WorldWideScience

Sample records for water-stressed barley leaves

  1. AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    A. Altinkut

    2003-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP assay is an efficient method for the identification of molecular markers, useful in the improvement of numerous crop species. Bulked Segregant Analysis (BSA was used to identify AFLP markers associated with water-stress tolerance in barley, as this would permit rapid selection of water-stress tolerant genotypes in breeding programs. AFLP markers linked to water-stress tolerance was identified in two DNA pools (tolerant and sensitive, which were established using selected F2 individuals resulting from a cross between water-stress-tolerant and sensitive barley parental genotypes, based on their paraquat (PQ tolerance, leaf size, and relative water content (RWC. All these three traits were previously shown to be associated with water-stress tolerance in segregating F2 progeny of the barley cross used in a previous study. AFLP analysis was then performed on these DNA pools, using 40 primer pairs to detect AFLP fragments that are present/absent, respectively, in the two pools and their parental lines. One separate AFLP fragment, which was present in the tolerant parent and in the tolerant bulk, but absent in the sensitive parent and in the sensitive bulk, was identified. Polymorphism of the AFLP marker was tested among tolerant and sensitive F2 individuals. The presence of this marker that is associated with water-stress tolerance will greatly enhance selection for paraquat and water-stress tolerant genotypes in future breeding programs.

  2. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley.

    Science.gov (United States)

    Suprunova, Tatiana; Krugman, Tamar; Distelfeld, Assaf; Fahima, Tzion; Nevo, Eviatar; Korol, Abraham

    2007-05-01

    Drought is one of the most severe stresses limiting plant growth and yield. Genes involved in water stress tolerance of wild barley (Hordeum spontaneoum), the progenitor of cultivated barley, were investigated using genotypes contrasting in their response to water stress. Gene expression profiles of water-stress tolerant vs. water-stress sensitive wild barley genotypes, under severe dehydration stress applied at the seedling stage, were compared using cDNA-AFLP analysis. Of the 1100 transcript-derived fragments (TDFs) amplified about 70 displayed differential expression between control and stress conditions. Eleven of them showed clear difference (up- or down-regulation) between tolerant and susceptible genotypes. These TDFs were isolated, sequenced and tested by RT-PCR. The differential expression of seven TDFs was confirmed by RT-PCR, and TDF-4 was selected as a promising candidate gene for water-stress tolerance. The corresponding gene, designated Hsdr4 (Hordeum spontaneum dehydration-responsive), was sequenced and the transcribed and flanking regions were determined. The deduced amino acid sequence has similarity to the rice Rho-GTPase-activating protein-like with a Sec14 p-like lipid-binding domain. Analysis of Hsdr4 promoter region that was isolated by screening a barley BAC library, revealed a new putative miniature inverted-repeat transposable element (MITE), and several potential stress-related binding sites for transcription factors (MYC, MYB, LTRE, and GT-1), suggesting a role of the Hsdr4 gene in plant tolerance to dehydration stress. Furthermore, the Hsdr4 gene was mapped using wild barley mapping population to the long arm of chromosome 3H between markers EBmac541 and EBmag705, within a region that previously was shown to affect osmotic adaptation in barley.

  3. Identification of Water Stress in Citrus Leaves Using Sensing Technologies

    Directory of Open Access Journals (Sweden)

    Reza Ehsani

    2013-11-01

    Full Text Available Water stress is a serious concern in the citrus industry due to its effect on citrus quality and yield. A sensor system for early detection will allow rapid implementation of control measures and management decisions to reduce any adverse effects. Laser-induced breakdown spectroscopy (LIBS presents a potentially suitable technique for early stress detection through elemental profile analysis of the citrus leaves. It is anticipated that the physiological change in plants due to stress will induce changes in the element profile. The major goal of this study was to evaluate the performance of laser-induced breakdown spectroscopy as a method of water stress detection for potential use in the citrus industry. In this work, two levels of water stress were applied to Cleopatra (Cleo mandarin, Carrizo citrange, and Shekwasha seedlings under the controlled conditions of a greenhouse. Leaves collected from the healthy and stressed plants were analyzed using LIBS, as well as with a spectroradiometer (visible-near infrared spectroscopy and a thermal camera (thermal infrared. Statistical classification of healthy and stressed samples revealed that the LIBS data could be classified with an overall accuracy of 80% using a Naïve-Bayes and bagged decision tree-based classifiers. These accuracies were lower than the classification accuracies acquired from visible-near infrared spectra. An accuracy of 93% and higher was achieved using a bagged decision tree with visible-near infrared spectral reflectance data.

  4. Metabolite Profiling of Barley Grains Subjected to Water Stress: To Explain the Genotypic Difference in Drought-Induced Impacts on Malting Quality

    Directory of Open Access Journals (Sweden)

    Xiaojian Wu

    2017-09-01

    Full Text Available Grain weight and protein content will be reduced and increased, respectively, when barley is subjected to water stress after anthesis, consequently deteriorating the malt quality. However, such adverse impact of water stress differs greatly among barley genotypes. In this study, two Tibetan wild barley accessions and two cultivated varieties differing in water stress tolerance were used to investigate the genotypic difference in metabolic profiles during grain-filling stage under drought condition. Totally, 71 differently accumulated metabolites were identified, including organic acids, amino acids/amines, and sugars/sugar alcohols. Their relative contents were significantly affected by water stress for all genotypes and differed distinctly between the wild and cultivated barleys. The principal component analysis of metabolites indicated that the Tibetan wild barley XZ147 possessed a unique response to water stress. When subjected to water stress, the wild barley XZ147 showed the most increase of β-amylase activity among the four genotypes, as a result of its higher lysine content, less indole-3-acetic acid (IAA biosynthesis, more stable H2O2 homeostasis, and more up-regulation of BMY1 gene. On the other hand, XZ147 had the most reduction of β-glucan content under water stress than the other genotypes, which could be explained by the faster grain filling process and the less expression of β-glucan synthase gene GSL7. All these results indicated a great potential for XZ147 in barley breeding for improving water stress tolerance.

  5. THE EFFECT OF WATER STRESS ON SOME TRAITS OF WINTER BARLEY CULTIVARS DURING EARLY STAGES OF PLANT GROWTH

    Directory of Open Access Journals (Sweden)

    Smiljana Goreta Ban

    2017-01-01

    Full Text Available We conducted research on the effects of exposing barley plants to short water stress deficiency through their early growth stage. The measurements and parallel analyses of relative water content (RWC, the mass of the whole plant, leaf mass, root percentage, total root length and length of root fractions with plants exposed to stress (water deficit and with plants which were not exposed to water deficit have been conducted. Ten varieties were included in this research. The overall average of relative water content (RWC measured in winter barley varieties was 97.5% under non-stressful conditions, and 66.1% under stressful conditions. An average difference between non-stressful and stressful conditions of plant mass was 61.2 mg, leaf mass 42.5 mg, RWC 31.4%, root mass 18.5 mg and total root length 129 cm. Relative losses under effect of water stress were lower at smaller (finer root fractions. Significant differences among the examined barley varieties cultivated under or without the water stress were found for plant mass, leaf mass, root mass, total root length and root fractions. Varieties with the lowest losses in leaf and plant mass are Titan, Arturio and Bingo. Also, the varieties Titan, Bingo and Rex had the lowest losses of root length and mass under water stress during the early growth stage.

  6. Cell biological mechanism for triggering of ABA accumulation under water stress in Vicia faba leaves.

    Science.gov (United States)

    Zhang, D; He, F; Jia, W

    2001-08-01

    Water stress-induced ABA accumulation is a cellular signaling process from water stress perception to activation of genes encoding key enzymes of ABA biosynthesis, of which the water stress-signal perception by cells or triggering mechanism of the ABA accumulation is the center in the whole process of ABA related-stress signaling in plants. The cell biological mechanism for triggering of ABA accumulation under water stress was studied in leaves of Vicia faba. Mannitol at 890 mmol * kg(-1) osmotic concentration induced an increase of more than 5 times in ABA concentration in detached leaf tissues, but the same concentration of mannitol only induced an increase of less than 40 % in ABA concentration in protoplasts. Like in detached leaf tissues, ABA concentration in isolated cells increased more than 10 times under the treatment of mannitol at 890 mmol * kg(-1) concentration, suggesting that the interaction between plasmalemma and cell wall was essential to triggering of the water stress-induced ABA accumulation. Neither Ca(2+)-chelating agent EGTA nor Ca(2+)channel activator A23187 nor the two cytoskeleton inhibitors, colchicine and cytochalasin B, had any effect on water stress-induced ABA accumulation. Interestingly water stress-induced ABA accumulation was effectively inhibited by a non-plasmalemma-permeable sulfhydryl-modifier PCMBS (p-chloromercuriphenyl-sulfonic acid), suggesting that plasmalemma protein(s) may be involved in the triggering of water stress-induced ABA accumulation, and the protein may contain sulfhydryl group at its function domain.

  7. Involvement of Protein Phosphorylation in Water Stress-induced Antioxidant Defense in Maize Leaves

    Institute of Scientific and Technical Information of China (English)

    Shu-cheng Xu; Hai-dong Ding; Feng-xia Su; A-ying Zhang; Ming-yi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of protein phosphorylation and the interrelationship between water stress-enhanced kinase activity, antioxidant enzyme activity, hydrogen peroxide (H2O2) accumulation and endogenous abscisic acid in maize (Zea mays L.) leaves were investigated. Water-stress upregulated the activities of total protein phosphorylation and Ca2+ -dependent protein kinase, and the upregulation was blocked in abscisic acid-deficient vp5 mutant. Furthermore, pretreatments with a nicotinamide adenine dinucleotide phosphate oxidase inhibitor and a scavenger of H2O2 significantly reduced the increased activities of total protein kinase and Ca2+-dependent protein kinase in maize leaves exposed to water stress. Pretreatments with different protein kinase inhibitors also reduced the water stress-induced H2O2 production and the water stress-enhanced activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase. The data suggest that protein phosphorylation and H2O2 generation are required for water stress-induced antioxidant defense in maize leaves and that crosstalk between protein phosphorylation and H2O2 generation may occur.

  8. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases.

    Science.gov (United States)

    Rubio, Maria C; González, Esther M; Minchin, Frank R; Webb, K. Judith; Arrese-Igor, Cesar; Ramos, Javier; Becana, Manuel

    2002-08-01

    The antioxidant composition and relative water stress tolerance of nodulated alfalfa plants (Medicago sativa L. x Sinorhizobium meliloti 102F78) of the elite genotype N4 and three derived transgenic lines have been studied in detail. These transgenic lines overproduced, respectively, Mn-containing superoxide dismutase (SOD) in the mitochondria of leaves and nodules, MnSOD in the chloroplasts, and FeSOD in the chloroplasts. In general for all lines, water stress caused moderate decreases in MnSOD and FeSOD activities in both leaves and nodules, but had distinct tissue-dependent effects on the activities of the peroxide-scavenging enzymes. During water stress, with a few exceptions, ascorbate peroxidase and catalase activities increased moderately in leaves but decreased in nodules. At mild water stress, transgenic lines showed, on average, 20% higher photosynthetic activity than the parental line, which suggests a superior tolerance of transgenic plants under these conditions. However, the untransformed and the transgenic plants performed similarly during moderate and severe water stress and recovery with respect to important markers of metabolic activity and of oxidative stress in leaves and nodules. We conclude that the base genotype used for transformation and the background SOD isozymic composition may have a profound effect on the relative tolerance of the transgenic lines to abiotic stress.

  9. Effects of Water Stress on the Protective Enzyme Activities and Lipid Peroxidation in Roots and Leaves of Summer Maize

    Institute of Scientific and Technical Information of China (English)

    GE Ti-da; SUI Fang-gong; BAI Li-ping; LU Yin-yan; ZHOU Guang-sheng

    2006-01-01

    A systematic study was conducted to determine the effects of water stress on the activities of protective enzymes and lipid peroxidation in maize. The results showed that, under water stress, the activities of superoxide dismutase (SOD),catalase (CAT), and peroxidase (POD) in leaves and roots increased sharply at prophase and metaphase growth stages,such as, male tetrad stage, but then declined towards the physiological maturity. The protective enzyme activities in roots were lower than those in leaves. The content of malondialdehyde (MDA) increased according to the severity of water stress. The content of MDA in roots was lower than that in leaves. The activities of protective enzymes and lipid peroxidation in roots were positively related to that in leaves with most of the correlation coefficients being significant.The content of soluble proteins in roots and leaves decreased with increasing drought stress. The ear characteristics deteriorated and the economic yields of maize decreased significantly under water stress. The main factors that caused reduction of yields were the decrease in the number of ear kernels and 100-kernel weight.

  10. Cell biological mechanism for triggering of ABA accumula-tion under water stress in Vicia faba leaves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water stress-induced ABA accumulation is a cellular signaling process from water stress perception to activation of genes encoding key enzymes of ABA biosynthesis, of which the water stress-signal perception by cells or triggering mechanism of the ABA accumulation is the center in the whole process of ABA related-stress signaling in plants. The cell biological mechanism for triggering of ABA accumulation under water stress was studied in leaves of Vicia faba. Mannitol at 890 mmol· kg-1 osmotic concentration induced an increase of more than 5 times in ABA concentra-tion in detached leaf tissues, but the same concentration of mannitol only induced an increase of less than 40 % in ABA concentration in protoplasts. Like in detached leaf tissues, ABA concentra-tion in isolated cells increased more than 10 times under the treatment of mannitol at 890 mmol·kg-1 concentration, suggesting that the interaction between plasmalemma and cell wall was essential to triggering of the water stress-induced ABA accumulation. Neither Ca2+-che- lating agent EGTA nor Ca2+ channel activator A23187 nor the two cytoskeleton inhibitors, colchicine and cyto-chalasin B, had any effect on water stress-induced ABA accumulation. Interestingly water stress-induced ABA accumulation was effectively inhibited by a non-plasmalemma-perme- able sulfhy-dryl-modifier PCMBS (p-chloromercuriphenyl-sulfonic acid), suggesting that plasmalemma pro-tein(s) may be involved in the triggering of water stress-induced ABA accumulation, and the protein may contain sulfhydryl group at its function domain.

  11. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress

    Directory of Open Access Journals (Sweden)

    Jalel Mahouachi

    2014-01-01

    Full Text Available The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. “Grand Nain” subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA and indole-3-acetic acid (IAA levels, a transient increase in salicylic acid (SA concentration, and no changes in jasmonic acid (JA after each period of drought. Moreover, the levels of ferulic (FA and cinnamic acids (CA were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  12. Effects of Rare Earth on Oxidative Damage and Redox System of Wheat Seedling Leaves under Water Stress

    Institute of Scientific and Technical Information of China (English)

    Gao Yongsheng; Chen Jishuang; Zeng Fuli

    2005-01-01

    After treated with low concentration of La3+, the rate of producing active oxygen free radical, the relative permeability of cell membrane, the contents of bivalent iron ion in wheat seedling leaves under water stress were determined. The results show that in wheat seedling leaves, feasible concentrations of La3+ decreases the accumulation of active oxygen free radical, inhibits the increase of the relative permeability of cell membrane, reduces the content of peroxidation product MDA of membrane lipid, and prevents the plant cell producing more bivalent iron ion which can catalyzed the reaction of Haber-weiss and Fenton to produce more superoxide anion. In addition, purified plasma membrane was isolated by aqueous two-phase partitioning from wheat seedling leaves. The reduction rate of Fe(CN)63- by purified plasma membrane in La3+-treated wheat seedling leaves is different from those in the absence of La3+ under water stress. The changing trend of the redox activity to La3+ is similar to that of the content of Fe2+. The results reveal that extraneous La3+ can alleviate the damages of cell membrane caused by water stress via promoting the activity of redox system and the ability of eliminating ROS in wheat seedling leaves.

  13. Effect of Glomus versiforme inoculation on reactive oxygen metabolism of Citrus tangerine leaves exposed to water stress

    Institute of Scientific and Technical Information of China (English)

    WU Qiangsheng; ZOU Yingning; XIA Renxue

    2007-01-01

    In a potted greenhouse experiment,Citrus tangerine Hort.ex Tanaka was inoculated with arbuscular mycorrhizal (AM) fungus,Glomus versiforme (Karsten)Berch,or non-AM fungus as control.Arbuscular mycorrhizal and non-AM seedlings were grown tmder well-watered or water-stressed conditions after 97 days of acclimation.The reactive oxygen metabolism of C.tangerine leaves was studied in order to elucidate whether AM symbiosis affects enzymatic and non-enzymatic antioxidants.The results showed that water stress caused a decrement of 33% for the colonization of G.versiforme on C.tangerine roots.Under well-watered and water-stressed conditions,G.versiforme inoculation increased the leaf phosphorus (P) content by 45% and 27%,and decreased the leaf malondialdehyde and hydrogen peroxide contents by 25% and 21%,and 16% and 16%,respectively,compared with the control.Inoculation with G.versiforme enhanced the activities of leaf superoxide dismutase,peroxidase,catalase and ascorbate peroxidase,and increased the contents of leaf soluble protein,ascorbate and total ascorbate notably,regardless of soil moisture conditions.Under water-stressed conditions,G.versiforme inoculation decreased the leaf superoxide anion radical (O2-) content by 31%.It is concluded that drought resistance of C.tangerine leaves is enhanced due to the improvement of reactive oxygen metabolism after G.versiforme inoculation.

  14. Evaluation of nitrogen status and total chlorophyll in longkong (Aglaia dookkoo Griff. leaves under water stress using a chlorophyll meter

    Directory of Open Access Journals (Sweden)

    Sdoodee, S.

    2005-07-01

    Full Text Available A chlorophyll meter (SPAD-502 was used to assess nitrogen status and total chlorophyll in longkong leaves, leaves from twelve of 10-year-old trees grown in the experimental plot at Prince of Songkla University, Songkhla province. The relationship between SPAD-502 meter reading and nitrogen status and total chlorophyll content analyzed in the laboratory was evaluated during 8 months (May-December 2003. It was found that the trend of the relationships in each month was similar. There was no significant differenceamong regression linears of all months. The data of 8 months showed that SPAD-reading and nitrogen content, and SPAD-reading and total chlorophyll content were related in a positive manner. They were Y = 0.19X+10.10, r = 0.76** (n = 240, and Y = 0.43X-7.89, r = 0.79** (n = 400, respectively. The SPAD-502 was then used to assess total nitrogen and total chlorophyll content during imposed water stress. Fifteen 4-yearold plants were grown in pots (each pot containing 50 kg soil volume. The experiment was arranged in acompletely randomized design with 3 treatments: (1 daily watering (2 once watering on day 7 (3 no watering with 5 replications during 14 days of the experimental period. Measurements showed a continuous decrease of SPAD-reading in the treatment of no watering. On day 14, a significant difference of SPAD- reading values between the treatment of daily watering and no watering was found. Then, the values of nitrogen content and total chlorophyll were assessed by using the linear regression equations. From the result, it is suggested that the measurement by chlorophyll meter is a rapid technique for the evaluation of total chlorophyll and nitrogen status in longkong leaves during water stress.

  15. 水分胁迫对草莓叶片生理特性的影响%Effects of Water Stress on Physiological Characteristics of Strawberry Leaves

    Institute of Scientific and Technical Information of China (English)

    王丹; 孙存华

    2013-01-01

    以草莓幼苗为材料,研究了不同程度水分胁迫对草莓叶片可溶性糖含量、游离脯氨酸含量、丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性的影响.结果表明:随着胁迫程度的增加和胁迫时间的延长,草莓叶片生理特性发生明显变化:水分胁迫下可溶性糖和脯氨酸的积累增加,MDA含量增加,SOD活性呈先升高后下降的趋势.%The content of soluble carbohydrates, free proline and malonaldehyde (MDA) and the activity of superoxide dismutase (SOD) in strawberry seedling leaves were studied under different degrees of water stress. The results showed that the physiological characteristics of strawberry leaves changed greatly with the increase of degree and time of water stress. The accumulation of soluble carbohydrates, proline and MDA significantly increased as water stress became intensified. Under water stress, SOD activity of strawberry leaves tended to increase firstly and then decrease.

  16. Effect of Water Stress on Germination of Tiebtan Spring Barley with Different Genotypes%水分胁迫对西藏不同基因型春大麦发芽的影响

    Institute of Scientific and Technical Information of China (English)

    次仁央金; 田和平; 多吉平措

    2011-01-01

    Germination process of 4 different spring barley varieties were tested under different levels of water stress. Results indicated that: (1) Seed germinations of all varieties were suppressed to some degrees under water stress. Germination suppression rate of all 4 varieties were 16%-52% and 4%-50% under severe and light water stress respectively, among which 'Shekatze 17' variety was the most severely suppressed. (2) Germination rate, germination index and vitality index of all varieties were decreased under water stress. Effect of water stress on germination was highest for ' Zangqing 320' variety and followed by 'Maqu 132', 'Shekatze17' and 'Zangqing 148' in order. As the water stress was increased, germination speed was decreased obviously and sprouting strength was also obviously week. (3) Water stress was also suppressed the growth of sprouts and roots. As the water stress increased, sensitivity to the suppression was higher for sprouts than for roots. 'Shekatze 17' was the most sensitive to suppression for roots, while 'Zangqing 320' was the most sensitive to suppression for sprouts. Different genotypes of spring barley responded differently to water stress.This indicated that draught tolerance traits of spring barley were different for different genotypes. Among the 4 varieties of spring barley, according to the overall performance of seed germination periods, Zangqing 148 was the best for draught tolerance followed by 'Maqu 132', 'Zangqing 320' and 'Shekatze 17'.%此文通过不同的水分胁迫处理对4个西藏春大麦品种进行发芽研究.结果表明:(1)水分胁迫下,所有品种的种子萌发均受到不同程度的抑制作用,四个品种在重度胁迫时萌发抑制率为16%~52%,轻度胁迫时萌发抑制率为4%~50%,其中对‘日喀则17号'抑制作用最大;(2)水分胁迫下,所有品种的种子发芽率、发芽指数及活力指数均下降,对‘藏青320'的发芽影响最大,随着水分胁迫加

  17. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    Directory of Open Access Journals (Sweden)

    Zhou eLi

    2015-10-01

    Full Text Available Endogenous polyamine (PA may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put, spermidine (Spd, and spermine (Spm. Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2 were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling.

  18. Combined mass spectrometric and chromatographic methods for in-depth analysis of phenolic secondary metabolites in barley leaves.

    Science.gov (United States)

    Piasecka, Anna; Sawikowska, Aneta; Krajewski, Paweł; Kachlicki, Piotr

    2015-03-01

    Structural analysis via HPLC-ESI-MSn, UPLC-HESI-MS/MS and NMR reported 152 phenolic secondary metabolites in spring barley seedlings (Hordeum vulgare L.). Flavonoids with various patterns of glycosylation and acylation, as well as hydroxycinnamic acid glycosides, esters and amides, were identified in methanolic extracts from leaves of nine varieties of barley originating from different regions of the world. Hordatines derivatives, flavones acylated directly on the aglycone, and hydroxyferulic acid derivatives deserve special attention. Preparative chromatography enabled characterization of a number of compounds at trace levels with the 6-C-[6″-O-glycosyl]-glycosides and the 6-C-[2″,6″-di-O-glycosides]-glucoside structure of flavones. Derivatives of flavonols, quercetin and isorhamnetin were observed only in Syrian varieties. The ultra performance liquid chromatography profiles of UV-absorbing secondary metabolites were used for chemotaxonomic comparison between nine varieties of barley from different climatic conditions. The hierarchical clustering of bred lines from the Fertile Crescent and European and American varieties indicates a great diversity of chemical phenotypes within barley species.

  19. Microarray Analysis of Late Response to Boron Toxicity in Barley (Hordeum vulgare L.) Leaves

    NARCIS (Netherlands)

    Oz, M.T.; Yilmaz, R.; Eyidogan, F.; Graaff, de L.H.; Yucel, M.; Oktem, H.A.

    2009-01-01

    DNA microarrays, being high-density and high-throughput, allow quantitative analyses of thousands of genes and their expression patterns in parallel. In this study, Barley1 GereChip was used to investigate transcriptome changes associated with boron (B) toxicity in a sensitive barley cultivar (Horde

  20. Differential Compartmentation of Gibberellin A1 and Its Metabolites in Vacuoles of Cowpea and Barley Leaves 1

    Science.gov (United States)

    Garcia-Martinez, Jose L.; Ohlrogge, John B.; Rappaport, Lawrence

    1981-01-01

    The metabolism and efflux of gibberellin A1 (GA1) taken up by leaves of cowpea (Vigna sinensis cv. Blackeye pea No. 5), as well as the distribution of GA1 metabolites in the protoplasts and vacuoles of cowpea and barley (Hordeum vulgare L. cv. Numar), were studied. GA1 is metabolized rapidly in cowpea leaf discs to products tentatively identified as gibberellin A8 (GA8) and gibberellin A8 glucoside (GA8-glu). After labeling leaf discs with [3H]GA1 for 1 hour, the release of radioactivity from the leaf was followed. Over a 12-hour period, the level of radioisotope in the tissue declined to about 35% of the original, after which no further release was observed. At this time, almost all of the radioactivity remaining in the leaf was GA8-glu, while most of the radioactivity which had been released was unmetabolized GA1. Mesophyll protoplasts and vacuoles were isolated from cowpea and barley leaves previously fed [3H]GA1. These protoplasts retain the ability to metabolize GA1, indicating that neither the leaf structure nor the cell wall is necessary for this metabolism. A higher proportion of GA8-glu was found in the vacuoles relative to the entire protoplasts. The results obtained suggest that GA1 metabolites are preferentially compartmentalized in the vacuoles relative to GA1. PMID:16662014

  1. A Transient Expression System for the Functional Assessment of Early Response Genes on the Powdery Mildew Infected Barley or Wheat Leaves

    Institute of Scientific and Technical Information of China (English)

    LI Ai-li

    2003-01-01

    The principle and the basic steps of the transient assay system for the functional assessment ofearly response genes on the powdery mildew infected barley or wheat leaves were summarized in brief. The development of this technology and its extensive application were reviewed. Future studies on this approach wererecommended in this paper.

  2. Interactive signal transfer between host and pathogen during successful infection of barley leaves by Blumeria graminis and Bipolaris sorokiniana.

    Science.gov (United States)

    Felle, Hubert H; Herrmann, Almut; Schäfer, Patrick; Hückelhoven, Ralph; Kogel, Karl-Heinz

    2008-01-01

    Using ion-selective microprobes, interactive signalling between barley and Blumeria graminis or Bipolaris sorokiniana has been investigated. The question was raised whether a biotrophically growing fungus manipulates the electrical driving forces (membrane potential, transmembrane pH), required for H+ cotransport of energy-rich compounds. Electrodes were positioned in the substomatal cavity of open stomata or on the leaf surface, and pH was measured continuously up to several days during fungal development. We demonstrate that surface and apoplastic fluids are electrically coupled and respond in a similar manner to stimuli. Apoplastic pH, monitored from the moment of inoculation with conidia, reveals several phases: 2-4h after inoculation of the barley leaf with either fungus, the host displays rapid transient responses after its first contact with the fungal cell wall; apoplastic pH and pCa increases, cytoplasmic pH and pCa decreases. About 1 day after inoculation, the apoplastic pH increases by up to 2 pH units, which is thought to reflect a resistance response against the intruder. Whereas barley leaf cells possess a membrane potential of -152+/-5 mV, hyphae of B. graminis yield -251+/-8 mV, indicative of a substantial driving force advantage for the fungus. Although the resting membrane potential of barley remains constant during the first days after inoculation, leaves infected with B. sorokiniana get confronted with an energy problem, indicated by a retarded repolarization following a "light-off" stimulus. Five days after inoculation, apoplastic pH has increased to 5.97+/-0.47 (n=11) and does no longer respond to "light-off" when measured within lesions. In contrast, it stays at near normal values outside the lesions and responds to "light-off". It is concluded that biotrophically growing fungi do not manipulate the cotransport driving forces since (i) any change in apoplastic pH would be experienced by both partners; (ii) the resting membrane potential is

  3. The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity.

    Science.gov (United States)

    Liu, Cuili; Zhao, Li; Yu, Guanghui

    2011-08-01

    γ-Amino butyric acid (GABA) and proline play a crucial role in protecting plants during various environmental stresses. Their synthesis is from the common precursor glutamic acid, which is catalyzed by glutamate decarboxylase and Δ(1) -pyrroline-5-carboxylate synthetase respectively. However, the dominant pathway under water stress has not yet been established. To explore this, excised tobacco leaves were used to simulate a water-stress condition. The results showed GABA content was much higher than that of proline in leaves under water-deficit and non-water-deficit conditions. Specifically, the amount of GABA significantly increased compared to proline under continuous water loss for 16 h, indicating that GABA biosynthesis is the dominant pathway from glutamic acid metabolism under these conditions. Quantitative reverse transcription polymerase chain reaction and protein Western gel-blot analysis further confirmed this. To explore the function of GABA accumulation, a system producing superoxide anion (O(2) (-) ), peroxide hydrogen (H(2) O(2) ), and singlet oxygen ((1) O(2) ) was employed to investigate the scavenging role on free-radical production. The results demonstrated that the scavenging ability of GABA for O(2) (-) , H(2) O(2) , and (1) O(2) was significantly higher than that of proline. This indicated that GABA acts as an effective osmolyte to reduce the production of reactive oxygen species under water stress.

  4. Reduced glutamine synthetase activity plays a role in control of photosynthetic responses to high light in barley leaves.

    Science.gov (United States)

    Brestic, Marian; Zivcak, Marek; Olsovska, Katarina; Shao, Hong-Bo; Kalaji, Hazem M; Allakhverdiev, Suleyman I

    2014-08-01

    The chloroplastic glutamine synthetase (GS, EC 6.3.1.2) activity was previously shown to be the limiting step of photorespiratory pathway. In our experiment, we examined the photosynthetic high-light responses of the GS2-mutant of barley (Hordeum vulgare L.) with reduced GS activity, in comparison to wild type (WT). The biophysical methods based on slow and fast chlorophyll fluorescence induction, P700 absorbance, and gas exchange measurements were employed. Despite the GS2 plants had high basal fluorescence (F0) and low maximum quantum yield (Fv/Fm), the CO2 assimilation rate, the PSII and PSI actual quantum yields were normal. On the other hand, in high light conditions the GS2 had much higher non-photochemical quenching (NPQ), caused both by enhanced capacity of energy-dependent quenching and disconnection of PSII antennae from reaction centers (RC). GS2 leaves also maintained the PSII redox poise (QA(-)/QA total) at very low level; probably this was reason why the observed photoinhibitory damage was not significantly above WT. The analysis of fast chlorophyll fluorescence induction uncovered in GS2 leaves substantially lower RC to antenna ratio (RC/ABS), low PSII/PSI ratio (confirmed by P700 records) as well as low PSII excitonic connectivity.

  5. Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency.

    Science.gov (United States)

    Saito, Akihiro; Iino, Tomohisa; Sonoike, Kintake; Miwa, Eitaro; Higuchi, Kyoko

    2010-12-01

    Because of the high demand for iron of the photosynthetic apparatus in thylakoid membranes, iron deficiency primarily affects the electron transfer between the two photosystems (PSI and PSII), resulting in photooxidative damage in plants. However, in barley, PSII is protected against photoinhibition, and the plant survives even with a low iron content in its chlorotic leaves. In this study, we report an adaptation mechanism of the photosynthetic apparatus in barley to iron deficiency, which is concomitant with the remodeling of a PSII antenna system. Transcriptome analysis revealed that long-term iron deficiency induced the expression of two genes of the major light-harvesting Chl a/b-binding protein of PSII (LHCII), namely HvLhcb1.11 and HvLhcb1.12. Chl fluorescence analysis of the wild type and Lhcb1-less chlorina mutants clearly showed that non-photochemical quenching (NPQ) of the wild type was increased by approximately 200% by iron deficiency, whereas NPQ of chlorina mutants did not change significantly under iron deficiency. The mutant showed severe photodamage in young leaves under prolonged iron deficiency, suggesting that the HvLhcb1 protein is essential for both thermal dissipation and photoprotection in iron-deficient barley. Analysis of thylakoid protein complexes revealed that the proportion of the monomeric form of Lhcb1 significantly increased in barley grown under iron-deficient conditions. We hypothesize that alteration of the HvLhcb1 subpopulations modifies the organization of LHCII in the thylakoid membranes, which is a key step for thermal dissipation to compensate for excess excitation energy and thereby protect the photosystems from serious damage in iron-deficient barley leaves.

  6. The sexed shape of Helminthosporium gramineum Rabh. fungus involved in increasing disease damage of torn leaves in barley

    Directory of Open Access Journals (Sweden)

    Viorel FLORIAN

    1988-08-01

    Full Text Available The onset of some sclerotic formations are reported on barley straws on which the following microscopic investigations and biometrical measurements peritecia, ascia and ascospores of Pyrenophora graminea (Rabh. Ito et Kurib. were detected, representing the sexed multiplication of fungus Helminthosporium gramineum, the pathogenic factor causing leaf tearing in barley, a condition rarely encountered in nature. Owing to the great number of peritecia on barley straw residues, we are of the opinion that the sexed multiplication of fungus represents a real danger in barley cultivation assigning the efficient control steps against this pest.

  7. Effects of water stress on the osmoregulation ability in Vicia faba L.leaves%水分胁迫对蚕豆叶片渗透调节能力的影响

    Institute of Scientific and Technical Information of China (English)

    鲍思伟

    2001-01-01

    为探讨蚕豆(Vicia faba L.)对水分胁迫的适应机理,经人工水分胁迫处理,研究了水分胁迫对蚕豆叶片渗透调节能力的影响.结果表明:蚕豆叶片中作为细胞内渗透调节物质的游离脯氨酸、K++、可溶性总糖等细胞内溶质含量在水分胁迫下都有明显增加.这些指标均与土壤含水量呈负相关,表明蚕豆具有一定的渗透调节能力.但是,渗透调节作用有一定的局限性,在中度和严重水分胁迫下,蚕豆的蒸腾速率明显下降,气孔扩散阻力大大增加,最终表现为植株生物量的明显降低.%In order to study Vicia faba L.adaptable mechanism of water stress.By artificial imposed water stress,the result showed that under the condition of water stress,contents of the osmotic regulators such as the free proline,K++ and soluble sufar increased significantly in leaves of Vicia faba L.The osmotic potential of cell decreased,and the increased quantities of these indices correlated negatively to the water content of soil significantly.These facts indicated that Vicia faba L.had certain osmoregulation ability.However,osmoregulation ability had certain limitation.Under the medial and high water stress,the rate of transpiration decreased significantly and stoma diffusing resistance increased greatly.Ultimately,the biomass of plant decreased significantly.

  8. An autophagy gene, HoATG5, is involved in sporulation, cell wall integrity and infection of wounded barley leaves.

    Science.gov (United States)

    Liu, Ning; Ning, Guo-Ao; Liu, Xiao-Hong; Feng, Xiao-Xiao; Lu, Jian-Ping; Mao, Li-Juan; Su, Zhen-Zhu; Wang, Ying; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-11-01

    The endophytic fungus Harpophora oryzae is a beneficial endosymbiont isolated from wild rice. H. oryzae can not only promote rice growth and biomass accumulation but also protect rice roots from invasion by its close relative Magnaporthe oryzae. Autophagy is a highly evolutionary conserved process from lower to higher eukaryotic organisms, and is involved in the maintenance of normal cell differentiation and development. In this study, we isolated a gene (HoATG5) which encodes an essential protein required for autophagy from the beneficial endophyte fungus H. oryzae. Using targeted gene replacement, a ΔHoATG5 mutant was generated and used to investigate the biological functions of autophagy in H. oryzae. We found that the autophagic process was blocked in the HoATG5 deletion mutant. The mutant showed increased vegetative growth and sporulation, and was sensitive to nutrient starvation. The ΔHoATG5 mutant lost its ability to penetrate and infect the wounded barley leaves. These results provide new knowledge to elaborate the molecular machinery of autophagy in endophytic fungi.

  9. Limitation of Cell Elongation in Barley (Hordeum vulgare L.) Leaves Through Mechanical and Tissue-Hydraulic Properties.

    Science.gov (United States)

    Touati, Mostefa; Knipfer, Thorsten; Visnovitz, Tamás; Kameli, Abdelkrim; Fricke, Wieland

    2015-07-01

    The aim of the present study was to assess the mechanical and hydraulic limitation of growth in leaf epidermal cells of barley (Hordeum vulgare L.) in response to agents which affect cellular water (mercuric chloride, HgCl(2)) and potassium (cesium chloride, CsCl; tetraethylammonium, TEA) transport, pump activity of plasma membrane H(+)-ATPase and wall acidification (fusicoccin, FC). Cell turgor (P) was measured with the cell pressure probe, and cell osmotic pressure (π) was analyzed through picoliter osmometry of single-cell extracts. A wall extensibility coefficient (M) and tissue hydraulic conductance coefficient (L) were derived using the Lockhart equation. There was a significant positive linear relationship between relative elemental growth rate and P, which fit all treatments, with an overall apparent yield threshold of 0.368 MPa. Differences in growth between treatments could be explained through differences in P. A comparison of L and M showed that growth in all except the FC treatment was co-limited through hydraulic and mechanical properties, though to various extents. This was accompanied by significant (0.17-0.24 MPa) differences in water potential (ΔΨ) between xylem and epidermal cells in the leaf elongation zone. In contrast, FC-treated leaves showed ΔΨ close to zero and a 10-fold increase in L. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Gregersen, Per L.

    2014-01-01

    The senescence process of plants is important for the completion of their life cycle, particularly for crop plants, it is essential for efficient nutrient remobilization during seed filling. It is a highly regulated process, and in order to address the regulatory aspect, the role of genes...... in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated...... activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription–PCR (qRT–PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47...

  11. Global Scale Transcriptional Profiling of Two Contrasting Barley Genotypes Exposed to Moderate Drought Conditions: Contribution of Leaves and Crowns to Water Shortage Coping Strategies.

    Science.gov (United States)

    Svoboda, Pavel; Janská, Anna; Spiwok, Vojtěch; Prášil, Ilja T; Kosová, Klára; Vítámvás, Pavel; Ovesná, Jaroslava

    2016-01-01

    Drought is a serious threat for sustainable agriculture. Barley represents a species well adapted to environmental stresses including drought. To elucidate the adaptive mechanism of barley on transcriptional level we evaluated transcriptomic changes of two contrasting barley cultivars upon drought using the microarray technique on the level of leaves and crowns. Using bioinformatic tools, differentially expressed genes in treated vs. non-treated plants were identified. Both genotypes revealed tissue dehydration under drought conditions as shown at water saturation deficit and osmotic potential data; however, dehydration was more severe in Amulet than in drought-resistant Tadmor under the same ambient conditions. Performed analysis showed that Amulet enhanced expression of genes related to active plant growth and development, while Tadmor regarding the stimulated genes revealed conservative, water saving strategy. Common reactions of both genotypes and tissues included an induction of genes encoding several stress-responsive signaling proteins, transcription factors as well as effector genes encoding proteins directly involved in stress acclimation. In leaf, tolerant cultivar effectively stimulated mainly the expression of genes encoding proteins and enzymes involved in protein folding, sulfur metabolism, ROS detoxification or lipid biosynthesis and transport. The crown specific reaction of tolerant cultivar was an enhanced expression of genes encoding proteins and enzymes involved in cell wall lignification, ABRE-dependent abscisic acid (ABA) signaling, nucleosome remodeling, along with genes for numerous jasmonate induced proteins.

  12. Effect of Water Stress and Rehydration on the Chlorophyll Fluorescence Characteristics of Alfalfa Seedling Leaves%水分胁迫和复水对紫花苜蓿幼苗叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    李文娆; 张岁岐; 山仑

    2007-01-01

    Water stress mimicked by PEG-6000 solution (ψs =- 0.2 MPa, stress period 48 h, then rehydration 48 h) was performed on leaves of alfalfa (Medicago sativa L) varieties of Longdong and Algonquin seedlings. Chlorophyll fluorescence parameters and photosynthetic pigments concentration were measured. These measurements were used to investigate the available photosynthetic response mechanism to different water conditions. The results show that the change patterns of photochemical quenching (qP) and the effective quantum yield of PSII photochemistry (YIELD) with the increasing of the active radiation of photosynthesis (PAR) could be expressed by the equation:Y=a Ln(x)+b (Y:qP or YIELD, X:PAR,X≠0) and the change patterns of non-photochemical quenching (qN) and the relative electron transport rate (ETR) with the increasing of PAR could be expressed by the equation:Y=aX2+bX+c (Y:qN orETR, X: PAR). Significantly, the maximal photochemical efficiency of PSⅡ in the dark (Fv/Fm),potential activity of PSII (Fv/Fo)and photosynthetic pigments concentration in alfalfa leaves decreased obviously subjected to water stress. Simultaneously, the values of qP, YIELD and ETR in stress treatments were decreased significantly and the values of qN in stress treatments were increased obviously under every PAR. More particularly, the light intensities corresponding to the top point of light response curve of qN and ETR declined submitted to water stress. Compared to the controls, the initial point of photo-inhibition and the maximum photo-protection ability decreased, or photo-inhibition occurred in advance. It indicated that photosynthetic apparatuses and functions were inhibited by water stress, which weakened the light energy utilization and transform capability of PSII reaction center and light energy dissipated through heat energy mostly. After rehydration, all parameters except photosynthetic pigments concentration in Longdong and carotenoid in Algonquin partly recovered only to the

  13. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO(2) conductance and CO(2) assimilation in the leaves of transgenic rice plants.

    Science.gov (United States)

    Hanba, Yuko T; Shibasaka, Mineo; Hayashi, Yasuyuki; Hayakawa, Takahiko; Kasamo, Kunihiro; Terashima, Ichiro; Katsuhara, Maki

    2004-05-01

    The internal conductance for CO(2) diffusion (g(i)) and CO(2) assimilation rate were measured and the related anatomical characteristics were investigated in transgenic rice leaves that overexpressed barley aquaporin HvPIP2;1. This study was performed to test the hypothesis that aquaporin facilitates CO(2) diffusion within leaves. The g(i) value was estimated for intact leaves by concurrent measurements of gas exchange and carbon isotope ratio. The leaves of the transgenic rice plants that expressed the highest levels of Aq-anti-HvPIP2;1 showed a 40% increase in g(i) as compared to g(i) in the leaves of wild-type rice plants. The increase in g(i) was accompanied by a 14% increase in CO(2) assimilation rate and a 27% increase in stomatal conductance (g(s)). The transgenic plants that had low levels of Aq-anti-HvPIP2;1 showed decreases in g(i) and CO(2) assimilation rate. In the plants with high levels of Aq-anti-HvPIP2;1, mesophyll cell size decreased and the cell walls of the epidermis and mesophyll cells thickened, indicating that the leaves had become xeromorphic. Although such anatomical changes could partially offset the increase in g(i) by the aquaporin, the increase in aquaporin content overcame such adverse effects.

  14. Effects of 24-epibrassinolide and green light on plastid gene transcription and cytokinin content of barley leaves.

    Science.gov (United States)

    Efimova, Marina V; Vankova, Radomira; Kusnetsov, Victor V; Litvinovskaya, Raisa P; Zlobin, Ilya E; Dobrev, Petre; Vedenicheva, Nina P; Savchuk, Alina L; Karnachuk, Raisa A; Kudryakova, Natalia V; Kuznetsov, Vladimir V

    2017-04-01

    In order to evaluate whether brassinosteroids (BS) and green light regulate the transcription of plastid genes in a cross-talk with cytokinins (CKs), transcription rates of 12 plastid genes (ndhF, rrn23, rpoB, psaA, psaB, rrn16, psbA, psbD, psbK, rbcL, atpB, and trnE/trnY) as well as the accumulation of transcripts of some photoreceptors (PHYA, CRY2, CRY1A, and CRY1B) and signaling (SERK and CAS) genes were followed in detached etiolated barley leaves exposed to darkness, green or white light ±1μm 24-epibrassinolide (EBL). EBL in the dark was shown to up-regulate the transcription of 12 plastid genes, while green light activated 10 genes and the EBL combined with the green light affected the transcription of only two genes (psaB and rpoB). Green light inhibited the expression of photoreceptor genes, except for CRY1A. Under the green light, EBL practically did not affect the expression of CRY1A, CAS and SERK genes, but it reduced the influence of white light on the accumulation of CAS, CRY1A, CRY1B, and SERK gene transcripts. The total content of BS in the dark and under white light remained largely unchanged, while under green light the total content of BRs (brassinolide, castasterone, and 6-deoxocastasterone) and HBRs (28-homobrassinolide, 28-homocastasterone, and 6-deoxo-28-homocastasterone) increased. The EBL-dependent up-regulation of plastome transcription in the dark was accompanied by a significant decrease in CK deactivation by O-glucosylation. However, no significant effect on the content of active CKs was detected. EBL combined with green light moderately increased the contents of trans-zeatin and isopentenyladenine, but had a negative effect on cis-zeatin. The most significant promotive effect of EBL on active CK bases was observed in white light. The data obtained suggest the involvement of CKs in the BS- and light-dependent transcription regulation of plastid genes. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effects of water stress and rewatering on chlorophyll content in pea leaves%水分胁迫后复水对豌豆叶片叶绿素含量的影响

    Institute of Scientific and Technical Information of China (English)

    张红萍; 李明达

    2016-01-01

    采用盆栽人工控水法,研究了水分胁迫及复水对豌豆叶片叶绿素含量的影响。结果表明:苗期水分胁迫,豌豆叶片中叶绿素a、叶绿素b及叶绿素总量上升,均显著或极显著高于对照水平;叶绿素a与b的比值(a/b)则呈现先增大而后又减小的趋势;初花期短历时水分胁迫,叶绿素a、叶绿素b和叶绿素总量均显著高于对照水平,长历时胁迫后,叶绿素各组分含量均低于对照水平;a/b值也是呈现先增大而后又减小的趋势;荚果充实期短历时胁迫后,豌豆叶片中叶绿素a、叶绿素总量高于对照水平,叶绿素b则是轻度胁迫高于对照水平,重度胁迫低于对照水平,a/b值轻度胁迫接近对照水平,重度胁迫高于对照水平;水分胁迫10 d后,叶绿素各组分含量均下降;复水后,叶绿素各组分均表现出了一定程度的补偿效应,且苗期与初花期水分胁迫后复水的补偿效应高于荚果充实期。%A pot experiment was carried under artificial water control to study the effects of water stress and rewater-ing on chlorophyll content in pea leaves .The results showed that the content of chlorophyll a (Chla) ,chlorophyll b (Chlb ) and total chlorophyll (Total chl ) were significantly higher than those of the control treatment (CK ) under water stress at seedling stage .The ratio of chlorophyll a vs .b (a/b) was increased first and then went decreased .At the be-ginning of flowering ,the contents of Chla ,Chlb and Total chl were significantly higher than those of CK under short du-ration of water stress ,and became decreased under long duration of water stress .The a/b ratio was also increased first and was then decreased .At pod filling stage ,the contents of Chla and Total chl were significantly higher than those of CK .The content of Chlb was higher than CK under mild water stress ,but lower than that of CK under the severe stress . The a/b ratio was close

  16. [Responses of tomato leaf photosynthesis to rapid water stress].

    Science.gov (United States)

    Han, Guo-Jun; Chen, Nian-lai; Huang, Hai-xia; Zhang, Ping; Zhang, Kai; Guo, Yan-hong

    2013-04-01

    By using polyethylene glycol (PEG-6000) solution to regulate the water potential of tomato (Lycopersicon esculentum) rhizosphere to simulate water stress, this paper studied the dynamic changes of net photosynthetic rate, dark respiratory rate and CO2 compensatory concentration of detached tomato leaves in the process of photosynthetic induction. Under 1000 micromol m-2 s-1 of light induction, the time required to reach the maximum net photosynthetic rate of water-stressed tomato leaves was shortened by 1/3, while the stomatal conductance was increased by 1.5 times, as compared to the non-stress control. Also, the light saturation point (LSP) of water-stressed tomato leaves was lowered by 65% to 85%, and the light compensation point (LCP) was increased by 75% to 100%, suggesting that the effective range of light utilized by tomato leaves was reduced. Furthermore, water stress decreased the maximum photosynthetic capacity of tomato leaves by 40%, but increased the dark respiration rate by about 45% . It was suggested that rapid water stress made the stomata of tomato leaves quickly opened, without initial photosynthetic induction stage. In conclusion, water stress could induce the decrease of plant light-energy use efficiency and potential, being the main reason for the decrease of plant productivity, and stomatal regulation could be the main physiological mechanism of tomato plants to adapt to rapid water stress.

  17. Photoinactivation of Photosystem II in wild-type and chlorophyll b-less barley leaves: which mechanism dominates depends on experimental circumstances.

    Science.gov (United States)

    He, Jie; Yang, Wenquan; Qin, Lin; Fan, Da-Yong; Chow, Wah Soon

    2015-12-01

    Action spectra of photoinactivation of Photosystem II (PS II) in wild-type and chlorophyll b-less barley leaf segments were obtained. Photoinactivation of PS II was monitored by the delivery of electrons from PS II to PS I following single-turnover flashes superimposed on continuous far-red light, the time course of photoinactivation yielding a rate coefficient k i. Susceptibility of PS II to photoinactivation was quantified as the ratio of k i to the moderate irradiance (I) of light at each selected wavelength. k i/I was very much higher in blue light than in red light. The experimental conditions permitted little excess light energy absorbed by chlorophyll (not utilized in photochemical conversion or dissipated in controlled photoprotection) that could lead to photoinactivation of PS II. Therefore, direct absorption of light by Mn in PS II, rather than by chlorophyll, was more likely to have initiated the much more severe photoinactivation in blue light than in red light. Mutant leaves were ca. 1.5-fold more susceptible to photoinactivation than the wild type. Neither the excess-energy mechanism nor the Mn mechanism can explain this difference. Instead, the much lower chlorophyll content of mutant leaves could have exerted an exacerbating effect, possibly partly due to less mutual shading of chloroplasts in the mutant leaves. In general, which mechanism dominates depends on the experimental conditions.

  18. Cytokinin Activity in Water-stressed Shoots 1

    Science.gov (United States)

    Itai, Chanan; Vaadia, Yoash

    1971-01-01

    Water stress applied to the plant shoot through enhanced evaporative demands reduced cytokinin activity in extracts of xylem exudate and leaves. This reduction resembled the changes in cytokinin activity caused by water stress applied to the root. Cytokinin activity in detached wilting leaves decreased rapidly. Recovery took place after several hours in a humid chamber. Experiments with 14C-kinetin indicated that the mechanism of the inactivation and its reversal involve a chemical transformation of the cytokinin molecule. PMID:16657585

  19. An eceriferum locus, cer-zv, is associated with a defect in cutin responsible for water retention in barley (Hordeum vulgare) leaves.

    Science.gov (United States)

    Li, Chao; Wang, Aidong; Ma, Xiaoying; Pourkheirandish, Mohammad; Sakuma, Shun; Wang, Ning; Ning, Shunzong; Nevo, Eviatar; Nawrath, Christiane; Komatsuda, Takao; Chen, Guoxiong

    2013-03-01

    Drought limits plant growth and threatens crop productivity. A barley (Hordeum vulgare) ethylene imine-induced monogenic recessive mutant cer-zv, which is sensitive to drought, was characterized and genetically mapped in the present study. Detached leaves of cer-zv lost 34.2 % of their initial weight after 1 h of dehydration. The transpiration was much higher in cer-zv leaves than in wild-type leaves under both light and dark conditions. The stomata of cer-zv leaves functioned normally, but the cuticle of cer-zv leaves showed increased permeability to ethanol and toluidine blue dye. There was a 50-90 % reduction in four major cutin monomers, but no reduction in wax loads was found in the cer-zv mutant as compared with the wild type. Two F(2) mapping populations were established by the crosses of 23-19 × cer-zv and cer-zv × OUH602. More polymorphisms were found in EST sequences between cer-zv and OUH602 than between cer-zv and 23-19. cer-zv was located in a pericentromeric region on chromosome 4H in a 10.8 cM interval in the 23-19 × cer-zv map based on 186 gametes tested and a 1.7 cM interval in the cer-zv × OUH602 map based on 176 gametes tested. It co-segregated with EST marker AK251484 in both maps. The results indicated that the cer-zv mutant is defective in cutin, which might be responsible for the increased transpiration rate and drought sensitivity, and that the F(2) of cer-zv × OUH602 might better facilitate high resolution mapping of cer-zv.

  20. Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress.

    Science.gov (United States)

    Qaderi, Mirwais M; Reid, David M

    2009-10-01

    We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH(4)) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26 degrees C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m(-2) d(-1)] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH(4) emission rates [ng g(-1) dry weight (DW) h(-1)] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO(2) assimilation (A(N)), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH(4) emissions. Crop species varied in CH(4) emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased A(N) and WUE but increased E, whereas water stress decreased A(N) but increased E and WUE. Zero and enhanced UVB reduced A(N) and E. Growth and gas exchange varied with species. Overall, CH(4) emission was negatively correlated with stem height and AG biomass. We conclude that CH(4) emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'.

  1. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots.

    Science.gov (United States)

    Muramoto, Nobuhiko; Tanaka, Tomoko; Shimamura, Takashi; Mitsukawa, Norihiro; Hori, Etsuko; Koda, Katsunori; Otani, Motoyasu; Hirai, Masana; Nakamura, Kenzo; Imaeda, Takao

    2012-06-01

    Black rot of sweet potato caused by pathogenic fungus Ceratocystis fimbriata severely deteriorates both growth of plants and post-harvest storage. Antimicrobial peptides from various organisms have broad range activities of killing bacteria, mycobacteria, and fungi. Plant thionin peptide exhibited anti-fungal activity against C. fimbriata. A gene for barley α-hordothionin (αHT) was placed downstream of a strong constitutive promoter of E12Ω or the promoter of a sweet potato gene for β-amylase of storage roots, and introduced into sweet potato commercial cultivar Kokei No. 14. Transgenic E12Ω:αHT plants showed high-level expression of αHT mRNA in both leaves and storage roots. Transgenic β-Amy:αHT plants showed sucrose-inducible expression of αHT mRNA in leaves, in addition to expression in storage roots. Leaves of E12Ω:αHT plants exhibited reduced yellowing upon infection by C. fimbriata compared to leaves of non-transgenic Kokei No. 14, although the level of resistance was weaker than resistance cultivar Tamayutaka. Storage roots of both E12Ω:αHT and β-Amy:αHT plants exhibited reduced lesion areas around the site inoculated with C. fimbriata spores compared to Kokei No. 14, and some of the transgenic lines showed resistance level similar to Tamayutaka. Growth of plants and production of storage roots of these transgenic plants were not significantly different from non-transgenic plants. These results highlight the usefulness of transgenic sweet potato expressing antimicrobial peptide to reduce damages of sweet potato from the black rot disease and to reduce the use of agricultural chemicals.

  2. Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci.

    Science.gov (United States)

    Piasecka, Anna; Sawikowska, Aneta; Kuczyńska, Anetta; Ogrodowicz, Piotr; Mikołajczak, Krzysztof; Krystkowiak, Karolina; Gudyś, Kornelia; Guzy-Wróbelska, Justyna; Krajewski, Paweł; Kachlicki, Piotr

    2017-03-01

    Determining the role of plant secondary metabolites in stress conditions is problematic due to the diversity of their structures and the complexity of their interdependence with different biological pathways. Correlation of metabolomic data with the genetic background provides essential information about the features of metabolites. LC-MS analysis of leaf metabolites from 100 barley recombinant inbred lines (RILs) revealed that 98 traits among 135 detected phenolic and terpenoid compounds significantly changed their level as a result of drought stress. Metabolites with similar patterns of change were grouped in modules, revealing differences among RILs and parental varieties at early and late stages of drought. The most significant changes in stress were observed for ferulic and sinapic acid derivatives as well as acylated glycosides of flavones. The tendency to accumulate methylated compounds was a major phenomenon in this set of samples. In addition, the polyamine derivatives hordatines as well as terpenoid blumenol C derivatives were observed to be drought related. The correlation of drought-related compounds with molecular marker polymorphisms resulted in the definition of metabolomic quantitative trait loci in the genomic regions of single-nucleotide polymorphism 3101-111 and simple sequence repeat Bmag0692 with multiple linkages to metabolites. The associations pointed to genes related to the defence response and response to cold, heat and oxidative stress, but not to genes related to biosynthesis of the compounds. We postulate that the significant metabolites have a role as antioxidants, regulators of gene expression and modulators of protein function in barley during drought. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  3. (52)Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem.

    Science.gov (United States)

    Tsukamoto, Takashi; Nakanishi, Hiromi; Uchida, Hiroshi; Watanabe, Satoshi; Matsuhashi, Shinpei; Mori, Satoshi; Nishizawa, Naoko K

    2009-01-01

    The real-time translocation of iron (Fe) in barley (Hordeum vulgare L. cv. Ehimehadaka no. 1) was visualized using the positron-emitting tracer (52)Fe and a positron-emitting tracer imaging system (PETIS). PETIS allowed us to monitor Fe translocation in barley non-destructively under various conditions. In all cases, (52)Fe first accumulated at the basal part of the shoot, suggesting that this region may play an important role in Fe distribution in graminaceous plants. Fe-deficient barley showed greater translocation of (52)Fe from roots to shoots than did Fe-sufficient barley, demonstrating that Fe deficiency causes enhanced (52)Fe uptake and translocation to shoots. In the dark, translocation of (52)Fe to the youngest leaf was equivalent to or higher than that under the light condition, while the translocation of (52)Fe to the older leaves was decreased, in both Fe-deficient and Fe-sufficient barley. This suggests the possibility that the mechanism and/or pathway of Fe translocation to the youngest leaf may be different from that to the older leaves. When phloem transport in the leaf was blocked by steam treatment, (52)Fe translocation from the roots to older leaves was not affected, while (52)Fe translocation to the youngest leaf was reduced, indicating that Fe is translocated to the youngest leaf via phloem in addition to xylem. We propose a novel model in which root-absorbed Fe is translocated from the basal part of the shoots and/or roots to the youngest leaf via phloem in graminaceous plants.

  4. Influence of Water Stress on Endogenous Hormone Contents and Cell Damage of Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    Chunrong Wang; Aifang Yang; Haiying Yin; Juren Zhang

    2008-01-01

    Phytohormones play critical roles In regulating plant responses to stress. We Investigated the effects of water stress Induced by adding 12% (w/v) polyethylene glycol to the root medium on the levels of abscisic acid (ABA), indole-3-acid (IAA), zeatin (ZT), and gibberellin3 (GA3) in maize leaves. The results suggested that water stress had significant effects on the four hormone levels. There was a transient increase in the IAA content during the initial stage of adaptation to water stress in maize leaves, but it dropped sharply thereafter in response to water stress. ABA content increased dramatically in maize leaves after 24 h of exposure to water stress, and then the high levels of ABA were maintained to the end, The contents Of ZT and GA3 rapidly declined in maize leaves subjected to water stress. The effects of water stress on chlorophyll content, electrolyte leakage and malondialdehyde levels in maize leaves were also studied. The variation of cell damage was negatively correlated with ZT and GA3 levels in maize leaves under water stress. Thus, we explored the roles of ZT and GA3 on the growth of maize seedlings under water stress by exogenous application. It is possible that both ZT and GA3 were effective in protecting maize seedlings from water stress, which would be of great importance for the improvement of drought tolerance in maize by genetic manipulation.

  5. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate

    Directory of Open Access Journals (Sweden)

    Khalaf Ali Fayez

    2014-01-01

    Full Text Available Growth and physiological activities of barley (Hordeum vulgare L. cv. Gustoe grown in soil cultures were evaluated to recognize the ameliorative role of salicylic acid (SA and KNO3 against the negative effects of salt and water deficit stresses. Barley plants were subjected to three levels of NaCl (50, 100 and 150 mM, three levels of water stress (80%, 70% and 50% of the soil water content (SWC and the combination of 150 mM NaCl + 50 μM SA, 150 mM NaCl + 10 mM KNO3, 50% SWC + 50 μM SA and 50% SWC + 10 mM KNO3 for two weeks. Salt and water deficit stresses reduced the shoot growth, leaf photosynthetic pigments, K+ contents and provoked oxidative stress in leaves confirmed by considerable changes in soluble carbohydrate, proline, malondialdehyde (MDA, total phenolic compounds, antioxidant activity and Na+ contents. Leaf soluble protein of salt and water deficit treated plants was unaffected. The Na+/K+ ratio increased with increasing salt and water deficit treated plants. Application of 50 μM SA or 10 mM KNO3 to150 mM NaCl and/or 50% SWC treated plants improved these attributes under salt and water stresses. Soluble carbohydrates in stressed plants may have a significant role in osmotic adjustment. It can be concluded that the addition of SA or KNO3 can ameliorate the oxidative stress in barley stressed plants. This ameliorative effect might be maintained through low MDA contents and decreased Na+/K+ ratio in leaves. This study also provided evidence for the ability of barley cultivation in salt and water deficit soils due to its capacity for osmotic adjustment.

  6. Variação do teor de prolina em folhas de feijão em função da disponibilidade de água no solo Changes in proline content in leaves of Phaseolus vulgaris L. in response to water stress

    Directory of Open Access Journals (Sweden)

    Haiko Enok Sawazaki

    1981-01-01

    Full Text Available Para verificar o comportamento de cultivares e linhagens de feijão quanto à capacidade de acumular prolina livre em suas folhas em condições de escassez de água no solo, foram utilizados dezoito cultivares e duas linhagens de feijão, desenvolvidos em casa de vegetação. Desse material, foram amostradas folhas primárias, de acordo com os tratamentos: a irrigado diariamente; b onze e quinze dias sem irrigação; e c plantas reidratadas após onze dias sem irrigação, com o objetivo de avaliar o teor de prolina. Os resultados obtidos mostraram diferenças no teor de prolina e na capacidade de acúmulo desse aminoácido em função de cultivares e tratamentos. 'Jalo', 'Roseli' e 'Roxão Lustroso' acumularam maiores quantidades de prolina (> 7 micromoles/grama de matéria seca, enquanto 'Moruna' e 'Curitibano-Bairro das Palmeiras' mostraram os menores acúmulos (The objective of this paper was to verify the accumulation of free proline in leaves of beans (Phaseolus vulgaris L. when subjected to water stress. Leaves samples were taken at 11 and 15 days after starting the water stress and 4 days after irrigation to estimate the proline accumulation. The results obtained showed differences among bean cultivars in the proline content and the capacity for accumulation of this aminoacid under 15 days of water stress. 'Jalo', 'Roseli', and 'Roxão Lustroso' were cultivars with the highest proline accumulation (> 7 mmol/g DW whereas 'Moruna' and 'Curitibano Bairro das Palmeiras' were cultivars with the lowest proline content (< 3 mmol/g DW, after 15 days of water stress. The addition of water after 11 days of water stress showed proline content similar to the irrigated plants. The materials studied were classified as a function of their capacity for proline accumulation following 15 days of water stress. This classification represents differences in drought resistance if a higher proline contents is considered a measurement of the plant adaptation

  7. Roles of Hydroxynitrile Glucosides in Barley

    DEFF Research Database (Denmark)

    Roelsgaard, Pernille Sølvhøj

    , the defense capability of these compounds requires the activity of a specific β-glucosidase, and this β-glucosidase is not found in barley leaf tissue. Therefore, the role of hydroxynitrile glucosides in barley leaves is unclear. In contrast to acting as defense compounds, it has been suggested......) has been reported in the literature. In this thesis, the role of hydroxynitrile glucosides in the interaction between barley and Bgh is investigated. It is shown that the hydroxynitrile glucoside levels increase over time in barley leaves upon Bgh infection. In addition, isolation of fungal hyphae...

  8. Temporal versus spatial variation in leaf reflectance under changing water stress conditions

    Science.gov (United States)

    Cohen, Warren B.

    1991-01-01

    Leaf reflectance changes associated with changes in water stress were analyzed in two separate experiments. Results indicate that the variation in reflectance among collections of leaves of a given species all at the same level of water stress is at least as great as the variation in reflectance associated with changes in water stress for a given leaf collection of that species. The implications is that results from leaf reflectance-water stress studies have only limited applicability to the remote sensing of plant canopy water stress.

  9. Methyl Jasmonate Reduces Water Stress in Strawberry.

    Science.gov (United States)

    Wang

    1999-11-01

    The effect of methyl jasmonate (MJ) on changes of oxygen-scavenging enzyme activities and membrane lipid composition was studied in strawberry leaves under water stress. Under water stress, MJ treatment reduced the increase of peroxidase (EC 1.11.1.7; POD) activity, maintained higher catalase (EC 1.11.1.6; CAT) and superoxide dismutase (EC 1.15.1.1; SOD) activities, and ascorbic acid content. In addition, MJ treatment reduced transpiration and membrane-lipid peroxidation as expressed by malondialdehyde (MDA) content, lessened the reduction of membrane lipids, glycolipids [monogalactosyl diglyceride (MGDG), digalactosyl diglyceride (DGDG)], and phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylinositol (PI)]. In water-deficit conditions, MJ treatment also alleviated the decline in the degree of fatty acid unsaturation and the ratio of linolenic (18:3) to linoleic acid (18:2). These results indicate that MJ treatment appears to alter the metabolism of strawberry plants rendering the tissue better able to withstand water stress.

  10. Growth, Carbon Isotope Discrimination and Nitrogen Uptake in Silicon and/or Potassium Fed barley Grown under Two Watering Regimes

    Directory of Open Access Journals (Sweden)

    Kurdali, Fawaz

    2013-02-01

    Full Text Available The present pot experiment was an attempt to monitor the beneficial effects of silicon (Si and/or potassium (K applications on growth and nitrogen uptake in barley plants grown under water (FC1 and non water (FC2 stress conditions using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. Dry matter (DM and N yield (NY in different plant parts of barley plants was affected by Si and/ or K fertilization as well as by the watering regime level under which the plants have been grown. Solely added K or in combination with adequate rate of Si (Si 100 were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing higher spike's N yield. Solely added Si or in combination with K significantly reduced leaves ∆13 C reflecting their bifacial effects on water use efficiency (WUE, particularly in plants grown under well watering regime. This result indicated that Si might be involved in saving water loss through reducing transpiration rate and facilitating water uptake; consequently, increasing WUE. Although the rising of soil humidity generally increased fertilizer nitrogen uptake (Ndff and its use efficiency (%NUE in barley plants, applications of K or Si fertilizers to water stressed plants resulted in significant increments of these parameters as compared with the control. Our results highlight that Si or K is not only involved in amelioration of growth of barley plants, but can also improve nitrogen uptake and fertilizer nitrogen use efficiency particularly under water deficit conditions.

  11. Effect of copper deficiency and of water stress on the microstructure of tomato leaf surface

    OpenAIRE

    Barbara Dyki; Jan Borowski; Waldemar Kowalczyk

    2013-01-01

    The reaction of tomato plants cv. Tukan F1 to copper deficiency and to water stress was compared. Plants grown in copper deficiency and in conditions of water stress were significantly smaller than controls. They had also lower turgor. The epidermis cells of the upper side leaf in the plants growing in copper deficiency or water stress conditions were smaller than in control plants. However the stomata and trichomes number of leaves plants with copper or water deficiency grown were bigger in ...

  12. 水分胁迫对水稻叶片气孔密度、大小 及净光合速率的影响%Effect of Water Stress on Stomatal Density, Length width and Net Rate in Rice Leaves

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The expperiment results showed that water stress made stomatal density of flag leaves increase and stomatal length, stomatal width decrease obviously. The stomatal density had a significant negative correlation with the stomatal length and the stomatal width. And the stomatal length was positively correlated with the stomatal width. The net photosynthetic rate of flag leaves also decreased under the water stress and had a significant negative correlation with stomatal dcnsity.%在水分胁迫下,水稻叶片的气孔密度明量增大,气孔的长、宽明量减小。气孔密度与气孔长度、宽度呈量著的负相关(r=-0.90*,n=7)、而气孔长度和宽度呈显著的正相关(r=0.71*,n=7)。在水分胁迫下,水稻叶片的净光合速率也量著下降,并表现出与气孔密度呈量著负相关(r=-0.89.n=7)。

  13. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.

    Science.gov (United States)

    Ishitani, M; Nakamura, T; Han, S Y; Takabe, T

    1995-01-01

    When subjected to salt stress or drought, some vascular plants such as barley respond with an increased accumulation of the osmoprotectant glycine betaine (betaine), being the last step of betaine synthesis catalyzed by betaine aldehyde dehydrogenase (BADH). We report here cloning and characterization of BADH cDNA from barley, a monocot, and the expression pattern of a BADH transcript. An open reading frame of 1515 bp encoded a protein which showed high homology to BADH enzymes present in other plants (spinach and sugar-beet) and in Escherichia coli. Transgenic tobacco plants harboring the clone expressed high levels of both BADH protein and its enzymatic activity. Northern blot analyses indicated that BADH mRNA levels increased almost 8-fold and 2-fold, respectively, in leaves and roots of barley plants grown in high-salt conditions, and that these levels decreased upon release of the stress, whereas they did not decrease under continuous salt stress. BADH transcripts also accumulate in response to water stress or drought, indicating a common response of the plant to osmotic changes that affect its water status. The addition of abscisic acid (ABA) to plants during growth also increased the levels of BADH transcripts dramatically, although the response was delayed when compared to that found for salt-stressed plants. Removal of plant roots before transferring the plants to high-salt conditions reduced only slightly the accumulation of BADH transcripts in the leaves.

  14. Effect of copper deficiency and of water stress on the microstructure of tomato leaf surface

    Directory of Open Access Journals (Sweden)

    Barbara Dyki

    2013-12-01

    Full Text Available The reaction of tomato plants cv. Tukan F1 to copper deficiency and to water stress was compared. Plants grown in copper deficiency and in conditions of water stress were significantly smaller than controls. They had also lower turgor. The epidermis cells of the upper side leaf in the plants growing in copper deficiency or water stress conditions were smaller than in control plants. However the stomata and trichomes number of leaves plants with copper or water deficiency grown were bigger in comparision with control. The pores of stomata were always larger in leaves of control plants than in other objects.

  15. Barley germination

    DEFF Research Database (Denmark)

    Daneri-Castro, Sergio N.; Svensson, Birte; Roberts, Thomas H.

    2016-01-01

    conditions continue to be key to discovering the roles of individual protein forms and posttranslational modifications, such as glycosylation. Activity-based proteomics, particularly in combination with new gene editing technologies, has great potential to elucidate the network of enzymes in barley...

  16. Effect of Soil Water Stress on CO2/H2O Exchange Parameters in Wheat Leaves%水分胁迫对冬小麦叶片CO2/H2O交换参数的影响

    Institute of Scientific and Technical Information of China (English)

    张永强; 刘昌明; 杨永辉; 沈彦俊

    2001-01-01

    Changes of CO2/H2O exchange parameters were continually measuredin winter wheat under different water stress stages.The results showed that photosynthesis rate and transpiration rate of winter wheat in water stress conditions were obviously lower than that in non-stress conditions.After water stress,both of them slowly increased and even overtook that on sufficient irrigation treatment. Responses of winter wheat to water stress in different growth stages were different.To some extent, water stress can improve crop water use efficiency,speed up the process of milking.Under water stress condition,stomatal conductance limited diurnal changes of photosynthesis and transpiration in the morning but not in the afternoon.Transpiration is more sensitive to water stress than photosynthesis.

  17. Effects of Exogenous Spermidine on Photosystem Ⅱ of Wheat Seedlings Under Water Stress

    Institute of Scientific and Technical Information of China (English)

    Hui-Guo Duan; Shu Yuan; Wen-Juan Liu; De-Hui Xi; Dong-Hong Qing; Hou-Guo Liang; Hong-Hui Lin

    2006-01-01

    The effects of exogenous spermidine (Spd) on lipid peroxidation, relative plasma membrane permeability,photosystem Ⅱ (PSⅡ) gene expression and PSⅡ photochemical activity in water-stressed wheat seedlings were investigated. The decrease in relative water content (RWC), Chi content, and 2,6-dichlorophenol indophenol (DCIP) photoreduction of PSⅡ, and increases in electrolyte leakage of plasma membranes and malonyldialdehyde (MDA) in water-stressed leaves was alleviated by Spd pretreatment. Furthermore, Western and Northern blot analysis showed that decreases in the PSⅡ major proteins D1, D2 and LHCⅡ and the transcripts of corresponding genes psbA, psbD and cab were also alleviated by Spd pretreatment under water stress. These results suggest that the application of exogenous Spd protects PSⅡ against water stress at both the transcriptional level and the translational level, and allows PSⅡ to retain a higher activity level during water stress. The protective role of Spd in the photosynthetic apparatus also is discussed.

  18. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    Directory of Open Access Journals (Sweden)

    Krzysztof Klamkowski

    2006-12-01

    Full Text Available The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’ under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Water stress was imposed by reducing the irrigation according to substratum moisture readings. Water stressed plants had the lowest values of water potential and showed strong decrease in gas exchange rate. Also, biomass and leaf area were the lowest in this group of plants. No differences in the length of root system were observed between control and water stressed plants. The lack of water in growing medium resulted also in a decrease of density and reduction of dimensions of stomata on plant leaves. These changes contribute to optimizing the use of assimilates and water use efficiency in periods when water availability is decreased.

  19. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    Directory of Open Access Journals (Sweden)

    Krzysztof Klamkowski

    2006-01-01

    Full Text Available The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’ under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Water stress was imposed by reducing the irrigation according to substratum moisture readings. Water stressed plants had the lowest values of water potential and showed strong decrease in gas exchange rate. Also, biomass and leaf area were the lowest in this group of plants. No differences in the length of root system were observed between control and water stressed plants. The lack of water in growing medium resulted also in a decrease of density and reduction of dimensions of stomata on plant leaves.These changes contribute to optimizing the use of assimilates and water use efficiency in periods when water availability is decreased.

  20. Identification of genes involved in a water stress response in timothy and mapping of orthologous loci in perennial ryegrass

    DEFF Research Database (Denmark)

    Jonavičienė, Kristina; Studer, Bruno; Asp, Torben

    2012-01-01

    In order to characterize the response of selected grasses to water stress, relative water content (RWC) in leaves and quantum efficiency of photosystem 2 (Fv/Fm) were measured in Phleum pratense L., P. bertolonii DC. and P. phleoides H. Karst. during 6 d of water stress. The results indicated dif...

  1. Comparative Morpho-Biochemical Responses of Wheat Cultivars Sensitive and Tolerant to Water Stress

    Directory of Open Access Journals (Sweden)

    Heshmat S. Aldesuquy

    2014-05-01

    Full Text Available Water stress is likely the most important factor that adversely affects plant growth and development. In this study two wheat cultivars Gemmieza-7 (sensitive and Sahel-1 (tolerant were subjected to water stress and compared in terms of growth parameters (growth vigor of root and shoot, water relations (relative water content and saturation water deficit and protein as well as nucleic acids (DNA and RNA content in flag leaves of both cultivars. In general, water stress caused noticeable reduction in almost all growth criteria of root, shoot and flag leaf which was consistent with the progressive alteration in water relations, protein and nucleic acids content of both cultivars during grain filling. Furthermore, degree of leaf succulence and degree of leaf sclerophylly were severely affected by water stress in both wheat cultivars. In relation to wheat cultivar, the sensitive was more affected by water stress than the tolerant one. Generally, the application of salicylic acid, trehalose or their interaction induced marked increase in growth vigor of root and shoot, water relations and protein as well as nucleic acids in flag leaves of both wheat cultivars in compare with control and water stressed plants. In conclusion, Sahel-1 has suitable mechanisms to enable it to respond more effectively to water stress than Gemmieza-7.

  2. Physiological and Biochemical Changes of Leaves in Different Cassava Varieties Under Water Stress%水分胁迫对不同木薯品种叶片生理生化的影响

    Institute of Scientific and Technical Information of China (English)

    于晓玲; 王淦; 阮孟斌; 刘恩世; 彭明

    2012-01-01

    木著作为一种重要的亚热带粮食/能源作物,备受重视.为了探索水分胁迫对不同木薯品种的影响,对3个木薯栽培品种进行了不同梯度的干旱处理,利用相关及判别分析方法研究其相关生理生化指标与木薯抗旱性的关系.结果表明,随着水分胁迫强度的增加,不同木薯品种Fv/Fm有不同程度的降低,测试品种中SC124降低幅度最大,SC5变化最小;ABA含量则有所增强,变化幅度因供试品种而异,SC124变化最为显著,SC5增强幅度最小.本次测试的木薯3个品种的抗旱能力显示,SC5相对较耐干旱,SC124相对不耐干旱.%Cassava is valued as an important subtropical food/energy crops. In order to select the best methods of cassava (Manihot esculents Crantz) to evaluate drought system, we use analysis techniques of correlation and discrimination to study the relationship between physio-biochemical and drought resistance of the cassava leaves. The results showed that, PS Ⅱ photochemical efficiency (Fv/Fm) declined and the contents of abscisic acid (ABA) increased to different degree depending on the genotypes. Based on several physiological indexes, the drought tolerance of 3 tested cassava varieties was preliminarily evaluated that SC5 had the highest tolerant and SCI24 had the most sensitive.

  3. Brewing with fractionated barley

    OpenAIRE

    Donkelaar, van, CC René

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw barley, however, contains less endogenous enzymes and more undesired components for the use of beer brewing, compared to malted barley.  The overall aim of this thesis is to investigate how ba...

  4. Biological seed priming mitigates the effects of water stress in sunflower seedlings.

    Science.gov (United States)

    Singh, Narsingh Bahadur; Singh, Deepmala; Singh, Amit

    2015-04-01

    The sunflower (Helianthus annuus L. cv. PAC 36) seedlings were inoculated with plant growth promoting rhizobacteria (PGPR), viz. Azotobacter chroococcum (A+), Bacillus polymyxa (B+), separately and in combination of the two (AB+). Relative water content and seedling growth were maximum in AB+ seedlings under control. Water stress significantly decreased the RWC, growth and dry mass of non-inoculated seedlings. However, inoculated seedlings maintained higher growth even under water stress. Pigments and protein contents decreased under water stress, but higher amount of the same was observed in stressed AB+ seedlings. Enhanced activity of nitrate reductase was recorded in AB+ seedlings with maximum in control. Water stress significantly decreased the nitrate reductase activity. A significant increase in the activity of superoxide dismutase (SOD) in leaves was recorded under water stress except in B+ with maximum increase in non-inoculated seedlings. Catalase (CAT) activity decreased in stressed non-inoculated seedlings while increased in the leaves of A+ and AB+ seedlings. Almost similar trends were recorded for both leaves and cotyledons. PGPR improved the water status in stressed seedlings and thereby physiological and biochemical parameters and thus ameliorated the severe effects of water stress.

  5. Water stress before harvest of pepper-rosmarin

    Directory of Open Access Journals (Sweden)

    Ivan Caldeira Almeida Alvarenga

    2011-07-01

    Full Text Available The objective of this work was to assess the effect of different periods of water stress before harvest of pepper-rosmarin (Lippia sidoides on the contents of essential oil and flavonoids. The experiment was carried out during 270 days of cultivation, with drainage lysimeters, in a completely randomized block design with five treatments: 0, 2, 4, 6, and 8 days of water suppression before harvest, with four replicates. Fresh and dry matter yield, essential oil content, total flavonoids content, and water potential and temperature of leaves were determined. There was a decrease of approximately 50% in oil content and of 60% in total flavonoid content with the reduction of leaf water potential in 0.3 MPa. Essential oil is more sensitive to water stress than total flavonoids.

  6. Barley metallothioneins differ in ontogenetic pattern and response to metals

    DEFF Research Database (Denmark)

    Schiller, Michaela; Hegelund, Josefine Nymark; Pedas, Pai

    2014-01-01

    The barley genome encodes a family of 10 metallothioneins (MTs) that have not previously been subject to extensive gene expression profiling. We show here that expression of MT1a, MT2b1, MT2b2 and MT3 in barley leaves increased more than 50-fold during the first 10 d after germination. Concurrent...

  7. Azospirillum brasilense affects the antioxidant activity and leaf pigment content of Urochloa ruziziensis under water stress

    Directory of Open Access Journals (Sweden)

    Lucas Guilherme Bulegon

    2016-09-01

    Full Text Available Water stress leads to the formation of reactive oxygen species, resulting in degradation of leaf pigments and cell death. This study aimed at assessing the oxidative enzyme activity and photosynthetic pigment content in seeds and/or leaves of Urochloa ruziziensis (syn. Brachiaria inoculated with Azospirillum brasilense under water stress. Assessments of soluble proteins, chlorophylls a and b and carotenoid contents, as well as the activity of superoxide dismutase (SOD, peroxidase (POD and catalase (CAT enzymes, were conducted at the beginning of the water stress process and also under severe water stress and during plant rehydration. Seed inoculation showed a reduction in the action of SOD, under water stress, with an increase after rehydration. POD exhibited an activity greater than CAT in all the assessments, but it did not differ statistically under severe water stress. CAT activity increased under severe stress in all treatments, particularly for leaf inoculation. Chlorophyll a was slightly degraded, maintaining the levels of the irrigated control, while the chlorophyll b and carotenoid contents, in plants subjected to leaf inoculation with A. brasilense, were higher under water stress. It was concluded that the leaf inoculation of U. ruziziensis with A. brasilense makes the plant more efficient at removing reactive oxygen species and protecting chlorophyll a.

  8. Synergistic Effect of Selenium Addition and Water Stress on Melilotus officinalis L. Mineral Content

    Directory of Open Access Journals (Sweden)

    Panagiota KOSTOPOULOU

    2015-12-01

    Full Text Available The objective of this study was to examine the combined effects of selenium (Se enrichment and water stress on the accumulation of available macro- and micronutrients in Melilotus officinalis L. aerial parts. Plants of M. officinalis were subjected to three levels of Se addition (0, 1 and 3 mg Se L-1 water and to two water treatments: a full irrigation and b limited irrigation (water stress. The above ground biomass (stems and leaves was analyzed for Se, potassium (K, sodium (Na, magnesium (Mg, iron (Fe, copper (Cu, calcium (Ca, manganese (Mn and zinc (Zn. Se addition differentially affected the K, Mg and Ca content of M. officinalis aerial parts, while it led to the reduction of the micronutrients Cu, Fe and Mn. Water stress resulted in the increase of K, Na, Mg, Ca and Cu, and to the decrease of the Fe, Zn and Mn content. An interaction between selenium addition and water treatment was more notable for Ca and Mg, which decreased under water stress at low Se level and for Zn and Cu, which increased under water stress at high Se level. According to our findings, Se-induced increased accumulation of some inorganic ions in the aerial parts of this species under water stress conditions could serve as a means to alleviate the adverse impact of water deficit on important metabolic processes, enhancing M. officinalis tolerance to water stress.

  9. Water stress strengthens mutualism among ants, trees, and scale insects.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Pringle

    2013-11-01

    Full Text Available Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.

  10. Effect of phytoliths for mitigating water stress in durum wheat.

    Science.gov (United States)

    Meunier, Jean Dominique; Barboni, Doris; Anwar-Ul-Haq, Muhammad; Levard, Clément; Chaurand, Perrine; Vidal, Vladimir; Grauby, Olivier; Huc, Roland; Laffont-Schwob, Isabelle; Rabier, Jacques; Keller, Catherine

    2017-07-01

    The role of silicon (Si) in alleviating biotic and abiotic stresses in crops is well evidenced by empirical studies; however, the mechanisms by which it works are still poorly known. The aim of this study is to determine whether or not phytolith composition and distribution in wheat are affected by drought and, if so, why. Durum wheat was grown using hydroponics in the presence of polyethylene glycol (PEG)-6000 to perform a water-stress simulation. We developed an original method for in situ analysis of phytoliths in leaves via X-ray imaging. PEG was efficient in inhibiting water uptake by roots and creating stress, and prevented a small fraction of Si from being accumulated in the shoots. The application of Si with PEG maintained shoot and root fresh weights (FW) and relative water content at higher values than for plants without Si, especially at PEG 12%. Our data show that, under water stress in the presence of Si, accumulation of phytoliths over the veins provides better support to the leaf, thus allowing for a better development of the whole plant than in the absence of Si. The development of silicified trichomes in durum wheat depends primarily on the availability of Si in soil and is not an adaptation to water stress. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Water stress strengthens mutualism among ants, trees, and scale insects.

    Science.gov (United States)

    Pringle, Elizabeth G; Akçay, Erol; Raab, Ted K; Dirzo, Rodolfo; Gordon, Deborah M

    2013-11-01

    Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.

  12. 大麦叶片表皮蜡质含量与抗旱性的关系研究%Study on the Relationship between Epicuticular Wax Content of Barley Leaves and Drought Resistance

    Institute of Scientific and Technical Information of China (English)

    张海禄; 齐军仓

    2012-01-01

    [目的]了解植物叶片表皮蜡质含量与抗旱性的关系.[方法]对抗旱性不同的6个大麦品种进行干旱处理,对灌浆期的大麦旗叶、旗叶鞘表皮蜡质含量与7个重要的抗旱生理指标进行测定分析.[结果]干旱条件下不同大麦品种间的蜡质含量、相对含水量、叶绿素含量及气孔导度存在显著或极显著差异.抗性大麦品种的表皮蜡质含量及水分利用效率显著高于抗旱性弱的品种.表皮蜡质含量越高的品种,其蒸腾速率和胞间CO2浓度越低,水分利用效率越高.[结论]提高水分利用效率的途径主要是通过降低蒸腾速率.干旱胁迫下叶片失水,气孔开度减小甚至趋于关闭,而高蜡质含量品种的气孔导度更小,阻力增大,降低蒸腾速率,减少水分散失,维持较高含水量,提高植株抗旱性.%[ Objective ] In order to study the relationship between the leaf epicuticular wax content and drought resistance in barley plant. [ Method ] 6 cultivars possessing different drought - resistance were employed under drought conditions in this experiment. With no irrigation during the whole period, analysis was carried out of the correlation between epicuticular wax content and other 7 drought resistant physiology traits of flag leaf, including water use efficiency relative water content, chlorophyll, net photosynthetic rate, transpiration rate, stomata conductance, intercellular C02 concentration at late grain -filling stage. [Result] The results showed as follows: the difference of epicuticular wax content, relative water content, chlorophyll and stomata conductance of leaves were significant in different barley varieties under drought stress condition. Epicuticular wax content and water use efficiency of resistance barley varieties were significantly higher than those of the varieties with weak drought resistance. The higher epicuticular wax content of flag leaf was, the lower transpiration rate would be, and the lower

  13. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw

  14. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw

  15. The barley Jip23b gene

    DEFF Research Database (Denmark)

    Müller-Uri, Frieder; Cameron-Mills, Verena; Mundy, John

    2002-01-01

    The barley gene (Jip23) encoding a 23,000-Da protein of unknown function was isolated and shown to be induced by jasmonate methyl ester (MeJA) in leaves. 5'upstream Jip23 sequence was isolated and fused to the beta-glucuronidase gene (GUS), and this reporter was introduced by particle bombardment...

  16. Bioactive phytochemicals in barley

    Directory of Open Access Journals (Sweden)

    Emmanuel Idehen

    2017-01-01

    Full Text Available Epidemiological studies have consistently shown that regular consumption of whole grain barley reduces the risk of developing chronic diseases. The presence of barley fiber, especially β-glucan in whole grain barley, has been largely credited for these health benefits. However, it is now widely believed that the actions of the fiber component alone do not explain the observed health benefits associated with the consumption of whole grain barley. Whole grain barley also contains phytochemicals including phenolic acids, flavonoids, lignans, tocols, phytosterols, and folate. These phytochemicals exhibit strong antioxidant, antiproliferative, and cholesterol lowering abilities, which are potentially useful in lowering the risk of certain diseases. Therefore, the high concentration of phytochemicals in barley may be largely responsible for its health benefits. This paper reviews available information regarding barley phytochemicals and their potential to combat common nutrition-related diseases including cancer, cardiovascular disease, diabetes, and obesity.

  17. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus.

    Science.gov (United States)

    Nielsen, Kirsten A; Hrmova, Maria; Nielsen, Janni Nyvang; Forslund, Karin; Ebert, Stefan; Olsen, Carl E; Fincher, Geoffrey B; Møller, Birger Lindberg

    2006-04-01

    Barley (Hordeum vulgare L.) produces a leucine-derived cyanogenic beta-D-glucoside, epiheterodendrin that accumulates specifically in leaf epidermis. Barley leaves are not cyanogenic, i.e. they do not possess the ability to release hydrogen cyanide, because they lack a cyanide releasing beta-D-glucosidase. Cyanogenesis was reconstituted in barley leaf epidermal cells through single cell expression of a cDNA encoding dhurrinase-2, a cyanogenic beta-D-glucosidase from sorghum. This resulted in a 35-60% reduction in colonization rate by an obligate parasite Blumeria graminis f. sp. hordei, the causal agent of barley powdery mildew. A database search for barley homologues of dhurrinase-2 identified a (1,4)-beta-D-glucan exohydrolase isozyme betaII that is located in the starchy endosperm of barley grain. The purified barley (1,4)-beta-D-glucan exohydrolase isozyme betaII was found to hydrolyze the cyanogenic beta-D-glucosides, epiheterodendrin and dhurrin. Molecular modelling of its active site based on the crystal structure of linamarase from white clover, demonstrated that the disposition of the catalytic active amino acid residues was structurally conserved. Epiheterodendrin stimulated appressoria and appressorial hook formation of B. graminis in vitro, suggesting that loss of cyanogenesis in barley leaves has enabled the fungus to utilize the presence of epiheterodendrin to facilitate host recognition and to establish infection.

  18. Global monthly water stress: 2. Water demand and severity of water stress

    OpenAIRE

    Wada, Yoshihide; Van Beek, L. P. H.; Viviroli, Daniel; Dürr, Hans H.; Weingartner, Rolf; Bierkens, Marc F. P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted with global monthly water demand. Water demand is defined here as the volume of water required by users to satisfy their needs. Water demand is calculated for the benchmark year of 2000 and contras...

  19. Global monthly water stress: 2. Water demand and severity of water stress

    OpenAIRE

    Wada, Yoshihide; Beek, L. P. H.; Viviroli, Daniel; Dürr, Hans H; Weingartner, Rolf; Bierkens, Marc F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted with global monthly water demand. Water demand is defined here as the volume of water required by users to satisfy their needs. Water demand is calculated for the benchmark year of 2000 and contras...

  20. Stability of Barley stripe mosaic virus induced gene silencing in barley

    DEFF Research Database (Denmark)

    Bruun-Rasmussen, Marianne; Madsen, Christian Toft; Jessing, Stine

    2007-01-01

    Virus-induced gene silencing (VIGS) can be used as a powerful tool for functional genomics studies in plants. With this approach, it is possible to target most genes and downregulate the messenger (m)RNA in a sequence-specific manner. Barley stripe mosaic virus (BSMV) is an established VIGS vector...... for barley and wheat; however, silencing using this vector is generally transient, with efficient silencing often being confined to the first two or three systemically infected leaves. To investigate this further, part of the barley Phytoene desaturase (PDS) gene was inserted into BSMV and the resulting...... inoculation, although large parts of the insert had been lost from the virus vector. The instability of the insert, observed consistently throughout our experiments, offers an explanation for the transient nature of silencing when using BSMV as a VIGS vector....

  1. 1-Aminocyclopropane-1-Carboxylic Acid Transported from Roots to Shoots Promotes Leaf Abscission in Cleopatra Mandarin (Citrus reshni Hort. ex Tan.) Seedlings Rehydrated after Water Stress.

    Science.gov (United States)

    Tudela, D; Primo-Millo, E

    1992-09-01

    The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.

  2. Nitric Oxide Reduces Hydrogen Peroxide Accumulation Involved in Water Stress-induced Subcellular Anti-oxidant Defense in Maize Plants

    Institute of Scientific and Technical Information of China (English)

    Jianrong Sang; Mingyi Jiang; Fan Lin; Shucheng Xu; Aying Zhang; Mingpu Tan

    2008-01-01

    Nitric oxide (NO) Is a bioactive molecule involved in many biological events, and has been reported as pro-oxidant as well as anti-oxidant in plants. In the present study, the sources of NO production under water stress, the role of NO in water stress-induced hydrogen peroxide (H2O2) accumulation and subcellular activities of anti-oxidant enzymes in leaves of maize (Zea mays L.) plants were investigated. Water stress Induced defense increases in the generation of NO In maize mesphyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. Water stress-induced defense increases in the production of NO were blocked by pretreatments with Inhibitors of NOS and nitrate reductase (NR), suggesting that NO is produced from NOS and NR in leaves of maize plants exposed to water stress. Water stress also induced increases in the activities of the chloroplastic and cytosolic anti-oxidant enzymes superoxide dismutase (SOD), ascorbate peroxidass (APX), and glutathione reductase (GR), and the increases in the activities of anti-oxidant enzymes were reduced by pretreatments with inhibitors of NOS and NR. Exogenous NO increases the activities of water stress-induced subcellular anti-oxidant enzymes, which decreases accumulation of H2O2. Our results suggest that NOS and NR are involved in water strese-induced NO production and NOS is the major source of NO. The potential ability of NO to scavenge H2O2 is, at least in part, due to the induction of a subcellular anti-oxidant defense.

  3. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage

    OpenAIRE

    Guo, P; Baum, M.; Grando, S.; Ceccarelli, S.; Bai, G.; Li, R; Von Korff, M.; Varshney, R.,; Graner, A.; Valkoun, V.

    2007-01-01

    Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also facilitate the genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at the transcriptional level in barley leaves during the repro...

  4. Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.

    Science.gov (United States)

    Penella, Consuelo; Nebauer, Sergio G; Bautista, Alberto San; López-Galarza, Salvador; Calatayud, Ángeles

    2014-06-15

    Recent studies have shown that tolerance to abiotic stress, including water stress, is improved by grafting. In a previous work, we took advantage of the natural variability of Capsicum spp. and selected accessions tolerant and sensitive to water stress as rootstocks. The behavior of commercial cultivar 'Verset' seedlings grafted onto the selected rootstocks at two levels of water stress provoked by adding 3.5 and 7% PEG (polyethylene glycol) was examined over 14 days. The objective was to identify the physiological traits responsible for the tolerance provided by the rootstock in order to determine if the tolerance is based on the maintenance of the water relations under water stress or through the activation of protective mechanisms. To achieve this goal, various physiological parameters were measured, including: water relations; proline accumulation; gas exchange; chlorophyll fluorescence; nitrate reductase activity; and antioxidant capacity. Our results indicate that the effect of water stress on the measured parameters depends on the duration and intensity of the stress level, as well as the rootstock used. Under control conditions (0% PEG) all plant combinations showed similar values for all measured parameters. In general terms, PEG provoked a strong decrease in the gas exchange parameters in the cultivar grafted onto the sensitive accessions, as also observed in the ungrafted plants. This effect was related to lower relative water content in the plants, provoked by an inefficient osmotic adjustment that was dependent on reduced proline accumulation. At the end of the experiment, chronic photoinhibition was observed in these plants. However, the plants grafted onto the tolerant rootstocks, despite the reduction in photosynthetic rate, maintained the protective capacity of the photosynthetic machinery mediated by osmotic adjustment (based on higher proline content). In addition, water stress limited uptake and further NO3(-) transfer to the leaves. Increased

  5. Barley peroxidase isozymes

    Science.gov (United States)

    Laugesen, Sabrina; Bak-Jensen, Kristian Sass; Hägglund, Per; Henriksen, Anette; Finnie, Christine; Svensson, Birte; Roepstorff, Peter

    2007-12-01

    Thirteen peroxidase spots on two-dimensional gels were identified by comprehensive proteome analysis of the barley seed. Mass spectrometry tracked multiple forms of three different peroxidase isozymes: barley seed peroxidase 1, barley seed-specific peroxidase BP1 and a not previously identified putative barley peroxidase. The presence of multiple spots for each of the isozymes reflected variations in post-translational glycosylation and protein truncation. Complete sequence coverage was achieved by using a series of proteases and chromatographic resins for sample preparation prior to mass spectrometric analysis. Distinct peroxidase spot patterns divided the 16 cultivars tested into two groups. The distribution of the three isozymes in different seed tissues (endosperm, embryo, and aleurone layer) suggested the peroxidases to play individual albeit partially overlapping roles during germination. In summary, a subset of three peroxidase isozymes was found to occur in the seed, whereas products of four other barley peroxidase genes were not detected. The present analysis documents the selective expression profiles and post-translational modifications of isozymes from a large plant gene family.

  6. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2012-01-01

    Full Text Available Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant activity and photosynthetic pigments were studied in basil plants. A field experiment was conducted at the University of Zabol in Iran during 2010 growing season. The experiment laid out as split plot based on randomized complete block design with three replications. Three levels of water stress W1 = 80 (control, W2 = 60 and W3 = 40% of the field capacity (FC as main plots and four levels of bacterial species consisting of S1 = Pseudomonades sp., S2 = Bacillus lentus, S3 = Azospirillum brasilens, S4 = combination of three bacterial species and S5 = control (without use of bacterial as sub plots. The results revealed that water stress caused a significant change in the antioxidant activity. The highest concentration CAT and GPX activity were in W3 treatments. By increasing water stress from control to W3, chlorophyll content in leaves was increased but Fv/Fm and APX activity decreased. Application of rhizobacteria under water stress improved the antioxidant and photosynthetic pigments in basil plants. S1 = Pseudomonades sp. under water stress, significantly increased the CAT enzyme activity, but the highest GPX and APX activity and chlorophyll content in leaves under water stress were in S4 = combination of three bacterial species.

  7. Nodule and Leaf Nitrate Reductases and Nitrogen Fixation in Medicago sativa L. under Water Stress.

    Science.gov (United States)

    Aparicio-Tejo, P; Sánchez-Díaz, M

    1982-02-01

    The effect of water stress on patterns of nitrate reductase activity in the leaves and nodules and on nitrogen fixation were investigated in Medicago sativa L. plants watered 1 week before drought with or without NO(3) (-). Nitrogen fixation was decreased by water stress and also inhibited strongly by the presence of NO(3) (-). During drought, leaf nitrate reductase activity (NRA) decreased significantly particularly in plants watered with NO(3) (-), while with rewatering, leaf NRA recovery was quite important especially in the NO(3) (-)-watered plants. As water stress progressed, the nodular NRA increased both in plants watered with NO(3) (-) and in those without NO(3) (-) contrary to the behavior of the leaves. Beyond -15.10(5) pascal, nodular NRA began to decrease in plants watered with NO(3) (-). This phenomenon was not observed in nodules of plants given water only.Upon rewatering, it was observed that in plants watered with NO(3) (-) the nodular NRA increased again, while in plants watered but not given NO(3) (-), such activity began to decrease. Nitrogen fixation increased only in plants without NO(3) (-).

  8. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    Science.gov (United States)

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  9. Crop water stress maps for an entire growing season from visible and thermal UAV imagery

    Science.gov (United States)

    Hoffmann, Helene; Jensen, Rasmus; Thomsen, Anton; Nieto, Hector; Rasmussen, Jesper; Friborg, Thomas

    2016-12-01

    This study investigates whether a water deficit index (WDI) based on imagery from unmanned aerial vehicles (UAVs) can provide accurate crop water stress maps at different growth stages of barley and in differing weather situations. Data from both the early and late growing season are included to investigate whether the WDI has the unique potential to be applicable both when the land surface is partly composed of bare soil and when crops on the land surface are senescing. The WDI differs from the more commonly applied crop water stress index (CWSI) in that it uses both a spectral vegetation index (VI), to determine the degree of surface greenness, and the composite land surface temperature (LST) (not solely canopy temperature).Lightweight thermal and RGB (red-green-blue) cameras were mounted on a UAV on three occasions during the growing season 2014, and provided composite LST and color images, respectively. From the LST, maps of surface-air temperature differences were computed. From the color images, the normalized green-red difference index (NGRDI), constituting the indicator of surface greenness, was computed. Advantages of the WDI as an irrigation map, as compared with simpler maps of the surface-air temperature difference, are discussed, and the suitability of the NGRDI is assessed. Final WDI maps had a spatial resolution of 0.25 m.It was found that the UAV-based WDI is in agreement with measured stress values from an eddy covariance system. Further, the WDI is especially valuable in the late growing season because at this stage the remote sensing data represent crop water availability to a greater extent than they do in the early growing season, and because the WDI accounts for areas of ripe crops that no longer have the same need for irrigation. WDI maps can potentially serve as water stress maps, showing the farmer where irrigation is needed to ensure healthy growing plants, during entire growing season.

  10. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  11. Digestibility and rate of passage by lambs of water-stressed alfalfa.

    Science.gov (United States)

    Undersander, D J; Cole, N A; Naylor, C H

    1987-06-01

    Two lamb digestion experiments were conducted to evaluate the effect of alfalfa [Medicago sativa (L.)] grown under varying levels of water deficiency (stress) on the rate of passage and digestibility of various fibrous components. Experiment 1 consisted of a randomized complete block design in which 12 Suffolk X Hampshire crossbred wethers averaging 40 kg were fed alfalfa hay grown at three (10, 15 or 20 cm water/ha) levels of water per harvest. Experiment 2 consisted of a switchback design in which four Hampshire wethers averaging 45 kg were fed alfalfa hay grown at two (5 or 20 cm/ha) levels of water per harvest. Forage yields ranged from 1,420 (10 cm/ha in Exp. 1) to 4,200 (20 cm/ha in Exp. 2) kg/ha. In both experiments, water stress reduced cell wall constituents (neutral detergent fiber), acid detergent fiber, lignin and cellulose content of the alfalfa hay. Organic matter digestibility was decreased when the percentage of leaves fell below 60% at the highest yield. Digestibility of N and the rate of NDF digestibility were not affected by water stress. The second experiment additionally included nutrient balance and rate of passage measurements. Greater (P less than .10) amounts of N and P were absorbed from water-stressed than nonstressed hay. Ruminal retention time of particulate markers tended (P less than .10) to increase with greater water stress. The results of this study are interpreted to indicate that while moderate water stress may have little effect on in vivo digestibility of alfalfa, severe stress may reduce digestibility of fibrous fractions and total organic matter.

  12. Barley Sprouts Extract Attenuates Alcoholic Fatty Liver Injury in Mice by Reducing Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Yun-Hee Lee

    2016-07-01

    Full Text Available It has been reported that barley leaves possess beneficial properties such as antioxidant, hypolipidemic, antidepressant, and antidiabetic. Interestingly, barley sprouts contain a high content of saponarin, which showed both anti-inflammatory and antioxidant activities. In this study, we evaluated the effect of barley sprouts on alcohol-induced liver injury mediated by inflammation and oxidative stress. Raw barley sprouts were extracted, and quantitative and qualitative analyses of its components were performed. The mice were fed a liquid alcohol diet with or without barley sprouts for four weeks. Lipopolysaccharide (LPS-stimulated RAW 264.7 cells were used to study the effect of barley sprouts on inflammation. Alcohol intake for four weeks caused liver injury, evidenced by an increase in serum alanine aminotransferase and aspartate aminotransferase activities and tumor necrosis factor (TNF-α levels. The accumulation of lipid in the liver was also significantly induced, whereas the glutathione (GSH level was reduced. Moreover, the inflammation-related gene expression was dramatically increased. All these alcohol-induced changes were effectively prevented by barley sprouts treatment. In particular, pretreatment with barley sprouts significantly blocked inducible nitric oxide synthase (iNOS and cyclooxygenase (COX-2 expression in LPS-stimulated RAW 264.7. This study suggests that the protective effect of barley sprouts against alcohol-induced liver injury is potentially attributable to its inhibition of the inflammatory response induced by alcohol.

  13. The untranslated leader sequence of the barley lipoxygenase 1 (Lox1) gene confers embryo-specific expression

    NARCIS (Netherlands)

    Rouster, J.; Mechelen J. van; Cameron-Mills, V.

    1998-01-01

    The barley lipoxygenase 1 (Lox1) gene encodes a protein expressed in embryos during grain development and germination and in leaves after methyl-jasmonate (MeJA) treatment. Transient gene expression assays in germinating barley embryos were used to identify cis-regulatory elements involved in the em

  14. The untranslated leader sequence of the barley lipoxygenase 1 (Lox1) gene confers embryo-specific expression

    NARCIS (Netherlands)

    Rouster, J.; Mechelen J. van; Cameron-Mills, V.

    1998-01-01

    The barley lipoxygenase 1 (Lox1) gene encodes a protein expressed in embryos during grain development and germination and in leaves after methyl-jasmonate (MeJA) treatment. Transient gene expression assays in germinating barley embryos were used to identify cis-regulatory elements involved in the em

  15. Malting barley BRS Borema

    Directory of Open Access Journals (Sweden)

    Euclydes Minella

    2006-01-01

    Full Text Available BRS Borema is an early maturing, two-rowed spring barley registered in 2003 for commercial production inSouthern Brazil, bred by Embrapa Trigo. It combines good yield potential with superior malting quality and a reasonable levelof disease (net blotch, powdery mildew, leaf rust resistance. It is well-adapted to all major production regions of maltingbarley in Brazil.

  16. Dynamic Allocation of Sugars in Barley

    Science.gov (United States)

    Cumberbatch, L. C.; Crowell, A. S.; Fallin, B. A.; Howell, C. R.; Reid, C. D.; Weisenberger, A. G.; Lee, S. J.; McKisson, J. E.

    2014-03-01

    Allocation of carbon and nitrogen is a key factor for plant productivity. Measurements are carried out by tracing 11C-tagged sugars using positron emission tomography and coincidence counting. We study the mechanisms of carbon allocation and transport from carbohydrate sources (leaves) to sinks (stem, shoot, roots) under various environmental conditions such as soil nutrient levels and atmospheric CO2 concentration. The data are analyzed using a transfer function analysis technique to model transport and allocation in barley plants. The experimental technique will be described and preliminary results presented. This work was supported in part by USDOE Grant No. DE-FG02-97-ER41033 and DE-SC0005057.

  17. Water stress-induced changes in morphology and anatomy of flag leaf of spring wheat

    Directory of Open Access Journals (Sweden)

    Barbara Zagdańska

    2014-01-01

    Full Text Available Flag leaves of wheat (drought hardened and non-hardened were examined by light microscopy to determine whether the differences in leaf anatomy could be related to the known differences in dehydration tolerance. Plants exposure to water stress during tissue differentiation of flag leaves resulted in an irreversible reduction of leaf area and thickness, increased frequencies of stomata and higher number of bulliform cells with simultaneous decrease in number of intermediate veins and an increase in the share of the cell walls in total cell volume. The smaller leaf thickness was due to a diminished number of mesophyll layers and a decreased size of mesophyll cells. Such altered leaf anatomy indicated development of leaf xerophily. It was found that the irreversible changes in anatomy of wheat flag leaves play a decisive role in acquiring drought tolerance during wheat acclimation to drought.

  18. Effects of water stress on development, operation and gene expression of cyanide-resistant respiratory pathway in wheat

    Institute of Scientific and Technical Information of China (English)

    何军贤; 韦振泉; 梁厚果

    1999-01-01

    Osmotic dehydration of wheat seedlings in-0.5 MPa polyethylene glycol (PEG) solutions for 24, 48 and 72 h resulted in mild, moderate and severe water stress respectively in leaves, but only caused mild water stress in roots as reflected by the changes in relative water content (RWC). In response to the above water stress conditions, leaf total respiratory rate (Vt) decreased progressively, and the alternative pathway (AP) capacity (Valt) and its actual operation activity (ρValt) decreased more severely. Water stress also led to continuous reduction in cytochrome pathway (CP) activity ((ρ’ Vcyt) and different changes in the contribution of ρValt and ρ’ Vcyt to Vt in leaves, with ρValt/Vt decreasing and ρ’ Vcyt/Vt increasing. The change pattern of root Vt was similar to that of its RWC, while root Valt and ρValt were found to decrease during the first 24 h of stress and thereafter recover to a level close to that of the control (O h). These data indicate that the alt

  19. Metabolite Profiling for Leaf Senescence in Barley Reveals Decreases in Amino Acids and Glycolysis Intermediates

    Directory of Open Access Journals (Sweden)

    Liliana Avila-Ospina

    2017-02-01

    Full Text Available Leaf senescence is a long developmental phase important for plant performance and nutrient management. Cell constituents are recycled in old leaves to provide nutrients that are redistributed to the sink organs. Up to now, metabolomic changes during leaf senescence have been mainly studied in Arabidopsis (Arabidopsis thaliana L.. The metabolite profiling conducted in barley (Hordeum vulgare L. during primary leaf senescence under two nitrate regimes and in flag leaf shows that amino acids, hexose, sucrose and glycolysis intermediates decrease during senescence, while minor carbohydrates accumulate. Tricarboxylic acid (TCA compounds changed with senescence only in primary leaves. The senescence-related metabolite changes in the flag leaf were globally similar to those observed in primary leaves. The effect of senescence on the metabolite changes of barley leaves was similar to that previously described in Arabidopsis except for sugars and glycolysis compounds. This suggests a different role of sugars in the control of leaf senescence in Arabidopsis and in barley.

  20. Initial development and chemical components of sugarcane under water stress associated with arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Carmem C. M. de Sousa

    2015-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effects of water stress levels in the soil and a mix (or: a mixed inoculum of four species: Claroideoglomus etunicatum, Gigasporas rosea, Acaulospora longula, Fuscutata heterogama of arbuscular mycorrhizal fungi (AMF on initial vegetative growth, fresh and dry biomass production, root colonization, phosphorus, proteins, enzymes and amino acid of the sugarcane variety RB 857515 under greenhouse conditions. The experiment was set in a randomized block design in a 2 x 2 factorial scheme with four treatments (T1 - 50% PC - pot capacity, with AMF; T2 - 100% PC with AMF; T3 - 50% PC without AMF; T4 - 100% PC without AMF with 16 replicates. The water stress level of 50% PC decreased stem diameter and shoot and root fresh weight of sugarcane plants, as well as AMF in the soil and in plant roots. However, AMF and the water stress level of 50% PC, separately or combined, did not affect plant height, number of leaves, dry matter and contents of phosphorus, total soluble proteins, catalase, ascorbate peroxidase, polyphenoloxidase, peroxidase and proline of the sugarcane variety RB857515.

  1. The enhanced callose deposition in barley with ml-o powdery mildew resistance genes

    DEFF Research Database (Denmark)

    Skou, Jens-Peder

    1985-01-01

    Carborundum treatment of barley leaves induced a callose deposition which was detected as diffuse blotches in the epidermal cells of susceptible barleys and as deeply stained tracks along the scratches in barleys with the ml-o powdery mildew resistance gene. Subsequent inoculation with powdery...... mildew resulted in appositions that enlarged inversely to their size in the respective varieties when inoculated without carborundum treatment. Aphids sucking the leaves resulted in rows of callose containing spots along the anticlinal cell walls. The spots were larger in the ml-o mutant than...... in the mother variety. Callose was deposited in connection with the pleiotropic necrotic spotting in barleys with the ml-o gene. Modification of the necrotic spotting by crossing the ml-o gene into other gene backgrounds did not result in any change in the size of appositions upon inoculation with powdery...

  2. The enhanced callose deposition in barley with ml-o powdery mildew resistance genes

    DEFF Research Database (Denmark)

    Skou, Jens-Peder

    1985-01-01

    Carborundum treatment of barley leaves induced a callose deposition which was detected as diffuse blotches in the epidermal cells of susceptible barleys and as deeply stained tracks along the scratches in barleys with the ml-o powdery mildew resistance gene. Subsequent inoculation with powdery...... mildew resulted in appositions that enlarged inversely to their size in the respective varieties when inoculated without carborundum treatment. Aphids sucking the leaves resulted in rows of callose containing spots along the anticlinal cell walls. The spots were larger in the ml-o mutant than...... in the mother variety. Callose was deposited in connection with the pleiotropic necrotic spotting in barleys with the ml-o gene. Modification of the necrotic spotting by crossing the ml-o gene into other gene backgrounds did not result in any change in the size of appositions upon inoculation with powdery...

  3. An Integrated Analysis of Changes in Water Stress in Europe

    DEFF Research Database (Denmark)

    Henrichs, T.; Lehner, B.; Alcamo, J.

    2002-01-01

    that today high water stress exists in one-fifth of European river basin area. Under a scenario projection, increases in water use throughout Eastern Europe are accompanied by decreases in water availability in most of Southern Europe--combining these trends leads to a marked increase in water stress......Future changes in water availability with climate change and changes in water use due to socio-economic development are to occur in parallel. In an integrated analysis we bring together these aspects of global change in a consistent manner, and analyse the water stress situation in Europe. We find...

  4. HEALTH BENEFITS OF BARLEY

    Directory of Open Access Journals (Sweden)

    Akula Annapurna

    2013-09-01

    Full Text Available Prevalence of lifestyle diseases is increasing day by day. Mostly the younger generation do not have much awareness about healthy nutritional supplements. One such important cereal grain not used mostly by youngsters is barley It is a good old grain with so many health benefits like weight reduction, decreasing blood pressure, blood cholesterol, blood glucose in Type 2 diabetes and preventing colon cancer. It is easily available and cheap grain. It contains both soluble and insoluble fiber, protein, vitamins B and E, minerals selenium, magnesium and iron, copper, flavonoids and anthocynins. Barley contains soluble fiber, beta glucan binds to bile acids in the intestines and thereby decreasing plasma cholesterol levels. Absorbed soluble fiber decreases cholesterol synthesis by liver and cleansing blood vessels. Insoluble fiber provides bulkiness in the intestines, thereby satiety. decreased appetite. It promotes intestinal movements relieving constipation, cleansing colonic harmful bacteria and reduced incidence of colonic cancer. It is a good source of niacin ,reducing LDL levels and increasing HDL levels. Selenium and vitamin E providing beneficial antioxidant effects. Magnesium, a cofactor for many carbohydrate metabolism enzymes and high fiber content contributes for its blood glucose reducing effect in Type 2 diabetes. It is having good diuretic activity and is useful in urinary tract infections. Barley contains gluten, contraindicated in celiac disease.

  5. Differential control of xanthophylls and light-induced stress proteins, as opposed to light-harvesting chlorophyll a/b proteins, during photosynthetic acclimation of barley leaves to light irradiance

    Science.gov (United States)

    Montane; Tardy; Kloppstech; Havaux

    1998-09-01

    Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 &mgr;mol m-2 s-1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.

  6. Enhanced Accumulation of BiP in Transgenic Plants Confers Tolerance to Water Stress1

    Science.gov (United States)

    Alvim, Fátima C.; Carolino, Sônia M.B.; Cascardo, Júlio C.M.; Nunes, Cristiano C.; Martinez, Carlos A.; Otoni, Wagner C.; Fontes, Elizabeth P.B.

    2001-01-01

    The binding protein (BiP) is an important component of endoplasmic reticulum stress response of cells. Despite extensive studies in cultured cells, a protective function of BiP against stress has not yet been demonstrated in whole multicellular organisms. Here, we have obtained transgenic tobacco (Nicotiana tabacum L. cv Havana) plants constitutively expressing elevated levels of BiP or its antisense cDNA to analyze the protective role of this endoplasmic reticulum lumenal stress protein at the whole plant level. Elevated levels of BiP in transgenic sense lines conferred tolerance to the glycosylation inhibitor tunicamycin during germination and tolerance to water deficit during plant growth. Under progressive drought, the leaf BiP levels correlated with the maintenance of the shoot turgidity and water content. The protective effect of BiP overexpression against water stress was disrupted by expression of an antisense BiP cDNA construct. Although overexpression of BiP prevented cellular dehydration, the stomatal conductance and transpiration rate in droughted sense leaves were higher than in control and antisense leaves. The rate of photosynthesis under water deficit might have caused a degree of greater osmotic adjustment in sense leaves because it remained unaffected during water deprivation, which was in marked contrast with the severe drought-induced decrease in the CO2 assimilation in control and antisense leaves. In antisense plants, the water stress stimulation of the antioxidative defenses was higher than in control plants, whereas in droughted sense leaves an induction of superoxide dismutase activity was not observed. These results suggest that overexpression of BiP in plants may prevent endogenous oxidative stress. PMID:11457955

  7. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    Science.gov (United States)

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-09-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission.

  8. Water stress induces overexpression of superoxide dismutases that ...

    African Journals Online (AJOL)

    SERVER

    2007-09-05

    Sep 5, 2007 ... aim of this study was to determine the effect of water stress on superoxide ... In the same time, photosynthesis characteristics were deter- ... tion rate per reaction centre. ..... Factors affecting the enhancement of oxidative stress.

  9. WATER STRESS RESPONSE ON THE ENZYMATIC ACTIVITY IN COWPEA NODULES

    Directory of Open Access Journals (Sweden)

    Figueiredo Márcia do Vale B.

    2001-01-01

    Full Text Available A greenhouse experiment was carried out aiming to study the effect of water stress on metabolic activity of cowpea nodules at different plant development stages. Cowpea plants were grown in pots with yellow latosol soil under three different matric potentials treatments: -7.0 (control-S1, -70.0 (S2 and <-85.0 KPa (S3. The experimental design was randomized blocks with sub-divided plots, each plot containing a different degree of water stress, divided in sub-plots for the four different developmental stages: E1 (0-15, E2 (15-30, E3 (20-35 and E4 (30-45 days after emmergence. Water stress treatments were applied by monitoring soil water potential using a set of porous cups. The effect of water stress was most harmful to cowpea when it was applied at E2 than at other symbiotic process stages. Shoot/root ratio decreased from 2.61 to 2.14 when matric potential treatment was <-85.0 and -70.0 KPa respectively. There was a reduction in the glutamine synthetase activity and phosphoenolpyruvate carboxilase activity with increased stress, while glutamine synthase activity was the enzyme most sensitive to water stress. Glutamate dehydrogenase activity increased in more negative matric potential, indicating that this enzyme is sufficiently activitye under water stress.

  10. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.

    Science.gov (United States)

    Holme, Inger Baeksted; Dionisio, Giuseppe; Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2017-04-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T2 -generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio-available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate-bound phosphate for plant growth. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Leaf Responses of Micropropagated Apple Plants to Water Stress: Changes in Endogenous Hormones and Their Influence on Carbohydrate Metabolism

    Institute of Scientific and Technical Information of China (English)

    LI Tian-hong; LI Shao-hua

    2007-01-01

    The changes in the concentrations of endogenous hormones and their influence on carbohydrate metabolism in leaves of micropropagated Fuji apple plants were studied under water deficiency stress. The results showed that water stress induced a rapid increase in the concentration of abscisic acid (ABA) and led to a decrease in concentrations of both zeatin and gibberellins (GAs). The concentration of indole-3-acetic acid (IAA) changed in an independent manner, which was not correlated with the different levels of water stress. With regard to the carbohydrates, the contents of sorbitol and sucrose increased, whereas the content of starch decreased. The increase in the concentration of ABA was significantly correlated with both the increase in the activity of aldose-6-phosphate reductase (A6PR) and the decrease in the activity of sorbitol dehydrogenase (SDH), indicating that ABA played a regulatory role in sorbitol metabolism. The concentration of ABA was positively correlated to the activity of sucrose-phosphate synthase (SPS) but negatively correlated to the activities of acid invertase (AI) and ADP-glucose-pyrophosphorylase (ADPGppase) in water-stressed plants, which indicated that ABA promoted sucrose synthesis and inhibited sucrose degradation and starch synthesis at the same time. Under conditions of water stress, the decrease in the level of zeatin was accompanied by a decrease in the activities of SDH and ADPGPPase. GAs concentration showed positive correlation with ADPGPPase activity. IAA showed no significant correlation with any of the enzymes tested in this study. The results of this study suggested that ABA might be one of the key factors regulating the distribution of carbohydrates under water stress. The metabolism of sorbitol and starch under conditions of water stress might be regulated by the combined action of many plant hormones.

  12. Headspace-solid phase microextraction approach for dimethylsulphoniopropionate quantification in Solanum lycopersicum plants subjected to water stress

    Directory of Open Access Journals (Sweden)

    Stefano Catola

    2016-08-01

    Full Text Available Dimethylsulphoniopropionate (DMSP and dimethyl sulphide (DMS are compounds found mainly in marine phytoplankton and in some halophytic plants. DMS is a globally important biogenic volatile in regulating of global sulphur cycle and planetary albedo, whereas DMSP is involved in the maintenance of plant-environment homeostasis. Plants emit minute amounts of DMS compared to marine phytoplankton and there is a need for hypersensitive analytic techniques to enable its quantification in plants. Solid Phase Micro Extraction from Head Space (HS-SPME is a simple, rapid, solvent-free and cost-effective extraction mode, which can be easily hyphenated with GC-MS for the analysis of volatile organic compounds (VOCs. Using tomato (Solanum lycopersicum plants subjected to water stress as a model system, we standardized a sensitive and accurate protocol for detecting and quantifying DMSP pool sizes, and potential DMS emissions, in cryoextracted leaves. The method relies on the determination of DMS free and from DMSP pools before and after the alkaline hydrolysis via HS-SPME-GC-MS. We found a significant (2.5 time increase of DMSP content in water-stressed leaves reflecting clear stress to the photosynthetic apparatus. We hypothesize that increased DMSP, and in turn DMS, in water-stressed leaves are produced by carbon sources other than direct photosynthesis, and function to protect plants either osmotically or as antioxidants. Finally, our results suggest that SPME is a powerful and suitable technique for the detection and quantification of biogenic gases in trace amounts.

  13. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D

    2015-01-01

    Genomic prediction uses markers (SNPs) across the whole genome to predict individual breeding values at an early growth stage potentially before large scale phenotyping. One of the applications of genomic prediction in plant breeding is to identify the best individual candidate lines to contribute...... to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from Illumina...

  14. An innovative pot system for monitoring the effects of water stress on grapevines and grape quality

    Science.gov (United States)

    Puccioni, Sergio; Leprini, Marco; Mocali, Stefano; Perria, Rita; Priori, Simone; Storchi, Paolo; Zombardo, Alessandra; Costantini, Edoardo

    2016-04-01

    The advantage of a pot system is the possibility to control many variables and factors with a large number of replicates, obtaining statistically significant results in only one year of experimentation. An innovative pot system for the monitoring of grapevine water stress was set up. The system consists of 99 pots of 70 liters, filled by 3 different soils collected from premium vineyards of the Chianti Classico district (Tuscany). The soils showed different texture (clay-loam, loam and sandy-loam), different gravel and carbonate content, and different available water capacity (AWC). The same soils had been field monitored for grapevine water stress; therefore it was possible to compare the grapevine behaviour both in pot and in field conditions. The grapevine cultivar was Pinot noir clone ENTAV 115, which can be used to investigate the genetic expression in response to environmental factors, since its genome has been sequenced. Different rootstocks theses were compared: not grafted, 1103 Paulsen and M101-14. Each combination rootstock-soil was repeated 9 times. Every pot was equipped for drip irrigation and with electrodes for soil moisture determination by TDR. A non-stop automated control unit recorded meteorological data (temperature and rainfalls), soil temperature and water potential on 9 selected pots. These 9 selected pots were also used to calibrate a model for soil water volume/tension curve. Soil, leaves and grapes samples from each pot were collected for microbial community determination, through NGS analysis. A preliminary study was based on testing the ability of the system to simulate the natural growing conditions of the grapevines. Therefore the grape performances of the potted plants were compared to those of plants cultivated in the vineyards where the soils were taken. In July 2015 three levels of water supply were tested during 5 weeks (up to veraison) in order to study the effects of water stress on the plants and the grape. Later, all the pots

  15. Factors controlling plasticity of leaf morphology in Robinia pseudoacacia L. II: the impact of water stress on leaf morphology of seedlings grown in a controlled environment chamber

    Science.gov (United States)

    M.T. Tyree

    2012-01-01

    Context. The cause of morphological plasticity of leaves within the crowns of tall trees still debated. Whether it is driven by irradiance or hydraulic constraints is inconclusive. In a previous study, we hypothesized that water stress caused between-site and within-tree morphological variability in mature Robinia trees.

  16. The impact of long-term water stress on relative growth rate and morphology of needles and shoots of Metasequoia glyptostroboides seedlings: research toward identifying mechanistic models.

    Science.gov (United States)

    Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T

    2011-09-01

    Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long-term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well-watered and two constant levels of long-term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water-stressed plants had lower maximum volumetric elastic modulus (ε(max)), osmotic potential at full turgor (Ψ¹⁰⁰(π)) (and at zero turgor (Ψ⁰(π)) (than those from well-watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r² 0.88-0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate. Copyright © Physiologia Plantarum 2011.

  17. Factors controlling plasticity of leaf morphology in Robinia pseudoacacia: III. biophysical constraints on leaf expansion under long-term water stress

    Science.gov (United States)

    Yanxiang ​Zhang; Maria Alejandra Equiza; Quanshui Zheng; Melvin T. Tyree

    2011-01-01

    In this article, we measured the relative growth rate (RGR) of leaves of Robinia pseudoacacia seedlings under well-watered and water-stressed conditions (mid-day Ψw = leaf water potential estimated with a pressure bomb of −0.48 and −0.98 MPa, respectively). Pressure–volume (PV) curves were done on growing leaves at 25, 50 and 95% of the mature size...

  18. A Three-Dimensional Index for Characterizing Crop Water Stress

    Directory of Open Access Journals (Sweden)

    Jessica A. Torrion

    2014-05-01

    Full Text Available The application of remotely sensed estimates of canopy minus air temperature (Tc-Ta for detecting crop water stress can be limited in semi-arid regions, because of the lack of full ground cover (GC at water-critical crop stages. Thus, soil background may restrict water stress interpretation by thermal remote sensing. For partial GC, the combination of plant canopy temperature and surrounding soil temperature in an image pixel is expressed as surface temperature (Ts. Soil brightness (SB for an image scene varies with surface soil moisture. This study evaluates SB, GC and Ts-Ta and determines a fusion approach to assess crop water stress. The study was conducted (2007 and 2008 on a commercial scale, center pivot irrigated research site in the Texas High Plains. High-resolution aircraft-based imagery (red, near-infrared and thermal was acquired on clear days. The GC and SB were derived using the Perpendicular Vegetation Index approach. The Ts-Ta was derived using an array of ground Ts sensors, thermal imagery and weather station air temperature. The Ts-Ta, GC and SB were fused using the hue, saturation, intensity method, respectively. Results showed that this method can be used to assess water stress in reference to the differential irrigation plots and corresponding yield without the use of additional energy balance calculation for water stress in partial GC conditions.

  19. 春季水分胁迫对川芎叶片相对含水量及保护酶活性的影响%Effects of water stress in spring on membrane lipid peroxidationin in leaves of Ligrusticum chuanxiong

    Institute of Scientific and Technical Information of China (English)

    周虹; 范巧佳; 郑顺林; 张毅; 袁继超; 马逾英; 蒋桂华

    2009-01-01

    Objective:To study the effects of continuous dry-stress and full-water treatments in different periods of spring on the water condition,permeability of plasma membrane and protective enzymes activities in leaves of Ligusticum chuanxiong.Method:Pot cultivation method was applied and physical and biochemical indexes were measured.Result:Under dry-stress treatment the soil relative water content(SRWC)and the relative water content(RWC)in leaves decreased gradually with the days of treatment increased,the content of malondialdephyde(MDA)and permeability of plasma membrane increased significantly.The activities of superoxide dismutase(SOD)and catalase(CAT)increased at first and then decreased while the activity of peroxidese (POD)increased.The influence of full-water treatment to all above indexes Was the same trend with that of dry-stress treatment approximately but was not significant.Conclusion:In this experiment,the suitable soil relative water content for growth of Chuanxiong is about 60%.%目的:研究春季不同时期持续干旱和饱和水分处理对川芎叶片水分状况、质膜透性和保护酶活性等生理生化特性的影响.方法:采用盆栽法,测定川芎叶片各生理生化指标.结果:干旱胁迫下,随着处理天数的增加,土壤相对含水量(SRWC)和叶片相对含水量(RWC)持续下降,丙二醛(MDA)含量和质膜相对透性明显增加,超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性呈现先上升后下降的趋势,过氧化物酶(POD)活性呈现上升趋势.饱和水分处理对上述指标的影响趋势与干旱处理大体一致,但影响的程度较小.结论:长时间的干旱和饱和水分处理均对川芎造成伤害,干旱处理的伤害程度要高于饱和水分处理,本试验得出土壤相对含水量为60%左右最适宜川芎生长.

  20. Barley Transformation Using Biolistic Techniques

    Science.gov (United States)

    Harwood, Wendy A.; Smedley, Mark A.

    Microprojectile bombardment or biolistic techniques have been widely used for cereal transformation. These methods rely on the acceleration of gold particles, coated with plasmid DNA, into plant cells as a method of directly introducing the DNA. The first report of the generation of fertile, transgenic barley plants used biolistic techniques. However, more recently Agrobacterium-mediated transformation has been adopted as the method of choice for most cereals including barley. Biolistic procedures are still important for some barley transformation applications and also provide transient test systems for the rapid checking of constructs. This chapter describes methods for the transformation of barley using biolistic procedures and also highlights the use of the technology in transient assays.

  1. Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance.

    Science.gov (United States)

    Comadira, Gloria; Rasool, Brwa; Karpinska, Barbara; Morris, Jenny; Verrall, Susan R; Hedley, Peter E; Foyer, Christine H; Hancock, Robert D

    2015-06-01

    Agricultural nitrous oxide (N2O) pollution resulting from the use of synthetic fertilizers represents a significant contribution to anthropogenic greenhouse gas emissions, providing a rationale for reduced use of nitrogen (N) fertilizers. Nitrogen limitation results in extensive systems rebalancing that remodels metabolism and defence processes. To analyse the regulation underpinning these responses, barley (Horedeum vulgare) seedlings were grown for 7 d under N-deficient conditions until net photosynthesis was 50% lower than in N-replete controls. Although shoot growth was decreased there was no evidence for the induction of oxidative stress despite lower total concentrations of N-containing antioxidants. Nitrogen-deficient barley leaves were rich in amino acids, sugars and tricarboxylic acid cycle intermediates. In contrast to N-replete leaves one-day-old nymphs of the green peach aphid (Myzus persicae) failed to reach adulthood when transferred to N-deficient barley leaves. Transcripts encoding cell, sugar and nutrient signalling, protein degradation and secondary metabolism were over-represented in N-deficient leaves while those associated with hormone metabolism were similar under both nutrient regimes with the exception of mRNAs encoding proteins involved in auxin metabolism and responses. Significant similarities were observed between the N-limited barley leaf transcriptome and that of aphid-infested Arabidopsis leaves. These findings not only highlight significant similarities between biotic and abiotic stress signalling cascades but also identify potential targets for increasing aphid resistance with implications for the development of sustainable agriculture.

  2. Growth, physiology and yield of durum wheat (Triticum durum) treated with sewage sludge under water stress conditions.

    Science.gov (United States)

    Boudjabi, Sonia; Kribaa, Mohammed; Chenchouni, Haroun

    2015-01-01

    In arid and semi-arid areas, low soil fertility and water deficit considerably limit crop production. The use of sewage sludge as an organic amendment could contribute to the improvement of soil fertility and hence the agronomic production. The study aims to highlight the behaviour of durum wheat to the application of sewage sludge associated with water stress. The assessment focused on morphophysiological parameters of the wheat plant and yield. Under greenhouse conditions, the variety Mohamed Ben Bachir was treated by four water stress levels (100 %, 80 %, 50 % and 30 %). Each stress level comprised five fertilizer treatments: 20, 50 and 100 t/ha of dry sludge, 35 kg/ha of urea, and a control with no fertilization. Results revealed a significant loss in water content and chlorophyll a in leaves. Water stress negatively affected the development of wheat plants by reducing significantly seed yield, leaf area and biomass produced. Plant's responses to water stress manifested by an accumulation of proline and a decrease in total phosphorus. However, the increasing doses of sewage sludge limited the effect of water stress. Our findings showed an increase in the amount of chlorophyll pigments, leaf area, total phosphorus, biomass and yield. In addition, excessive accumulation of proline (1.11 ± 1.03 µg/g DM) was recorded as a result of the high concentration of sludge (100 t/ha DM). The application of sewage sludge is beneficial for the wheat crop, but the high accumulation of proline in plants treated with high dose of sludge suggests to properly consider this fact. The application of sludge should be used with caution in soils where water is limited. Because the combined effect of these two factors could result in a fatal osmotic stress to crop development.

  3. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    Directory of Open Access Journals (Sweden)

    Nilsson Lena

    2010-11-01

    Full Text Available Abstract Background Gene silencing vectors based on Barley stripe mosaic virus (BSMV are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species have created a need for tools to study gene function in these species. Results Here we demonstrate the successful BSMV-mediated virus induced gene silencing (VIGS of three different genes in barley roots, i.e. the barley homologues of the IPS1, PHR1, and PHO2 genes known to participate in Pi uptake and reallocation in Arabidopsis. Attempts to silence two other genes, the Pi transporter gene HvPht1;1 and the endo-β-1,4-glucanase gene HvCel1, in barley roots were unsuccessful, probably due to instability of the plant gene inserts in the viral vector. In B. distachyon leaves, significant silencing of the PHYTOENE DESATURASE (BdPDS gene was obtained as shown by photobleaching as well as quantitative RT-PCR analysis. On the other hand, only very limited silencing of the oat AsPDS gene was observed in both hexaploid (A. sativa and diploid (A. strigosa oat. Finally, two modifications of the BSMV vector are presented, allowing ligation-free cloning of DNA fragments into the BSMV-γ component. Conclusions Our results show that BSMV can be used as a vector for gene silencing in barley roots and in B. distachyon leaves and possibly roots, opening up possibilities for using VIGS to study cereal root biology and to exploit the wealth of genome information in the new cereal model plant B. distachyon. On the other hand, the silencing induced by BSMV in oat seemed too

  4. Assessing maize foliar water stress levels under field conditions ...

    African Journals Online (AJOL)

    Assessing maize foliar water stress levels under field conditions using in-situ ... is non-destructive to the crops as opposed to other traditional ground-based methods. ... water indices that could monitor the water status at leaf level on maize (Zea ... about AJOL · AJOL's Partners · Contact AJOL · Terms and Conditions of Use.

  5. Transient water stress in a vegetation canopy - Simulations and measurements

    Science.gov (United States)

    Carlson, Toby N.; Belles, James E.; Gillies, Robert R.

    1991-01-01

    Consideration is given to observational and modeling evidence of transient water stress, the effects of the transpiration plateau on the canopy radiometric temperature, and the factors responsible for the onset of the transpiration plateau, such as soil moisture. Attention is also given to the point at which the transient stress can be detected by remote measurement of surface temperature.

  6. Quantifying Water Stress Using Total Water Volumes and GRACE

    Science.gov (United States)

    Richey, A. S.; Famiglietti, J. S.; Druffel-Rodriguez, R.

    2011-12-01

    Water will follow oil as the next critical resource leading to unrest and uprisings globally. To better manage this threat, an improved understanding of the distribution of water stress is required today. This study builds upon previous efforts to characterize water stress by improving both the quantification of human water use and the definition of water availability. Current statistics on human water use are often outdated or inaccurately reported nationally, especially for groundwater. This study improves these estimates by defining human water use in two ways. First, we use NASA's Gravity Recovery and Climate Experiment (GRACE) to isolate the anthropogenic signal in water storage anomalies, which we equate to water use. Second, we quantify an ideal water demand by using average water requirements for the domestic, industrial, and agricultural water use sectors. Water availability has traditionally been limited to "renewable" water, which ignores large, stored water sources that humans use. We compare water stress estimates derived using either renewable water or the total volume of water globally. We use the best-available data to quantify total aquifer and surface water volumes, as compared to groundwater recharge and surface water runoff from land-surface models. The work presented here should provide a more realistic image of water stress by explicitly quantifying groundwater, defining water availability as total water supply, and using GRACE to more accurately quantify water use.

  7. Modeling the response of peach fruit growth to water stress.

    Science.gov (United States)

    Génard, M; Huguet, J G

    1996-04-01

    We applied a semi-mechanistic model of fresh matter accumulation to peach fruit during the stage of rapid mesocarp development. The model, which is based on simple hypotheses of fluid flows into and out of the fruit, assumes that solution flow into the fruit increases with fruit weight and transpiration per unit weight, and decreases with the maximum daily shrinkage of the trunk, which was used as an indicator of water stress. Fruit transpiration was assumed to increase with fruit size and with radiation. Fruit respiration was considered to be related to fruit growth and to temperature. The model simulates variability in growth among fruits according to climatic conditions, degree of water stress and weight of the fruit at the beginning of the simulation. We used data obtained from well-watered and water-stressed trees grown in containers to estimate model parameters and to test the model. There was close agreement between the simulated and measured values. A sensitivity analysis showed that initial fruit weight partly determined the variation in growth among fruits. The analysis also indicated that there was an optimal irradiance for fruit growth and that the effect of high global radiation on growth varied according to the stage of fruit development. Water stress, which was the most important factor influencing fruit growth, rapidly depressed growth, particularly when applied late in the season.

  8. An Integrated Analysis of Changes in Water Stress in Europe

    DEFF Research Database (Denmark)

    Henrichs, T.; Lehner, B.; Alcamo, J.

    2002-01-01

    Future changes in water availability with climate change and changes in water use due to socio-economic development are to occur in parallel. In an integrated analysis we bring together these aspects of global change in a consistent manner, and analyse the water stress situation in Europe. We find...

  9. Expression of MaMAPK Gene in Seedlings of Malus L. under Water Stress

    Institute of Scientific and Technical Information of China (English)

    Li-Xin PENG; Ling-Kun GU; Cheng-Chao ZHENG; De-Quan LI; Huai-Rui SHU

    2006-01-01

    Seedlings of three species of Malus were used to study the expression of mitogen-activated protein kinase (MAPK) in response to water stress: Malus hupehensis, a drought-sensitive species; Malus sieversii, a drought-tolerant species; and Malus micromalus, a middle type. Results showed that Malus MAPK (MaMAPK, GenBank accession No. AF435805) was expressed in both roots and leaves of seedlings of the three Malus species treated with 20% polyethylene glycol for different time periods. Expression levels peaked at 1.5 h after treatment with polyethylene glycol, then decreased to their lowest levels. Liquid kinase assays indicated that the dynamic changes of MAPK activity were very similar to those of the relative expression of MaMAPK mRNA. However, the peak of the former occurred slightly behind the latter. It was noticed that, although the kinase activity decreased after the peak, it was still higher than that of the control during the whole time period. These results suggested that MaMAPK was regulated not only by water stress at the transcription level, but also by phosphorylation and dephosphorylation at the protein level. In addition,of these three apple species, the highest MAPK activity and MaMAPK expression level was found in M.sieversii, followed by M. micromalus and M. hupehensis, suggesting that MAPK might be correlated with drought tolerance in these three species. The different expression levels might be one of the molecular mechanisms of the different drought tolerances in Malus.

  10. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.

    Science.gov (United States)

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A; Guanter, Luis; Boyce, C Kevin; Fisher, Joshua B; Morrow, Eric; Worden, John R; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-06-22

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r(2) = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r(2) = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009.

  11. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    DEFF Research Database (Denmark)

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole Nørregaard

    2013-01-01

    tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics...... strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research....

  12. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping

    Directory of Open Access Journals (Sweden)

    Stefan Paulus

    2014-07-01

    Full Text Available Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0:99 for the leaf area and R2 = 0:98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored.

  13. Responses of the seedlings of five dominant tree species in Changbai Mountain to soil water stress

    Institute of Scientific and Technical Information of China (English)

    DAI Li-min; LI Qiu-rong; WANG Miao; JI Lan-zhu

    2003-01-01

    Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species.

  14. Assessing the regulation of leaf redox status under water stress conditions in Arabidopsis thaliana: Col-0 ecotype (wild-type and vtc-2), expressing mitochondrial and cytosolic roGFP1.

    Science.gov (United States)

    Brossa, Ricard; Pintó-Marijuan, Marta; Jiang, Keni; Alegre, Leonor; Feldman, Lewis J

    2013-07-01

    Using Arabidopsis plants Col-0 and vtc2 transformed with a redox sensitive green fluorescent protein, (c-roGFP) and (m-roGFP), we investigated the effects of a progressive water stress and re-watering on the redox status of the cytosol and the mitochondria. Our results establish that water stress affects redox status differently in these two compartments, depending on phenotype and leaf age, furthermore we conclude that ascorbate plays a pivotal role in mediating redox status homeostasis and that Col-0 Arabidopsis subjected to water stress increase the synthesis of ascorbate suggesting that ascorbate may play a role in buffering changes in redox status in the mitochondria and the cytosol, with the presumed buffering capacity of ascorbate being more noticeable in young compared with mature leaves. Re-watering of water-stressed plants was paralleled by a return of both the redox status and ascorbate to the levels of well-watered plants. In contrast to the effects of water stress on ascorbate levels, there were no significant changes in the levels of glutathione, thereby suggesting that the regeneration and increase in ascorbate in water-stressed plants may occur by other processes in addition to the regeneration of ascorbate via the glutathione. Under water stress in vtc2 lines it was observed stronger differences in redox status in relation to leaf age, than due to water stress conditions compared with Col-0 plants. In the vtc2 an increase in DHA was observed in water-stressed plants. Furthermore, this work confirms the accuracy and sensitivity of the roGFP1 biosensor as a reporter for variations in water stress-associated changes in redox potentials.

  15. CO-FERMENTATION OF KOCHO WITH BARLEY

    African Journals Online (AJOL)

    improved protein content in which kocho and barley flour were fermented for 96 hrs with barley flour. ... involving co-fermentation of kocho and barley flour for the production of nutritionally improved ..... chickpeas. J. Food Sci. 44:234-236.

  16. Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants

    DEFF Research Database (Denmark)

    Wang, Liang; Pedas, Pai; Eriksson, Ulf Dennis

    2013-01-01

    The ammonia compensation point (chi(NH3)) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how chi(NH3) responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400...

  17. Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato

    Directory of Open Access Journals (Sweden)

    Mohamad AL HASSAN

    2015-04-01

    Full Text Available The effects of salt and water stress on growth and several stress markers were investigated in cherry tomato plants. Some growth parameters (stem length and number of leaves and chlorophyll contents were determined every third day during plant growth, and leaf material was collected after 25 and 33 days of treatment. Both stresses inhibited plant growth; chlorophyll levels, however, decreased only in response to high NaCl concentrations. Proline contents largely increased in leaves of stressed plants, reaching levels high enough to play a major role in cellular osmotic adjustment. Despite reports indicating that tomato does not synthesize glycine betaine, the stress-induced accumulation of this osmolyte was detected in cherry tomato, albeit at lower concentration than that of proline. Therefore, it appears that the plants are able to synthesise glycine betaine as a secondary osmolyte under strong stress conditions. Total sugars levels, on the contrary, decreased in stress-treated plants. Both stress treatments caused secondary oxidative stress in the plants, as indicated by a significant increase in malondialdehyde (MDA contents. Water stress led to an increase in total phenolics and flavonoid contents and a reduction of carotenoid levels in the leaves; flavonoids also increased under high salinity conditions.

  18. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray.

    Science.gov (United States)

    Zheng, Jun; Zhao, Jinfeng; Tao, Yazhong; Wang, Jianhua; Liu, Yunjun; Fu, Junjie; Jin, Ying; Gao, Peng; Zhang, Jinpeng; Bai, Yunfeng; Wang, Guoying

    2004-08-01

    In order to identify genes induced during the water stress response in maize (Zea mays) seedlings, suppression subtractive hybridization (SSH) was performed using mixed cDNAs prepared from maize seedlings treated with 20% PEG as testers and cDNAs from unstressed maize seedlings as drivers. A forward subtractive cDNA library was constructed, from which 960 recombinant colonies were picked and amplified. Through differential screening of the subtractive cDNA library, 533 clones were identified as water stress induced. After sequencing, 190 unique expressed sequence tags (ESTs) were obtained by clustering and blast analysis, which included transcripts that had previously been reported as responsive to stress as well as some functionally unknown transcripts. The ESTs with significant protein homology were sorted into 13 functional categories. A cDNA marcoarray containing the 190 unique ESTs was used to analyze their expression profiles in maize seedling during both PEG treatment and natural drought. The results indicated that 67 ESTs in leaves and 113 ESTs in roots were significantly up-regulated by PEG-stress. 123 ESTs were found to be up-regulated for at least one time-course point in either maize leaves or roots. Correspondingly, 163 ESTs were significantly up-regulated by drought stress. Results from the hierarchical cluster analysis suggest that the leaves and roots of maize seedlings had different expression profiles after PEG treatment and that there was a lot of overlap between PEG- and drought-stress induced up-regulated transcripts. A set of transcripts has been identified, which have significantly increased expression and probably involved in water stress signaling pathway based on data analysis.

  19. Boron Stress Responsive MicroRNAs and Their Targets in Barley

    Science.gov (United States)

    Ozhuner, Esma; Eldem, Vahap; Ipek, Arif; Okay, Sezer; Sakcali, Serdal; Zhang, Baohong; Boke, Hatice; Unver, Turgay

    2013-01-01

    Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress. PMID:23555702

  20. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    OpenAIRE

    Krzysztof Klamkowski; Waldemar Treder

    2006-01-01

    The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’) under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Wat...

  1. Influence of water stress on Botryosphaeriaceae disease expression in grapevines

    Directory of Open Access Journals (Sweden)

    Jan VAN NIEKERK

    2011-12-01

    Full Text Available Several species in Botryosphaeriaceae have been associated with grapevine trunk diseases. To evaluate the effect of water stress on infection of grapevines by Botryosphaeriaceae spp., 1-year-old Shiraz/101-14 Mgt nursery grapevine plants were planted in plastic potting bags and placed outdoors under shade netting. Five weeks after planting, vines were pruned and the pruning wounds inoculated with spore suspensions of Neofusicoccum australe, Neofusicoccum parvum, Lasiodiplodia theobromae or Diplodia seriata. Control treatments consisted of applications of sterile water or a Trichoderma harzianum spore suspension. Stem inoculations were done by inserting a colonised or uncolonised agar plug into a wound made in each stem. Four different irrigation regimes were introduced 12 weeks after planting to simulate varying degrees of water stress. Measurements of stomatal conductance, photosynthetic rate and leaf spectrometry were made to monitor physiological stress. Eight months after inoculation, vines were uprooted and the root, shoot and plant mass of each vine determined. Lesions observed in the inoculated pruning wounds and stems were also measured. Vines subjected to the lowest irrigation regime were significantly smaller than optimally irrigated vines. Water stressed vines also had significantly lower photosynthetic rates and levels of stomatal conductance compared with vines receiving optimal irrigation, indicating that these plants experienced significantly higher levels of physiological stress. The mean lesion length was significantly longer in the pruning wounds and stems of plants subjected to the lowest irrigation regime, with lesion length declining linearly with increasing irrigation volume. These results clearly indicate that when a grapevine is exposed to water stress, colonisation and disease expression by Botryosphaeriaceae spp. are much more severe.

  2. Water stress assessment of cork oak leaves and maritime pine needles based on LIF spectra

    Science.gov (United States)

    Lavrov, A.; Utkin, A. B.; Marques da Silva, J.; Vilar, Rui; Santos, N. M.; Alves, B.

    2012-02-01

    The aim of the present work was to develop a method for the remote assessment of the impact of fire and drought stress on Mediterranean forest species such as the cork oak ( Quercus suber) and maritime pine ( Pinus pinaster). The proposed method is based on laser induced fluorescence (LIF): chlorophyll fluorescence is remotely excited by frequency-doubled YAG:Nd laser radiation pulses and collected and analyzed using a telescope and a gated high sensitivity spectrometer. The plant health criterion used is based on the I 685/ I 740 ratio value, calculated from the fluorescence spectra. The method was benchmarked by comparing the results achieved with those obtained by conventional, continuous excitation fluorometric method and water loss gravimetric measurements. The results obtained with both methods show a strong correlation between them and with the weight-loss measurements, showing that the proposed method is suitable for fire and drought impact assessment on these two species.

  3. Photosynthetic efficiency of Pedunculate oak seedlings under simulated water stress

    Directory of Open Access Journals (Sweden)

    Popović Zorica

    2010-01-01

    Full Text Available Photosynthetic performance of seedlings of Quercus robur exposed to short-term water stress in the laboratory conditions was assessed through the method of induced fluorometry. The substrate for seedlings was clayey loam, with the dominant texture fraction made of silt, followed by clay and fine sand, with total porosity 68.2%. Seedlings were separated in two groups: control (C (soil water regime in pots was maintained at the level of field water capacity and treated (water-stressed, WS (soil water regime was maintained in the range of wilting point and lentocapillary capacity. The photosynthetic efficiency was 0.642±0.25 and 0.522±0.024 (WS and C, respectively, which was mostly due to transplantation disturbances and sporadic leaf chlorosis. During the experiment Fv/Fm decreased in both groups (0.551±0.0100 and 0.427±0.018 in C and WS, respectively. Our results showed significant differences between stressed and control group, in regard to both observed parameters (Fv/Fm and T½. Photosynthetic efficiency of pedunculate oak seedlings was significantly affected by short-term water stress, but to a lesser extent than by sufficient watering.

  4. Evaluation of tolerance to water stress in beans

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Köop

    2012-09-01

    Full Text Available The goal of this study was to evaluate the genotypes of beans, and to sort them into groups that are tolerant and sensitive to water stress, by assessing their morphological characteristics for use in blocks of crosses and the study of gene expression. We evaluated nine bean genotypes: IAPAR 14, IAPAR 81, Pérola, IPR Colibri, IPR Juriti, IPR Chopim, IPR Gralha, and IPR Tiziu IPR Uirapuru. The genotypes were subjected to two irrigation conditions: i irrigation water as needed throughout the culture cycle and ii irrigation water as needed until the appearance of the first bud, followed by no irrigation water for 15 days. The experimental design was in randomized blocks with three replications. The characteristics evaluated were: i plant height; ii stem diameter, iii number of pods per plant, iv number of grains per pod, v root length and vi root dry mass. Stem diameter should not be used to determine if bean genotypes are tolerant or susceptible to water shortages. The results for the Pérola genotype were the highest for most of the characteristics evaluated, and, for this reason, it was classified as tolerant to water stress during flowering. The genotypes IAPAR and 81 IPR Juriti had the lowest results for the most features and were classified as susceptible to water stress during flowering.

  5. The white barley mutant albostrians shows enhanced resistance to the biotroph Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Jain, Sanjay Kumar; Langen, Gregor; Hess, Wolfgang; Börner, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz

    2004-04-01

    We performed cytological and molecular analyses of the interaction between the biotrophic barley powdery mildew fungus Blumeria graminis f. sp. hordei and white and green leaves of the barley albostrians mutant. The leaves have the same nuclear genotype but differ from each other in respect to plastid differentiation. White leaves showed enhanced penetration resistance to B. graminis f. sp. hordei, associated with higher epidermal H2O2 accumulation beneath the appressorial germ tubes and protein cross-linking in papillae. Very low basal salicylic acid content was found in white leaves, which further confirmed that H2O2 accumulation and penetration resistance in barley are independent of salicylic acid. Expression analysis of stress and defense-related genes, including such being involved in reactive oxygen species production and cell death regulation, revealed stronger constitutive or pathogen-induced transcript accumulation in white leaves. We discuss the data on the basis of the finding that white albostrians leaves exhibit a supersusceptible interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana.

  6. Alanine aminotransferase controls seed dormancy in barley

    Science.gov (United States)

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  7. Use of an infrared thermometer for assessment of plant water stress in neck orange (Citrus reticulata Blanco

    Directory of Open Access Journals (Sweden)

    Sayan Sdoodee

    2006-11-01

    Full Text Available In general, water stress causes stomatal closure in citrus, and this leads to higher leaf temperature. Recently, it has been reported that infrared thermometry technique can be used for detecting stomatal closure indirectly to assess plant water stress. Therefore, it was proposed to apply to neck orange. An experiment was arranged as a completely randomized design. There were 3 treatments of watering levels: 1 wellwatering (W1, 2 3-day interval watering (W2, and 3 6-day interval watering (W3 with 6 replicates. Eighteen 2-year-old trees of neck orange were used, and each tree was grown in a container (0.4 m3 filled with mixed media of soil, compost and sand (1:1:1. During 18 days of the experimental period, it was found that leaf water potential and stomatal conductance of the plants in W2 and W3 treatments decreased with the progress of water stress. There was high correlation (r2 = 0.71** between leaf water potential and stomatal conductance as a linear regression (Y = 0.0044X-1.8635. Canopy temperature (Tc and air temperature (Ta of each tree were measured by an infrared thermometer, and Tc-Ta was assessed. At the end of the experimental period, it was found that Tc-Ta was significantly highest in the W3 treatment (3.5ºC followed by the of W2 treatment (2ºC, while it was lowest in the W1 treatment (1ºC. The relationship between Tc-Ta and stomatal conductance was high as polynomial (Y = 0.0002X2 0.0572X+3.9878, r2 = 0.70**. This indicated that stomatal closure or decreasing stomatal conductance caused increasing of Tc-Ta in the leaves. Hence, it suggests that infrared thermometer is a convenient device for the assessment of plant water stress in neck orange.

  8. Response of Barley Seedlings to Microwaves at 2.45 GHz

    OpenAIRE

    Iuliana Crețescu; Rodica Căpriță; Giancarla Velicevici; Sorina Ropciuc; Genoveva Buzamat

    2013-01-01

    Abstract The objective of the present study was to investigate the changes induced upon germination and growth rate, expressed by vigor index of barley seeds exposed to microwave (MW) treatment. As a microwave source was used a magnetron MWG20H, which emits radiation with a frequency of 2.45 GHz. In the experiment, barley seeds were exposed for 0s, 10s and 20s. The germination energy (GE) and germination (G), cotyledon length (CL), leaves length (LL) and roots length (RL) in cm were determine...

  9. Some Root Traits of Barley (Hordeum vulgare L. as Affected by Mycorrhizal Symbiosis under Drought Stress

    Directory of Open Access Journals (Sweden)

    R. Bayani

    2016-05-01

    Full Text Available The effect of drought stress and mycorrhizal symbiosis on the colonization, root and leaf phosphorous content, root and leaf phosphatase activity, root volume and area as well as shoot dry weight of a variety of hulless barley were evaluated using a completely randomized experimental design (CRD with 3 replications. Treatments were three levels of drought stress of 30, 60 and 90% field capacity and two levels of mycorrhizal with and without inoculation. According to the results, the highest value of leaf phosphorous (1.54 mg/g was observed at mycorrhizal symbiosis against severe drought treatment. Root phosphatase activity was highest (297.9 OD min -1 FW-1 at severe drought stress with mycorrhizal symbiosis which in comparison with mild stress in the presence of mycorrhiza showed 16.6 fold increasing. The control and non-mycorrhizal symbiosis treatments had highest root dry weight (0.091 g. The lowest root volume (0.016 cm2 observed at mycorrhizal symbiosis × severe drought treatment. Generally, Inoculation of barley seed with mycorrhiza at severe water stress could transport more phosphorous to shoot, especially leaf via inducing of leaf and root phosphatase activity. Also, in addition to supply of nutrient sources especially phosphorous for plant, mycorrhizal symbiosis could play an important role in withstanding water stress in plant via increasing of root dry weight and area.

  10. Leaf senescence and nutrient remobilisation in barley and wheat

    DEFF Research Database (Denmark)

    Gregersen, P L; Holm, P B; Krupinska, K

    2008-01-01

    Extensive studies have been undertaken on senescence processes in barley and wheat and their importance for the nitrogen use efficiency of these crop plants. During the senescence processes, proteins are degraded and nutrients are re-mobilised from senescing leaves to other organs, especially...... in degradative, metabolic and regulatory processes that could be used in future strategies aimed at modifying the senescence process. The breeding of crops for characters related to senescence processes, e.g. higher yields and better nutrient use efficiency, is complex. Such breeding has to cope with the dilemma...

  11. Alleviation of Al Toxicity in Barley by Addition of Calcium

    Institute of Scientific and Technical Information of China (English)

    GUO Tian-rong; CHEN Ying; ZHANG Yan-hua; JIN Ye-fei

    2006-01-01

    The potential mechanism by which Ca alleviates Al toxicity was investigated in barley seedlings. It was found that 100 μM Al-alone treatment inhibited barley plant growth and thereby reduced shoot height and root length, and dry weights of root, shoot and leaf; promoted Al accumulation but inhibited Ca absorption in plant tissues; and induced an increase in the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) and in the level of lipid peroxidation (MDA content) in leaves. Except for the increase in Ca concentration in plant tissues, treatment with 0.5 mM Ca in the absence of Al had less effect on the above-mentioned parameters, compared with the control. Addition of Ca efficiently reduced Al toxicity, which is reflected by the promotion of plant growth, reduction in Al concentration and MDA content,increase in Ca concentration and in SOD, POD, and CAT activities compared with the Al-alone-treatment; with increase in Ca level (3.0 mM), the ameliorative effect became more dominant. This indicated that the alleviation of aluminum toxicity in barley seedlings with Ca supplementation could be associated with less absorption of Al and the enhancement of the protective ability of the cell because of increased activity of the antioxidative enzyme.

  12. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes

    Science.gov (United States)

    2015-01-01

    Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F) and fuzzless (N) cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality). Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B) and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs) grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity) and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions). Foliar B was applied at a rate of 1.8 kg B ha-1 as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural) B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition. PMID:26098564

  13. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes.

    Science.gov (United States)

    Bellaloui, Nacer; Turley, Rickie B; Stetina, Salliana R

    2015-01-01

    Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F) and fuzzless (N) cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality). Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B) and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs) grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity) and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions). Foliar B was applied at a rate of 1.8 kg B ha(-1) as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural) B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition.

  14. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes.

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    Full Text Available Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F and fuzzless (N cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality. Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions. Foliar B was applied at a rate of 1.8 kg B ha(-1 as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition.

  15. Water stress and crop load effects on fruit fresh and dry weights in peach (Prunus persica).

    Science.gov (United States)

    Berman, M E; DeJong, T M

    1996-10-01

    Effects of water stress on fruit fresh and dry weights were investigated in peach trees, Prunus persica (L.) Batsch., with varying crop loads: light, moderate and heavy. In well-watered controls, tree water status was independent of crop load. In trees receiving reduced irrigation, the degree of water stress increased with increasing crop load. Water stress induced fruit fresh weight reductions at all crop loads. Fruit dry weight was not reduced by water stress in trees having light to moderate crop loads, indicating that the degree of water stress imposed did not affect the dry weight sink strength of fruit. Water-stressed trees with heavy crop loads had significantly reduced fruit dry weights, which were likely due to carbohydrate source limitations resulting from large crop carbon demands and water stress limitations on photosynthesis.

  16. [Effects of soil water status on gas exchange of peanut and early rice leaves].

    Science.gov (United States)

    Chen, Jiazhou; Lü, Guoan; He, Yuanqiu

    2005-01-01

    The gas exchange characteristics of peanut and early rice leaves were investigated in experimental plots under different soil water conditions over a long growth period. The results showed that at the branching stage of peanut, the stomatal conductance (Gs) and transpiration rate (Tr) decreased slightly under mild and moderate soil water stress, while the net photosynthetic rate (Pn) and leaf water use efficiency (WUE) increased. The Gs/Tr ratio also increased under mild water stress, but decreased under moderate water stress. At podding stage, the Gs, Tr, Gs/Tr ratio and Pn decreased, while WUE increased significantly under mild and moderate water stress. The peanut was suffered from water stress at its pod setting stage. At the grain filling stage of early rice, the Gs, Tr and Gs/Tr ratio fluctuated insignificantly under mild and moderate water stress, while Pn and WUE increased significantly, with an increase in grain yield under mild water stress. It's suggested that the combination of Gs and Gs/Tr ratio could be a reference index for crop water stress, namely, crops could be hazarded by water stress when Gs and Gs/Tr decreased synchronously.

  17. Limitations due to water stress on leaf net photosynthesis of Quercus coccifera in the Portuguese evergreen scrub

    Energy Technology Data Exchange (ETDEWEB)

    Tenhunen, J.D.; Lange, O.L.; Harley, P.C.; Beyschlag, W.; Meyer, A.

    1985-01-01

    Gas exchange characteristics in leaves of the sclerophyll shrub Quercus coccifera were studied in the natural habitat in Portugal during spring and during the summer dry period. Compared to other sclerophyll species growing at the same site, photosynthesis in leaves of Quercus coccifera was less affected by water stress. Moderate water stress after six weeks of drought led to large decreases in stomatal conductance but no change in mesophyll photosynthetic capacity as compared to late spring. Leaf internal CO/sub 2/ pressure remained near 220 ..mu..bar during diurnal courses in the spring. On midsummer days, leaf internal CO/sub 2/ decreased from a late morning value of 200 ..mu..bar to a late afternoon value of approximately 150 ..mu..bar. In contrast to Quercus suber, restriction of CO/sub 2/ supply due to stomatal closure reduced net CO/sub 2/ uptake at midday and in the afternoon during midsummer. A decrease in leaf carboxylation efficiency and an increase in CO/sub 2/ compensation point at midday also played an important role in determining the diurnal course of net photosynthesis. During the late stages of drought in September, severe water stress led to reduction in mesophyll photosynthetic capacity and further reduction in leaf conductance. The observed decrease in mesophyll photosynthetic capacity was correlated with decrease in the daily minimum leaf water potential to greater negative values than -30 bar. At this time, CO/sub 2/ saturated photosynthetic rates decreased as much as 50% over the course of a day when measured at constant saturating light, 32/sup 0/C leaf temperature, and a water vapor mole fraction difference between leaf and air of 30 mbar bar/sup -1/. 24 references, 9 figures.

  18. Analysis of Genetic diversity and reltionships in local Tunisian barley ...

    African Journals Online (AJOL)

    Yomi

    Key words: Barley, RAPD markers, SSR markers, genetic diversity. INTRODUCTION. Barley ... surveyed by each kind of marker, their distribution ..... that belong to the Center. ..... tagged-site facilitated PCR for barley genome mapping. Theor.

  19. Golgi localized barley MTP8 proteins facilitate Mn transport.

    Science.gov (United States)

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species.

  20. Golgi localized barley MTP8 proteins facilitate Mn transport.

    Directory of Open Access Journals (Sweden)

    Pai Pedas

    Full Text Available Many metabolic processes in plants are regulated by manganese (Mn but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF family in the cereal species barley (Hordeum vulgare. Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species.

  1. Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses.

    Science.gov (United States)

    Goel, Deepa; Singh, Ajay K; Yadav, Vichita; Babbar, Shashi B; Murata, Norio; Bansal, Kailash C

    2011-07-15

    Genetically engineered tomato (Lycopersicon esculentum) with the ability to synthesize glycinebetaine was generated by introducing the codA gene encoding choline oxidase from Arthrobacter globiformis. Integration of the codA gene in transgenic tomato plants was verified by PCR analysis and DNA blot hybridization. Transgenic expression of gene was verified by RT-PCR analysis and RNA blot hybridization. The codA-transgenic plants showed higher tolerance to salt stress during seed germination, and subsequent growth of young seedlings than wild-type plants. The codA transgene enhanced the salt tolerance of whole plants and leaves. Mature leaves of codA-transgenic plants revealed higher levels of relative water content, chlorophyll content, and proline content than those of wild-type plants under salt and water stresses. Results from the current study suggest that the expression of the codA gene in transgenic tomato plants induces the synthesis of glycinebetaine and improves the tolerance of plants to salt and water stresses.

  2. Research and Progress on Water Stress in Fruit Trees%果树水分胁迫研究进展

    Institute of Scientific and Technical Information of China (English)

    曹慧; 兰彦平; 王孝威; 曹琴; 杜俊杰

    2001-01-01

    This review focuses on morphological and physiological reactions of fruit tree to water stress.Leaf area,root growth and microstructure of leaves and roots were investigated.Some physiological and biochemical index of fruit tree leaves and roots under water stress,such as variations of stomatal aperture,photosynthesis,photoinhibition,metabolism of lipoxygenase,content of proline,nuclear acid and endogenous phytohormones,were summarized.%从水分胁迫对果树叶、根的形态指标及显微结构,叶片气孔行为、光合作用、光抑制、活性氧代谢、脂氧合酶代谢、多胺代谢、脯氨酸、核酸代谢、内源激素变化等生理生化方面综述了近十几年来的研究成果,为全面研究果树抗旱机理及进一步制定抗旱措施奠定理论基础。

  3. Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index

    Science.gov (United States)

    Precision irrigation management in wine grape production is hindered by the lack of a reliable method to easily quantify and monitor vine water status. Mild to moderate water stress is desirable in wine grape for controlling vine vigor and optimizing fruit yield and quality. A crop water stress ind...

  4. Response of Barley Seedlings to Microwaves at 2.45 GHz

    Directory of Open Access Journals (Sweden)

    Iuliana Crețescu

    2013-05-01

    Full Text Available Abstract The objective of the present study was to investigate the changes induced upon germination and growth rate, expressed by vigor index of barley seeds exposed to microwave (MW treatment. As a microwave source was used a magnetron MWG20H, which emits radiation with a frequency of 2.45 GHz. In the experiment, barley seeds were exposed for 0s, 10s and 20s. The germination energy (GE and germination (G, cotyledon length (CL, leaves length (LL and roots length (RL in cm were determined on the 3th, 7th and 14th day after irradiation in order to estimate the influence of microwave treatment on them. The hypothesis was that seeds exposed to MW will behave differently than those unexposed. It was observed that the best results in terms of GE, G and vigor index (SVI were obtained in barley seeds for the treatment with output microwaves power of 400W for 20s.

  5. The Hv NAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Rung, Jesper Henrik; Gregersen, Per Langkjaer

    2007-01-01

    Pathogens induce the expression of many genes encoding plant transcription factors, though specific knowledge of the biological function of individual transcription factors remains scarce. NAC transcription factors are encoded in plants by a gene family with proposed functions in both abiotic...... and biotic stress adaptation, as well as in developmental processes. In this paper, we provide convincing evidence that a barley NAC transcription factor has a direct role in regulating basal defence. The gene transcript was isolated by differential display from barley leaves infected with the biotrophic...... powdery mildew fungus, Blumeria graminis f.sp. hordei (Bgh). The full-length cDNA clone was obtained using 5'-RACE and termed HvNAC6, due to its high similarity to the rice homologue, OsNAC6. Gene silencing of HvNAC6 during Bgh inoculation compromises penetration resistance in barley epidermal cells...

  6. Allelopathic potential of Chrozophora tinctoria on early growth of Barley and Wheat

    Directory of Open Access Journals (Sweden)

    Ali Asghar Aliloo

    2015-02-01

    Full Text Available A laboratory bioassay was conducted to investigate the allelopathic effects of Chrozophora tinctoria on germination and seedling growth of barley and wheat. Aqueous leave extracts of C. tinctoria at 5, 10, 15 and 20 % concentrations were prepared and distilled water was used as a control. Results showed that germination percentage of two species decreased with increasing the extract concentrations; however, wheat germination was relatively resistant to allelochemicals than barley. In contrast to germination behavior, seedling traits showed different responses. The extracts improved seedling dry weights, particularly barley, whereas seedling lengths were inhibited. Roots of both species were more affected than shoots by extracts. The extracts reduced seed reserve mobilization significantly (p≤0.05. It was concluded that the used extract had inhibitory effects on seed germination of the crops; however, at seedling stages the effects were severely reduced.

  7. Impact of Low Concentration of Cadmium on Photosynthesis and Growth of Pea and Barley

    Directory of Open Access Journals (Sweden)

    Irena Januškaitienė

    2010-10-01

    Full Text Available Photosynthetic gas exchange and growth characteristics were examined in pea and barley plants using 1 mM Cd treatment. Plants were sown into neutral peat substrate and at a leaf development stage were treated with 1 mM cadmium concentration solution. Gas exchange parameters (photosynthetic rate; intercellular CO2 concentration; transpiration rate; water use efficiency were measured with portable photosynthesis system LI-6400 on the fifth day after Cd treatment. Under Cd stress the photosynthetic rate of pea and barley plants decreased by 16.7 % (p 2 concentration decreased by 27.4 % (p 2 reduction processes of Cd treated pea leaves increased (because intercellular CO2 concentration decreased, but that had no positive effect on a photosynthetic rate, and the photosynthetic rate of pea decreased by 4 % more than that of barley. The changes of dry biomass of cadmium treated plants were weak and statistically insignificant.

  8. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Joan Laur

    Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  9. Alleviation of Water Stress Effects on MR220 Rice by Application of Periodical Water Stress and Potassium Fertilization

    Directory of Open Access Journals (Sweden)

    Nurul Amalina Mohd Zain

    2014-02-01

    Full Text Available The use of periodical water stress and potassium fertilization may enhance rice tolerance to drought stress and improve the crop’s instantaneous water use efficiency without much yield reduction. This study was conducted to assess the effects of different periodical water stress combined with potassium fertilization regimes on growth, yield, leaf gas exchanges and biochemical changes in rice grown in pots and compare them with standard local rice grower practices. Five treatments including (1 standard local grower’s practice (control, 80CF = 80 kg K2O/ha + control flooding; (2 120PW15 = 120 kg K2O/ha + periodical water stress for 15 days; (3 120DS15V = 120 kg K2O/ha + drought stress for 15 days during the vegetative stage; (4 120DS25V = 120 kg K2O/ha + drought stress for 25 days and (5 120DS15R = 120 kg K2O/ha + drought stress for 15 days during the reproductive stage, were evaluated in this experiment. Control and 120PW15 treatments were stopped at 100 DAS, and continuously saturated conditions were applied until harvest. It was found that rice under 120PW15 treatment showed tolerance to drought stress evidenced by increased water use efficiency, peroxidase (POX, catalase (CAT and proline levels, maximum efficiency of photosystem II (fv/fm and lower minimal fluorescence (fo, compared to other treatments. Path coefficient analysis revealed that most of parameters contribute directly rather than indirectly to rice yield. In this experiment, there were four factors that are directly involved with rice yield: grain soluble sugar, photosynthesis, water use efficiency and total chlorophyll content. The residual factors affecting rice yield are observed to be quite low in the experiment (0.350, confirming that rice yield was mostly influenced by the parameters measured during the study.

  10. Taking Leave?

    CERN Multimedia

    2000-01-01

    Planning a holiday? Then if you're a member of the personnel, you'll need to use the Laboratory's new leave system that will be put in place on 1 October. Leave allocations don't change - you are entitled to just as much holiday as before - but instead of being credited annually, your leave will be credited on a monthly basis, and this information will be communicated on your salary slip. The reason for the change is that with the various new leave schemes such as Recruitment by Saved Leave (RSL) and the Progressive Retirement Programme (PRP), a streamlined procedure was required for dealing with all kinds of leave. In the new system, each member of the personnel will have leave accounts to which leave will be credited monthly from the payroll and debited each time an absence is registered in the CERN Electronic Document Handling system (EDH). Leave balances will appear on monthly pay slips, and full details of leave transactions and balances will be available through EDH at all times. As the leave will be c...

  11. Water stress detection in the Amazon using radar

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  12. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  13. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    2011-02-01

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  14. Some Weeds Community Percent in Response to Pumice Application on Soil under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    Davoud Zarehaghi

    2016-02-01

    Full Text Available A factorial experiment (using RCBD design with three replications was conducted in 2014 at the University of Tabriz-Iran, in order to determine the effects of pumice application (P1, P2, P3 and P4: control, 30, 60 and 90 tons per ha on soil and water stress (I1, I2 and I3: 100%, 70% and 50% water requirement calculated from class A pan, respectively on dominante weeds community percent. Results showed that community percent of weed species changed as a result of water stress and pumice application on soil. Distributions of Chenopodium album and Malva sylvestris were sensitive to water stress but, Amaranthus retroflexus and Solanum nigrum were neutral to water stress. In contrast, Amaranthus retroflexus, Cardaria draba, Setaria viridis, Sisymbrium irio, Xanthium strumarium, Convolvulus arvensis and Salsola rigida distribution were resistant to water stress. Community percent of Chenopodium album as sensitive species to water stress and Salsola rigida as resistance species to water stress positively affected by pumice application especially under water stress condition. Amaranthus retroflexus, Xanthium strumarium and Convolvulus arvensis were positively affected by pumice application under well and limited water supply conditions. In contrast, Cardaria draba, Sisymbrium irio and Solanum nigrum negatively affected by pumice under water stress and it had positive effect on community of these species under well watering conditions. Thus, application of pumice and water stress are two factors which change weed community precent.

  15. The effect of water deficit on the activity of hydrogen peroxide-scavenging enzymes in two barley genotypes

    Directory of Open Access Journals (Sweden)

    Hanna Bandurska

    2014-01-01

    Full Text Available Two barley (Hordeum vulgare L. genotypes, the cv. Aramir and line R567, were subjected to water deficit by immersing their root systems in polyethylene glycol solution of osmotic potential -1.0 MPa. The stress caused a decline in the leaf-relative-water content (RWC and affected membrane damage in both the genotypes. A higher decline in RWC and a higher membrane injury index was observed in R567 in comparison to 'Aramir'. Water deficit induced an increase in the activity of guaiacol peroxidase (GPO and catalse (CAT. A higher increase of CAT than GPO peroxidase activity has been noted in both the genotypes. The results. together with our earlier reports (Bandurska et al. 1997 show that detoxification of hydrogen peroxide under water stress conditions in those two barley genotypes was associated with the action of GPO and CAT, and that the latter was more involved in that process.

  16. Enumeration of fungi in barley

    CSIR Research Space (South Africa)

    Rabie, CJ

    1997-04-01

    Full Text Available et al., 1975), and affect the resultant beer by causing off-flavours and colours and, in some instances, gushing (Haikara, 1983; Vaag, 1985). Under cer- tain circumstances some fungal species and/or their products may... samples Dominant spccics Kernels inl?cctcd,? (?j6) Table I Fungi isolated from baa-ley kernels As high levels of infection in barley are detri- mental to good quality malt and beer. it is impor- tant to quantify fungal...

  17. Induction of beta-1,3-glucanase in barley in response to infection by fungal pathogens.

    Science.gov (United States)

    Jutidamrongphan, W; Andersen, J B; Mackinnon, G; Manners, J M; Simpson, R S; Scott, K J

    1991-05-01

    The sequence of a partial cDNA clone corresponding to an mRNA induced in leaves of barley (Hordeum vulgare) by infection with fungal pathogens matched almost perfectly with that of a cDNA clone coding for beta-1,-3-glucanase isolated from the scutellum of barley. Western blot analysis of intercellular proteins from near-isogenic barley lines inoculated with the powdery mildew fungus (Erysiphe graminis f. sp. hordei) showed a strong induction of glucanase in all inoculated lines but was most pronounced in two resistant lines. These data were confirmed by beta-1,3-glucanase assays. The barley cDNA was used as a hybridization probe to detect mRNAs in barley, wheat (Triticum aestivum), rice (oryza sativus), and sorghum (Sorghum bicolor), which are induced by infection with the necrotrophic pathogen Bipolaris sorokiniana. These results demonstrate that activation of beta-1,3-glucanase genes may be a general response of cereals to infection by fungal pathogens.

  18. Evaluation of Toxic Effects and Bioaccumulation of Cadmium and Copper in Spring Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Jūratė Žaltauskaitė

    2013-07-01

    Full Text Available This paper deals with the analysis of toxic effects of cadmium and copper on the growth of spring barley (Hordeum vulgare L. cultivated in hydroponics. The seedlings of barley were treated with four different concentrations of cadmium and copper, ranging from 0.1 to 10 mg L-1. The aim of the study was to assess toxic effects of cadmium (Cd and copper (Cu on the growth of spring barley, and to determine metal accumulation in above-ground and underground parts of the plant. The impact of Cu and Cd on photosynthetic pigments (chlorophyll a, b, the content of malondialdehyde (MDA, and the essential micronutrients (Mn, Fe were examined. Metal treatment reduced the growth of roots (by 60%, shoots (Cd – 48 %, Cu – 57% and dry weight (Cd – 47 %, Cu – 52% of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. Regression analysis revealed that there was significant negative relationship between MDA content and biomass of barley treated with Cu (r=-0.99, p=0.01. The examined heavy metals were accumulated mainly in the roots and bioconcentration of Cu there was higher than that of Cd, indicating that roots tended to accumulate higher amounts of Cu than Cd. Though translocation of Cd from roots to above-ground tissues was higher, higher levels of Cd were observed in leaves.DOI: http://dx.doi.org/10.5755/j01.erem.64.2.1951

  19. Effect of cultivar and year on phyllochron in winter barley

    Directory of Open Access Journals (Sweden)

    Pržulj Novo M.

    2013-01-01

    Full Text Available Development and growth of leaves in cereals significantly affects grain yield since dry matter accumulation depends on the leaf area that intercepts light. Phyllochron (PHY is defined as time interval between the emergences of successive leaves on the main stem. The aim of this study was to determine the effect of year and cultivar on phyllochron in winter barley. Twelve cultivars of winter barley differing in origin and time of anthesis were tested during six growing seasons (GS, from 2002/03 to 2007/08. The highest PHY across GSs was determined in the two-rowed cultivar Cordoba (81.6°Cd and the lowest in the two-rowed cultivar Novosadski 581 (71.0°Cd. The early cultivars had fast leaf development, the medium cultivars medium and the late cultivars slow development, 72.5°Cd, 75.6°Cd and 78.9°Cd, respectively. The tested cultivars showed significant variability in the PHY, which can be used for selecting most adaptable genotypes for specific growing conditions.

  20. Will climate change exacerbate water stress in Central Asia?

    DEFF Research Database (Denmark)

    Siegfried, Tobias; Bernauer, Thomas; Guiennet, Renaud

    2012-01-01

    unstable Fergana Valley. Targeted infrastructural developments will be required in the region. If the current mismanagement of water and energy resources can be replaced with more effective resource allocation mechanisms through the strengthening of transboundary institutions, Central Asia will be able......Millions of people in the geopolitically important region of Central Asia depend on water from snow- and glacier-melt driven international rivers, most of all the Syr Darya and Amu Darya. The riparian countries of these rivers have experienced recurring water allocation conflicts ever since...... the Soviet Union collapsed. Will climate change exacerbate water stress and thus conflicts? We have developed a coupled climate, land-ice and rainfall-runoff model for the Syr Darya to quantify impacts and show that climatic changes are likely to have consequences on runoff seasonality due to earlier snow...

  1. Diallel analysis in white oat cultivars subjected to water stress.

    Directory of Open Access Journals (Sweden)

    Guilherme Ribeiro

    2011-01-01

    Full Text Available The goal of this work was to determine the combining ability of three white oat parental genotypes (UPF 18, URS21and URS 22 and to estimate the heterosis of F1 hybrids in two conditions, with and without water stress. The results indicate a largeeffect of the environment on the evaluated characters (cycle, leaf area, plant stature, grain yield per plant, main panicle weight andnumber of grains of the main panicle. The condition without stress was the most efficient for the selection of superior genotypes.Based on the general and specific combining ability, the cultivar URS 22 was shown to be indicated for cycle and stature reduction,while UPF 18 lead to increases in leaf area, main panicle weight and number of grains of the main panicle. The specific cross URS22 x URS 21 was the best for the selection of superior genotypes.

  2. Cowpea bean production under water stress using hydrogels

    Directory of Open Access Journals (Sweden)

    Marília Barcelos Souza Lopes

    2017-03-01

    Full Text Available The population increase and the need of intensifying food production, coupled with the scarcity of water resources, have led to the search of alternatives that reduce consumption and optimize the water use during cultivation. In this context, hydrogels become a strategy in agricultural management, due to their water retention capacity in the soil and availability to plants. This study aimed at evaluating the efficiency of hydrogels on the development and production of cowpea bean ('Sempre-verde' cultivar under water stress, in a greenhouse. The experiment was performed in a randomized block design, with five replications, in a 4 x 5 factorial scheme, consisting of four types of hydrogel (Hydroplan-EB HyA, with granulometry of 1-3 mm; Hydroplan-EB HyB, with granulometry of 0.5-1 mm; Hydroplan-EB HyC, with granulometry < 0.5 mm; Polim-Agri, with granulometry of 1-0.5 mm and five concentrations (0 g pot-1; 1.5 g pot-1; 3 g pot-1; 4.5 g pot-1; 6 g pot-1. The following traits were evaluated: number of pods per plant, number of grains per pod and grain yield. The highest concentration (6 g pot-1 resulted in a higher number of pods and yield for all the hydrogels, especially for HyC and Polim-Agro, which presented 7.4 pods plant-1 and 7.0 pods plant-1, with yield of 15.43 g plant-1 and 16.68 g plant-1, respectively. The use of hydrogel shows to be efficient for reducing yield losses under water stress.

  3. Issues surrounding health claims for barley.

    Science.gov (United States)

    Ames, Nancy P; Rhymer, Camille R

    2008-06-01

    Government-approved health claims support dietary intervention as a safe and practical approach to improving consumer health and provide industry with regulatory guidelines for food product labels. Claims already allowed in the United States, United Kingdom, Sweden, and The Netherlands for reducing cholesterol through consumption of oat or barley soluble fiber provide a basis for review, but each country may have different criteria for assessing clinical evidence for a physiological effect. For example, the FDA-approved barley health claim was based on a petition that included 39 animal model studies and 11 human clinical trials. Since then, more studies have been published, but with few exceptions, clinical data continue to demonstrate that the consumption of barley products is effective for lowering total and LDL cholesterol. More research is needed to fully understand the mechanism of cholesterol reduction and the role of beta-glucan molecular weight, viscosity, and solubility. In an assessment of the physiological efficacy of a dietary intervention, consideration should also be given to the potential impact of physical and thermal food-processing treatments and genotypic variation in the barley source. New barley cultivars have been generated specifically for food use, possessing increased beta-glucan, desirable starch composition profiles, and improved milling/processing traits. These advances in barley production, coupled with the establishment of a government-regulated health claim for barley beta-glucan, will stimulate new processing opportunities for barley foods and provide consumers with reliable, healthy food choices.

  4. Molecular characterization of two lipoxygenases from barley

    NARCIS (Netherlands)

    Mechelen, J.R. van; Schuurink, R.C.; Smits, M.; Graner, A.; Douma, A.C.; Sedee, N.J.A.; Schmitt, N.F.; Valk, B.E.

    1999-01-01

    Two full-length lipoxygenase cDNA sequences (LoxB and LoxC) from barley (Hordeum distichum cv. L. Triumph) are described. The cDNAs share high homology with the barley LoxA cDNA. Southern blotting experiments indicate single copy numbers of the three lipoxygenase genes. RFLP mapping revealed the pre

  5. Effects of INH, DNP, 2, 4-D and CMU on the sugar content of the barley and maize leaves; Efecto de cuatro inhibidores metabolicos (INH, DNP, 2, 3-D y CMU) sobre el contenido en azucares de hohas de cebada (Hordeum vulgare L.) y Maiz (Zea mais L.)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.; Sancho, P.

    1979-07-01

    1 ppm of the chemicals in nutritive solution was absorbed by barley and maize roots during 24 and 48 hours in dark or light conditioners in order to determine the best conditions. for the obtention of labelled sugars with high specific activity. Results show that the highest specific activity was obtained In maize plants treated with DNP for 24 hours in dark conditions. (Author) 51 refs.

  6. Growth and Eco-Physiological Performance of Cotton Under Water Stress Conditions

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-yan; Isoda Akihiro; LI Mao-song; WANG Dao-long

    2007-01-01

    A cotton cultivar Xinluzao 8 was grown under four levels of water stress treatments (normal irrigation, slight, mild and severe water stress) from the initial reproductive growth stage in Shihezi, Xinjiang, China, in 2002, to evaluate the growth and eco-physiological performances. Under water stress conditions, the transpiration ability decreased while the leaf temperature increased. Although the relative leaf water content decreased as water stress increased, the differences among the treatments were small, indicating that cotton has high ability in maintaining water in leaf. The stomatal density increased as water stress increased, while the maximum stomatal aperture reduced only in the severest stressed plants.The time of the maximum stomatal aperture was delayed in the mild and severe stressed plants. When severe stress occurred, the stomata were kept open until the transpiration decreased to nearly zero, suggesting that the stomata might not be the main factor in adjusting transpiration in cotton. Cotton plant has high adaptation ability to water stress conditions because of decrease in both stomatal conductance and hydraulic conductance from soil-to-leaf pathway. The actual quantum yield of photosystem Ⅱ (PS Ⅱ) decreased under water stress conditions, while the maximum quantum yield of PS Ⅱ did not vary among treatments, suggesting that PS Ⅱ would not be damaged by water stress. The total dry weight reduced as water stress increased.

  7. Responses of tomato leaf photosynthesis to rapid water stress%番茄叶片光合作用对快速水分胁迫的响应

    Institute of Scientific and Technical Information of China (English)

    韩国君; 陈年来; 黄海霞; 张萍; 张凯; 郭艳红

    2013-01-01

    By using polyethylene glycol ( PEG-6000) solution to regulate the water potential of tomato (Lycopersicon esculentum) rhizosphere to simulate water stress, this paper studied the dynamic changes of net photosynthetic rate, dark respiratory rate and CO2 compensatory concentration of detached tomato leaves in the process of photosynthetic induction. Under 1000 μmol· m-2· s-1 of light induction, the time required to reach the maximum net photosynthetic rate of water-stressed tomato leaves was shortened by 1/3, while the stomatal conductance was increased by 1. 5 times, as compared to the non-stress control. Also, the light saturation point (LSP) of water-stressed tomato leaves was lowered by 65% to 85% , and the light compensation point ( LCP) was increased by 75% to 100% , suggesting that the effective range of light utilized by tomato leaves was reduced. Furthermore, water stress decreased the maximum photosynthetic capacity of tomato leaves by 40% , but increased the dark respiration rate by about 45%. It was suggested that rapid water stress made the stomata of tomato leaves quickly opened, without initial photosynthetic induction stage. In conclusion , water stress could induce the decrease of plant light-energy use efficiency and potential, being the main reason for the decrease of plant productivity, and stomatal regulation could be the main physiological mechanism of tomato plants to adapt to rapid water stress.%采用聚乙二醇(PEG-6000)溶液控制番茄根际水势和叶片离体的方式设置了水分胁迫处理,测算了光合诱导过程中净光合速率、暗呼吸速率和CO2补偿点等光合参数的变化.结果表明:在1000μmol·m-2·s-1光诱导下,水分胁迫处理的番茄叶片净光合速率(Pn)达到最大值所需时间缩短为对照的1/3,气孔导度(gs)快速增大为对照的1.5倍.水分胁迫处理的番茄叶片光饱和点(LSP)比对照降低了65%~85%,而光补偿点(LCP)比对照增加了75% ~100%,缩小了

  8. Effects of ozone and water stress on canopy temperature, water use, and water use efficiency of alfalfa

    Energy Technology Data Exchange (ETDEWEB)

    Temple, P.J. (Univ. of California, Riverside (USA)); Benoit, L.F. (Univ. of California, Davis (USA))

    Ozone (O{sub 3}) and soil water deficit are two environmental stresses that significantly affect the growth and yield of alfalfa (Medicago sativa L). However, little is known of the responses of field-grown alfalfa to O{sub 3}, and the effects of the interaction between O{sub 3} and water stress on canopy temperature and water relations of alfalfa have not been previously reported. The objective of this 2-yr study was to determine the interactive effects of O{sub 3} and soil water deficits on canopy temperatures, water use, and water use efficiency (WUE) of alfalfa. Alfalfa (cv. WL-514) was grown in 30-3- by 5.5-m plots on Wasco sandy loam (coarse-loamy, mixed, nonacid, thermic Typic Torriorthents) in Shafter, CA, and was exposed in open-top chambers to five levels of O{sub 3} for 12 h daily, from March to October of 1984 and 1985. Ozone treatments ranged from charcoal-filtered air (CF) to twice ambient O{sub 3} concentrations. Each plot received either normal amounts of irrigation (NI) or 30% less than normal (WS). Canopy temperature-air temperature differentials ({Tc}-T{sub a}) were significantly reduced by water stress an average of 27.9% in 1984 and 44.0% in 1985. Ozone also significantly reduced {Tc}-T{sub a} by 31% in NI and 37% in WS plots in 1984, but in 1985 O{sub 3} had no effect on {Tc}-T{sub a}. Water use, rate of soil water depletion, or depth of effective rooting zone were not affected by O{sub 3}, whereas water stress significantly reduced all three. Water use efficiency was significantly reduced by O{sub 3}, averaging 12% lower in nonfiltered compared with CF plots. The effects of O{sub 3} on WUE were attributed to premature senescence and abscission of older alfalfa leaves.

  9. Detecting leaf pulvinar movements on NDVI time series of desert trees: a new approach for water stress detection.

    Science.gov (United States)

    Chávez, Roberto O; Clevers, Jan G P W; Verbesselt, Jan; Naulin, Paulette I; Herold, Martin

    2014-01-01

    Heliotropic leaf movement or leaf 'solar tracking' occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVI mo-mi) and between winter and summer (ΔNDVI W-S). In this paper, we showed that the ΔNDVI mo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVI W-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVI mo-mi and ΔNDVI W-S. For an 11-year time series without rainfall events, Landsat ΔNDVI W-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVI mo-mi and ΔNDVI W-S have potential to detect early water stress of paraheliotropic vegetation.

  10. Detecting leaf pulvinar movements on NDVI time series of desert trees: a new approach for water stress detection.

    Directory of Open Access Journals (Sweden)

    Roberto O Chávez

    Full Text Available Heliotropic leaf movement or leaf 'solar tracking' occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI, should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVI mo-mi and between winter and summer (ΔNDVI W-S. In this paper, we showed that the ΔNDVI mo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVI W-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVI mo-mi and ΔNDVI W-S. For an 11-year time series without rainfall events, Landsat ΔNDVI W-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVI mo-mi and ΔNDVI W-S have potential to detect early water stress of paraheliotropic vegetation.

  11. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.).

    Science.gov (United States)

    Anand, Anjali; Nagarajan, Shantha; Verma, A P S; Joshi, D K; Pathak, P C; Bhardwaj, Jyotsna

    2012-02-01

    The effect of magnetic field (MF) treatments of maize (Zea mays L.) var. Ganga Safed 2 seeds on the growth, leaf water status, photosynthesis and antioxidant enzyme system under soil water stress was investigated under greenhouse conditions. The seeds were exposed to static MFs of 100 and 200 mT for 2 and 1 h, respectively. The treated seeds were sown in sand beds for seven days and transplanted in pots that were maintained at -0.03, -0.2 and -0.4 MPa soil water potentials under greenhouse conditions. MF exposure of seeds significantly enhanced all growth parameters, compared to the control seedlings. The significant increase in root parameters in seedlings from magnetically-exposed seeds resulted in maintenance of better leaf water status in terms of increase in leaf water potential, turgor potential and relative water content. Photosynthesis, stomatal conductance and chlorophyll content increased in plants from treated seeds, compared to control under irrigated and mild stress condition. Leaves from plants of magnetically-treated seeds showed decreased levels of hydrogen peroxide and antioxidant defense system enzymes (peroxidases, catalase and superoxide dismutase) under moisture stress conditions, when compared with untreated controls. Mild stress of -0.2 MPa induced a stimulating effect on functional root parameters, especially in 200 mT treated seedlings which can be exploited profitably for rain fed conditions. Our results suggested that MF treatment (100 mT for 2 h and 200 for 1 h) of maize seeds enhanced the seedling growth, leaf water status, photosynthesis rate and lowered the antioxidant defense system of seedlings under soil water stress. Thus, pre sowing static magnetic field treatment of seeds can be effectively used for improving growth under water stress.

  12. The effects of water stress and defoliation on some of quantitative traits of Zataria multiflora, Ziziphora clinopodioides, Thymus vulgaris and Teucrium polium

    Directory of Open Access Journals (Sweden)

    ali reza koochaki

    2009-06-01

    Full Text Available In order to investigate the effect of water stress and defoliation on Zataria multiflora, Ziziphora clinopodioides, Thymus vulgaris and Teucrium polium, an experiment was conducted under greenhouse conditions. Treatments were combination of four water stress levels (-0.3, -5, -10, -15 bar and three defoliation levels (0, 25, 50 percent of foliage removal arranged in a completely randomized desing with 4 replications. For imposing drought levels, percentage of soil moisture was determined in different water potentials by pressure plate method , and pots were weighted daily and the amount of water lost was added to each pot. Criteria such as SPAD readings, stomatal resistance, canopy temperature, leaf/stem ratio, specific leaf weight, percentage of dry leaves and root/shoot ratio were measured. Water stress increased SPAD readings in Ziziphora clinopodioides, specific leaf weight in Thymus vulgaris and Ziziphora clinopodioides, canopy temperature in Thymus vulgaris and Teucrium polium and percentage of dry leafs in Zataria multiflora and Teucrium polium significantly. Defoliation reduced SPAD readings in Zataria multiflora, Ziziphora clinopodioides and Teucrium polium, specific leaf weight in Zataria multiflora, Thymus vulgaris and Ziziphora clinopodioides and leaf/stem ratio in Zataria multiflora significantly. A negative correlation was observed between leaf/stem ratio and different levels of water stress for all species. With increasing defoliation levels, root/shoot ratio was reduced in Zataria multiflora and Thymus vulgaris and increased in Teucrium polium and Ziziphora clinopodioides. Also, root/shoot ratio showed a positive correlation with different levels of water stress. Generally, Ziziphora clinopodioides was most resistant species and Teucrium polium most sensitive species to stress.

  13. Calcium homeostasis in barley aleurone

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.

    1990-02-21

    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  14. Nodule activity and allocation of photosynthate of soybean during recovery from water stress

    Science.gov (United States)

    Fellows, R. J.; Patterson, R. P.; Raper, C. D. Jr; Harris, D.; Raper CD, J. r. (Principal Investigator)

    1987-01-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.

  15. Nodule activity and allocation of photosynthate of soybean during recovery from water stress

    Science.gov (United States)

    Fellows, R. J.; Patterson, R. P.; Raper, C. D. Jr; Harris, D.; Raper CD, J. r. (Principal Investigator)

    1987-01-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.

  16. Resistance to Barley Leaf Stripe

    DEFF Research Database (Denmark)

    Nørgaard Knudsen, J. C.

    1986-01-01

    in well adapted Northwest European spring cultivars. Virulence matching two hitherto not overcome resistances was demonstrated. Differences in apparent race nonspecific or partial resistance were also present, changing the percentage of infected plants of susceptible genotypes from about 20 to 44 per cent.......Ten barley [Hordeum vulgare] genotypes were inoculated with twelve isolates of Pyrenophora graminea of diverse European and North African origin. Race specific resistance occurred. Four, possibly five, genetically different sources of race-specific resistance were found, three of them occurring...

  17. Factors controlling plasticity of leaf morphology in Robinia pseudoacacia: III. biophysical constraints on leaf expansion under long-term water stress.

    Science.gov (United States)

    Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T

    2011-12-01

    In this article, we measured the relative growth rate (RGR) of leaves of Robinia pseudoacacia seedlings under well-watered and water-stressed conditions (mid-day Ψ(w) = leaf water potential estimated with a pressure bomb of -0.48 and -0.98 MPa, respectively). Pressure-volume (PV) curves were done on growing leaves at 25, 50 and 95% of the mature size (growth stage) in order to compute solute potential (Ψ) and turgor pressure (Ψ(P) ) as a function of Ψ(w) . The PV curves and diurnal measurements of Ψ(w) and RGR allowed us to evaluate the parameters (cell wall extensibility m and growth turgor threshold Y) of the Lockhart equation, RGR = m(Ψ(P)-Y), at each growth stage. Our data showed that m and Y did change with leaf age, but the changes were slow enough to evaluate m and Y on any given day. We believe this is the first study to provide evidence that the Lockhart equation adequately quantifies leaf growth of trees over a range of time domains. The value of m linearly declined and Y linearly increased with growth stage. Also, mild drought stress caused a decline in m and increase in Y relative to controls. Although water stress caused an osmotic adjustment which, in turn, increased Ψ(P) in stressed plants relative to controls, the RGR and final leaf sizes were reduced in water-stressed plants because of the impact of water stress on decreased m and increased Y. Copyright © Physiologia Plantarum 2011.

  18. Global monthly water stress: II. Water demand and severity of water

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Viviroli, D.; Dürr, H.H.; Weingartner, R.; Bierkens, M.F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted

  19. Global monthly water stress: II. Water demand and severity of water

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Viviroli, D.; Dürr, H.H.; Weingartner, R.; Bierkens, M.F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted

  20. Comparison of corn yield response to plant water stress caused by salinity and by drought

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.

    2004-01-01

    The effect of water stress on corn yield was studied in a salinity experiment and in a drought experiment. The plant water status was determined by measuring the pre-dawn leaf water potential regularly during the whole growing season and expressed by the water stress day index (WSDI). The yield resp

  1. Comparative leaf proteomics of drought-tolerant and-susceptible peanut in response to water stress

    Science.gov (United States)

    Water stress (WS) predisposes peanut plants to fungal infection resulting in pre-harvest aflatoxin contamination. Major changes during water stress including oxidative stress, lead to destruction of photosynthetic apparatus and other macromolecules within cells. Two peanut cultivars with diverse dro...

  2. Heat-resistant protein expression during germination of maize seeds under water stress.

    Science.gov (United States)

    Abreu, V M; Silva Neta, I C; Von Pinho, E V R; Naves, G M F; Guimarães, R M; Santos, H O; Von Pinho, R G

    2016-08-12

    Low water availability is one of the factors that limit agricultural crop development, and hence the development of genotypes with increased water stress tolerance is a challenge in plant breeding programs. Heat-resistant proteins have been widely studied, and are reported to participate in various developmental processes and to accumulate in response to stress. This study aimed to evaluate heat-resistant protein expression under water stress conditions during the germination of maize seed inbreed lines differing in their water stress tolerance. Maize seed lines 91 and 64 were soaked in 0, -0.3, -0.6, and -0.9 MPa water potential for 0, 6, 12, 18, and 24 h. Line 91 is considered more water stress-tolerant than line 64. The analysis of heat-resistant protein expression was made by gel electrophoresis and spectrophotometry. In general, higher expression of heat-resistant proteins was observed in seeds from line 64 subjected to shorter soaking periods and lower water potentials. However, in the water stress-tolerant line 91, a higher expression was observed in seeds that were subjected to -0.3 and -0.6 MPa water potentials. In the absence of water stress, heat-resistant protein expression was reduced with increasing soaking period. Thus, there was a difference in heat-resistant protein expression among the seed lines differing in water stress tolerance. Increased heat-resistant protein expression was observed in seeds from line 91 when subjected to water stress conditions for longer soaking periods.

  3. Cisgenic barley for animal feed

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2011-01-01

    for Cisgenesis. Recently, Dionisio et al. (2011) have cloned and characterized phytases belonging to the purple acid phosphatases (PAPs) in barley. We have isolated the genomic PAP-clone of the isoform expressed during grain filling including 2.3 kb of the promoter region and 600 bp of the terminator region...... using a genomic barley lambda library. The clone has been inserted into a Cisgenic Agrobacterium vector where both the gene of interest and the selection gene are flanked by their own T-DNA borders in order to promote integration of the two genes at unlinked places in the plant genome. T0-plants show...... increases in the phytase activity of mature seeds from 1350 in wild type to 7500 FTU/kg in T0-plants. We have identified two Cisgenic T1-lines without selection gene and vector backbone but with one additional genomic clone of the phytase gene. Lines homozygous for the additional cisgene show 2-3 fold...

  4. Differential responses of plumbagin content in Plumbago zeylanica L. (Chitrak under controlled water stress treatments

    Directory of Open Access Journals (Sweden)

    Kharadi R.

    2011-12-01

    Full Text Available A pot experiment was conducted on Plumbago zeylanica L. (Chitrak under controlled water stress environment in greenhouse during the kharif season. The experiment was laid out in completely randomized design with five treatments of different water stress levels i.e. control, 20%, 40%, 60% and 80% and four replications. Out of five stress levels, 80% water stress has influenced root length, dry herbage, plumbagin, potassium and proline content. In control conditions the plant height, number of leaf, total leaf area, stomatal conductance, transpiration rate, photosynthesis, CO2 utilization, H2O utilization and chlorophyll were found to be maximum. The impact of water stress on plumbagin content has shown increase trend with respect to different water stress levels that is maximum at 80 % and minimum at control.

  5. Response of Thematic Mapper bands to plant water stress

    Science.gov (United States)

    Cibula, W. G.; Zetka, E. F.; Rickman, D. L.

    1992-01-01

    Changes in leaf reflectance as water content decreases have been hypothesized to occur in the 1.55-1.75 and 2.08-2.35 micron wavelength regions. To evaluate this hypothesis, studies were conducted on ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L.), which were grown in a controlled, outdoor situation. Both fully-watered control beds and water-stressed beds were periodically examined with a spectroradiometer calibrated against a reflectance reference of polytetrafluoroethylene. The observed changes correspond to those predicted by stochastic leaf models employed by other investigators (leaf reflection increases in the 1.55-1.75 micron region as leaf water content decreases). Although the percentage changes in TM bands 1-3 are nearly as great as those found in TM bands 5 and 7, the absolute values of reflectance change are much lower. It is believed that these patterns are probably characteristic of a broad range of vegetation types. In terms of phenomena detection, these patterns should be considered in any practical remote sensing sensor scenario.

  6. Grape Composition under Abiotic Constrains: Water Stress and Salinity.

    Science.gov (United States)

    Mirás-Avalos, José M; Intrigliolo, Diego S

    2017-01-01

    Water stress and increasing soil salt concentration represent the most common abiotic constrains that exert a negative impact on Mediterranean vineyards performance. However, several studies have proven that deficit irrigation strategies are able to improve grape composition. In contrast, irrigation with saline waters negatively affected yield and grape composition, although the magnitude of these effects depended on the cultivar, rootstock, phenological stage when water was applied, as well as on the salt concentration in the irrigation water. In this context, agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be achieved. In this paper, we briefly reviewed the main findings obtained regarding the effects of deficit irrigation strategies, as well as irrigation with saline water, on the berry composition of both red and white cultivars, as well as on the final wine. A meta-analysis was performed using published data for red and white varieties; a general liner model accounting for the effects of cultivar, rootstock, and midday stem water potential was able to explain up to 90% of the variability in the dataset, depending on the selected variable. In both red and white cultivars, berry weight, must titratable acidity and pH were fairly well simulated, whereas the goodness-of-fit for wine attributes was better for white cultivars.

  7. Grape Composition under Abiotic Constrains: Water Stress and Salinity

    Directory of Open Access Journals (Sweden)

    José M. Mirás-Avalos

    2017-05-01

    Full Text Available Water stress and increasing soil salt concentration represent the most common abiotic constrains that exert a negative impact on Mediterranean vineyards performance. However, several studies have proven that deficit irrigation strategies are able to improve grape composition. In contrast, irrigation with saline waters negatively affected yield and grape composition, although the magnitude of these effects depended on the cultivar, rootstock, phenological stage when water was applied, as well as on the salt concentration in the irrigation water. In this context, agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be achieved. In this paper, we briefly reviewed the main findings obtained regarding the effects of deficit irrigation strategies, as well as irrigation with saline water, on the berry composition of both red and white cultivars, as well as on the final wine. A meta-analysis was performed using published data for red and white varieties; a general liner model accounting for the effects of cultivar, rootstock, and midday stem water potential was able to explain up to 90% of the variability in the dataset, depending on the selected variable. In both red and white cultivars, berry weight, must titratable acidity and pH were fairly well simulated, whereas the goodness-of-fit for wine attributes was better for white cultivars.

  8. Developmental reaction norms for water stressed seedlings of succulent cacti.

    Science.gov (United States)

    Rosas, Ulises; Zhou, Royce W; Castillo, Guillermo; Collazo-Ortega, Margarita

    2012-01-01

    Succulent cacti are remarkable plants with capabilities to withstand long periods of drought. However, their adult success is contingent on the early seedling stages, when plants are highly susceptible to the environment. To better understand their early coping strategies in a challenging environment, two developmental aspects (anatomy and morphology) in Polaskia chichipe and Echinocactus platyacanthus were studied in the context of developmental reaction norms under drought conditions. The morphology was evaluated using landmark based morphometrics and Principal Component Analysis, which gave three main trends of the variation in each species. The anatomy was quantified as number and area of xylem vessels. The quantitative relationship between morphology and anatomy in early stages of development, as a response to drought was revealed in these two species. Qualitatively, collapsible cells and collapsible parenchyma tissue were observed in seedlings of both species, more often in those subjected to water stress. These tissues were located inside the epidermis, resembling a web of collapsible-cell groups surrounding turgid cells, vascular bundles, and spanned across the pith. Occasionally the groups formed a continuum stretching from the epidermis towards the vasculature. Integrating the morphology and the anatomy in a developmental context as a response to environmental conditions provides a better understanding of the organism's dynamics, adaptation, and plasticity.

  9. Developmental reaction norms for water stressed seedlings of succulent cacti.

    Directory of Open Access Journals (Sweden)

    Ulises Rosas

    Full Text Available Succulent cacti are remarkable plants with capabilities to withstand long periods of drought. However, their adult success is contingent on the early seedling stages, when plants are highly susceptible to the environment. To better understand their early coping strategies in a challenging environment, two developmental aspects (anatomy and morphology in Polaskia chichipe and Echinocactus platyacanthus were studied in the context of developmental reaction norms under drought conditions. The morphology was evaluated using landmark based morphometrics and Principal Component Analysis, which gave three main trends of the variation in each species. The anatomy was quantified as number and area of xylem vessels. The quantitative relationship between morphology and anatomy in early stages of development, as a response to drought was revealed in these two species. Qualitatively, collapsible cells and collapsible parenchyma tissue were observed in seedlings of both species, more often in those subjected to water stress. These tissues were located inside the epidermis, resembling a web of collapsible-cell groups surrounding turgid cells, vascular bundles, and spanned across the pith. Occasionally the groups formed a continuum stretching from the epidermis towards the vasculature. Integrating the morphology and the anatomy in a developmental context as a response to environmental conditions provides a better understanding of the organism's dynamics, adaptation, and plasticity.

  10. Colonization of Barley by the Broad-Host Hemibiotrophic Pathogen Phytophthora palmivora Uncovers a Leaf Development-Dependent Involvement of Mlo.

    Science.gov (United States)

    Le Fevre, Ruth; O'Boyle, Bridget; Moscou, Matthew J; Schornack, Sebastian

    2016-05-01

    The discovery of barley Mlo demonstrated that filamentous pathogens rely on plant genes to achieve entry and lifecycle completion in barley leaves. While having a dramatic effect on foliar pathogens, it is unclear whether overlapping or distinct mechanisms affect filamentous pathogen infection of roots. To remove the bias connected with using different pathogens to understand colonization mechanisms in different tissues, we have utilized the aggressive hemibiotrophic oomycete pathogen Phytophthora palmivora. P. palmivora colonizes root as well as leaf tissues of barley (Hordeum vulgare). The infection is characterized by a transient biotrophy phase with formation of haustoria. Barley accessions varied in degree of susceptibility, with some accessions fully resistant to leaf infection. Notably, there was no overall correlation between degree of susceptibility in roots compared with leaves, suggesting that variation in different genes influences host susceptibility above and below ground. In addition, a developmental gradient influenced infection, with more extensive colonization observed in mature leaf sectors. The mlo5 mutation attenuates P. palmivora infection but only in young leaf tissues. The barley-P. palmivora interaction represents a simple system to identify and compare genetic components governing quantitative colonization in diverse barley tissue types.

  11. Proteome analysis of dissected barley seed tissue during germination and radicle elongation

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine

    2007-01-01

    Cereal grains are vital components of our diet, and therefore understanding of the biology of breakage of dormancy and initiation of germination very important. These processes are far from fully understood, despite extensive studies, and no specific markers for germination have been identified...... at the protein or the DNA level. In addition, germination of barley seeds is of interest for the brewing industry since this process corresponds to the steeping process that starts the industrial malting. In the present study a proteomics approach was employed to understand the initial changes in the water...... stress, storage breakdown, folding, and housekeeping were identified and tracked through 72 h PI. APX and the other enzymes involved in the ascorbate-glutathione cycle (dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase) were thought to have an important function during...

  12. Combined Effects of Numerical Method Type and Time Step on Water Stressed Actual Crop ET

    Directory of Open Access Journals (Sweden)

    B. Ghahraman

    2016-02-01

    Full Text Available Introduction: Actual crop evapotranspiration (Eta is important in hydrologic modeling and irrigation water management issues. Actual ET depends on an estimation of a water stress index and average soil water at crop root zone, and so depends on a chosen numerical method and adapted time step. During periods with no rainfall and/or irrigation, actual ET can be computed analytically or by using different numerical methods. Overal, there are many factors that influence actual evapotranspiration. These factors are crop potential evapotranspiration, available root zone water content, time step, crop sensitivity, and soil. In this paper different numerical methods are compared for different soil textures and different crops sensitivities. Materials and Methods: During a specific time step with no rainfall or irrigation, change in soil water content would be equal to evapotranspiration, ET. In this approach, however, deep percolation is generally ignored due to deep water table and negligible unsaturated hydraulic conductivity below rooting depth. This differential equation may be solved analytically or numerically considering different algorithms. We adapted four different numerical methods, as explicit, implicit, and modified Euler, midpoint method, and 3-rd order Heun method to approximate the differential equation. Three general soil types of sand, silt, and clay, and three different crop types of sensitive, moderate, and resistant under Nishaboor plain were used. Standard soil fraction depletion (corresponding to ETc=5 mm.d-1, pstd, below which crop faces water stress is adopted for crop sensitivity. Three values for pstd were considered in this study to cover the common crops in the area, including winter wheat and barley, cotton, alfalfa, sugar beet, saffron, among the others. Based on this parameter, three classes for crop sensitivity was considered, sensitive crops with pstd=0.2, moderate crops with pstd=0.5, and resistive crops with pstd=0

  13. Computation of Water-Stress Ratio in Western Nigeria

    Directory of Open Access Journals (Sweden)

    Philipa Omamhe Idogho

    2012-09-01

    Full Text Available An increasing world population exerts a continually growing demand on usable freshwater resources. Access to water plays a key role in development; it supports human life in direct consumption, agricultural uses and industrial activities. Time and drudgery involved to access safe drinking water resulted to loss of human resources and capital, thus affecting nearly every household life. This paper focuses on the determination of water-stressed ratio using Integrated Water Measurement Tool (IWMT. Structured simple time analysis and Adjusted composite index approaches were employed to compute (IWMT values in all the sampled areas. Variables such as access to safe water coverage, water availability and use of water were considered. IWMT values from the two approaches show that Ese-Odo is the most water-scarce region with least IWMT values of 14.1 (Adjusted composite index: ACI and highest value of 2.6 minsl -1 (Structured simple time analysis: SSA, while Owo, Ondo-West and Ose local government areas experience fair distribution of protected water supply with IWMT values of 1.05 minsl -1 , 20.8; 1.00 minsl -1 , 17.2; and 0.55 minsl -1 , 16.9 respectively. The results obtained indicate that constructive investments in water and sanitation would reduce proportion of household income spent in sourcing for safe drinking water, prevention of water-related diseases and in turn improves productivity. However, this paper concludes that top-down technical approach must be balanced with a bottom-up mechanism in order to derive realistic systems to prevent persistent water scarcity, shortage and to draw realistic adaption measures.

  14. Phosphatidic acid, a versatile water-stress signal in roots

    Directory of Open Access Journals (Sweden)

    Fionn eMcLoughlin

    2013-12-01

    Full Text Available Adequate water supply is of utmost importance for growth and reproduction of plants. In order to cope with water deprivation, plants have to adapt their development and metabolism to ensure survival. To maximize water use efficiency, plants use a large array of signaling mediators such as hormones, protein kinases and phosphatases, Ca2+, reactive oxygen species and low abundant phospholipids that together form complex signaling cascades. Phosphatidic acid (PA is a signaling lipid that rapidly accumulates in response to a wide array of abiotic stress stimuli. PA formation provides the cell with spatial and transient information about the external environment by acting as a protein-docking site in cellular membranes. PA reportedly binds to a number of proteins that play a role during water limiting conditions, such as drought and salinity and has been shown to play an important role in maintaining root system architecture. Members of two osmotic stress-activated protein kinase families, sucrose non-fermenting 1-related protein kinase 2 (SnRK2 and mitogen activated protein kinases (MAPKs were recently shown bind PA and are also involved in the maintenance of root system architecture and salinity stress tolerance. In addition, PA regulates several proteins involved in abscisic acid (ABA-signaling. PA-dependent recruitment of glyceraldehyde-3-phosphate dehydrogenase (GAPDH under water limiting conditions indicates a role in regulating metabolic processes. Finally, a recent study also shows the PA recruits the clathrin heavy chain and a potassium channel subunit, hinting towards additional roles in cellular trafficking and potassium homeostasis. Taken together, the rapidly increasing number of proteins reported to interact with PA implies a broad role for this versatile signaling phospholipid in mediating salt and water stress responses.

  15. Mechanisms of Induced Resistance in Barley Against Drechslera teres.

    Science.gov (United States)

    Lyngs Jørgensen, H J; Lübeck, P S; Thordal-Christensen, H; de Neergaard, E; Smedegaard-Petersen, V

    1998-07-01

    ABSTRACT Quantitative and qualitative histopathological methods and molecular analyses were used to study the mechanisms by which preinoculation with either of the nonbarley pathogens, Bipolaris maydis and Septoria nodorum, inhibited growth of Drechslera teres. Collectively, our data suggest that induced resistance is the principal mechanism responsible for impeding the pathogen. The enhancement of resistance in the host was primarily manifested during penetration by D. teres, and after penetration, where growth of D. teres ceased soon after development of infection vesicles. Thus, 24 h after pretreatment with B. maydis or S. nodorum, the penetration frequency from D. teres appressoria was reduced from 42.7% in the controls to 9.5 and 14.8%, respectively. The reductions were associated with increased formation of fluorescent papillae in induced cells (early defense reaction). The postpenetrational inhibition of D. teres completely stopped fungal growth and was apparently linked to an enhancement of multicellular hypersensitive responses in inducer-treated leaves (late defense reaction). Papillae formation and multicellular hypersensitive reactions were also observed in fully susceptible, noninduced control leaves, but they were inadequate to stop fungal progress. Northern blots from leaves treated with either inducer alone support the conclusion that induced resistance is involved in suppression of D. teres by increased formation of papillae and hypersensitive reactions. Thus, the blots showed strong expression of several defense response genes that are involved in these reactions in barley attacked by Erysiphe graminis f. sp. hordei.

  16. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...

  17. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    Science.gov (United States)

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  18. Leaving Libya

    Energy Technology Data Exchange (ETDEWEB)

    Mc Kenzie-Brown, Peter

    2011-07-15

    Canadian workers in Libya have been leaving the country due to civic unrest. Canadian companies evacuated their expat employees in cooperation with the Canadian government, without regard to the financial aspect, to keep them safe. Canadian expats are optimistic about the future.

  19. Leaving Iraq?

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    It has been three years since the war in Iraq began, but the situation in the country, especially the security, has not improved much. Meanwhile, the world is wondering when U.S. troops will leave, and the American public appears to be getting impatient with the seemingly endless casualty reports. Some groups have held

  20. Antidepressant-like effects of young green barley leaf (Hordeum vulgare L. in the mouse forced swimming test

    Directory of Open Access Journals (Sweden)

    Katsunori Yamaura

    2012-01-01

    Full Text Available Background: Young green barley leaf is one of the richest sources of antioxidants and has been widely consumed for health management in Japan. In this study, we examined whether oral administration of young green barley leaf has an antidepressant effect on the forced swimming test in mice. Materials and Methods: Mice were individually forced to swim in an open cylindrical container, one hour after oral administration of young green barley leaf (400 or 1000 mg / kg or imipramine (100 mg / kg. Expression of mRNA for nerve growth factor (NGF, brain-derived neurotrophic factor, and glucocorticoid receptor in the brain was analyzed using real-time quantitative polymerase chain reaction (PCR. Results: There was a significant antidepressant-like effect in the forced swimming test; both 400 and 1000 mg / kg young green barley leaves, as well as the positive control imipramine (100 mg / kg, reduced the immobility duration compared to the vehicle group. The expression of mRNA for NGF detected in the hippocampus immediately after the last swimming test was higher than that in the non-swimming group (Nil. Oral administration of imipramine suppressed this increase to the level of the Nil group. Young green barley leaf (400 and 1000 mg / kg also showed a moderate decrease in the expression of mRNA for NGF, in a dose-dependent manner. Conclusion: Oral administration of young green barley leaf is able to produce an antidepressant-like effect in the forced swimming test. Consequently it is possible that the antidepressant-like effects of the young green barley leaf are, at least in part, mediated by an inhibition of the increase in the hippocampus levels of NGF.

  1. The Effect of Water Stress and Polymer on Water Use Efficiency, Yield and several Morphological Traits of Sunflower under Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    Hossein NAZARLI

    2010-12-01

    Full Text Available In many part of Iran, the reproductive growth stages of sunflower (Helianthus annuus L. are exposed to water deficit stress. Therefore, the investigation of irrigation management in the farm conditions is a necessary element for increasing irrigation efficiency and decreasing water losses. The objective of present study was to investigate the effect of different rates of super absorbent polymer and levels of water stress on water use efficiency (WUE, yield and some morphological traits of sunflower (cultivar Master. Factorial experiment was carried out in completely randomized design with 3 replications. Factors were water stress in three levels (irrigation in 0.75; 0.50 and 0.25% of field capacity and super absorbent polymer in five levels (0; 0.75; 0.150; 2.25; 3 g/kg of soil. Super absorbent polymer was added in eight leaves stage of sunflower to pots in deepness of roots development. Water stress treatment was also applied in this growth stage of sunflower. For stress application, pots were weighted every day and irrigated when soil water received to 0.75; 0.50 and 0.25 of field capacity, respectively. The results of ANOVA indicated that the effect of different rates of super absorbent polymer and different rates of consumed water in all traits were significant. ANOVA also revealed that the interactive effects of two mentioned factors were significant except for seed yield trait. Polynomial model based on the ANOVA results was fitted for each trait. The results indicated that water stress significantly convert in decreasing the number of leaves per plant, chlorophyll content, 100 weight of seeds, seed yield and WUE in sunflower, whereas the application of super absorbent polymer moderated the negative effect of deficit irrigation, especially in high rates of polymer (2.25 and 3 g/kg of soil. The above mentioned rates of polymer have the best effect to all characteristics of sunflower in all levels of water stress treatment. The findings

  2. Resistance in barley against Drechslera teres induced by Bipolaris maydis and Septoria nodorum

    DEFF Research Database (Denmark)

    Jørgensen, Hans Jørgen Lyngs; Lobeck, P.S.; Thordal-Christensen, Hans

    1998-01-01

    not been examined to any great extent, with a few exceptions such as the rice-Pyricularia oryzae system. In a previous report [1], the severity of barley net blotch caused by the necrotrophic pathogen Drechslera teres and hyphal growth in the host tissue was shown to be strongly reduced when leaves were...... pre-treated with conidial suspensions of either of the two non-barley pathogens Bipolaris maydis from maize or Septoria nodorum from wheat. The results suggested that induced resistance was involved, but detailed studies of the mechanisms responsible were not carried out. Such investigations are...... in the host after inoculation with B. maydis and S. nodorum. Materials and methods B. maydis and S. nodorum were applied to leaves of the barley cultivar Lenka 24 h before D. teres. The primary infection processes of D. teres were investigated by light microscopy of epidermal strips made from the first leaf 3...

  3. Chloroplast Avoidance Movement Causes Increasing PAR Reflectance in Water Stressed Plants and May Distort Biophysical Estimates Based On Spectral Indices

    Science.gov (United States)

    Zygielbaum, A. I.; Arkebauer, T. J.; Walter-Shea, E.

    2013-12-01

    Vegetation photoprotective responses impact the reflected spectra in the visible or photosynthetically active (PAR) spectral region. Earlier, we presented a case that the increasing PAR reflectance which accompanies increasing water stress was due to one such response, chloroplast avoidance movement. This increasing reflectance has been reported in published papers for several decades and dismissed as operator error or a result of changes in leaf turgor or optical pathway. We showed, however, that such changes in the PAR region, which occurred with no significant change in chlorophyll content, were caused by decreasing absorption, not changes in light scatter. Further, we demonstrated that the changes in reflectance were correlated with changes in ambient light (downwelling radiance). To further refine the case that chloroplast movement is the basis of these observations, excised leaves were exposed separately to either red light or white light illumination of equal photon flux densities. The transmittance observed as these leaves dried increased in the leaves exposed to white light and remained constant in the leaves exposed to red light. Since chloroplast movement is driven by blue light, our conjecture is strengthened. We have also observed distinct morning vs. afternoon differences in reflectance spectra of greenhouse-grown plants; indices derived from these spectra also vary diurnally--leading us to coin the phase 'apparent chlorophyll'. All observations previously reported were the result of greenhouse experiments. We report herein on observations of leaf and canopy reflectances under field conditions and on the impact the increasing reflectance has on estimation of chlorophyll content using spectral indices. We also present evidence that increasing reflectance which is concomitant with increasing plant stress may not correlate with stress indications using the photochemical reflectance index (PRI) and discuss the implications of that observation.

  4. Mineral content of sorghum genotypes and the influence of water stress.

    Science.gov (United States)

    Paiva, Caroline Liboreiro; Queiroz, Valéria Aparecida Vieira; Simeone, Maria Lúcia Ferreira; Schaffert, Robert Eugene; de Oliveira, Antônio Carlos; da Silva, Camila Santana

    2017-01-01

    Sorghum is a source of several minerals whose content may vary depending on the genotype and the production environment. The objective of this study was to screen sorghum genotypes for mineral content and to investigate the effect of water stress on it. A large variability was observed in the mineral content of 100 sorghum genotypes grown in environments without (WoWS) and with water stress (WthWS). The water stress decreased Mn, P, Mg and S contents in 100, 96, 93 and 56% of genotypes, respectively. The genotypes and other factors seemed to have more impact than water stress on K, Ca, Cu, Fe and Zn levels. In 100 sorghum genotypes, 2 were classified as excellent sources of Fe and 25 of Zn, in both environments. The best two genotypes to Fe content were SC21 and SC655 and to Zn were SC320 and SHAN-QUI-RED which showed great potential for use in biofortification.

  5. Photosynthetic Limitations in Response to Water Stress and Recovery in Mediterranean Plants with Different Growth Forms

    National Research Council Canada - National Science Library

    Jeroni Galmés; Hipólito Medrano; Jaume Flexas

    2007-01-01

    ... on species with different growth forms are compared. Ten Mediterranean species, representing different growth forms, were subjected to different levels of water stress, the most severe followed by rewatering...

  6. Effect of water stress on growth and yield of okra (Abemoscus ...

    African Journals Online (AJOL)

    Effect of water stress on growth and yield of okra (Abemoscus essculentus) ... Journal of Applied Science and Technology ... The water requirements of okra plant were determined from field capacity and permanent wilting point of the soil.

  7. Viability and Biological Properties of Barley Seeds Expose to Outside of International Space Station

    Science.gov (United States)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi; Shagimardanova, Elena; Gusev, Oleg; Sychev, Vladimir; Levinskikh, Margarita; Novikova, Nataliya; Grigoriev, Anatoly

    Plants play an important role in supplying nutrients and oxygen to human under material recycle system in space as well as on earth, therefore, seed storage in space should be necessary to self-supply foods when number of astronauts would stay and investigate for a long-term habitation of orbit and the bases of the Moon and Mars. In order to understand the effect of real space environment on the preservation of seeds, the seeds of malting barley, Haruna Nijo, were exposed to outside of the Pier docking station of International Space Station in the framework of the Biorisk-MSN program. After exposure to outside of International Space Station for 13 months, the seeds (SP) were transported to Earth, soaked in water, and germinated on the filter paper filled with water. The germination ratio of SP was 82%, while that of the ground control was 96%, showing that the barley seeds survived cosmic radiation, vacuum, and temperature excursion in space. The germinated seeds of SP and ground control were transplanted to the Wagner pots filled with soil and grown for 5 months in the greenhouse. The agronomic character, such as number of main stem leaf and ear, straw weight, culm length, ear length, thousand kernel weight, and percentage of ripening, were not different significantly between SP and ground control. The germination ratio of the harvested SP was 96% as same as that of the harvested ground control. Genomic DNA and protein were extracted from leaves of the barleys and analyzed by AFLP and 2-DE, respectively. The results demonstrated no significant difference in genetic polymorphism and protein production in these barleys. From our results, barley seeds could survive real space environment for the long-term habitation without phenotypic and genotypic damages.

  8. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L.

    Science.gov (United States)

    Shi, Yu; Zhang, Yi; Han, Weihua; Feng, Ru; Hu, Yanhong; Guo, Jia; Gong, Haijun

    2016-01-01

    Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si's role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum 'Zhongza No.9') under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v) polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance.

  9. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels

    Directory of Open Access Journals (Sweden)

    Chu Zhong

    2017-06-01

    Full Text Available To investigate the role of nitrogen (N metabolism in the adaptation of photosynthesis to water stress in rice, a hydroponic experiment supplying with low N (0.72 mM, moderate N (2.86 mM, and high N (7.15 mM followed by 150 g⋅L-1 PEG-6000 induced water stress was conducted in a rainout shelter. Water stress induced stomatal limitation to photosynthesis at low N, but no significant effect was observed at moderate and high N. Non-photochemical quenching was higher at moderate and high N. In contrast, relative excessive energy at PSII level (EXC was declined with increasing N level. Malondialdehyde and hydrogen peroxide (H2O2 contents were in parallel with EXC. Water stress decreased catalase and ascorbate peroxidase activities at low N, resulting in increased H2O2 content and severer membrane lipid peroxidation; whereas the activities of antioxidative enzymes were increased at high N. In accordance with photosynthetic rate and antioxidative enzymes, water stress decreased the activities of key enzymes involving in N metabolism such as glutamate synthase and glutamate dehydrogenase, and photorespiratory key enzyme glycolate oxidase at low N. Concurrently, water stress increased nitrate content significantly at low N, but decreased nitrate content at moderate and high N. Contrary to nitrate, water stress increased proline content at moderate and high N. Our results suggest that N metabolism appears to be associated with the tolerance of photosynthesis to water stress in rice via affecting CO2 diffusion, antioxidant capacity, and osmotic adjustment.

  10. Biological seed priming mitigates the effects of water stress in sunflower seedlings

    OpenAIRE

    Singh, Narsingh Bahadur; Singh, Deepmala; Singh, Amit

    2015-01-01

    The sunflower (Helianthus annuus L. cv. PAC 36) seedlings were inoculated with plant growth promoting rhizobacteria (PGPR), viz. Azotobacter chroococcum (A+), Bacillus polymyxa (B+), separately and in combination of the two (AB+). Relative water content and seedling growth were maximum in AB+ seedlings under control. Water stress significantly decreased the RWC, growth and dry mass of non-inoculated seedlings. However, inoculated seedlings maintained higher growth even under water stress. Pig...

  11. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L.

    Directory of Open Access Journals (Sweden)

    Yu eShi

    2016-02-01

    Full Text Available Silicon (Si can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si’s role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum ‘Zhongza No.9’ under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance.

  12. The impacts of water stress on phloem transport in Douglas-fir trees.

    Science.gov (United States)

    Woodruff, David R

    2014-01-01

    Despite the critical role that phloem plays in a number of plant functional processes and the potential impact of water stress on phloem structural and phloem sap compositional characteristics, little research has been done to examine how water stress influences phloem transport. The objectives of this study were to develop a more accurate understanding of how water stress affects phloem transport in trees, both in terms of the short-term impacts of water stress on phloem sap composition and the longer-term impacts on sieve cell anatomical characteristics. Phloem sieve cell conductivity (kp) was evaluated along a gradient of tree height and xylem water potential in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees in order to evaluate the influence of water stress on phloem transport capacity. The Hagen-Poiseuille equation was used with measurements of sieve cell anatomical characteristics, water content of phloem sap, non-structural carbohydrate content of phloem sap and shoot water potential (Ψl) to evaluate impacts of water stress on kp. Based on regression analysis, for each 1 MPa decrease in mean midday Ψl, sieve cell lumen radius decreased by 2.63 µm MPa(-1). Although there was no significant trend in sucrose content with decreasing Ψl, glucose and fructose content increased significantly with water stress and sieve cell relative water content decreased by 13.5% MPa(-1), leading to a significant increase in sugar molar concentration of 0.46 mol l(-1) MPa(-1) and a significant increase in viscosity of 0.27 mPa s MPa(-1). Modeled kp was significantly influenced both by trends in viscosity as well as by water stress-related trends in sieve cell anatomy.

  13. Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells

    DEFF Research Database (Denmark)

    Gjetting, T.; Carver, Timothy L. W.; Skøt, Leif

    2004-01-01

    Resistance and susceptibility in barley to the powdery mildew fungus (Blumeria graminis f. sp. hordei) is determined at the single-cell level. Even in genetically compatible interactions, attacked plant epidermal cells defend themselves against attempted fungal penetration by localized responses...... leading to papilla deposition and reinforcement of their cell wall. This conveys a race-nonspecific form of resistance. However, this defense is not complete, and a proportion of penetration attempts succeed in infection. The resultant mixture of infected and uninfected leaf cells makes it impossible...... to relate powdery mildew-induced gene expression in whole leaves or even dissected epidermal tissues to resistance or susceptibility. A method for generating transcript profiles from individual barley epidermal cells was established and proven useful for analyzing resistant and successfully infected cells...

  14. Single-cell transcript profiling of barley attacked by the powdery mildew fungus

    DEFF Research Database (Denmark)

    Gjetting, Torben; Hagedorn, Peter; Schweizer, Patrick

    2007-01-01

    attacked at the same time may resist fungal penetration. To date, the mixed cellular responses seen even in susceptible host leaves have made it difficult to relate induced changes in gene expression to resistance or susceptibility in bulk leaf samples. By microextraction of cell-specific m......RNA and subsequent cDNA array analysis, we have successfully obtained separate gene expression profiles for specific mildew-resistant and -infected barley cells. Thus, for the first time, it is possible to identify genes that are specifically regulated in infected cells and, presumably, involved in fungal...... establishment. Further, although much is understood about the genetic basis of effective papilla resistance associated with mutant mlo barley, we provide here the first evidence for gene regulation associated with effective papilla-based nonspecific resistance expressed in nominally "susceptible" wild...

  15. Abscisic acid effects on activity and expression of barley (Hordeum vulgare) plastidial glucose-6-phosphate dehydrogenase.

    Science.gov (United States)

    Cardi, Manuela; Chibani, Kamel; Cafasso, Donata; Rouhier, Nicolas; Jacquot, Jean-Pierre; Esposito, Sergio

    2011-07-01

    Total glucose-6-phosphate dehydrogenase (G6PDH) activity, protein abundance, and transcript levels of G6PDH isoforms were measured in response to exogenous abscisic acid (ABA) supply to barley (Hordeum vulgare cv Nure) hydroponic culture. Total G6PDH activity increased by 50% in roots treated for 12 h with exogenous 0.1 mM ABA. In roots, a considerable increase (35%) in plastidial P2-G6PDH transcript levels was observed during the first 3 h of ABA treatment. Similar protein variations were observed in immunoblotting analyses. In leaves, a 2-fold increase in total G6PDH activity was observed after ABA treatment, probably related to an increase in the mRNA level (increased by 50%) and amount of protein (increased by 85%) of P2-G6PDH. Together these results suggest that the plastidial P2-isoform plays an important role in ABA-treated barley plants.

  16. Bipolaris sorokiniana (teleomorph Cochliobolus Sativus: Causer of barley leaf lesions and root rot in Macedonia

    Directory of Open Access Journals (Sweden)

    Karov Ilija K.

    2009-01-01

    Full Text Available Diseased barley plants (Hordeum vulgare, were noticed in the area of Kumanovo, Bitola, Probistip, Skopje and Kocani, at the beginning of March, 2006. Our investigations were carried out in the period from 2006 to 2009. The plants were highly diseased, probably in the stage of germination, dwarfed with necrotic leaves and with poorly developed root. A rotten root collar was noticed notice in some plants, which could be easily pulled out from the soil. Plants infected in a later developing stage became yellow from the top of the leaf, and many brown-olive, oval shape lesions were noticed. Conidia of Bipolaris sorokiniana (Sacc. Shoen., were isolated from symptomatic lesions. Pseudothecia with asci and ascospores from teleomorph Cochliobolus sativus, were found on the barley straw in the same field the previous year.

  17. The effect of water stress on super-high- density 'Koroneiki' olive oil quality.

    Science.gov (United States)

    Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar

    2015-08-15

    Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.

  18. Estimating ecological water stress caused by anthropogenic uses in the US Great Lakes region

    Science.gov (United States)

    Alian, S.; Mayer, A. S.; Maclean, A.; Watkins, D. W., Jr.; Gyawali, R.; Mirchi, A.

    2016-12-01

    Anthropocentric water resources management that prioritizes socio-economic growth can cause harmful ecological water stress by depriving aquatic ecosystems of the water needed to sustain habitats. It is important to better understand the impacts of water withdrawal by different economic sectors (e.g., agriculture, power utilities, manufacturing, etc.), withdrawal sources, and extent of return flow (i.e., return of water to river system) at different spatial and temporal scales in order to characterize potentially harmful streamflow disturbances, and to inform water management. Herein, GIS technology is used to characterize and map ecological water stress in the Great Lakes region by compiling and analyzing water withdrawal data for different use categories. An integrative geospatial method is developed to quantify catchment scale streamflow disturbance as the sum of flow depletion and return flow, and propagate it along the stream network in order to calculate water stress index as function of consumptive use and impacted streamflow. Results for the Kalamazoo River Watershed, Michigan, illustrate that although average annual and July water stress is generally relatively low, protective management actions may be necessary in a significant number of catchments, especially in urban catchments with very high water stress. Water stress is significantly higher under low flow conditions, indicating the need to adjust withdrawals to reduce adverse resource impacts on sensitive streams.

  19. Effects of arbuscular mycorrhizal fungi on leaf solutes and root absorption areas of trifoliate orange seedlings under water stress conditions

    Institute of Scientific and Technical Information of China (English)

    WU Qiangsheng; XIA Renxue

    2006-01-01

    The effects of the arbuscular mycorrhizal (AM)fungus Glomus mosseae on plant growth,leaf solutes and root absorption area of trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings were studied in potted culture under water stress conditions.Inoculation with G.mosseae increased plant height,stem diameter,leaf area,shoot dry weight,root dry weight and plant dry weight,when the soil water content was 20%,16% and 12%.AM inoculation also promoted the active and total absorption area of root system and absorption of phosphorus from the rhizosphere,enhanced the content of soluble sugar in leaves and roots,and reduced proline content in leaves.AM seedlings had higher plant water use efficiency and higher drought tolerance than non-AM seedlings.Effects of G.mosseae inoculation on trifoliate orange seedlings under 20% and 16% soil water content were more significant than under 12% soil water content.AM infection was severely restrained by 12% soil water content.Thus,effects of AM fungi on plants were probably positively related to the extent of root colonization by AM fungi.The mechanism of AM fungi in enhancing drought resistance of host plants ascribed to greater osmotic adjustment and greater absorption area of root system by AM colonization.

  20. Triple Hybridization with Cultivated Barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Bothmer, R. von; Claesson, L.; Flink, J.;

    1989-01-01

    represented species closely or distantly related to H. jubatum and H. lechleri. In trispecific crosses with diploid barley, the seed set was 5.7%. Crosses with tetraploid barley were highly unsuccessful (0.2% seed set). Three lines of diploid barley were used in the crosses, i.e. 'Gull', 'Golden Promise...

  1. Effects of n-butanol on barley microspore embryogenesis

    DEFF Research Database (Denmark)

    Castillo, Ana Maria; Nielsen, Nanna; Jensen, Anni

    2014-01-01

    Doubled haploid (DH) production is an efficient tool in barley breeding, but efficiency of DH methods is not consistent. Hence, the aim of this study was to study the effect of n-butanol application on DH barley plant production efficiency. Five elite cultivars of barley and thirteen breeding cro...

  2. MS Based Imaging of Barley Seed Development

    Institute of Scientific and Technical Information of China (English)

    Manuela Peukert; Andrea Matros; Hans-Peter Mock

    2012-01-01

    Spatially resolved analysis of metabolites and proteins is essential to model compartmentalized cellular processes in plants.Within recent years,tremendous progress has been made in MS based imaging (MSI) techniques,mostly MALDI MSI.The technology has been pioneered and is now widely applied in medicinal and pharmacological studies,and in recent years found its way into plant science (Kaspar et al.,2011; Peukert etal.,2012).We are interested in the elucidation of spatially resolved metabolic networks related to barley grain development.An understanding of developmentally and ecologically regulated processes affecting agronomical traits such as final grain weight,seed quality and stress tolerance is of outmost importance,as barley provides one of the staple foods.Barley also serves as a model plant for other cereals such as wheat.The presentation will introduce an untargeted MALDI MSI approach to the analysis of me-tabolite patterns during barley grain development.We analyzed longitudinal and cross sections from developing barley grains (3,7,10 and 14 days after pollination).In the presentation we will address spatial resolution,sensitivity and identification of unknown compounds will also be discussed.A major task is to connect the metabolite patterns to distinct cellular and physiological events.As an example,particular metabolite distributions indicative for nutrient transport into the developing endosperm will be shown.

  3. Evaluation of Barley as Human Food

    Directory of Open Access Journals (Sweden)

    Mehmet Köten

    2013-12-01

    Full Text Available Barley, as animal feed, raw material for malting and human food, constitute an important part among cereal sources in the world. Majority of barley that produced both in Turkey and other countries of the world, is being used as animal feed. Poor baking quality, taste and appearance of barley restricted its use in human nutrition. However, recently high protein, fiber, especially β-glucan and high starch content appeal to food industry. Many scientific researches established that β-glucan, a soluble fiber, has an effect in healing coronary-hearth diseases, lowering blood cholesterol level, balancing blood sugar level, preventing obesity. Being a healthy cereal that can be used in various purposes, and an additive in many food products, barley is considered a very promising cereal, and research to increase possibilities of its use in human nutrition is being increased. In the literature, there has been researches on making noodles, bulgur, kavut (roasted cereal, breakfast cereals. In this study the researches relating to evaluation of barley, importance of which is increased every day, as human food was reviewed.

  4. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest.

    Science.gov (United States)

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-07-01

    The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure-volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (D(h)) and higher mass-based photosynthetic rate (A(m)); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π(0)) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, A(m), and dry season π(0). Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, D(h), as well as dry season π(0). Both wood density and leaf density were closely correlated with leaf water-stress tolerance and A(m). The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves.

  5. Moderate water stress prevents the postharvest decline of ascorbic acid in spinach (Spinacia oleracea L.) but not in spinach beet (Beta vulgaris L.).

    Science.gov (United States)

    Mogren, Lars M; Beacham, Andrew M; Reade, John P H; Monaghan, James M

    2016-07-01

    Babyleaf salads such as spinach (Spinacia oleracea L.) and spinach beet (Beta vulgaris L. subsp. cicla var. cicla) are an important dietary source of antioxidants such as ascorbic acid (vitamin C). Such compounds may be important in disease prevention in consumers but the level of these compounds in leaves frequently declines after harvest. As such, methods to maintain antioxidant levels in fresh produce are being sought. Irrigation deficits were used to apply water stress to S. oleracea and B. vulgaris plants. This treatment prevented postharvest decline of leaf ascorbic acid content in S. oleracea but not in B. vulgaris. Ascorbic acid levels in leaves at harvest were unaffected by the treatment in both species compared to well-watered controls. We have shown that restricted irrigation provides a viable means to maintain leaf vitamin content after harvest in S. oleracea, an important finding for producers, retailers and consumers alike. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Immigration of the barley mildew pathogen into field plots of barley

    DEFF Research Database (Denmark)

    O'Hara, R.B.; Brown, J.K.M.

    1996-01-01

    Immigration of the barley powdery mildew pathogen (Erysiphe graminis f.sp. hordei) into field plots of the spring barley variety Tyra (carrying the resistance allele Mla1) was investigated. Spores were trapped from the top of the plot canopies, as well as from control plots of wheat with no barley...... nearby. Comparison of the frequencies of virulent and avirulent single-colony isolates showed that the amount of immigration, relative to the amount of inoculum being produced within the plot, reduced very rapidly, until it could not be detected in the middle of the growing season (mid-June)....

  7. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    GS activity in root and stem during the vegetative growth stages and an increased GS activity in leaves during senescence compared to wildtype control. Furthermore, during the vegetative growth stages, there were distinct differences in N accumulation and biomass partitioning between transgenic lines...

  8. Barley seed proteomics from spots to structures

    DEFF Research Database (Denmark)

    Finnie, Christine; Svensson, Birte

    2009-01-01

    with information from rice and other cereals facilitate identification of barley proteins. Several hundred barley seed proteins are identified and lower abundance proteins including membrane proteins are now being analysed. In the present review we focus on variation in protein profiles of seed tissues during...... forms on 2D-gels. Specific protein families, including peroxidases and alpha-amylases have been subjected to in-depth analysis resulting in characterisation of different isozymes, post-translational. modifications and processing. A functional proteomics study focusing on the seed thioredoxin system has...

  9. Diverging sensitivity of soil water stress to changing snowmelt timing in the Western U.S.

    Science.gov (United States)

    Harpold, Adrian A.

    2016-06-01

    Altered snowpack regimes from regional warming threaten mountain ecosystems with greater water stress and increased likelihood of vegetation disturbance. The sensitivity of vegetation to changing snowpack conditions is strongly mediated by soil water storage, yet a framework to identify areas sensitive to changing snowpack regimes is lacking. In this study we ask two questions: (1) How will changing snowmelt alter the duration of soil water stress and length of the soil-mediated growing season (shortened to water stress and growing season, respectively)? and (2) What site characteristics increase the sensitivity of water stress and growing season duration to changes in snowmelt? We compiled soil moisture at 5, 20 and 50 cm depths from 62 SNOTEL sites with > 5 years of records and detailed soil properties. Soil water stress was estimated based on measured wilting point water content. The day of snow disappearance consistently explained the greatest variability in water stress across all site-years and within individual sites, while summer precipitation explained the most variability in growing season length. On average, a one day earlier snow disappearance resulted in 0.62 days greater water stress and 36 of 62 sites had significant relationships between snow disappearance and water stress. Despite earlier snow disappearance leading to greater water stress at nearly all sites, earlier snow disappearance led to both significant increases (4 of 62) and decreases (5 of 62) in growing season length. Satellite derived vegetation greenness confirmed site-dependent changes could both increase and reduce maximum annual vegetation greenness with earlier snow disappearance. A simple soil moisture model demonstrated the potential for diverging growing season length with earlier snow disappearance was more likely in areas with finer soil texture, greater rooting depth, greater potential evapotranspiration, and greater precipitation. More work is needed to understand the role of

  10. Water stress indices for the sugarcane crop on different irrigated surfaces

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Brunini

    Full Text Available ABSTRACT Sugarcane (Saccharum officinarum L. is a crop of vital importance to Brazil, in the production of sugar and ethanol, power generation and raw materials for various purposes. Strategic information such as topography and canopy temperature can provide management technologies accessible to farmers. The objective of this study was to determine water stress indices for sugarcane in irrigated areas, with different exposures and slopes. The daily water stress index of the plants and the water potential in the soil were evaluated and the production system was analyzed. The experiment was carried out in an “Experimental Watershed”, using six surfaces, two horizontal and the other ones with 20 and 40% North and South exposure slopes. Water stress level was determined by measuring the temperatures of the vegetation cover and the ambient air. Watering was carried out using a drip irrigation system. The results showed that water stress index of sugarcane varies according to exposure and slope of the terrain, while areas whose water stress index was above 5.0 oC had lower yield values.

  11. Impacts of Climate Variability on the Spatio-temporal Characteristics of Water Stress in Korea

    Science.gov (United States)

    Kim, Soojun; Devineni, Naresh; Lall, Upmanu; Kim, Hung Soo

    2017-04-01

    This study intended to evaluate water stress quantitatively targeted at the Korean Peninsula and to analyze the spatial and temporal characteristics of its occurrence. First, the severity and multiyear influence of water stress were analyzed by realizing water balance based on water supply and demand and by calculating the normalized deficit index (NDI) and the normalized deficit cumulated (NDC) for 113 small basins in the Korean Peninsula. Next, a change in the periodic characteristics of water stress was analyzed using wavelet transform of the NDI by small basins and 3 bands of periods of 1 year, 2-4 years, and 4-8 years were separated. Through an analysis of the empirical orthogonal function (EOF) on each band, it was found that water stress occurring in the Korean Peninsula has the characteristics of spatial distribution that it is extended from the south coast to the northern area and inland as its period gets longer. An analysis of the band with a period of 2-8 years for water stress showed that it has a relationship with El Niño-Southern Oscillation (ENSO). Acknowledgment This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  12. Effect of (Changes in) Air Humidity on Transpiration and (Adaptation of) Stomatal Closure of Tradescantia Leaves during Water Stress

    NARCIS (Netherlands)

    Meeteren, van U.; Rezaei Nejad, A.; Harbinson, J.

    2009-01-01

    This paper summarises our recent research on the physiological effects of prolonged high RH during growth on stomatal function and we discuss possibilities that arise from this work for reducing postharvest quality problems in cut flowers. Chlorophyll fluorescence imaging was used to measure

  13. Absence and leave; sick leave. Final rule.

    Science.gov (United States)

    2010-12-03

    The U.S. Office of Personnel Management is issuing final regulations on the use of sick leave and advanced sick leave for serious communicable diseases, including pandemic influenza when appropriate. We are also permitting employees to substitute up to 26 weeks of accrued or accumulated sick leave for unpaid Family and Medical Leave Act (FMLA) leave to care for a seriously injured or ill covered servicemember, as authorized under the National Defense Authorization Act for Fiscal Year 2008, including up to 30 days of advanced sick leave for this purpose. Finally, we are reorganizing the existing sick leave regulations to enhance reader understanding and administration of the program.

  14. Cisgenic barley with improved phytase activity

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2010-01-01

    are accordingly very similar to those generated by conventional breeding. The cisgenesis concept allows for the introduction of extra gene copies of a particular gene to accentuate the trait. We are using a barley purple acid phosphatase expressed during grain filling as candidate gene for cisgenesis. A genomic...

  15. Endoproteolytic activity assay in malting barley

    Directory of Open Access Journals (Sweden)

    Blanca Gómez Guerrero

    2013-12-01

    Full Text Available Hydrolysis of barley proteins into peptides and amino acids is one of the most important processes during barley germination.The degradation of the endosperm stored proteins facilitates water and enzyme movements, enhances modification, liberates starch granules and increases soluble amino nitrogen. Protease activity is the result of the activities of a mixture of exo- and endo-proteases. The barley proteins are initially solubilized by endo-proteases and the further by exo-proteases. Four classes of endo-proteases have been described: serine-proteases, cysteine-proteases, aspartic-proteases and metallo-proteases. The objective of this work was to develop a rapid and colorimetric enzymatic assay to determine the endo-proteolytic activity of the four endo-protease classes using two different substrates: azo-gelatin and azo-casein. Optimum conditions for the assays such as: pH,reaction time and temperature and absorbance scale were determined. Azo-gelatin presented several difficulties in standardizing an “in solution” assay. On the other hand, azo-casein allowed standardization of the assay for the four enzyme classes to produce consistent results. The endo-proteoteolytic method developed was applied to determine the endo-protease activity in barley, malt and wort.

  16. Adaptation of barley to harsh Mediterranean environments.

    NARCIS (Netherlands)

    Oosterom, van E.

    1993-01-01

    Research ObjectivesBarley is in Syria the dominant crop in areas receiving less than 300 mm annual precipitation. Grain yield is often below 1 ton ha -1, and is reduced by low temperatures in winter and terminal drought stress in spring. Variation i

  17. Physiological and morphological acclimation to height in cupressoid leaves of 100-year-old Chamaecyparis obtusa.

    Science.gov (United States)

    Shiraki, Ayumi; Azuma, Wakana; Kuroda, Keiko; Ishii, H Roaki

    2016-10-15

    Cupressoid (scale-like) leaves are morphologically and functionally intermediate between stems and leaves. While past studies on height acclimation of cupressoid leaves have focused on acclimation to the vertical light gradient, the relationship between morphology and hydraulic function remains unexplored. Here, we compared physiological and morphological characteristics between treetop and lower-crown leaves of 100-year-old Chamaecyparis obtusa Endl. trees (~27 m tall) to investigate whether height-acclimation compensates for hydraulic constraints. We found that physiological acclimation of leaves was determined by light, which drove the vertical gradient of evaporative demand, while leaf morphology and anatomy were determined by height. Compared with lower-crown leaves, treetop leaves were physiologically acclimated to water stress. Leaf hydraulic conductance was not affected by height, and this contributed to higher photosynthetic rates of treetop leaves. Treetop leaves had higher leaf area density and greater leaf mass per area, which increase light interception but could also decrease hydraulic efficiency. We inferred that transfusion tissue flanking the leaf vein, which was more developed in the treetop leaves, contributes to water-stress acclimation and maintenance of leaf hydraulic conductance by facilitating osmotic adjustment of leaf water potential and efficient water transport from xylem to mesophyll. Our findings may represent anatomical adaptation that compensates for hydraulic constraints on physiological function with increasing height.

  18. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J.; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  19. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  20. Basic Study on Estimating Water Stress of a Plant Using Vibration Measurement of Leaf

    Science.gov (United States)

    Sano, Motoaki; Sugimoto, Tsuneyoshi; Hosoya, Hiroshi; Ohaba, Motoyoshi; Shibusawa, Sakae

    2013-07-01

    A new noninvasive method for estimating the water stress of a plant was proposed. In order to investigate this method, we first examined the characteristic frequency of an individual leaf picked from the plant, and obtained the result that its characteristic frequency decreased in proportion to the reduction in the water content of the leaf. Next, we applied this method to a leaf on a branch and confirmed the same tendency when the water stress was increased by stopping the water supply of a plant cultured in water. From these results, it was suggested that the water stress of the plant could be estimated from the vibration measurement of the leaf. Lastly, the relationship between the water potential of the leaf and its elastic constant was discussed with the soil-plant-atmosphere-continuum model (SPAC model), and Young's modulus of a tomato leaf was roughly estimated.

  1. Understanding water-stress responses in Soybean using Hydroponics system - A Systems Biology Perspective

    Directory of Open Access Journals (Sweden)

    Prateek eTripathi

    2015-12-01

    Full Text Available The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us towards the right candidates, if not completely help us to resolve the issue.

  2. Effects of UV-B Radiation and Water Stress on Soybean Yield

    Institute of Scientific and Technical Information of China (English)

    REN Hongyu; XU Haiming; LI Dongming; HUANG Rui; WANG Licheng

    2009-01-01

    Soybean Dongnong 47 was subjected to the experiments of increasing UV-B radiation and water stress on soybean yield components in different growth periods. The results showed that 100-seed weight greatly increased during the early stage of pod filling in the treatment of weak UV-B radiation, seed number per plant as well as seed weight per plant and Dongnong47 yield also increased, while the yield and yield components of Dongnong47 during the blossom to mature period were negatively affected in the treatment of intensive UV-B radiation. 100-seed weight of Dongnong47 all increased in the double factor treatments of UV-B radiation and water stress, with the drought intensified, seed number per plant, seed weight per plant and yield of Dongnong47 decreased, the change of 100-seed weight were various and the antagonistic action of UV-B radiation and water stress were related with their intensity.

  3. Field Observations with Laser-Induced Fluorescence Transient (LIFT Method in Barley and Sugar Beet

    Directory of Open Access Journals (Sweden)

    Anna R. Raesch

    2014-05-01

    Full Text Available The laser-induced fluorescence transient (LIFT method is a non-invasive remote sensing technique for measurement of photosynthetic performance of plants under laboratory and field conditions. We report here a long-term comparative study to monitor the performance of different cultivars of barley and sugar beet during the growth season of these crops. The LIFT measurements provided useful results about photosynthetic light use efficiency on selected leaves in the canopy of the studied crops. The different canopy architectures, with different optical properties, influenced the LIFT measurements.

  4. Field assessment of partial resistance to powdery mildew in spring barley

    DEFF Research Database (Denmark)

    Nørgaard Knudsen, J. Chr.; Dalsgaard, H. H.; Jørgensen, Jørgen Helms

    1986-01-01

    Partial resistance to powdery mildew in spring barley was evaluated in three plot types: large isolation plots, in 1.4 m2 plots in chessboard design with guard plots of spring wheat and in single rows. Percentage leaf area covered by powdery mildew was scored four to six times during the season....... The relationship between single scores of amount of powdery mildew on the upper four leaves and the area under the disease progress curve was high in all plot designs during the first two to three weeks after heading, allowing selection for the trait by one or two scorings. Differential ranking of varieties...

  5. PTK1, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of Pyrenophora teres on barley.

    Science.gov (United States)

    Ruiz-Roldán, M C; Maier, F J; Schäfer, W

    2001-02-01

    Mitogen-activated protein kinases (MAPKs) are a group of protein kinases that execute a wide variety of roles in cellular signal transduction pathways such as osmoregulation, cell wall biosynthesis, growth, and differentiation. A polymerase chain reaction (PCR) with degenerate primers based on conserved regions of known MAPKs was used to clone the MAPK gene PTK1 from the leaf pathogen Pyrenophora teres (anamorph Drechslera teres), the causal agent of net blotch of barley (Hordeum vulgare L.). The predicted amino acid sequence shows high homology with MAPKs from other phytopathogenic fungi. The gene is present in the genome as a single copy. PTK1 is expressed during in vitro growth on complete medium, under conidiation-inducing conditions and during infection of barley leaves, as shown by reverse transcription-PCR studies. In order to assess the role of PTK1 in the life cycle of P. teres, targeted gene disruption was conducted. Mutants carrying an interrupted copy of the gene were deficient in conidiation, did not form appressoria on glass surfaces or on barley leaves, lost their ability to infect barley leaves, and could not colonize host tissues following artificial wounding.

  6. INFLUENCE OF SOIL TILLAGE AND LOW HERBICIDE DOSES ON WEED POPULATIONS AND SPRING BARLEY YIELD

    Directory of Open Access Journals (Sweden)

    Mira Knežević

    2003-06-01

    Full Text Available The influence of different tillage variants and low herbicide doses of triasulfuron & chlortoluron mixture (Dicuran forte 80 WP on weed populations and crop yield were studied in spring barley on lessive pseudogley soil in North-Eastern Croatia at the Čačinci locality in 1999. Tillage had no significant influence on annual broad-leaved weed biomass production, which was 22 kg ha-1 , on the average. Chisel ploughing and disk harrowing significantly increased perennial weed biomass by 21 and 44 times, respectively compared to mouldboard ploughing. The average efficacy of total weed biomass control was 95, 89 and 81% at full, onehalf and one-quarter of the recommended herbicide dose, respectively and did not differ very much between tillage treatments. Both reduced herbicide doses ensured very good biomass control of the most abundant weed populations such as Ambrosia artemisiifolia L., Chenopodium album L., Ch. polyspermum L. and Polygonum lapathifolium L. No significant tillage and herbicide dose effects were recorded in barley yields, which ranked from 4.93 t ha-1 in chisel ploughing to 4.48 t ha-1 in disk harrowing. These results suggested a possibility of mouldboard ploughing substitution with reduced tillage practices on lessive pseudogley soil and herbicide dose reduction of triasulfuron & chlortoluron mixture to 50% or more in spring barley.

  7. Golgi localized barley MTP8 proteins facilitate Mn transport

    DEFF Research Database (Denmark)

    Pedas, Pai Rosager; Schiller, Michaela; Hegelund, Josefine Nymark

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2 , which encode membrane-bound pro......Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2 , which encode membrane...... in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts...... decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP...

  8. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  9. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’s transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  10. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    Science.gov (United States)

    Bellante, Gabriel J; Powell, Scott L; Lawrence, Rick L; Repasky, Kevin S; Dougher, Tracy

    2014-01-01

    Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  11. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    Directory of Open Access Journals (Sweden)

    Gabriel J Bellante

    Full Text Available Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa to one of four possible treatment groups: 1 a CO2 injection group; 2 a water stress group; 3 an interaction group that was subjected to both water stress and CO2 injection; or 4 a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87 for the classification tree analysis and 83% (Kappa of 0.77 for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  12. Crop modeling: Studying the effect of water stress on the driving forces governing plant water potential

    Science.gov (United States)

    van Emmerik, T. H. M.; Mirfenderesgi, G.; Bohrer, G.; Steele-Dunne, S. C.; Van De Giesen, N.

    2015-12-01

    Water stress is one of the most important environmental factors that influence plant water dynamics. To prevent excessive water loss and physiological damage, plants can regulate transpiration by adjusting the stomatal aperture. This enhances survival, but also reduced photosynthesis and productivity. During periods of low water availability, stomatal regulation is a trade-off between optimization of either survival or production. Water stress defence mechanisms lead to significant changes in plant dynamics, e.g. leaf and stem water content. Recent research has shown that water content in a corn canopy can change up to 30% diurnally as a result of water stress, which has a considerable influence on radar backscatter from a corn canopy [1]. This highlighted the potential of water stress detection using radar. To fully explore the potential of water stress monitoring using radar, we need to understand the driving forces governing plant water potential. For this study, the recently developed the Finite-Element Tree-Crown Hydrodynamic model version 2 (FETCH2) model is applied to a corn canopy. FETCH2 is developed to resolve the hydrodynamic processes within a plant using the porous media analogy, allowing investigation of the influence of environmental stress factors on plant dynamics such as transpiration, photosynthesis, stomatal conductance, and leaf and stem water content. The model is parameterized and evaluated using a detailed dataset obtained during a three-month field experiment in Flevoland, the Netherlands, on a corn canopy. [1] van Emmerik, T., S. Steele-Dunne, J. Judge and N. van de Giesen: "Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter of Maize During Water Stress", Geosciences and Remote Sensing, IEEE Transactions on, vol. 52, issue 7, doi: 10.1109/TGRS.2014.2386142, 2015.

  13. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  14. De Novo Assembly and Characterization of Tall Fescue Transcriptome under Water Stress

    Directory of Open Access Journals (Sweden)

    S. K. Talukder

    2015-07-01

    Full Text Available Water stress is a fundamental problem for tall fescue [ (Schreb. Darbysh.] cultivation in the south–central United States. Genetic improvement of tall fescue for water-stress tolerance is the key strategy for improving its persistence in the region. Genotypes with contrasting characteristics for relative water content and osmotic potential were identified from a tall fescue population. Transcriptome profiling between water-stress-tolerant (B400 and water-stress-susceptible (W279 genotypes was performed to unravel the genetic regulatory mechanism of water-stress responses in tall fescue. RNA samples from leaf, shoot, root, and inflorescence were pooled and sequenced through Illumina paired-end sequencing. A total of 199,399 contigs were assembled with an average length of 585 bp. Between the two genotypes, 2986 reference transcripts (RTs were significantly differentially expressed and 1048 of them could be annotated and found to associate with metabolic pathways and enzyme coding genes. In total, 175 differentially expressed RTs were reported for various stress-related functions. Among those, 65 encoded kinase proteins, 40 each encoded transposons, and transporter proteins were previously reported to be involved with abiotic stress responses. A total of 6348 simple sequence repeats and 6658 single-nucleotide polymorphisms were identified in the contig sequences. Primers were developed from the corresponding sequences, which might be used as candidate gene markers in tall fescue. This study will lead to identification of genes or transcription factors related to water-stress tolerance and development of a comprehensive molecular marker system to facilitate marker-assisted breeding in tall fescue.

  15. Water stress detection in potato plants using leaf temperature, emissivity, and reflectance

    Science.gov (United States)

    Gerhards, Max; Rock, Gilles; Schlerf, Martin; Udelhoven, Thomas

    2016-12-01

    Water stress is one of the most critical abiotic stressors limiting crop development. The main imaging and non-imaging remote sensing based techniques for the detection of plant stress (water stress and other types of stress) are thermography, visible (VIS), near- and shortwave infrared (NIR/SWIR) reflectance, and fluorescence. Just very recently, in addition to broadband thermography, narrowband (hyperspectral) thermal imaging has become available, which even facilitates the retrieval of spectral emissivity as an additional measure of plant stress. It is, however, still unclear at what stage plant stress is detectable with the various techniques. During summer 2014 a water treatment experiment was run on 60 potato plants (Solanum tuberosum L. Cilena) with one half of the plants watered and the other half stressed. Crop response was measured using broadband and hyperspectral thermal cameras and a VNIR/SWIR spectrometer. Stomatal conductance was measured using a leaf porometer. Various measures and indices were computed and analysed for their sensitivity towards water stress (Crop Water Stress Index (CWSI), Moisture Stress Index (MSI), Photochemical Reflectance Index (PRI), and spectral emissivity, amongst others). The results show that water stress as measured through stomatal conductance started on day 2 after watering was stopped. The fastest reacting, i.e., starting on day 7, indices were temperature based measures (e.g., CWSI) and NIR/SWIR reflectance based indices related to plant water content (e.g., MSI). Spectral emissivity reacted equally fast. Contrarily, visual indices (e.g., PRI) either did not respond at all or responded in an inconsistent manner. This experiment shows that pre-visual water stress detection is feasible using indices depicting leaf temperature, leaf water content and spectral emissivity.

  16. Rhynchosporium commune: a persistent threat to barley cultivation.

    Science.gov (United States)

    Avrova, Anna; Knogge, Wolfgang

    2012-12-01

    Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus. Rhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza. Rhynchosporium commune causes scald-like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf. Rhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn-sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development. DETECTION AND QUANTIFICATION: Rhynchosporium commune produces unique beak-shaped, one-septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season. The main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  17. Transgenic barley: a prospective tool for biotechnology and agriculture.

    Science.gov (United States)

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.

  18. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L. mutant lines under well-watered and water stress conditions

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2013-12-01

    Full Text Available There is no information available on the effect of fuzzless seed trait on cottonseed nutrient composition (minerals, N, S, protein, and oil under drought stress. The objective of this research was to investigate the effect of the fuzzless seed trait on cottonseed nutrients using four sets of near-isogenic lines (NILs. Each set consists of two lines that share the same genetic background, but differ in seed fuzziness (fuzzy, F; fuzzless, N. The near isogenic lines will enable us to compare the effect of the trait without confounding the genotypic background effects. We hypothesized that since the fuzzless trait involved in fiber initiation development, and was reported to be involved in biochemical, molecular, and genetic processes, this trait may also alter cottonseed nutrient composition. Results showed that NIL sets accumulated different levels of minerals in seeds and leaves, and the fuzzless trait (NF in most of the lines altered seed and leaf mineral accumulations when compared with fuzzy lines (FN or the control line. For example, K, P, Mg, Cu, and Na concentrations in seeds were higher in MD N and STV N than in their equivalent MD F and STV F lines. Leaf concentrations of Ca, K, Mg, S, B, Cu, and Fe in MD N lines were higher than MD F line. Lower levels of nutrients in seeds and leaves were observed under water stress conditions, especially Ca, Mg, N, and B in seeds. Generally and with few exceptions, seed protein was higher in fuzzy lines that in fuzzless lines; however, seed oil was higher in fuzzless lines than in fuzzy lines. Our research demonstrated that fuzzless trait altered the composition and level of nutrients in seed and leaves in well watered and water stressed plants. Differences in protein and oil between fuzzy and fuzzless seeds may indicate alteration in nitrogen and carbon fixation and metabolism. The differential accumulation of seed nutrients in this germplasm could be used by cotton breeders to select for higher

  19. Research on the Effects of Water Stress on Growth Traits and Water Use Efficiency of Winter Wheat

    OpenAIRE

    Sun Shuhong; Liu Ling; Yang Shusheng

    2015-01-01

    This research about the effects of water stress at different growth stages on the crop growth traits has a practical significance in guiding water-saving irrigation. The box test method is adopted to test the water stress of winter wheat at different stages, observe the plant height, leaf area and yield, and analyze the water use efficiency under the condition of water stress. The results show that the water stress in each growth period will play an inhibiting role in the plant height and lea...

  20. Research on the Effects of Water Stress on Growth Traits and Water Use Efficiency of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Sun Shuhong

    2015-01-01

    Full Text Available This research about the effects of water stress at different growth stages on the crop growth traits has a practical significance in guiding water-saving irrigation. The box test method is adopted to test the water stress of winter wheat at different stages, observe the plant height, leaf area and yield, and analyze the water use efficiency under the condition of water stress. The results show that the water stress in each growth period will play an inhibiting role in the plant height and leaf area of winter wheat; the water stress duration at a single stage is relatively short, and rehydration crop has a certain compensatory growth without making a big difference; the continuous water stress stage plays a significantly inhibiting role in the plant height and leaf area.; water stress has a largest effect on the plant height in the elongation period; the heading period suffers from water stress, so the leaf area decreases rapidly; water stress at a single stage in the appropriate period can increase water use efficiency. Regulated deficit irrigation can reduce luxury water consumption, which has a little effect on the yield and plays a guiding role in water saving and stable yield.

  1. Responsibility of non-stomatal limitations for the reduction of photosynthesis-response of photosynthesis and antioxidant enzyme characteristics in alfalfa (Medicago sativa L.) seedlings to water stress and rehydration

    Institute of Scientific and Technical Information of China (English)

    LI Wenrao; ZHANG Suiqi; SHAN Lun

    2007-01-01

    Water stress by polyethylene glycol (PEG)-6000 solution (Ψs=0.2 MPa,stress time:48 h,rehydration time:48 h) was performed in leaves of two alfalfa cultivar (Long-Dong and Algonquin) seedlings.Gas exchange parameters,chlorophyll fluorescence parameters,activity of antioxidant enzyme and photosynthetic pigment concentrations were measured to investigate the available photosynthetic and antioxidant enzyme response to variable water conditions as well as stomatal and non-stomatal limitations to photosynthesis.The results showed that non-stomatal limitations were responsible for the reduction of photosynthesis during water stress.At the beginning of water stress (12 h),water was lost and then the stomata closed rapidly,which resulted in a decrease of transpiration,net photosynthesis and CO2 diffusion.Therefore,when intercellular CO2 concentration and carboxylation efficiency decrease,water use efficiency and value of stomatal limitation would increase.However,the decline of net photosynthetic rate was faster than transpiration rate.At the same time,the maximal photochemical efficiency,potential activity of PSII reaction center and photochemical quenching of chlorophyll fluorescence declined significantly,the activity of antioxidant enzyme increased rapidly and the photosynthetic pigment concentrations changed slightly.The results also indicated that,at the initial period of stress,neither oxidative stress nor membrane lipid peroxidation was induced,nor were photosynthetic structures damaged,but photosynthetic functions were partly inhibited.Therefore,the stomatal limitation and non-stomatal limitations had the same responsibility for the reduction of photosynthesis.At the mid-late stage of water stress,net photosynthetic rate,stomatal conductance,maximal photochemical efficiency,potential activity of PSII reaction center and photochemical quenching of chlorophyll fluorescence decreased linearly with the decline of the relative water content.And the relative electron

  2. Thermal infrared as a tool to detect tree water stress in a coniferous forest

    Science.gov (United States)

    Nourtier, M.; Chanzy, A.; Bes, B.; Davi, H.; Hanocq, J. F.; Mariotte, N.; Sappe, G.

    2009-04-01

    In the context of climatic change, species area may move and so, a study of forest species vulnerability is on interest. In Mediterranean regions, trees can suffer of water stress due to drought during summer. Responses to environmental constraints are delayed in forest so it is necessary to anticipate risks in order to adapt management. It would be therefore interesting to localize areas where trees might be vulnerable to water stress. To detect such areas, the idea developed in this study is to map the severity of water stress, which may be linked to soil. Because vegetation surface temperature is linked to transpiration and so to water stress, the relevance of thermal infrared as a tool to detect water stress was explored. Past studies about surface temperature of forests at the planting scale did not lead to conclusive results. At this scale, important spatial and temporal variations of surface temperature, with a magnitude of about 10°C, can be registered but there is possibly a sizeable contribution of the undergrowth (Duchemin, 1998a, 1998b). In the other hand, important stress are not detectable, probably due to meteorological conditions (Pierce et al., 1990). During spring and summer 2008, an experimentation was carried out on the silver fir (Abies alba) forest of Mont Ventoux (south of France) to evaluate temporal variations at tree scale of the surface temperature in relation to water stress and climatic conditions. Two sites and three trees were chosen for measurements of surface temperature with a view to have different levels of water stress. Transpiration deficit is characterised by the ratio of actual transpiration to potential transpiration which is computed by the ISBA model (Noilhan et al., 1989) implemented by climatic observations made at the top of tree canopy. Sap flow measurements needed to calculate this ratio were completed on different trees of the sites. Climatic datas also allows building reference temperature and then surface

  3. Combined effects of low light and water stress on Jatropha curcas L. promotes shoot growth and morphological adjustment

    Directory of Open Access Journals (Sweden)

    Isabella Christina Silveira Carneiro

    2015-12-01

    Full Text Available Jatropha curcas (physic nut is a plant with economic and pharmaceutical uses. Basic studies on the influence of environmental factors on the early development of J. curcas are important for improving farming techniques and increasing productivity. This study investigated the adjustments of J. curcas to the environmental factors of drought and light stress in order to determine which factors most strongly affect the allocation of biomass during early growth. Leaves, stems, and roots of young plants were sampled and leaf area was measured during January and June in 2011. Plants of J. curcas that were grown in shade and subjected to water stress showed higher biomass allocation to aerial parts (mainly stems, which can be explained as a strategy for maximizing carbon assimilation. The pattern of biomass allocation between aerial components and the root system changed in plants grown in shade. During June 2011, biomass in shade-grown J. curcas was preferentially allocated to stems, indicating long-term adjustment. The lower biomass allocation to the root system suggests reduced exploitation of soil water even when this resource is scarce. Thus, over the long term, growth of J. curcas may be compromised by the combined effects of light stress and water deficit.

  4. Root ABA Accumulation in Long-Term Water-Stressed Plants is Sustained by Hormone Transport from Aerial Organs.

    Science.gov (United States)

    Manzi, Matías; Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-12-01

    The reduced pool of the ABA precursors, β,β-carotenoids, in roots does not account for the substantial increase in ABA content in response to water stress (WS) conditions, suggesting that ABA could be transported from other organs. Basipetal transport was interrupted by stem-girdling, and ABA levels were determined in roots after two cycles of WS induced by transplanting plants to dry perlite. Leaf applications of isotope-labeled ABA and reciprocal grafting of ABA-deficient tomato mutants were used to confirm the involvement of aerial organs on root ABA accumulation. Disruption of basipetal transport reduced ABA accumulation in roots, and this decrease was more severe after two consecutive WS periods. This effect was linked to a sharp decrease in the β,β-carotenoid pool in roots in response to water deficit. Significant levels of isotope-labeled ABA were transported from leaves to roots, mainly in plants subjected to water dehydration. Furthermore, the use of different ABA-deficient tomato mutants in reciprocal grafting combinations with wild-type genotypes confirmed the involvement of aerial organs in the ABA accumulation in roots. In conclusion, accumulation of ABA in roots after long-term WS periods largely relies on the aerial organs, suggesting a reduced ability of the roots to synthesize ABA from carotenoids. Furthermore, plants are able to transport ABA basipetally to sustain high hormone levels in roots.

  5. Free proline accumulation in leaves of cultivated plant species under water deficit conditions

    Directory of Open Access Journals (Sweden)

    Hanna Bandurska

    2013-12-01

    Full Text Available The effect of water deficit caused by soil drought on the content of free proline as well as the degree of cell membrane damages in the leaves of three cultivated plant species having different farm usefulness and water requirements have been studied. The used pIants were: poinsettia (Euphorbia pulcherrima Willd., 'Regina' and 'Cortez' grown for decorative purposes, a green vegetable of broccoli (Brassica oleracea var. botrytis, subvar. cymosa, 'Colonel' and 'Marathon' and a cereal plant of barley (the wild form Hordeum spontaneumm and Hordeum vulgaree 'Maresi'. The examined species differed in the size of the experienced stress. the Iargest RWC reduction was found iii broccoli leaves, while somewhat smaller - in barley. In poinsettia leaves, the reduction of RWC level was not large or did not occur at all. The accumulation of free proline in the species under study was also variable. The largest amount of this amino acid tended to accumulate in broccoli leaves, whereas the increase of its level took place only at a strong dehydration of tissues. The increase of proline level was smaller in barley leaves than in broccoli, but that was found already at a smalI dehydration of tissues. In poinsettia leaves, a several f`old increase of proline level was found at the early stage of the stress. The level of that amino acid gradually increased at consecutive times and did not depend on tissue dehydration. Damage of cell membranes amounted to 8.5-9.5% in barley leaves, about 3% in brocolli and to 0-2.6% in poinsettia. The role of proline in prevention of leaf dehydration and in alleviation of dehydration effects in the studied species has been discussed.

  6. Purification and characterization of three chitinases and one beta-1,3-glucanase accumulating in the medium of cell suspension cultures of barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Kragh, K.M.; Jacobsen, S.; Dalgaard Mikkelsen, J.;

    1991-01-01

    chromatography. Two of the chitinases were identified as the previously described endochitinases T and C from barley grain. The third and novel chitinase, designated K, was the major basic chitinase in the medium constituting 4% of the soluble protein. Chitinase K was found to be a 33-kDa endochitinase with p...... chitinases from barley aleurone and barley, bean and potato leaves. The purified beta-1,3-glucanase with a molecular weight (MW) of 32 kDa and pI greater-than-or-equal-to 9.8 constituted 1% of the soluble protein in the medium. Based on similar MW, pI and amino acid composition as well as identical N...

  7. Clonostachys rosea reduces spot blotch in barley by inhibiting pre-penetration growth and sporulation of Bipolaris sorokiniana without inducing resistance

    DEFF Research Database (Denmark)

    Jensen, Birgit; Lübeck, Peter S; Jørgensen, Hans Jørgen Lyngs

    2016-01-01

    to control barley leaf pathogens and the mechanisms behind the inhibition emphasising induced resistance. RESULTS: Under controlled conditions, spray application of C. rosea isolate IK726 to barley leaves reduced Bipolaris sorokiniana severity up to 70% when applied 24 h before or simultaneously...... as a protectant against three barley leaf pathogens. B. sorokiniana was directly inhibited by IK726 whereas induced resistance appeared not to be involved. Quantitative microscopy is a powerful tool for elucidating mechanisms involved in disease control.......BACKGROUND: Several diseases threaten cereal production and fungicides are therefore widely used. Biological control is an environmentally friendly alternative and the fungus Clonostachys rosea is a versatile antagonist, effective against several plant diseases. We studied the ability of C. rosea...

  8. Resistance in barley against Drechslera teres induced by Bipolaris maydis and Septoria nodorum

    DEFF Research Database (Denmark)

    Jørgensen, Hans Jørgen Lyngs; Lobeck, P.S.; Thordal-Christensen, Hans

    1998-01-01

    pre-treated with conidial suspensions of either of the two non-barley pathogens Bipolaris maydis from maize or Septoria nodorum from wheat. The results suggested that induced resistance was involved, but detailed studies of the mechanisms responsible were not carried out. Such investigations are...... for inhibiting D. teres in barley after inoculation with B. maydis and S. nodorum. This was done by quantitative histological examination of the primary infection stages of D. teres, by qualitative studies of the later development of this fungus, and by studies of the expression of defence response genes...... in the host after inoculation with B. maydis and S. nodorum. Materials and methods B. maydis and S. nodorum were applied to leaves of the barley cultivar Lenka 24 h before D. teres. The primary infection processes of D. teres were investigated by light microscopy of epidermal strips made from the first leaf 3...

  9. Association mapping of partitioning loci in barley

    Directory of Open Access Journals (Sweden)

    Mackay Ian J

    2008-02-01

    Full Text Available Abstract Background Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter- and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2 have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure. Results By taking barley as a typical inbreeding crop, and seasonal growth habit as a major partitioning phenotype, we develop an association mapping approach which successfully identifies VRN-H1 and VRN-H2, the underlying loci largely responsible for this agronomic division. We find a combination of Structured Association followed by Genomic Control to correct for population structure and inflation of the test statistic, resolved significant associations only with VRN-H1 and the VRN-H2 candidate genes, as well as two genes closely linked to VRN-H1 (HvCSFs1 and HvPHYC. Conclusion We show that, after employing appropriate statistical methods to correct for population sub-structure, the genome-wide partitioning effect of allelic status at VRN-H1 and VRN-H2 does not result in the high levels of spurious association expected to occur in highly structured samples. Furthermore, we demonstrate that both VRN-H1 and the candidate VRN-H2 genes can be identified using association mapping

  10. Vulnerability of Commercial Tree Species to Water Stress in Logged Forests of the Guiana Shield

    Directory of Open Access Journals (Sweden)

    Hélène Fargeon

    2016-05-01

    Full Text Available The future of tropical managed forests is threatened by climate change. In anticipation of the increase in the frequency of drought episodes predicted by climatic models for intertropical regions, it is essential to study commercial trees’ resilience and vulnerability to water stress by identifying potential interaction effects between selective logging and stress due to a lack of water. Focusing on 14 species representing a potential or acknowledged commercial interest for wood production in the Guiana Shield, a joint model coupling growth and mortality for each species was parametrized, including a climatic variable related to water stress and the quantity of aboveground biomass lost after logging. For the vast majority of the species, water stress had a negative impact on growth rate, while the impact of logging was positive. The opposite results were observed for the mortality. Combining results from growth and mortality models, we generate vulnerability profiles and ranking from species apparently quite resistant to water stress (Chrysophyllum spp., Goupia glabra Aubl., Qualea rosea Aubl., even under logging pressure, to highly vulnerable species (Sterculia spp.. In light of our results, forest managers in the Guiana Shield may want to conduct (i a conservation strategy of the most vulnerable species and (ii a diversification of the logged species. Conservation of the already-adapted species may also be considered as the most certain way to protect the tropical forests under future climates.

  11. Liquid organomineral fertilizer containing humic substances on soybean grown under water stress

    Directory of Open Access Journals (Sweden)

    Marcelo R. V. Prado

    2016-05-01

    Full Text Available ABSTRACT This study evaluated the effect of an organomineral fertilizer enriched with humic substances on soybean grown under water stress. The experiment was performed in a greenhouse using a Red Latosol (Oxisol with adequate fertility as substrate, in which soybean plants were cultivated with and without water stress. The experimental design was randomized blocks, in a 2 x 5 factorial scheme (two moisture levels and five fertilizer doses: 0, 1, 2, 4 and 8 mL dm-3, totaling 10 treatments, with four replicates. The organomineral fertilizer was applied in the soil 21 days after plant emergence and the water regimes were established one week thereafter. The fertilizer was not able to attenuate the effects of water stress, reducing soybean grain yield by more than 50% compared with plants cultivated under no stress. Fertilizer doses caused positive response on soybean nutrition and grain yield and, under water stress condition, the most efficient dose was 5.4 mL dm-3. There were lower leaf concentrations of nitrogen, phosphorus and potassium and higher concentrations of sulfur in plants under stress. Humic substances favor the absorption of micronutrients.

  12. Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants

    Science.gov (United States)

    Holben, B. N.; Schutt, J. B.; Mcmurtrey, J., III

    1983-01-01

    The total and diffuse radiance responses of Thematic Mapper bands 3 (0.63-0.69 microns), 4 (0.76-0.90 microns), and 5 (1.55-1.75 microns) to water stress in a soybean canopy are compared. Polarization measurements were used to separate the total from the diffuse reflectance; the reflectances were compared statistically at a variety of look angles at 15 min intervals from about 09.00 until 14.00 hrs EST. The results suggest that remotely sensed data collected in the photographic infrared region (TM4) are sensitive to leaf water stress in a 100 percent canopy cover of soybeans, and that TM3 is less sensitive than TM4 for detection of reversible foliar water stress. The mean values of TM5 reflectance data show similar trends to TM4. The primary implication of this study is that remote sensing of water stress in green plant canopies is possible in TM4 from ground-based observations primarily through the indirect link of leaf geometry.

  13. Interactive effects of rice residue and water stress on growth and metabolism of wheat seedlings

    Directory of Open Access Journals (Sweden)

    Nimisha Amist

    2014-08-01

    Full Text Available In the present study effects of rice residue with and without water stress were studied on Triticum aestivum L. cv. Shatabadi. The mixture of residue and garden soil in 1:1 ratio was considered as 50% (R1 and only decomposed residue as 100% (R2. Garden soil was taken as control. Twenty five seeds were sown in each experimental trays filled with soil mixture according to the treatments. Trays were arranged in two groups. After 15 days one set was subjected to water stress (WS by withholding water supply for 3 days. Morphological and biochemical parameters of 18 days old seedlings were recorded. Seedling height decreased in all treatments. A gradual decrease in relative water content, pigment and protein contents of wheat seedlings were observed. Sugar and proline contents increased in treatments. An increase in malondialdehyde (MDA content and antioxidative enzyme activities was recorded. Elevation in catalase activity was observed in all treatments except in plants with water deficit. Ascorbate peroxidase (APX and guaiacol peroxidase (GPX activities increased when residue mixed with soil but decreased in seedlings under the combined influence of the residue and water stress. Higher amount of MDA and lower activities of APX and GPX reflected the oxidative damage in seedlings under combined treatments. Rice residue inhibited growth of wheat seedlings. Water stress intensified the effects of residue.

  14. Effects of Fusarium culmorum and water stress on durum wheat in Tunisia

    Science.gov (United States)

    The effects of water stress on Fusarium foot and root rot in durum wheat were investigated in growth chamber, greenhouse and field tests in Tunisia. In the seedling stage, emergence of six durum wheat cultivars in the growth chamber was significantly reduced by inoculation with Fusarium culmorum and...

  15. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress

    DEFF Research Database (Denmark)

    Katam, Ramesh; Sakata, Katsumi; Suravajhala, Prashanth;

    2016-01-01

    drought tolerance characteristics were subjected to WS, and their leaf proteome was compared using two-dimensional electrophoresis complemented with MALDI-TOF/TOF mass spectrometry. Ninety-six protein spots were differentially abundant to water stress in both cultivars that corresponded to 60 non...

  16. Root water uptake under non-uniform transient salinity and water stress

    NARCIS (Netherlands)

    Homaee, M.

    1999-01-01

    The study described in this thesis focuses on the quantitative understanding of water uptake by roots under separate and combined salinity and water stresses. The major difficulty in solving Richards' equation stems from the lack of a sink term function that adequately describes root water uptake. F

  17. Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize

    Science.gov (United States)

    Research was conducted in northern Colorado in 2011 to estimate the Crop Water Stress Index (CWSI) and actual water transpiration (Ta) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that ...

  18. Yield, quality and biochemical properties of various strawberry cultivars under water stress.

    Science.gov (United States)

    Adak, Nafiye; Gubbuk, Hamide; Tetik, Nedim

    2017-06-05

    Although strawberry (Fragaria x ananassa Duch.) species are sensitive to abiotic stress conditions, some cultivars are known to be tolerant to different environmental conditions. We examined the response of different strawberry cultivars to water stress conditions in terms of yield, quality and biochemical features. The trial was conducted under two different irrigation regimes: in grow bags containing cocopeat (control, 30%; water stress, 15% drainage) with four different cultivars (Camarosa, Albion, Amiga and Rubygem). Fruit weight declined by 59.72% and the yield per unit area by 63.62% under water stress conditions as compared to control. Albion and Rubygem were found to be more tolerant and Amiga the most sensitive in terms of yield under stress conditions. Water stress increased all biochemical features in fruits such as total phenol, total anthocyanin, antioxidant activity and sugar contents. Among the cultivars, glucose and fructose was higher in Albion. Considering the rise in global warming, identification of resistant and tolerant cultivars to stress conditions are crucial for future breeding programmes. Our results showed that some of the fruit's physical features were affected negatively by stress conditions whereas many of the biochemical features such as total anthocyanin content, total phenolic content and antioxidant activity were positively modulated. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.)

    NARCIS (Netherlands)

    Araya, A.; Stroosnijder, L.; Girmay, G.; Keesstra, S.D.

    2011-01-01

    In the semi-arid region of Tigray, Northen Ethiopia a two season experiment was conducted to measure evapotranspiration, estimate yield response to water stress and derive the crop coefficient of teff using the single crop coefficient approach with simple, locally made lysimeters and field plots. Du

  20. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    NARCIS (Netherlands)

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the

  1. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    NARCIS (Netherlands)

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the w

  2. Photochemical reflectance index as a mean of monitoring early water stress

    NARCIS (Netherlands)

    Sarlikioti, V.; Driever, S.M.; Marcelis, L.F.M.

    2010-01-01

    Water stress in plants affects a number of physiological processes such as photosynthetic rate, stomatal conductance as well as the operating efficiency of photosystem II (PSII) and non-photochemical quenching (NPQ). Photochemical reflectance index (PRI) is reported to be sensitive to changes in xan

  3. Infrared thermometry of water-stressed crops - emerging methods and technologies

    Science.gov (United States)

    Infrared thermometry has shown potential to quantify water stress in crop canopy. This presentation will outline the limited irrigation experiments by the USDA-ARS in northern Colorado, which is used for a framework to evaluate canopy temperature. Recent methods have been introduced that may be accu...

  4. The Stimulating Effects of Rewatering on Leaf Area of Winter Wheat Suffering Water Stress

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-ying; LUO Yuan-pei; SHI Yuan-chun

    2002-01-01

    After water stress at various levels and durations at different growth stages, rewatering could greatly stimulate the leaf area development of winter wheat. The results showed that the stimulation effect changed with water stress time, degree and duration. Rewatering under earlier stress had greater stimulation effect on leaf area than that under later stress. Higher stimulation effect was observed under severe water stress than that under moderate stress. Longer duration of stress resulted in low stimulation effect. In spite of the greater stimulation effect under severe and longer stress, the final leaf area in these situations was lower than that under moderate stress and shorter duration. Whenever the stress occurred, the stimulating effect was due to the increase of the leaf area of the tillers. Once the leaf on the main stem emerged during stress period,rewatering had no effect on its size, and consequently its leaf area. The stimulation of rewateirng on leaf area contributed to the final grain yield by 45% under moderate stress, and 67% under severe stress. Although the stimulation partly compensated for the loss during stress, the final leaf area and the grain yield could not reach the level without water stress.

  5. Modelling the spectral response of the desert tree Prosopis tamarugo to water stress

    NARCIS (Netherlands)

    Chávez Oyanadel, R.O.; Clevers, J.G.P.W.; Herold, M.; Ortiz, M.; Acevedo, E.

    2013-01-01

    In this paper, we carried out a laboratory experiment to study changes in canopy reflectance of Tamarugo plants under controlled water stress. Tamarugo (Prosopis tamarugo Phil.) is an endemic and endangered tree species adapted to the hyper-arid conditions of the Atacama Desert, Northern Chile. Obse

  6. Barley grain for ruminants: A global treasure or tragedy

    Directory of Open Access Journals (Sweden)

    Nikkhah Akbar

    2012-07-01

    Full Text Available Abstract Barley grain (Hordeum vulgare L. is characterized by a thick fibrous coat, a high level of ß-glucans and simply-arranged starch granules. World production of barley is about 30 % of that of corn. In comparison with corn, barley has more protein, methionine, lysine, cysteine and tryptophan. For ruminants, barley is the third most readily degradable cereal behind oats and wheat. Due to its more rapid starch fermentation rate compared with corn, barley also provides a more synchronous release of energy and nitrogen, thereby improving microbial nutrient assimilation. As a result, feeding barley can reduce the need for feeding protected protein sources. However, this benefit is only realized if rumen acidity is maintained within an optimal range (e.g., > 5.8 to 6.0; below this range, microbial maintenance requirements and wastage increase. With a low pH, microbial endotoxines cause pro-inflammatory responses that can weaken immunity and shorten animal longevity. Thus, mismanagement in barley processing and feeding may make a tragedy from this treasure or pearl of cereal grains. Steam-rolling of barley may improve feed efficiency and post-rumen starch digestion. However, it is doubtful if such processing can improve milk production and feed intake. Due to the need to process barley less extensively than other cereals (as long as the pericarp is broken, consistent and global standards for feeding and processing barley could be feasibly established. In high-starch diets, barley feeding reduces the need for capacious small intestinal starch assimilation, subsequently reducing hindgut starch use and fecal nutrient loss. With its nutritional exclusivities underlined, barley use will be a factual art that can either matchlessly profit or harm rumen microbes, cattle production, farm economics and the environment.

  7. Agrobacterium-mediated transformation of barley (Hordeum vulgare L.).

    Science.gov (United States)

    Ismagul, Ainur; Mazonka, Iryna; Callegari, Corinne; Eliby, Serik

    2014-01-01

    Barley biotechnology requires efficient genetic engineering tools for producing transgenic plants necessary for conducting reverse genetics analyses in breeding and functional genomics research. Agrobacterium-mediated genetic transformation is an important technique for producing barley transgenics with simple low-copy number transgenes. This chapter reports a refined protocol for the systematic high-throughput transformation of the advanced Australian spring barley breeding line WI4330.

  8. Divergent Sensitivity of Soil Water Stress To Changing Snowmelt Regimes in the Western U.S.

    Science.gov (United States)

    Harpold, A. A.

    2015-12-01

    Altered snowmelt regimes from regional warming threaten mountain ecosystems with greater water stress and increased the likelihood of disturbance. The sensitivity of vegetation to changing snowpack regimes is strongly mediated by soil water storage, yet a comprehensive framework to identify areas sensitive to changing snowpack regimes is lacking. In this study we ask two questions: 1) What climatic predictors explain inter-annual variability in the duration of soil water stress (DWS) and length of non-water stress season (NWSS)? and 2) What site characteristics increase the sensitivity of DWS and NWSS to changes in snowmelt dynamics? We compiled soil moisture at 10, 20 and 50 cm depths from 62 SNOTEL stations with >5 years of records. Soil water stress occurred when soil moisture was below the measured wilting point and NWSS was the number of days without water stress after snowmelt began. The day of snow disappearance (DSD) consistently explained the greatest variability in DWS across all site-years and at individual sites. On average, a one day earlier snow disappearance lead to 0.7 days greater DWS, but individual sites ranged from 0.2 to 1.8 days (36 of 62 sites had significant relationships between DSD and DWS). Despite earlier DSD leading to greater DWS at all sites, earlier DSD led to both significant increases (5 of 62) and decreases (7 of 62) in the length of the NWSS. Satellite-derived vegetation greenness confirmed that earlier DSD caused both lower and higher peak annual greenness depending on the site. A simple soil moisture model indicated that areas with finer soil texture, greater potential evapotranspiration, and longer NWSS were most sensitive to reduced NWSS from changing snowpack dynamics. These findings suggest a divergent response across snow-covered forests to earlier snowmelt timing independent of changing precipitation patterns: 1) historically water-stressed sites are most at risk for reduced vegetation productivity and 2) sites with low

  9. Rainfall and crop modeling-based water stress assessment for rainfed maize cultivation in peninsular India

    Science.gov (United States)

    Manivasagam, V. S.; Nagarajan, R.

    2017-03-01

    Water stress due to uneven rainfall distribution causes a significant impact on the agricultural production of monsoon-dependent peninsular India. In the present study, water stress assessment for rainfed maize crop is carried out for kharif (June-October) and rabi (October-February) cropping seasons which coincide with two major Indian monsoons. Rainfall analysis (1976-2010) shows that the kharif season receives sufficient weekly rainfall (28 ± 32 mm) during 26th-39th standard meteorological weeks (SMWs) from southwest monsoon, whereas the rabi season experiences a major portion of its weekly rainfall due to northeast monsoon between the 42nd and 51st SMW (31 ± 42 mm). The later weeks experience minimal rainfall (5.5 ± 15 mm) and thus expose the late sown maize crops to a severe water stress during its maturity stage. Wet and dry spell analyses reveal a substantial increase in the rainfall intensity over the last few decades. However, the distribution of rainfall shows a striking decrease in the number of wet spells, with prolonged dry spells in both seasons. Weekly rainfall classification shows that the flowering and maturity stages of kharif maize (33rd-39th SMWs) can suffer around 30-40% of the total water stress. In the case of rabi maize, the analysis reveals that a shift in the sowing time from the existing 42nd SMW (16-22 October) to the 40th SMW (1-7 October) can avoid terminal water stress. Further, AquaCrop modeling results show that one or two minimal irrigations during the flowering and maturity stages (33rd-39th SMWs) of kharif maize positively avoid the mild water stress exposure. Similarly, rabi maize requires an additional two or three lifesaving irrigations during its flowering and maturity stages (48th-53rd SMWs) to improve productivity. Effective crop planning with appropriate sowing time, short duration crop, and high yielding drought-resistant varieties will allow for better utilization of the monsoon rain, thus reducing water stress with

  10. Water Stress Effect on Cell Wall Components of Maize (Zea mays Bran

    Directory of Open Access Journals (Sweden)

    Eleazar LUGO-CRUZ

    2016-03-01

    Full Text Available In México, around 82% of the total production of maize is grown under rainfed conditions leading to a water stress environment which affects physiologic and biochemical process of the plant. Maize bran is a composited plant material consisting mainly in aleurone layer, testa and pericarp; the cell walls of these tissues are composed of proteins, non-starch polysaccharides, phenolic acids and lignin which are potential bioactive substances for human nutrition. In this research it was investigated the effect of water stress on cell wall components in the bran of three genotypes of maize by applying irrigation and water stress treatments. The content of protein, lignin, arabinoxylans, total phenols and phenolic acids was performed in the bran of ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ genotypes. Water stress applied through grain development stage increased protein levels of ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ in 4.05, 16.13 and 0.40% respectively. Respecting to lignin content, water stress increased levels at 1.28, 2.26 and 4.24% for ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ, respectively. Arabinoxylans content also increased in water stress treatment at levels of 1.28, 2.26 and 3.66% in ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ. On the other hand, water stress treatment decreased the levels of total phenols and hydroxycinnamic acids in the three maize hybrids analysed. Reduction of total phenols was 35.34, 5.59 and 31.57% for ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ, respectively. In addition, the levels of t-ferulic, c-ferulic and p-coumaric acids decreased 17.74, 23.93, 29.83% in ʽCebúʼ, 8.92, 8.62, 24.03% in ʽDK2027ʼ and 13.66, 11.03, 10.38% in ʽDK2034ʼ respectively.

  11. Changes of Limiting Dextrinase in Germinating Process of Malting Barley

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiu-mei; LI Fen; WANG Hong-zhen; WANG Xing-zhi

    2002-01-01

    Based on five different species of barley, the foot layer analytic method was used to examine the activity and heat-resistance of the limiting dextrinase. The study was conducted on the dynamic changes of several types of the dextrinase in barley germinating process, the effect of temperature on the dextrinase and the divergence of dextrinase in different barley variety. The probability of the dextrinase that as reference index is used for screening and evaluating beer barley was discussed. The importance of dextrinase in brewing and its significant function was also discussed.

  12. Combined effects of ozone and water stress on alfalfa growth and yield. [Medicago sativa L

    Energy Technology Data Exchange (ETDEWEB)

    Temple, P.J.; Benoit, L.F.; Lennox, R.W.; Reagan, C.A.; Taylor, O.C.

    A 2-yr study (1984 and 1985) designed to determine the interactive effects of ozone (O/sub 3/) and water stress on alfalfa (Medicago sativa L. cv. WL-514) was conducted in Shafter, CA. The objectives of this study were to develop O/sub 3/ dose-yield response functions for alfalfa, to determine how water stress could alter these functions, and to describe the cumulative effects of multiple-year exposures to O/sub 3/ on this perennial crop. Field-grown alfalfa, raised under normally irrigated (NI) or water-stressed (WS) conditions in open-top chambers, was exposed to five O/sub 3/ treatments including charcoal-filtered (CF), nonfiltered (NF), and NF plus an additional 33, 67, or 100% of ambient O/sub 3/ concentrations. Ambient O/sub 3/ concentrations averaged 0.049 ..mu..L L/sup -1/ in 1984 and 0.042 ..mu..L L/sup -1/ in 1985 for the seasonal 12-h (0900-2100) means from April to October. Water stress reduced total seasonal yield about 10% in 1984 and 27% in 1985. Ozone significantly reduced yields in both years, and the interactions between O/sub 3/ and water stress was statistically significant in 1985 and for combined 1984 and 1985 years. Ozone dose-alfalfa yield loss functions were homogeneous between 1984 and 1985 and no evidence of a cumulative effect of multiple-year exposure to O/sub 3/ was found on top growth. However, crown (underground stem) weights were significantly reduced by O/sub 3/, suggesting that continued exposure to O/sub 3/ could shorten the productive life of alfalfa stands, in addition to its effect on yield.

  13. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  14. Ozone and Water Stress: Effects on the Behaviour of Two White Clover Biotypes

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    Full Text Available ozone pollution, water stress, stomata conductance, ozone uptake, clover, OTC.Ozone is a strong oxidizing pollutant which derives by alteration of the photolytic NOx cycle and it accumulates in the troposphere spreading in rural areas and therefore determining injuries on natural vegetation and crops. Since its penetration occurs mainly through stomata, all factors which alter plant-atmosphere relations could be able to modify plant response to ozone. Interaction between ozone and water stress in Mediterranean environment was studied on ozone resistant and sensitive biotypes of white clover, which were grown in charcoal filtered and notfiltered Open Top Chambers in factorial combination with different levels of water supply. Measurements of biomass, leaf area and stomatal conductance were made during the growth period. Ozone injuries were estimated as not-filtered/filtered OTC yield ratio; the stomatal flux of ozone was estimated multiplying stomata conductance x diffusivity ratio between ozone and water vapour (0.613 x ozone hourly concentrations. The hourly values of ozone uptake were cumulated throughout the cropping periods of the two years. In the sensitive biotype, water stress reduced yield losses due to ozone from 38% to 22%, as well as yield losses due to water stress were reduced by the presence of ozone from 43% to 29%, while no interaction between ozone and water stress was observed in the resistant biotype. Biomass yield losses of the sensitive biotype were strictly correlated to cumulated ozone uptake (R2 = 0.99, while biomass yield losses of the resistant biotype were not affected by the ozone fluxes variations created by the treatments. Flux based models could better estimate yield losses due to ozone in Mediterranean environments in which other stresses could be contemporary present; therefore, the new European directives might replace the actual thresholds based

  15. Effects of Application of Nitrogen, Potassium and Glycinebetaine on Alleviation of Water Stress to Summer Maize

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A pot experiment was conducted under water deficit and adequate water-supplied conditions with two maize genetypic varieties (Shaandan 9 and Shaandan 911) to study the effects of nitrogen, potassium and glycinebetaine (GlyBet) on the dry matter and grain yields as well as water use efficiency (WUE). Determinations were made at different stages of the two varieties for revealing the function of these factors in increasing plant resistance to drought. Results showed that under a water-stressed condition, dry matter and grain yield were significantly reduced. However, the response of the two varieties to water stress was different: Shaandan 9 was significantly higher in dry matter and grain yields, and therefore could be regarded as a drought-resistant variety compared to Shaandan 911.Application of nitrogen, potassium and glycinebetaine raised dry matter and grain yield to different levels, and thereby alleviated the water stress and increased water use efficiency. These effects were higher for Shaandan 911 than for Shaandan 9. Under water-stressed conditions, application of N fertilizer, either at low rate or at high rate, significantly increased dry matter, grain yield and water use efficiency.A significant different effect was found for Shaandan 911 between N rates, but not so for Shaandan9. However,with supplemental water supply, effects of N fertilization were obviously decreased, showing that in addition to supplying nutrient, N fertilizer has a function in increasing drought-resistance of the crop. Potassium and glycinebetaine exhibited a remarkable function in increasing dry matter and grain yields as well as water use efficiency under water stress while such effects were obviously declined, even vanished, with supplemental water supply, indicating the important contribution of these factors in rise of drought-resistance ability of a crop.

  16. FERTILIZING BREWING BARLEY (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    I. Kádár

    2000-12-01

    Full Text Available Four levels of N, P and K nutrition (poor, moderate, satisfactory and high and all their possible combinations with 64 treatments in two replications (128 plots were studied in a long term field trial on barley yield and malting quality. A standard East-European spring barley "Opal" (bred in Czechoslovakia was grown in 1986, 13th year of the agricultural experiment, involving various crops in previous years, on a calcareous loamy chernozem soil. The optimum fertility levels for yield enhancement resulted in the poorest malting quality: low modification and extract but long saccharification time and high protein. To solve this problem the brewing industry will have to apply the well-known technological methods available since growers are not likely to give up their fertilizers. Applying soil and plant analysis data, having knowledge about both soil and plant optimum values, the danger of the excessive use of fertilizers can be realized and decreased.

  17. Post-fire wood management alters water stress, growth, and performance of pine regeneration in a Mediterranean ecosystem

    Science.gov (United States)

    Maranon-Jimenez, Sara; Castro, Jorge; Querejeta, José Ignacio; Fernandez-Ondono, Emilia; Allen, Craig D.

    2013-01-01

    Extensive research has focused on comparing the impacts of post-fire salvage logging versus those of less aggressive management practices on forest regeneration. However, few studies have addressed the effects of different burnt-wood management options on seedling/sapling performance, or the ecophysiological mechanisms underlying differences among treatments. In this study, we experimentally assess the effects of post-fire management of the burnt wood on the growth and performance of naturally regenerating pine seedlings (Pinus pinaster). Three post-fire management treatments varying in degree of intervention were implemented seven months after a high-severity wildfire burned Mediterranean pine forests in the Sierra Nevada, southeast Spain: (a) “No Intervention” (NI, all burnt trees left standing); (b) “Partial Cut plus Lopping” (PCL, felling most of the burnt trees, cutting off branches, and leaving all the biomass on site without mastication); and (c) “Salvage Logging” (SL, felling the burnt trees, piling up the logs and masticating the fine woody debris). Three years after the fire, the growth, foliar nutrient concentrations, and leaf carbon, nitrogen and oxygen isotopic composition (δ13C, δ18O and δ15N) of naturally regenerating seedlings were measured in all the treatments. Pine seedlings showed greatest vigor and size in the PCL treatment, whereas growth was poorest in SL. The nutrient concentrations were similar among treatments, although greater growth in the two treatments with residual wood present indicated higher plant uptake. Seedlings in the SL treatment showed high leaf δ13C and δ18O values indicating severe water stress, in contrast to significantly alleviated water stress indications in the PCL treatment. Seedling growth and physiological performance in NI was intermediate between that of PCL and SL. After six growing seasons, P. pinaster saplings in PCL showed greater growth and cone production than SL saplings. In summary

  18. Taxonomy Icon Data: barley [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available barley Hordeum vulgare Hordeum_vulgare_L.png Hordeum_vulgare_NL.png Hordeum_vulgare_S.png Hordeum_vu...lgare_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=L http://bi...osciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vu...lgare&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=NS ...

  19. Search for endophytic diazotrophs in barley seeds

    Directory of Open Access Journals (Sweden)

    Myriam S. Zawoznik

    2014-06-01

    Full Text Available Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  20. Transgenic Wheat, Barley and Oats: Future Prospects

    Science.gov (United States)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  1. Search for endophytic diazotrophs in barley seeds.

    Science.gov (United States)

    Zawoznik, Myriam S; Vázquez, Susana C; Díaz Herrera, Silvana M; Groppa, María D

    2014-01-01

    Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  2. The Effect of Water Stress on Some Morphological, Physiological, and Biochemical Characteristics and Bud Success on Apple and Quince Rootstocks

    Directory of Open Access Journals (Sweden)

    Ibrahim Bolat

    2014-01-01

    Full Text Available The effects of different water stress (control, medium, and severe on some morphological, physiological, and biochemical characteristics and bud success of M9 apple and MA quince rootstocks were determined. The results showed that water stress significantly affected most morphological, physiological, and biochemical characteristics as well as budding success on the both rootstocks. The increasing water stress decreased the relative shoot length, diameter, and plant total fresh and dry weights. Leaf relative water content and chlorophyll index decreased while electrolyte leakage increased with the increase of water stress in both rootstocks. An increase in water stress also resulted in reduction in budding success in Vista Bella/M9 (79.33% and 46.67% and Santa Maria/MA (70.33% and 15.33% combinations. However, the water stress in Santa Maria/MA was more prominent. The increase in water stress resulted in higher peroxidase activities as well as phenol contents in both rootstocks. Although catalase activity, anthocyanin, and proline contents increased with the impact of stress, this was not statistically significant. The results suggest that the impact of stress increased with the increase of water stress; therefore, growers should be careful when using M9 and MA rootstocks in both nursery and orchards where water scarcity is present.

  3. The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks.

    Science.gov (United States)

    Bolat, Ibrahim; Dikilitas, Murat; Ercisli, Sezai; Ikinci, Ali; Tonkaz, Tahsin

    2014-01-01

    The effects of different water stress (control, medium, and severe) on some morphological, physiological, and biochemical characteristics and bud success of M9 apple and MA quince rootstocks were determined. The results showed that water stress significantly affected most morphological, physiological, and biochemical characteristics as well as budding success on the both rootstocks. The increasing water stress decreased the relative shoot length, diameter, and plant total fresh and dry weights. Leaf relative water content and chlorophyll index decreased while electrolyte leakage increased with the increase of water stress in both rootstocks. An increase in water stress also resulted in reduction in budding success in Vista Bella/M9 (79.33% and 46.67%) and Santa Maria/MA (70.33% and 15.33%) combinations. However, the water stress in Santa Maria/MA was more prominent. The increase in water stress resulted in higher peroxidase activities as well as phenol contents in both rootstocks. Although catalase activity, anthocyanin, and proline contents increased with the impact of stress, this was not statistically significant. The results suggest that the impact of stress increased with the increase of water stress; therefore, growers should be careful when using M9 and MA rootstocks in both nursery and orchards where water scarcity is present.

  4. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    Science.gov (United States)

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  5. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    about the function of many CSEPs in virulence and the identities of their host targets. In this PhD study, we investigated the function of nine CSEPs and found that CSEP0081, CSEP0105, CSEP0162 and CSEP0254 act as effectors by promoting the Bgh infection success. Independent silencing of these CSEPs...... to the cytosol and the nucleus of barley epidermal cells. Furthermore, CSEP0162 and CSEP0254 accumulated in the extrahaustorial matrix in Bgh-infected cells. This implies that their virulence targets may localize in the same cellular compartments. Using yeast two-hybrid screens, two barley small heat shock...... misfolding and aggregation. Through their chaperone activity, some sHsps contribute to pathogen defence by stabilizing intracellular proteins, including resistance and defence signalling proteins. In this study, we validated the chaperone activity of the barley Hsp16.9, which prevented the aggregation...

  6. The NAC transcription factors of barley

    DEFF Research Database (Denmark)

    Wagner, Michael; Holm, Preben Bach; Gregersen, Per L.

    2011-01-01

    ). From these data we have identified not only putative regulators of leaf senescence (HvNAC005, HvNAC027 and HvNAC029), but also possible regulators of secondary wall synthesis (HvNAC033, HvNAC034 and HvNAC039), lateral root formation (HvNAC022) and seed development (HvNAC017, HvNAC018, HvNAC019 and Hv...... genes characterized so far have regulatory functions in a broad range of plant developmental processes and tolerances to both biotic and abiotic stresses. This makes the NAC family highly interesting target genes for plant researchers and breeders. As part of a larger project on the identification...... of Hordeum vulgare (barley) leaf senescence regulators, we have attempted to characterize for the first time all presently available barley NAC genes (HvNACs). By searching the NCBI barley EST database using the tBLASTn function, with all known NAC genes from Brachypodium and rice as input, in combination...

  7. Alleviation of chromium toxicity by hydrogen sulfide in barley.

    Science.gov (United States)

    Ali, Shafaqat; Farooq, Muhammad Ahsan; Hussain, Sabir; Yasmeen, Tahira; Abbasi, G H; Zhang, Guoping

    2013-10-01

    A hydroponic experiment was carried out to examine the effect of hydrogen sulfide (H2 S) in alleviating chromium (Cr) stress in barley. A 2-factorial design with 6 replications was selected, including 3 levels of NaHS (0 μM, 100 μM, and 200 μM) and 2 levels of Cr (0 μM and 100 μM) as treatments. The results showed that NaHS addition enhances plant growth and photosynthesis slightly compared with the control. Moreover, NaHS alleviated the inhibition in plant growth and photosynthesis by Cr stress. Higher levels of NaHS exhibited more pronounced effects in reducing Cr concentrations in roots, shoots, and leaves. Ultrastructural examination of plant cells supported the facts by indication of visible alleviation of cell disorders in both root and leaf with exogenous application of NaHS. An increased number of plastoglobuli, disintegration, and disappearance of thylakoid membranes and starch granules were visualized inside the chloroplast of Cr-stressed plants. Starch accumulation in the chloroplasts was also noticed in the Cr-treated cells, with the effect being much less in Cr + NaHS-treated plants. Hence, it is concluded that H2 S produced from NaHS can improve plant tolerance under Cr stress.

  8. Effectiveness of rabbit manure biofertilizer in barley crop yield.

    Science.gov (United States)

    Islas-Valdez, Samira; Lucho-Constantino, Carlos A; Beltrán-Hernández, Rosa I; Gómez-Mercado, René; Vázquez-Rodríguez, Gabriela A; Herrera, Juan M; Jiménez-González, Angélica

    2015-11-07

    The quality of biofertilizers is usually assessed only in terms of the amount of nutrients that they supply to the crops and their lack of viable pathogens and phytotoxicity. The goal of this study was to determine the effectiveness of a liquid biofertilizer obtained from rabbit manure in terms of presence of pathogens, phytotoxicity, and its effect on the grain yield and other agronomic traits of barley (Hordeum vulgare L.). Environmental effects of the biofertilizer were also evaluated by following its influence on selected soil parameters. We applied the biofertilizer at five combinations of doses and timings each and in two application modes (foliar or direct soil application) within a randomized complete block design with three replicates and using a chemical fertilizer as control. The agronomic traits evaluated were plant height, root length, dry weight, and number of leaves and stems at three growth stages: tillering, jointing, and flowering. The effectiveness of the biofertilizer was significantly modified by the mode of application, the growth stage of the crop, and the dose of biofertilizer applied. The results showed that the foliar application of the biofertilizer at the tillering stage produced the highest increase in grain yield (59.7 %, p biofertilizer caused significant changes in soil, particularly concerning pH, EC, Ca, Zn, Mg, and Mn. It is our view that the production and use of biofertilizers are a reliable alternative to deal with a solid waste problem while food security is increased.

  9. 5 CFR 630.503 - Leave from former leave systems.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Leave from former leave systems. 630.503... AND LEAVE Recredit of Leave § 630.503 Leave from former leave systems. An employee who earned leave under the leave acts of 1936 or any other leave system merged under subchapter I of chapter 63 of...

  10. Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes.

    Science.gov (United States)

    Sánchez-Rodríguez, Eva; Moreno, Diego A; Ferreres, Federico; Rubio-Wilhelmi, María del Mar; Ruiz, Juan Manuel

    2011-06-01

    Different tomato cultivars (Solanum lycopersicum L.) with differences in tolerance to drought were subjected to moderate water stress to test the effects on flavonoids and caffeoyl derivatives and related enzymes. Our results indicate that water stress resulted in decreased shikimate pathway (DAHP synthase, shikimate dehydrogenase, phenylalanine ammonium lyase, cinnamate 4-hydroxylase, 4-coumarate CoA ligase) and phenolic compounds (caffeoylquinic acid derivatives, quercetin and kaempferol) in the cultivars more sensitive to water stress. However, cv. Zarina is more tolerant, and registered a rise in querc-3-rut-pent, kaempferol-3-api-rut, and kaempferol-3-rut under the treatment of water stress. Moreover, this cultivar show increased activities of flavonoid and phenylpropanoid synthesis and decreased in degradation-related enzymes. These results show that moderate water stress can induce shikimate pathway in tolerant cultivar.

  11. Influence of Growth Regulators on Secondary Metabolites of Medicinally Important Oil Yielding Plant Simarouba glauca DC. under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    Awate P.D.

    2014-03-01

    Full Text Available One year old seedlings of Simarouba glauca were subjected to water stress for 4, 8, 12 and 16 days. The foliar sprays of 50 ppm salicylic acid (SA and 10 ppm Putriscine, Gamma amino butyric acid (GABA and Abscisic acid (ABA were applied before and after water stress. It was observed that polyphenols, tannins, alkaloid and flavonoid contents were increased with increasing water stress treatments. Foliar applications of growth regulators ameliorate water stress and exhibits induction of secondary metabolites like coumarins, sterols, xanthoproteins, cardiac glycosides and saponins. It was also noticed that foliar application of SA, GABA, ABA considerably increases all these secondary metabolites which will help to improve the medicinal potential of Simarouba glauca under water stressed condition.

  12. Observing plants dealing with soil water stress: Daily soil moisture fluctuations derived from polymer tensiometers

    Science.gov (United States)

    van der Ploeg, Martine; de Rooij, Gerrit

    2014-05-01

    Periods of soil water deficit often occur within a plant's life cycle, even in temperate deciduous and rain forests (Wilson et al. 2001, Grace 1999). Various experiments have shown that roots are able to sense the distribution of water in the soil, and produce signals that trigger changes in leaf expansion rate and stomatal conductance (Blackman and Davies 1985, Gollan et al. 1986, Gowing et al. 1990 Davies and Zhang 1991, Mansfield and De Silva 1994, Sadras and Milroy 1996). Partitioning of water and air in the soil, solute distribution in soil water, water flow through the soil, and water availability for plants can be determined according to the distribution of the soil water potential (e.g. Schröder et al. 2013, Kool et al. 2014). Understanding plant water uptake under dry conditions has been compromised by hydrological instrumentation with low accuracy in dry soils due to signal attenuation, or a compromised measurement range (Whalley et al. 2013). Development of polymer tensiometers makes it possible to study the soil water potential over a range meaningful for studying plant responses to water stress (Bakker et al. 2007, Van der Ploeg et al. 2008, 2010). Polymer tensiometer data obtained from a lysimeter experiment (Van der Ploeg et al. 2008) were used to analyse day-night fluctuations of soil moisture in the vicinity of maize roots. To do so, three polymer tensiometers placed in the middle of the lysimeter from a control, dry and very dry treatment (one lysimeter per treatment) were used to calculate water content changes over 12 hours. These 12 hours corresponded with the operation of the growing light. Soil water potential measurements in the hour before the growing light was turned on or off were averaged. The averaged value was used as input for the van Genuchten (1980) model. Parameters for the model were obtained from laboratory determination of water retention, with a separate model parameterization for each lysimeter setup. Results show daily

  13. Back-casting global water stress: Reconstruction of past water demand and climate variability

    Science.gov (United States)

    Wada, Y.; van Beek, L. P.; Bierkens, M. F.

    2010-12-01

    Water scarcity, caused by an existing regional imbalance of water availability and water demand, poses a serious environmental issue to the global society. Since the late 1990s, several studies have quantified blue water stress at the global scale by using the global hydrological models to simulate blue water availability (i.e., surface freshwater in rivers, lakes and reservoirs) which is confronted against water demand to compute water stress. While these assessments have identified regions suffering from current water stress and vulnerable to future water scarcity due to the effects of the climate change and prone to frequent droughts (e.g., Australia, Central and West USA, India, North-East China, Pakistan), the development of past water stress with the influences of population and economic growth and expanding irrigated area has not yet been quantified, which might give an important implication for the future assessment of water stress. Here, we developed a method to reconstruct past water demand from agricultural (i.e., irrigation and livestock), industrial and domestic (i.e., households and municipalities) sector over the period 1960 to 2001, which was used to contrast transient effects in its development against climate variability in the severity of water stress. Agricultural water demand was estimated based on past extents of irrigated area and livestock densities. We developed a simple algorithm to approximate the past economic development based on GDP, energy and household consumption and electricity production, which was subsequently used together with population numbers to estimate industrial and domestic water demand. Desalinated water use and groundwater abstraction were additionally calculated over the same period, the latter being proportional to water demand. Various annual country statistics were used but resulted estimates were gridded at a spatial resolution of 0.5° and disaggregated into a monthly temporal scale as it can be expected that

  14. Systemic responses of barley to the 3-hydroxy-decanoyl-homoserine lactone producing plant beneficial endophyte Acidovorax radicis N35

    Directory of Open Access Journals (Sweden)

    Shengcai Han

    2016-12-01

    Full Text Available Quorum sensing auto-inducers of the N-acyl homoserine lactone (AHL type produced by Gram-negative bacteria have different effects on plants including stimulation on root growth and/or priming or acquirement of systemic resistance in plants. In this communication the influence of AHL production of the plant growth promoting endophytic rhizosphere bacterium Acidovorax radicis N35 on barley seedlings was investigated. A. radicis N35 produces 3-hydroxy-C10-homoserine lactone (3-OH-C10-HSL as the major AHL compound. To study the influence of this QS autoinducer on the interaction with barley, the araI-biosynthesis gene was deleted. The comparison of inoculation effects of the A. radicis N35 wild type and the araI mutant resulted in remarkable differences. While the N35 wild type colonized plant roots effectively in microcolonies, the araI mutant occurred at the root surface as single cells. Furthermore, in a mixed inoculum the wild type was much more prevalent in colonization than the araI mutant documenting that the araI mutation affected root colonization. Nevertheless, a significant plant growth promoting effect could be shown after inoculation of barley with the wild type and the araI mutant in soil after two months cultivation. While A. radicis N35 wild type showed only a very weak induction of early defense responses in plant RNA expression analysis, the araI mutant caused increased expression of flavonoid biosynthesis genes. This was corroborated by the accumulation of several flavonoid compounds such as saponarin and lutonarin in leaves of root inoculated barley seedlings. Thus, although the exact role of the flavonoids in this plant response is not clear yet, it can be concluded, that the synthesis of AHLs by A. radicis has implications on the perception by the host plant barley and thereby contributes to the establishment and function of the bacteria-plant interaction.

  15. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern.

    Science.gov (United States)

    Rezaei, Mohammad Kazem; Shobbar, Zahra-Sadat; Shahbazi, Maryam; Abedini, Raha; Zare, Sajjad

    2013-09-15

    Barley (Hordeum vulgare) is one of the most important cereals in many developing countries where drought stress considerably diminishes agricultural production. Glutathione S-transferases (GSTs EC 2.5.1.18) are multifunctional enzymes which play a crucial role in cellular detoxification and oxidative stress tolerance. In this study, 84 GST genes were identified in barley by a comprehensive in silico approach. Sequence alignment and phylogenetic analysis grouped these HvGST proteins in eight classes. The largest numbers of the HvGST genes (50) were included in the Tau class followed by 21 genes in Phi, five in Zeta, two in DHAR, two in EF1G, two in Lambda, and one each in TCHQD and Theta classes. Phylogenetic analysis of the putative GSTs from Arabidopsis, rice, and barley indicated that major functional diversification within the GST family predated the monocot/dicot divergence. However, intra-specious duplication seems to be common. Expression patterns of five GST genes from Phi and Tau classes were investigated in three barley genotypes (Yusof [drought-tolerant], Moroc9-75 [drought-sensitive], and HS1 [wild ecotype]) under control and drought-stressed conditions, during the vegetative stage. All investigated genes were up-regulated significantly under drought stress and/or showed a higher level of transcripts in the tolerant cultivar. Additionally, GST enzyme activity was superior in Yusof and induced in the extreme-drought-treated leaves, while it was not changed in Moroc9-75 under drought conditions. Moreover, the lowest and highest levels of lipid peroxidation were observed in the Yusof and Moroc9-75 cultivars, respectively. Based on the achieved results, detoxification and antioxidant activity of GSTs might be considered an important factor in the drought tolerance of barley genotypes for further investigations.

  16. Systemic Responses of Barley to the 3-hydroxy-decanoyl-homoserine Lactone Producing Plant Beneficial Endophyte Acidovorax radicis N35

    Science.gov (United States)

    Han, Shengcai; Li, Dan; Trost, Eva; Mayer, Klaus F.; Vlot, A. Corina; Heller, Werner; Schmid, Michael; Hartmann, Anton; Rothballer, Michael

    2016-01-01

    Quorum sensing auto-inducers of the N-acyl homoserine lactone (AHL) type produced by Gram-negative bacteria have different effects on plants including stimulation on root growth and/or priming or acquirement of systemic resistance in plants. In this communication the influence of AHL production of the plant growth promoting endophytic rhizosphere bacterium Acidovorax radicis N35 on barley seedlings was investigated. A. radicis N35 produces 3-hydroxy-C10-homoserine lactone (3-OH-C10-HSL) as the major AHL compound. To study the influence of this QS autoinducer on the interaction with barley, the araI-biosynthesis gene was deleted. The comparison of inoculation effects of the A. radicis N35 wild type and the araI mutant resulted in remarkable differences. While the N35 wild type colonized plant roots effectively in microcolonies, the araI mutant occurred at the root surface as single cells. Furthermore, in a mixed inoculum the wild type was much more prevalent in colonization than the araI mutant documenting that the araI mutation affected root colonization. Nevertheless, a significant plant growth promoting effect could be shown after inoculation of barley with the wild type and the araI mutant in soil after 2 months cultivation. While A. radicis N35 wild type showed only a very weak induction of early defense responses in plant RNA expression analysis, the araI mutant caused increased expression of flavonoid biosynthesis genes. This was corroborated by the accumulation of several flavonoid compounds such as saponarin and lutonarin in leaves of root inoculated barley seedlings. Thus, although the exact role of the flavonoids in this plant response is not clear yet, it can be concluded, that the synthesis of AHLs by A. radicis has implications on the perception by the host plant barley and thereby contributes to the establishment and function of the bacteria-plant interaction. PMID:28018401

  17. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    Science.gov (United States)

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed.

  18. Systemic Responses of Barley to the 3-hydroxy-decanoyl-homoserine Lactone Producing Plant Beneficial Endophyte Acidovorax radicis N35.

    Science.gov (United States)

    Han, Shengcai; Li, Dan; Trost, Eva; Mayer, Klaus F; Vlot, A Corina; Heller, Werner; Schmid, Michael; Hartmann, Anton; Rothballer, Michael

    2016-01-01

    Quorum sensing auto-inducers of the N-acyl homoserine lactone (AHL) type produced by Gram-negative bacteria have different effects on plants including stimulation on root growth and/or priming or acquirement of systemic resistance in plants. In this communication the influence of AHL production of the plant growth promoting endophytic rhizosphere bacterium Acidovorax radicis N35 on barley seedlings was investigated. A. radicis N35 produces 3-hydroxy-C10-homoserine lactone (3-OH-C10-HSL) as the major AHL compound. To study the influence of this QS autoinducer on the interaction with barley, the araI-biosynthesis gene was deleted. The comparison of inoculation effects of the A. radicis N35 wild type and the araI mutant resulted in remarkable differences. While the N35 wild type colonized plant roots effectively in microcolonies, the araI mutant occurred at the root surface as single cells. Furthermore, in a mixed inoculum the wild type was much more prevalent in colonization than the araI mutant documenting that the araI mutation affected root colonization. Nevertheless, a significant plant growth promoting effect could be shown after inoculation of barley with the wild type and the araI mutant in soil after 2 months cultivation. While A. radicis N35 wild type showed only a very weak induction of early defense responses in plant RNA expression analysis, the araI mutant caused increased expression of flavonoid biosynthesis genes. This was corroborated by the accumulation of several flavonoid compounds such as saponarin and lutonarin in leaves of root inoculated barley seedlings. Thus, although the exact role of the flavonoids in this plant response is not clear yet, it can be concluded, that the synthesis of AHLs by A. radicis has implications on the perception by the host plant barley and thereby contributes to the establishment and function of the bacteria-plant interaction.

  19. Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops - a field study employing P-32 technique

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S.

    2001-01-01

    Root system dynamics, productivity and N use were studied in inter- and sole crops of field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) on a temperate sandy loam. A P-32 tracer placed at a depth of 12.5, 37.5, 62.5 or 87.5 cm was employed to determine root system dynamics...... by sampling crop leaves at 0, 15, 30 and 45 cm lateral distance. N-15 addition was used to estimate N-2 fixation by pea, using sole cropped barley as reference crop. The Land Equivalent Ratio (LER), which is defined as the relative land area under sole crops that is required to produce the yields achieved...... in intercropping, were used to compare the crop growth in intercrops relative to the respective sole crops. The P-32 appearance in leaves revealed that the barley root system grows faster than that of pea. P uptake by the barley root system during early growth stages was approximately 10 days ahead...

  20. An improved approach for remotely sensing water stress impacts on forest C uptake.

    Science.gov (United States)

    Sims, Daniel A; Brzostek, Edward R; Rahman, Abdullah F; Dragoni, Danilo; Phillips, Richard P

    2014-09-01

    Given that forests represent the primary terrestrial sink for atmospheric CO2 , projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy 'greenness' (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) - defined here as drought-induced decline in GPP without a change in greenness. Current satellite-derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite-derived estimates of GPP with eddy-covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r(2) = 0.09) and MMSF (r(2) = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r(2) = 0.83) and for a severe drought year at the MMSF (r(2) = 0.82). Collectively, our results suggest that large-scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought. © 2014 John Wiley & Sons

  1. Plant water-stress parameterization determines the strength of land-atmosphere coupling

    Science.gov (United States)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; Ouwersloot, Huug G.; Peters, Wouter

    2016-04-01

    Land-surface models that are currently used in numerical weather predictions models and earth system models all assume various plant water-stress parameterizations. We investigate the impact of this variety of parametrizations on the performance of atmospheric models. For this, we use a conceptual framework where a convective atmospheric boundary-layer (ABL) model is coupled to a daytime model for the land surface fluxes of carbon, water, and energy. We first validate our coupled model for a set of surface and upper-atmospheric diurnal observations over a grown maize field in the Netherlands. We then perform a sensitivity analysis of this coupled land-atmosphere system by varying the modeled plant water-stress response from a very insensitive to a sensitive response during dry soil conditions. We first propose and verify a feedback diagram that ties plant water-stress response and large-scale atmospheric conditions to the diurnal cycles of ABL CO2, humidity and temperature. Based on our undertanstanding of the diurnal coupled system, we then explore the impact of the assumed water-stress reponse for the development of a dry spell on a synoptic time scale. We find that during a progressive 3-week soil drying caused by evapotranspiration, an insensitive plant will dampen atmospheric heating because the vegetation continues to transpire while soil moisture is available. In contrast, the sensitive plant reduces its transpiration to prevent soil moisture depletion. But when absolute soil moisture comes close to wilting point, the insensitive plant will suddenly close its stomata causing a switch to a land-atmosphere coupling regime dominated by sensible heat exchange. We find that in both cases, our modeled progressive soil moisture depletion contributes to further atmospheric warming up to 6 K, reduced photosynthesis up to 89 %, and CO2 enrichment up to 30 ppm, but the full impact is strongly delayed for the insensitive plant. Finally, we demonstrate that the assumed

  2. Development of a Hyperspectral Index for Detection of Initial Water Stress in Eastern Hemlock (Tsuga Canadensis)

    Science.gov (United States)

    Wiener, M. J.; Rock, B. N.

    2008-12-01

    Hemlock woolly adelgid (Adelges tsugae Annand) is an invasive insect pathogen that is causing significant mortality in existing eastern hemlock (Tsuga canadensis Carriere) stands across the Northeastern USA. Unchecked, A. tsugae will continue to decimate hemlock forests, initiating irreversible ecological alterations. Hemlock survival is dependent upon site conditions, where trees in mesic environments tend to decline at slower rates than trees in xeric ones. In addition, A. tsugae has been reported to restrict xylem flow in hemlock needles, potentially causing foliar drying. There has been little research on the ability of remote sensing tools to detect eastern hemlock water stress, a key factor in resistance to A. tsugae. In this study, 2007 hemlock needles were collected from 10 sites across the northeast and subjected to simulated water stress in order to determine the applicability of multispectral and hyperspectral indices in diagnosing hemlock water stress. Samples were dried in an oven at 65° C in two time groups: 60 minutes and 300 minutes. Spectral scans by a Visible Infrared Intelligent Spectrometer (VIRIS) in addition to percent water loss measurements were made at regular intervals throughout the drying period. Results include the rapid formation of reflectance peaks at 530 nm, 590 nm, and 644 nm which may be used to create hyperspectral water stress indices tailored to hemlocks that are extremely accurate in predicting both initial (R644/R669 r2=.773, p<.0001; Normalized R644/R669 r2=.801, p<.0001) and long-term (R644/R669 r2=.864, p<.0001; Normalized R644/R669 r2=.889, p<.0001) water stress. These findings can provide a significant tool in current management efforts of the HWA, by identifying both hemlock stands under environmental water stress, which are likely prone to infestation, in addition to regions under the initial stages of infestation. As a result, conservationists and forest managers will be afforded an opportunity to direct control

  3. Photoperiodic flowering: time measurement mechanisms in leaves.

    Science.gov (United States)

    Song, Young Hun; Shim, Jae Sung; Kinmonth-Schultz, Hannah A; Imaizumi, Takato

    2015-01-01

    Many plants use information about changing day length (photoperiod) to align their flowering time with seasonal changes to increase reproductive success. A mechanism for photoperiodic time measurement is present in leaves, and the day-length-specific induction of the FLOWERING LOCUS T (FT) gene, which encodes florigen, is a major final output of the pathway. Here, we summarize the current understanding of the molecular mechanisms by which photoperiodic information is perceived in order to trigger FT expression in Arabidopsis as well as in the primary cereals wheat, barley, and rice. In these plants, the differences in photoperiod are measured by interactions between circadian-clock-regulated components, such as CONSTANS (CO), and light signaling. The interactions happen under certain day-length conditions, as previously predicted by the external coincidence model. In these plants, the coincidence mechanisms are governed by multilayered regulation with numerous conserved as well as unique regulatory components, highlighting the breadth of photoperiodic regulation across plant species.

  4. Effects of sulfur nutritional level on cadmium toxicity in barley

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yichang; Huerta, A.J. (Miami Univ., Oxford, OH (United States))

    1993-05-01

    The effects of S levels on Cd toxicity were studied in barley (Hordeum vulgare L.cv.UC 476). Barley was grown hydroponically in half-strength Hoagland's solution containing either 100% or 10% S in a growth chamber at constant 20 C, 290 umole M[sup [minus]2] s[sup [minus]1] light intensity, and a 16/18 hour light/dark period. Five days after the first true leaf appeared, 15 uM Cd was added to the nutrient solutions where appropriate. At 14 days after beginning of Cd treatment, plants were analyzed for photosynthetic characteristics. The photosynthetic characteristics measured were CO[sub 2] response curves (measured with a LICOR 6200 portable photosynthesis system), and fluorescence measurement system. At 21 days they were analyzed for morphological and biomass measurements. The CO[sub 2] response curves for leaves of plants treated with 10% S did not significantly differ from those of plants treated with 100% S. Treatment with Cd significantly reduced the CO[sup 2] saturated rates of photosynthesis and the reduction was more significant in the 10% S than in the 100% S plants. Photochemical efficiency of PSII (FV/FM) and fluorescence quenching capacity (FQ) were not affected by 10% S as compared to 100% S treatment. Interestingly, treatment with Cd significantly increased both FV/FM and FQ as compared to control., However, S level had no effect on the fluorescence parameters of Cd-treated plants. Leaf and root length, leaf area, root and shoot dry weight were only slightly affected (increased or decreased) by 10% S as compared to 100% S but very significantly reduced by treatment with Cd. Our results agree with the previous reports which show that S (an important component of glutathione and phytochelatins which are low molecular weight Cd binding proteins), is important in regulating Cd detoxification in plants. However, we are continuing to conduct experiments as even lower S concentrations and different Cd concentrations.

  5. 7 CFR 457.118 - Malting barley crop insurance.

    Science.gov (United States)

    2010-01-01

    ... Barley Price and Quality Endorsement (This is a continuous endorsement. Refer to section 2 of the Common... all quality criteria contained herein or grades U.S. No. 4 or lower in accordance with the grades and... coverage for malting barley production and quality losses at a price per bushel greater than that offered...

  6. Analysis of Pregerminated Barley Using Hyperspectral Image Analysis

    DEFF Research Database (Denmark)

    Arngren, Morten; Hansen, Per Waaben; Eriksen, Birger

    2011-01-01

    Pregermination is one of many serious degradations to barley when used for malting. A pregerminated barley kernel can under certain conditions not regerminate and is reduced to animal feed of lower quality. Identifying pregermination at an early stage is therefore essential in order to segregate ...

  7. Progressive hull removal from barley using the Fitzpatrick comminuting mill

    Science.gov (United States)

    The objective of the study was to explore an alternative use of the Fitzpatrick Comminuting Machine: to use it to remove the hull from hulled barley while keeping the barley kernel intact. Traditionally, this mill is used to grind material, but we have recently discovered that it also has the abili...

  8. Combining unmalted barley and pearling gives good quality brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Hageman, Jos A.; Oguz, Serhat; Noordman, Tom R.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    Brewing with unmalted barley can reduce the use of raw materials, thereby increasing the efficiency of the brewing process. However, unmalted barley contains several undesired components for brewing and has a low enzymatic activity. Pearling, an abrasive milling method, has been proposed as a pre

  9. Low Phytic Acid Barley Responses to Phosphorus Rates

    Science.gov (United States)

    Low phytic acid (LPA) barley (Hordeum vulgare L.) cultivars partition phosphorus in seed tissue differently than conventional barley cultivars through a reduction in seed phytic acid (myo-inositol-1,2,3,4,5,6-hexkisphosphate) coupled with an increase in inorganic phosphorus. The response of the LPA...

  10. US Power Production at Risk from Water Stress in a Changing Climate.

    Science.gov (United States)

    Ganguli, Poulomi; Kumar, Devashish; Ganguly, Auroop R

    2017-09-20

    Thermoelectric power production in the United States primarily relies on wet-cooled plants, which in turn require water below prescribed design temperatures, both for cooling and operational efficiency. Thus, power production in US remains particularly vulnerable to water scarcity and rising stream temperatures under climate change and variability. Previous studies on the climate-water-energy nexus have primarily focused on mid- to end-century horizons and have not considered the full range of uncertainty in climate projections. Technology managers and energy policy makers are increasingly interested in the decadal time scales to understand adaptation challenges and investment strategies. Here we develop a new approach that relies on a novel multivariate water stress index, which considers the joint probability of warmer and scarcer water, and computes uncertainties arising from climate model imperfections and intrinsic variability. Our assessments over contiguous US suggest consistent increase in water stress for power production with about 27% of the production severely impacted by 2030s.

  11. Between a Rock and a Dry Place:The Water-Stressed Moss

    Institute of Scientific and Technical Information of China (English)

    Audra J.Charron; Ralph S.Quatrano

    2009-01-01

    The earliest land plants faced a suite of abiotic stresses largely unknown to their aquatic algal ancestors.The descendants of these plants evolved two general mechanisms for survival in the relatively arid aerial environment.While the vascular plants or 'tracheophytes' developed tissue specializations to transport and retain water,the other main lin-eages of land plants,the bryophytes,retained a simple,nonvascular morphology.The bryophytes-mosses,hornworts,and liverworts-continually undergo a co-equilibration of their water content with the surrounding environment and rely to a great extent on intrinsic cellular mechanisms to mitigate damage due to water stress.This short review will focus on the cellular and molecular responses to dehydration and rehydration in mosses,and offer insights into general plant responses to water stress.

  12. Assessment of Salicylic Acid Impacts on Seedling Characteristic of Cucumber (Cucumis sativus L. under Water Stress

    Directory of Open Access Journals (Sweden)

    Hossein MARDANI

    2012-02-01

    Full Text Available Impacts of various concentrations of salicylic acid (SA on cucumber (Cucumis sativus L. seedling characteristic were evaluated under different water stress levels by using a factorial arrangement based on completely randomized design with three replications at experimental greenhouse of Ferdowsi University of Mashhad, Iran. The studied factors included three water deficit levels (100% FC, 80% FC, and 60% FC considered as first factor and five levels of SA concentrations (0, 0.25, 0.5, 0.75, and 1 mM as second factor. Results showed that foliar application of SA at the highest concentration enhanced leaf area, leaf and dry weight while decreased stomatal conductance under high level of water deficit stress. Though, severe water deficit stress sharply raised the SPAD reading values. In general, exogenous SA application could develop cucumber seedling characteristic and improve water stress tolerance.

  13. Barley Stripe Mosaic Virus and the Frequency of Triploids and Aneuploids in Barley

    DEFF Research Database (Denmark)

    Sandfær, J.

    1973-01-01

    BSMV infection caused a pronounced increase in the frequency of triploid and aneuploid seeds in eleven barley varieties, but with considerable variation in frequency among varieties. In some of the varieties triploids exceeded three per cent. In virus-free material a few triploids were found in m...

  14. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four hom...

  15. Transgenic tobacco plants expressing BoRS1 gene from Brassica oleracea var. acephala show enhanced tolerance to water stress

    Indian Academy of Sciences (India)

    Dongqin Tang; Hongmei Qian; Lingxia Zhao; Danfeng Huang; Kexuan Tang

    2005-12-01

    Water stress is by far the leading environmental stress limiting crop yields worldwide. Genetic engineering techniques hold great promise for developing crop cultivars with high tolerance to water stress. In this study, the Brassica oleracea var. acephala BoRS1 gene was transferred into tobacco through Agrobacterium-mediated leaf disc transformation. The transgenic status and transgene expression of the transgenic plants was confirmed by polymerase chain reaction (PCR) analysis, Southern hybridization and semi-quantitative one step RT-PCR analysis respectively. Subsequently, the growth status under water stress, and physiological responses to water stress of transgenic tobacco were studied. The results showed that the transgenic plants exhibited better growth status under water stress condition compared to the untransformed control plants. In physiological assessment of water tolerance, transgenic plants showed more dry matter accumulation and maintained significantly higher levels of leaf chlorophyll content along with increasing levels of water stress than the untransformed control plants. This study shows that BoRS1 is a candidate gene in the engineering of crops for enhanced water stress tolerance.

  16. Water stress and social vulnerability in the southern United States, 2010-2040

    Science.gov (United States)

    cassandra Johnson-Gaither; John Schelhas; Wayne Zipperer; Ge Sun; Peter V. Caldwell; Neelam Poudyal

    2014-01-01

    Water scarcities are striking in semiarid, subregions of the Southern United States such as Oklahoma and western Texas (Glennon 2009, Sabo et al. 2010). In Texas, water stress has been a constant concern since the 1950s when the state experienced severe drought conditions (Moore 2005). The nearly 2000-mile Rio Grande River, which forms part of the Texas–Mexico border,...

  17. Modulation of leaf conductance by root to shoot signaling under water stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Fan Yi-juan; Liu Qing; Wei Kai-fa; Li Bing-bing; Ren Hui-bo; Gao Zhi-hui; Jia Wen-suo

    2006-01-01

    Signal communication between root and shoot plays a crucial role in plant resistance to water stress. While many studies on root to shoot signals have been carried out in many plant species, no information is available for the model plant, Arabidopsis, whose adoption has great significance for further probing the molecular aspects of long distance stress signals. Here, we introduced the establishment of techniques for investigations of root to shoot signals in Arabidopsis. Stomatal movements in relation to root signals were probed by using these techniques. The results show that Arabidopsis is a suitable plant species for partial roots drying (PRD)experiments. In the PRD system, while no significant differences were found in leaf water potential between well-watered and stressed plants, water stress led to a decrease in leaf conductance, which suggests a regulation of stomatal movements by root to shoot signals. While water stress caused a significant increase in the concentration of sap abscisic acid (ABA) of xylem, no increase in xylem sap pH was observed. Moreover, the increase in the ABA content of xylem coincided with the decrease in leaf conductance,which suggests a possible role of ABA in the regulation of stomatal movements. Infrared temperature images showed that leaf temperatures of PRD plant were higher compared with those of well-watered plants, which further indicates that stomatal movements can be modulated by root signals. The confirmation of root to shoot signaling in Arabidopsis has established a basis for further investigation into the molecular mechanisms of the root to shoot signaling under water stress.

  18. Oil quality of canola cultivars in response to water stress and super absorbent polymer application

    OpenAIRE

    Moghadam,Hamid Reza Tohidi; Hossein ZAHEDI; Ghooshchi,Farshad

    2011-01-01

    Water stress significantly limits plant growth and crop yield. Hence, the efficient management of soil moisture and the study of metabolic changes which occur in response to drought stress are important for agriculture. The present study was conducted to evaluate the effect of six oilseed rape (Brassica napus L.) genotypes (Rgs003, Sarigol, Option500, Hyola401, Hyola330, and Hyola420), with and without drought stress, and with and without the use of super absorbent polymer, on oil quality and...

  19. NMR Study of Water Distribution inside Tomato Cells: Effects of Water Stress

    OpenAIRE

    Musse, M.; Cambert, M.; Mariette, F.

    2010-01-01

    Tomato pericarp tissue was studied by low-field nuclear magnetic res-onance (NMR) relaxometry. Two kinds of experiments were performed to inves-tigate the correlation between multi-exponential NMR relaxation and the subcellular compartments. The longitudinal (T 1 ) versus transverse (T 2 ) relaxation times were first measured on fresh samples and then the transverse relaxation time was measured on samples exposed to water stress. Four signal components were found in all experiments. The resul...

  20. Electrophysiological assessment of water stress in fruit-bearing woody plants.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A

    2014-06-15

    Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a

  1. Effect of Water Stress and Source Limitation on Accumulation and Remobilization of Photoassimilates in Wheat Genotypes

    Directory of Open Access Journals (Sweden)

    M Ezzat Ahmadi

    2012-02-01

    Full Text Available In order to study dry matter accumulation in different developmental stages and photoassimilates remobilization in bread wheat genotypes, a field experiment was carried out using a split split plot design based on a randomized complete block design with three replications in Torogh Agricultural and Natural Resources Research Station (Mashhad, Iran in 2006-2007 and 2007-2008. Main plots were assigned to two levels of water stress treatments; D1: optimum irrigation, and D2: cessation of watering from anthesis to maturity stages. Sub plots were assigned to eight bread wheat genotypes: 9103, 9116, 9203, 9205, 9207, 9212, C-81-10, and Cross Shahi; and source limitations with two levels; P1: no source limitation and P2: inhibition of current photosynthesis from anthesis were in sub-sub plots. Results of combined analysis showed that, grain yield, accumulation of dry matter in different developmental stages (soft dough stage and physiological maturity stage, amount of remobilized dry matter (DMT, remobilization efficiency (RE, remobilization percentage (CPAAG, canopy temperature depression (CTD and leaf relative water content (RWC in anthesis and grain watering stages was significantly affected by water stress treatment. Water stress increased DMT, RE, and CPAAG by 15%, 18%, and 50.6%, respectively; compared with well-watered treatment. Current photosynthesis inhibition increased CPAAG by 43.1%, and decreased DMT and RE by 44% and 60.8%, respectively; compared with P1 treatment. Postanthesis water stress and current photosynthesis inhibition caused source and sink limitations, and decreased CTD and RWC. Considering that C-81-10, 9103 and 9116 genotypes showed the highest grain yield and translocated dry matter under different moisture conditions; thus, these genotypes could be introduced as promising lines in breeding programs for arid and semi-arid regions. Significantly positive correlations between CTD and RWC with grain yield, particularly at grain

  2. Response of Several Spring Barley Cultivars to UV-B Radiation and Ozone Treatment

    Directory of Open Access Journals (Sweden)

    Kristina DĖDELIENĖ

    2011-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Experiments were conducted under controlled environmental conditions to assess the impact of UV-B radiation (8 kJ m-2 d-1 and ozone (240 μg m-3 on seven spring barley (Hordeum vulgare L. cultivars. It has been established that the impact of UV-B and ozone on various spring barley cultivars differs greatly and in most cases the cultivars which are tolerant to an impact of ozone are sensitive to UV-B and vice versa. The impact of both investigated stressors resulted in a more pronounced decrease in chlorophyll a than chlorophyll b content while the chlorophyll a/b ratio in the leaves of different spring barley cultivars has also decreased. The reaction of carotenoids differs greatly depending on a stressor. UV-B radiation causes a significant increase in the content of carotenoids which is most likely a defence reaction against high energy short-wave radiation. The impact of ozone, in contrast, resulted in a decrease in carotenoids in the leaves of different spring barley cultivars.

  3. Effect of Water Stress on Root Distribution and Extension of Different Triticale Genotypes

    Directory of Open Access Journals (Sweden)

    H.R. Khazaei

    2014-12-01

    Full Text Available Root depth and distribution have an important role in drought resistance and optimization of moisture content of soil. This research was carried out in order to consider of root response of triticale genotypes to water stress and recognition of root trait that can effective in resistance of water stress. This experiment was in a factorial experiment based on completely random design on the year 2009. The genotypes of triticale was included (i ET-82-15 (ii ET-82-8 (iii ET-82-17 and commercial triticale genotype Juanillo-92. Two irrigation regimes included 100 and 50 % of field capacity, respectively. The result showed that water stress result in increased 9% of root depth in each plant. Differences between minimum root depth was observed in ET-82-15 rather than maximum root depth in Juanillo-92 was approximately 8.2 centimeters. Late irrigation caused to diminish 25% of root length. Differences between maximum root length in ET-82-15 and minimum root length in ET-82-17 was not significant (p

  4. Assessing canopy PRI from airborne imagery to map water stress in maize

    Science.gov (United States)

    Rossini, M.; Fava, F.; Cogliati, S.; Meroni, M.; Marchesi, A.; Panigada, C.; Giardino, C.; Busetto, L.; Migliavacca, M.; Amaducci, S.; Colombo, R.

    2013-12-01

    This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different irrigation regimes. An intensive field campaign was also conducted concurrently with imagery acquisition to measure relative leaf water content (RWC), active chlorophyll fluorescence (ΔF/Fm‧), leaf temperature (Tl) and Leaf Area Index (LAI). The analysis of the field data showed that at the time of the airborne overpass the maize plots with irrigation deficits were experiencing a moderate water stress, affecting the plant physiological status (ΔF/Fm‧, difference between Tl and air temperature (Tair), and RWC) but not the canopy structure (LAI). Among the different Vegetation Indices (VIs) computed from the airborne imagery the Photochemical Reflectance Index computed using the reflectance at 570 nm as the reference band (PRI570) showed the strongest relationships with ΔF/Fm‧ (r2 = 0.76), Tl - Tair (r2 = 0.82) and RWC (r2 = 0.64) and the red-edge Chlorophyll Index (CIred-edge) with LAI (r2 = 0.64). Thus PRI has been proven to be related to water stress at early stages, before structural changes occurred.

  5. QTL mapping of protein content and seed characteristics under water-stress conditions in sunflower.

    Science.gov (United States)

    Ebrahimi, A; Maury, P; Berger, M; Calmon, A; Grieu, P; Sarrafi, A

    2009-05-01

    The purpose of this study was to identify genomic regions controlling seed protein content, kernel and hull weights, and seed density in water-stress conditions in sunflower (Helianthus annuus L.). The experiments consisted of a split-plot design (water treatment and recombinant inbred lines) with three blocks in two environments (greenhouse and field). High significant variation was observed between genotypes for all traits as well as for water treatment x genotype interaction. Several specific and nonspecific QTLs were detected for all traits under well-watered and water-stress conditions. Two SSR markers, ORS671_2 and HA2714, linked to protein content were identified that have no interaction with water treatments in greenhouse conditions. We also detected the E35M60_4 marker associated with kernel weight that had no interaction with water treatments. A specific QTL for protein content was detected with important phenotypic variance (17%) under water-stress conditions. Overlapping QTLs for protein content and seed density were identified in linkage group 15. This region probably has a peliotropic effect on protein content and seed density. QTLs for protein content colocated with grain weight traits were also identified.

  6. A novel major gene on chromosome 6H for resistance of barley against the barley yellow dwarf virus

    NARCIS (Netherlands)

    Niks, R.E.; Habekuss, A.; Bekele, B.; Ordon, F.

    2004-01-01

    In a mapping population derived from the Ethiopian barley line L94 x Vada, natural infection by barley yellow dwarf virus (BYDV) occurred. While line L94 hardly showed symptoms, Vada was severely affected. The 103 recombinant inbred lines segregated bimodally. The major gene responsible for this res

  7. Genomic Prediction of Barley Hybrid Performance

    Directory of Open Access Journals (Sweden)

    Norman Philipp

    2016-07-01

    Full Text Available Hybrid breeding in barley ( L. offers great opportunities to accelerate the rate of genetic improvement and to boost yield stability. A crucial requirement consists of the efficient selection of superior hybrid combinations. We used comprehensive phenotypic and genomic data from a commercial breeding program with the goal of examining the potential to predict the hybrid performances. The phenotypic data were comprised of replicated grain yield trials for 385 two-way and 408 three-way hybrids evaluated in up to 47 environments. The parental lines were genotyped using a 3k single nucleotide polymorphism (SNP array based on an Illumina Infinium assay. We implemented ridge regression best linear unbiased prediction modeling for additive and dominance effects and evaluated the prediction ability using five-fold cross validations. The prediction ability of hybrid performances based on general combining ability (GCA effects was moderate, amounting to 0.56 and 0.48 for two- and three-way hybrids, respectively. The potential of GCA-based hybrid prediction requires that both parental components have been evaluated in a hybrid background. This is not necessary for genomic prediction for which we also observed moderate cross-validated prediction abilities of 0.51 and 0.58 for two- and three-way hybrids, respectively. This exemplifies the potential of genomic prediction in hybrid barley. Interestingly, prediction ability using the two-way hybrids as training population and the three-way hybrids as test population or vice versa was low, presumably, because of the different genetic makeup of the parental source populations. Consequently, further research is needed to optimize genomic prediction approaches combining different source populations in barley.

  8. Replication of DNA during barley endosperm development

    DEFF Research Database (Denmark)

    Giese, H.

    1992-01-01

    The incorporation of [6-H-3]-thymidine into DNA of developing barley end sperm was examined by autoradiography of cross sections of seeds and DNA analysis. The majority of nuclear divisions took place in the very young endosperm, but as late as 25 days after anthesis there was evidence for DNA...... replication. The DNA content of the endosperm increases during development and in response to nitrogen application in parallel to the storage protein synthesis profile. The hordein genes were hypersensitive to DNase I treatment throughout development....

  9. Transglycosylation by barley α-amylase 1

    DEFF Research Database (Denmark)

    Mótyán, János A.; Fazekas, Erika; Mori, Haruhide

    2011-01-01

    The transglycosylation activity of barley α-amylase 1 (AMY1) and active site AMY1 subsite mutant enzymes was investigated. We report here the transferase ability of the V47A, V47F, V47D and S48Y single mutants and V47K/S48G and V47G/S48D double mutant AMY1 enzymes in which the replaced amino acid...... DP 2, DP 3 and DP 5 were successfully applied to detect activity of Bacillus stearothermophilus maltogenic α-amylase, human salivary α-amylase and Bacillus licheniformis α-amylase, respectively in a fast and simple fluorometric assay....

  10. Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress

    Directory of Open Access Journals (Sweden)

    Hemmat A. Ibrahim

    2016-12-01

    Full Text Available In the greenhouse experiment, wheat plants (Triticum aestivum L. cv. Giza 168 were treated with 10 mM of maltose and trehalose as foliar spray using Tween 20 as wetting agent at 15, 30 and 45 days post sowing with two times of irrigation at 10 and 20 days intervals. Two samples were taken after 45 and 120 days from planting. At the first sample date, plant height, shoot fresh and dry weights and leaf area were recorded. At harvesting time (the second sample no. of spikes/plant, no. of spikelets/plant and weight of 1000 grains were taken. Chemical analyses were conducted in leaves at the first sample date for determination of phenolic compounds, flavonoids, amino acids, reducing sugars, total soluble sugars, protein, proline, PAL, POD, ascorbate peroxidase, catalase, PPO and MDA. The obtained results indicated that maltose and trehalose had significant and positive effect on most growth parameters. Opposite trend was found in plant height, no. of spike/plant and weight of 1000 grains by drought treatment. Maltose and trehalose treatments enhanced in the most biochemical components whereas they decreased PAL and catalase activity. Variable trends in amino acids and ascorbate peroxidase were observed by drought. However, the drought has more stimulative effect in most cases than the first time period of irrigation. The results concluded that foliar applications with maltose or trehalose induced water stress tolerance in wheat plants. Maltose treatment gave the best results in most morphological parameters, grains yield and biochemical components than trehalose treatment.

  11. Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates.

    Science.gov (United States)

    Jacquet, Jean-Sébastien; Bosc, Alexandre; O'Grady, Anthony; Jactel, Hervé

    2014-04-01

    Climate change is expected to increase both pest insect damage and the occurrence of severe drought. There is therefore a need to better understand the combined effects of biotic and abiotic damage on tree growth in order to predict the multi-factorial effect of climate change on forest ecosystem productivity. Indeed, the effect of stress interactions on tree growth is an increasingly important topic that greatly lacks experiments and data, and it is unlikely that the impact of combined stresses can be extrapolated from the outcomes of studies that focused on a single stress. We developed an original manipulative study under real field conditions where we applied artificial defoliation and induced water stress on 10-year-old (∼10 m high) maritime pine trees (Pinus pinaster Ait.). Tree response to combined stresses was quantitatively assessed following tree secondary growth and carbohydrate pools. Such a design allowed us to address the crucial question of combined stresses on trees under stand conditions, sharing soil supplies with neighboring trees. Our initial hypotheses were that (i) moderate defoliation can limit the impact of water stress on tree growth through reduced transpiration demand by a tree canopy partly defoliated and that (ii) defoliation results in reduced non-structural carbohydrate (NSC) pools, affecting tree tolerance to drought. Our results showed additive effects of defoliation and water stress on tree growth and contradict our initial hypothesis. Indeed, under stand conditions, we found that partial defoliation does not limit the impact of water stress through reduced transpiration. Our study also highlighted that, even if NSC in all organs were affected by defoliation, tree response to water stress was not triggered. We found that stem NSC were maintained or increased during the entire growing season, supporting literature-based hypotheses such as an active maintenance of the hydraulic system or another limiting resource for tree growth

  12. Characterization of volatile aroma compounds in different brewing barley cultivars.

    Science.gov (United States)

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  13. Influence of Temperature on the Extractibility of Polysaccharides in Barley

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2011-10-01

    Full Text Available Barley contains substantial amounts of both soluble and insoluble non-starch polysaccharides (NSP. The main watersoluble NSP in barley are highly viscous β-glucans. Monogastric animals, including humans and birds, cannotsynthesize β-glucanase, and the amount of β-glucanase derived from barley grain and bacteria in the gastrointestinaltract is insufficient to completely hydrolyze β-glucans. In the present investigation, we have studied the influence oftemperature and heating time on the extractibility of soluble polysaccharides in barley. Heating the barley samples at60°C and 80°C before extraction has the effect of lowering the soluble fraction of the polysaccharides. The dynamicviscosity values of water extracts from barley decreased up to 21.68% when heating at 60ºC for 15 minutes, and upto 25.30% when heating at 80ºC for 15 minutes, when the determinations were made immediately after extractseparation. Heating the barley samples for 15 minutes at 80°C deactivates the endogenous hydrolytic enzymes.

  14. Effects of water stress on the composition and immunoreactive properties of gliadins from two wheat cultivars: Nawra and Tonacja.

    Science.gov (United States)

    Brzozowski, Bartosz; Stasiewicz, Katarzyna

    2017-03-01

    Water shortage during wheat vegetation causes changes in the composition of gliadins in grains, which can lead to changes in their immunoreactive properties. The investigated wheat cultivars exposed to water stress accumulated significantly lower amounts (P Water shortage results in a decreased share of αβ and γ fractions in total gliadins. Grains of wheat cultivated under water stress contain significantly higher (P Water stress promotes an increase in the share of P and Q/E residues in gliadins. In protein samples R5 antibodies recognized increased amounts of gliadins matching the QQPFP sequence. Wheat proteins also reacted with IgE antibodies isolated from subjects allergic to gluten. Cultivation of wheat under conditions of water stress results in the qualitative and quantitative changes of gliadins by increasing their immunoreactivity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Molecular size and net charge of pathogenesis-related enzymes from barley (Hordeum vulgare L., v. Karat) infected with Drechslera teres f. teres (Sacch.) Shoem.

    Science.gov (United States)

    Rothe, G M; Welschbillig, N; Reiss, E

    1998-05-01

    Molecular size and net charge of isoforms of pathogenesis-related (PR) chitinase, beta-1,3-glucanase and peroxidase were studied in uninfected barley (Hordeum vulgare L., v. Karat) leaves and in barley leaves infected with the pathogenic fungus Drechslera teres f. teres (Sacch.) Shoem. Molecular characteristics were determined by time-dependent polyacrylamide gradient gel electrophoresis under native conditions and by applying an extended version of the computer program MOL-MASS (Rothe, G. M., Weidmann, H., Electrophoresis 1991, 12, 703-709). Uninfected barley leaves contained predominantly one peroxidase isozyme but also three very weak peroxidases. Activities of all of these three peroxidases increased considerably after infection with Drechslera teres. The molecular masses of peroxidases 1 and 3 were estimated to be 38 +/- 5 and 42 +/- 7 kDa and their apparent valences at pH 8.4 were Z = 3.13 and 3.20, respectively. Amongst the chitinase isoforms, chitinase 1 and chitinase 2 appeared after infection, while chitinase 3 was also observed in uninfected leaves of barley. The molecular mass of chitinase 3 (31 +/- 6 kDa; f/fo = 1.20) was larger than that of chitinase 1 (20 +/- 2 kDa; f/fo = 1.04) and chitinase 2 (23 +/- 3 kDa; f/fo = 1.06). The valence of constitutive chitinase 3 (Z = 1.44 +/- 0.81) at pH 8.4 was lower than that of adaptive chitinase 1 (Z = 3.27 +/- 1.02) and chitinase 2 (Z = 2.96 +/- 1.38). Infection of barley leaves with Drechslera teres also induced the hydrolytic enzyme beta-1,3-glucanase 1; beta-1,3-glucanase 2 appeared in uninfected and in infected leaves. Constitutive beta-1,3-glucanase 2 was smaller (molecular mass 19 +/- kDa; f/fo = 1.05) than adaptive beta-1,3-glucanase 1 (molecular mass 26 +/- 4 kDa; f/fo = 1.07). The valence of adaptive beta-1,3-glucanase 1 (Z = 9.58 +/- 4.17) was approximately threefold that of beta-1,3-glucanase 2 (Z = 2.80 +/- 0.93).

  16. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.

    Science.gov (United States)

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-10-18

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVRa gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVRa genes and identified AVRa1 and AVRa13, encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVRa1 and AVRa13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVRA1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVRA1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVRA1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.

  17. Expression and genomic integration of transgenes after Agrobacterium-mediated transformation of mature barley embryos.

    Science.gov (United States)

    Uçarlı, C; Tufan, F; Gürel, F

    2015-02-06

    Mature embryos in tissue cultures are advantageous because of their abundance and rapid germination, which reduces genomic instability problems. In this study, 2-day-old isolated mature barley embryos were infected with 2 Agrobacterium hypervirulent strains (AGL1 and EHA105), followed by a 3-day period of co-cultivation in the presence of L-cystein amino acid. Chimeric expression of the b-glucuronidase gene (gusA) directed by a viral promoter of strawberry vein banding virus was observed in coleoptile epidermal cells and seminal roots in 5-day-old germinated seedlings. In addition to varying infectivity patterns in different strains, there was a higher ratio of transient b-glucuronidase expression in developing coleoptiles than in embryonic roots, indicating the high competency of shoot apical meristem cells in the mature embryo. A total of 548 explants were transformed and 156 plants developed to maturity on G418 media after 18-25 days. We detected transgenes in 74% of the screened plant leaves by polymerase chain reaction, and 49% of these expressed neomycin phosphotransferase II gene following AGL1 transformation. Ten randomly selected T0 transformants were analyzed using thermal asymmetric interlaced polymerase chain reaction and 24 fragments ranged between 200-600 base pairs were sequenced. Three of the sequences flanked with transferred-DNA showed high similarity to coding regions of the barley genome, including alpha tubulin5, homeobox 1, and mitochondrial 16S genes. We observed 70-200-base pair filler sequences only in the coding regions of barley in this study.

  18. Methane emissions from feedlot cattle fed barley or corn diets.

    Science.gov (United States)

    Beauchemin, K A; McGinn, S M

    2005-03-01

    Methane emitted from the livestock sector contributes to greenhouse gas emissions worldwide. Understanding the variability in enteric methane production related to diet is essential to decreasing uncertainty in greenhouse gas emission inventories and to identifying viable greenhouse gas reduction strategies. Our study focused on measuring methane in growing beef cattle fed corn- or barley-based diets typical of those fed to cattle in North American feedlots. The experiment was designed as a randomized complete block (group) design with two treatments, barley and corn. Angus heifer calves (initial BW = 328 kg) were allocated to two groups (eight per group), with four cattle in each group fed a corn or barley diet. The experiment was conducted over a 42-d backgrounding phase, a 35-d transition phase and a 32-d finishing phase. Backgrounding diets consisted of 70% barley silage or corn silage and 30% concentrate containing steam-rolled barley or dry-rolled corn (DM basis). Finishing diets consisted of 9% barley silage and 91% concentrate containing barley or corn (DM basis). All diets contained monensin (33 mg/kg of DM). Cattle were placed into four large environmental chambers (two heifers per chamber) during each phase to measure enteric methane production for 3 d. During the backgrounding phase, DMI was greater by cattle fed corn than for those fed barley (10.2 vs. 7.6 kg/d, P cattle were in the chambers; thus, methane emissions (g/d) reported may underestimate those of the feedlot industry. Methane emissions per kilogram of DMI and as a percentage of GE intake were not affected by grain source during the backgrounding phase (24.6 g/kg of DMI; 7.42% of GE), but were less (P methane emissions of cattle fed high-forage backgrounding diets and barley-based finishing diets. Mitigating methane losses from cattle will have long-term environmental benefits by decreasing agriculture's contribution to greenhouse gas emissions.

  19. Foliar Shielding: How Non-Meteoric Water Deposition Helps Leaves Survive Drought by Reducing Incoming Energy

    Science.gov (United States)

    Gerlein-Safdi, C.; Sinkler, C. J.; Caylor, K. K.

    2015-12-01

    The uptake of water from the surface of the leaves, called foliar uptake, is common when rainfall is scarce and non-meteoric water (dew or fog) is the only source of water. However, many species have very water repellent leaves. Past studies have not differentiated between the uptake of water and the impact of the droplets on the energy balance of the leaf, which we call 'foliar shielding'. Leaves of the hydrophobic Colocasia esculenta were misted with isotopically enriched water in order to mimic non-meteoric water deposition. The leaf water potential and water isotopes were monitored for different water-stress conditions. A new protocol was developed for the fast analysis of leaf water isotopes using the Picarro induction module coupled to a laser spectrometer. Comparing the isotopic composition of the bulk leaf water at the end of the experiment, the misted leaves exhibit a d-excess higher by c. 63‰ than the control ones (P < 0.001). Low d-excess values are commonly associated with a high transpiration rate. Linking isotopic enrichment with leaf transpiration rate, we find a c. 30% decrease in transpiration rate for the treated leaves compared to the control (P < 0.001). Water-stressed leaves that were misted regularly exhibit a c. 64% smaller decline in water potential than water-stressed leaves that did not get misted (P < 0.05). Three possible mechanisms are proposed for the interaction of water droplets with the leaf energy and water balance. Comparing three previous foliar uptake studies to our results, we conclude that foliar shielding has a comparable yet opposite effect to foliar uptake on leaf water isotopes and that it is necessary to consider both processes when estimating foliar uptake of fog water.

  20. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  1. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river.

    Science.gov (United States)

    Kalogianni, Eleni; Vourka, Aikaterini; Karaouzas, Ioannis; Vardakas, Leonidas; Laschou, Sofia; Skoulikidis, Nikolaos Th

    2017-12-15

    Water stress is a key stressor in Mediterranean intermittent rivers exacerbating the negative effects of other stressors, such as pollutants, with multiple effects on different river biota. The current study aimed to determine the response of macroinvertebrate and fish assemblages to instream habitat and water chemistry, at the microhabitat scale and at different levels of water stress and pollution, in an intermittent Mediterranean river. Sampling was conducted at high and low summer discharge, at two consecutive years, and included four reaches that were targeted for their different levels of water stress and pollution. Overall, the macroinvertebrate fauna of Evrotas River indicated high resilience to intermittency, however, variation in community structure and composition occurred under acute water stress, due to habitat alteration and change in water physico-chemistry, i.e. water temperature increase. The combined effects of pollution and high water stress had, however, pronounced effects on species richness, abundance and community structure in the pollution impacted reach, where pollution sensitive taxa were almost extirpated. Fish response to drought, in reaches free of pollution, consisted of an increase in the abundance of the two small limnophilic species, coupled with their shift to faster flowing riffle habitats, and a reduction in the abundance of the larger, rheophilic species. In the pollution impacted reach, however, the combination of pollution and high water stress led to hypoxic conditions assumed to be the leading cause of the almost complete elimination of the fish assemblage. In contrast, the perennial Evrotas reaches with relatively stable physicochemical conditions, though affected hydrologically by drought, appear to function as refugia for fish during high water stress. When comparing the response of the two biotic groups to combined acute water stress and pollution, it is evident that macroinvertebrates were negatively impacted, but fish

  2. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  3. STUDIES ON SYNBIOTIC BARLEY GRAIN EXTRACT AGAINST SOME HUMAN PATHOGENS

    Directory of Open Access Journals (Sweden)

    T. Sheela

    2012-01-01

    Full Text Available This study evaluated that effect of prebiotic food containing oligosaccharide to enhance the growth and activity of probiotic strains. Barley grains probioticated using different strains of probiotics are Lactobacillus kefiranofaciens, Candida kefir,and saccharomyces boluradii. To select a suitable prebiotics like inulin for the development of Synbiotic barley and tested for antibacterial activity against diarrhoea causing pathogen such as Esherichia coli, Staphylococcus aureus, Salmonella paratyphi A, Shigella dysenteriae, Vibrio cholerae. Analysis of identified compound from synbiotic barley grain using GC-MS.

  4. Goodbye, Mandatory Maternity Leaves

    Science.gov (United States)

    Nation's Schools, 1972

    1972-01-01

    In precedent-setting decrees, courts and federal and State authorities have branded compulsory maternity leaves either unconstitutional or illegal. School administrators are urged to prod boards of education to adopt more lenient maternity leave policies -- now. (Author)

  5. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2014-01-01

    Full Text Available The role of arbuscular mycorrhizal fungi in alleviating water stress is well documented. In order to study the effects of water stress and two different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower, a field experiment as split plot design with three replications was conducted in the Research Field Station, Zabol University, Zabol, Iran in 2011. Water stress treatments included control as 90% of field capacity (W1, 70% field capacity (W2 and 50% field capacity (W3 assigned to the main plots and two different mycorrhiza species, consisting of M1 = control (without any inoculation, M2 = Glumus mossea and M3 = Glumus etanicatum as sub plots. Results showed that by increasing water stress from control (W1 to W3 treatment, grain yield was significantly decreased. The reduction in the level of W3 was 15.05%. The content of potassium in seeds significantly decreased due to water stress but water stress upto W2 treatment increased the content of phosphorus, nitrogen and oil content of seeds. In between two species of mycorrhiza in sunflower plants, Glumus etanicatum had the highest effect on grain yield and these elements in seeds and increased both.

  6. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.

    Science.gov (United States)

    Voothuluru, Priyamvada; Anderson, Jeffrey C; Sharp, Robert E; Peck, Scott C

    2016-09-01

    Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress.

  7. Protein phosphorylation is involved in the water stress induced ABA accumulation in the roots of Malus hupehensis Rehd

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water stress-induced ABA accumulation plays a key role in the root to shoot communication and/or the cell to cell signaling under the soil stresses. The signaling of the water stress itself that leads to the accumulation, however, is less known. In this study, we subjected the roots of Malus hupehensis seedlings to water stress treatment and investigated the ABA accumulation in relation to protein phosphorylation. Our results showed that ABA accumulation could be substantially triggered in 40 min and reached 4 folds in 100 min after treatment with 30% PEG 6000 (polyethylene glycol). The water stress treatment also led to a substantial enhancement of total kinase activity, assessed with histone-Ⅲ as substrate, in 15 min and a maximum enhancement in 30 min before it declined to initial level. The Ca2+-dependent kinase activity showed a similar, if not more sensitive, trend. When the roots were fed with labeled 32pATP, water stress enhanced the labeling of proteins, which showed a maximum labeling at 40 min. Two inhibitors of protein kinases, Quercetin and H7, effectively diminished or completely blocked the ABA accumulation under the stress treatment. It is therefore suggest that protein phosphorylation is involved in the signaling of the water stress-induced ABA accumulation.

  8. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material.

    Science.gov (United States)

    Steiner, Elisabeth; Auer, Andrea; Becker, Thomas; Gastl, Martina

    2012-03-15

    Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. The quality attributes of barley, malt, kettle-full-wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two-dimensional polyacrylamide gel electrophoresis was used. It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry.

  9. Structural relationships among central cell and egg apparatus cells of barley as related to transmission of male gametes

    Directory of Open Access Journals (Sweden)

    David D. Cass

    2014-01-01

    Full Text Available Barley embryo sacs were examined using light and electron microscopy before and during fertilization. One synergid degenerates after pollination with loss of nuclear and cytoplasmic organization and cell wall material between synergid and central cell. Some wall between egg and central cell is also lost. After pollen tube discharge into the degenerate synergid, the male gametes leave the synergid entering a pocket of central cell cytoplasm separated from the synergid only by membranes. This could provide for efficient gamete transmission and possible recognition through specific membrane contacts.

  10. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply

    DEFF Research Database (Denmark)

    Tiong, Jingwen; Mcdonald, Glenn K.; Genc, Yusuf

    2014-01-01

    were also generated to further understand the functions of HvZIP7 in metal transport. HvZIP7 is strongly induced by Zn deficiency, primarily in vascular tissues of roots and leaves, and its protein was localized in the plasma membrane. These properties are similar to its closely related homologs...... in dicots. Overexpression of HvZIP7 in barley plants increased Zn uptake when moderately high concentrations of Zn were supplied. Significantly, there was a specific enhancement of shoot Zn accumulation, with no measurable increase in iron (Fe), manganese (Mn), copper (Cu) or cadmium (Cd). HvZIP7 displays...

  11. SAVED LEAVE BONUS

    CERN Multimedia

    Division des ressources humaines

    2000-01-01

    Staff members participating in the RSL programme are entitled to one additional day of saved leave for each full period of 20 days remaining in their saved leave account on 31 December 1999.Allowing some time for all concerned to make sure that their periods of leave taken in 1999 are properly registered, HR division will proceed with the crediting of the appropriate number of days in the saved leave accounts from 25 January 2000.Human Resources DivisionTel.73359

  12. Parental leave in Belgium

    OpenAIRE

    Maron, Leila; Meulders, Danièle; O'Dorchai, Sile Padraigin

    2008-01-01

    All over Europe, parental leaves are essentially taken by women which leads to perpetuate gender inequalities in the labour market. The economic literature illustrates the issues at stake and is presented in this article to contextualise the analysis of the Belgian parental leave system. The Belgian parental leave system has two strong features: it is individualised and it offers a relatively short leave. The system could be improved by the implementation of a wage-related payment. However, p...

  13. Barley yellow dwarf virus infection and elevated CO2 alter the antioxidants ascorbate and glutathione in wheat.

    Science.gov (United States)

    Vandegeer, Rebecca K; Powell, Kevin S; Tausz, Michael

    2016-05-20

    Plant antioxidants ascorbate and glutathione play an important role in regulating potentially harmful reactive oxygen species produced in response to virus infection. Barley yellow dwarf virus is a widespread viral pathogen that systemically infects cereal crops including wheat, barley and oats. In addition, rising atmospheric CO2 will alter plant growth and metabolism, including many potential but not well understood effects on plant-virus interactions. In order to better understand the wheat-BYDV interaction and any potential changes under elevated CO2, the total concentration and oxidised fraction of ascorbate and glutathione was measured in leaves of a susceptible wheat cultivar (Triticum aestivum L. 'Yitpi') infected with Barley yellow dwarf virus-PAV (Padi Avenae virus) and grown under elevated CO2 in controlled environment chambers. Virus infection decreased total leaf ascorbate and glutathione concentrations and increased the fraction of oxidised ascorbate (dehydroascorbate). Elevated CO2 decreased the fraction of oxidised ascorbate. In this work, we demonstrate that systemic infection by a phloem-restricted virus weakens the antioxidant pools of ascorbate and glutathione. In addition, elevated CO2 may decrease oxidative stress, for example, from virus infection, but there was no direct evidence for an interactive effect between treatments.

  14. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Cheng Yuan

    Full Text Available Barley stripe mosaic virus (BSMV is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS, magnesium chelatase subunit H (ChlH, and plastid transketolase (TK gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5 also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

  15. Leaving home in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Rikke Skovgaard

    2015-01-01

    The paper focuses on ethnic differences in the timing and patterns of leaving the parental home. Leaving home is a key transition in the life course of the individual, and extensive research has been conducted on the timing and patterns of leaving it. However, ethnic differences in these patterns...

  16. Fluorescence, PRI and canopy temperature for water stress detection in cereal crops

    Science.gov (United States)

    Panigada, C.; Rossini, M.; Meroni, M.; Cilia, C.; Busetto, L.; Amaducci, S.; Boschetti, M.; Cogliati, S.; Picchi, V.; Pinto, F.; Marchesi, A.; Colombo, R.

    2014-08-01

    Narrow-band multispectral remote sensing techniques and thermal imagery were investigated for water stress detection in cereal crops. Visible and near infrared AISA Eagle (Specim, Finland) and thermal AHS-160 (Sensytech Inc., USA) imageries were acquired with an airborne survey on a farm-level experimental site where maize (Zea mays L.) and sorghum (Sorghum bicolor L.) were grown with three different irrigation treatments. Vegetation biophysical and eco-physiological measurements were collected concurrently with the airborne campaign. Leaf fluorescence yield (ΔF/Fm‧) resulted to be a good indirect measure of water stress. Therefore, ΔF/Fm‧ measurements were compared against remotely sensed indicators: (i) the Photochemical Reflectance Index (PRI), (ii) the sun-induced chlorophyll fluorescence at 760 nm (F760), retrieved by the Fraunhofer line depth method and (iii) the canopy temperature (TC) calculated decoupling soil and vegetation contributions. TC was related to ΔF/Fm‧ with the highest determination coefficient (R2 = 0.65), followed by PRI586 (reference band at 586 nm) (R2 = 0.51). The relationship with F760 was significant but weaker (R2 = 0.36). The coefficient of determination increased up to 0.54 when pigment concentration was considered by multiplying ΔF/Fm‧ and chlorophyll content, confirming the close relationship between passive fluorescence signal, pigment content and light photosystem efficiency. PRI586, F760 and TC maps were produced in maize and sorghum plots. The differences in the average values of PRI586, F760 and TC extracted from the plots with different water treatments showed that water treatments were well discriminated in maize plots by the three remotely sensed indicators. This was confirmed by the visual observation of the PRI586, F760 and TC maps, while in sorghum plots, F760 and TC appeared more sensitive to water stress compared to PRI586.

  17. Water stress as a trigger of demand change: exploring the implications for drought planning

    Science.gov (United States)

    Garcia, M. E.; Islam, S.; Portney, K. E.

    2015-12-01

    Drought in the Anthropocene is a function of both supply and demand. Despite its importance, demand is typically incorporated into planning models exogenously using a single scenario of demand change over time. Alternatively, demand is incorporated endogenously in hydro-economic models based on the assumption of rationality. However, actors are constrained by limited information and information processing capabilities, casting doubt on the rationality assumption. Though the risk of water shortage changes incrementally with demand growth and hydrologic change, significant shifts in management are punctuated and often linked to periods of stress. The observation of lasting decreases in per capita demands in a number of cities during periods of water stress prompts an alternate hypothesis: the occurrence of water stress increases the tendency of cities to promote and enforce efficient technologies and behaviors and the tendency of users to adopt them. We show the relevance of this hypothesis by building a model of a hypothetical surface water system to answer the following question: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? The model links the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). Under SOP, demand is fulfilled unless available supply drops below demand; under HP, water releases are reduced in anticipation of a deficit to decrease the risk of a large shortfall. The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result per capita demand decrease during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies.

  18. Weekly Water Stress Monitoring in a Savannah Environment using a new Data Fusion Drought Index

    Science.gov (United States)

    Azmi, M.; Rudiger, C.; Walker, J. P.

    2015-12-01

    Due to the increasing pressure on water resources, water stress monitoring has become one of the most significant issues in water resources planning and management, especially during periods of extreme climate conditions. The present study compares the performance of four currently used data fusion based drought indices (DFDIs) to evaluate the weekly water stress at the Howard Springs OzFlux Tower in Northern Australia, covering a 3-year period from January 2011 to December 2013. In addition, a new DFDI has been developed and applied to address the individual shortcomings of the traditional indices. The proposed DFDI comprehensively considers all types of drought through a selection of indices and proxies associated with each drought type (water, vegetation etc). Here, weekly data from three different data sources (OzFlux Network, Asia-Pacific Water Monitor, and MODIS-Terra satellite) were utilized for the evaluations. To derive the new DFDI, an appropriate set of individual standardized drought indices (SDIs) was derived, that are categorized through an advanced clustering method. For two groups in which the clustered SDIs best reflected the water availability and vegetation conditions, the variables are aggregated based on an averaging between the standardized first principal components of three different multivariate methods of PCA, FA and ICA. Then, considering those aggregated indices as well as the classifications of months into dry/wet and active/non-active, the time series of the proposed DFDI is finalized. A comparison, employing the Spearman correlation coefficient, between the proposed index and the traditional data fusion based indices shows a range of correlations from 0.46 to 0.85. The results underline that the proposed index can be more reliable in compare to the previous indices, due to simultaneously relating hydro-meteorological and ecological concepts to define the actual water stress throughout the study area.

  19. Crop and soil-water stress coefficients of tomato in the glass-greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Z. Razmi

    2011-12-01

    Full Text Available In order to determine the actual evapotranspiration of tomato in the greenhouse, crop and soil-water stress coefficients were surveyed. To compare the actual evapotranspiration at different irrigation intervals (1, 2, 4, 6 and 8-day, a completely randomized blocks design with four replications was performed. The present study was carried out in a greenhouse covered by 4 mm thick glass. Maximum and minimum temperatures and solar radiation were measured inside the greenhouse once in 24 h. Relative humidity was measured in the greenhouse once in 2 h. Microclimate data were measured in a metrological station, 100 m from the greenhouse, simultaneously, at outside the greenhouse. Reference crop evapotranspiration was calculated by FAO Penman-Monteith method for inside and outside of the greenhouse. Results indicated that the reference evapotranspiration in the inside of the greenhouse was 73% of outside the greenhouse. The actual evapotranspiration of tomato for inside of the greenhouse was determined by using the water balance method. By using the pergeometer and albidometer data, the crop coefficient for inside the greenhouse at three different stages (development, mid, and end of growth was determined as 0.85, 1.0 and 0.77, respectively. Soil-water stress coefficient, with readily available coefficient of 0.7, was determined to be in the range of 0.53 to 0.98 for all the treatments. This coefficient was 0.88 for water-stressed 4-day treatment, and reduced to 0.72 for 8-day treatment.

  20. Suitability of Stem Diameter Variations as an Indicator of Water Stress of Cotton

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-yang; DUAN Ai-wang; MENG Zhao-jiang; LIU Zu-gui

    2006-01-01

    Water stress effects on stem diameter variations (SDV) were studied in a pot experiment on cotton (Gossypium hirustum L. Meimian99B). Water restriction was imposed at the flowering stage and were compared with a well-watered control treatment. The volumetric soil water content (θv) and SDV were monitored continuously. The objective was to determine the feasibility of using the parameters derived from stem diameter measurements, including maximum daily stem shrinkage (MDS), maximum daily stem diameter (MXSD), and minimum daily stem diameter (MNSD) as indicators of plant water stress. The different behavior of SDV was founded at different growth stages. At stem-maturing stage, MDS increased and MNSD decreased in deficit-irrigated plants compared with the control plants, therefore, it appeared that MDS and MNSD ccould be used as available indicators of plant water status. At stem growth stage, there were no significant differences in MDS values between treatments but MXSD and MNSD responded sharply to soil water deficits. Thus, for rapidly growing cotton, the course of MXSD or MNSD with time offered a consistent stress indicator. SDV was also closely related to atmospheric factors, solar radiation (Rs) and vapor pressure deficit (VPD) were found to be the predominant factors affecting MDS, followed by the relative humidity (RH), while air temperature (Ta) and wind velocity had the least effect. A good linear relationship was founded (r2 = 0.921) between MDS and environmental variables (Rs, VPD, RH, and θv), which can be used to establish a reference value for detecting plant water stress based on the MDS patterns.

  1. Modelling the spectral response of the desert tree Prosopis tamarugo to water stress

    Science.gov (United States)

    Chávez, R. O.; Clevers, J. G. P. W.; Herold, M.; Ortiz, M.; Acevedo, E.

    2013-04-01

    In this paper, we carried out a laboratory experiment to study changes in canopy reflectance of Tamarugo plants under controlled water stress. Tamarugo (Prosopis tamarugo Phil.) is an endemic and endangered tree species adapted to the hyper-arid conditions of the Atacama Desert, Northern Chile. Observed variation in reflectance during the day (due to leaf movements) as well as changes over the experimental period (due to water stress) were successfully modelled by using the Soil-Leaf-Canopy (SLC) radiative transfer model. Empirical canopy reflectance changes were mostly explained by the parameters leaf area index (LAI), leaf inclination distribution function (LIDF) and equivalent water thickness (EWT) as shown by the SLC simulations. Diurnal leaf movements observed in Tamarugo plants (as adaptation to decrease direct solar irradiation at the hottest time of the day) had an important effect on canopy reflectance and were explained by the LIDF parameter. The results suggest that remote sensing based assessment of this desert tree should consider LAI and canopy water content (CWC) as water stress indicators. Consequently, we tested fifteen different vegetation indices and spectral absorption features proposed in literature for detecting changes of LAI and CWC, considering the effect of LIDF variations. A sensitivity analysis was carried out using SLC simulations with a broad range of LAI, LIDF and EWT values. The Water Index was the most sensitive remote sensing feature for estimating CWC for values less than 0.036 g/cm2, while the area under the curve for the spectral range 910-1070 nm was most sensitive for values higher than 0.036 g/cm2. The red-edge chlorophyll index (CIred-edge) performed the best for estimating LAI. Diurnal leaf movements had an effect on all remote sensing features tested, particularly on those for detecting changes in CWC.

  2. A barley SKP1-like protein controls abundance of the susceptibility factor RACB and influences the interaction of barley with the barley powdery mildew fungus.

    Science.gov (United States)

    Reiner, Tina; Hoefle, Caroline; Hückelhoven, Ralph

    2016-02-01

    In an increasing number of plant-microbe interactions, it has become evident that the abundance of immunity-related proteins is controlled by the ubiquitin-26S proteasome system. In the interaction of barley with the biotrophic barley powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh), the RAC/ROP [RAT SARCOMA-related C3 botulinum toxin substrate/RAT SARCOMA HOMOLOGUE (RHO) of plants] guanosine triphosphatase (GTPase) HvRACB supports the fungus in a compatible interaction. By contrast, barley HvRBK1, a ROP-binding receptor-like cytoplasmic kinase that interacts with and can be activated by constitutively activated HvRACB, limits fungal infection success. We have identified a barley type II S-phase kinase 1-associated (SKP1)-like protein (HvSKP1-like) as a molecular interactor of HvRBK1. SKP1 proteins are subunits of the SKP1-cullin 1-F-box (SCF)-E3 ubiquitin ligase complex that acts in the specific recognition and ubiquitination of protein substrates for subsequent proteasomal degradation. Transient induced gene silencing of either HvSKP1-like or HvRBK1 increased protein abundance of constitutively activated HvRACB in barley epidermal cells, whereas abundance of dominant negative RACB only weakly increased. In addition, silencing of HvSKP1-like enhanced the susceptibility of barley to haustorium establishment by Bgh. In summary, our results suggest that HvSKP1-like, together with HvRBK1, controls the abundance of HvRACB and, at the same time, modulates the outcome of the barley-Bgh interaction. A possible feedback mechanism from RAC/ROP-activated HvRBK1 on the susceptibility factor HvRACB is discussed.

  3. Biochemical similarities between soluble and membrane-bound calcium-dependent protein kinases of barley

    Energy Technology Data Exchange (ETDEWEB)

    Klimczak, L.J.; Hind, G. (Brookhaven National Laboratory, Upton, NY (USA))

    1990-04-01

    The soluble and membrane-bound forms of the calcium-dependent protein kinase from barley leaves (Hordeum vulgare L. cv. Borsoy) have been partially purified and compared. Both forms showed an active polypeptide of 37 kilodaltons on activity gels with incorporated histone as substrate. They eluted from chromatofocusing columns at an identical isoelectric point of pH 4.25 {plus minus} 0.2, and also comigrated on several other chromatographic affinity media including Matrex Gel Blue A, histone-agarose, phenyl-Sepharose, and heparin-agarose. Both activities comigrated with chicken ovalbumin during gel filtration through Sephacryl S-200, indicating a native molecular mass of 45 kilodaltons. The activities share a number of enzymatic properties including salt and pH dependence, free calcium stimulation profile, substrate specificity, and Km values. The soluble activity was shown to bind to artificial lipid vesicles. These data suggest strongly that the soluble and membrane-bound calcium-dependent protein kinases from barley are very closely related or even identical.

  4. Carbon and nitrogen metabolism in barley plants exposed to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghisi, R.; Trentin, A.R.; Masi, A.; Ferretti, M. [Dipartimento di Biotecnologie Agrarie, Legnaro, Padova (Italy)

    2002-10-01

    The effect of UV-B radiation on FW, leaf and stem length, photosynthetic O{sub 2} evolution, levels of carbohydrates and nitrates, and extractable activities of some of the enzymes involved in C and N metabolism was evaluated in barley (Hordeum vulgare L. cv. Express) seedlings during the 9 days following transfer to an UV-B enriched environment. The results show that under our experimental conditions UV-B radiation scarcely affects the photosynthetic competence of barley leaves, expressed as RuBP carboxylase (EC 4.1.1.39) activity, O{sub 2} evolution rate and chlorophyll content. Nevertheless, this treatment induced significant alterations of the enzyme activity of nitrate reductase (EC 1.6.6.1) and glutamine synthetase (EC 6.3.1.2), although only after a few days of treatment. The effects were not confined to the exposed tissue, but were detectable also at the root level. In fact, nitrate reductase decreased in response to UV-B in both leaf and root tissue, whereas glutamine synthetase was affected only in the root. In contrast, nitrate content was not influenced by the treatment, neither in root nor in leaf tissue, whilst leaf sucrose diminished in exposed plants only on the last day of treatment. (au)

  5. Critical levels of twenty potentially toxic elements in young spring barley

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.D.; Beckett, P.H.T.; Wollan, E.

    1978-01-01

    The upper critical level of a potentially toxic element is its minimum concentration in actively growing tissues of a plant at which yield is reduced. The following values for upper critical levels in the leaves and shoots of spring barley at the five-leaf stage were determined by means of sand culture experiments in the glasshouse: Ag 4; As 20; B 80; Ba 500; Be 0.6; Cd 15; Co 6; Cr 10; Cu 20; Hg 3; Li 4; Mo 135; Ni 26; Pb 35; Se 30; Sn 63; Tl 20; V 2; Zn 290; Zr 15 ppm of dry matter. They are presented as the basis of a simple procedure for monitoring harmful accumulations of these elements in the soil environment. The concentrations of simple solutions of these elements which induced toxicity under the conditions of the experiments are also presented. There was little uptake of Bi, Sb and Te even from solutions that reduced the yield of young barley. It is believed that these elements may have reduced the availability or translocation of other nutrient elements.

  6. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid.

    Science.gov (United States)

    Wang, M; Oppedijk, B J; Lu, X; Van Duijn, B; Schilperoort, R A

    1996-12-01

    During germination of barley grains, DNA fragmentation was observed in the aleurone. The appearance of DNA fragmentation in the aleurone layer, observed by TUNEL staining in aleurone sections, started near the embryo and extended to the aleurone cells far from the embryo in a time dependent manner. The same spatial temporal activities of hydrolytic enzymes such as alpha-amylase were observed in aleurone. DNA fragmentation could also be seen in vitro under osmotic stress, in isolated aleurone. During aleurone protoplast isolation, a very enhanced and strong DNA fragmentation occurred which was not seen in protoplast preparations of tobacco leaves. ABA was found to inhibit DNA fragmentation occurring in barley aleurone under osmotic stress condition and during protoplast isolation, while the plant growth regulator gibberellic acid counteracted the effect of ABA. Addition of auxin or cytokinin had no significant effect on DNA fragmentation in these cells. To study the role of phosphorylation in ABA signal transduction leading to control of DNA fragmentation (apoptosis), the effects of the phosphatase inhibitor okadaic acid and of phenylarisine oxide on apoptosis were studied. We hypothesize that the regulation of DNA fragmentation in aleurone plays a very important role in spatial and temporal control of aleurone activities during germination. The possible signal transduction pathway of ABA leading to the regulation of DNA fragmentation is discussed.

  7. Regime shifts in bistable water-stressed ecosystems due to amplification of stochastic rainfall patterns

    Science.gov (United States)

    Cueto-Felgueroso, Luis; Dentz, Marco; Juanes, Ruben

    2015-05-01

    We develop a framework that casts the point water-vegetation dynamics under stochastic rainfall forcing as a continuous-time random walk (CTRW), which yields an evolution equation for the joint probability density function (PDF) of soil-moisture and biomass. We find regime shifts in the steady-state PDF as a consequence of changes in the rainfall structure, which flips the relative strengths of the system attractors, even for the same mean precipitation. Through an effective potential, we quantify the impact of rainfall variability on ecosystem resilience and conclude that amplified rainfall regimes reduce the resilience of water-stressed ecosystems, even if the mean annual precipitation remains constant.

  8. Effect of phytase supplementation to barley-canola meal and barley-soybean meal diets on phosphorus and calcium balance in growing pigs

    NARCIS (Netherlands)

    Sauer, W.C.; Cervantes, M.; He, J.M.M.; Schulze, H.

    2003-01-01

    Two metabolism experiments were carried out, to determine the effect of microbial phytase addition to barley-canola meal and barley-soybean meal diets on P and Ca balance in growing. pigs; In experiment 1, six barrows (29.6kg: initial LW) were fed a barley-canola meal diet, without or. with phytase

  9. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys.

    Science.gov (United States)

    Dai, Fei; Qiu, Long; Xu, Yang; Cai, Shengguan; Qiu, Boyin; Zhang, Guoping

    2010-11-24

    The Qinghai-Tibetan Plateau in China is considered to be one of the original centers of cultivated barley. At present, little is known about the phytase activity (Phy) or phytic acid content (PA) in grains of Tibetan annual wild barley. Phy and PA were determined in grains of 135 wild and 72 cultivated barleys. Phy ranged from 171.3 to 1299.2 U kg(-1) and from 219.9 to 998.2 U kg(-1) for wild and cultivated barleys, respectively. PA and protein contents were much higher in wild barley than in cultivated barley. Tibetan annual wild barley showed a larger genetic diversity in phytase activity and phytic acid and protein contents and is of value for barley breeding. There is no significant correlation between phytase activity and phytic acid or protein content in barley grains, indicating that endogenous phytase activity had little effect on the accumulation of phytic acid.

  10. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.

    Science.gov (United States)

    Creelman, R A; Gage, D A; Stults, J T; Zeevaart, J A

    1987-11-01

    RESEARCH ON THE BIOSYNTHESIS OF ABSCISIC ACID (ABA) HAS FOCUSED PRIMARILY ON TWO PATHWAYS: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in (18)O(2). It was found that in stressed leaves three atoms of (18)O from (18)O(2) are incorporated into the ABA molecule, and that the amount of (18)O incorporated increases with time. One (18)O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in (18)O(2) shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more (18)O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, (18)O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied (14)C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional (18)O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  11. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage

    Science.gov (United States)

    Guo, Peiguo; Baum, Michael; Grando, Stefania; Ceccarelli, Salvatore; Bai, Guihua; Li, Ronghua; von Korff, Maria; Varshney, Rajeev K.; Graner, Andreas; Valkoun, Jan

    2009-01-01

    Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also facilitate the genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at the transcriptional level in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme, NADP-ME, and pyruvate dehydrogenase, PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase, CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase,ALDH, ascorbate-dependent oxidoreductase, ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8, HSP17.8, and dehydrin 3, DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were possibly constitutively expressed in drought-tolerant genotypes. Among them, seven known annotated genes might enhance drought tolerance through signalling [such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP)], anti-senescence (G2 pea dark accumulated protein, GDA2), and detoxification (glutathione S-transferase, GST) pathways. In addition, 18 genes, including those encoding Δl-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C

  12. Amylolytic strains of Lactobacillus plantarum isolated from barley

    African Journals Online (AJOL)

    aghomotsegin

    2015-01-28

    Jan 28, 2015 ... Key words: Lactobacillus plantarum, starch hydrolysis, barley, malting. ... especially in environments rich in glucose or disac- charides such as sucrose ..... numbers produce less lactic acid, which in turn is less stringent on ...

  13. Implementation of biochemical screening to improve baking quality of barley

    DEFF Research Database (Denmark)

    Vincze, Éva; Dionisio, Giuseppe; Aaslo, Per;

    2011-01-01

    Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact...... proteins. Changing the storage protein composition can lessen this problem. Our working hypothesis was that exploiting the substantial genetic variation within the gene pool for storage proteins could enable improving the baking qualities of barley flour. We characterised forty-nine barley cultivars...... for variations in storage protein and AA composition. These cultivars were selected based on their higher protein contents (11.8–17.6%). The results obtained indicated that substantial variation not only in the distribution of the hordein polypeptides but also in the relative proportions of the storage proteins...

  14. Evaluation of fermented whole crop wheat and barley feeding on ...

    African Journals Online (AJOL)

    이창희

    2017-07-11

    Jul 11, 2017 ... After maize, wheat and barley are produced in large quantities and account ... Through fermentation, beneficial bacteria are increased and harmful .... LDL cholesterol, triglyceride, cortisol, and blood urea nitrogen (BUN).

  15. Purification and characterization of three chitinases and one beta-1,3-glucanase accumulating in the medium of cell suspension cultures of barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Kragh, K.M.; Jacobsen, S.; Dalgaard Mikkelsen, J.

    1991-01-01

    Three basic chitinases and one basic beta-1,3-glucanase were secreted into the medium when embryogenic cell suspensions of barley (Hordeum vulgare L.) cv. 'Igri' were cultured as undifferentiated aggregates in the presence of 2,4-D. The enzymes were purified by affinity and ion exchange...... chromatography. Two of the chitinases were identified as the previously described endochitinases T and C from barley grain. The third and novel chitinase, designated K, was the major basic chitinase in the medium constituting 4% of the soluble protein. Chitinase K was found to be a 33-kDa endochitinase with p...... chitinases from barley aleurone and barley, bean and potato leaves. The purified beta-1,3-glucanase with a molecular weight (MW) of 32 kDa and pI greater-than-or-equal-to 9.8 constituted 1% of the soluble protein in the medium. Based on similar MW, pI and amino acid composition as well as identical N...

  16. Structure and expression of phosphoglucan phosphatase genes of Like Sex Four1 and Like Sex Four2 in barley.

    Science.gov (United States)

    Ma, Jian; Gao, Shang; Jiang, Qian-Tao; Yang, Qiang; Sun, Min; Wang, Ji-Rui; Qi, Peng-Fei; Liu, Ya-Xi; Li, Wei; Pu, Zhi-En; Lan, Xiu-Jin; Wei, Yu-Ming; Liu, Chunji; Zheng, You-Liang

    2016-06-01

    Phosphoglucan phosphatases (Like-SEX4 1 and 2; LSF1 and LSF2) were reported to play roles in starch metabolism in leaves of Arabidopsis. In this study, we identified and mapped the LSF1 and LSF2 genes in barley (HvLSF1 and HvLSF2), characterized their gene and protein structures, predicted the cis-elements of their promoters, and analysed their expression patterns. HvLSF1 and HvLSF2 were mapped on the long arm of chromosome 1H (1HL) and 5H (5HL), respectively. Our results revealed varied exon-intron structures and conserved exon-intron junctions in both LSF1 and LSF2 from a range of analysed species. Alignment of protein sequences indicated that cTP and CT domains are much less varied than the functional domains (PDZ, DPS and CBM48). LSF2 was mainly expressed in anthers of barley and rice, and in leaf of Arabidopsis. LSF1 was mainly expressed in endosperm of barley and leaf of Arabidopsis and rice. The expression of LSF1 exhibited a diurnal pattern in rice only and that of LSF2 in both rice and Arabidopsis. Of the investigated stresses, only cold stress significantly reduced expression level of LSF1 and LSF2 in barley and LSF2 in Arabidopsis at late stages of the treatments. While heat treatment significantly decreased expression levels of LSF1 at middle stage (4 h) of a treatment in Arabidopsis only. The strong relationships detected between LSF2 and starch excess4 (SEX4), glucan, water dikinases or phosphoglucan, water dikinases were identified and discussed. Taken together, these results provide information of genetic manipulation of LSF1 and LSF2, especially in monocotyledon and further elucidate their regulatory mechanism in plant development.

  17. Assessing the ratio of leaf carbon to nitrogen in winter wheat and spring barley based on hyperspectral data

    Science.gov (United States)

    Xu, Xin-gang; Gu, Xiao-he; Song, Xiao-yu; Xu, Bo; Yu, Hai-yang; Yang, Gui-jun; Feng, Hai-kuan

    2016-10-01

    The metabolic status of carbon (C) and nitrogen (N) as two essential elements of crop plants has significant influence on the ultimate formation of yield and quality in crop production. The ratio of carbon to nitrogen (C/N) from crop leaves, defined as ratio of LCC (leaf carbon concentration) to LNC (leaf nitrogen concentration), is an important index that can be used to diagnose the balance between carbon and nitrogen, nutrient status, growth vigor and disease resistance in crop plants. Thus, it is very significant for effectively evaluating crop growth in field to monitor changes of leaf C/N quickly and accurately. In this study, some typical indices aimed at N estimation and chlorophyll evaluation were tested to assess leaf C/N in winter wheat and spring barley. The multi-temporal hyperspectral measurements from the flag-leaf, anthesis, filling, and milk-ripe stages were used to extract these selected spectral indices to estimate leaf C/N in wheat and barley. The analyses showed that some tested indices such as MTCI, MCARI/OSAVI2, and R-M had the better performance of assessing C/N for both of crops. Besides, a mathematic algorithm, Branch-and-Bound (BB) method was coupled with the spectral indices to assess leaf C/N in wheat and barley, and yielded the R2 values of 0.795 for winter wheat, R2 of 0.727 for spring barley, 0.788 for both crops combined. It demonstrates that using hyperspectral data has a good potential for remote assessment of leaf C/N in crops.

  18. The white barley mutant albostrians shows a supersusceptible but symptomless interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana.

    Science.gov (United States)

    Schäfer, Patrick; Hückelhoven, Ralph; Kogel, Karl-Heinz

    2004-04-01

    Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) is a cereal pathogen of increasing global concern, with most significance in Asiatic cropping systems. In order to gain insight into the mechanism of host resistance, we studied fungal development on the supersusceptible barley mutant albostrians and its parent cv. Haisa. A microscopic dissection of early fungal growth on Haisa and green albostrians leaves revealed a distinct epidermis-localized biotrophic and a mesophyll-based necrotrophic phase. White, green, and striped white-green albostrians leaves showed extreme differences in disease development. When comparing cellular defense responses, we found restriction of fungal spreading after successful infection of host mesophyll tissue to be the most important mechanism limiting outbreak of the disease. Colonization of susceptible green leaves, but not extreme colonization of supersusceptible white albostrians leaves, was associated with macroscopically visible lesion formation and mesophyll accumulation of hydrogen peroxide (H2O2), implying a symptomless growth of the pathogen in supersusceptible host tissue. In contrast, early epidermal papilla-based resistance was closely linked to H2O2 accumulation in all leaf types. In white leaves, ascorbate peroxidase (APX), glutathione-S-transferase (GST), and the cell death regulator Bax-inhibitor-1 (BI-1) showed a stronger constitutive or pathogen responsive activation, whereas glycolate oxidase (GLOX) and catalase (CAT2) expression was stronger in green leaves. We discuss supersusceptibility and symptomless growth on the basis of the histochemical and the gene expression data.

  19. Hydrothermal liquefaction of barley straw to bio-crude oil

    DEFF Research Database (Denmark)

    Zhu, Zhe; Rosendahl, Lasse; Toor, Saqib;

    2015-01-01

    Hydrothermal liquefaction (HTL) of barley straw with K2CO3 at different temperatures (280–400 C) was conducted and compared to optimize its process conditions; the aqueous phase as a co-product from this process was recycled to explore the feasibility of implementing wastewater reuse for bio...... a detailed insight into the HTL behavior of barley straw, and offers potential opportunities and benefits for bio-crude oil production through the reuse of aqueous phase....

  20. Androgenesis in anther culture of Lithuanian spring barley cultivars

    OpenAIRE

    Asakavičiūtė, Rita; Pašakinskienė, Izolda

    2006-01-01

    The method of anther culture was used for the production of doubled haploids in Lithuanian spring barley cultivars. Two methods, (i) regeneration from callus (Szarjeko’s method) and (ii) direct regeneration from embryoids (Caredda’s method) were applied to determine the androgenic potential according to the green regenerant yield and other morphogenetic factors. Green double haploid regenerants were obtained in four Lithuanian spring barley cultivars (‘Aura’, ‘Aidas’, ‘Alsa’ and ‘Auksiniai’) ...

  1. Weed suppression ability of spring barley varieties

    DEFF Research Database (Denmark)

    Christensen, Svend

    1995-01-01

    Three years of experiments with spring barley showed significant differences in weed suppression ability among varieties. Weed dry matter in the most suppressive variety, Ida, was 48% lower than the mean weed dry matter of all varieties, whereas it was 31% higher in the least suppressive variety......, Grit. Ranking varietal responses to weed competition in terms of grain yield loss corresponded well to ranking weed dry matter produced in crop weed mixtures. There was no correspondence between the varietal grain yields in pure stands and their competitiveness, suggesting that breeding to optimize...... interception model was developed to describe the light interception profiles of the varieties. A study of the estimated parameters showed significant correlation between weed dry matter, rate of canopy height development and the light interception profile. However, when estimates were standardized to eliminate...

  2. The spontaneous chlorophyll mutation frequency in barley

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, Hans Peter

    1986-01-01

    A total of 1866 barley plants were progeny tested in the greenhouse. Twenty-five plants segregated for newly arisen, spontaneous chlorophyll mutant genes. Among the total of 470,129 seedlings screened there were 79 mutants (1.7 .+-. 0.6 .times. 10-4). The data are added to data from three similar...... materials and the resulting estimate of the chlorophyll mutant frequency is 1.6 .times. 10-4 in about 1.43 million seedlings. The estimate of the chlorophyll mutation rate per generation is close to 67.3 .times. 10-4 per diploid genome or in the order of 6 .times. 10-7 per locus and haploid genome....

  3. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed...... for estimating a linkage map; it involves (1) transformation by the Kosambi mapping function of the available recombination percentages to additive map distances, (2) calculations of a set of map distances from the transformed recombination percentages by a maximum likelihood method in which all the available...... data are utilized jointly, and (3) omission of inconsistent data and determination of the most likely order of the loci. This procedure was applied to the 42 recombination percentages available for the 13 “mapped” loci. Due to inconsistencies 14 of the recombination percentages and, therefore, two...

  4. Development of endosperm transfer cells in barley

    Directory of Open Access Journals (Sweden)

    Johannes eThiel

    2014-03-01

    Full Text Available Endosperm transfer cells (ETCs are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection(LM-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS pathways in transfer cell development of barley emerged from this analysis. Correlative data provide evidence for ABA and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for

  5. Simulating Plant Water Stress and Phenology in Seasonally Dry Tropical Forests: Plant Hydraulics and Trait-Driven Trade-Offs

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Powers, J. S.; Becknell, J. M.

    2014-12-01

    Seasonally dry tropical forests account for over 40% of the forested area in tropical and subtropical regions. Previous studies suggest that seasonal water stress is one main driver of phenology and related vegetation dynamics in seasonally dry tropical forests. Species that coexist in seasonally dry tropical forests have different plant traits, experience different degrees of plant water stress and show distinctive phenological patterns. However, the observed diversity in plant phenology and related vegetation dynamics is poorly represented in current dynamic vegetation models. In this study, we employ a new modeling approach to enhance our model skills in seasonally dry tropical forests. First, we implement a new plant hydraulic module under the framework of a state-of-the-art dynamic vegetation model, Ecosystem Demography 2 (ED2). Second, we link plant water stress with several key coordinated plant traits. Unlike previous models, the updated ED2 does not prescribe leaf phenology (deciduous or evergreen) and plant water stress is not determined by empirical water stress factors or by soil moisture alone. Instead, the model tracks more mechanistic indicators of plant water stress like leaf water potential, accounts for different abilities to tolerate water stress among plant functional types and predicts dry season leaf deciduousness and related vegetation dynamics. The updated model is then tested with in-situ meteorological data and long-term ecological observations. We also perform numerical experiments to explore the possible biases of ignoring the observed diversity in seasonally dry tropical forests. We find that (i) variations of several key plant traits (specific leaf area, wood density, turgor loss point and rooting depth) can account for the observed distinctive phenological patterns as well as inter-annual variations in vegetation growth among species. (ii) Ignoring the trait-driven trade-offs and diversity in seasonality would introduce significant

  6. Stimulation of bacteria and protists in rhizosphere of glyphosate-treated barley

    DEFF Research Database (Denmark)

    Imparato, Valentina; Santos, Susana; Johansen, Anders

    2016-01-01

    Glyphosate is extensively used for weed control and to ripen crops. Despite a number of studies on the direct effect of glyphosate on plants and soil organisms, only little is known about indirect effect of glyphosate on rhizosphere microbial communities, following the accelerated turnover...... of the fast-dying root biomass. In microcosms we studied the indirect effect of glyphosate on the microbial community in the rhizosphere of barley with phyllosphere application of glyphosate in comparison to leaving the plant intact or cutting off the shoot. Attempting to link the response of bacterial...... and protist communities to foliar application of glyphosate, we measured bacterial and protist abundance, diversity and physiological status, as well as soil organic carbon. Foliar application of glyphosate doubled bacterial abundance of the culturable fraction present in the rhizosphere compared to the other...

  7. Climatic and anthropogenic changes in Western Switzerland: Impacts on water stress.

    Science.gov (United States)

    Milano, Marianne; Reynard, Emmanuel; Köplin, Nina; Weingartner, Rolf

    2015-12-01

    Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+40%) and irrigation (+25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues.

  8. Evaluation and Genetic Polymorphism studies of Jatropha (Jatropha curcus for Water Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Borse Tushar

    2010-05-01

    Full Text Available Jatropha (Jatropha curcus is an alternative resource for biodiesel. To boost the rural economy in sustainable manner it is estimated that 30 Million hector plantation may replace current use of fossil fuel. Although Jatropha has an inbuilt ability to grow under water limited conditions, scanty information is available about natural genetic variation for water stress tolerance. Three local genotypes from Pune district were collected and initially screened by imparting artificial stress using PEG – 6000. Seedlings were subjected to increasing concentration of PEG – 6000 (30, 60, 90, 120 and 150 gm/l to study effect on growth parameters.The root growth, number of secondary roots, true leaf expansion at morphological level and palisade mesophyll height, xylem vessel expansion at anatomical level showed drastic negative impact as compared to control. It is worth to note that local germplasm performance was categorized into susceptible group as compared to tolerant genotype [Chattisgadh Selection] indicating need for genetic improvement. These genotypes were further studied at molecular level with RAPD and ISSR markers to amplify genetic variation. Polymorphic bands from Chattisgadh selection genotype are being evaluated for their usefulness as markers for water stress tolerance.

  9. Examining Adaptations to Water Stress Among Farming Households in Sri Lanka's Dry Zone

    Science.gov (United States)

    Williams, N. E.; Carrico, A.

    2016-12-01

    Climate change is increasing water scarcity in Sri Lanka's primary rice-farming zone. Whether these changes will undermine the national-level food security that Sri Lanka has worked to develop since their independence depends upon the ability of the small-scale farmers that dominate rice production and the institutions that support them to overcome the challenges presented by changing water availability. Using household survey data collected in 13 rice farming communities throughout Sri Lanka, this research explores how water stressed farmers are working to adapt to changing conditions and how the strategies they employ impact rice yields. Our analyses reveal that farmers' abilities to access irrigation infrastructure is the most important factor shaping the rice yields of water stressed Sri Lanka farmers. Notably, however, our research also identified farmers' use of hybrid, 'short duration' seed varietals to be the only climate adaptation strategy being promoted by agricultural extension services to have a significant positive impact on farmers' yields. These findings provide encouraging evidence for policies that promote plant breeding and distribution in Sri Lanka as a means to buffer the food system to climate change.

  10. Germination of Jacaranda mimosifolia (D. Don - Bignoniaceae seeds: effects of light, temperature and water stress

    Directory of Open Access Journals (Sweden)

    Fábio Socolowski

    2004-09-01

    Full Text Available Investigations were carried out to study the effect of light, temperature and water stress on the germination of seeds of Jacaranda mimosifolia which showed the minimum and maximum germination temperature at 15 and 40º C, respectively. The optimum temperature was 25º C with high percentage and germination rate. Slight promotive effect of white light was observed. Under water stress conditions the effect of light was high but at optimum temperature no effect of light was observed. At -0.9MPa few seeds germinated.Sementes de Jacaranda mimosifolia apresentaram temperaturas mínima e máxima de germinação a 15 e a 40º C, respectivamente. A temperatura ótima foi de 25º C com alta porcentagem e velocidade de germinação. Uma pequena estimulação da germinação pela luz foi observada. Sob condições de estresse de água o efeito promotor da luz foi maior, mas na temperatura ótima este efeito da luz não foi observado. No potencial de água de -0,9MPa praticamente nenhuma semente germinou.

  11. Use of subirrigation for water stress imposition in a semi-continuous CO2-exchange system

    Directory of Open Access Journals (Sweden)

    Rhuanito Soranz Ferrarezi

    2015-08-01

    Full Text Available The objectives of this work were to evaluate the effects of distinct moisture contents to trigger subirrigation on salvia photosynthesis and plant growth, and to verify the feasibility of subirrigation use in water stress imposition research in this crop. We evaluated two substrate volumetric water contents (VWC as treatments (0.2 and 0.4 m3 m-3 to trigger subirrigation, with 4 replications. Each replication was composed of 10 plants. An automated semi-continuous multi-chamber crop CO2-exchange system was used, with capacitance soil moisture sensors for continuous moisture monitoring. Manual subirrigation with nutrient solution was performed when VWC dropped below the thresholds. In both treatments, the values of net photosynthesis, daily carbon gain and carbon use efficiency reduced over time, from 2 to 1.1 μmol s-1 from 2.2 to 1 μmol d-1 from 0.7 to 0.45 mol mol-1, respectively, in both soil moisture treatments. Total shoot dry mass (p=0.0129, shoot height in the tip of the highest flower (p<0.0001 and total leaf area (p=0.0007 were statistically higher at 0.4 m3 m-3 treatment. The subirrigation system was not efficient to impose water stress, due to excessive variation on VWC values after each irrigation event in both treatments. Higher soil moisture promoted positive plant growth responses in salvia cultivated by subirrigation.

  12. Biomass production, photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress.

    Science.gov (United States)

    Hessini, Kamel; Ghandour, Mohamed; Albouchi, Ali; Soltani, Abdelaziz; Werner, Koyro Hans; Abdelly, Chedly

    2008-05-01

    The perennial smooth cordgrass, Spartina alterniflora, has been successfully introduced in salty ecosystems for revegetation or agricultural use. However, it remains unclear whether it can be introduced in arid ecosystems. The aim of this study was to investigate the physiological response of this species to water deficiency in a climate-controlled greenhouse. The experiment consisted of two levels of irrigation modes, 100 and 50% field capacities (FC). Although growth, photosynthesis, and stomatal conductance of plants with 50% FC were reduced at 90 days from the start of the experiment, all of the plants survived. The water-stressed plants exhibited osmotic adjustment and an increase in the maximum elastic modulus that is assumed to be effective to enhance the driving force for water extraction from the soil with small leaf water loss. An increase in the water use efficiency was also found in the water-stressed plants, which could contribute to the maintenance of leaf water status under drought conditions. It can be concluded that S. alterniflora has the capacity to maintain leaf water status and thus survive in arid environment.

  13. In silico analysis of ESTs from roots of Rangpur lime (Citrus limonia Osbeck under water stress

    Directory of Open Access Journals (Sweden)

    Raquel L. Boscariol-Camargo

    2007-01-01

    Full Text Available CitEST project resulted in the construction of cDNA libraries from different Citrus sp. tissues under various physiological conditions. Among them, plantlets of Rangpur lime were exposed to hydroponic conditions with and without water stress using PEG6000. RNA from roots was obtained and generated a total of 4,130 valid cDNA reads, with 2,020 from the non-stressed condition and 2,110 from the stressed set. Bioinformatic analyses measured the frequency of each read in the libraries and yielded an in silico transcriptional profile for each condition. A total of 40 contigs were differentially expressed and allowed to detect up-regulated homologue sequences to well known genes involved in stress response, such as aquaporins, dehydrin, sucrose synthase, and proline-related synthase. Some sequences could not be classified by using FunCat and remained with an unknown function. A large number of sequences presented high similarities to annotated genes involved with cell energy, protein synthesis and cellular transport, suggesting that Rangpur lime may sustain active cell growth under stressed condition. The presence of membrane transporters and cell signaling components could be an indication of a coordinated morphological adaptation and biochemical response during drought, helping to explain the higher tolerance of this rootstock to water stress.

  14. Response of Short Duration Tropical Legumes and Maize to Water Stress: A Glasshouse Study

    Directory of Open Access Journals (Sweden)

    Hossain Sohrawardy

    2014-01-01

    Full Text Available The study was conducted as a pot experiment in the tropical glasshouse to evaluate the response of grain legumes (Phaseolus vulgaris, Vigna unguiculata, and Lablab purpureus in comparison to maize (Zea mays and estimate their potential and performance. Two experiments were established using completely randomized design. Physiological measurements (stomatal conductance, photosynthetic activities, and transpiration rates were measured using LCpro instrument. Scholander bomb was used for the measurement of plant cell water potential. Significant difference was observed in different plant species with increase of different water regimes. Among the legumes, L. purpureus showed better response in water stressed conditions. At the beginning, in dry watered treatment the photosynthetic rate was below 0 µmol m−2 s−1 and in fully watered condition it was 48 µmol m−2 s−1. In dry treatment, total dry weight was 10 g/pot and in fully watered condition it was near to 20 g/pot in P. vulgaris. The study concludes that water stress condition should be taken into consideration for such type of crop cultivation in arid and semiarid regions.

  15. Phenolic metabolism in grafted versus nongrafted cherry tomatoes under the influence of water stress.

    Science.gov (United States)

    Sánchez-Rodríguez, Eva; Ruiz, Juan Manuel; Ferreres, Federico; Moreno, Diego A

    2011-08-24

    Use of grafts using rootstocks capable of palliating the effects of water stress can be a possible solution to reduce yield losses. For response to stress, plants can induce the metabolism of phenylpropanoids. The aim of the present work is to determine the response of reciprocal grafts made between one tolerant cherry tomato cultivar, Zarina, and a more sensitive cultivar, Josefina. The analysis of the phenylpropanoids pathway was carried out both enzymatically and metabolically. DAHP synthase, shikimate dehydrogenase, phenylalanine ammonium-lyase, cinnamate 4-hydroxylase, and 4-coumarate CoA ligase activities were determined, and characteristic metabolites from the pathway were measured by means of HPLC-MS. Growth in the grafts JosxZar and ZarxJos was not appreciably affected by stress. JosxZar had increased concentrations of phenolic compounds after water stress. This could be correlated with the greater activity of synthesis enzymes as well as a decrease in phenol-degrading enzymes. Phenolic metabolism is more influenced by the aerial part, and therefore it is concluded that the capacity of inducing tolerance in rootstocks depends on the genotype of the shoot.

  16. Distribution of xylem hydraulic resistance in fruiting truss of tomato influenced by water stress.

    Science.gov (United States)

    Van Ieperen, W; Volkov, V S; Van Meeteren, U

    2003-01-01

    In this study xylem hydraulic resistances of peduncles (truss stalk), pedicels (fruit stalk) and the future abscission zone (AZ) halfway along the pedicel of tomato (Lycopersicon esculentum L.) plants were directly measured at different stages of fruit development, in plants grown under two levels of water availability in the root environment. The xylem hydraulic connection between shoot and fruits has previously been investigated, but contradictory conclusions were drawn about the presence of a flow resistance barrier in the pedicel. These conclusions were all based on indirect functional measurements and anatomical observations of water-conducting tissue in the pedicel. In the present study, by far the largest resistances were measured in the AZ where most individual vessels ended. Plants grown at low water availability in the root environment had xylem with higher hydraulic resistances in the peduncle and pedicel segments on both sides of the AZ, while the largest increase in hydraulic resistance was measured in the AZ. During fruit development hydraulic resistances in peduncle and pedicel segments decreased on both sides of the AZ, but tended to increase in the AZ. The overall xylem hydraulic resistance between the shoot and fruit tended to increase with fruit development because of the dominating role of the hydraulic resistance in the AZ. It is discussed whether the xylem hydraulic resistance in the AZ of tomato pedicels in response to water stress and during fruit development contributes to the hydraulic isolation of fruits from diurnal cycles of water stress in the shoot.

  17. THE ACTIVITY OF ARABIDOSPIS DLL PROMOTER IN TRANSGENIC TOBACCO PLANTS UNDER WATER STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Zuzana Polóniová

    2014-02-01

    Full Text Available In this work we used the Cre/loxP recombination system to study the activity of the Arabidopsis DLL promoter under water stress treatment. For this, the T-DNA containing the Cre/loxP self-excision recombination cassette was introduced into tobacco genome via A. tumefaciens LBA 4404. The expression of the cre gene was regulated by the DLL promoter. On activity of the DLL the Cre recombinase was expected to remove Cre/loxP cassette. Transgenic nature of regenerated transgenic T0 tobacco plantlets was proved by GUS and PCR analyses. The selected 10 transgenic T0 plants were subjected to the water stress analyses under in vitro as well as under in vivo conditions. The osmotic stress experiments were performed with 10 % PEG and 100 mmol.l-1 mannitol (individually. The activity of the DLL was evaluated after 24 hours. For drought stress experiments, the watering was withheld for 10 days. The activity of the DLL was monitored using PCR approach. Under given abiotic stress conditions, no activity of the DLL was observed. The DLL promoter remained stable. It points out the DLL as the promoter with precise control of the gene expression with wide usability in plant biotechnology.

  18. Seed Germination Characteristics of Rhus tripartitum (Ucria Grande and Ziziphus lotus (L.: Effects of Water Stress

    Directory of Open Access Journals (Sweden)

    Zouaoui Refka

    2013-01-01

    Full Text Available Ziziphus lotus (L. Lam. (Rhamnaceae and Rhus tripartitum or Sumac (Anacardiaceae are two indigenous species from arid and semiarid regions of Tunisia, characterized by a severe climate where dry seasons are very long. The combined action of anthropogenic factors and climate in arid regions caused a gradual threat of plant assets. In this context, an experimental study of the effects of water stress (0 to −1 MPa on seeds has identified the water requirements germinal stage of both species. The results showed that both species were able to germinate at relatively low water potentials. However, beyond −0.6 MPa, germination was completely inhibited for R. tripartitum, when it reached for another 50% for Z. lotus. Increasing the concentration of PEG6000 progressively inhibited germination in both species. Only Z. lotus could be considered tolerant of water stress, because, to −1 MPa, seeds germinated with a rate of 17%. It resulted in that the species Z. lotus presented an adaptive capacity to aridity much greater than that observed for R. tripartitum.

  19. Forcing variables in simulation of transpiration of water stressed plants determined by principal component analysis

    Science.gov (United States)

    Durigon, Angelica; Lier, Quirijn de Jong van; Metselaar, Klaas

    2016-10-01

    To date, measuring plant transpiration at canopy scale is laborious and its estimation by numerical modelling can be used to assess high time frequency data. When using the model by Jacobs (1994) to simulate transpiration of water stressed plants it needs to be reparametrized. We compare the importance of model variables affecting simulated transpiration of water stressed plants. A systematic literature review was performed to recover existing parameterizations to be tested in the model. Data from a field experiment with common bean under full and deficit irrigation were used to correlate estimations to forcing variables applying principal component analysis. New parameterizations resulted in a moderate reduction of prediction errors and in an increase in model performance. Ags model was sensitive to changes in the mesophyll conductance and leaf angle distribution parameterizations, allowing model improvement. Simulated transpiration could be separated in temporal components. Daily, afternoon depression and long-term components for the fully irrigated treatment were more related to atmospheric forcing variables (specific humidity deficit between stomata and air, relative air humidity and canopy temperature). Daily and afternoon depression components for the deficit-irrigated treatment were related to both atmospheric and soil dryness, and long-term component was related to soil dryness.

  20. The effect of added enzymes on process potentials derived from different qualities of barley

    DEFF Research Database (Denmark)

    Shetty, Radhakrishna; Zhuang, Shiwen; Hansen, Preben Bøje;

    Barley sorting is an important step for picking up grain of desired quality. Whilst brewing with 100% sorted barley (picked high quality) has become realistic with the addition of exogenous enzymes, the effect of added enzymes on process potentials derived from un-sorted barley (mixed) and sorted...... filterability, the Ondea® Pro treatment resulted in significantly lower turbidity and smaller particle size compared to Cellic® CTec2; however, this effect was observed in sorted and un-sorted barley but not in sorted-out barley. Consequently the un-sorted barley demonstrated great potential in brewing process...

  1. Long-term reconstitution of dry barley increased phosphorus digestibility in pigs

    DEFF Research Database (Denmark)

    Ton Nu, Mai Anh; Blaabjerg, Karoline; Poulsen, Hanne Damgaard

    of reconstitution compared to dry stored barley on phosphorus (P) digestibility in pigs. Materials and Methods: Dry barley (13% moisture; phytate P, 1.7 g/kg DM) was rolled and stored directly or reconstituted with water to produce rolled barley with 35% moisture that was stored in air-tight conditions. After 49......: Reconstituted barley had higher soluble P (2.56 g/kg DM) and lower phytate P (0.93 g/ kg DM) compared with dry barley (0.78 and 1.7 g/kg DM, respectively). Pigs fed the reconstituted barley diet showed increased P absorption (52%) and decreased P excretion in feces (21%) (P

  2. Constructing the barley model for genetic transformation in Triticeae

    Institute of Scientific and Technical Information of China (English)

    LÜ Bo; WU Jia-jie; FU Dao-lin

    2015-01-01

    Barley (Hordeum vulgare L.) is one of the oldest domesticated crops, showing dramatic adaptation to various climate and environmental conditions. As a major cereal crop, barley ranks the 4th after wheat, maize and rice in terms of planting area and production al over the world. Due to its diploid nature, the cultivated barley is considered as an ideal model to study the polyploid wheat and other Triticeae species. Here, we reviewed the development, optimization, and application of transgenic approaches in barley. The most efifcient and robust genetic transformation has been built on the Agrobacterium-mediated transfer in conjunction with the immature embryo-based regeneration. We then discussed future considerations of using more practical technologies in barley transformation, such as the T-DNA/transposon tagging and the genome editing. As a cereal crop amenable to genetic transformation, barley wil serve as the most valuable carrier for global functional genomics in Triticeae and is becoming the most practical model for generating value-added products.

  3. Glycaemic response to barley porridge varying in dietary fibre content.

    Science.gov (United States)

    Thondre, Pariyarath S; Wang, Ke; Rosenthal, Andrew J; Henry, Christiani J K

    2012-03-01

    The interest in barley as a food is increasing worldwide because of its high dietary fibre (DF) content and low glycaemic index (GI). DF in cereals may prove beneficial in improving blood glucose response in the long term. However, a dose-dependent effect of insoluble fibre on reducing postprandial blood glucose levels is yet to be proven. The objective of the present study was to determine the glycaemic response to two barley porridges prepared from whole barley grains varying in fibre content. In two separate non-blind randomised crossover trials, ten human subjects consumed barley porridge with 16 g/100 g and 10 g/100 g fibre content provided in different serving sizes (equivalent to 25 and 50 g available carbohydrate). The glycaemic response to both barley porridges was significantly lower than the reference glucose (P porridges. We concluded that irrespective of the difference in total fibre content or serving size of barley porridges, their GI values did not differ significantly.

  4. Can we detect water stressed areas in forest thanks thermal infrared remote sensing?

    Science.gov (United States)

    Nourtier, Marie; Chanzy, André; Bes, Bernard; Mariotte, Nicolas

    2010-05-01

    In Mediterranean and mountainous areas, an increase of mortality in forest is observed after important drought events. In the context of climate changes, a study of the impact of drought stress on forest is necessary. In order to detect water stress over the whole forest at different periods of the year, we propose the use of a spatialisable indicator, easily measurable: crown surface temperature. As previous works were not conclusive concerning the potentiality of this indicator in forest (Duchemin, 1998a, 1998b, Pierce et al., 1990), we set up an experimentation to study the surface temperature evolution linked to the transpiration at tree scale, during the spring and summer periods on silver fir (Abies alba) forest of Mont Ventoux (south of France). At the same time, several thermal infrared images of the mountainside were acquired corresponding to different levels of transpiration. The signal of surface temperature is studying via the evolution of the difference between measured surface temperature and calculated surface temperature for a tree at maximum transpiration rate. At tree scale, there is a difference of 4 °C of amplitude in the signal of surface temperature between maximum and zero transpiration conditions. The difficulty resides in taking into account the influence of climatic conditions, source of variability in the signal uncorrelated with transpiration evolution. Indices of surface temperature, built to include this influence of climatic conditions, permit to reduce this variability. Another source of variability lies in the percentage of branches present in the area of measurement. Indeed branches have a thermal dynamic differing from the needles one and, considering comparison between trees, the percentage of branches varies. At the mountainside scale, contrasted areas in terms of surface temperature indices are observable. By comparing different dates, corresponding to different levels of drought, it is possible to locate areas with precocious

  5. Negative leave balances

    CERN Multimedia

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1Â September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply. Â Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30Â September and/or 31Â December, leave will automatically be transferred from one account to another on the relevant dates i...

  6. Negative leave balances

    CERN Multimedia

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1 September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply.  Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30 September and/or 31 December, leave will automatically be transferred from one account to another on the relevant dates in or...

  7. The role of arginine decarboxylase in modulating the sensitivity of barley to ozone.

    Science.gov (United States)

    Rowland-Bamford, A J; Borland, A M; Lea, P J; Mansfield, T A

    1989-01-01

    Polyamines (PA) are known to be involved in the areas of plant physiology and biochemistry which are related to the response of a plant to air pollution. This study examines the role of arginine decarboxylase (ADC), an important rate-limiting enzyme in polyamine synthesis, in barley plants exposed to ozone (O(3)). The activity of ADC increased significantly in O(3)-treated leaves when visible injury was hardly apparent. The increase in ADC activity may be a mechanism to increase the PA levels in O(3)-treated leaves and so minimize the damaging effects of O(3). Supporting this, foliar applications of DL-alpha-difluoromethylarginine (DFMA), a specific inhibitor of ADC, prevented the rise in ADC activity and visible injury was considerable on exposure to O(3). This damage was not due to the foliar sprays, as little visible injury was seen in leaves in the O(3)-free controls. The results are discussed in terms of the roles of PA in conferring O(3) resistance in plants.

  8. Influence of Aluminum and Cadmium Stresses on Mineral Nutrition and Root Exudates in Two Barley Cultivars

    Institute of Scientific and Technical Information of China (English)

    QUO Tian-Rong; ZHANG Guo-Ping; ZHOU Mei-Xue; WU Fei-Bo; CHEN Jin-Xin

    2007-01-01

    A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al-sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L-1 Al and 100 μmol L-1 Al +1.0 μmol L-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance.

  9. Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård

    2004-01-01

    rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley......rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley...

  10. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  11. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin; Lotfi; Mohammad; Pessarakli; Puriya; Gharavi-Kouchebagh; Hossein; Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid(0, 300, and 600 mg L-1) on photosystem II and antioxidant enzyme activity of the rapeseed(Brassica napus L.) plant under water stress(60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid(FA) improved the maximum quantum efficiency of PSII(Fv/Fm)and performance index(PI) of plants under both well-watered and limited-water conditions. The time span from Foto Fmand the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species(ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  12. Physiological responses of Brassica napus to fulvic acid under water stress:Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin Lotfi; Mohammad Pessarakli; Puriya Gharavi-Kouchebagh; Hossein Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid (0, 300, and 600 mg L−1) on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L.) plant under water stress (60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA) improved the maximum quantum efficiency of PSII (Fv/Fm) and performance index (PI) of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  13. The Response of Winter Wheat Root to the Period and the After-Effect of Soil Water Stress

    Institute of Scientific and Technical Information of China (English)

    YANG Gui-yu; LUO Yuan-pei; LI Bao-guo; LIU Xiao-ying

    2006-01-01

    To reveal the period and after-effect of soil water stress on winter wheat, the article employs the experiment results carried out in the greenhouse. The results showed that the root-restricted weights varied with stress degrees and stress times during and after water stressing. In the course of stress, the chief reason resticting the weight of root was the stress intensity at this time, and that of severe stress treatment was larger than that of mild stress treatment. After water stress was relieved, the results of the after-effect of soil water stress on root growth were that, the stress intensity of short-time and mild stress was larger than that of long-time and severe stress. Comparing two-stage stress intensities, root-restricted weight resulted from after-effect intensity of stress under all of the short-time treatment, and the mild and the long-time stress treatments, while that resulted from the period stress intensity under the severe and the long-time stress treatments.In general, the effects of water stress on root were attributed to the three factors, a formed basis in the previous stage, the after-effect of water condition before this stage and influence of water in this stage, which lead to the characters of root in the whole growth stage.

  14. Competition and Facilitation in Hairy Vetch-Barley Intercrops

    Directory of Open Access Journals (Sweden)

    Giacomo Tosti

    2010-09-01

    Full Text Available Intercrops between legumes and non-legumes are widely used for fodder production and as cover crops, but little quantitative data are available on competition between species in the mixture. The objective of the present study was to assess the interaction between hairy vetch (Vicia villosa Roth. and barley (Hordeum vulgare L. grown as pure crops or intercrops with different proportions of seed rates at sowing. A 4-year field study was conducted using hairy vetch and barley as pure stands at full sowing density and as intercrops at different proportions of their own full seed rate according to the replacement principle. Interaction between species was evaluated on the basis of Land Equivalent Ratio (LER, Relative Neighbour Effect (RNE and Aggressivity (A calculated on biomass and nitrogen (N accumulation. The N accumulation of the mixed crops increased linearly with the legume proportion in the mixture. The mixtures were more efficient than the pure crops in terms of N use (LER > 1. Partial LER values indicated that the barley component benefited from the presence of the legume, while the hairy vetch partial LER decreased with increasing barley proportion in the mixture. The competitive response in terms of biomass accumulation was high for both species when their density in the mixture was high. Concerning N accumulation, barley benefited from an asymmetric interspecific facilitation while the vetch behaviour was similar to that observed for biomass accumulation. Barley dominance progressively increased reaching a maximum just before the last sampling date. At the last sampling date the competitive ability of hairy vetch showed a considerable increase in all mixtures (A ≈ 0. These findings indicate that the use of mixtures between hairy vetch and barley allows an increase in the use efficiency of N resource with respect to pure crops. Barley is the dominant component of the mixture and the hairy vetch is able to cope with the cereal

  15. The Temporary Leave Dilemma -

    DEFF Research Database (Denmark)

    Amilon, Anna

    2010-01-01

    Lone mothers have to take care of a sick child with little or no help from the child’s other parent and have to carry all costs connected to leave-taking. This paper empirically tests whether lone mothers take more temporary parental leave to care for sick children than partnered mothers and whet......Lone mothers have to take care of a sick child with little or no help from the child’s other parent and have to carry all costs connected to leave-taking. This paper empirically tests whether lone mothers take more temporary parental leave to care for sick children than partnered mothers...

  16. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  17. The high mutagenic effectiveness of MNUA in inducing a diversity of dwarf and semidwarf forms of spring barley

    Directory of Open Access Journals (Sweden)

    Mirosław Małuszyński

    2014-01-01

    Full Text Available By the modified method of mutagenic MNUA treatment consisting in a short interincubation germination, a very high frequency of point mutations was obtained in many varieties and stocks of spring barley. In the obtained collection of dwarf and semidwarf mutants a rich variability of many traits not connected with the plant height was noted. Mutations concerned the productivity of the plants, their tillering, the length and width of leaves, the habitus, distribution of leaves on the stalk and the morphology of the ear. The diversity of forms described in the collection of dwarf and semidwarf mutants characterises MNUA as a mutagen inducing a very high frequency of mutations in initial cells.

  18. The 5' flanking region of a barley B hordein gene controls tissue and developmental specific CAT expression in tobacco plants.

    Science.gov (United States)

    Marris, C; Gallois, P; Copley, J; Kreis, M

    1988-07-01

    The 549 base pairs of the 5' flanking region of a barley seed storage protein (B1 hordein) gene were linked to the reporter gene encoding chloramphenicol acetyl transferase (CAT). The chimaeric gene was transferred into tobacco plants using Agrobacterium tumefaciens. CAT enzyme activity was detected in the seeds, but not in the leaves, of the transgenic plants. Furthermore, enzyme activity was found only in the endosperm, and only from fifteen days after pollination. In contrast, the constitutive 19S promoter from cauliflower mosaic virus (CaMV) directed the expression of the CAT gene in the leaves as well as in both the endosperm and embryo and at all stages in seed development.

  19. Suppression of the barley uroporphyrinogen III synthase gene by a Ds activation tagging element generates developmental photosensitivity.

    Science.gov (United States)

    Ayliffe, Michael A; Agostino, Anthony; Clarke, Bryan C; Furbank, Robert; von Caemmerer, Susanne; Pryor, Anthony J

    2009-03-01

    Chlorophyll production involves the synthesis of photoreactive intermediates that, when in excess, are toxic due to the production of reactive oxygen species (ROS). A novel, activation-tagged barley (Hordeum vulgare) mutant is described that results from antisense suppression of a uroporphyrinogen III synthase (Uros) gene, the product of which catalyzes the sixth step in the synthesis of chlorophyll and heme. In homozygous mutant plants, uroporphyrin(ogen) I accumulates by spontaneous cyclization of hydroxyl methylbilane, the substrate of Uros. Accumulation of this tetrapyrrole intermediate results in photosensitive cell death due to the production of ROS. The efficiency of Uros gene suppression is developmentally regulated, being most effective in mature seedling leaves compared with newly emergent leaves. Reduced transcript accumulation of a number of nuclear-encoded photosynthesis genes occurs in the mutant, even under 3% light conditions, consistent with a retrograde plastid-nuclear signaling mechanism arising from Uros gene suppression. A similar set of nuclear genes was repressed in wild-type barley following treatment with a singlet oxygen-generating herbicide, but not by a superoxide generating herbicide, suggesting that the retrograde signaling apparent in the mutant is specific to singlet oxygen.

  20. Efficient production of tetraploid barley (Hordeum vulgare L. by colchicine treatment of diploid barley

    Directory of Open Access Journals (Sweden)

    Ayed Sourour

    2014-03-01

    Full Text Available An experiment was conducted to induce tetraploidy in three diploid barley varieties (Martin, Rihane and Manel through different colchicines treatments. Colchicine was added for three different concentrations at three different stages of plant development i.e. on seed (0.05% for 48 hours, on pre-germinated seeds (0.1% for 2 hours and on three leaf stage (0.1% for 16 hours. Colchicine application reduced significantly germination percentage and viability of plants. Seed germination was completely inhibited in Martin, while a reduction of 20% and 30% for germination percentage compared to control was recorded in varieties Manel and Rihane, respectively at 0.1% colchicine concentration. Ploidy evaluation showed no tetraploidy in all the three tested varieties by colchicine application of 0.05% for 48 hours on seeds and 0.1% for 2 hours on pre-germinated seeds. However, tetraploid plants were produced only by treatment with 0.1% for 16 hours of seedlings. The percentages of plants were 40%, 44% and 100% for Rihane, Manel and Martin, respectively. Cytological analyses showed the increase of chromosome numbers from 2n=2x=14 to 2n=4x=28. The increase of ploidy levels caused major changes in some morphological traits. In fact, the induced tetraploids in barley was accompanied by significant (P<0.01 decrease in plant height, tiller height, leaf number and leaf length compared to diploid control plants. colchicine treatment induce successfully the production of tetraploid barley plants and could be used in breeding programs.

  1. Molecular characterization of barley 3H semi-dwarf genes.

    Directory of Open Access Journals (Sweden)

    Haobing Li

    Full Text Available The barley chromosome 3H accommodates many semi-dwarfing genes. To characterize these genes, the two-rowed semi-dwarf Chinese barley landrace 'TX9425' was crossed with the Australian barley variety 'Franklin' to generate a doubled haploid (DH population, and major QTLs controlling plant height have been identified in our previous study. The major QTL derived from 'TX9425' was targeted to investigate the allelism of the semi-dwarf gene uzu in barley. Twelve sets of near-isogenic lines and a large NILF2 fine mapping population segregating only for the dwarfing gene from 'TX9425' were developed. The semi-dwarfing gene in 'TX9425' was located within a 2.8 cM region close to the centromere on chromosome 3H by fine mapping. Molecular cloning and sequence analyses showed that the 'TX9425'-derived allele contained a single nucleotide substitution from A to G at position 2612 of the HvBRI1 gene. This was apparently the same mutation as that reported in six-rowed uzu barley. Markers co-segregating with the QTL were developed from the sequence of the HvBRI1 gene and were validated in the 'TX9425'/'Franklin' DH population. The other major dwarfing QTL derived from the Franklin variety was distally located on chromosome 3HL and co-segregated with the sdw1 diagnostic marker hv20ox2. A third dwarfing gene, expressed only in winter-sown trials, was identified and located on chromosome 3HS. The effects and interactions of these dwarfing genes under different growing conditions are discussed. These results improve our understanding of the genetic mechanisms controlling semi-dwarf stature in barley and provide diagnostic markers for the selection of semi-dwarfness in barley breeding programs.

  2. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination.

    Science.gov (United States)

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-11-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds.

  3. Crop water stress maps for an entire growing season from visible and thermal UAV imagery

    DEFF Research Database (Denmark)

    Hoffmann, Helene; Jensen, Rasmus; Thomsen, Anton

    2016-01-01

    . From the LST, maps of surface-air temperature differences were computed. From the color images, the normalized green-red difference index (NGRDI), constituting the indicator of surface greenness, was computed. Advantages of the WDI as an irrigation map, as compared with simpler maps of the surface......-air temperature difference, are discussed, and the suitability of the NGRDI is assessed. Final WDI maps had a spatial resolution of 0.25m. It was found that the UAV-based WDI is in agreement with measured stress values from an eddy covariance system. Further, the WDI is especially valuable in the late growing...... season because at this stage the remote sensing data represent crop water availability to a greater extent than they do in the early growing season, and because the WDI accounts for areas of ripe crops that no longer have the same need for irrigation. WDI maps can potentially serve as water stress maps...

  4. Responses of Moringa oleifera Lam. plants inoculated with mycorrhizal fungi and submitted to water stress

    Directory of Open Access Journals (Sweden)

    Séfora Gil Gomes Farias

    2008-12-01

    Full Text Available This study was to verify the efficiency of mycorrhizal in Moringa oleifera Lam. plants submitted to water deficit. The experiment was conducted in screenhouse distributted a completely randomized design in a 4x2 factorial with four replications. The first factor was the treatment of inoculation with Glomus etunicatum, Acaulospora scrobiculata, an indigenous community treatment and control (without inoculation. The second factor was the treatment of irrigation and water deficit. Plant height, accumulation of dry weight in the shoots, roots and total and mycorrhizal efficiency were evaluated. The plants inoculated with Glomus etunicatum increases in height, biomass and biomass underground when not subject to water stress. There was no contribution of mycorrhizae to increase the resistance of plants to water deficit, independent of the fungus employee. The efficiency of plants in mycorrhizal, was variable according to the species of fungi used.

  5. Climate change and the vulnerability of electricity generation to water stress in the European Union

    Science.gov (United States)

    Behrens, Paul; van Vliet, Michelle T. H.; Nanninga, Tijmen; Walsh, Brid; Rodrigues, João F. D.

    2017-08-01

    Thermoelectric generation requires large amounts of water for cooling. Recent warm periods have led to curtailments in generation, highlighting concerns about security of supply. Here we assess EU-wide climate impacts for 1,326 individual thermoelectric plants and 818 water basins in 2020 and 2030. We show that, despite policy goals and a decrease in electricity-related water withdrawal, the number of regions experiencing some reduction in power availability due to water stress rises from 47 basins to 54 basins between 2014 and 2030, with further plants planned for construction in stressed basins. We examine the reasons for these pressures by including water demand for other uses. The majority of vulnerable basins lie in the Mediterranean region, with further basins in France, Germany and Poland. We investigate four adaptations, finding that increased future seawater cooling eases some pressures. This highlights the need for an integrated, basin-level approach in energy and water policy.

  6. Examining adaptations to water stress among farming households in Sri Lanka's dry zone.

    Science.gov (United States)

    Williams, Nicholas E; Carrico, Amanda

    2017-02-16

    Climate change is increasing water scarcity in Sri Lanka. Whether these changes will undermine national-level food security depends upon the ability of the small-scale farmers that dominate rice production and the institutions that support them to overcome the challenges presented by changing water availability. Analyzing household survey data, this research identifies household, institutional, and agroecological factors that influence how water-stressed farmers are working to adapt to changing conditions and how the strategies they employ impact rice yields. Paralleling studies conducted elsewhere, we identified institutional factors as particularly relevant in farmer adaptation decisions. Notably, our research identified farmers' use of hybrid seed varietals as the only local climate adaptation strategy to positively correlate with farmers' rice yields. These findings provide insight into additional factors pertinent to successful agricultural adaptation and offer encouraging evidence for policies that promote plant breeding and distribution in Sri Lanka as a means to buffer the food system to climate change-exacerbated drought.

  7. A study on the inoculated root of Sorghum vulgare by mycorrhiza under the water stress condition

    Directory of Open Access Journals (Sweden)

    Omid Alizadeh

    2011-12-01

    Full Text Available An experiment was carried out to determine the symbiotic effect of mycorrhiza on the yieldand root characteristics of Sorghum vulgare under water stress. The experiment was carried out in afactorial test using a Randomized Complete Block Design (RCBD in three replications. Treatmentswere conducted base on drought stress in four levels and mycorrhiza were applied in two ranges M1(inoculated by mycorrhiza and M0 (non-mycorrhiza. The Results showed that, the drought stress hadsignificant influences on dry matter of shoot, length of the root and percentage of the mycorrhizacolonization. It seemed that, the mycorrhiza had significantly increased the biomass of sorghum byinfluences on the root characteristics, such as: root length, colonization and root/shoot ratio.

  8. Water stress augments silicon-mediated resistance of susceptible sugarcane cultivars to the stalk borer Eldana saccharina (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Kvedaras, O L; Keeping, M G; Goebel, F-R; Byrne, M J

    2007-04-01

    Silicon (Si) can improve resistance of plants to insect attack and may also enhance tolerance of water stress. This study tested if Si-mediated host plant resistance to insect attack was augmented by water stress. Four sugarcane cultivars, two resistant (N21, N33) and two susceptible (N26, N11) to Eldana saccharina Walker were grown in a pot trial in Si-deficient river sand, with (Si+) and without (Si-) calcium silicate. To induce water stress, irrigation to half the trial was reduced after 8.5 months. The trial was artificially infested with E. saccharina eggs after water reduction and harvested 66 days later. Silicon treated, stressed and non-stressed plants of the same cultivar did not differ appreciably in Si content. Decreases in numbers of borers recovered and stalk damage were not associated with comparable increases in rind hardness in Si+ cane, particularly in water-stressed susceptible cultivars. Overall, Si+ plants displayed increased resistance to E. saccharina attack compared with Si- plants. Borer recoveries were significantly lower in stressed Si+ cane compared with either stressed Si- or non-stressed Si- and Si+ cane. Generally, fewer borers were recovered from resistant cultivars than susceptible cultivars. Stalk damage was significantly lower in Si+ cane than in Si- cane, for N21, N11 and N26. Stalk damage was significantly less in Si+ combined susceptible cultivars than in Si- combined susceptible cultivars under non-stressed and especially stressed conditions. In general, the reduction in borer numbers and stalk damage in Si+ plants was greater for water-stressed cane than non-stressed cane, particularly for susceptible sugarcane cultivars. The hypothesis that Si affords greater protection against E. saccharina borer attack in water-stressed sugarcane than in non-stressed cane and that this benefit is greatly enhanced in susceptible cultivars is supported. A possible active role for soluble Si in defence against E. saccharina is proposed.

  9. Estimating a Global Hydrological Carrying Capacity Using GRACE Observed Water Stress

    Science.gov (United States)

    An, K.; Reager, J. T.; Famiglietti, J. S.

    2013-12-01

    Global population is expected to reach 9 billion people by the year 2050, causing increased demands for water and potential threats to human security. This study attempts to frame the overpopulation problem through a hydrological resources lens by hypothesizing that observed groundwater trends should be directly attributed to human water consumption. This study analyzes the relationships between available blue water, population, and cropland area on a global scale. Using satellite data from NASA's Gravity Recovery and Climate Experiment (GRACE) along with land surface model data from the Global Land Data Assimilation System (GLDAS), a global groundwater depletion trend is isolated, the validity of which has been verified in many regional studies. By using the inherent distributions of these relationships, we estimate the regional populations that have exceeded their local hydrological carrying capacity. Globally, these populations sum to ~3.5 billion people that are living in presently water-stressed or potentially water-scarce regions, and we estimate total cropland is exceeding a sustainable threshold by about 80 million km^2. Key study areas such as the North China Plain, northwest India, and Mexico City were qualitatively chosen for further analysis of regional water resources and policies, based on our distributions of water stress. These case studies are used to verify the groundwater level changes seen in the GRACE trend . Tfor the many populous, arid regions of the world that have already begun to experience the strains of high water demand.he many populous, arid regions of the world have already begun to experience the strains of high water demand. It will take a global cooperative effort of improving domestic and agricultural use efficiency, and summoning a political will to prioritize environmental issues to adapt to a thirstier planet. Global Groundwater Depletion Trend (Mar 2003-Dec 2011)

  10. Physiological response of Pinus halepensis needles under ozone and water stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Manes, F.; Donato, E. [Univ. of Rome ' La Sapienza' , Dept. of Plant Biology, Rome (Italy); Vitale, M. [Univ. of Molise, Dept. of Environmental Sciences, Isernia (Italy)

    2001-07-01

    The aim of this study was to evaluate how physiological processes of potted Pinus halepensis plants, grown under controlled conditions, were affected by ozone (O{sub 3}) and/or water stress, integrating the gas exchange and biochemical data with fluorescence OJIP polyphasic transient data. Plants submitted to only water stress (T{sub 1}) and with ozone (T{sub 3}) showed a strong decrease in stomatal conductance and gas exchange, coinciding with a reduction of maximum yield of photochemistry ({rho}{sub po}) and very negative values of leaf water potential. Simultaneously, a great increase of both PSII antenna size, indicated by absorption per reaction centre, and electron transport per reaction centre were found. The reduction of photosynthesis in the O{sub 3}-treated plants (T{sub 2}) by a slowing down of the Calvin cycle was supported by the increase of related fluorescence parameters such as relative variable fluorescence, heat de-excitation constant, energy de-excitation by spillover, and the decrease of {rho}{sub po}. We suggest an antagonistic effect between the two stresses to explain the delayed ozone-induced decrease of stomatal conductance values for T{sub 3} with respect to T{sub 1} plants, by an alteration of the physiological mechanisms of stomatal opening, which involve the increase of intra-cellular free-calcium induced by ABA under co-occurring water shortage. We emphasise the importance of considering the intensity of the individual stress factor in studies concerning the interaction of stresses. (au)

  11. Factors involved in alleviating water stress by partial crop removal in pear trees.

    Science.gov (United States)

    Marsal, Jordi; Mata, Merce; Arbones, Amadeu; Del Campo, Jesus; Girona, Joan; Lopez, Gerardo

    2008-09-01

    We studied the relief of water stress associated with fruit thinning in pear (Pyrus communis L.) trees during drought to determine what mechanisms, other than stomatal adjustment, were involved. Combinations of control irrigation (equal to crop water use less effective rainfall) and deficit irrigation (equal to 20% of control irrigation), fruit load (unthinned and thinned to 40 fruits per tree) and root pruning (pruned and unpruned) treatments were applied to pear (cv. 'Conference') trees during Stage II of fruit development. Daily patterns of midday stem water potential (Psi(stem)) and leaf conductance to water vapor (g(l)) of deficit-irrigated trees differed after fruit thinning. In response to fruit thinning, gl progressively declined with water stress until 30 days after fruit thinning and then leveled off, whereas the effects of decreased fruit load on Psi(stem) peaked 30-40 days after fruit thinning and then tended to decline. Soil water depletion was significantly correlated with fruit load during drought. Our results indicate that stomatal adjustment and the resulting soil water conservation were the factors determining the Psi(stem) response to fruit thinning. However, these factors could not explain differences in daily patterns between g(l) and Psi(stem) after fruit thinning. In all cases, effects of root pruning treatments on Psi(stem) in deficit-irrigated trees were transitory (Psi(stem) recovered from root pruning in less than 30 days), but the recovery of Psi(stem) after root pruning was faster in trees with low fruit loads. This behavior is compatible with the concept that the water balance (reflected by Psi(stem) values) was better in trees with low fruit loads compared with unthinned trees, perhaps because more carbon was available for root growth. Thus, a root growth component is hypothesized as a mechanism to explain the bimodal Psi(stem) response to fruit thinning during drought.

  12. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower

    Science.gov (United States)

    Wen, Bin

    2015-01-01

    Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15–30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20–60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant. PMID:26509675

  13. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower.

    Science.gov (United States)

    Wen, Bin

    2015-01-01

    Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15-30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20-60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant.

  14. [Effects of water stress and nitrogen fertilization on peanut root morphological development and leaf physiological activities].

    Science.gov (United States)

    Ding, Hong; Zhang, Zhi-meng; Dai, Liang-xiang; Ci, Dun-wei; Qin, Fei-fei; Song, Wen-wu; Liu, Meng-juan; Fu, Xiao

    2015-02-01

    Taking 'Huayu 22' peanut as test material, effect of soil water content and nitrogen fertilization on the leaf physiological activities and root morphological characteristics of peanut plants were analyzed. Two levels of soil water condition were: (1) well-watered condition and (2) moderate water stress, and three levels of nitrogen were: (1) none nitrogen (N0), (2) moderate nitrogen (N1, 90 kg · hm(-2)) and (3) high nitrogen (N2, 180 kg · hm(-2)). The results showed that N1 significantly increased the peanut yield under two water conditions, but showed no significant effect on harvest index compared with N0. Under water stress condition, N1 had no significant effects on total root biomass and total root length, but the total root surface area was remarkably increased. The nitrogen fertilization significantly increased the root length and root surface area in 20-40 cm soil layer, and N2 significantly increased the root biomass and root surface area in the soil layer below 40 cm. The application of nitrogen remarkably increased CAT and POD activities in leaf, while MDA content was decreased with the increase of nitrogen level. Under well-watered condition, the root biomass, root length and root surface area in the soil layer below 40 cm and total root surface area were significantly reduced by nitrogen application, however, only N1 could increase leaf protective enzyme activities. Correlation analysis showed that the root length in 20-40 cm soil layer and SOD, CAT, POD activities in leaf were highly significantly related with peanut yield.

  15. Effects of Water Stress on Photochemical Quenching and Non-photochemical Quenching of Chlorophyll a Fluorescence in Four Tree Seedlings%水分胁迫对4种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响

    Institute of Scientific and Technical Information of China (English)

    史胜青; 袁玉欣; 杨敏生; 梁海永; 张金香

    2004-01-01

    The changes of photochemical quenching(qp) and non-photochemical quenching(qN) of chlorophyll a fluorescence in leaves of four tree seedlings ( Gleditsia sinensis, Juglans regia, Diospyros kaki and Diospyros lotus ) were different between two different water stress ways:detached drought treatment and potted drought treatment. After 4 hours dehydration by leaf detaching,the qp values had significant decrease except J. regia, only 6 hours later, the qp values compared with contrast decreased significantly in four tree seedlings(P>0.05), but the range of reduction( G.sinensis, J.regia and D.lotus) was just 2.5% to 6.4%. D.kaki, however,got to 31.3%. While the qN values increased significantly with conducting dehydration of the detached leaves. However, the qp values of four species showed no significant decrease when they were growing in pots under soil water stress(40%~60% RWC) for 30 days; and the qN values decreased obviously with a exception in J. regia, which was consistent with that of detached leaf treatment. The results suggested that some difference or changes in mechanism of excess light energy dissipation might perform in four seedlings by short-term and long-term water stress.

  16. The Effect of Vermicompost and Mycorrhizal Inoculation on Grain Yield and some Physiological Characteristics of Soybean (Glycine max L. under Water Stress Condition

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri nia

    2017-03-01

    Full Text Available Introduction Moisture limitation is considered as one of the important limiting factors in soybean growth. Drought stress affects different aspects of soybean growth through making anatomical, physiological and biochemical changes (Tarumingkeng & Coto, 2003. Under dry tension condition, there will be a disturbance in transmitting nutrients, but some useful soil fungi such as mycorrhiza improve production of crops under stress through forming colonies in the root and boosting water and nutrient absorption (Al-Karaki et al., 2004. Using vermicompost in sustainable agriculture strengthens support and activities of beneficial soil microorganisms (such as mycorrhizal fungi and phosphate solubilizing microorganisms in order to provide nutrients required by plants like nitrogen, phosphorus and soluble potassium as well as improving the growth and performance of the crops (Arancon et al., 2004. Materials and methods In order to investigate the effects of vermicompost and mycorrhiza fertilizers on grain yield and some physiological characteristics of soybean under water stress condition an experiment was conducted at Agricultural Research Center of Khorramabad during 2013. The field experiment was carried out based on a randomized complete blocks design arranged in split-plot with four replications. The experiment treatments including irrigation in three levels (after 60, 120 and 180 mm evaporation from pan class A pan, nutrient management in six levels (non-use of vermicompost and mycorhiza fertilizer, inoculated with mycorrhiza fertilizer, consumption of 5 and 10 t.ha-1 vermicompost, consumption of 5 and 10 t.ha-1 vermicompost with mycorrhiza were respectively as the main plots and sub. In current study, RWC, LAI, SPAD were measured during 59 days after planting at the beginning of podding of the control treatment. The temperature of plant leaves were measured by the thermometer (model TM-958 LUTRON infrared Thermometers. To analyze the growth of

  17. Effects of Different Levels of Water Stress on Leaf Water Potential, Stomatal Resistance, Protein and Chlorophyll Content and Certain Anti-oxidative Enzymes in Tomato Plants

    Institute of Scientific and Technical Information of China (English)

    Hatem Zgallai; Kathy Steppe; Raoul Lemeur

    2006-01-01

    A greenhouse experiment was performed in order to investigate the effects of different levels of water stress on leaf water potential (ψw), stomatal resistance (rs), protein content and chlorophyll (Chi) content of tomato plants (Lycopersicon esculentum Mill. cv. Nikita). Water stress was induced by adding polyethylene glycol (PEG 6 000) to the nutrient solution to reduce the osmotic potential (ψs). We investigated the behavior of anti-oxidant enzymes, such as catalase (CAT) and superoxide dismutase (SOD), during the development of water stress. Moderate and severe water stress (i.e.ψs= -0.51 and -1.22 MPa, respectively) caused a decrease in ψw for all treated (water-stressed) plants compared with control plants, with the reduction being more pronounced for severely stressed plants. In addition, rs was significantly affected by the induced water stress and a decrease in leaf soluble proteins and Chi content was observed. Whereas CAT activity remained constant, SOD activity was increased in water-stressed plants compared with unstressed plants. These results indicate the possible role of SOD as an anti-oxidant protector system for plants under water stress conditions. Moreover, it suggests the possibility of using this enzyme as an additional screening criterion for detecting water stress in plants.

  18. Pearling barley to alter the composition of the raw material before brewing

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.; Noordman, T.R.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Partly replacing malt with unmalted barley is a trend in brewing. The use of unmalted barley, however, leads to issues such as haze and high mash viscosity, due to its higher content of undesired components. Pearling, an abrasive method to remove the outer layers of the barley kernels has been shown

  19. Interaction between powdery mildew and barley with ¤mlo5¤ mildew resistance

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Østergård, Hanne

    1998-01-01

    Powdery mildew infection of barley with the mlo5 barley powdery mildew resistance gene was examined, using near-isogenic barley lines, with and without mlo5 resistance, and two near-isogenic powdery mildew isolates, HL3/5 and GE3 with high (virulent) or low (avirulent) penetration efficiency...

  20. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for...

  1. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.)

    Science.gov (United States)

    High beta glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to the well know health benefits. Quantitative trait loci (QTLs) associated with BG have been reported in hulled barley, however no QTL studies have been reported in hulless barley. In this study, QTL an...

  2. The role of root hairs in cadmium acquisition by barley

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ruilun; Li Huafen [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Jiang Rongfeng, E-mail: rfjiang@cau.edu.c [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Roemheld, Volker [Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart (Germany); Zhang Fusuo [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhao Fangjie [Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2011-02-15

    The role of root hairs in Cd acquisition from soil was investigated in three pot experiments using a root hairless mutant (bald root barley, brb) and its wild-type (WT) cultivar of barley (Hordeum vulgare). brb had significantly lower concentrations and lower total amounts of Cd in shoots than WT. The Cd uptake efficiency based on total root length was 8-45% lower in brb than in WT. The difference between brb and WT increased with increasing extractable Cd in soil under the experimental conditions used. Additions of phosphate to soil decreased Cd extractability. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. These effects resulted in decreased Cd uptake with increasing P supply. Cd uptake in WT correlated significantly with root length, root hair length and density, and soil extractable Cd. Root hairs contribute significantly to Cd uptake by barley. - Research highlights: The Cd uptake efficiency was significantly lower in brb than in WT. Additions of phosphate to soil decreased Cd extractability and Cd uptake. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. Root hairs contribute significantly to Cd uptake by barley. - The Cd uptake efficiency based on total root length was 8-45% lower in a barley root hairless mutant than in its wild-type, indicating an important role of root hairs in Cd acquisition.

  3. Identification of a phytase gene in barley (Hordeum vulgare L..

    Directory of Open Access Journals (Sweden)

    Fei Dai

    Full Text Available BACKGROUND: Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative trait loci (QTL analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. CONCLUSIONS/SIGNIFICANCE: It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains.

  4. Mutagenesis of barley malting quality QTLs with Ds transposons.

    Science.gov (United States)

    Singh, Surinder; Tan, Han Qi; Singh, Jaswinder

    2012-03-01

    Various functional genomic tools are being used to identify and characterize genes in plants. The Activator/Dissociation (Ac/Ds) transposon-based approach offers great potential, especially in barley, due to its limited success of genetic transformation and its large genome size. The bias of the Ac/Ds system towards genic regions and its tendency toward localized transpositions can greatly enhance the discovery and tagging of genes linked to Ds. Barley is a key ingredient in malting and brewing industry; therefore, gene discovery in relation to malting has an industrial perspective. Malting quality in barley is a complex and quantitatively inherited trait. Two major quantitative trait loci (QTLs) affecting malting quality traits have been located on chromosome 4H. In this study, Ds was reactivated from parent transposants (TNP) lines, TNP-29 and TNP-79, where Ds was mapped in the vicinity of important malting QTLs. Reactivation of Ds was carried out both by conventional breeding and in vitro approaches. A threefold increase in reactivation frequency through the in vitro approach enabled the development of a new genomic resource for the dissection of malting QTL and gene discovery in barley. Identification of unique flanking sequences, using high-efficiency thermal asymmetric interlaced PCR and inverse PCR from these populations, has further emphasized the new location of Ds in the barley genome and provided new transposon mutants especially in β-GAL1, β-amylase-like gene and ABC transporter for functional genomic studies.

  5. Products based on a high fiber barley genotype, but not on common barley or oats, lower postprandial glucose and insulin responses in healthy humans.

    Science.gov (United States)

    Liljeberg, H G; Granfeldt, Y E; Björck, I M

    1996-02-01

    Postprandial blood glucose and insulin responses to cereal products made from common barley, oats or a barley genotype containing elevated levels of beta-glucans were evaluated in nine healthy subjects. Porridges were made from commercial Swedish whole-meal barley or oat flours, and a mixed whole-meal porridge using the high fiber barley genotype and commercial Swedish common barley (50:50). Also studied were two types of flour-based bread products composed of high fiber barley and common barley in ratios of 50:50 or 80:20, respectively. The common oat and barley porridges produced postprandial glucose and insulin responses similar to the white wheat bread reference, suggesting that the naturally occurring dietary fiber in these whole-meal flours has no impact on the glucose tolerance. In contrast, all high fiber barley products induced significantly lower responses than did the reference product, with the glycemic and insulin indices ranging from 57 to 72 or 42 to 72%, respectively. It is concluded that "lente" products of high sensory quality can be prepared from a barley genotype with an elevated content of soluble dietary fiber. The glycemic index of these products compares favorably with that of products made from common cereals, suggesting their use as a potential component of diets for patients with diabetes and hyperlipidemia, and for individuals predisposed to metabolic disease.

  6. Water stress, CO2 and photoperiod influence hormone levels in wheat

    Science.gov (United States)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  7. Water stress, CO2 and photoperiod influence hormone levels in wheat

    Science.gov (United States)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraint