosynthesis-transpiration based on stomatal behavior.

    Science.gov (United States)

    Yu, Gui-Rui; Wang, Qiu-Feng; Zhuang, Jie

    2004-03-01

    Understanding the variability of plant WUE and its control mechanism can promote the comprehension to the coupling relationship of water and carbon cycle in terrestrial ecosystem, which is the foundation for developing water-carbon coupling cycle model. In this paper, we made clear the differences of net assimilation rate, transpiration rate, and WUE between the two species by comparing the experiment data of soybean (Glycine max Merr.) and maize (Zea mays L.) plants under water and soil nutrient stresses. WUE of maize was about two and a half times more than that of soybean in the same weather conditions. Enhancement of water stresses led to the marked decrease of Am and Em of two species, but water stresses of some degree could improve WUE, and this effect was more obvious for soybean. WUE of the two species changed with psiL in a second-order curve relation, and the WUE at high fertilization was higher than that at low fertilization, this effect was especially obvious for maize. Moreover, according to the synthetic model of photosynthesis-transpiration based on stomatal behavior (SMPTSB) presented by Yu et al. (2001), the WUE model and its applicability were discussed with the data measured in this experiment. The WUE estimated by means of the model accorded well with the measured values. However, this model underestimated the WUE for maize slightly, thus further improvement on the original model was made in this study. Finally, by discussing some physiological factors controlling Am and WUE, we made clear the physiological explanation for differences of the relative contributions of stomata- and mesophyll processes to control of Am and WUE, and the applicability of WUE model between the two species. Because the requirement to stomatal conductance by unit change of net assimilation rate is different, the responses of opening-closing activity of stomata to environmental stresses are different between the two species. To obtain the same level of net assimilation

  15. Drainage estimation to aquifer and water use irrigation efficiency in semi-arid zone for a long period of time

    Science.gov (United States)

    Jiménez-Martínez, J.; Molinero-Huguet, J.; Candela, L.

    2009-04-01

    Water requirements for different crop types according to soil type and climate conditions play not only an important role in agricultural efficiency production, though also for water resources management and control of pollutants in drainage water. The key issue to attain these objectives is the irrigation efficiency. Application of computer codes for irrigation simulation constitutes a fast and inexpensive approach to study optimal agricultural management practices. To simulate daily water balance in the soil, vadose zone and aquifer the VisualBALAN V. 2.0 code was applied to an experimental area under irrigation characterized by its aridity. The test was carried out in three experimental plots for annual row crops (lettuce and melon), perennial vegetables (artichoke), and fruit trees (citrus) under common agricultural practices in open air for October 1999-September 2008. Drip irrigation was applied to crops production due to the scarcity of water resources and the need for water conservation. Water level change was monitored in the top unconfined aquifer for each experimental plot. Results of water balance modelling show a good agreement between observed and estimated water level values. For the study period, mean drainage obtained values were 343 mm, 261 mm and 205 mm for lettuce and melon, artichoke and citrus respectively. Assessment of water use efficiency was based on the IE indicator proposed by the ASCE Task Committee. For the modelled period, water use efficiency was estimated as 73, 71 and 78 % of the applied dose (irrigation + precipitation) for lettuce and melon, artichoke and citrus, respectively.

  16. Water-use responses of ‘living fossil’ conifers to CO2 enrichment in a simulated Cretaceous polar environment

    Science.gov (United States)

    Llorens, Laura; Osborne, Colin P.; Beerling, David J.

    2009-01-01

    Background and Aims During the Mesozoic, the polar regions supported coniferous forests that experienced warm climates, a CO2-rich atmosphere and extreme seasonal variations in daylight. How the interaction between the last two factors might have influenced water use of these conifers was investigated. An experimental approach was used to test the following hypotheses: (1) the expected beneficial effects of elevated [CO2] on water-use efficiency (WUE) are reduced or lost during the 24-h light of the high-latitude summer; and (2) elevated [CO2] reduces plant water use over the growing season. Methods Measurements of leaf and whole-plant gas exchange, and leaf-stable carbon isotope composition were made on one evergreen (Sequoia sempervirens) and two deciduous (Metasequoia glyptostroboides and Taxodium distichum) ‘living fossil’ coniferous species after 3 years' growth in controlled-environment simulated Cretaceous Arctic (69°N) conditions at either ambient (400 µmol mol−1) or elevated (800 µmol mol−1) [CO2]. Key Results Stimulation of whole-plant WUE (WUEP) by CO2 enrichment was maintained over the growing season for the three studied species but this pattern was not reflected in patterns of WUE inferred from leaf-scale gas exchange measurements (iWUEL) and δ13C of foliage (tWUEL). This response was driven largely by increased rates of carbon uptake, because there was no overall CO2 effect on daily whole-plant transpiration or whole-plant water loss integrated over the study period. Seasonal patterns of tWUEL differed from those measured for iWUEL. The results suggest caution against over simplistic interpretations of WUEP based on leaf isotopic composition. Conclusions The data suggest that the efficiency of whole-tree water use may be improved by CO2 enrichment in a simulated high-latitude environment, but that transpiration is relatively insensitive to atmospheric CO2 in the living fossil species investigated. PMID:19447810

  17. Quantitative Assessment of Water Use Efficiency in Urban and Domestic Buildings

    Directory of Open Access Journals (Sweden)

    Vicente Santiago-Fandiño

    2013-08-01

    Full Text Available This paper discusses the potential of water savings at property, household and urban levels, through the application of environmentally sound technologies (ESTs, as well as their quantification using the software Wise Water. Household centered measures are identified that allow for significant reduction of drinking water consumption with comparatively small effort, and without limitation of comfort. Furthermore, a method for the estimation of water recycling, for rainwater harvesting and for the utilization potential as locally available renewable freshwater is presented. Based on this study, the average drinking water consumption in urban households of industrialized countries could be reduced by approximately one third, without significant investment costs, either within the framework of new constructions or by the remodeling of water and sanitation systems in residential buildings. By using a secondary water quality, the drinking water demand could even be reduced by 50%. In the case of an area-wide application, the overall fresh water demand of cities and the exploitation of fresh water resources could be significantly reduced. Due to the comparability of the domestic water use of the investigated households, the findings are internationally transferable, for example to countries in Europe, Asia, and also the USA.

  18. Improving yield and water use efficiency of sugarcane under drip irrigation in the Gharb region of Morocco

    Directory of Open Access Journals (Sweden)

    M. AABAD

    2017-03-01

    Full Text Available One of the most limiting factors for agricultural development in Morocco is water scarcity linked to climate change. Since 2008, an important program promoting drip irrigation was undertaken by the state to achieve water saving and productivity. An experiment on sugarcane was conducted in the Gharb region under Mediterranean climate with a silty clay soil during two cropping seasons. The objectives were to assess the sugarcane water requirements, optimize WUE and test the crop response to variable irrigation water supplies under drip irrigation. The experiment was conducted using ‘’CP70-321’’ sugarcane cultivar in an experimental station using a randomized block design with four replications and five water regimes. The results showed a highly significant effect of the water regime on sugar and stems yields and also on height of stems. Water requirements for sugarcane were estimated at 7500 m³.ha-1, but 5000 m³.ha-1 equivalent to 67%ETc, was sufficient to optimize WUE (132 to 157 kg of stems ha-1.mm-1 and 22.2 to 24.2 kg of sugar ha-1.mm-1. This means that drip irrigation on sugarcane could potentially i save about 50% of the irrigation volume, comparatively to sprinkler irrigation, ii almost double the stem yields and iii increase the sugar yields from 8 to 23 tons/ha.

  19. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 1

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Madsen, C.; Elmegaard, Brian

    2014-01-01

    The purpose of the Isolated System Energy Charging (ISEC) is to provide a high-efficient ammonia heat pump system for hot water production. The ISEC concept uses two storage tanks for the water, one discharged and one charged. The charged tank is used for the industrial process while the discharged...... tank, is charging. Charging is done by circulating the water in the tank through the condenser several times and thereby gradually heats the water. This result in a lower condensing temperature than if the water was heated in one step. A dynamic model of the system, implemented in Dymola, is used...... to investigate the performance of the ISEC system. The ISEC concept approaches the efficiency of a number of heat pumps in series and the COP of the system may reach 6.8, which is up to 25 % higher than a conventional heat pump heating water in one step....

  20. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    Science.gov (United States)

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  1. Efficiency of lead removal from drinking water using cationic resin Purolite

    Directory of Open Access Journals (Sweden)

    Ashour Mohammad Merganpour

    2015-01-01

    Full Text Available Background: Today, issues such as water shortage, difficulties and costs related to supplying safe water, and anomalous concentrations of heavy metals in groundwater and surface water resources, doubled the necessity of access to technical methods on removing these pollutants from water resources. Methods: In this lab study, cationic resin Purolite S-930 (with co-polymer styrene di-vinyl benzene structure was used for lead removal from drinking water containing up to 22 μg/L. Using statistical analysis and designing a full factorial experiment are the most important effective parameters on lead removal obtained through ion exchange process. Results: Analysis of response and interaction parameters of ion exchange showed that the resin column height has maximum and pH value has minimum effect on the efficiency of lead removal from aquatic environment. Trinary interaction of “effective size, flow rate, resin column high” has the most important for lead removal efficiency in this system. So the maximum efficiency was obtained at the mesh = 40, bed height =1.6 meter, and pH= 6.5. At the best operation conditions, ability to remove 95.42% of lead concentration can be achieved. Conclusion: Using the resin Purolite S-930 during 21-day service with 91.12% of mean lead removal ratio from drinking water is an economic and technical feasibility.

  2. [Effects of strip planting and fallow rotation on the soil and water loss and water use efficiency of slope farmland].

    Science.gov (United States)

    Hou, Xian-Qing; Li, Rong; Han, Qing-Fang; Jia, Zhi-Kuan; Wang, Wei; Yan, Bo; Yang, Bao-Ping

    2012-08-01

    In order to enhance the soil water-retaining capacity of slope farmland and reduce its soil and water loss, a field study was conducted in 2007-2010 to examine the effects of strip planting and fallow rotation on the soil water regime, soil and water loss characteristics, and water use efficiency of a 10 degrees-15 degrees slope farmland in the arid area of southern Ningxia, Northwest China. Compared with the traditional no-strip planting, strip planting and fallow rotation increased the soil water content in 0-200 cm layer significantly, with an increment of 4.9% -7.0%. Strip planting and fallow rotation pattern could also effectively conserve the soil water in rain season, and obviously improve the soil water regime at crops early growth stages. As compared to no-strip planting, strip planting and fallow rotation increased the soil water content in 0-200 cm layer by 5.4%-8.5%, decreased the surface runoff by 0.7-3.2 m3 x hm(-2), sediment runoff by 0.2-1.9 t x hm(-2), and soil total N loss by 42.1% -73.3%, while improved the crop water use efficiency by 6.1% -24.9% and the precipitation use efficiency by 6.3% -15.3%.

  3. Impacts of multiple global environmental changes on African crop yield and water use efficiency: Implications to food and water security

    Science.gov (United States)

    Pan, S.; Yang, J.; Zhang, J.; Xu, R.; Dangal, S. R. S.; Zhang, B.; Tian, H.

    2016-12-01

    Africa is one of the most vulnerable regions in the world to climate change and climate variability. Much concern has been raised about the impacts of climate and other environmental factors on water resource and food security through the climate-water-food nexus. Understanding the responses of crop yield and water use efficiency to environmental changes is particularly important because Africa is well known for widespread poverty, slow economic growth and agricultural systems particularly sensitive to frequent and persistent droughts. However, the lack of integrated understanding has limited our ability to quantify and predict the potential of Africa's agricultural sustainability and freshwater supply, and to better manage the system for meeting an increasing food demand in a way that is socially and environmentally or ecologically sustainable. By using the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop yield, evapotranspiration (ET) and water use efficiency across entire Africa in the past 35 years (1980-2015) and the rest of the 21st century (2016-2099). Our preliminary results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion (about 50%), elevated atmospheric CO2 concentration, and nitrogen deposition. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop yield in the most vulnerable regions. Our results indicate that N fertilizer could be a major driver to improve food security in Africa. Future climate warming could reduce crop yield and shift cropland distribution. Our study further suggests that improving water use efficiency through land

  4. Eficiência de uso da água em genótipos de cana-de-açúcar submetidos à aplicação de herbicidas Water use efficiency in sugarcane genotypes submitted to herbicide application

    Directory of Open Access Journals (Sweden)

    L Galon

    2010-12-01

    characteristics associated to water use efficiency in sugarcane varieties under field conditions. The trial was installed in a completely randomized block design with split-plots and four replications. Plots were composed by the herbicides ametryn, trifloxysulfuron-sodium or a commercial mixture of ametryn + trifloxysulfuron-sodium, applied 65 days after planting, plus a control mechanically free of weed infestation; split-plots were composed by sugarcane varieties (RB72454, RB835486, RB855113, RB867515, RB947520 and SP80-1816. Fifteen days after herbicide application, stomatal conductance (Gs, temperature gradient between leaf and air (DT and transpiration rate (E were evaluated, and water use efficiency (WUE was obtained as a function of photosynthesis and transpiration rates. Plant shoots were also collected for dry matter determination. Variety RB855113 presented the greatest damage to water use efficiency and transpiration and was thus considered the most sensitive to ametryn and trifloxysulfuron, while varieties SP80-1816 and RB867515 were the most tolerant. In these varieties, herbicides caused only minor changes in water use efficiency and thermal gradient. Stomatal conductance, leaf temperature, transpiration and water use efficiency were effective in identifying herbicide damage to crops, mainly those caused by photosynthesis-inhibiting herbicides; sugarcane genotypes showed a different behavior in relation to herbicide susceptibility and varieties SP80-1816 and RB867515 were the less affected by the herbicide treatments; on the other hand, RB855113 was the most severely affected.

  5. Can diversity in root architecture explain plant water use efficiency? A modeling study.

    Science.gov (United States)

    Tron, Stefania; Bodner, Gernot; Laio, Francesco; Ridolfi, Luca; Leitner, Daniel

    2015-09-24

    Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture model combined with a soil-hydrological model to analyze whether there is a root system ideotype of general adaptation to drought or water uptake efficiency of root systems is a function of specific hydrological conditions. This was done by modeling transpiration of 48 root architectures in 16 drought scenarios with distinct soil textures, rainfall distributions, and initial soil moisture availability. We find that the efficiency in water uptake of root architecture is strictly dependent on the hydrological scenario. Even dense and deep root systems are not superior in water uptake under all hydrological scenarios. Our results demonstrate that mere architectural description is insufficient to find root systems of optimum functionality. We find that in environments with sufficient rainfall before the growing season, root depth represents the key trait for the exploration of stored water, especially in fine soils. Root density, instead, especially near the soil surface, becomes the most relevant trait for exploiting soil moisture when plant water supply is mainly provided by rainfall events during the root system development. We therefore concluded that trait based root breeding has to consider root systems with specific adaptation to the hydrology of the target environment.

  6. Carbon Isotope discrimination in acacia auriculiformis - can it be used to select for higher water-use-efficiency in trees?

    International Nuclear Information System (INIS)

    Montagu, K.D.; Woo, K.C.; Puangchit, L.

    1999-01-01

    Full text: Determining the water-use-efficiency of trees in relation lo wood production is problematic due to the sheer size of the plant and the number of years taken to produce the wood. Indirect measures of water-use-efficiency, such as carbon isotope discrimination (Δ), are therefore attractive to tree breeders wishing to select for increased water-use-efficiency. To begin to evaluate the usefulness of Δ as a selection parameter for the tropical tree Acacia auriculiformis we addressed the following questions: 1. Within the tree canopy, how variable is Δ? 2. Is there any genotypic variation in Δ? and 3. Does water availability affect genotypic variation? To address these questions we sampled foliage from pot trials and field trials of A. auriculiformis ranging in age from 3 months lo 8 years in Australia and Thailand. In 16-18m high 8-year-old trees, canopy variation in Δ was large (P>0.01). Foliage Δ values increased down the tree from 22.0 %o at the top to 24.7 %o at the base. The decrease was rapid in the lop 3 m of the canopy thus considerable care must be taken to sampling foliage from the same position in the canopy. Genotype variations in Δ was observed in seedlings and 2 year-old trees (P>0.01) but not in 8 year-old trees (P=0.60). Where genotypic variation were observed the differences between the lowest and highest values were 2.2 - 3.6 %o. Reduced water availability decreased Δ values in both pot and field studies but not in a consistent way across seedlots. Thus it would appear that the Δ of trees grown under favourable conditions does not give an indication of the Δ value which will be obtained under water-limited conditions. This complicates the use of Δ as a screening method. We have clearly shown that genotype variation occurs in A. auriculiformis in both seedlings and young field-grown trees. Considerable care is required when sampling large trees, as variation in Δ within the tree can be as large as between genotypes. The challenge

  7. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 2

    DEFF Research Database (Denmark)

    Olesen, Martin F.; Madsen, Claus; Olsen, Lars

    2014-01-01

    The Isolated System Energy Charging (ISEC) concept allows for a high efficiency of a heat pump system for hot water production. The ISEC concept consists of two water storage tanks, one charged and one discharged. The charged tank is used for the industrial process, while the discharged tank...... is charging. The charging of the tank is done by recirculating water through the condenser and thereby gradually heating the water. The modelling of the system is described in Part I [1]. In this part, Part II, an experimental test setup of the tank system is reported, the results are presented and further...... modelling of the heat pump and tank system is performed (in continuation of Part I). The modelling is extended to include the system performance with different natural refrigerants and the influence of different types of compressors....

  8. Water use efficiency in potatoes crop using nuclear techniques in Tumbaco - Ecuador

    International Nuclear Information System (INIS)

    Calvache, Marcelo; Ontaneda, Milton; Flor Jorge.

    1986-01-01

    The optimum water layer for potatoes (Solanum tuberosum L.) was computed by the balance of mass method. This project was carried out in a Typic Ustropepts, Silty-Loam Soil at 'La Tola' Experimental Field. Soil humidity was determined through the neutron probe. Irrigation efficiency for the first application layer, - layer 3- (30 days old crop), was 17%. It was increased to 34% at the age of 100 days. Layer 2 was increased to 25% and layer 1 to 20%. By this time the crop was developed. Crop water consumptive usage at layer 3 was 476.4 mm; 355.7 mm in layer 2; 390.5 mm for layer 1 and 269.3 mm in layer 0. Yield production was of the 29. 24.; 18.4 and 15. Kg/ha respectively. It is concluded that the timely application of water to potato crops is very important

  9. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes

    KAUST Repository

    Rahmawati, Karina; Ghaffour, NorEddine; Aubry, Cyril; Amy, Gary L.

    2012-01-01

    Seawater reverse osmosis (SWRO) desalination process provides high quality of fresh water. However, due to some operational constraints mainly scaling control some trace contaminant removal, such as acceptable boron concentration, cannot be achieved in a single pass SWRO system. The objective of this study was to investigate the efficiency of five difference reverse osmosis (RO) membranes (seawater SW and brackish water BW) provided by different manufacturers for boron removal. RO experiments using pretreated real Red Sea water were conducted in parallel to compare membrane performance under the same operating conditions. As expected, results showed that boron rejection increased as the feed pH increased. This was caused by dissociation of boric acid to negatively charged borate ions and more negatively charged membrane surface at elevated pH which enhanced boron rejection. Single pass RO system, with and without elevating the pH, may not be sufficient for two reasons. First, boron concentration in permeate does not fulfill local regulations (<0.5ppm). Second, severe scaling occurs due to operation in alkaline condition, since Ca 2+ and Mg 2+ concentrations are still high to cause salts precipitation. Techno-economical study was performed to select the best configuration and membrane giving the highest performance in terms of boron and TDS rejections and energy consumption. © 2012 Elsevier B.V.

  10. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    Science.gov (United States)

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  11. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes

    KAUST Repository

    Rahmawati, Karina

    2012-12-01

    Seawater reverse osmosis (SWRO) desalination process provides high quality of fresh water. However, due to some operational constraints mainly scaling control some trace contaminant removal, such as acceptable boron concentration, cannot be achieved in a single pass SWRO system. The objective of this study was to investigate the efficiency of five difference reverse osmosis (RO) membranes (seawater SW and brackish water BW) provided by different manufacturers for boron removal. RO experiments using pretreated real Red Sea water were conducted in parallel to compare membrane performance under the same operating conditions. As expected, results showed that boron rejection increased as the feed pH increased. This was caused by dissociation of boric acid to negatively charged borate ions and more negatively charged membrane surface at elevated pH which enhanced boron rejection. Single pass RO system, with and without elevating the pH, may not be sufficient for two reasons. First, boron concentration in permeate does not fulfill local regulations (<0.5ppm). Second, severe scaling occurs due to operation in alkaline condition, since Ca 2+ and Mg 2+ concentrations are still high to cause salts precipitation. Techno-economical study was performed to select the best configuration and membrane giving the highest performance in terms of boron and TDS rejections and energy consumption. © 2012 Elsevier B.V.

  12. Stable carbon isotope composition (δ{sup 13}C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F{sub 1} hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Martin, B.; Thorstenson, Y. R.

    1988-09-01

    Three tomatoes, Lycopersicon esculentum Mill. cv UC82B, a droughttolerant wild related species, Lycopersicon pennellii (Cor.) D'Arcy, and their F{sub 1}, hybrid, were grown in containers maintained at three levels of soil moisture. Season-long water use was obtained by summing over the season daily weight losses of each container corrected for soil evaporation. Plant biomass was determined by harvesting and weighing entire dried plants. Season-long water use efficiency (gram dry weight/kilogram H{sub 2}O) was calculated by dividing the dry biomass by the season-long water use. The season-long water use efficiency was greatest in the wild parent, poorest in the domestic parent, and intermediate (but closer to the wild parent) in the F, hybrid. Instantaneous water-use efficiency (micromole CO{sub 2}/millimole H{sub 2}O) determined by gas exchange measurements on individual leaves was poorly correlated with season-long water use efficiency. However, the relative abundance of stable carbon isotopes of leaf tissue samples was strongly correlated with the season-long water use efficiency. Also, the isotopic composition and the season-long water use efficiency of each genotype alone were strongly negatively correlated with plant dry weight when the dry weight varied as a function of soil moisture. (author)

  13. Stable carbon isotope ratios and intrinsic water-use efficiency of Miocene fossil leaves compared to modern congeners

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J.D.; Zhang, J.; Rember, W.C.; Jennings, D.; Larson, P. (Univ. of Idaho, Moscow, ID (United States))

    1994-06-01

    Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduous species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.

  14. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    OpenAIRE

    mohammad saeed tadaion; Gholamreza Moafpourian

    2017-01-01

    Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L.) cv. Zarde-anar) were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carri...

  15. The effects of plastic film mulching on maize growth and water use in dry and rainy years in Northeast China.

    Science.gov (United States)

    Xu, Jie; Li, Congfeng; Liu, Huitao; Zhou, Peilu; Tao, Zhiqiang; Wang, Pu; Meng, Qingfeng; Zhao, Ming

    2015-01-01

    Plastic film mulching (PM) has been widely used to improve maize (Zea mays L.) yields and water use efficiency (WUE) in Northeast China, but the effects of PM in a changing climate characterized by highly variable precipitation are not well understood. Six site-year field experiments were conducted in the dry and rainy years to investigate the effects of PM on maize growth, grain yield, and WUE in Northeast China. Compared to crops grown without PM treatment (control, CK), PM significantly increased the grain yield by 15-26% in the dry years, but no significant yield increase was observed in the rainy years. Yield increase in the dry years was mainly due to a large increase in dry matter accumulation pre-silking compared to the CK, which resulted from a greater dry matter accumulation rate due to the higher topsoil temperature and water content. As a result, the WUE of the crops that underwent PM (3.27 kg m(-3)) treatment was also increased by around 16% compared to the CK, although the overall evapotranspiration was similar between the two treatments. In the rainy years, due to frequent precipitation and scant sunshine, the topsoil temperature and water content in the field that received PM treatment was improved only at some stages and failed to cause higher dry matter accumulation, except at the 8th leaf stage. Consequently, the grain yield and WUE were not improved by PM in the rainy years. In addition, we found that PM caused leaf senescence at the late growth stage in both dry and rainy years. Therefore, in practice, PM should be applied cautiously, especially when in-season precipitation is taken into account.

  16. Participatory Irrigation Management and Irrigation Water Use Efficiency in Maize Production: Evidence from Zhangye City, Northwestern China

    Directory of Open Access Journals (Sweden)

    Qing Zhou

    2017-10-01

    Full Text Available Water has become increasingly scarce in northwestern China due to climate change, economic growth and burgeoning population. Improving agriculture water use efficiency is of strategic significance in promoting socio-economic water productivity for arid and semi-arid inland river basins. Based on the household-level data collected in Zhangye City, which is located in the middle reaches of Heihe River Basin (HRB in northwestern China, irrigation water use efficiency (IWUE of maize is estimated based on stochastic frontier analysis. The impacts of influential factors, especially the participatory irrigation management (PIM through water user associations (WUAs, on IWUE were further examined. Results show that the estimated average Technical efficiency (TE and IWUE of maize production are 0.74 and 0.24, respectively. The participation level in irrigation management is very low, with only 40% of the respondents participating in WUA meetings. In addition, most have a relatively superficial understanding of the roles and management scheme of WUAs. Empirical results show that though significantly positive, the magnitude of the impact of PIM on IWUE is relatively small. Households that participated in WUA meetings achieved only 0.002% higher IWUEs than those have never participated in. WUAs are not operating with their designed objectives. Consequently, reform of the traditional management form of WUAs to make them more transparent, fair, and extensively participated in among farmers is in urgently need. In addition, we also find that water price, source of irrigation water, irrigation technology adoption and famers’ education level and farming experience also have significant positive impacts on IWUE.

  17. Changes in plant water use efficiency over the recent past reconstructed using palaeo plant records from the boreal forest

    Science.gov (United States)

    Gagen, M.; Finsinger, W.; McCarroll, D.; Wagner, F.

    2009-04-01

    The Boreal forests contains 33% of the earth's forest cover and are located at the latitude where most of the estimated global warming is predicted to occur. Warming as a consequence of rising carbon dioxide will affect evapotranspiration within the biome, with significant consequences given that water vapour is an important greenhouse gas. However, there is also a physiological forcing associated with the effects of rising carbon dioxide on plants. Higher atmospheric carbon dioxide will reduce evapotraspiration because tree stomata tend to close under elevated carbon dioxide. The warming associated with reduced evapotranspiration is known as carbon dioxide physiological forcing and it is not well constrained. Here we suggest that future predictions of evapotranspiration flux within the Boreal forest zone might be more accurately gauged by taking account of palaeo evidence of changing plant water use efficiency and stomatal density in the two most important Boreal plant species: Pinus sylvestris and Betula nana. Stable carbon isotope ratios in tree ring cellulose and stomatal density measurements, from preserved leaves falling on the forest floor, hold a record of the plant physiological changes associated with adjustment to rising carbon dioxide. We present evidence that, rather than plants simply closing their stomatal apertures under recent elevated carbon dioxide, over the last 150 years reduced evapotranspiration in the northern Boreal forest has been associated with a powerful plastic response including reductions in stomatal conductance via changes in stomatal density and pore length. Furthermore we present evidence that trees may be reaching the limits of their ability to respond plastically to rising carbon dioxide by increasing their water use efficiency.

  18. Interaction effects of water salinity and hydroponic growth medium on eggplant yield, water-use efficiency, and evapotranspiration

    Directory of Open Access Journals (Sweden)

    Farnoosh Mahjoor

    2016-06-01

    Full Text Available Eggplant (Solanum melongena L. is a plant native to tropical regions of Southeast Asia. The water crisis and drought on the one hand and eggplant greenhouse crop development as one of the most popular fruit vegetables for people on the other hand, led to the need for more research on the use of saline water and water stress to optimize salinity level and their impact on eggplant evapotranspiration and encounter better yield and crop quality. The objective of the present study was to investigate the interactions of water salinity and hydroponic growth medium on qualitative and quantitative properties of eggplant and its water-use efficiency. The study used the factorial experiment based on completely randomized design with three replications of four levels of water salinity (electrical conductivity of 0.8 (control, 2.5, 5, and 7 dS m−1 and three growth media (cocopeat, perlite, and a 50–50 mixture of the two by volume. Total yield, yield components, evapotranspiration, and water-use efficiency were determined during two growing periods, one each in 2012 and 2013. All of these indices decreased significantly as water salinity increased. Water with of 0.8 dS m−1 produced an average eggplant yield of 2510 g per plant in 2012 and 2600 g in 2013. The highest yield was observed in cocopeat. Water with 7 dS m−1 reduced yield to 906 g per plant in 2012 and to 960 g in 2013. Lowest yield was observed in perlite. The highest evapotranspiration values occurred in cocopeat at the lowest salinity in both years. Cocopeat and the cocopeat–perlite mixture were equally good substrates. The mixture significantly improved the quantitative and qualitative properties of eggplant yield.

  19. Effect of drip irrigation on yield, evapotranspiration and water use efficiency of sweet basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2017-01-01

    Full Text Available The experiments showing the effect of drip irrigation on yield, evapotranspiration and water productivity of sweet basil (Ocimum basilicum L. were conducted at the experimental field of the Alternative Crops Department, Institute of Field and Vegetable Crops, Novi Sad. Irrigation was scheduled on the basis of the water balance method. Daily evapotranspiration (ETd was computed from the reference evapotranspiration (ETo and crop coefficient (kc in May, June, July and August of 0.5, 0.6, 1.1 and 1.0, respectively. ETo was calculated using Hargreaves equation. The irrigation depth was restricted to the soil depth of 0.3 m. In other words, irrigation started when readily available water in the soil layer of 0.3 m was completely depleted by plants. The irrigation rate was 30 mm (30 l m-2 while the amount of water added by irrigation during the season was 140 mm. Basil sensitivity to water stress was determined using a yield response factor (Ky. According to the results, the yield of fresh herb of basil under irrigation (32.015 t ha-1 was higher by 9% compared to non-irrigated, control variant (29.364 t ha-1. Worthy of note, basil essential oil yield was significantly affected by irrigation (35.329/28.766 kg ha-1. The content of essential oil was significantly higher in irrigated (6.45 g kg-1 than in non-irrigated variant (5.33 g kg-1 in the first harvest, while no significant difference between irrigated and non-irrigated variants was obtained in the second harvest (6.83 and 6.62 g kg-1 , respectively. Water used on evapotranspiration in irrigation conditions (ETm was 431 mm and 270 mm in non-irrigated, control variant (ETa. The values of irrigation water use efficiency (Iwue and evapotranspiration water use efficiency (ETwue were 1.89 kg m-3 and 1.65 kg m-3 respectively. Ky value (0.22 exhibits all essential characteristics of climate conditions of 2016 rainy year. These preliminary results could be used as a good platform for basil growers in the

  20. Transpiration and water use efficiency in native chilean and exotic species, a usefull tool for catchment management?

    Science.gov (United States)

    Hervé-Fernández, P.; Oyarzun, C. E.

    2012-04-01

    Land-use and forest cover change play important roles in socio-economic processes and have been linked with water supply and other ecosystem services in various regions of the world. Water yield from watersheds is a major ecosystem service for human activities but has been altered by landscape management superimposed on climatic variability and change. Sustaining ecosystem services important to humans, while providing a dependable water supply for agriculture and urban needs is a major challenge faced by managers of human-dominated or increased antropical effect over watersheds. Since water is mostly consumed by vegetation (i.e: transpiration), which strongly depends on trees physiological characteristics (i.e: foliar area, transpiration capacity) are very important. The quantity of water consumed by plantations is influenced mainly by forest characteristics (species physiology, age and management), catchment water retention capacity and meteorological characteristics. Eventhough in Chile, the forest sector accounts for 3.6% of the gross domestic product (GDP) and 12.5% of total exports (INFOR, 2003), afforestation with fast growing exotic species has ended up being socially and politically questionable because of the supposed impact on the environment and water resources. We present data of trees transpiration and water use efficiency from three headwater catchments: (a) second growth native evergreen forest (Aetoxicon punctatum, Drimys winterii, Gevuina avellana, Laureliopsis philippiana); (b) Eucalyptus globulus plantation, and (c) a mixed native deciduous (Nothofagus obliqua and some evergreen species) forest and Eucalyptus globulus and Acacia melanoxylon plantation located at the Coastal Mountain Range in southern Chile (40°S). Annual transpiration rates ranged from 1.24 ± 0.41 mol•m-2•s-1 (0.022 ± 0.009 L•m-2•s-1) for E. globulus, while the lowest observed was for L. philippiana 0.44 ± 0.31 mol•m-2•s-1 (0.008 ± 0.006 L•m-2•s-1). However

  1. Response of Cotton to Irrigation Methods and Nitrogen Fertilization: Yield Components, Water-Use Efficiency, Nitrogen Uptake, and Recovery

    International Nuclear Information System (INIS)

    Janat, M.

    2009-01-01

    Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Cotton yield parameters, fiber quality, water- and N-use efficiency responses to N, and irrigation methods in northern Syria were evaluated. Field trials were conducted for two growing seasons on a Chromoxerertic Rhodoxeralf soil. Treatments consisted of drip fertigation, furrow irrigation, and five different rates of N fertilizer (50, 100, 150, 200, and 250 kg N /ha). Cotton was irrigated when soil moisture in the specified active root depth was 80% of the field capacity as indicated by the neutron probe. Seed cotton yield was higher than the national average (3,928 kg/ha) by at least 12% as compared to all treatments. Lint properties were not negatively affected by the irrigation method or N rates. Water savings under drip fertigation ranged between 25 and 50% of irrigation water relative to furrow irrigation. Crop water-use efficiencies of the drip-fertigated treatments were in most cases 100% higher than those of the corresponding furrow-irrigated treatments. The highest water demand was during the fruit-setting growth stage. It was also concluded that under drip fertigation, 100 -150 N kg/ha was adequate and comparable with the highest N rates tested under furrow irrigation regarding lint yield, N uptake, and recovery. Based on cotton seed yield and weight of stems, the overall amount of N removed from the field for the drip-fertigated treatments ranged between 101-118 kg and 116-188 N/ha for 2001 and 2002, respectively. The N removal ranged between 94-113 and 111-144 kg N/ha for the furrow-irrigated treatments for 2001 and 2002, respectively. (author)

  2. Variations of wood delta 13C and water-use efficiency of Abies alba during the last century

    International Nuclear Information System (INIS)

    Bert, D.; Leavitt, S.W.; Dupouey, J.L.

    1997-01-01

    Variations of intrinsic water-use efficiency during the last century were investigated based on analysis of δ 13 C in tree rings of Abies alba from the Jura Mountains (eastern France). To separate the effects related to the age of the tree at the time the tree ring was formed from effects due to environmental changes, analyzed wood samples were extracted from a very large sample set including different tree ages and calendar dates of wood formation. For the first 75 yr of the life of Abies alba, δ 13 of wood holocellulose increases with the age of the tree from -24.4%o at age 15 to approximately -22.5%o at age 75. Between the ages of 75 and 150 values remain constant at -22.5%. Consequently, the effect of the tree age on isotopic discrimination has to be taken into account in studies on the long-term environmental effects on δ 13 in tree rings. Divergent trends of δ 13 during the last century were observed between tree rings formed at age 40 and bulk air data. The isotopic discrimination Δ varied insignificantly around a mean of 17.3%o between the 1860s and the 1930s. It then decreased to 15.8%o from the 1930s to the 1980s. Using these results and classical models of carbon discrimination, we calculated that the intrinsic water-use efficiency (A/g w , the ratio of CO 2 assimilation rate to stomatal conductance for water vapor), integrated over the year, has increased by 30% between the 1930s and the 1980s. These results, obtained at the level of mature trees, are consistent with the physiological effects of increasing CO 2 concentrations as observed in controlled experiments on young seedlings. They are consistent with the strong increases in radial growth observed for Abies alba in western Europe over the past decades. However, other long-term environmental changes such as increasing nitrogen deposition could cause similar effects. (author)

  3. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    Science.gov (United States)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable

  4. Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy).

    Science.gov (United States)

    Battipaglia, Giovanna; DE Micco, Veronica; Brand, Willi A; Saurer, Matthias; Aronne, Giovanna; Linke, Petra; Cherubini, Paolo

    2014-02-01

    Erica arborea (L) is a widespread Mediterranean species, able to cope with water stress and colonize semiarid environments. The eco-physiological plasticity of this species was evaluated by studying plants growing at two sites with different soil moistures on the island of Elba (Italy), through dendrochronological, wood-anatomical analyses and stable isotopes measurements. Intra-annual density fluctuations (IADFs) were abundant in tree rings, and were identified as the key parameter to understand site-specific plant responses to water stress. Our findings showed that the formation of IADFs is mainly related to the high temperature, precipitation patterns and probably to soil water availability, which differs at the selected study sites. The recorded increase in the (13) C-derived intrinsic water use efficiency at the IADFs level was linked to reduced water loss rather than to increasing C assimilation. The variation in vessel size and the different absolute values of δ(18) O among trees growing at the two study sites underlined possible differences in stomatal control of water loss and possible differences in sources of water uptake. This approach not only helped monitor seasonal environmental differences through tree-ring width, but also added valuable information on E. arborea responses to drought and their ecological implications for Mediterranean vegetation dynamics. © 2013 John Wiley & Sons Ltd.

  5. Effect of water stress on growth, yield and water use efficiency of berseem (Trifolium alexandrium in Tadla

    Directory of Open Access Journals (Sweden)

    B. Bouazzama

    2018-01-01

    Full Text Available The study of crop response to water deficit is important in areas where water resources are limited. This study was carried out over the period 2008-2011 in order to study the effect of water deficit on the productivity of berseem in the Tadla region. Four water regimes (100%, 80%, 60% and 40% ETc were compared under both flood and drip irrigation techniques. Observations were made on the soil, biomass at each cut and root system. The results showed that the average annual maximum yield obtained was 16.2 t/ha. Reductions in yields by applying 60% of water inputs are 40% and 42% in 2009/10 and 2010/11, respectively. The contribution of cycles without irrigation to annual biomass yield varies from 35% under 100% ETc to 52% under 40% ETc. Water use efficiency of berseem over the over the entire crop period is 3.37 kg/m3. The maximum average yield obtained under drip irrigation was 15.7 t/ha. It was obtained with a water supply of 411 mm which allowed a saving of 57% of water supply versus flood irrigation technique.

  6. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.

    Science.gov (United States)

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2017-04-01

    Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.

    Science.gov (United States)

    Gross, Martin; Mascarenhas, Vernon; Wen, Zhiyou

    2015-10-01

    A Revolving Algal Biofilm (RAB) growth system in which algal cells are attached to a flexible material rotating between liquid and gas phases has been developed. In this work, different configurations of RAB systems were developed at pilot-scale by retrofitting the attachment materials to a raceway pond (2000-L with 8.5 m(2) footprint area) and a trough reservoir (150 L with 3.5 m(2) footprint area). The algal growth performance and chemical composition, as well as the water evaporative loss and specific water consumption were evaluated over a period of nine months in a greenhouse environment near Boone, Iowa USA. Additionally a raceway pond was run in parallel, which served as a control. On average the raceway-based RAB and the trough-based RAB outperformed the control pond by 309% and 697%, respectively. A maximum productivity of 46.8 g m(-2) day(-1) was achieved on the trough-based RAB system. The evaporative water loss of the RAB system was modeled based on an energy balance analysis and was experimentally validated. While the RAB system, particularly the trough-based RAB, had higher water evaporative loss, the specific water consumption per unit of biomass produced was only 26% (raceway-based RAB) and 7% (trough-based RAB) of that of the control pond. Collectively, this research shows that the RAB system is an efficient algal culture system and has great potential to commercially produce microalgae with high productivity and efficient water use. © 2015 Wiley Periodicals, Inc.

  8. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    Full Text Available Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv. Crop geometry and management emulated field conditions. In two wet (WS and two dry (DS seasons, final aboveground dry weight (agdw was measured. At 390 ppmv [CO2] (current ambient level, agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE, increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv, 719 mm (390 ppmv, 928 mm (780 ppmv and 803 mm (1560 ppmv. With increasing [CO2], crop water use efficiency (WUE gradually increased from 1.59 g kg-1 (195 ppmv to 2.88 g kg-1 (1560 ppmv. Transpiration efficiency (TE measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  9. A comparison of productive and non-productive green water-use efficiency of Podocarpus henkelii and Pinus patula in the KwaZulu-Natal Midlands

    CSIR Research Space (South Africa)

    Bulcock, HH

    2014-04-01

    Full Text Available water resources management and planning perspective it is important to consider the total green WUE, but also to have a good understanding of the relative contributions of each component of the green water fluxes so that water abstracted from the soil...

  10. Alfalfa Water Use and Yield under Different Sprinkler Irrigation Regimes in North Arid Regions of China

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-08-01

    Full Text Available Alfalfa (Medicago sativa is one of the major crops grown in Northern China in recent years, however, the current serious water shortage conditions present a challenge to the growth of this crop, especially if efficient use of water is considered in forage production for sustainability. This study aimed to evaluate alfalfa productivity and water use efficiency (WUE under different sprinkler irrigation levels. This experiment was conducted at Shiyanghe Experimental Station for Water-Saving in Agriculture and Ecology of China Agricultural University in Wuwei, Gansu, China, over a period of two years. There were three irrigation treatments: A1: 100% measured evapotranspiration (ETc of alfalfa; A2: irrigation amount was 66% of A1; A3: irrigation amount was 33% of A1; and a control of A4: no irrigation during the growing season. A randomized block design with three replications were applied. The results showed that the ETc and forage yield of alfalfa decreased, while WUE and crude protein (CP increased with the decreasing irrigation amounts. The seasonal average ETc and yield ranged from 412 mm to 809 mm and from 11,577 to 18,636 kg/ha, respectively, under different irrigation levels. The highest yields were obtained from the first growth period in all treatments in both years, due to the winter irrigation and the longest growth period. Alfalfa grown under lesser irrigation treatment conditions had higher variability in ETc and yield, mainly due to the variability in the amount of rainfall during the growth period. The seasonal average WUE of treatments ranged from 22.78 to 26.84 kg/(mm·ha, and the highest WUE was obtained at the first growth period, regardless of treatments. Seasonal average CP content ranged from 18.99% to 22.99%. A significant linear relationship was found between yield and ETc or irrigation amount, and the fitting results varied between growth periods and years. The present results also implied that winter irrigation provided the

  11. Assessing the performance of surface and subsurface drip systems on irrigation water use efficiency of citrus orchards in Spain

    Science.gov (United States)

    Amparo Martinez-Gimeno, Maria; Provenzano, Giuseppe; Bonet, Luis; Intrigliolo, Diego S.; Badal, Eduardo; Ballestrer, Carlos

    2017-04-01

    In Mediterranean countries, water scarcity represents a real environmental concern at present and, according to the current climate change models predictions, the problem will be amplified in the future. In order to deal with this issue, application of strategies aimed to optimize the water resources in agriculture and to increase water use efficiency have become essential. On the one hand, it is important the election of the appropriate irrigation system for each particular case. On the other hand, identify the best management options for that specific irrigation system is crucial to optimize the available water resources without affecting yield. When using water saving strategies, however, it is a must to monitor the soil and/or crop water status in order to know the level of stress reached by the plants and to avoid levels that could lead to detrimental effects on yield. Stem water potential, ψstem, expressing the instantaneous condition of crop water stress, is considered a robust indicator of crop water status. The main objective of this study was to assess the performance of a surface (DI) and subsurface (SDI) drip irrigation system in a citrus orchard with 7 (DI7, SDI7) or 14 emitters (DI14, SDI14) per plant, in terms of irrigation water use efficiency (IWUE) and possible amount of water saving. The experiment was carried out in 2014 and 2015 in Alberique, Spain, (39˚ 7'31" N, 0˚ 33'17" W), in a commercial orchard (Citrus clementina, Hort. ex Tan. 'Arrufatina') in which four different treatments with three replications (12 sub-plots) were prepared according to a complete randomized block design. Irrigation doses and timing were scheduled based on the estimated maximum crop evapotranspiration corrected according to measurements of ψstem and soil water content, and weather forecasts. In order to limit the maximum crop water stress, the thresholds of ψstem were assumed in the range between -0.8 and -1.0 MPa from January to June and between -1.0 and -1

  12. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis.

    Science.gov (United States)

    Dietzel, Ranae; Liebman, Matt; Ewing, Robert; Helmers, Matt; Horton, Robert; Jarchow, Meghann; Archontoulis, Sotirios

    2016-02-01

    Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and

  13. Identification of durum wheat genotypes with efficiency on the uptake and Use of water using Carbon-13 discrimination and neutron moisture meter

    International Nuclear Information System (INIS)

    Mechergui, M.; Daaloul, A.; Snane, M.H.

    1995-01-01

    Carbon-13 isotope discrimination method and water balance model Using neutron probe are the two tools used in this study to genotypes for water use efficiency. It is a three years experiment and the results presented will be for the last year. Four durum wheat Cvs were selected and planted in a randomnized block design with 6 replicates. Total consumption of water was calculated. Grain and strow yields and other parameters were recorded. The carbon isotope ratio which illustrates carbon 13 dicrimination is measured for each genotype in grain and strow. The total and the grain water use efficiency were calculated and correlated to the G C-13 isotope dicrimination to compare genotypes between them. The main results presented in this paper revealed that. Carbon-13 discrimination technique is an excellent screening technique for screening for water use in cultivars in semi-arid conditions. 2 fig., 3 tabs

  14. Identification of durum wheat genotypes with efficiency on the uptake and Use of water using Carbon-13 discrimination and neutron moisture meter

    Energy Technology Data Exchange (ETDEWEB)

    Mechergui, M; Daaloul, A [Institut National Agronomique de Tunisie, 43, Avenue Charles Nicolle - 1082 Tunis Mahrajene - (Tunisia); Snane, M H [Institut National Agronomique de (Tunisia)

    1995-10-01

    Carbon-13 isotope discrimination method and water balance model Using neutron probe are the two tools used in this study to genotypes for water use efficiency. It is a three years experiment and the results presented will be for the last year. Four durum wheat Cvs were selected and planted in a randomnized block design with 6 replicates. Total consumption of water was calculated. Grain and strow yields and other parameters were recorded. The carbon isotope ratio which illustrates carbon 13 dicrimination is measured for each genotype in grain and strow. The total and the grain water use efficiency were calculated and correlated to the G C-13 isotope dicrimination to compare genotypes between them. The main results presented in this paper revealed that. Carbon-13 discrimination technique is an excellent screening technique for screening for water use in cultivars in semi-arid conditions. 2 fig., 3 tabs.

  15. Chromosomal Location of Traits Associated with Wheat Seedling Water and Phosphorus Use Efficiency under Different Water and Phosphorus Stresses

    Directory of Open Access Journals (Sweden)

    Wei-Yi Song

    2009-09-01

    Full Text Available The objective of this study was to locate chromosomes for improving water and phosphorus-deficiency tolerance of wheat at the seedling stage. A set of Chinese Spring- Egyptian Red wheat substitution lines and their parent Chinese Spring (recipient and Egyptian Red (donor cultivars were measured to determine the chromosomal locations of genes controlling water use efficiency (WUE and phosphorus use efficiency (PUE under different water and phosphorus conditions. The results underlined that chromosomes 1A, 7A, 7B, and 3A showed higher leaf water use efficiency (WUEl = Pn/Tr; Pn = photosynthetic rate; Tr = transpiration rate under W-P (Hoagland solution with1/2P, -W-P (Hoagland solution with 1/2P and 10% PEG. Chromosomes 7A, 3D, 2B, 3B, and 4B may carry genes for positive effects on individual plant water use efficiency (WUEp = biomass/TWC; TWC = total water consumption under WP (Hoagland solution, W-P and -W-P treatment. Chromosomes 7A and 7D carry genes for PUE enhancement under WP, -WP (Hoagland solution with 10% PEG and W-P treatment. Chromosome 7A possibly has genes for controlling WUE and PUE simultaneously, which indicates that WUE and PUE may share the same genetic background. Phenotypic and genetic analysis of the investigated traits showed that photosynthetic rate (Pn and transpiration rate (Tr, Tr and WUEl showed significant positive and negative correlations under WP, W-P, -WP and -W-P, W-P, -WP treatments, respectively. Dry mass (DM, WUEP, PUT (phosphorus uptake all showed significant positive correlation under WP, W-P and -WP treatment. PUE and phosphorus uptake (PUT = P uptake per plant showed significant negative correlation under the four treatments. The results might provide useful information for improving WUE and PUE in wheat genetics.

  16. Breeding for Increased Water Use Efficiency in Corn (Maize) Using a Low-altitude Unmanned Aircraft System

    Science.gov (United States)

    Shi, Y.; Veeranampalayam-Sivakumar, A. N.; Li, J.; Ge, Y.; Schnable, J. C.; Rodriguez, O.; Liang, Z.; Miao, C.

    2017-12-01

    Low-altitude aerial imagery collected by unmanned aircraft systems (UAS) at centimeter-level spatial resolution provides great potential to collect high throughput plant phenotyping (HTP) data and accelerate plant breeding. This study is focused on UAS-based HTP for breeding increased water use efficiency in corn in eastern Nebraska. The field trail is part of an effort by the Genomes to Fields consortium effort to grow and phenotype many of the same corn (maize) hybrids at approximately 40 locations across the United States and Canada in order to stimulate new research in crop modeling, the development of new plant phenotyping technologies and the identification of genetic loci that control the adaptation of specific corn (maize) lines to specific environments. It included approximately 250 maize hybrids primary generated using recently off patent material from major seed companies. These lines are the closest material to what farmers are growing today which can be legally used for research purposes and genotyped by the public sector. During the growing season, a hexacopter equipped with a multispectral and a RGB cameras was flown and used to image this 1-hectare field trial near Mead, NE. Sensor data from the UAS were correlated directly with grain yield, measured at the end of the growing season, and were also be used to quantify other traits of interest to breeders including flowering date, plant height, leaf orientation, canopy spectral, and stand count. The existing challenges of field data acquisition (to ensure data quality) and development of effective image processing algorithms (such as detecting corn tassels) will be discussed. The success of this study and others like it will speed up the process of phenotypic data collection, and provide more accurate and detailed trait data for plant biologists, plant breeders, and other agricultural scientists. Employing advanced UAS-based machine vision technologies in agricultural applications have the potential

  17. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    Science.gov (United States)

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2018-03-15

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  18. Variation of inulin content, inulin yield and water use efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes

    Science.gov (United States)

    The information on genotypic variation for inulin content, inulin yield and water use efficiency of inulin yield (WUEi) in response to drought is limited. This study was to investigate the genetic variability in inulin content, inulin yield and WUEi of Jerusalem artichoke (Helianthus tuberosus L.) ...

  19. Effect of near-infrared-radiation reflective screen materials on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop

    NARCIS (Netherlands)

    Stanghellini, C.; Jianfeng, D.; Kempkes, F.L.K.

    2011-01-01

    The effect of Near Infrared (NIR)-reflective screen material on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop was investigated in an experiment whereby identical climate was ensured in greenhouse compartments installed with either NIR-reflective or

  20. Effects inoculation of mycorhizae species and irrigation levels impacts on growth criteria, yield and water use efficiency of corb (Zea mays L.

    Directory of Open Access Journals (Sweden)

    M.R. Amerian

    2016-05-01

    Full Text Available Water deficiency is one of the most important factors for limiting crop yield in arid and semiarid regions. Symbiosis with a variety of microorganisms in these regions is one of the modern ecological approaches for sustainable agriculture to reduce damages caused by environmental stresses. Symbiotic of arbuscular mycorrhizal fungi (AM with the roots of crops has shown positive effects on agricultural systems. In order to study the effects of inoculation with two species of mycorrhizal fungi and irrigation levels on root growth criteria and water use efficiency of corn, an experiment was performed as split plots based on a complete randomized block design with three replications at the Agricultural Research Station, Ferdowsi University of Mashhad during growing season of 2008-2009. Treatments included two mycorhizae inoculation (Glomus mosseae and G. intraradices and control and four irrigation levels (25, 50, 75 and 100% of water requirement. Grain yield, root specific length, the percentage of root colonization and water use efficiency based on grain yield of corn were measured. The results showed that the effect of mycorrhizae inoculation was significant on (p≤0.05 root specific length, grain yield and water use efficiency of corn. Mycorrhizae species had no significant effect on root colonization percentage of corn. Different irrigation levels had significant effect on grain yield, special length root, the percentage of root colonization, and water use efficiency of corn (p≤0.05. Generally, the results showed that mycorrhizae inoculation in water deficiency conditions, can increase the uptake of water and nutrients by developing the root and increasing the absorbing surface. In this way, not only the plant tolerance against the water deficiency increases, but also more yield will be produced for a specific value of water, which means the water use efficiency increases. Furthermore, the use of water will be decreased.

  1. Hydrologic, abiotic and biotic interactions: plant density, windspeed, leaf size and groundwater all affect oak water use efficiency

    Science.gov (United States)

    Darin J. Law; Deborah M. Finch

    2011-01-01

    Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...

  2. Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions

    DEFF Research Database (Denmark)

    Topbjerg, Henrik Bak; Kaminski, Kacper Piotr; Markussen, Bo

    2014-01-01

    ) within a dihaploid potato (Solanum tuberosum L.) mapping population under well-watered (WW) and drought-stress (DS) conditions. The factorial dependency of WUEi on several plant bio-physiological traits was analyzed, and clonal difference of WUEi was compared. Significant differences in WUEi were found......Optimizing crops water use is essential for ensuring food production under future climate scenarios. Therefore, new cultivars that are capable of maintaining production under limited water resource are needed. This study screened for clonal differences in intrinsic water use efficiency (WUEi...

  3. Improving Agricultural Water Use Efficiency: A Quantitative Study of Zhangye City Using the Static CGE Model with a CES Water−Land Resources Account

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2017-02-01

    Full Text Available Water resources play a vital role in human life and agriculture irrigation, especially for agriculture-dominant developing countries and regions. Improving agricultural water use efficiency has consequently become a key strategic choice. This study, based on Zhangye City’s economic characteristics and data, applies a static Computable General Equilibrium (CGE model with a constant elasticity of substitution (CES composited water−land resources account to assess the impact of improving agricultural water use efficiency on economy, water conservation and land reallocation. Results reveal that: Zhangye City’s GDP increases by 0.10% owing to an increasing average technical level by improving agricultural water use efficiency; total water consumption decreases by 122 million m3, 69% of which comes from a reduction of surface water use; and land demand increases by 257.43 hectares mainly due to agricultural land demands. With respect to the sectors’ output, export-oriented sectors with higher water intensities in the agricultural sectors benefit most. In contrast, land-intensive sectors contract the most, as the rental price of land rises. Therefore, agricultural water conservation technology should be introduced considering more in surface water. Furthermore, higher demand for agricultural land would reduce land availability for other sectors, thus inhibiting urbanization pace on a small scale.

  4. Community level offset of rain use- and transpiration efficiency for a heavily grazed ecosystem in inner Mongolia grassland.

    Science.gov (United States)

    Gao, Ying Z; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X; Yang, Hai J

    2013-01-01

    Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and "real" WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems.

  5. Effect of Water Quality and Drip Irrigation Management on Yield and Water Use Efficiency in Late Summer Melon

    OpenAIRE

    javad baghani; A. Alizadeh; H. Ansari; M. Azizi

    2016-01-01

    Introduction: Production and growth of plants in many parts of the world due to degradation and water scarcity have been limited and particularly, in recent decades, agriculture is faced with stress. In the most parts of Iran, especially in the Khorasan Razavi province, drought is a fact and water is very important. Due to melon cultivation in this province, and the conditions of quality and quantity of water resources and water used to produce the melon product in this province, any researc...

  6. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2

    Science.gov (United States)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.

  7. Water and radiation use efficiencies of transplanted rice (Oryza sativa L.) at different plant densities and irrigation regimes under semi-arid environment

    International Nuclear Information System (INIS)

    Ahmad, S.; Ali, H.; Shad, S.A.; Zia-ul-Haq, M.; Ahmad, A.; Maqsood, M.; Khan, M.B.; Mehmood, S.; Hussain, A.

    2008-01-01

    Growth and yield of rice (Oryza sativa L.), in response to plant densities and irrigation (optimum to stress) were analyzed in terms of interception and utilization of photo-synthetically active radiation (PAR) and water use efficiency (WUE). The amount of PAR intercepted and cumulative evapotranspiration (ET) by each treatment was estimated from the measured leaf area index. The relationships between total dry matter grain yield and accumulated intercepted PAR and cumulative ET were linear. Yield differences among the treatments were attributed to the amount of PAR intercepted and water transpired their efficiencies of utilization or both. The fraction of intercepted radiation and WUE was significantly affected by the plant densities and various irrigation regimes, while, radiation utilization efficiency (RUE) and water use efficiency (WUE) for TDM varied from 1.15 g MJ-1 to 1.36 g MJ-1 and 22.6 kg per ha mm-1 to 24.3 kg per ha mm-1 during both the seasons

  8. Comparison of the biophysical and economic water-use efficiencies of indigenous and introduced forests in South Africa

    CSIR Research Space (South Africa)

    Wise RM

    2011-06-01

    Full Text Available and introduced 21 d Managemen canopy, and ET estimates extrapolated to a 12-month period corre- sponding to the period of sap flow measurements. Geldenhuys and von dem Bussche (1997) reported on growth data recorded at the study site during October 1993 (11... and introduced 21 Volum (m 21. 34. 41. 24. d Managemen Table 3 The biomass accumulation and yields and the water-use rates of 18 tree-production system Tree species Plantation Water evapotranspiration (m3 ha�1 yr�1) Eucalyptus speciesa M1...

  9. Validation of AquaCrop Model for Simulation of Winter Wheat Yield and Water Use Efficiency under Simultaneous Salinity and Water Stress

    OpenAIRE

    M. Mohammadi; B. Ghahraman; K. Davary; H. Ansari; A. Shahidi

    2016-01-01

    Introduction: FAO AquaCrop model (Raes et al., 2009a; Steduto et al., 2009) is a user-friendly and practitioner oriented type of model, because it maintains an optimal balance between accuracy, robustness, and simplicity; and it requires a relatively small number of model input parameters. The FAO AquaCrop model predicts crop productivity, water requirement, and water use efficiency under water-limiting and saline water conditions. This model has been tested and validated for different crops ...

  10. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize ( Zea mays l.) in subtropical northeastern Himalayas

    Science.gov (United States)

    Marwein, M. A.; Choudhury, B. U.; Chakraborty, D.; Kumar, M.; Das, A.; Rajkhowa, D. J.

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ETc) of maize crop under controlled condition (pot experiment) of water deficit (W25-25 % and W50-50 % of field capacity soil moistures) and well watered (W100 = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ETc losses and water use efficiency was also studied. The measured seasonal ETc loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant ( p < 0.05) reduction (by 33-50 %) of seasonal ETc losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha-1 significantly ( p < 0.05) increased ETc losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W25) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W100) while seasonal ETc loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ETc losses while weekly crop ETc loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ETc losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg-1 water and 4.21 to 8.56 g dry matter kg-1, respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ETc loss, growth duration, grain formation, and water use efficiency of maize.

  11. Effect of Salinity Stress and Foliar Application of Methyl Jasmonate on Photosynthetic Rate, Stomatal Conductance, Water Use Efficiency and Yield of German Chamomile

    Directory of Open Access Journals (Sweden)

    fatemeh Salimi

    2014-09-01

    Full Text Available Jasmonate is new plant growth regulator that plays an essential role at increasing plants resistance to the environmental stresses like salinity stress. Hence, in this research the effect of foliar application of methyl jasmonate on some physiological indices and yield of German chamomile under salinity conditions was studied. A factorial experiment was laid out based on randomized complete block design (RCBD with three replications in the greenhouse condition. Foliar application of methyl jasmonate was five levels (MJ1; 0, MJ2; 75, MJ3; 150, MJ4; 225 and MJ5; 300 μM and salinity stress was four levels (S1; 2, S2; 6, S3; 10, S4; 14 dS m-1. The effect of methyl jasmonate, salinity condition treatments and their interaction was significant for traits of photosynthesis rate, stomata conductance, transpiration rate, carboxylation efficiency, intercellular CO2 concentration and yield of flower. The highest values of photosynthetic rate, stomata conductance, transpiration rate, carboxylation efficiency and yield of flower (3.76 g pot-1 and the lowest intercellular CO2 concentration were achieved at MJ×S treatment. Maximum value of photosynthetic water use efficiency was revealed at MJ5×S2 treatment. With decreasing stomata conductance, photosynthetic water use efficiency and intercellular CO2 concentration were increased. In general, it seems that application of methyl jasmonate by lower dose (MJ2 under salinity conditions especially mild salinity stress (S2 can improve physiological indices and yield of chamomile.

  12. WATER CONSUMPTION AND WATER USE EFFICIENCY OF CASTOR BEAN PARAGUAÇÚ CULTIVAR SUBMITTED TO NITROGEN FERTILIZATION

    OpenAIRE

    Lucia Helena Garófalo Chaves; Hans Raj Ghey; Susane Ribeiro

    2011-01-01

    Although the productivity of castor bean reduces under water deficit it is considered resistant to low precipitation conditions, thus constituting an alternative form of income for the semi-arid. The scarce information about the effect of nitrogen fertilization on water consumption and efficiency of use motivated this study. The study was conducted in a greenhouse located at the Federal University of Campina Grande – Campus I, with plants arranged in a factorial design with three replications...

  13. RESPONSE OF CHILE PEPPER (Capsicum annuum L. TO SALT STRESS AND ORGANIC AND INORGANIC NITROGEN SOURCES: II. NITROGEN AND WATER USE EFFICIENCIES, AND SALT TOLERANCE

    Directory of Open Access Journals (Sweden)

    Marco Antonio Huez Lopez

    2011-07-01

    Full Text Available The response to two nitrogen sources on water and nitrogen use efficiencies, and tolerance of salt-stressed chile pepper plants (Capsicum annuum L. cv. Sandia was investigated in a greenhouse experiment. Low, moderate and high (1.5, 4.5, and 6.5 dS m-1 salinity levels, and two rates of organic-N fertilizer (120 and 200 kg ha-1 and 120 kg ha-1 of inorganic fertilizer as ammonium nitrate were arranged in randomized complete block designs replicated four times. The liquid organic-N source was an organic, extracted with water from grass clippings. Water use decreased about 19 and 30% in moderate and high salt-stressed plants. Water use efficiency decreased only in high salt-stressed plants. Nitrogen use efficiency decreased either by increased salinity or increased N rates. An apparent increase in salt tolerance was noted when plants were fertilized with organic-N source compared to that of inorganic-N source.

  14. High water-use efficiency and growth contribute to success of non-native Erodium cicutarium in a Sonoran Desert winter annual community.

    Science.gov (United States)

    Kimball, Sarah; Gremer, Jennifer R; Barron-Gafford, Greg A; Angert, Amy L; Huxman, Travis E; Venable, D Lawrence

    2014-01-01

    The success of non-native, invasive species may be due to release from natural enemies, superior competitive abilities, or both. In the Sonoran Desert, Erodium cicutarium has increased in abundance over the last 30 years. While native species in this flora exhibit a strong among-species trade-off between relative growth rate and water-use efficiency, E. cicutarium seems to have a higher relative growth rate for its water-use efficiency value relative to the pattern across native species. This novel trait combination could provide the non-native species with a competitive advantage in this water-limited environment. To test the hypothesis that E. cicutarium is able to achieve high growth rates due to release from native herbivores, we compared the effects of herbivory on E. cicutarium and its native congener, Erodium texanum. We also compared these two species across a range of environmental conditions, both in a common garden and in two distinct seasons in the field, using growth analysis, isotopic compositions and leaf-level gas exchange. Additionally, we compared the competitive abilities of the two Erodium species in a greenhouse experiment. We found no evidence of herbivory to either species. Physiological measurements in a common environment revealed that E. cicutarium was able to achieve high growth rates while simultaneously controlling leaf-level water loss. Non-native E. cicutarium responded to favourable conditions in the field with greater specific leaf area and leaf area ratio than native E. texanum. The non-native Erodium was a stronger competitor than its native congener in a greenhouse competition experiment. The ability to maintain relatively higher values of water-use efficiency:relative growth rate in comparison to the native flora may be what enables E. cictarium to outcompete native species in both wet and dry years, resulting in an increase in abundance in the highly variable Sonoran Desert.

  15. Income and irrigation water use efficiency under climate change: An application of spatial stochastic crop and water allocation model to Western Uzbekistan

    Directory of Open Access Journals (Sweden)

    Ihtiyor Bobojonov

    2016-01-01

    Results show farmers’ income could fall by as much as 25% with a 3.2 °C temperature increase and a 15% decline in irrigation. Farmers located in the tail end of the irrigation system could lose an even greater share of their revenues. A more conservative increase in temperature could increase farmer income by as much as 46% with a 2.2° temperature increase and only 8% decline in irrigation water since some crops benefit from extended vegetation periods. Under both pessimistic and optimistic scenarios, environmental challenges due to shallow groundwater tables may improve associated with enhanced water use efficiency.

  16. Carbon isotope discrimination and water-use efficiency in native plants of the north-central Rockies

    International Nuclear Information System (INIS)

    Marshall, J.D.; Zhang, J.W.

    1994-01-01

    Stable carbon isotope composition was determined on leaves of woody plants sampled along an 800—km transect on the western flank of the Rocky Mountains at altitudes ranging from 610 to 2650 m above mean sea level. Discrimination decreased by 1.20 ± 0.11% (mean ± 1 se) per km of altitude (n = 15, F 1,13 = 127.8, P < 0.0001). The change in discrimination was just sufficient to maintain a constant CO 2 partial pressure gradient from ambient air to the intercellular spaces within the leaf for both deciduous (P = 0.60) and evergreen (P = 0.90) species. However, the CO 2 gradient so maintained was significantly steeper among evergreen (11.31 ± 0.14 Pa) than among deciduous (9.64 ± 0.14 Pa) species (t = 8.4, 27 df, P < 00001). As a consequence, the evergreens had lower discrimination than the deciduous species at any given altitude. After the data were corrected for altitude, further analysis revealed significant differences in discrimination and in CO 2 partial pressure gradient among species. Thuja plicata (western red—cedar), a scale—leaved evergreen, had lowest mean discrimination (16.67 ± 0.50%, n = 4) and the steepest CO 2 gradient from ambient to intercellular spaces (14.5 ± 0.5 Pa). Larix occidentalis (western larch), a deciduous conifer, had the highest discrimination (20.95 ± 0.34%, n = 9) and the flattest CO 2 gradient (8.3 ± 0.4 Pa). A simple model of water—use efficiency predicted that evergreen species would average 18 ± 2% higher in water—use efficiency at any given altitude and that mean water—use efficiency would triple across a 2000—m altitude gradient. The difference between evergreen and deciduous species is attributable to variation in the CO 2 partial pressure gradient, but the tripling with altitude was almost exclusively a consequence of reduced evaporative demand. (author)

  17. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    Science.gov (United States)

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.

  18. Field evaluation of urea fertilizer and water use efficiency by tomato under trickle fertigation and furrow irrigation in the Islamic Republic of Iran

    International Nuclear Information System (INIS)

    Sagheb, N.; Hobbi, M.S.

    2002-01-01

    Urea fertilizer and water use efficiency by tomato (Early Urbana VF) were studied in a sandy loam soil, comparing trickle fertigation and conventional furrow irrigation -- band fertilization systems. During the period of 1995-1998, a conventional treatment, NS, with band application of 50, 150 and 100 kg N as urea, P as diammonium phosphate and K as potassium sulfate respectively was carried out. The average concentration of N in the total irrigation water was 0, 38, 76 and 114 mg/L for the N0, N1, N2 and N3 fertigation treatments, respectively. All fertigation treatments also received equally 24 and 16 mg/L P and K, respectively. An increase of K for the conventional treatment to 1200 kg/ha in 1998 coincided with the increase of the same element to 190 mg/L for the trickle irrigated treatments. To evaluate the urea-N use efficiency, the plants of isotope subplots received 2% 15 N a.e. urea. The soil moisture in all treatments was measured by the neutron moisture gauge. During the first 3 years of experimentation there was no significant difference between the yields of the treatments. For the years 1995 through 1997 the average tomato yield was low in comparison to the yield shown in most reports. The yield variance among treatments and years was negligible. The highest fruit yield, 27.3 t/ha for the N1 treatment was observed in 1997. In this experiment, the low yield and urea-N use efficiency can be primarily attributed to unbalanced applied fertilizers in the trickle irrigation system. The highest urea-N use efficiency was 12.3% for the fertigation N1 treatment in 1997. In the 1998, a repetition of the experiment with increasing K rates for all treatments at the same experimental site, led to a considerable increase in yield and urea-N use efficiency as compared to previous years. The tomato fresh fruit yield attained for N0, N1, N2, N3 and NS respectively 84, 76, 69, 36 and 26 t/ha. Based on the 14N/15N ratio analysis of the dry matter the urea-N use efficiency

  19. Light- and water-use efficiency model synergy: a revised look at crop yield estimation for agricultural decision-making

    Science.gov (United States)

    Marshall, M.; Tu, K. P.

    2015-12-01

    Large-area crop yield models (LACMs) are commonly employed to address climate-driven changes in crop yield and inform policy makers concerned with climate change adaptation. Production efficiency models (PEMs), a class of LACMs that rely on the conservative response of carbon assimilation to incoming solar radiation absorbed by a crop contingent on environmental conditions, have increasingly been used over large areas with remote sensing spectral information to improve the spatial resolution of crop yield estimates and address important data gaps. Here, we present a new PEM that combines model principles from the remote sensing-based crop yield and evapotranspiration (ET) model literature. One of the major limitations of PEMs is that they are evaluated using data restricted in both space and time. To overcome this obstacle, we first validated the model using 2009-2014 eddy covariance flux tower Gross Primary Production data in a rice field in the Central Valley of California- a critical agro-ecosystem of the United States. This evaluation yielded a Willmot's D and mean absolute error of 0.81 and 5.24 g CO2/d, respectively, using CO2, leaf area, temperature, and moisture constraints from the MOD16 ET model, Priestley-Taylor ET model, and the Global Production Efficiency Model (GLOPEM). A Monte Carlo simulation revealed that the model was most sensitive to the Enhanced Vegetation Index (EVI) input, followed by Photosynthetically Active Radiation, vapor pressure deficit, and air temperature. The model will now be evaluated using 30 x 30m (Landsat resolution) biomass transects developed in 2011 and 2012 from spectroradiometric and other non-destructive in situ metrics for several cotton, maize, and rice fields across the Central Valley. Finally, the model will be driven by Daymet and MODIS data over the entire State of California and compared with county-level crop yield statistics. It is anticipated that the new model will facilitate agro-climatic decision-making in

  20. Effect of Water Quality and Drip Irrigation Management on Yield and Water Use Efficiency in Late Summer Melon

    Directory of Open Access Journals (Sweden)

    javad baghani

    2016-02-01

    Full Text Available Introduction: Production and growth of plants in many parts of the world due to degradation and water scarcity have been limited and particularly, in recent decades, agriculture is faced with stress. In the most parts of Iran, especially in the Khorasan Razavi province, drought is a fact and water is very important. Due to melon cultivation in this province, and the conditions of quality and quantity of water resources and water used to produce the melon product in this province, any research done on the use of saline and brackish waters is statistically significant. Materials and Methods: To study the effects of different water salinity and water management on some of the agronomic traits of late summer melon with drip irrigation, an experiment with 7 treatments and 3 repetitions was conducted in a randomized complete block design, in Torogh station, Mashhad. The irrigation treatments were: 1- fresh water from planting to harvesting, 2- water (3 dS/m from planting to harvesting, 3- water (6 dS/m from planting to harvesting, 4- water (6 dS/m from 20 days after plantation to harvesting, 5-water (6 dS/m from 40 days after plantation to harvesting, 6-water (3 dS/m from 20 days after plantation to harvesting, 7-water (6 dS/m from 40 days after plantation to harvesting. Row spacing and plant spacing were 3 m and 60 cm, respectively and the pipe type had 6 liters per hour per unit of meters in the drip irrigation system. Finally, the amount of salinity water, number of male and female flowers, number of seed germination, dry leaves' weight, leaf area, chlorophyll (with SPAD etc. were measured and all data were analyzed by using MSTAT-C software and all averages of data, were compared by using the Duncan test. Results and Discussion The results of analysis of data showed the following: Number of seeds germination: Salinity in water irrigation had no significant effects on the number of seed germination. However, there was the most number of seed

  1. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize (Zea mays l.) in subtropical northeastern Himalayas.

    Science.gov (United States)

    Marwein, M A; Choudhury, B U; Chakraborty, D; Kumar, M; Das, A; Rajkhowa, D J

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ET c ) of maize crop under controlled condition (pot experiment) of water deficit (W 25 -25 % and W 50 -50 % of field capacity soil moistures) and well watered (W 100  = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ET c losses and water use efficiency was also studied. The measured seasonal ET c loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant (p losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha -1 significantly (p losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W 25 ) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W 100 ) while seasonal ET c loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ET c losses while weekly crop ET c loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ET c losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg -1  water and 4.21 to 8.56 g dry matter kg -1 , respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ET c loss, growth duration, grain formation, and water use efficiency of maize.

  2. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum

    Science.gov (United States)

    Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.

    2014-09-01

    The Ball-Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball-Berry model in flux tower simulations, but was significantly better than the CLM Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a priori, as in the CLM Ball-Berry model. Similar functional dependence of gs on Ds emerged from the ΔAn/ΔEl optimization, but not the ΔAn /gs optimization. Two parameters (stomatal efficiency and root hydraulic

  3. Effect of tillage and crop residues management on mungbean (vigna radiata (L.) wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas

    International Nuclear Information System (INIS)

    Mohammad, W.; Shehzadi, S.; Shah, S.M.; Shah, Z.

    2010-01-01

    A field experiment was conducted to study the effect of crop residues and tillage practices on BNF, WUE and yield of mungbean (Vigna radiata (L.) Wilczek) under semi arid rainfed conditions at the Livestock Research Station, Surezai, Peshawar in North West Frontier Province (NWFP) of Pakistan. The experiment comprised of two tillage i) conventional tillage (T1) and ii) no-tillage (T0) and two residues i) wheat crop residues retained (+) and ii) wheat crop residues removed (-) treatments. Basal doses of N at the rate of 20: P at the rate of 60 kg ha-1 were applied to mungbean at sowing time in the form of urea and single super phosphate respectively. Labelled urea having 5% 15N atom excess was applied at the rate of 20 kg N ha-1 as aqueous solution in micro plots (1m2) in each treatment plot to assess BNF by mungbean. Similarly, maize and sorghum were grown as reference crops and were fertilized with 15N labelled urea as aqueous solution having 1% 15N atom excess at the rate of 90 kg N ha/sup -1/. The results obtained showed that mungbean yield (grain/straw) and WUE were improved in notillage treatment as compared to tillage treatment. Maximum mungbean grain yield (1224 kg ha/sup -1/) and WUE (6.61kg ha/sup -1 mm/sup -1/) were obtained in no-tillage (+ residues) treatment. The N concentration in mungbean straw and grain was not significantly influenced by tillage or crop residue treatments. The amount of fertilizer-N taken up by straw and grain of mungbean was higher under no-tillage with residues-retained treatment but the differences were not significant. The major proportion of N (60.03 to 76.51%) was derived by mungbean crop from atmospheric N2 fixation, the remaining (19.6 to 35.91%) was taken up from the soil and a small proportion (3.89 to 5.89%) was derived from the applied fertilizer in different treatments. The maximum amount of N fixed by mungbean (82.59 kg ha/sup -1/) was derived in no-tillage with wheat residue-retained treatment. By using sorghum as

  4. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest

    Directory of Open Access Journals (Sweden)

    Heidi J Renninger

    2015-05-01

    Full Text Available Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE between oaks (Quercus alba, Q. prinus, Q. velutina and pines (Pinus rigida, P. echinata. We also determined environmental drivers (vapor pressure deficit (VPD, soil moisture, solar radiation of canopy stomatal conductance (GS estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem.

  5. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest.

    Science.gov (United States)

    Renninger, Heidi J; Carlo, Nicholas J; Clark, Kenneth L; Schäfer, Karina V R

    2015-01-01

    Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE) via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE) between oaks (Quercus alba, Q. prinus, Q. velutina) and pines (Pinus rigida, P. echinata). We also determined environmental drivers [vapor pressure deficit (VPD), soil moisture, solar radiation] of canopy stomatal conductance (GS) estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem.

  6. Evaluation of Some Morphological Characteristics, Water Use Efficiency and Essential Oil of Basil (Ocimum basilicum var. keshkeni luvelou under Application of Malva Leaves and Superabsorbent Polymer

    Directory of Open Access Journals (Sweden)

    S. Beigi

    2016-02-01

    Full Text Available Introduction: Medicinal plants are rich in active substances and primarily have been used in the manufacture of many drugs. Basil (Ocimum basilicum L. is one of the important medicinal plants whichbelongs to the Lamiaceae family. Basil essential oil content (between 0.5 to 1.5 percent varies according to climatic conditions of habitat location. Basilneeds a lot of water during growth period and it is very sensitive to water stress and shows wilting symptoms very soon after water shortage. Iran is located in an arid and semi-arid region which has little precipitation that is not enough for crop water requirements. Nowadays, the use of superabsorbent polymers is one of the ways to create sustainable agriculture and increase irrigation efficiency. They can store high water or aqueous solutions in root zone of plants and to reduce negative effects of drought stress. So, improvement of plant growth, increasing of irrigation intervals, reducing water loss and costs of irrigation is due to the application of superabsorbent polymers. Mucilages are also the herbal polysaccharides, soluble in water, and commonly include carbohydrates and can be used as hydrophilic polymers. The aims of this investigation were to study the effects of hydrophilic polymers on water use efficiency, morphological characteristics (dry matter, leaf area, and leaf number, essential oil quantity and yield of basil to harden plant to drought stress and to evaluate its potential to cultivate in arid regions. In addition, taking steps forward towards sustainable agriculture, by reducing the cost of agricultural production, helps protecting the environment. Materials and Methods: This research was conducted as a pot experiment at the department of Horticultural Science‚ college of Agricultural‚ Ferdowsi University of Mashhad‚ Iran, during 2012-2013.The research was set out in a factorial experiment on the basis of completely randomized block design with three replications

  7. Quantifying the non-fungicidal effects of foliar applications of fluxapyroxad (Xemium) on stomatal conductance, water use efficiency and yield in winter wheat.

    Science.gov (United States)

    Smith, J; Grimmer, M; Waterhouse, S; Paveley, N

    2013-01-01

    The active ingredient fluxapyroxad belongs to the chemical group of carboxamides and is a new generation succinate dehydrogenase inhibitor (SDHI) in complex II of the mitochondrial respiratory chain. It has strong efficacy against the key foliar diseases of winter wheat in the UK: Septoria leaf blotch, yellow stripe rust and brown rust. Fluxapyroxad is marketed under the brand name of Xemium, was launched in 2012 and is available in the UK as a solo product (Imtrex) for co-application with triazoles, in co-formulation with epoxiconazole (Adexar), or in a three way formulation with epoxiconazole and pyraclostrobin (Ceriax). The objective of the study was to quantify the direct effects of Xemium on stomatal conductance and yield, mediated through stimulation of host physiology. Three field experiments and two controlled environment (CE) experiments were conducted across three cropping seasons (2010-2012) in Herefordshire and Cambridge, in the UK. Xemium was evaluated against boscalid, pyraclostrobin (F500), epoxiconazole and an untreated control. Across site-seasons, disease severity was significantly reduced when Xemium was applied as a foliar spray. Healthy canopy size and duration was increased by Xemium and canopy greening effects were seen shortly after application. Stomatal conductance was found to be consistently lower in Xemium treated plants but reduced stomatal opening was not found to be detrimental to yield in these experiments. Large, beneficial effects of Xemium on water use efficiency were found at the canopy level and this finding was supported by measurements of instantaneous water use efficiency at the leaf level. Effects on season long water use efficiency were largely driven by improvements in yield for a given amount of water uptake. Foliar applications of Xemium reduced the water required to produce 1.0 t grain per hectare by 82,330 L(82 t) when compared with an untreated crop. Yield was significantly higher in Xemium treatments and this was

  8. Effect of Timing and Amount of Irrigation Water on Bean Yield and Water Use Efficiency in Arid and Semi-arid Conditions

    Directory of Open Access Journals (Sweden)

    S.S. Nurbakhsh

    2016-02-01

    Full Text Available Introduction: Nowadays, due to lack of water resources and increasing demand for water, agricultural water planning issues need further consideration. With proper planning and determination of irrigation depth and time, the effects of stress and yield loss on the plants are reduced. Irrigation scheduling is one of the most important factors in crop’s quality and quantity. The main objective of irrigation scheduling is to control crop’s water conditions in order to achieve its optimum yield level. So irrigation timing is the vital factor on which crop water stress and eventually yield's level are dependent upon. Moreover, irrigation timing is used in irrigation scheduling. The aim of this study was to evaluate the effect of irrigation time on water consumption, water use efficiency and yield of beans. Materials and Methods: In order to observe the effect of the amount and the time of the irrigation on water consumption, yields rate and water use efficiency, the current research was carried out at the University of Shahrekord during the summer of 2012. The experiment was done as a completely randomized design with 4 repetitions consisting of irrigation time and the amount of irrigation in 4 and 2 levels (at 6, 8, 14 and 18 and (deficit irrigation, full irrigation, respectively. Beans seeds were planted in 32 similar vases with a diameter of 45 cm and height of 60 cm, in each experiment. Treatments were begun after 37 days from planting. Treatments were irrigated when the average moisture in the root zone was equal to the lower border of readily available water of full irrigation. At the end of the experiments, plants were completely harvested. Then the plant’s height, number of branches, numbers of pods per plant, pod and seed weight were measured. Results and Discussion: Results showed that irrigating at different times during the day influenced water use efficiency, water consumption, seeds yield and number of pods in the bush. The water

  9. Analysis of water and nitrogen use efficiency for maize (Zea mays L.) grown on soft rock and sand compound soil.

    Science.gov (United States)

    Wang, Huanyuan; Han, Jichang; Tong, Wei; Cheng, Jie; Zhang, Haiou

    2017-06-01

    Maize was grown on compound soils constituted from mixtures of soft rock and sand at different ratios, and water use efficiency (WUE), nitrogen use efficiency (NUE) and fertilizer nitrogen use efficiency (FNUE) were quantified. The data were used to assist in designing strategies for optimizing water and nitrogen management practices for maize on the substrates used. Maize was sown in composite soil prepared at three ratios of soft rock and sand (1:1, 1:2 and 1:5 v/v) in Mu Us Sandy Land, Yuyang district, Yulin city, China. Yields, amount of drainage, nitrogen (N) leaching, WUE and NUE were calculated. Then a water and nitrogen management model (WNMM) was calibrated and validated. No significant difference in evapotranspiration of maize was found among compound soils with soft rock/sand ratios of 1:1, 1:2 and 1:5, while water drainage increased significantly with increasing soft rock/sand ratio. WUE increased to 1.30 kg m -3 in compound soil with 1:2 soft rock/sand ratio. Nitrogen leaching and ammonia volatilization were the main reason for nitrogen loss, and N reduction mainly relied on crop uptake. NUE and FNUE could reach 33.1 and 24.9 kg kg -1 N respectively. Water drainage and nitrogen leaching occurred mostly during heavy rainfall or irrigation. Through a scenario analysis of different rainfall types, water and fertilizer management systems were formulated each year. This study shows that soft rock plays a key role in improving the WUE, NUE and FNUE of maize. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Development and implementation of a monitoring and information system to increase water use efficiency in arid and semi-arid areas in Limarí, Central Chile (WEIN

    Directory of Open Access Journals (Sweden)

    E. Berger

    2016-10-01

    Full Text Available The project WEIN was funded by the Federal Ministry of Education and Research (BMBF | Berlin, Germany in the framework of the high-tech strategy of Germany's program "KMU-Innovativ". The project started in 2012 and was completed in 2014. In the scope of the project, an integrated system for analysis, monitoring and information at river basin level was developed, which provides relevant information for all stakeholders that are concerned with water resource issues. The main objective of the project was to improve water use efficiency and hence ensure the agricultural production in the region. The pilot region, in which this system was implemented, is the semi-arid Limarí basin in Northern Central Chile. One of the main parts of the project was the development and implementation of a web- and app-based irrigation water ordering and accounting system for local farmers.

  11. Use of organic mulch to enhance water-use efficiency and peach production under limiting soil conditions in a three-year-old orchard

    Energy Technology Data Exchange (ETDEWEB)

    Lordan, J.; Pascual, M.; Villar, J.M.; Fonseca, F.; Papió, J.; Montilla, V.; Rufat, J.

    2015-07-01

    Mulching techniques have emerged in recent years to overcome soil constraints and improve fruit tree productivity. The object of this study was to evaluate the effects of a low-cost organic mulch application in a newly planted peach orchard under a ridge planting system. Three treatments were performed in 12 elementary plots using a randomized complete block design. The orchard was drip-irrigated. Mulch was applied in two treatments, which differed in fertigation (none vs. multi-nutrient fertigation), while the third treatment did not include either mulch or fertigation and served as the control. Treatments were compared in terms of their effects on the physical properties of the soil, crop response, and water-use efficiency. Mulch treatments did not alter the soil bulk density. However, the mulch significantly (p=0.0004) increased the water infiltration rate (2.21 mm/h vs. 121 mm/h), which is a key issue when working in high frequency irrigation systems under soil limiting conditions. Similarly, mulched treatments showed a more favorable water status both in the second and the third year, which was translated in a better crop response. Thus, mulched treatments recorded higher yields both in the second (+155%, p=0.0005) and the third year (+53%, p=0.0007) of the experiment. Water use efficiency (WUEagr) was higher in the mulch treatments (+50% in average, p=0.0007) than in the control in the third year of the study. On the basis of our results, we propose that organic-mulching techniques should be considered as a beneficial practice to apply in fruit-trees production under limiting soil conditions.(Author)

  12. Use of organic mulch to enhance water-use efficiency and peach production under limiting soil conditions in a three-year-old orchard

    Directory of Open Access Journals (Sweden)

    Joan Lordan

    2015-12-01

    Full Text Available Mulching techniques have emerged in recent years to overcome soil constraints and improve fruit tree productivity. The object of this study was to evaluate the effects of a low-cost organic mulch application in a newly planted peach orchard under a ridge planting system. Three treatments were performed in 12 elementary plots using a randomized complete block design. The orchard was drip-irrigated. Mulch was applied in two treatments, which differed in fertigation (none vs. multi-nutrient fertigation, while the third treatment did not include either mulch or fertigation and served as the control. Treatments were compared in terms of their effects on the physical properties of the soil, crop response, and water-use efficiency. Mulch treatments did not alter the soil bulk density. However, the mulch significantly (p=0.0004 increased the water infiltration rate (2.21 mm/h vs. 121 mm/h, which is a key issue when working in high frequency irrigation systems under soil limiting conditions. Similarly, mulched treatments showed a more favorable water status both in the second and the third year, which was translated in a better crop response. Thus, mulched treatments recorded higher yields both in the second (+155%, p=0.0005 and the third year (+53%, p=0.0007 of the experiment. Water use efficiency (WUEagr was higher in the mulch treatments (+50% in average, p=0.0007 than in the control in the third year of the study. On the basis of our results, we propose that organic-mulching techniques should be considered as a beneficial practice to apply in fruit-trees production under limiting soil conditions.

  13. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    Directory of Open Access Journals (Sweden)

    mohammad saeed tadaion

    2017-12-01

    Full Text Available Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L. cv. Zarde-anar were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carried out in a constant plots and randomized complete block design (RCBD with four replicationsin five years.Treatmentswere 1- full flood irrigation (100 percent crop water requirement (T1 2- flood irrigation with 100 percent crop water requirement as alternate partial root-zone irrigation(every irrigation conducted on one side of tree (T2 3- flood irrigation with 50 percent crop water requirement as regular deficit irrigation (T3 4- full two-side drip irrigation(with regard to crop water requirement (eight drippers with twolit/hour flow by two different individual networks (T4 5- alternate partial root-zone drip irrigation with 100 percent crop water requirement (T5 6- regular deficit drip irrigation with 50 percent crop water requirement (T6 in every irrigation period. Each experimental treatment includes four trees and 96 similar twelve years old trees overall. Cultivation practice was conducted similarly on all of the trees. Results and Discussion: Results showed that the highest yield and water use efficiency based on statistical analysis belong to both PRD treatments i.e. alternate partial root-zone drip irrigation with 100 percent crop water requirement and alternate partial root-zone flood irrigation with 100 percent crop water requirement, respectively, that both of them decreased water requirement for irrigation up to 35 and 50 percent in comparison tocontrol. Application of partial root drying irrigation on both traditional flood irrigation and drip

  14. Productivity, total and utilized nitrogen and water use efficiency of soybean grown in reclaimed sandy soil as affected by water regime

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.; Thabet, E.M.A.

    2002-01-01

    Field experiment was performed at the experimental farm, Inshas, atomic energy authority, Egypt, in tafla and sand mixture soil (1:7). The experiment was laid out using sprinkler irrigation system with a line source which allows a gradual variation of irrigation from high to low irrigation, whereas the calculated amount of irrigation water levels were 1565, 1050 and 766.5 (m 3 / feddan). Two soybean varieties (crawford and giza 35) were planted. The obtained results indicated that: a) irrigation with high (1562 m 3 /fed.) and medium (1050 m 3 /fed.) water levels increased total seed wield of the two soybean varieties. b) the highest value of water use efficiency was observed when both soybean varieties irrigated with water level of 1050 m 3 /fed. c) seed protein content in crawford variety was higher in giza 35 variety at the irrigation level of 1562 m 3 /fed. d) seeds of both two soybean varieties showed increase of its atom excess percentage at high and medium water levels, and reflecting increase of nitrogen use efficiency. e) significant increment in seed yield kg/plot. Has been indicated by irrigation with water level of 1050 m 3 /fed. As compared to higher and lower water levels

  15. Effect of different levels of water consumptive use of squash under drip irrigation system on salt distribution, yield and water use efficiency

    International Nuclear Information System (INIS)

    Abd El-Moniem, M.; El-Gendy, R.W.; Gadalla, A.M.; Hamdy, A.; Zeedan, A.

    2006-01-01

    This study aims to trace the distribution of salts and fertilizers through drip irrigation system and the response of squash (yield and water use efficiency) to irrigation treatments, i.e. T1 (100 % ETc), T2 (75 % ETc) and T3 (50 % ETc). This study was carried out in Inshas sandy soil at the farm of Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. Soil samples were taken from three sites (0, 12.5 and 25 cm distance from the emitters between drippers and laterals lines) for evaluating the salt content (horizontal and vertical directions within the soil depths). The obtained data pointed out that salt accumulation was noticed at the surface layer and was affected by the direction of soil water movement (horizontal and vertical motion). The highest salt concentrations were in 75 % and 50 % ETc treatments between emitters and laterals. As for the three sites, salt concentration behaved in the sequence: 25 >12.5 > 0 cm sites. For squash yield, the first treatment produced high yield without significant differences between the second treatment so, 75 % ETc treatment was considered the best one for saving water

  16. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    International Nuclear Information System (INIS)

    Hassanli, M.; Ebrahimian, H.

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  17. Remote Sensing of Shrubland Drying in the South-East Mediterranean, 1995–2010: Water-Use-Efficiency-Based Mapping of Biomass Change

    Directory of Open Access Journals (Sweden)

    Maxim Shoshany

    2015-02-01

    Full Text Available Recent climate studies of the South-Eastern Mediterranean indicate an increase in drought frequencies and decreasing water resources since the turn of the century. A four-phase methodology was developed for assessing above-ground biomass changes in shrublands caused by these recent trends. Firstly, we generalized the function SB = 0.008MAP1.54 describing the shrublands above-ground biomass (SB dependence on mean annual precipitation (MAP for areas of full shrub cover. Secondly, relationships between MAP and NDVI were formalized, allowing an estimation of precipitation levels from observed NDVI values (MAPNDVI. Thirdly, relative water-use efficiency (RWUE was defined as the ratio between MAPNDVI and MAP. Finally, the function SBRWUE = 0.008MAP0.54 + RWUE was formalized, utilizing RWUE in estimating shrublands biomass. This methodology was implemented using Landsat TM images (1994 to 2011 for an area between the Judean Mountains and the deserts bordering them to the east and south. More than 50% of the study area revealed low biomass change (±0.2 kg/m2, compared with 30% of the woodlands of the Jerusalem Mountains, where biomass increased between 0.2 and 1.4 kg/m2 and with 50% of the semi-arid shrublands, where it decreased between 0.2 and 1.4 kg/m2. These results suggest that aridity lines in southern Israel are migrating northwards.

  18. Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available Reactive oxygen species (ROS have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs. Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2 scavenger, catalase (CAT, significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI, and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM, suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi in Vicia faba via a reduction in leaf transpiration rate (E without a parallel reduction in net photosynthetic rate (Pn assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.

  19. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Hassanli, M.; Ebrahimian, H.

    2016-07-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  20. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

    Science.gov (United States)

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A

    2015-09-01

    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions. © 2014 John Wiley & Sons Ltd.

  1. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland.

    Science.gov (United States)

    Flanagan, Lawrence B; Farquhar, Graham D

    2014-02-01

    Measurements of the carbon (δ(13) Cm ) and oxygen (δ(18) Om ) isotope composition of C3 plant tissue provide important insights into controls on water-use efficiency. We investigated the causes of seasonal and inter-annual variability in water-use efficiency in a grassland near Lethbridge, Canada using stable isotope (leaf-scale) and eddy covariance measurements (ecosystem-scale). The positive relationship between δ(13) Cm and δ(18) Om values for samples collected during 1998-2001 indicated that variation in stomatal conductance and water stress-induced changes in the degree of stomatal limitation of net photosynthesis were the major controls on variation in δ(13) Cm and biomass production during this time. By comparison, the lack of a significant relationship between δ(13) Cm and δ(18) Om values during 2002, 2003 and 2006 demonstrated that water stress was not a significant limitation on photosynthesis and biomass production in these years. Water-use efficiency was higher in 2000 than 1999, consistent with expectations because of greater stomatal limitation of photosynthesis and lower leaf ci /ca during the drier conditions of 2000. Calculated values of leaf-scale water-use efficiency were 2-3 times higher than ecosystem-scale water-use efficiency, a difference that was likely due to carbon lost in root respiration and water lost during soil evaporation that was not accounted for by the stable isotope measurements. © 2013 John Wiley & Sons Ltd.

  2. Growth, water use efficiency, and adaptive features of the tree legume tagasaste (Chamaecytisus proliferus Link.) on deep sands in south-western Australia

    International Nuclear Information System (INIS)

    Lefroy, E. C.; Pate, J. S.

    2001-01-01

    Four-year-old tagasaste trees in dense plantation and wide-spaced alley cropping layouts at Moora, Western Australia, were cut back to 0.6 m high and their patterns of coppice regrowth and water use monitored over 3 years. Trees reached a permanent fresh watertable at 5 m depth by means of deeply penetrating sinker roots. Dry matter (DM) accumulation and transpiration loss were closely similar at the 2 planting densities despite higher soil water contents in alley plots. Yearly transpiration at plantation density amounted to 0.55 and 0.63 of Penman-Montieth potential evapotranspiration (E 0 ) in the second and third years, respectively. Mean water use efficiency over the 3 years was 247 L/kg DM, compared with values in the range 186-320 L/kg for younger pot-and column-grown trees. Using a combination of neutron moisture metre (NMM) assays of soil moisture and deuterium: hydrogen ratios of groundwater and xylem water of tagasaste and annual weeds, it was shown that trees became increasingly dependent on groundwater over time and had the capacity to switch rapidly between soil and groundwater sources. Seasonal changes in carbon isotope composition of new shoot tip dry matter indicated that plantation trees were less stressed than alley trees by the third summer as they adapted to heavy dependence on groundwater. In the third season, when plantation trees were transpiring at rates equivalent to 2.3 times annual rainfall, NMM profiles and time domain reflectometry (TDR) assays indicated that no free drainage occurred and that trees were capable of hydraulically lifting groundwater to near surface soil in the dry season. Additional adaptive features of importance to this environment included heat stress induced leaf shedding, development of perennial root nodules on lower parts of tap roots, and an ability to respond in summer to artificial irrigation or a seasonal rainfall by rapidly increasing transpiration 2-3-fold to values equalling E 0 . Copyright (2001) CSIRO

  3. Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia.

    Science.gov (United States)

    Khalifa, Muhammad; Elagib, Nadir Ahmed; Ribbe, Lars; Schneider, Karl

    2018-05-15

    The impact of climate variability on the Net Primary Productivity (NPP) of different land cover types and the reaction of NPP to drought conditions are still unclear, especially in Sub-Saharan Africa. This research utilizes public-domain data for the period 2000 through 2013 to analyze these aspects for several land cover types in Sudan and Ethiopia, as examples of data-scarce countries. Spatio-temporal variation in NPP, water use efficiency (WUE) and carbon use efficiency (CUE) for several land covers were correlated with variations in precipitation, temperature and drought at different time scales, i.e. 1, 3, 6 and 12months using Standardized Precipitation Evapotranspiration Index (SPEI) datasets. WUE and CUE were estimated as the ratios of NPP to actual evapotranspiration and NPP to Gross Primary Productivity (GPP), respectively. Results of this study revealed that NPP, WUE and CUE of the different land cover types in Ethiopia have higher magnitudes than their counterparts in Sudan. Moreover, they exhibit higher sensitivity to drought and variation in precipitation. Whereas savannah represents the most sensitive land cover to drought, croplands and permanent wetlands are the least sensitive ones. The inter-annual variation in NPP, WUE and CUE in Ethiopia is likely to be driven by a drought of time scale of three months. No statistically significant correlation was found for Sudan between the inter-annual variations in these indicators with drought at any of the time scales considered in the study. Our findings are useful from the view point of both food security for a growing population and mitigation to climate change as discussed in the present study. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The diversity of (13)C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance.

    Science.gov (United States)

    Roussel, Magali; Dreyer, Erwin; Montpied, Pierre; Le-Provost, Grégoire; Guehl, Jean-Marc; Brendel, Oliver

    2009-01-01

    (13)C discrimination in organic matter with respect to atmospheric CO(2) (Delta(13)C) is under tight genetic control in many plant species, including the pedunculate oak (Quercus robur L.) full-sib progeny used in this study. Delta(13)C is expected to reflect intrinsic water use efficiency, but this assumption requires confirmation due to potential interferences with mesophyll conductance to CO(2), or post-photosynthetic discrimination. In order to dissect the observed Delta(13)C variability in this progeny, six genotypes that have previously been found to display extreme phenotypic values of Delta(13)C [either very high ('high Delta') or low ('low Delta') phenotype] were selected, and transpiration efficiency (TE; accumulated biomass/transpired water), net CO(2) assimilation rate (A), stomatal conductance for water vapour (g(s)), and intrinsic water use efficiency (W(i)=A/g(s)) were compared with Delta(13)C in bulk leaf matter, wood, and cellulose in wood. As expected, 'high Delta' displayed higher values of Delta(13)C not only in bulk leaf matter, but also in wood and cellulose. This confirmed the stability of the genotypic differences in Delta(13)C recorded earlier. 'High Delta' also displayed lower TE, lower W(i), and higher g(s). A small difference was detected in photosynthetic capacity but none in mesophyll conductance to CO(2). 'High Delta' and 'low Delta' displayed very similar leaf anatomy, except for higher stomatal density in 'high Delta'. Finally, diurnal courses of leaf gas exchange revealed a higher g(s) in 'high Delta' in the morning than in the afternoon when the difference decreased. The gene ERECTA, involved in the control of water use efficiency, leaf differentiation, and stomatal density, displayed higher expression levels in 'low Delta'. In this progeny, the variability of Delta(13)C correlated closely with that of W(i) and TE. Genetic differences of Delta(13)C and W(i) can be ascribed to differences in stomatal conductance and stomatal

  5. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure.

    Science.gov (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange

  6. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat

    Directory of Open Access Journals (Sweden)

    Renu Saradadevi

    2017-07-01

    Full Text Available End-of-season drought or “terminal drought,” which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE. When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under

  7. Yield and resource use efficiency of Plukenetia volubilis plants at two distinct growth stages as affected by irrigation and fertilization.

    Science.gov (United States)

    Gong, He-De; Geng, Yan-Jing; Yang, Chun; Jiao, Dong-Ying; Chen, Liang; Cai, Zhi-Quan

    2018-01-08

    This study is to test how seedlings (vegetative) and large plants (reproductive) of an oilseed crop (Plukenetia volubilis) responded to regulated deficit irrigation techniques (conventional deficit irrigation, DI; alternative partial root-zone irrigation, APRI) in a tropical humid monsoon area. Seedlings were more sensitive to water deficit than large plants. Although APRI did better than DI in saving water for both seedlings and large plants at the same amount of irrigation, full irrigation (FI) is optimal for faster seedling growth at the expense of water-use efficiency (WUE). The seed number per unit area was responsible for the total seed oil yield, largely depending on the active process of carbon and nitrogen storages at the whole-plant level. The magnitude of the increase in total seed and seed oil yield by fertilization was similar under different irrigation regimes. Compared with FI, DI can save water, but reduced the total seed yield and had lower agronomic nutrient-use efficiency (NUE agr ); whereas APRI had similar total seed yield and NUE agr , but reduced water use greatly. Although the dual goal of increasing the yield and saving water was not compatible, maintaining a high yield and NUEagr at the cost of WUE is recommended for P. volubilis plantation in t he water-rich areas.

  8. Validation of AquaCrop Model for Simulation of Winter Wheat Yield and Water Use Efficiency under Simultaneous Salinity and Water Stress

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    2016-02-01

    Full Text Available Introduction: FAO AquaCrop model (Raes et al., 2009a; Steduto et al., 2009 is a user-friendly and practitioner oriented type of model, because it maintains an optimal balance between accuracy, robustness, and simplicity; and it requires a relatively small number of model input parameters. The FAO AquaCrop model predicts crop productivity, water requirement, and water use efficiency under water-limiting and saline water conditions. This model has been tested and validated for different crops such as maize, sunflower and wheat (T. aestivum L. under diverse environments. In most of arid and semi-arid regions water shortage is associated with reduction in water quality (i.e. increasing salinity. Plants in these regions in terms of water quality and quantity may be affected by simultaneous salinity and water stress. Therefore, in this study, the AquaCrop model was evaluated under simultaneous salinity and water stress. In this study, AquaCrop Model (v4.0 was used. This version was developed in 2012 to quantify the effects of salinity. Therefore, the objectives of this study were: i evaluation of AquaCrop model (v4.0 to simulate wheat yield and water use efficiency under simultaneous salinity and water stress conditions in an arid region of Birjand, Iran and ii Using different treatments for nested calibration and validation of AquaCrop model. Materials and Methods: This study was carried out as split plot design (factorial form in Birjand, east of Iran, in order to evaluate the AquaCrop model.Treatments consisted of three levels of irrigation water salinity (S1, S2, S3 corresponding to 1.4, 4.5, 9.6 dS m-1 as main plot, two wheat varieties (Ghods and Roshan, and four levels of irrigation water amount (I1, I2, I3, I4 corresponding to 125, 100, 75, 50% water requirement as sub plot. First, AquaCrop model was run with the corresponding data of S1 treatments (for all I1, I2, I3, and I4 and the results (wheat grain yield, average of soil water content

  9. Eficiéncia fotosintética y de uso del agua por malezas Characteristics associated to photosynthesis and water use of weed species

    Directory of Open Access Journals (Sweden)

    I. Aspiazú

    2010-01-01

    Full Text Available El objetivo de este trabajo fue evaluar las características asociadas con la eficiencia fotosintética y del uso del agua en especies de malezas. Los tratamientos fueron compuestos por las especies Bidens pilosa, Commelina benghalensis y Brachiaria plantaginea, sembradas individualmente en las unidades experimentales. El diseño experimental fue en bloques al azar en una factorial 3 x 4 con tres repeticiones. Se evaluaron características asociadas con el uso del agua - tasa transpiratoria (E, conductancia estomática (Gs, presión de vapor en la cavidad subestomatal (Ean y la eficiencia del uso del agua (EUA - así como la fotosíntesis - concentración interna de CO2 en la hoja (Ci, CO2 consumido durante la evaluación (ΔC, temperatura media de las hojas en el momento de la evaluación (Tleaf y la tasa fotosintética (A. B. plantaginea presentó menor E, menor EUA y más altos A y Ci, diferiendo de las otras especies. B. pilosa mostró valores más bajos de EUA, A y T en comparación con otras especies. Según los resultados, se puede concluir que la B. plantaginea fue más eficiente en las características relacionadas con la fotosíntesis, es decir, más eficiente en el aprovechamiento de la luz. B. pilosa fue más eficiente en las características relacionadas con el uso del agua.The objective of this study was to evaluate characteristics associated with the photosynthetic efficiency and water use of weed species. Treatments were composed by the species Bidens pilosa, Commelina benghalensis and Brachiaria plantaginea, sown individually in the experimental units. The experimental design was in randomized blocks in a 3 x 4 factorial, with three repetitions. Characteristics associated with water use - transpiratory rate (E, stomatal conductance (Gs, vapor pressure in the substomatal chamber (Ean and water use efficiency (WUE - as well as photosynthesis - internal leaf CO2 concentration (Ci, CO2 consumed during the evaluation (

  10. Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification.

    Science.gov (United States)

    de Miguel, Marina; Cabezas, José-Antonio; de María, Nuria; Sánchez-Gómez, David; Guevara, María-Ángeles; Vélez, María-Dolores; Sáez-Laguna, Enrique; Díaz, Luis-Manuel; Mancha, Jose-Antonio; Barbero, María-Carmen; Collada, Carmen; Díaz-Sala, Carmen; Aranda, Ismael; Cervera, María-Teresa

    2014-06-12

    Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.

  11. Uncertainty of wheat water use

    NARCIS (Netherlands)

    Cammarano, Davide; Rötter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia; Ruane, Alex C.; Boote, Kenneth J.; Thorburn, Peter J.; Kersebaum, Kurt Christian; Aggarwal, Pramod K.; Angulo, Carlos; Basso, Bruno; Bertuzzi, Patrick; Biernath, Christian; Brisson, Nadine; Challinor, Andrew J.; Doltra, Jordi; Gayler, Sebastian; Goldberg, Richie; Heng, Lee; Hooker, Josh E.; Hunt, Leslie A.; Ingwersen, Joachim; Izaurralde, Roberto C.; Müller, Christoph; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E.; Osborne, Tom M.; Priesack, Eckart; Ripoche, Dominique; Steduto, Pasquale; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Travasso, Maria; Waha, Katharina; White, Jeffrey W.; Wolf, Joost

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal.

  12. Water Use in Wisconsin, 2005

    Science.gov (United States)

    Buchwald, Cheryl A.

    2009-01-01

    in Wisconsin by source of water and category of use have been compiled at 5-year intervals since 1950. During the past 55 years (1950-2005), water withdrawn to meet demands for public supply and self-supplied irrigation, industrial, commercial, domestic, and livestock increased 333 percent (1,117 Mgal/d). The greatest increases were for public supply, industrial, and irrigation, and are reflected in the increasing total per-capita water-use values. In recent (2000 and 2005) water-use estimation years, both public-supply and self-supplied domestic per-capita-use values have been declining. This can be attributed, at least in part, to a reduction in industrial-water deliveries, increased water-efficiency standards, and the implementation of leak-detection programs and water-conservation practices. However, when making comparisons to evaluate trends among other Wisconsin water-use estimation years, it is important to be aware of changes that may have occurred in estimation methods or objectives that create differences. Some changes that have occurred are the availability of data and information about water use, changes in data sources and estimation methods, and the inclusion and exclusion of certain water-use categories. These differences may have an effect on apparent trends and make comparing trends difficult.

  13. Yield Traits and Water and Nitrogen Use Efficiencies of Bell Pepper Grown in Plastic-Greenhouse

    Directory of Open Access Journals (Sweden)

    Vincenzo Candido

    2009-09-01

    translocation towards stems and leaves, as shown by lower Harvest Index (HI values. Regarding the water use efficiency (WUE, the above-ground dry matter WUE (AGWUE remained unchanged while the total yield WUE (TYWUE and marketable yield WUE (MYWUE decreased. The N dose of 200 kg ha-1 maximized the yield and quality of the peppers, with and without water stress, and the values of water and nitrogen use efficiency were maximal in these conditions.

  14. A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa

    NARCIS (Netherlands)

    Speelman, S.; Haese, D' M.F.C.; Buysse, J.; Haese, D' L.

    2008-01-01

    This paper analyses the efficiency with which water is used in small-scale irrigation schemes in North-West Province in South Africa and studies its determinants. In the study area, small-scale irrigation schemes play an important role in rural development, but the increasing pressure on water

  15. Nitrate leaching, water-use efficiency and yield of corn with different irrigation and nitrogen management systems in coastal plains, USA

    Science.gov (United States)

    Irrigation management for corn (Zea mays L.) production on the typical low water holding capacity soil of the southeastern USA needs to be improved to increase irrigation efficiency and reduce losses of nitrate from fields. A three-year (2012-2014) field study was conducted to compare the effects of...

  16. Water use efficiency: a contribution to sustainable development of agriculture Utilización eficiente de água: una contribución para el desarrollo agropecuário sustentable Uso eficiente da água: uma contribuição para o desenvolvimento sustentável da agropecuária

    OpenAIRE

    Demétrios Christofidis; C. A. S. Oliveira; Francisco Faggion

    2009-01-01

    In most of the irrigated agricultural areas the volume of water used is higher than actually necessary for the satisfactory production of food. The efficiency in water use can help in solving the problems of scarcity, reduce conflicts between users and increase, stabilize and ensure the production. This paper shows possible alternatives for the water use efficiency in agriculture, based on guidelines developed in Europe and the United States, seeking to establish criteria for appropriate use ...

  17. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests.

    Science.gov (United States)

    McCleaf, Philip; Englund, Sophie; Östlund, Anna; Lindegren, Klara; Wiberg, Karin; Ahrens, Lutz

    2017-09-01

    Poly- and perfluoroalkyl substances (PFASs) have been detected in drinking water at relatively high concentrations throughout the world which has led to implementation of regulatory guidelines for specific PFASs in drinking water in several European countries and in the U.S. The Swedish National Food Agency has determined that the drinking water of over one third of the country's municipal consumers is at risk or already affected by PFAS contamination. The present study investigated the effects of perfluorocarbon chain length, functional group and isomer structure (branched or linear) on removal of multiple PFASs using granular activated carbon (GAC, Filtrasorb ® 400) and anion exchange (AE, Purolite ® A600) column experiments. The removal of 14 different PFASs, i.e. the C 3 C 11 , C 14 perfluoroalkyl carboxylic acids (PFCAs) (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA), perfluorooctane sulfonamide (FOSA), and the C 4 , C 6 , C 8 perfluoroalkyl sulfonic acids (PFSAs) (PFBS, PFHxS, PFOS), was monitored for a 217 day period. The results indicate the selective nature of PFAS removal as the absorbents are loaded with PFASs and dissolved organic carbon (DOC). A clear relationship between perfluorocarbon chain length and removal efficiency of PFASs using GAC and AE was found while PFASs with sulfonate functional groups displayed greater removal efficiency than those with carboxylate groups. Similarly, time to column breakthrough increased with increasing perfluorocarbon chain length and was greater for the PFSAs than the PFCAs for both GAC and AE. Shorter carbon chained PFASs such as PFBA, PFPeA, PFHxA showed desorption behavior and long-chained PFASs showed increased removal towards the end of the experiment indicating agglomeration or micelle development. Linear isomers of PFOS, PFHxS, and perfluorooctane sulfonamide (FOSA) had greater column removal efficiencies using GAC (and also for AE at greater bed volume throughput) than the branched

  18. Gas Exchanges and Stem Water Potential Define Stress Thresholds for Efficient Irrigation Management in Olive (Olea europea L.

    Directory of Open Access Journals (Sweden)

    Giulia Marino

    2018-03-01

    Full Text Available With climate change and decreased water supplies, interest in irrigation scheduling based on plant water status is increasing. Stem water potential (ΨSWP thresholds for irrigation scheduling in olive have been proposed, however, a physiologically-based evaluation of their reliability is needed. A large dataset collected at variable environmental conditions, growing systems, and genotypes was used to characterize the relation between ΨSWP and gas exchanges for olive. Based on the effect of drought stress on the ecophysiological parameters monitored, we described three levels of stress: no stress (ΨSWP above about −2 MPa, where the high variability of stomatal conductance (gs suggests a tight stomatal control of water loss that limit ΨSWP drop, irrigation volumes applied to overcome this threshold had no effect on assimilation but reduced intrinsic water use efficiency (iWUE; moderate-stress (ΨSWP between about −2.0 and −3.5 MPa, where iWUE can be increased without damage to the photosynthetic apparatus of leaves; and high-stress (ΨSWP below about −3.5 MPa, where gs dropped below 150 mmol m−2 s−1 and the intercellular CO2 concentration increased proportionally, suggesting non-stomatal limitation to photosynthesis was operative. This study confirmed that olive ΨSWP should be maintained between −2 and −3.5 MPa for optimal irrigation efficiency and to avoid harmful water stress levels.

  19. Principal component analysis to assess the efficiency and mechanism for enhanced coagulation of natural algae-laden water using a novel dual coagulant system.

    Science.gov (United States)

    Ou, Hua-Se; Wei, Chao-Hai; Deng, Yang; Gao, Nai-Yun; Ren, Yuan; Hu, Yun

    2014-02-01

    A novel dual coagulant system of polyaluminum chloride sulfate (PACS) and polydiallyldimethylammonium chloride (PDADMAC) was used to treat natural algae-laden water from Meiliang Gulf, Lake Taihu. PACS (Aln(OH)mCl3n-m-2k(SO4)k) has a mass ratio of 10 %, a SO4 (2-)/Al3 (+) mole ratio of 0.0664, and an OH/Al mole ratio of 2. The PDADMAC ([C8H16NCl]m) has a MW which ranges from 5 × 10(5) to 20 × 10(5) Da. The variations of contaminants in water samples during treatments were estimated in the form of principal component analysis (PCA) factor scores and conventional variables (turbidity, DOC, etc.). Parallel factor analysis determined four chromophoric dissolved organic matters (CDOM) components, and PCA identified four integrated principle factors. PCA factor 1 had significant correlations with chlorophyll-a (r=0.718), protein-like CDOM C1 (0.689), and C2 (0.756). Factor 2 correlated with UV254 (0.672), humic-like CDOM component C3 (0.716), and C4 (0.758). Factors 3 and 4 had correlations with NH3-N (0.748) and T-P (0.769), respectively. The variations of PCA factors scores revealed that PACS contributed less aluminum dissolution than PAC to obtain equivalent removal efficiency of contaminants. This might be due to the high cationic charge and pre-hydrolyzation of PACS. Compared with PACS coagulation (20 mg L(-1)), the removal of PCA factors 1, 2, and 4 increased 45, 33, and 12 %, respectively, in combined PACS-PDADMAC treatment (0.8 mg L(-1) +20 mg L(-1)). Since PAC contained more Al (0.053 g/1 g) than PACS (0.028 g/1 g), the results indicated that PACS contributed less Al dissolution into the water to obtain equivalent removal efficiency.

  20. Measuring domestic water use

    DEFF Research Database (Denmark)

    Tamason, Charlotte C.; Bessias, Sophia; Villada, Adriana

    2016-01-01

    Objective: To present a systematic review of methods for measuring domestic water use in settings where water meters cannot be used. Methods: We systematically searched EMBASE, PubMed, Water Intelligence Online, Water Engineering and Development Center, IEEExplore, Scielo, and Science Direct...... databases for articles that reported methodologies for measuring water use at the household level where water metering infrastructure was absent or incomplete. A narrative review explored similarities and differences between the included studies and provide recommendations for future research in water use....... Results: A total of 21 studies were included in the review. Methods ranged from single-day to 14-consecutive-day visits, and water use recall ranged from 12 h to 7 days. Data were collected using questionnaires, observations or both. Many studies only collected information on water that was carried...

  1. Alabama Water Use, 2005

    Science.gov (United States)

    Hutson, Susan S.; Littlepage, Thomas M.; Harper, Michael J.; Tinney, James O.

    2009-01-01

    Water is one of Alabama's most precious natural resources. It is a vital component of human existence and essential to the overall quality of life. Wise stewardship of this valuable resource depends on a continuing assessment of water availability and water use. Population growth in many parts of the State has resulted in increased competition for available water resources. This competition includes offstream uses, such as residential, agricultural, and industrial, and instream uses for maintenance of species habitat and diversity, navigation, power generation, recreation, and water quality. Accurate water-use information is required for sound management decisions within this competitive framework and is necessary for a more comprehensive understanding of the link between water use, water supply, and overall water availability. A study of water use during 2005 was conducted by the U.S. Geological Survey (USGS), in cooperation with the Alabama Department of Economic and Community Affairs, Office of Water Resources, Water Management Branch (ADECA-OWR), to provide water-use data for local and State water managers. The results of the study about the amount of water used, how it was used, and where it was used in Alabama have been published in 'Estimated use of water in Alabama in 2005' by Hutson and others, 2009, and is accessible on the Web at http://pubs.usgs.gov/sir/2009/5163 and available upon request as a CD-ROM through USGS and ADECA-OWR.

  2. Efficient removal of cobalt(II) and strontium(II) metals from water using ethylene diamine tetra-acetic acid functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Hany; Moustafa, Wafaa M. [Nuclar Fuel Cycle Department, Nuclear and Radiological Regulatory Authority (NRRA), Naser City, Cairo (Egypt); Farghali, Ahmed A.; El Rouby, Waleed M.A. [Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PASA), Beni-Suef University (Egypt); Khalil, Waleed F. [Nuclar Fuel Cycle Department, Nuclear and Radiological Regulatory Authority (NRRA), Naser City, Cairo (Egypt); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PASA), Beni-Suef University (Egypt)

    2017-12-04

    Graphene oxide (GO) with high specific surface area was prepared and functionalized with ethylene diamine tetra-acetic acid (EDTA). The as-prepared GO and the functionalized one (GO-EDTA) were characterized using high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and Raman spectroscopy. The as-prepared and EDTA functionalized GO were applied as adsorbent to remove strontium(II) and cobalt(II) from water. The results indicated that the prepared materials are efficient adsorbents for strontium(II) and cobalt(II) removal. The adsorption of Co{sup II} and Sr{sup II} under effects of contact time, temperature, and pH was investigated It is concluded that the maximum adsorption capacities of GO for Co{sup II} and Sr{sup II} were about 168 and 140 mg.g{sup -1}, whereas of GO-EDTA the values were about 197 and 158 mg.g{sup -1}, respectively. It is indicated that pH 6 and temperature 40 C are the best condition for Co{sup II} and Sr{sup II} removal from water. The application of Langmuir and Freundlich isotherms indicated that Langmuir isotherm is best fit for Co{sup II} and Sr{sup II} equilibrium adsorption. Adsorption kinetics were studied by applying pseudo first-order, pseudo second-order, and intraparticle diffusion models on the experimental data. The results proved that pseudo second-order model is the best represented adsorption kinetics. Appling the intraparticle diffusion regressions on the experimental data indicated that intraparticle diffusion involved in adsorption process, which was not the only rate-controlling step. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia

    Directory of Open Access Journals (Sweden)

    Emilie eEns

    2015-08-01

    Full Text Available Comparative studies of plant resource use and ecophysiological traits of invasive and native resident plant species can elucidate mechanisms of invasion success and ecosystem impacts. In the seasonal tropics of north Australia, the alien C4 perennial grass Andropogon gayanus (gamba grass has transformed diverse, mixed tree-grass savanna ecosystems into dense monocultures. To better understand the mechanisms of invasion, we compared resource acquisition and usage efficiency using leaf-scale ecophysiological and stand-scale growth traits of A. gayanus with a co-habiting native C4 perennial grass Alloteropsis semialata. Under wet season conditions, A. gayanus had higher rates of stomatal conductance, assimilation and water use, plus a longer daily assimilation period than the native species A. semialata. Growing season length was also ~2 months longer for the invader. Wet season measures of leaf scale water use efficiency (WUE and light use efficiency (LUE did not differ between the two species, although photosynthetic nitrogen use efficiency (PNUE was significantly higher in A. gayanus. By May (dry season the drought avoiding native species A. semialata had senesced. In contrast, rates of A. gayanus gas exchange was maintained into the dry season, albeit at lower rates that the wet season, but at higher WUE and PNUE, evidence of significant physiological plasticity. High PNUE and leaf 15N isotope values suggested that A. gayanus was also capable of preferential uptake of soil ammonium, with utilisation occurring into the dry season. High PNUE and fire tolerance in an N-limited and highly flammable ecosystem confers a significant competitive advantage over native grass species and a broader niche width. As a result A. gayanus is rapidly spreading across north Australia with significant consequences for biodiversity and carbon and retention.

  4. Managing water use

    International Nuclear Information System (INIS)

    Unterberger, G.L.

    1991-01-01

    This article addresses meeting and maintaining water pollution controls while keeping up with the new regulations. The topics discussed in the article include discharge regulations, stormwater discharges, wetlands regulation, water use, water-related programs, and keeping an inventory of water pollution regulations, especially those involving pre-approvals, permits or registrations

  5. Improving water use efficiency in drylands

    NARCIS (Netherlands)

    Stroosnijder, L.; Moore, D.; Alharbi, A.; Argaman, E.; Elsen, van den H.G.M.

    2012-01-01

    Drylands cover 41% of the global terrestrial area and 2 billion people use it for grazing and cropping. Food security is low owing to institutional and technical constraints. Absolute water scarcity and also the inability of crops to use available water are major technical issues. Significant

  6. Water use characteristics of a bambara groundnut ( Vigna ...

    African Journals Online (AJOL)

    Bambara groundnut is slow to establish and this has negative implications for total water use. Consideration of bambara groundnut as a water-efficient crop for dry areas will benefit from an understanding of water use efficiency and water use characteristics during establishment. We investigated whether there is an ...

  7. Comparative study of nitrogen fertilizer use efficiency of cotton grown under conventional and fertigation practices using 15N methodology

    International Nuclear Information System (INIS)

    Janat, M.; Somi, G.

    2002-01-01

    Nitrogen fertilization and irrigation methods are the key factors of yield increase. With proper management of these two factors a good production and protection of the environment could be attained at the same time. Field experiments were carried out at Hama (Tezeen's Agricultural Research Station) for four consecutive years 1995=1998. The objectives of this study were: Assessment of nitrogen fertilizer use efficiency (NFUE) under conventional and fertigation practices; Nitrogen requirements of cotton crop grown under fertigation practices: Comparative study of water use efficiency (WUE), and seed cotton yield of cotton crop grown under conventional and drip irrigation. Treatments consisted of five nitrogen rates for the fertigated cotton crop (0, 60, 120, 180 and 240 kg N ha -1 ). While of the surface irrigated cotton treatment only one recommended rate by MAAR was applied (180 kg N ha -1 ). Irrigation methods and N treatments were arranged in RBD. The soil water content and available soil nitrogen were monitored according to the standard procedures. The results revealed that fertigation of cotton under the given circumstances improved water use efficiency, nitrogen use efficiency, seed cotton yield, dry matter production, earliness and in some cases lint properties. Under fertigation practices 35-55% of the irrigation water was saved in comparison with surface irrigated cotton grown under the same condition. The seed cotton yield was increased by more than 50% relatively to the surface irrigated cotton. Furthermore, water use efficiency of the fertigated cotton was increased by almost 90 %. (author)

  8. Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest

    DEFF Research Database (Denmark)

    Wang, Sheng; Ibrom, Andreas; Bauer-Gottwein, Peter

    2018-01-01

    set were used to statistically explore the independent and joint effects of diffuse PAR on GPP, ET, incident light use efficiency (LUE), evaporative fraction (EF) and ecosystem water use efficiency (WUE). The independent and joint effects of CI were compared from global sensitivity analysis...... pressure saturation deficit played a major role for the joint influence of CI on LUE and EF. In the growing season from May to October, variation in CI accounts for 11.9%, 3.0% and 7.8% of the total variation of GPP, ET and transpiration, respectively. As the influence of CI on GPP is larger than...... PAR with plant canopies, the largest model improvements using CI for GPP and ET occurred during the growing season and for the transpiration component, as suggested by comparisons to sap flow measurements. Furthermore, our study suggests a potential biophysical mechanism, not considered in other...

  9. Eficiência do uso da água pelo meloeiro sob diferentes freqüências de irrigação Water use efficiency of the melon crop under different irrigation frequencies

    Directory of Open Access Journals (Sweden)

    Valdemício Ferreira de Sousa

    2000-01-01

    Full Text Available Objetivou-se, com este estudo, avaliar o efeito de cinco freqüências de irrigação por gotejamento, na maximização da produtividade e na eficiência do uso da água pelo meloeiro cultivado em solo arenoso de Tabuleiro Costeiro do Piauí. O experimento foi conduzido no Campo Experimental da Embrapa Meio-Norte, localizado no município de Parnaíba, PI, latitude 3º5'S longitude 41º47'W e altitude de 46,8 m. O delineamento experimental foi o de blocos ao acaso, com cinco tratamentos e seis repetições, em que os tratamentos foram: freqüências de irrigação de 0,50, 1,0, 2,0, 3,0 e 4,0 dias. Foram avaliadas as produtividades comercial e total e a eficiência do uso de água, constatando-se que a maior produtividade total (77.985 kg ha-1 e a máxima eficiência do uso da água (EUAEt pelo meloeiro (282,83 kg ha-1 mm-1 são obtidas com freqüência de irrigação de um dia. As freqüências de irrigação de 3 e 4 dias, ou superiores, não são recomendadas para o meloeiro e, se a água é escassa, utilizam-se irrigações com freqüência diária.The objective of this work was to evaluate the effect of five trickle irrigation frequencies to obtain high yields and maximum water use efficiency in a melon crop cultivated in sandy soil of the Coastal Tablelands of Piauí, Brazil. The experiment was carried out in an experimental area of Embrapa Meio-Norte in Parnaíba, Piauí State, Brazil, latitude 3º5' S, longitude 41º47' W and altitude 46.8 m. A randomized block with five treatments and six replications was used, with irrigation frequencies of 0.5, 1.0, 2.0, 3.0 and 4.0 days. The total and commercial yield and water use efficiency were evaluated. The highest total yield (77.985 kg ha-1 and the maximum water use efficiency by melon crop (282.83 kg ha-1 mm-1 were obtained with an irrigation frequency of one day. The irrigation frequencies of 3 and 4 days or higher are not recommended for the melon crop, and if the water is scarce an

  10. Environmental and societal consequences of a possible CO/sub 2/-induced climate change. Volume II, Part 8. Impacts of rising atmospheric carbon dioxide levels on agricultural growing seasons and crop water use efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J. E.

    1982-09-01

    The researchable areas addressed relate to the possible impacts of climate change on agricultural growing seasons and crop adaptation responses on a global basis. The research activities proposed are divided into the following two main areas of investigation: anticipated climate change impacts on the physical environmental characteristics of the agricultural growing seasons and, the most probable food crop responses to the possible changes in atmospheric CO/sub 2/ levels in plant environments. The main physical environmental impacts considered are the changes in temperature, or more directly, thermal energy levels and the growing season evapotranspiration-precipitation balances. The resulting food crop, commercial forest and rangeland species response impacts addressed relate to potential geographical shifts in agricultural growing seasons as determined by the length in days of the frost free period, thermal energy changes and water balance changes. In addition, the interaction of possible changes in plant water use efficiencies during the growing season in relationship to changing atmospheric CO/sub 2/ concentrations, is also considered under the scenario of global warming due to increases in atmospheric CO/sub 2/ concentration. These proposed research investigations are followed by adaptive response evaluations.

  11. Eucalyptus and Water Use in South Africa

    Directory of Open Access Journals (Sweden)

    Janine M. Albaugh

    2013-01-01

    Full Text Available The Eucalyptus genus yields high rates of productivity and can be grown across a wide range of site types and climates for products such as pulp, fuelwood, or construction lumber. In addition, many eucalypts have the ability to coppice, making this genus an ideal candidate for use as a biofuel feedstock. However, the water use of Eucalyptus is a controversial issue, and the impacts of these fast-growing trees on water resources are well documented. Regardless, the demand for wood products and water continues to rise, providing a challenge to increase the productivity of forest plantations within water constraints. This is of particular relevance for water-limited countries such as South Africa which relies on exotic plantations to meet its timber needs. Research results from water use studies in South Africa are well documented and legislation restrictions limit further afforestation. This paper outlines techniques used to quantify the water use of eucalypt plantations and provides recommendations on where to focus future research efforts. Greater insights into the water use efficiency of clonal material are needed, as certain eucalypt clones show fast growth and low water use. To better understand water use efficiency, estimates should be combined with monitoring of stand canopy structure and measurements of physiological processes.

  12. Spatial Patterns of Development Drive Water Use

    Science.gov (United States)

    Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.

    2018-03-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.

  13. Spatial patterns of development drive water use

    Science.gov (United States)

    Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.

  14. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem.

    Science.gov (United States)

    Wang, Minjuan; Xie, Beizhen; Fu, Yuming; Dong, Chen; Hui, Liu; Guanghui, Liu; Liu, Hong

    2015-12-01

    Although terrestrial CO2 concentrations [CO2] are not expected to reach 1000 μmol mol(-1) (or ppm) for many decades, CO2 levels in closed systems such as growth chambers and greenhouses can easily exceed this concentration. CO2 levels in life support systems (LSS) in space can exceed 10,000 ppm (1 %). In order to understand how photosynthesis in C4 plants may respond to elevated CO2, it is necessary to determine if leaves of closed artificial ecosystem grown plants have a fully developed C4 photosynthetic apparatus, and whether or not photosynthesis in these leaves is more responsive to elevated [CO2] than leaves of C3 plants. To address this issue, we evaluated the response of gas exchange, water use efficiency, and photosynthetic efficiency of PSII by soybean (Glycine max (L.) Merr., 'Heihe35') of a typical C3 plant and maize (Zea mays L., 'Susheng') of C4 plant under four CO2 concentrations (500, 1000, 3000, and 5000 ppm), which were grown under controlled environmental conditions of Lunar Palace 1. The results showed that photosynthetic pigment by the C3 plants of soybean was more sensitive to elevated [CO2] below 3000 ppm than the C4 plants of maize. Elevated [CO2] to 1000 ppm induced a higher initial photosynthetic rate, while super-elevated [CO2] appeared to negate such initial growth promotion for C3 plants. The C4 plant had the highest ETR, φPSII, and qP under 500-3000 ppm [CO2], but then decreased substantially at 5000 ppm [CO2] for both species. Therefore, photosynthetic down-regulation and a decrease in photosynthetic electron transport occurred by both species in response to super-elevated [CO2] at 3000 and 5000 ppm. Accordingly, plants can be selected for and adapt to the efficient use of elevated CO2 concentration in LSS.

  15. Evidence-based modelling of diverse plant water use strategies on stomatal and non-stomatal components under drought

    Science.gov (United States)

    zhou, S.; Prentice, C.; Medlyn, B. E.; Sabaté, S.

    2013-12-01

    Models disagree on how to represent effects of drought stress on plant gas exchange. Some models assume drought stress affects the marginal water use efficiency of plants (marginal WUE; i.e. the change in photosynthesis per unit of change in transpiration) whereas others assume drought stress acts directly on photosynthetic capacity. It is not clear whether either of these approaches is sufficient to capture the drought response, or whether the effect of drought varies among species and functional types. A collection of Eucalyptus and Quercus species derived from different hydro-climate habitats, in together with two European riparian species, were conducted with drought treatments respectively in Australia and Spain for three months. Measurements included net CO2 assimilation rate versus substomatal CO2 concentration (A-Ci) curves, fluorescence, and predawn leaf water potential at increasing levels of water stress. The correlations with quantitative plant traits of leaf, stomata, vessel, and wood density, leaf nitrogen content and 13C discrimination were also explored. We analysed the effect of drought effect on leaf gas exchange with a recently developed stomatal model that reconciles the empirical and optimal approaches on predicting optimal stomatal conductance. The model's single parameter g1 is a decreasing function of marginal WUE. The two genera showed consistence on the contrasting response patterns between species derived from mesic and arid habitats, which differed greatly in their estimated g1 values under moist conditions, and in the rate at which g1 declined with water stress. They also differed greatly in the predawn water potential at which apparent carboxylation capacity (apparent Vcmax) and mesophyll conductance (gm) declined most steeply, and in the steepness of this decline. Principal components analysis revealed a gradient in water relation strategies from sclerophyll species to malacophyll species. Malacophylls had higher g1, apparent Vcmax

  16. 43 CFR 418.26 - Charges for water use.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Charges for water use. 418.26 Section 418... and Management § 418.26 Charges for water use. The District must maintain a financing and accounting... provides reasonable financial incentives for the economical and efficient use of water. ...

  17. Soil water effect on crop growth, leaf gas exchange, water and radiation use efficiency of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel in semi-arid Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Danilo Scordia

    2015-12-01

    Full Text Available Great effort has been placed to identify the most suited bioenergy crop under different environments and management practices, however, there is still need to find new genetic resources for constrained areas. For instance, South Mediterranean area is strongly affected by prolonged drought, high vapour pressure deficit (VPD and extremely high temperatures during summertime. In the present work we investigated the soil water effect on crop growth and leaf gas exchange of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel, a perennial, rhizomatous, herbaceous grass. Furthermore, the net increase of biomass production per unit light intercepted [radiation use efficiency (RUE] and per unit water transpired [water use efficiency (WUE] was also studied. To this end a field trial was carried out imposing three levels of soil water availability (I100, I50 and I0, corresponding to 100%, 50% and 0% of ETm restutition under a semi-arid Mediterranean environment. Leaf area index (LAI, stem height, biomass dry matter yield, CO2 assimilation rate, and transpiration rate resulted significantly affected by measurement time and irrigation treatment, with the highest values in I100 and the lowest in I0. RUE was the highest in I100 followed by I50 and I0; on the other hand, WUE was higher in I0 than I50 and I100. At LAI values greater than 2.0, 85% photosynthetically active radiation was intercepted by the Saccharum stand, irrespective of the irrigation treatment. Saccharum spontaneum spp. aegyptiacum is a potential species for biomass production in environment characterized by drought stress, high temperatures and high VPD, as those of Southern Europe and similar semi-arid areas.

  18. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  19. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations

    Science.gov (United States)

    Robert M. Hubbard; Jose Stape; Michael G. Ryan; Auro C. Almeida; Juan Rojas

    2010-01-01

    Eucalyptus plantations occupy almost 20 million ha worldwide and exceed 3.7 million ha in Brazil alone. Improved genetics and silviculture have led to as much as a three-fold increase in productivity in Eucalyptus plantations in Brazil and the large land area occupied by these highly productive ecosystems raises concern over their...

  20. Water use implications of biofuel scenarios

    Science.gov (United States)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    (2) irrigation practices, (3) feedstock water use efficiency, and (4) the longer growing season and a predominance of rainfed cultivation of dedicated biofuel feedstocks. National-level total water use is lowest in the BAU scenario and highest in the RFS2 + LCFS scenario. Figure: Million acres converted to growing miscanthus (top) & switchgrass (bottom) under the RFS + LCFS scenario in 2035. Land use classes are crop pasture (blue), idle cropland (red-purple) & prime cropland (brown).

  1. Analysis of water use by gated communities in South Africa

    African Journals Online (AJOL)

    2018-01-12

    Jan 12, 2018 ... to develop a method to properly plan for efficient water infrastructure in GCs. Residential water use in general. Guidelines commonly used by planners and engineers to determine the average annual daily water demand (AADD) of residential properties, based on property size, are provided by the CSIR ...

  2. Productivity and water use by rain-fed early maturing Cassava (Manihot esculenta Crantz) varieties grown at different plant densities in a coastal savannah environment

    International Nuclear Information System (INIS)

    Amanor, Emmanuel Nartey

    2016-06-01

    The production of cassava (Manihot esculenta Crantz) under rain-fed conditions at the Kwabenya-Atomic area in the coastal savannah environment is constrained by low and erratic rainfall events. Improving cassava production in the area requires the use of cassava varieties which are efficient in the use of limited soil moisture. The objective of the study was to evaluate the response of two early maturing cassava varieties to three (3) planting densities to TDM, RY, and WUE. The actual evapotranspiration was also partitioned into crop transpiration and soil evaporation using LAI data. The field experiment was conducted at Biotechnology and Nuclear Agriculture Research Institute (BNARI) research farm, Atomic Energy Commission (GAEC), Kwabenya-Atomic in 2015. The split plot design in three replicates was used. The two (2) cassava varieties, Bankye Hemaa and Capevars Bankye, were assigned to the main plots and three (3) planting densities: 10,000, 13,333 and 20,000 plants ha"-1 to the subplots. Plants were sampled each month and moisture in the 120 cm soil profile monitored every two weeks using the neutron probe (CPN 503 Hydroprobe). Soil moisture data were used to estimate actual evapotranspiration (AET) using the water balance approach. Root yield (RY) for Bankye Hemaa and Capevars Bankye, ranged from 2.8 to 15.1 t/ha"-1 for the 10,000 plants ha"-1, 4.2 to 18.1 t/ha"-1 for the 13,333 plants ha"-1 and 5.1 to 21.3 t/ha"-1 for the 20,000 plants ha"-1. Additionally, water use efficiency in term of total dry matter (WUETDM ) for the two cassava varieties ranged from 1.7 to 11.6, 2.3 to 12.8 and 3.7 to 12.4 kg ha"-1 mm"-1 for the 10,000, 13,333 and 20,000 plants ha"-1 planting density, respectively. Bankye Hemaa grown at 20,000 plants ha"-1 produced the highest root yield of 21.3 t/ha"-1 and WUETDM of 12.4 kg ha"-1 mm"-1, because of the comparatively lower soil evaporation which led to increased available soil water for crop use and higher crop transpiration, leading to

  3. Water use efficiency at basin and farm scales

    Science.gov (United States)

    Ehsan Goodarzi; Lotfollah Ziaei; Saeid Eslamian

    2016-01-01

    The available water resources in basins are becoming scarce while demands for water are considerably increasing among various sectors due to economic and population growths. Water deficiency is becoming a main constraint for sustainable regional development and it is the primary motivation in creating water to supply user requirements in particular for agricultural ...

  4. Physiological response, molecular analysis and water use efficiency ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... sensor over the leaf lamina. In each plant ... The samples containing tubes were incubated at ... supernatant was decanted and transferred to a fresh tube. ..... Drain. Eng. 128: 267-277. Farshad G, Mohsen S, Peyman J (2008).

  5. Options for improving water use efficiency under worsening scarcity ...

    African Journals Online (AJOL)

    Following the political changes in the early 1990s, the South African government introduced a comprehensive reform process for the water sector with the goal of achieving an enhanced and more equitable water management system. This paper analyses the existing water allocation situations and applies a non-linear ...

  6. A preliminary investigation of the water use efficiency of sweet ...

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... ridges); sugary juice from its stalk (for making syrup or etha- nol); and bagasse and green leaves (as an ... switched off 3 weeks prior to the harvest date. The plants were harvested when the grain ..... sorghum yield is sensitive to planting date and low yields can result if the crop is planted too early (not cold ...

  7. Review of 'plant available water' aspects of water use efficiency ...

    African Journals Online (AJOL)

    processes in the soil, has greatly enhanced understanding of the system, ... and management strategies to combat excessive water losses by deep drainage. ... risk clay and duplex soils and high runoff losses, in-field rainwater harvesting ...

  8. Heat balance characteristics and water use efficiency of soybean community

    International Nuclear Information System (INIS)

    Lee, Y.S.; Im, J.N.

    1990-01-01

    A field experiment was conducted to study seasonal evapotranspiration above soybean canopy and its relationship with dry matter production by the Bowen ratio-energy balance method. The soybean ''Paldalkong'' was sown with the space of 40 * 10 cm at Suwon on May 27, 1988. The daily net radiation ranged from 59 to 76 percents of the total shortwave radiation under cloudless conditions, which was lower than cloud overcast condition with record 63 to 83 percents. The latent heat flux under overcast condition was sometimes larger than the sum of net radiation, implying transportation of energy by advection of ambient air

  9. Review of 'plant available water' aspects of water use efficiency ...

    African Journals Online (AJOL)

    ... enhanced understanding of the system, thereby enabling the formulation of a quantitative model relating the water supply from a layered soil profile to water demand; the formulation of logical quantitative definitions for crop-ecotope specific upper and lower limits of available water; the identification of the harmful rootzone ...

  10. Long-term Water Use Efficiency of Young Spruce Forest

    Czech Academy of Sciences Publication Activity Database

    Slípková, Romana; Pokorný, Radek

    2012-01-01

    Roč. 951, č. 1 (2012), s. 293-300 ISSN 0567-7572. [International Workshop On Sap Flow /8./. Volterra, 08.05.2011-12.05.2011] R&D Projects: GA MŽP(CZ) SP/2D1/70/08; GA MŽP(CZ) SP/2D1/93/07; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : transpiration * total aboveground biomass increment * growth dynamic Subject RIV: EH - Ecology, Behaviour

  11. A Benchmarking System for Domestic Water Use

    Directory of Open Access Journals (Sweden)

    Dexter V. L. Hunt

    2014-05-01

    Full Text Available The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination of the following: occupancy rates (1 to 4; roof size (12.5 m2 to 100 m2; garden size (25 m2 to 100 m2 and geographical location (North West, Midlands and South East, UK with yearly temporal effects (i.e., rainfall and temperature. Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The carbon and water cycles of terrestrial ecosystems, which are strongly coupled via water use efficiency (WUE), are influenced by global climate change. To explore the relationship between the carbon and water cycles and predict the effect of climate change on terrestrial ecosystems, it is necessary to study the WUE in ...

  13. Reduction of plant water consumption through anti-transpirants foliar application in tomato plants (Solanum lycopersicum L.)

    Science.gov (United States)

    Optimizing water use efficiency (WUE) is a crucial goal. However, water savings must not be made at the expense of yield and fruit quality in order to secure economical sustainability for producers. The impact of different anti-transpirants (ATS) on WUE, water consumption (WC), net carbon assimilati...

  14. Modeling patterns of hot water use in households

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

    1996-11-01

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  15. Modeling patterns of hot water use in households

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  16. The Effects of International Trade on Water Use.

    Science.gov (United States)

    Kagohashi, Kazuki; Tsurumi, Tetsuya; Managi, Shunsuke

    2015-01-01

    The growing scarcity of water resources worldwide is conditioned not only by precipitation changes but also by changes to water use patterns; the latter is driven by social contexts such as capital intensity, trade openness, and income. This study explores the determinants of water use by focusing on the effect of trade openness on the degree to which water is withdrawn and consumed. Previous studies have conducted analyses on the determinants of water use but have ignored the endogeneity of trade openness. To deal with this endogeneity problem, we adopt instrumental variable estimation and clarify the determinants of water use. The determinants of water use are divided into scale, technique, and composition effects. Calculating each trade-induced effect, we examine how trade openness affects the degree of water use. Our results show that while trade has a positive effect on water withdrawal/consumption through trade-induced scale effects and direct composition effects, the trade-induced technique and the indirect composition effect, both of which exhibit a negative sign, counteract the scale effect and the direct composition effect, resulting in reduced water withdrawal/consumption. The overall effect induced by trade is calculated as being in the range of -1.00 to -1.52; this means that the overall effect of a 1% increase in the intensity of trade openness reduces the degree of water withdrawal/consumption by roughly 1.0-1.5%, on average. This result indicates that international bilateral trade would promote efficient water use through the diffusion of water-saving technologies and the reformation of industry composition.

  17. Citrus water use in South Africa

    CSIR Research Space (South Africa)

    Vahrmeijer, JT

    2012-09-01

    Full Text Available scheduling is needed to justify the quantity of water needed for the production of citrus. Models, which are formidable tools to predict water use and crop performance, are therefore vital to provide accurate estimates of citrus water use across different...

  18. Understanding the dynamics of citrus water use

    CSIR Research Space (South Africa)

    Taylor, NJ

    2012-12-01

    Full Text Available The quantification of water use of citrus orchards is important in order to prevent stress developing in the orchard and to avoid wasting precious water resources. Measurement of citrus orchard water use is not possible under all environ-mental...

  19. nteraction of nutrient resource and crop diversity on resource use efficiency in different cropping systems

    Directory of Open Access Journals (Sweden)

    E azizi

    2016-05-01

    Full Text Available Introduction Conventional operations in fields, soil and water management are not efficient and loss of and damage to the environment are considerable (Lal, 2000. Crop diversity and understanding the complex interactions between environmental and socioeconomic factors are approaches to make better use of limited resources (Tengberg et al., 1998. The most diverse ecosystems have a higher production under environment stress conditions compared with ecosystems with low diversity due to the better efficiency in the use of water, radiation and nutrients (Hulugalle & al, 1986; Walker & Ogindo, 2003. Materials and Methods In order to investigate the effects of crop diversity and nutrient source on resource use efficiency, a split plot experiment was conducted based on complete randomized blocks with 3 replications at the Agricultural Research Station, the Ferdowsi University of Mashhad, Iran, during 2006 and 2007. The treatments included manure and chemical fertilizers as the main plots and intercropping of 3 soybean varieties (Williams, Sahar and Gorgan3, intercropping of 3 Millet species (common millet, foxtail millet and pearl millet, intercropping of millet, soybean and sesame (Sesamum indicum and intercropping of millet, sesame, fenugreek (Trigonella foenum-graecum and ajowan (Trachyspermum ammi as sub plots. Results and Discussion The results indicated that in the first year, intercropping of 3 Millet species and intercropping of millet, soybean and sesame showed the highest water use efficiency (WUE based on biological yield. In the second year, intercropping of 3 millet species showed the highest WUE based on biological yield. The highest concentrations of nitrogen, phosphorous and potassium in crop tissues were observed in intercropping of 3 soybean varieties and intercropping of millet, soybean and sesame. In the first year, intercropping of 3 soybean varieties showed the highest nutrient use efficiency (NUE. In the second year, intercropping

  20. Aerial thermal images to assess irrigation efficiency in 'Vitis vinifera' cv. Albariño

    Science.gov (United States)

    Gonzalez, Xesús Pablo; Fandiño, María; Rey, Benjamín J.; José Cancela, Javier

    2017-04-01

    Canopy temperature was defined as key data to irrigation management and to detect crop water stress (Jackson, 1982). Recently, temperature camera was installed on board in a Unmanned Aerial Vehicle (UAV), thus heterogeneity within field could be determined. Pereira et al. (2012) have defined the conceptual and terminological study of crop water use indicators, mainly water use efficiency (WUE) and water productivity (WP). Actually, it is crucial achieve higher WP and WUE, where crop yield variability between years must be reduced with the smallest irrigation water, but with a correct management of crop water stress during the season. In this study, Albariño cultivar grapevine, priority in Galicia (Spain) in Designation of Origen 'Rías Baixas', was assessed in relation to water productivity index, focus on irrigation treatments aspects, during 2016. Albariño vineyard was planted in 1996 on 110-Richter at a spacing of 3 × 2 m (1667 vines ha-1) (41°57 6 N, 8°49 26 W, elevation 101 m). Vines were trained to a vertical trellis system on a Guyot oriented in the East-West direction. Three irrigation treatments were applied: irrigation from budburst to maturation (T1), from flowering to maturation (T2), and from veraison to maturation (T3), moreover a rain-fed treatment was implemented. All WP index was referred to farm yield level (kg ha-1); where the denominator applied to WP TWUfarm, introduced rainfall and irrigation depth; to WP Irrig, only irrigation depth applied; was used. Moreover, crop water stress index (CWSI) was used to determine homogenize areas within experimental plot, using an UAV with a thermal camera (ThermoMAP, senseFly, SW) to achieve a final map with 14 cm per pixel resolution. During August 11th, at the end of veraison, camera was installed in an 'eBee Ag' UAV (senseFly, SW) with a median flight altitude of 75 m over ground level. Yield per hectare were recorded and total irrigation depth per treatment during the growing season from March to

  1. O aumento da rentabilidade do milho no Minho: eficiência do uso da água e redução dos custos associados à rega e à fertilização Yield increase in maize production in the Minho region: water use efficiency and cost reduction related to irrigation and fertilization

    Directory of Open Access Journals (Sweden)

    Jorge Manuel Ferreira da Silva Agostinho

    2011-01-01

    Full Text Available No Minho, a rega e a fertilização têm um peso importante (44 a 57% nos custos da actividade milho. A simulação do balanço hídrico do solo e da equação simplificada do balanço de N aumentaram a rentabilidade do milho (menos 36% de N de fertilização e minimizaram os fluxos de lixiviação. A rega gota-a-gota aumentou a eficiência média do uso da água (66% para a rega tradicional e 43% para a aspersão. A fita gotejadora sem bombagem obteve uma uniformidade de rega de 87% e 45% de área molhada. Até 0,75 hectares, o sistema de rega mais rentável é a fita gotejadora sem bombagem (por gravidade. A partir de 0,75 hectares é mais rentável a aspersão com "canhão" amovível. A máquina-enroladora só é mais rentável que a fita gotejadora sem bombagem a partir de 1,8 hectares. A partir de 3,5 hectares é indiferente a adopção da máquina-enroladora e do "canhão" amovível.In the Minho region, the irrigation and the fertilization are the most important production factors (44 to 57% of the total cost in the maize. Soil water balance simulation and the simplified equation of the N balance have increased maize profitability (less 36% of N fertilization and minimized the leaching flows. The use of drip irrigation increased the average efficiency of water use (66% for traditional irrigation and 43% for the aspersion methods. The drip tape without pumping led to a uniformity of irrigation of 87% and 45% of wet area. Up to 0,75 hectares, the most cost efficient irrigation system is the drip tape without pumping (by gravity. From 0,75 hectares, the aspersion with portable rain-gun is more cost efficient . From 1,8 hectares, the hose-reel machine alone is more cost efficient than the drip tape without pumping. From 3,5 hectares, the adoption of the hose-reel machine and the portable rain-gun is indifferent.

  2. CARBON ISOTOPE DISCRIMINATION AND GROWTH RESPONSE TO STAND DENSITY REDUCTIONS IN OLD PINUS PONDEROSA TREES

    Science.gov (United States)

    Carbon isotope ratios ( 13C) of tree rings are commonly used for paleoclimatic reconstruction and for inferring canopy water-use efficiency (WUE). However, the responsiveness of carbon isotope discrimination ( ) to site disturbance and resource availability has only rarely been ...

  3. Estimated water use in Puerto Rico, 2010

    Science.gov (United States)

    Molina-Rivera, Wanda L.

    2014-01-01

    Water-use data were aggregated for the 78 municipios of the Commonwealth of Puerto Rico for 2010. Five major offstream categories were considered: public-supply water withdrawals and deliveries, domestic and industrial self-supplied water use, crop-irrigation water use, and thermoelectric-power freshwater use. One instream water-use category also was compiled: power-generation instream water use (thermoelectric saline withdrawals and hydroelectric power). Freshwater withdrawals for offstream use from surface-water [606 million gallons per day (Mgal/d)] and groundwater (118 Mgal/d) sources in Puerto Rico were estimated at 724 million gallons per day. The largest amount of freshwater withdrawn was by public-supply water facilities estimated at 677 Mgal/d. Public-supply domestic water use was estimated at 206 Mgal/d. Fresh groundwater withdrawals by domestic self-supplied users were estimated at 2.41 Mgal/d. Industrial self-supplied withdrawals were estimated at 4.30 Mgal/d. Withdrawals for crop irrigation purposes were estimated at 38.2 Mgal/d, or approximately 5 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were estimated at 556 Mgal/d and saline instream surface-water withdrawals for cooling purposes by thermoelectric-power facilities was estimated at 2,262 Mgal/d.

  4. A system dynamic model to estimate hydrological processes and water use in a eucalypt plantation

    Science.gov (United States)

    Ying Ouyang; Daping Xu; Ted Leininger; Ningnan Zhang

    2016-01-01

    Eucalypts have been identified as one of the best feedstocks for bioenergy production due to theirfast-growth rate and coppicing ability. However, their water use efficiency along with the adverse envi-ronmental impacts is still a controversial issue. In this study, a system dynamic model was developed toestimate the hydrological processes and water use in a eucalyptus...

  5. Demanda hídrica e eficiência do uso de água da cana-de-açúcar irrigada no semiárido brasileiro Water requirement and efficiency of water use of irrigated sugarcane in semi-arid Brazil

    Directory of Open Access Journals (Sweden)

    Thieres G. F. da Silva

    2011-12-01

    Full Text Available Este trabalho objetivou realizar uma análise da eficiência do uso de água em um sistema de produção de cana-de-açúcar irrigada no Submédio do Vale do São Francisco, Brasil. Indicadores que consideram a resposta produtiva da cultura e o desempenho de aplicação de água no sistema de produção foram utilizados e calculados por meio de dados de biomassa seca acumulada, rendimento industrial e a partir dos valores de evapotranspiração de referência (ETo, evapotranspiração da cultura (ETc e do volume de água que entrou no sistema de produção por precipitação e irrigação (P + I. Verificou-se que a maior eficiência do uso de água pela cultura ocorreu entre o sétimo e o oitavo meses produtivos em virtude do aumento da partição de biomassa para os colmos e do suprimento de radiação e, ainda, da redução da ETc em resposta ao tombamento das plantas. Os indicadores utilizados demonstraram que a demanda de água da cultura foi suprida adequadamente em relação à evapotranspiração máxima. A cana-de-açúcar apresentou uma eficiência de produção de 9,49 kg de colmos, 1,22 kg de açúcar e 875,23 mL de álcool por m3 de ETc e 5,36 kg de colmos, 0,69 kg de açúcar e 494,14 ml de álcool por m3 de P+I.The objective of this work was to accomplish an analysis of the water use efficiency in a production system of irrigated sugarcane located in the Lower-Middle São Francisco river basin, Brazil. Indicators based on the crop yield and the water application performance in the production system were used. These indicators were calculated through accumulated dry biomass, industrial yield data and through the values of reference evapotranspiration, crop evapotranspiration and the water volume that entered in the system by rain and irrigation (P+I. It was verified that, the highest water use efficiency of crop occured between 7th and 8th month, due to increase in the stalk biomass partition and radiation supply, and due to

  6. An Agent Based Model of Household Water Use

    Directory of Open Access Journals (Sweden)

    Clinton J. Andrews

    2013-07-01

    Full Text Available Households consume a significant fraction of total potable water production. Strategies to improve the efficiency of water use tend to emphasize technological interventions to reduce or shift water demand. Behavioral water use reduction strategies can also play an important role, but a flexible framework for exploring the “what-ifs” has not been available. This paper introduces such a framework, presenting an agent-based model of household water-consuming behavior. The model simulates hourly water-using activities of household members within a rich technological and behavioral context, calibrated with appropriate data. Illustrative experiments compare the resulting water usage of U.S. and Dutch households and their associated water-using technologies, different household types (singles, families with children, and retired couples, different water metering regimes, and educational campaigns. All else equal, Dutch and metered households use less water. Retired households use more water because they are more often at home. Water-saving educational campaigns are effective for the part of the population that is receptive. Important interactions among these factors, both technological and behavioral, highlight the value of this framework for integrated analysis of the human-technology-water system.

  7. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    The results revealed that the water use efficiency (WUE) and irrigation water use efficiency (IWUE) were typically higher in the AIS than in the conventional irrigation control system (CIS). Under the AIS treatment, the WUE and IWUE values were 1.64 and 1.37 k·gm-3 for wheat, and 7.50 and 6.50 kg·m-3 for tomato crops; ...

  8. The effect of nitrogen and sulphur on the agronomical and water use ...

    African Journals Online (AJOL)

    The effect of nitrogen and sulphur on the agronomical and water use efficiencies of canola (Brassica napus L.) grown in selected localities of the Western Cape province, South Africa. Wonder Ngezimana, Gert A. Agenbag ...

  9. Evapotranspiração, coeficientes de cultivo e eficiência do uso da água da cultura do pimentão em diferentes sistemas de cultivo = Evapotranspiration, crop coefficients and water use efficiency of the bell pepper crop in different cropping systems

    Directory of Open Access Journals (Sweden)

    Adilson Pacheco de Souza

    2011-01-01

    Full Text Available O objetivo deste trabalho foi determinar a evapotranspiração real (ETc, os coeficientes de cultivo (kc e a eficiência do uso da água (EUA da cultura do pimentão cultivado em plantio direto (PD e plantio convencional (PC, na condição da baixada fluminense, Estado do Rio de Janeiro. O manejo da irrigação e a quantificação da demandaevapotranspirométrica foram realizados mediante o cálculo diário do balanço de água no solo, utilizando-se a técnica da TDR e dados coletados em estação meteorológica automática. Verificou-se que a ETc acumulada aos 181 dias após transplantio (DAT foi de 363 e de 335 mm, para PC e PD, respectivamente. Os kc’s encontrados foram de 0,32; 1,18 e 0,77 e de 0,34; 1,05 e 0,86, para os sistemas PC e PD, nas fases de crescimento inicial (0-40 DAT, média (81-120 DAT e final (181 DAT, respectivamente. Os valores encontrados de kc para a cultura do pimentão para o sistema PC foram semelhantes aos valorespreconizados pela FAO, sendo, no entanto, não-recomendados para PD. Considerando-se a lâmina total aplicada (chuva e irrigação, os valores médios de EUA foram de 3,9 e 4,5 kg m-3 para PC e PD, respectivamente.The objective of this study was to determine the crop evapotranspiration (ETc, crop coefficients (kc and water-use efficiency (EUA of the bell pepper crop in the no till system (PD and conventional tillage system (PC, in the Fluminense Valley, Rio de Janeiro State, Brazil. The irrigation was managed and the evapotranspiration demand quantified by calculating the daily soil water balance using the TDR technique and data collected in an automatic meteorological station. It was verified that the accumulated ETc at 181 days after planting (DAT was 363 and 335 mmfor PD and PC, respectively. The kcs obtained were 0.32, 1.18 and 0.77 and 0.34, 1.05 and 0.86, for the PD and PC systems, respectively, in the initial (0-40 DAP, middle (81-120 DAP and final (181 DAP growth phases, respectively. The kc values

  10. Water use in Georgia by county for 2010 and water-use trends, 1985–2010

    Science.gov (United States)

    Lawrence, Stephen J.

    2015-12-16

    Water use and water withdrawals and returns in 2010 are estimated for each major river basin, principal aquifer, water-planning region, and county in Georgia using data obtained from various Federal and State agencies and local sources. Offstream water use in 2010 is estimated for the categories of public supply, domestic, commercial, industrial, mining, irrigation, livestock, aquaculture, and thermoelectric power. Water-use trends for 1985 to 2010 are also shown.

  11. Trade Openness and Domestic Water Use

    Science.gov (United States)

    Dang, Qian; Konar, Megan

    2018-01-01

    We contribute to the debate over globalization and the environment by asking, what is the impact of trade on national water use? To address this question, we employ econometric methods to quantify the causal relationship between trade openness and water use. Specifically, we use the instrumental variables methodology to evaluate the impact of trade openness on domestic water withdrawals in agriculture and industry. We find that trade openness does not have a significant impact on total or industrial water withdrawals. However, we show that one percentage point increase in trade openness leads to a 5.21% decrease in agricultural water withdrawals. We find that trade openness reduces water use in agriculture primarily through the intensive margin effect, by leading farmers to produce more with less water, such as through the adoption of technology. We do not find evidence for extensive margin or crop mix impacts on agricultural water withdrawals. Significantly, these results demonstrate that trade openness leads to less water use in agriculture. This finding has broad scientific and policy relevance as we endeavor to untangle causal relationships in the complex global food system and develop policies to achieve water and food security.

  12. Army industrial, landscaping, and agricultural water use

    Energy Technology Data Exchange (ETDEWEB)

    Stoughton, Kate McMordie [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Boyd, Brian K. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  13. Spatial patterns of development drive water use

    Science.gov (United States)

    G. M. Sanchez; J. W. Smith; A. Terando; G. Sun; R. K. Meentemeyer

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land...

  14. Eficiência de uso da água e produção de repolho sobre diferentes quantidades de palhada em plantio direto Water use efficiency and cabbage production under no-tillage using different rates of crop residues

    Directory of Open Access Journals (Sweden)

    Waldir Aparecido Marouelli

    2010-04-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito do sistema de plantio direto (PD sobre diferentes quantidades de palhada, na eficiência de uso da água e na produção de repolho. Foram utilizadas quatro quantidades de palhada de milho sobre um Latossolo Vermelho de textura argilosa (0,0, 4,5, 9,0, 13,5 Mg ha-1 de matéria seca, com o sistema de plantio convencional (PC como controle. O delineamento experimental utilizado foi o de blocos ao acaso com três repetições. O estande de plantas, a produtividade, a massa de matéria fresca, o diâmetro, a altura e a compacidade de cabeças de repolho não foram afetados significativamente pelos tratamentos. Houve uma redução de até 13% na lâmina líquida de água aplicada durante o ciclo do repolho cultivado em sistema de PD com palhada, quando comparada à utilizada em tratamentos sem palhada. Durante os primeiros 30 dias após o transplante de mudas, a economia de água chegou a 28%. O índice de produtividade da água em sistema de PD apresentou incremento linear com o aumento da quantidade de palhada utilizada, e foi até 21% maior que no sistema de PC.The objective of this work was to assess the effect of no-tillage production system (PD using different rates of crop residues on cabbage water use efficiency and yield. Four rates of corn crop residues (0.0, 4.5, 9.0, 13.5 Mg ha-1 of dry matter were tested in a clayed Latossolo Vermelho (Rhodic Haplustox, using the conventional tillage system (PC as control. A completely randomized block design, with three replications was used. Cabbage stand, yield, fresh matter mass, diameter, height, and head compactness were not significantly affected by treatments. The total water depth applied along the entire crop cycle in PD treatments was up to 13% smaller than the treatments without residues. Water savings during the 30 days following transplanting reached 28%. The water productivity index increased linearly with crop residue rates under PD

  15. Water Use in Georgia by County for 2005; and Water-Use Trends, 1980-2005

    Science.gov (United States)

    Fanning, Julia L.; Trent, Victoria P.

    2009-01-01

    Water use for 2005 for each county in Georgia was estimated using data obtained from various Federal and State agencies and local sources. Total consumptive water use also was estimated for each county in Georgia for 2005. Water use is subdivided according to offstream and instream use. Offstream use is defined as water withdrawn or diverted from a ground- or surface-water source and transported to the place of use. Estimates for offstream water use include the categories of public supply, domestic, commercial, industrial, mining, irrigation, livestock, aquaculture, and thermoelectric power. Instream use is that which occurs within a stream channel for such purposes as hydroelectric-power generation, navigation, water-quality improvement, fish propagation, and recreation. The only category of instream use estimated was hydroelectric-power generation. Georgia law (the Georgia Ground-Water Use Act of 1972 and the Georgia Water Supply Act of 1978 [Georgia Department of Natural Resources, 2008a,b]) requires any water user who withdraws more than 100,000 gallons per day on a monthly average to obtain a withdrawal permit from the Georgia Environmental Protection Division. Permit holders generally must report their withdrawals by month. The Georgia Water-Use Program collects the reported information under the withdrawal permit system and the drinking-water permit system and stores the data in the Georgia Water-Use Data System.

  16. PUBLIC PARTICIPATION AND WATER USE RIGHTS

    Directory of Open Access Journals (Sweden)

    Phillipa King

    2015-11-01

    Full Text Available The conservation and protection of water resources is paramount in the safeguarding of environmental rights and the attainment of sustainable development in South Africa. Although the National Water Act 36 of 1998 (the NWA seeks to provide a framework for ensuring the sustainable use of water resources, its application has been hindered by capacity and enforcement constraints, a legacy of water pollution (primarily as a result of mining and industrial activities, and poor resource management. To aggravate this situation, the difficulties in effectively implementing the NWA are exacerbated by inadequate public participation in water use licensing processes. Public participation in environmental decision-making has increasingly received recognition for its role in ensuring administrative justice and the protection of environmental rights. While environmental legislation (in many cases sets out procedures for ensuring that public views are taken into account in environmental decision-making processes, the judiciary has also recognised the pivotal role of public engagement in ensuring administrativ