WorldWideScience

Sample records for water-soluble metal-binding polymers

  1. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  2. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  3. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  4. Water-soluble polymers and compositions thereof

    Science.gov (United States)

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  5. Water Soluble Responsive Polymer Brushes

    Directory of Open Access Journals (Sweden)

    Andrew J. Parnell

    2011-12-01

    Full Text Available Responsive polymer brushes possess many interesting properties that enable them to control a range of important interfacial behaviours, including adhesion, wettability, surface adsorption, friction, flow and motility. The ability to design a macromolecular response to a wide variety of external stimuli makes polymer brushes an exciting class of functional materials, and has been made possible by advances in modern controlled polymerization techniques. In this review we discuss the physics of polymer brush response along with a summary of the techniques used in their synthesis. We then review the various stimuli that can be used to switch brush conformation; temperature, solvent quality, pH and ionic strength as well as the relatively new area of electric field actuation We discuss examples of devices that utilise brush conformational change, before highlighting other potential applications of responsive brushes in real world devices.

  6. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    . This review presents the various types of water soluble polymers used for hydrate inhibition, including conventional and novel polymeric inhibitors along with their limitations. The review covers the relevant properties of vinyl lactam, amide, dendrimeric, fluorinated, and natural biodegradable polymers...

  7. Hybrid solar cells from water-soluble polymers

    Directory of Open Access Journals (Sweden)

    James T. McLeskey

    2006-01-01

    Full Text Available We report on the use of a water-soluble, light-absorbing polythiophene polymer to fabricate novel photovoltaic devices. The polymer is a water-soluble thiophene known as sodium poly[2-(3-thienyl-ethoxy-4-butylsulfonate] or PTEBS. The intention is to take advantage of the properties of conjugated polymers (flexible, tunable, and easy to process and incorporate the additional benefits of water solubility (easily controlled evaporation rates and environmentally friendly. The PTEBS polythiophene has shown significant photovoltaic response and has been found to be effective for making solar cells. To date, solar cells in three different configurations have been produced: titanium dioxide (TiO2 bilayer cells, TiO2 bulk heterojunction solar cells, and carbon nanotubes (CNTs in bulk heterojunctions. The best performance thus far has been achieved with TiO2 bilayer devices. These devices have an open circuit voltage (Voc of 0.84V, a short circuit current (Jsc of 0.15 mA/cm2, a fill factor (ff of 0.91, and an efficiency (η of 0.15 %.

  8. Reactivity of Metal Ions Bound to Water-Soluble Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, N.N.; Watkins, J.G.; Lin, M.; Birnbaum, E.R.; Robison, T.W.; Smith, B.F.; Gohdes, J.W.; McDonald, J.G.

    1999-06-29

    The intent of this work is to determine the effectiveness of catalysts covalently bound to polymers and to understand the consequences of supporting the catalysts on catalyst efficiency and selectivity. Rhodium phosphine complexes with functional groups for coupling to polymers were prepared. These catalyst precursors were characterized using standard techniques including IR, NMR, and elemental analysis. Studies on the modified catalysts showed that they were still active hydrogenation catalysts. However, tethering of the catalysts to polyamines gave systems with low hydrogenation activity. Analogous biphasic systems were also explored. Phosphine ligands with a surfactant-like structure have been synthesized and used to prepare catalytically active complexes of palladium. The palladium complexes were utilized in Heck-type coupling reactions (e.g. coupling of iodobenzene and ethyl acrylate to produce ethyl cinnamate) under vigorously stirred biphasic reaction conditions, and were found to offer superior performance over a standard water-soluble palladium catalyst under analogous conditions.

  9. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  10. Water-soluble polymers for recovery of metal ions from aqueous streams

    Science.gov (United States)

    Smith, Barbara F.; Robison, Thomas W.

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  11. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    Science.gov (United States)

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy.

  12. Synthesis and Characterization of Water-Soluble Carboxymethyl-Cyclodextrin Polymer as Capillary Electrophoresis Chiral Selector

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The water-soluble carboxymethyl-cyclodextrin polymer (CM-CD polymer) was synthesized and used as capillary electrophoresis chiral selector.Verrapamil and thiopentorusodium were well separated using CM-CD polymer as chiral selector.

  13. Linking Atomistic and Mesoscale Simulations of Water Soluble Polymers

    Science.gov (United States)

    Jones, J. L.

    2003-03-01

    There exist a range of techniques for studying surfactants and polymers in the mesoscale regime. One of the challenges is to link mesoscale theories and simulations to other calculation methods which address different length scales of the system. We introduce some mesoscale methods of calculation for polymers and surfactants and then present a case study of where mesoscale modelling is used for mechanistic understanding, by linking the method to high throughput in-silico screening methods. We look at the adsorption onto silica of ethylene oxide (EO)/ propylene oxide (PO) block copolymers (lutrols) which have been modified by end-grafting of short, cationic dimethylamino ethyl methacrylate (DMAEMA)chains. Given that the silica surface is negatively charged, it is remarkable that in some circumstances, polymers with longercationic chains have a lower adsorption. The effect is attributed to a competition between strong adsorption of the cationic DMAEMA groups driven by electrostatics, and weaker adsorption of the more numerous EO groups. This then raises the question of how we produce the values for the mesoscale parameters in these models and in the second part of the talk we describe a calculation method for doing this for water soluble polymers. The most promising route, but notoriously costly, is based on free energy calculations at the atomistic level. Free energy calculations are computationally intensive in general, but in an aqueous system one is also faced with the additional problem of using complex continuum models and/or accurate interaction potentials for water. Here we show how potential of mean force (PMF)calculations offer a practical alternative which avoids these drawbacks, though one is still faced with extremely long simulations.

  14. Water-soluble dopamine-based polymers for photoacoustic imaging

    NARCIS (Netherlands)

    Repenko, T.; Fokong, S.; De Laporte, L.; Go, D.; Kiessling, F.; Lammers, Twan Gerardus Gertudis Maria; Kuehne, A.

    2015-01-01

    Here we present a facile synthetic method yielding a linear form of polydopamine via Kumada-coupling, which can be converted into water-soluble melanin, generating high contrast in photoacoustic imaging.

  15. Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architectures.

    Science.gov (United States)

    Mu, Mingwei; Konno, Tomohiro; Inoue, Yuuki; Ishihara, Kazuhiko

    2017-06-29

    To achieve stable and effective solubilization of poorly water-soluble bioactive compounds, water-soluble and amphiphilic polymers composed of hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) units and hydrophobic n-butyl methacrylate (BMA) units were prepared. MPC polymers having different molecular architectures, such as random-type monomer unit sequences and block-type sequences, formed polymer aggregates when they were dissolved in aqueous media. The structure of the random-type polymer aggregate was loose and flexible. On the other hand, the block-type polymer formed polymeric micelles, which were composed of very stable hydrophobic poly(BMA) cores and hydrophilic poly(MPC) shells. The solubilization of a poorly water-soluble bioactive compound, paclitaxel (PTX), in the polymer aggregates was observed, however, solubilizing efficiency and stability were strongly depended on the polymer architecture; in other words, PTX stayed in the poly(BMA) core of the polymer micelle formed by the block-type polymer even when plasma protein was present in the aqueous medium. On the other hand, when the random-type polymer was used, PTX was transferred from the polymer aggregate to the protein. We conclude that water-soluble and amphiphilic MPC polymers are good candidates as solubilizers for poorly water-soluble bioactive compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermoresponsive synergistic hydrogen bonding switched by several guest units in a water-soluble polymer.

    Science.gov (United States)

    Hao, Zhenhua; Li, Guangxiang; Yang, Ke; Cai, Yuanli

    2013-03-12

    Thermoresponsive synergistic hydrogen bonding (H-bonding) switched by several guest units in a water-soluble polymer is reported. Adjusting the distribution of guest units can effectively change the synergistic H-bonding inside polymer chains, thus widely switch the preorganization and thermoresponsive behavior of a water-soluble polymer. The synergistic H-bonding is also evidenced by converting less polar aldehyde groups into water-soluble oxime groups, which bring about the lowering-down of cloud point and an amplified hysteresis effect. This is a general approach toward the wide tunability of thermosensitivity of a water-soluble polymer simply by adjusting the distribution of several guest H-bonding units.

  17. Study on the sound absorption mechanism in gradient water-soluble polymer solution

    Institute of Scientific and Technical Information of China (English)

    WANG Yuansheng; YANG Xue; ZHU Jinhua; YAO Shuren

    2006-01-01

    Attention was paid to the study on the sound absorption mechanism of watersoluble polymer during dissolving. A specially designed water-soluble polymer coating was synthesized in our lab. The sound attenuation property was measured in sound tube. The results showed that the sound attenuation of the gradient polymer solution was larger than that of the uniform. Depending on the experimental result and the theory of sound wave propagation in layered medium, a mechanism of gradient water-soluble polymer solution was developed. This mechanism can be described as follows: a water-soluble polymer coating formed a concentration gradient layer when it was dissolved in water. This gradient layer led to multiple reflection and absorption of sound. Finally the sound energy was transferred into heat.

  18. Highly sensitive biosensors based on water-soluble conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; WU Haiping; FAN Chunhai; LI Wenxin; ZHANG Zhizhou; HE Lin

    2004-01-01

    Conjugated, conductive polymers are a kind of important organic macromolecules, which has found applications in a variety of areas. The application of conjugated polymers in developing fluorescent biosensors represents the merge of polymer sciences and biological sciences. Conjugated polymers are very good light harvesters as well as fluorescent polymers, and they are also "molecular wires". Through elaborate designs, these important features, i.e. efficient light harvesting and electron/energy transfer, can be used as signal amplification in fluorescent biosensors. This might significantly improve the sensitivity of conjugated polymer-based biosensors. In this article, we reviewed the application of conjugated polymers, via either electron transfer or energy transfer, to detections of gene targets, antibodies or enzymes. We also reviewed recent efforts in conjugated polymer-based solid-state sensor designs as well as chip-based multiple target detection. Possible directions in this conjugated polymer-based biosensor area are also discussed.

  19. Synthesis of New Water-Soluble Metal-Binding Polymers combinatorial Chemistry Approach

    Energy Technology Data Exchange (ETDEWEB)

    R. Bryan Miller

    2004-05-07

    (1) Synthesis of Fused Tetraheterocyclic Azepines: (2) Synthesis of Linear Bidentate Diisoxazole and Bidentate Isoxazole-Furyl/Thienyl/Pyridyl Motifs: (3) Synthesis of Pyrazolo[3,4-g] [2,1] dihydrobenzoisoxazol(in)es: (4) Synthesis of Spiro-Fused (C5)-Isozazoline-(C4)-Pyrazolones:

  20. Water-soluble synthetic polymers in Medical applications

    OpenAIRE

    MUSTAFAEVA ZEYNEP

    2016-01-01

    In this review, physiologically active polymers and impact of polyelectrolytes on the immunological parameters have been explored. Results obtained with addition of synthetic biopolymers show a higher protection against viral and bacterial infections which indicates a great potential for production of biotechnological vaccines. In this article the structure of polyelectrolytes is compared with natural polymers.

  1. Treatment of production wells with water soluble polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I.

    1978-01-01

    On the basis of published data, various layer-treating processes using polymers are described, such as well treating with aqueous polymer solutions and methods based on in situ cross linking and in situ polymerization. In the second part of the study, previous laboratory results are reported, which were achieved in the course of an examination of the local adaptation of a layer treatment performed with a polymer solution at the Petroleum Engineering Production Research Laboratory of the Hungarian Academy of Sciences.(22 refs.)

  2. A new member of the oxygen-photosensitizers family: a water-soluble polymer binding a platinum complex.

    Science.gov (United States)

    Ricciardi, Loredana; Puoci, Francesco; Cirillo, Giuseppe; La Deda, Massimo

    2012-08-28

    The grafting of a 2-picolylamine Pt(II) complex into polymethacrylic acid has been successfully performed. The obtained polymer is water soluble, and it represents the first example of a platinum-containing polymer able to photogenerate singlet oxygen.

  3. Water-soluble chelating polymers for removal of actinides from watewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G. [Los Alamos National Lab., NM (United States)

    1996-10-01

    Polymer filtration is a technology being developed to recover valuable or regulated metal ions selectively from process or wastewaters. Water-soluble chelating polymers are specially designed to bind selectively with metal ions in aqueous solutions. The polymers molecular weight is large enough so they can be separated and concentrated using available ultrafiltration technology. Water and smaller unbound components of the solution pass freely through the ultrafiltration membrane. The polymers can then be reused by changing the solution conditions to release the metal ions, which are recovered in concentrated form, for recycle or disposal.

  4. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2014-11-01

    Full Text Available A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

  5. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    Science.gov (United States)

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca(2+), Mg(2+), and Zn(2+)) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG8k-co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  6. Mechanistic studies of metal ion binding to water-soluble polymers using potentiometry.

    Science.gov (United States)

    Jarvis, N V; Wagener, J M

    1995-02-01

    A method for elucidating metal ion binding mechanisms with water-soluble polymers has been developed in which the polymer is treated as a collection of monomeric units. Data obtained from potentiometric titrations are analysed by the ESTA library of programs and apparent formation constants may be calculated. From this information, predictions may be made as to metal ion separation using complexation-ultrafiltration techniques. The polymer used in this study was Polymin Water-Free and its complexation with Hg(II), Cd(II), Pb(II), Co(II) and Ni(II) was successfully modelled.

  7. Method for production of polymer and carbon nanofibers from water-soluble polymers.

    Science.gov (United States)

    Spender, Jonathan; Demers, Alexander L; Xie, Xinfeng; Cline, Amos E; Earle, M Alden; Ellis, Lucas D; Neivandt, David J

    2012-07-11

    Nanometer scale carbon fibers (carbon nanofibers) are of great interest to scientists and engineers in fields such as materials science, composite production, and energy storage due to their unique chemical, physical, and mechanical properties. Precursors currently used for production of carbon nanofibers are primarily from nonrenewable resources. Lignin is a renewable natural polymer existing in all high-level plants that is a byproduct of the papermaking process and a potential feedstock for carbon nanofiber production. The work presented here demonstrates a process involving the rapid freezing of an aqueous lignin solution, followed by sublimation of the resultant ice, to form a uniform network comprised of individual interconnected lignin nanofibers. Carbonization of the lignin nanofibers yields a similarly structured carbon nanofiber network. The methodology is not specific to lignin; nanofibers of other water-soluble polymers have been successfully produced. This nanoscale fibrous morphology has not been observed in traditional cryogel processes, due to the relatively slower freezing rates employed compared to those achieved in this study.

  8. Water-Soluble Conjugated Polymers: Self-Assembly and Biosensor Applications

    Science.gov (United States)

    Bazan, Guillermo

    2005-03-01

    Homogeneous assays can be designed which take advantage of the optical amplification of conjugated polymers and the self-assembly characteristic of aqueous polyelectrolytes. For example, a ssDNA sequence sensor comprises an aqueous solution containing a cationic water soluble conjugated polymer such as poly(9,9-bis(trimethylammonium)-hexyl)-fluorene phenylene) with a peptide nucleic acid (PNA) labeled with a dye (PNA-C*). Signal transduction is controlled by hybridization of the neutral PNA-C* probe and the negative ssDNA target, resulting in favorable electrostatic interactions between the hybrid complex and the cationic polymer. Distance requirements for Förster energy transfer are thus met only when ssDNA of complementary sequence to the PNA-C* probe is present. Signal amplification by the conjugated polymer provides fluorescein emission >25 times higher than that of the directly excited dye. Transduction by electrostatic interactions followed by energy transfer is a general strategy. Examples involving other biomolecular recognition events, such as DNA/DNA, RNA/protein and RNA/RNA, will also be provided. The mechanism of biosensing will be discussed, with special attention to the varying contributions of hydrophobic and electrostatic forces, polymer conformation, charge density, local concentration of C*s and tailored defect sites for aggregation-induced optical changes. Finally, the water solubility of these conjugated polymers opens possibilities for spin casting onto organic materials, without dissolving the underlying layers. This property is useful for fabricating multilayer organic optoelectronic devices by simple solution techniques.

  9. Water-soluble chelating polymers for removal of actinides from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.D. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent.

  10. Drug carrier systems based on water-soluble cationic beta-cyclodextrin polymers.

    Science.gov (United States)

    Li, Jianshu; Xiao, Huining; Li, Jiehua; Zhong, YinPing

    2004-07-08

    This study was designed to synthesize, characterize and investigate the drug inclusion property of a series of novel cationic beta-cyclodextrin polymers (CPbetaCDs). Proposed water-soluble polymers were synthesized from beta-cyclodextrin (beta-CD), epichlorohydrin (EP) and choline chloride (CC) through a one-step polymerization procedure by varying molar ratio of EP and CC to beta-CD. Physicochemical properties of the polymers were characterized with colloidal titration, nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and aqueous solubility determination. The formation of naproxen/CPbetaCDs inclusion complexes was confirmed by NMR and fourier transform infrared spectroscopy (FT-IR). Cationic beta-CD polymers showed better hemolytic activities than parent beta-CD and neutral beta-CD polymer in hemolysis test. The morphological study of erythrocytes revealed a cell membrane invagination induced by the cationic groups. The effects of molecular weight and charge density of the polymers on their inclusion and release performance of naproxen were also investigated through phase-solubility and dissolution studies. It was found that the cationic beta-CD polymers with high molecular weight or low charge density exhibited better drug inclusion and dissolution abilities.

  11. Design and synthesis of monofunctionalized, water-soluble conjugated polymers for biosensing and imaging applications.

    Science.gov (United States)

    Traina, Christopher A; Bakus, Ronald C; Bazan, Guillermo C

    2011-08-17

    Water-soluble conjugated polymers with controlled molecular weight characteristics, absence of ionic groups, high emission quantum yields, and end groups capable of selective reactions of wide scope are desirable for improving their performance in various applications and, in particular, fluorescent biosensor schemes. The synthesis of such a structure is described herein. 2-Bromo-7-iodofluorene with octakis(ethylene glycol) monomethyl ether chains at the 9,9'-positions, i.e., compound 4, was prepared as the reactive premonomer. A high-yielding synthesis of the organometallic initiator (dppe)Ni(Ph)Br (dppe = 1,2-bis(diphenylphosphino)ethane) was designed and implemented, and the resulting product was characterized by single-crystal X-ray diffraction techniques. Polymerization of 4 by (dppe)Ni(Ph)Br can be carried out in less than 30 s, affording excellent control over the average molecular weight and polydispersity of the product. Quenching of the polymerization with [2-(trimethylsilyl)ethynyl]magnesium bromide yields silylacetylene-terminated water-soluble poly(fluorene) with a photoluminescence quantum efficiency of 80%. Desilylation, followed by copper-catalyzed azide-alkyne cycloaddition reaction, yields a straightforward route to introduce a wide range of specific end group functionalities. Biotin was used as an example. The resulting biotinylated conjugated polymer binds to streptavidin and acts as a light-harvesting chromophore to optically amplify the emission of Alexa Fluor-488 chromophores bound onto the streptavidin. Furthermore, the biotin end group makes it possible to bind the polymer onto streptavidin-functionalized cross-linked agarose beads and thereby incorporate a large number of optically active segments.

  12. Radiation crosslinking of starch/water-soluble polymer blends for hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, K.; Mohid, N.; Bahari, K.; Dahlan, K.Z. [Radiation Processing Technology Division, Malaysian Institute Nuclear Technology Research Malaysia (MINT), Bangi, 43000 Kajang (Malaysia)

    2000-03-01

    Water-soluble polymers such as PVP(polyvinyl pyrrolidone) and PVA(polyvinyl alcohol), in aqueous solution can form hydrogel easily upon gamma or electron beam irradiation. The properties of hydrogels, particularly for wound dressing application, can be further improved by adding sago starch to the blend. Results show improved gel strength and elongation properties of the hydrogel with increasing sago concentration. It was found that the PVA/sago hydrogel gives better gel strength and elongation than the PVP/sago hydrogel. The tackiness property of the PVA/sago hydrogel increased with increase amount of sago starch added. In case of PVP/sago hydrogel, the tackiness property shows significant increase with increasing amount of sago except for the 5%PVP composition. The swelling properties of PVP/sago and PVA/sago hydrogel decreased with increasing amount of sago but the crosslink density of the hydrogels also reduced. (author)

  13. Magnetically assisted fluorescence ratiometric assays for adenosine deaminase using water-soluble conjusated polymers

    Institute of Scientific and Technical Information of China (English)

    HE Fang; YU MingHui; WANG Shu

    2009-01-01

    A magnetically assisted fluorescence ratiometric technique has been developed for adenosine deami-nase assays with high sensitivity using water-soluble cationic conjugated polymers (CCPs).The assay contains three elements:a biotin-labeled aptamer of adenosine (biotin-aptamer),a signaling probe single-stranded DNA-tagged fiuorescein at terminus (ssDNA-FI) and a CCP.The specific binding of adenosine to biotin-aptamer makes biotin-aptamer and ssDNA-FI unhybridized,and the ssDNA-FI is washed out after streptavidin-coated magnetic beads are added and separated from the assay solution under magnetic field.In this case,after the addition of CCP to the magnetic beads solution,the fluo-rescence resonance energy transfer (FRET) from CCP to fluorescein is inefficient.Upon adding adenosine deaminase,the adenosine is converted into inosine,and the biotin-aptamer is hybridized with ssDNA-FI to form doubled stranded DNA (biotin-dsDNA-FI).The ssONA-FI is attached to the mag-netic beads at the separation step,and the addition of CCP to the magnetic beads solution leads to efficient FRET from CCP to fluorescein.Thus the adenosine deaminase activity can be monitored by fluorescence spectra in view of the intensity decrease of CCP emission or the increase of fluorescein emission in aqueous solutions.The assay integrates surface-functionalized magnetic particles with significant amplification of detection signal of water-soluble cationic conjugated polymers.

  14. Metal-Binding Characteristics of the Gamma-Glutamyl Capsular Polymer of Bacillus licheniformis ATCC 9945.

    Science.gov (United States)

    McLean, R J; Beauchemin, D; Clapham, L; Beveridge, T J

    1990-12-01

    The metal-binding affinity of the anionic poly-gamma-d-glutamyl capsule of Bacillus licheniformis was investigated by using Na, Mg, Al, Ca, Cr, Mn, Fe, Ni, and Cu. Purified capsule was suspended in various concentrations of the chloride salts of the various metals, and after dialysis the bound metals were analyzed either by graphite furnace atomic absorption spectroscopy or by inductively coupled plasma-mass spectrometry. Exposure of purified capsule to excess concentrations of Na revealed it to contain 8.2 mumol of anionic sites per mg on the basis of Na binding. This was confirmed by titration of the capsule with HCl and NaOH. Other metal ions were then added in ionic concentrations equivalent to 25, 50, 75, 100, 200, and 400% of the available anionic sites. The binding characteristics varied with the metal being investigated. Addition of Cu, Al, Cr, or Fe induced flocculation. These metal ions showed the greatest affinity for B. licheniformis capsule in competitive-binding experiments. Flocculation was not seen with the addition of other metal ions. With the exception of Ni and Fe all capsule-metal-binding sites readily saturated. Ni had low affinity for the polymer, and its binding was increased at high metal concentrations. Fe binding resulted in the development of rust-colored ferrihydrite which itself could bind additional metal. Metal-binding characteristics of B. licheniformis capsule appear to be influenced by the chemical and physical properties of both the capsule and the metal ions.

  15. ASSOCIATION BEHAVIOR OF PORPHYRIN PENDANTS IN pH-SENSITIVE WATER-SOLUBLE POLYMER

    Institute of Scientific and Technical Information of China (English)

    Ke-wei Ding; Fei Wang; Fei-peng Wu

    2012-01-01

    A novel tripyridylporphyrin monomer,5-[4-[2-(acryloyloxy)ethoxy]phenyl]-10,15,20-tris(4-pyridyl)porphyrin (TrPyP),was synthesized and polymerized with acrylamide (AM) to prepare the hydrophobically associating water-soluble polymer PAM-TrPyP.The aggregation behavior of porphyrin pendants was investigated by UV-Visible and fluorescence spectra.The polymer displays a strong tendency of hydrophobic association even in dilute solutions.With increasing the concentration,the maximum absorption wavelength of Sorer band changes from 416 nm to 407 nm,and the fluorescence corrected for the inner filter effect exhibits moderate concentration quenching.All the results indicate that π-π interaction of porphyrin pendants plays a key role in association of PAM-TrPyP,and H-aggregates of porphyrins are mainly formed in the conccntrated solution.On the other hand,dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to follow the changes in size and structure of the macromolecular assemblies with the concentration increase.The polymer aggregation conformation changes from loose "vesicle-like" morphology to solid globule accordingly.When pH value of solution decreases to 4.3,pyridine moieties on porphyrin pendants could be protonated and the H-aggregates formed in macromolecular matrix are destroyed by electrostatic repulsion interactions.

  16. Streptavidin sensor and its sensing mechanism based on water-soluble fluorescence conjugated polymer

    Science.gov (United States)

    Chen, Yanguo; Hong, Peng; Xu, Baoming; He, Zhike; Zhou, Baohan

    2014-03-01

    Fluorescence quenching effect of water-soluble anionic conjugated polymer (CP) (poly[5-methoxy-2-(3-sulfopoxy)-1,4-phenylenevinylene] (MPS-PPV)) by [Re(N-N)(CO)3(py-CH2-NH-biotin)](PF6) [N-N=2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline; py-CH2-NH-biotin=N-[(4-pyridyl) methyl] biotinamide] (Re-Biotin) and fluorescence recovery in the presence of streptavidin (or avidin) were investigated using Re-Biotin as quencher tether ligand (QTL) probe. Meanwhile, the mechanisms of fluorescence quenching and recovery were discussed to provide new thoughts to design biosensor based on water-soluble CPs. The results indicate that the sensing mechanisms of streptavidin sensor or avidin sensor, using Re-Biotin as QTL probe, are the same and stable, whether in non-buffer system (aqueous solution) or different buffer systems [0.01 mol·L-1 phosphate buffered solution (pH = 7.4), 0.1 mol·L-1 ammonium carbonate buffered solution (pH = 8.9)]. There exists specific interactions between streptavidin (or avidin) and biotin of Re-Biotin. Fluorescence quenching and recovery processes of MPS-PPV are reversible. Mechanisms of Re-Biotin quenching MPS-PPV fluorescence can be interpreted as strong electrostatic interactions and charge transferences between Re-Biotin and MPS-PPV. Fluorescence recovery mechanisms of Re-Biotin-MPS-PPV system can be interpreted as specific interactions between streptavidin (or avidin) and biotin of Re-Biotin making Re-Biotin far away from MPS-PPV. Avidin or strptavidin as re-Biotin probe can not only be quantitatively determinated, but also be identified.

  17. Nanocomposite hydrogels based on water soluble polymer and montmorillonite-Na+

    Directory of Open Access Journals (Sweden)

    Fatiha Reguieg

    2015-09-01

    Full Text Available A series of composites hydrogels based on Poly (1,3-dioxolane (PDXL,water soluble polymer, were synthesized directly in water by free-radical homopolymerization of a,w-methacryloyloxy PDXL macromonomers using hydrophilic sodium Montmorillonite clay: Maghnite-Na+ (Mag-Na+ and potassium persulfate as an initiator. These materials were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermogravimetric analysis (ATG and their equilibrium swelling behavior in water and were compared with those of pure hydrogels prepared without Mag-Na+. X-ray diffraction and Infrared spectroscopy confirmed insertion of clay into polymer. The thermal decomposition temperature of the hydrogels based on maghnite-Na+ was found to be higher than of pure hydrogels. At the same time, the influence of the macromonomer precursor molar mass value, its concentration and the quantities of Mag-Na+, on the values of the volume degree of equilibrium swelling were studied. The results showed that the volume degree of equilibrium swelling was investigated as a function of the clay content. However, whether the concentration of macromonomer precursor increased, the volume or weight degree of equilibrium swelling of hydrogels all decreased. The addition of Mag-Na+ particles changed the crosslinking density of hydrogels.

  18. Invertible micellar polymer assemblies for delivery of poorly water-soluble drugs.

    Science.gov (United States)

    Hevus, Ivan; Modgil, Amit; Daniels, Justin; Kohut, Ananiy; Sun, Chengwen; Stafslien, Shane; Voronov, Andriy

    2012-08-13

    Strategically designed amphiphilic invertible polymers (AIPs) are capable of (i) self-assembling into invertible micellar assemblies (IMAs) in response to changes in polarity of environment, polymer concentration, and structure, (ii) accommodating (solubilizing) substances that are otherwise insoluble in water, and (iii) inverting their molecular conformation in response to changes in the polarity of the local environment. The unique ability of AIPs to invert the molecular conformation depending on the polarity of the environment can be a decisive factor in establishing the novel stimuli-responsive mechanism of solubilized drug release that is induced just in response to a change in the polarity of the environment. The IMA capability to solubilize lipophilic drugs and deliver and release the cargo molecules by conformational inversion of polymer macromolecules in response to a change of the polarity of the environment was demonstrated by loading IMA with a phytochemical drug, curcumin. It was demonstrated that four sets of micellar vehicles based on different AIPs were capable of delivering the curcumin from water to an organic medium (1-octanol) by means of unique mechanism: AIP conformational inversion in response to changing polarity from polar to nonpolar. The IMAs are shown to be nontoxic against human cells up to a concentration of 10 mg/L. On the other hand, the curcumin-loaded IMAs are cytotoxic to breast carcinoma cells at this concentration, which confirms the potential of IMA-based vehicles in controlled delivery of poorly water-soluble drug candidates and release by means of this novel stimuli-responsive mechanism.

  19. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  20. Efficient separation of conjugated polymers using a water soluble glycoprotein matrix: from fluorescence materials to light emitting devices.

    Science.gov (United States)

    Hendler, Netta; Wildeman, Jurjen; Mentovich, Elad D; Schnitzler, Tobias; Belgorodsky, Bogdan; Prusty, Deepak K; Rimmerman, Dolev; Herrmann, Andreas; Richter, Shachar

    2014-03-01

    Optically active bio-composite blends of conjugated polymers or oligomers are fabricated by complexing them with bovine submaxilliary mucin (BSM) protein. The BSM matrix is exploited to host hydrophobic extended conjugated π-systems and to prevent undesirable aggregation and render such materials water soluble. This method allows tuning the emission color of solutions and films from the basic colors to the technologically challenging white emission. Furthermore, electrically driven light emitting biological devices are prepared and operated.

  1. Critical Material Attributes of Strip Films Loaded With Poorly Water-Soluble Drug Nanoparticles: II. Impact of Polymer Molecular Weight.

    Science.gov (United States)

    Krull, Scott M; Ammirata, Jennifer; Bawa, Sonia; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-02-01

    Recent work established polymer strip films as a robust platform for delivery of poorly water-soluble drug particles. However, a simple means of manipulating rate of drug release from films with minimal impact on film mechanical properties has yet to be demonstrated. This study explores the impact of film-forming polymer molecular weight (MW) and concentration on properties of polymer films loaded with poorly water-soluble drug nanoparticles. Nanoparticles of griseofulvin, a model Biopharmaceutics Classification System class II drug, were prepared in aqueous suspension via wet stirred media milling. Aqueous solutions of 3 viscosity grades of hydroxypropyl methylcellulose (14, 21, and 88 kDa) at 3 viscosity levels (∼9500, ∼12,000, and ∼22,000 cP) were mixed with drug suspension, cast, and dried to produce films containing griseofulvin nanoparticles. Few differences in film tensile strength or elongation at break were observed between films within each viscosity level regardless of polymer MW despite requiring up to double the time to achieve 100% drug release. This suggests film-forming polymer MW can be used to manipulate drug release with little impact on film mechanical properties by matching polymer solution viscosity. In addition, changing polymer MW and concentration had no negative impact on drug content uniformity or nanoparticle redispersibility.

  2. Recrystallization of water in non-water-soluble (meth)acrylate polymers is not rare and is not devitrification.

    Science.gov (United States)

    Gemmei-Ide, Makoto; Ohya, Atsushi; Kitano, Hiromi

    2012-02-16

    Change in the state of water sorbed into four kinds of non-water-soluble poly(meth)acrylates with low water content by temperature (T) perturbation was examined on the basis of T variable mid-infrared (MIR) spectroscopy. Many studies using differential scanning calorimetry suggested that there was no change in the state. T dependence of their MIR spectra, however, clearly demonstrated various changes in the state. Furthermore, recrystallization, which was crystallization during heating, was observed in all four polymers. The recrystallization observed in this study was not devitrification, which is the change in the state from glassy water to crystalline water, but vapor deposition during heating (vapor re-deposition). There were only two reports about recrystallization of water in a non-water-soluble polymer before this report; therefore, it might be considered to be a rare phenomenon. However, as demonstrated in this study, it is not a rare phenomenon. Recrystallization (vapor re-deposition) of water in the polymer matrices is related to a balance between flexibility and strength of the electrostatic interaction sites of polymer matrices but might not be related to the biocompatibility of polymers.

  3. Evaluation of chitosan–anionic polymers based tablets for extended-release of highly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Yang Shao

    2015-02-01

    Full Text Available The objective of this study is to develop chitosan–anionic polymers based extended-release tablets and test the feasibility of using this system for the sustained release of highly water-soluble drugs with high drug loading. Here, the combination of sodium valproate (VPS and valproic acid (VPA were chosen as the model drugs. Anionic polymers studied include xanthan gum (XG, carrageenan (CG, sodium carboxymethyl cellulose (CMC-Na and sodium alginate (SA. The tablets were prepared by wet granulation method. In vitro drug release was carried out under simulated gastrointestinal condition. Drug release mechanism was studied. Compared with single polymers, chitosan–anionic polymers based system caused a further slowdown of drug release rate. Among them, CS–xanthan gum matrix system exhibited the best extended-release behavior and could extend drug release for up to 24 h. Differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR studies demonstrated that polyelectrolyte complexes (PECs were formed on the tablet surface, which played an important role on retarding erosion and swelling of the matrix in the later stage. In conclusion, this study demonstrated that it is possible to develop highly water-soluble drugs loaded extended-release tablets using chitosan–anionic polymers based system.

  4. Biphasic and SAPC Hydroformylation Catalyzed by Rh-phosphines Bound to Water-Soluble Polymers

    DEFF Research Database (Denmark)

    Malmstrøm, Torsten; Andersson, Carlaxel; Hjortkjær, Jes

    1999-01-01

    Coupling of the triphenylphosphine moiety to poly-acrylic acid and poly-ethyleneimine respectively afford the macromolecular ligands PAA-PNH and PEI-PNH. Reaction of the ligands with Rh(CO)2(acac) give water-soluble complexes that are active as catalysts in the hydroformylation ofdifferent olefins...

  5. DNA binding and biological studies of some novel water-soluble polymer-copper(II)-phenanthroline complexes.

    Science.gov (United States)

    Kumar, Rajendran Senthil; Arunachalam, Sankaralingam; Periasamy, Vaiyapuri Subbarayan; Preethy, Christo Paul; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader

    2008-10-01

    Some novel water-soluble polymer-copper(II)-phenanthroline complex samples, [Cu(phen)2(BPEI)]Cl(2).4H2O (phen=1,10-phenanthroline, BPEI=branched polyethyleneimine), with different degrees of copper complex content in the polymer chain have been prepared by ligand substitution method in water-ethanol medium and characterized by infrared, UV-visible, EPR spectral and elemental analysis methods. The binding of these complex samples with DNA has been investigated by electronic absorption spectroscopy, emission spectroscopy and gel retardation assay. Electrostatic interactions between DNA molecule and polymer-copper(II) complex molecule containing many high positive charges have been observed. Besides these ionic interactions, van der Waals interactions, hydrogen bonding and other partial intercalation binding modes may also exist in this system. The polymer-copper(II) complex with higher degree of copper complex content was screened for its antimicrobial activity and antitumor activity.

  6. Water-soluble light-emitting nanoparticles prepared by non-covalent bond self-assembly of a hydroxyl group functionalized oligo(p-phenyleneethynylene) with different water-soluble polymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Water-soluble light-emitting nanoparticles were prepared from hydroxyl group functionalized oligos(p-phenyleneethynylene) (OHOPEL) and water-soluble polymers(PEG,PAA,and PG) by non-covalent bond self-assembly.Their structure and optoelectronic properties were investigated through dynamic light scattering(DLS) ,UV and PL spectroscopy.The optical properties of OHOPEL-based water-soluble nanoparticles exhibited the same properties as that found in OHOPEL films,indicating the existence of interchain-aggregation of OHOPELs in the nanoparticles.OHOPEL-based nanoparticles prepared from conjugated oligomers show smaller size and lower dispersity than nanoparticles from conjugated polymers,which means that the structures of water-soluble nanoparticles are linked to the conjugated length.Furthermore,the OHOPEL/PG and OHOPEL/PAA systems produced smaller particles and lower polydispersity than the OHOPEL/PEG system,indicating that there may exist influence of the strength of non-covalent bonds on the size and degree of dispersity of the nanoparticles.

  7. Preparation and electrochemical behavior of water-soluble inclusion complex of ferrocene with {beta}-cyclodextrin polymer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wang; Chen Ming [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Diao Guowang, E-mail: gwdiao@yzu.edu.cn [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China)

    2011-05-30

    Highlights: > Water-soluble Fc-{beta}-CD polymer inclusion complex is prepared with a supermolecular method. > Fc-{beta}-CDP shows better aqueous solubility remarkably than Fc and Fc-{beta}-CD. > It also reserves the electrochemical properties of Fc-{beta}-CDP in aqueous solution. > It is determined the electrochemical constants and dissociated constant. > The method opens up aqueous applications of insoluble organic compounds in electrochemistry. - Abstract: A new water-soluble inclusion complex of ferrocene (Fc) with {beta}-cyclodextrin polymer ({beta}-CDP) was prepared by a facile strategy and characterized by {sup 1}H NMR spectroscopy, elemental analysis, powder X-ray diffractometry, thermogravimetry, UV-vis spectroscopy and cyclic voltammetry. Compared with Fc and the inclusion complex of Fc with {beta}-cyclodextrin (Fc-{beta}-CD), the solubility of ferrocene-{beta}-cyclodextrin polymer (Fc-{beta}-CDP) was greatly enhanced due to the water-soluble {beta}-CDP host. The ratio of {beta}-cyclodextrin ({beta}-CD) unit in {beta}-CDP to Fc was determined as 1:1. At 25 deg. C, the dissociated constant of Fc-{beta}-CDP was measured as 3.65 mM by UV-vis spectroscopy and cyclic voltammetry. The electrochemical properties of Fc-{beta}-CDP in water were studied. The diffusion coefficients of oxidation state and reduction state were calculated as 3.52 x 10{sup -7} cm{sup 2} s{sup -1} and 3.93 x 10{sup -7} cm{sup 2} s{sup -1}. The resulting value of standard rate constant was measured as 1.95 x 10{sup -3} cm s{sup -1}. The diffusion activation energy was calculated as 21.8 kJ mol{sup -1}.

  8. Biphasic and SAPC Hydroformylation Catalyzed by Rh-phosphines Bound to Water-Soluble Polymers

    DEFF Research Database (Denmark)

    Malmstrøm, Torsten; Andersson, Carlaxel; Hjortkjær, Jes

    1999-01-01

    Coupling of the triphenylphosphine moiety to poly-acrylic acid and poly-ethyleneimine respectively afford the macromolecular ligands PAA-PNH and PEI-PNH. Reaction of the ligands with Rh(CO)2(acac) give water-soluble complexes that are active as catalysts in the hydroformylation ofdifferent olefin...... PEI-PNH as ligands show lower stability and activity in both SAPC and biphasic applications....

  9. Reversible Thermoassociation of Water-Soluble Polymers Thermoassociation réversible de polymères hydrosolubles

    Directory of Open Access Journals (Sweden)

    L'alloret F.

    2006-12-01

    Full Text Available In various industrial fields, water soluble polymers are commonly used as thickening agents to control the reology of aqueous fluids. Nevertheless, their properties are weakened as the temperature increases. In order to overcome this problem, the concept of thermoassociativewater soluble polymers was developed. Such new amphilic systems can be obtained by grafting on an hydrophilic backbone, side chains which become non water soluble above a Lower Critical Solution Temperature (LCST. Semidilute solutions of these copolymers present reversible thickening properties as the temperature increases and reaches a critical value, close to the side chains LCST. This behaviour can be related to the agregation of the grafts above their LCST, into hydrophobic microdomains , inducing the formation of a three dimensional network. At higher temperature, the viscosity of the solution sheared at a constant rate reaches a maximum value. This can be interpreted in terms of the reorganisation of the physical network under shear, from a structure with mainly intermolecular associationsto a system with an increasing number of intramolecular associations . Owing to the diversity of water soluble polymers exhibiting a phase separation on heating (LCST, different thermoassociativecopolymers were realized [1] and [2], using either polyelectrolyte or neutral hydrophilic backbone. In the aim of applications of such systems in the oilfield industry, copolymers containing 2-acrylamido 2-methyl propane sulfonic acid (AMPS were developed, using polyethylene oxide (PEO as LCST grafts. A general description of their rheological behaviour will be given here. Their properties can be controlled either by varying the solution characteristic (polymer concentration, salinity, etc. or by modifying the chemical structure of the copolymer (grafting ratio, molecular weight of the backbone, etc. . This rheological study showed the potentiality of the thermoassociativesystem, particularly

  10. Effect of surfactants or a water soluble polymer on the crystal transition of clarithromycin during a wet granulation process.

    Science.gov (United States)

    Nozawa, Kenji; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2015-11-10

    To generate products containing a stable form of clarithromycin (CAM) (form II) regardless of the initial crystal form of CAM or type of granulation solvent, the effects of five surfactants, or a water-soluble polymer (macrogol 400) were determined on the crystal transition of CAM. The metastable form (form I) was kneaded with water, after adding surfactants, or a water-soluble polymer. Form II was also kneaded with ethanol, after adding the same additives. The resulting samples were analyzed by powder X-ray diffraction. Form I was completely converted to form II by a wet granulation using water with additives bearing polyoxyethylene chains such as polysorbate 80 (PS80), polyoxyl 40 stearate or macrogol 400. The granulation of the form II using ethanol with these additives did not result in a crystal transition to form I. Furthermore, CAM tablets were manufactured using granules with PS80, and these crystal forms and dissolution behaviors were investigated. As a result, the wet granulation of CAM with PS80 gave CAM tablets containing only form II and PS80 did not have any adverse effects on tablet characteristics. Therefore, these data suggests that the crystal form of CAM can be controlled to be form II using a wet granulation process with additives bearing polyoxyethylene chains regardless of the initial crystal form of CAM or type of granulation solvent. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    Science.gov (United States)

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  12. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.

    Science.gov (United States)

    Wang, Hong; Zhang, Guangxing; Ma, Xueqin; Liu, Yanhua; Feng, Jun; Park, Kinam; Wang, Wenping

    2017-03-02

    Poly (lactide-co-glycolide) (PLGA) microparticles are widely used for controlled drug delivery. Emulsion methods have been commonly used for preparation of PLGA microparticles, but they usually result in low loading capacity, especially for drugs with poor solubility in organic solvents. In the present study, the nanocrystal technology and a water-soluble polymer template method were used to fabricate nanocrystal-loaded microparticles with improved drug loading and encapsulation efficiency for prolonged delivery of breviscapine. Breviscapine nanocrystals were prepared using a precipitation-ultrasonication method and further loaded into PLGA microparticles by casting in a mold from a water-soluble polymer. The obtained disc-like particles were then characterized and compared with the spherical particles prepared by an emulsion-solvent evaporation method. X-ray powder diffraction (XRPD) and confocal laser scanning microscopy (CLSM) analysis confirmed a highly-dispersed state of breviscapine inside the microparticles. The drug form, loading percentage and fabrication techniques significantly affected the loading capacity and efficiency of breviscapine in PLGA microparticles, and their release performance as well. Drug loading was increased from 2.4 % up to 15.3 % when both nanocrystal and template methods were applied, and encapsulation efficiency increased from 48.5 % to 91.9 %. But loading efficiency was reduced as the drug loading was increased. All microparticles showed an initial burst release, and then a slow release period of 28 days followed by an erosion-accelerated release phase, which provides a sustained delivery of breviscapine over a month. A relatively stable serum drug level for more than 30 days was observed after intramuscular injection of microparticles in rats. Therefore, PLGA microparticles loaded with nanocrystals of poorly soluble drugs provided a promising approach for long-term therapeutic products characterized with preferable in vitro and in

  13. Linear rheology of water-soluble reversible neodymium (III) coordination polymers

    NARCIS (Netherlands)

    Vermonden, T.; Steenbergen, van M.J.; Besseling, N.A.M.; Marcelis, A.T.M.; Hennink, W.E.; Sudhölter, E.J.R.; Cohen Stuart, M.A.

    2004-01-01

    The rheology of reversible coordination polymer networks in aqueous solution is studied. The polymers are formed by neodymium(III) ions and bifunctional ligands, consisting of two pyridine-2,6-dicarboxylate groups connected at the 4-positions by an ethylene oxide spacer. Neodymium(III) ions can bind

  14. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones

    NARCIS (Netherlands)

    Voortman, Thomas P; Chiechi, Ryan C

    2015-01-01

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or h

  15. SCIENTIFIC PRINCIPLES FOR MODIFICATION OF WATER-SOLUBLE POLYMERS. FORMATION OF MACROMOLECULAR COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The study of nanosecond dynamics of macromolecules with the luminescent methods make it possible to investigate the formation and functioning of polymeric complexes, polymeric conjugates and macromolecular metal complexes, which are widely used for solving many practical tasks. The nanosecond dynamics of macromolecules are a highly sensitive indicator of interpolymer complexes (IPC) formation. It enables us to solve the problems of studying IPC formation and stability and to investigate the interpolymer reactions of exchange and substitution. The investigation of changes in the rotational mobility of globular protein molecules as a whole makes it possible to determine the complex composition and its stability, and to control the course of polymer-protein conjugate formstion reaction. The nanosecond dynamics of polymers interacting with surfacants' ions (S)are the sensitive indicator of the S-polymer complex formation. A method for determining the equilibrium constants of the S-polymer complex formation was developed on the basis of the study of polymer chains mobility. It is established that nanosecond dynamics influences the course of chemical reactions in polymer chains. Moreover, the marked effect of the nanosecond dynamics is also revealed in the study of photophysical processes (the formation of excimers and energy migration of electron excitation) in polymers with photoactive groups. It was found that the efficiency of both processes increases with increasing the mobility of side chains, the carriers of photoactive groups.

  16. Water-soluble cationic conjugated polymers: response to electron-rich bioanalytes.

    Science.gov (United States)

    Rochat, Sébastien; Swager, Timothy M

    2013-11-27

    We report the concise synthesis of a symmetrical monomer that provides a head-to-head pyridine building block for the preparation of cationic conjugated polymers. The obtained poly(pyridinium-phenylene) polymers display appealing properties such as high electron affinity, charge-transport upon n-doping, and optical response to electron-donating analytes. A simple assay for the optical detection of low micromolar amounts of a variety of analytes in aqueous solution was developed. In particular, caffeine could be measured at a 25 μM detection limit. The reported polymers are also suitable for layer-by-layer film formation.

  17. Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers.

    Science.gov (United States)

    Maniruzzaman, M; Rana, M M; Boateng, J S; Mitchell, J C; Douroumis, D

    2013-02-01

    The aim of this study was to investigate the efficiency of hydrophilic polymers to enhance the dissolution rate of poorly water-soluble active pharmaceutical ingredients (APIs) processed by hot-melt extrusion (HME). Indomethacin (INM) and famotidine (FMT) were selected as model active substances while polyvinyl caprolactam graft copolymer, soluplus (SOL) and vinylpyrrolidone-vinyl acetate copolymer grades, Kollidon VA64 (VA64) and Plasdone S630 (S630) were used as hydrophilic polymeric carriers. For the purpose of the study, drug-polymer binary blends at various ratios were processed by a Randcastle single screw extruder. The physicochemical properties and the morphology of the extrudates were evaluated through X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Increased drug loadings of up to 40% were achieved in the extruded formulations for both drugs. INM and FMT exhibited strong plasticization effects with increasing concentrations and were found to be molecularly dispersed within the polymer blends. The in vitro dissolution studies showed increased INM/FMT release rates for all formulations compared to that of pure APIs alone.

  18. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes

    Science.gov (United States)

    Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.

    2002-08-01

    The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, "real-time" DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated.

  19. Chromo- and fluorophoric water-soluble polymers and silica particles by nucleophilic substitution reaction of poly(vinyl amine

    Directory of Open Access Journals (Sweden)

    Katja Hofmann

    2010-07-01

    Full Text Available Novel chromophoric and fluorescent carbonitrile-functionalized poly(vinyl amine (PVAm and PVAm/silica particles were synthesized by means of nucleophilic aromatic substitution of 8-oxo-8H-acenaphtho[1,2-b]pyrrol-9-carbonitrile (1 with PVAm in water. The water solubility of 1 has been mediated by 2,6-O-β-dimethylcyclodextrin or by pre-adsorption onto silica particles. Furthermore, 1 was converted with isopropylamine into the model compound 1-M. All new compounds were characterized by NMR, FTIR, UV–vis and fluorescence spectroscopy. The solvent-dependent UV–vis absorption and fluorescence emission band positions of the model compound and the carbonitrile-functionalized PVAm were studied and interpreted using the empirical Kamlet–Taft solvent parameters π* (dipolarity/polarizability, α (hydrogen-bond donating capacity and β (hydrogen-accepting ability in terms of the linear solvation energy relationship (LSER. The solvent-independent regression coefficients a, b and s were determined using multiple linear correlation analysis. It is shown, that the chains of the polymer have a significant influence on the solvatochromic behavior of 1-P. The structure of the carbonitrile 1-Si bound to polymer-modified silica particles was studied by means of X-ray photoelectron spectroscopy (XPS and Brunauer–Emmett–Teller (BET measurements. Fluorescent silica particles were obtained as shown by fluorescence spectroscopy with a diffuse reflectance technique.

  20. Development of Lipid-Shell and Polymer Core Nanoparticles with Water-Soluble Salidroside for Anti-Cancer Therapy

    Science.gov (United States)

    Fang, Dai-Long; Chen, Yan; Xu, Bei; Ren, Ke; He, Zhi-Yao; He, Li-Li; Lei, Yi; Fan, Chun-Mei; Song, Xiang-Rong

    2014-01-01

    Salidroside (Sal) is a potent antitumor drug with high water-solubility. The clinic application of Sal in cancer therapy has been significantly restricted by poor oral absorption and low tumor cell uptake. To solve this problem, lipid-shell and polymer-core nanoparticles (Sal-LPNPs) loaded with Sal were developed by a double emulsification method. The processing parameters including the polymer types, organic phase, PVA types and amount were systemically investigated. The obtained optimal Sal-LPNPs, composed of PLGA-PEG-PLGA triblock copolymers and lipids, had high entrapment efficiency (65%), submicron size (150 nm) and negatively charged surface (−23 mV). DSC analysis demonstrated the successful encapsulation of Sal into LPNPs. The core-shell structure of Sal-LPNPs was verified by TEM. Sal released slowly from the LPNPs without apparent burst release. MTT assay revealed that 4T1 and PANC-1 cancer cell lines were sensitive to Sal treatment. Sal-LPNPs had significantly higher antitumor activities than free Sal in 4T1 and PANC-1 cells. The data indicate that LPNPs are a promising Sal vehicle for anti-cancer therapy and worthy of further investigation. PMID:24573250

  1. Development of Lipid-Shell and Polymer Core Nanoparticles with Water-Soluble Salidroside for Anti-Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Dai-Long Fang

    2014-02-01

    Full Text Available Salidroside (Sal is a potent antitumor drug with high water-solubility. The clinic application of Sal in cancer therapy has been significantly restricted by poor oral absorption and low tumor cell uptake. To solve this problem, lipid-shell and polymer-core nanoparticles (Sal-LPNPs loaded with Sal were developed by a double emulsification method. The processing parameters including the polymer types, organic phase, PVA types and amount were systemically investigated. The obtained optimal Sal-LPNPs, composed of PLGA-PEG-PLGA triblock copolymers and lipids, had high entrapment efficiency (65%, submicron size (150 nm and negatively charged surface (−23 mV. DSC analysis demonstrated the successful encapsulation of Sal into LPNPs. The core-shell structure of Sal-LPNPs was verified by TEM. Sal released slowly from the LPNPs without apparent burst release. MTT assay revealed that 4T1 and PANC-1 cancer cell lines were sensitive to Sal treatment. Sal-LPNPs had significantly higher antitumor activities than free Sal in 4T1 and PANC-1 cells. The data indicate that LPNPs are a promising Sal vehicle for anti-cancer therapy and worthy of further investigation.

  2. [Induction of posterior detachment of the vitreous body by intraoperative vitreo-syneresis with injection of water-soluble polymers (an experimental-morphological study)].

    Science.gov (United States)

    Skvorchenko, D O; Khoroshilova-Maslova, I P; Andreeva, L D; Sharafetdinov, I Kh; Shtil'man, M I; Maklakova, I A; Uzunian, D G

    2001-01-01

    The capacity of water-soluble polymers (polyethylenimine, polyvinylpyrrolidone with copolymers) to induce posterior detachment of the vitreous by its rapid condensation (vitreosynerysis) was studied in experiments on 14 rabbits. Histological studies showed that water-soluble polymers specifically react forming complexes with components of the vitreous. The vitreous shrinks under the effect of polyelectrolytes (vitreosynerysis), which leads to its posterior detachment 1.5 h after injection of the polymer into the vitreous cavity: complete detachment was attained in 2 animals and partial in 8. The degree of vitreosynerysis depends on the complex-forming activity of polyelectrolytes towards the vitreous components. Polymers used in our study exerted no toxic or traction effects on the adjacent structures of the eye.

  3. HYDRATION AND PHASE SEPARATION OF TEMPERATURE-SENSITIVE WATER-SOLUBLE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    Fumihiko Tanaka; Tsuyoshi Koga; Hiroyuki Kojima; Francoise M. Winnik

    2011-01-01

    Collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and phase diagrams of aqueous PNIPAM solutions with very flat LCST phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. Reentrant coil-globule-coil transition in mixed solvent of water and methanol is also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mole fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydophobically-modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules and higher fractal assembly, are studied by USANS with theoretical modeling of the scattering function.

  4. Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers.

    Science.gov (United States)

    Tanaka, Fumihiko; Koga, Tsuyoshi; Kaneda, Isamu; Winnik, Françoise M

    2011-07-20

    The collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and the phase diagrams of aqueous PNIPAM solutions with a very flat lower critical solution temperature (LCST) phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. The reentrant coil-globule-coil transition and cononsolvency in a mixed solvent of water and methanol are also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mol fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydrophobically modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules, and higher fractal assembly, are studied by ultra small-angle neutron scattering with theoretical modeling of the scattering function. Dynamic-mechanical modulus, nonlinear stationary viscosity, and stress build-up in start-up shear flows of the associated networks are studied on the basis of the affine and non-affine transient network theory. The molecular conditions for thickening, strain hardening, and stress overshoot are found in terms of the nonlinear amplitude A of the chain tension and the tension-dissociation coupling constant g.

  5. 水溶性聚季铵盐合成研究%Synthesis of Water-soluble Ammonium Polymer

    Institute of Scientific and Technical Information of China (English)

    王永芝

    2016-01-01

    Water-soluble ammonium polymer poly[oxyethylene (dimethylimino) ethylene-(dimethylimino)ethylenedichloridel (PODEDED) was synthesized by polymerization reaction with tetramethylethylenediamine and bis-(2-chloroethy1)ether as raw materials. The optimum conditions were as followed: the amount of catalyst 0.6%, the mole ratio was 1∶1, reaction temperature was 100℃, reaction time 8h. Under the conditions, the yield of 98.2% was achieved.%以四甲基乙二胺和二氯乙醚为原料,通过改变反应温度、反应时间、原料配比及催化剂用量,采用聚合法制备水溶性聚季铵盐(PODEDED),同时通过正交试验确定了最优反应条件:反应时间8h,反应温度100℃,反应物摩尔比1∶1,催化剂用量0.6%。优选条件下,单体转化率达到98.2%。

  6. Electrospun water soluble polymer mat for ultrafast release of Donepezil HCl

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available Electrostatic spinning (Electrospinning, ES was applied to prepare Donepezil HCl loaded nanofibers as a potential orally dissolving dosage form. Electrospinning of water solutions of different polymers were performed in order to fabricate a consistent and removable web on the collector with ultra-fast dissolution in water based media. Poly(vinyl-alcohol of low molecular weight was found to be the most appropriate for this purpose. Morphology of the prepared nanofibers was characterized by scanning electron microscope as a function of viscosity and drug content. Diameters of the fibers were between 100 and 300 nm with narrow distribution. In vitro drug release of the webs was immediate (less than 30 s after immersion independently of their drug content owing to the formed huge surface area, while cast films with the same compositions and commercial tablets needed 30 min or more for complete dissolution. The developed technology for the preparation of orally dissolving web (ODW formulations is a promising way for producing effective and acceptable dosage forms for children, older people and patients with dysphagia.

  7. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs.

    Science.gov (United States)

    Ozaki, Shunsuke; Kushida, Ikuo; Yamashita, Taro; Hasebe, Takashi; Shirai, Osamu; Kano, Kenji

    2013-07-01

    The impact of water-soluble polymers on drug supersaturation behavior was investigated to elucidate the role of water-soluble polymers in enhancing the supersaturation levels of amorphous pharmaceuticals. Hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP), and Eudragit L-100 (Eudragit) were used as representative polymers, and griseofulvin and danazol were used as model drugs. Supersaturation profiles of amorphous drugs were measured in biorelevant dissolution tests. Crystal growth rate was measured from the decrease in dissolved drug concentration in the presence of seed crystals. Nucleation kinetics was evaluated by measuring the induction time for nucleation. All experiments were performed in the presence and absence of polymers. The degree of supersaturation of the amorphous model drugs increased with an increase in the inhibitory efficiency of polymers against crystal nucleation and growth (HPMC > PVP > Eudragit). In the presence of HPMC, the addition of seed crystals diminished the supersaturation ratio dramatically for griseofulvin and moderately for danazol. The results demonstrated that the polymers contributed to drug supersaturation by inhibiting both nucleation and growth. The effect of the polymers was drug dependent. The detailed characterization of polymers would allow selection of appropriate crystallization inhibitors and a planned quality control strategy for the development of supersaturable formulations. Copyright © 2013 Wiley Periodicals, Inc.

  8. The synthesis and characterization of environmentally-responsive water-swellable and water-soluble polymers for wastewater remediation

    Science.gov (United States)

    Armentrout, Rodney Scott

    The primary research goal is the development of new polymeric materials that demonstrate the environmentally-responsive sequestration of common water foulants, including surfactants and oils. Water-swellable and water-soluble polymers have been synthesized, structurally characterized, and their physical properties have been determined. In addition, the ability of the materials to sequester model water foulants has been evaluated. Anionic crosslinked polymer networks of 2-acrylamido-2-methyl-1-propanesulfonic acid, acrylamide, and methylene bisacrylamide have been synthesized and characterized by determining the equilibrium water contents as a function of ionic content of the polymer network. The molar ratio of bound surfactant to ionic group was determined to be less than one for all hydrogels studied, indicating an ion-exchange binding mechanism with minimal hydrophobic interactions between bound and unbound surfactant molecules is responsible for surfactant binding. Cationic crosslinked cyclopolymer networks of N,N-diallyl- N-methyl amine (DAMA) and N,N,N,N-tetraallyl ammonium chloride (TAAC) have been synthesized and characterized by determining the equilibrium water content as a function of pH. A maximum in the equilibrium water content is observed for pH-6 when the polymer is fully ionized. The solubilization of a model water foulant, p-cresol, by the polymeric surfactant, Pluronic F127, has been studied via equilibrium dialysis, dynamic light scattering and ultrafiltration experiments. It has been shown that at 25°C p-cresol is readily solubilized by F127 since the polymeric surfactant exists in a multimer conformation. Ultrafiltration experiments have demonstrated that the polymer-foulant binding interactions are largely unaffected by shear in a hollow fiber membrane. Copolymers of the zwitterionic monomer, 3-(N,N-diallyl- N-methyl ammonio) propane sulfonate (DAMAPS) and N,N-diallyl- N,N-dimethylammonium chloride (DADMAC) (the DADS series) or the p

  9. The effect of water-soluble polymers on the microstructure and properties of freeze-cast alumina ceramics

    Science.gov (United States)

    Pekor, Christopher Michael

    Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.

  10. Water-soluble fluorescent conjugated polymer-enzyme hybrid system for the determination of both hydroquinone and hydrogen peroxide.

    Science.gov (United States)

    Huang, Hui; Xu, Min; Gao, Yuan; Wang, Guannan; Su, Xingguang

    2011-10-30

    In this paper, a sensitive and simple detecting system was developed for quantitative analysis of both hydroquinone (H(2)Q) and hydrogen peroxide (H(2)O(2)), based on the successful combination of horse radish peroxidase (HRP) and water-soluble conjugate fluorescence polymers PPESO(3). In the presence of HRP and H(2)O(2), H(2)Q could be oxidized to 1,4-benzoquinone (BQ), an intermediate, which plays the main role in the enhanced quenching of the photoluminescence (PL) intensity of PPESO(3). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of H(2)Q and H(2)O(2) in the range of 1.0 × 10(-6) to 2.0 × 10(-3)mol/L (R(2)=0.996) and 6.0 × 10(-6) to 2.0 × 10(-3)mol/L (R(2)=0.999), respectively. The detection limit for H(2)Q and H(2)O(2) was 5.0 × 10(-7)mol/L and 1.0 × 10(-6)mol/L, respectively. The present fluorescence quenching method was successfully applied for the determination of H(2)Q in the lake water, rainwater, tap-water and chemical plant wastewater samples. Compared with previous reports, the fluorescence quenching approach described in this work is simple and rapid with high sensitivity, which has a potential application for detecting various analytes which can be translated into quinone.

  11. Evaluation of Hydrate Inhibition Performance of Water-soluble Polymers using Torque Measurement and Differential Scanning Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kyuchul; Park, Juwoon; Kim, Jakyung; Kim, Hyunho; Seo, Yutaek [KAIST, Daejeon (Korea, Republic of); Lee, Yohan; Seo, Yongwon [UNIST, Ulsan (Korea, Republic of)

    2014-12-15

    In this work, hydrate inhibition performance of water-soluble polymers including pyrrolidone, caprolactam, acrylamide types were evaluated using torque measurement and high pressure differential scanning calorimeter (HP µ-DSC). The obtained experimental results suggest that the studied polymers represent the kinetic hydrate inhibition (KHI) performance. 0.5 wt% polyvinylcaprolactam (PVCap) solution shows the hydrate onset time of 34.4 min and subcooling temperature of 15.9 K, which is better KHI performance than that of pure water - hydrate onset time of 12.3 min and subcooling temperature of 6.0 K. 0.5 wt% polyvinylpyrrolidone (PVP) solution shows the hydrate onset time of 27.6 min and the subcooling temperature of 13.2 K while polyacrylamide-co-acrylic acid partial sodium salt (PAM-co-AA) solution shows less KHI performance than PVP solution at both 0.5 and 5.0 wt%. However, PAM-co-AA solution shows slow growth rate and low hydrate amount than PVCap. In addition to hydrate onset and growth condition, torque change with time was investigated as one of KHI evaluation methods. 0.5 wt% PVCap solution shows the lowest average torque of 6.4 N cm and 0.5 wt% PAM-co-AA solution shows the average torque of 7.2 N cm. For 0.5 wt% PVP solution, it increases 11.5 N cm and 5.0 wt% PAM-co-AA solution shows the maximum average torque of 13.4 N cm, which is similar to the average torque of pure water, 15.2 N cm. Judging from the experimental results obtained by both an autoclave and a HP µ-DSC, the PVCap solution shows the best performance among the KHIs in terms of delaying hydrate nucleation. From these results, it can be concluded that the torque change with time is useful to identify the flow ability of tested solution, and the further research on the inhibition of hydrate formation can be approached in various aspects using a HP µ-DSC.

  12. Water soluble azido polyisocyanopeptides as functional β-sheet mimics

    NARCIS (Netherlands)

    Schwartz, Erik; Koepf, Matthieu; Kitto, Heather J.; Espelt, Mónica; Nebot-Carda, Vicent J.; Gelder, de Rene; Nolte, Roeland J.M.; Cornelissen, Jeroen J.L.M.; Rowan, Alan E.

    2009-01-01

    The design and synthesis of functional biomimetic water soluble polymers with a defined secondary structure has been developed using β-sheet polyisocyanopeptide scaffolds. Water soluble isocyanopolymers were prepared by random copolymerisation of the azido functionalized isocyanopeptides with nonfun

  13. The guanidinium group as a key part of water-soluble polymer carriers for siRNA complexation and protection against degradation.

    Science.gov (United States)

    Tabujew, Ilja; Freidel, Christoph; Krieg, Bettina; Helm, Mark; Koynov, Kaloian; Müllen, Klaus; Peneva, Kalina

    2014-07-01

    Here, the preparation of a novel block copolymer consisting of a statistical copolymer N-(2-hydroxypropyl) methacrylamide-s-N-(3-aminopropyl) methacrylamide and a short terminal 3-guanidinopropyl methacrylamide block is reported. This polymer structure forms neutral but water-soluble nanosized complexes with siRNA. The siRNA block copolymer complexes are first analyzed using agarose gel electrophoresis and their size is determined with fluorescence correlation spectroscopy. The protective properties of the polymer against RNA degradation are investigated by treating the siRNA block copolymer complexes with RNase V1. Heparin competition assays confirm the efficient release of the cargo in vitro. In addition, the utilization of microscale thermophoresis is demonstrated for the determination of the binding strength between a fluorescently labeled polyanion and a polymer molecule.

  14. Chromo- and fluorophoric water-soluble polymers and silica particles by nucleophilic substitution reaction of poly(vinyl amine)

    OpenAIRE

    Katja Hofmann; Ingolf Kahle; Frank Simon; Stefan Spange

    2010-01-01

    Novel chromophoric and fluorescent carbonitrile-functionalized poly(vinyl amine) (PVAm) and PVAm/silica particles were synthesized by means of nucleophilic aromatic substitution of 8-oxo-8H-acenaphtho[1,2-b]pyrrol-9-carbonitrile (1) with PVAm in water. The water solubility of 1 has been mediated by 2,6-O-β-dimethylcyclodextrin or by pre-adsorption onto silica particles. Furthermore, 1 was converted with isopropylamine into the model compound 1-M. All new compounds were characterized by N...

  15. Temperature-induced crystallization and compactibility of spray dried composite particles composed of amorphous lactose and various types of water-soluble polymer.

    Science.gov (United States)

    Takeuchi, H; Yasuji, T; Yamamoto, H; Kawashima, Y

    2000-04-01

    The purpose of this study was to investigate the temperature-induced crystallization and the compactibility of the composite particles containing amorphous lactose and various types of polymers. The composite particles were prepared by spray-drying an aqueous solution of lactose and various types of gel forming water-soluble polymers at various formulating ratios. The stabilizing effect of hydroxypropylcellulose (HPC) and polyvinyl pyrrolidone (PVP) on amorphous lactose in the composite particles was smaller than that of sodium alginate in comparing at the same formulating ratios. The difference in the stability of amorphous lactose in the composite particles was attributed to the difference in the glass transition temperature (Tg) of the composite particles caused by the polymers formulated. The tensile strength of compacted spray-dried composite particles containing the polymers was higher than commercial lactose for direct tabletting (DCL21). The tensile strength of the composite particles was increased with an increase in water content in the particles. The difference in compactibility of the composite particles containing the different amount of polymer and water could be explained by the difference in Tg of the particles.

  16. Enhanced Photothermal Bactericidal Activity of the Reduced Graphene Oxide Modified by Cationic Water-Soluble Conjugated Polymer.

    Science.gov (United States)

    Xiao, Linhong; Sun, Jinhua; Liu, Libing; Hu, Rong; Lu, Huan; Cheng, Chungui; Huang, Yong; Wang, Shu; Geng, Jianxin

    2017-02-15

    Surface modification of graphene is extremely important for applications. Here, we report a grafting-through method for grafting water-soluble polythiophenes onto reduced graphene oxide (RGO) sheets. As a result of tailoring of the side chains of the polythiophenes, the modified RGO sheets, that is, RGO-g-P3TOPA and RGO-g-P3TOPS, are positively and negatively charged, respectively. The grafted water-soluble polythiophenes provide the modified RGO sheets with good dispersibility in water and high photothermal conversion efficiencies (ca. 88%). Notably, the positively charged RGO-g-P3TOPA exhibits unprecedentedly excellent photothermal bactericidal activity, because the electrostatic attractions between RGO-g-P3TOPA and Escherichia coli (E. coli) bind them together, facilitating direct heat conduction through their interfaces: the minimum concentration of RGO-g-P3TOPA that kills 100% of E. coli is 2.5 μg mL(-1), which is only 1/16th of that required for RGO-g-P3TOPS to exhibit a similar bactericidal activity. The direct heat conduction mechanism is supported by zeta-potential measurements and photothermal heating tests, in which the achieved temperature of the RGO-g-P3TOPA suspension (2.5 μg mL(-1), 32 °C) that kills 100% of E. coli is found to be much lower than the thermoablation threshold of bacteria. Therefore, this research demonstrates a novel and superior method that combines photothermal heating effect and electrostatic attractions to efficiently kill bacteria.

  17. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs.

    Science.gov (United States)

    Sarode, Ashish L; Wang, Peng; Obara, Sakae; Worthen, David R

    2014-04-01

    The influence of polymers on the dissolution, supersaturation, crystallization, and partitioning of poorly water soluble compounds in biphasic media was evaluated. Amorphous solid dispersions (ASDs) containing felodipine (FLD) and itraconazole (ITZ) were prepared by hot melt mixing (HMM) using various polymers. The ASDs were analyzed using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and HPLC. Amorphous drug conversion was confirmed using DSC and PXRD, and drug stability by HPLC. Single- and biphasic dissolution studies of the ASDs with concurrent dynamic light scattering (DLS) and polarized light microscopic (PLM) analysis of precipitated drugs were performed. HPLC revealed no HMM-induced drug degradation. Maximum partitioning into the organic phase was dependent upon the degree of supersaturation. Although the highest supersaturation of FLD was attained using Eudragit® EPO and AQOAT® AS-LF with better nucleation and crystal growth inhibition using the latter, higher partitioning of the drug into the organic phase was achieved using Pharmacoat® 603 and Kollidon® VA-64 by maintaining supersaturation below critical nucleation. Critical supersaturation for ITZ was surpassed using all of the polymers, and partitioning was dependent upon nucleation and crystal growth inhibition in the order of Pharmacoat® 603>Eudragit® L-100-55>AQOAT® AS-LF. HMM drug-polymer systems that prevent drug nucleation by staying below critical supersaturation are more effective for partitioning than those that achieve the highest supersaturation.

  18. Size-selective permeation of water-soluble polymers through the bilayer membrane of cyclodextrin vesicles investigated by PFG-NMR.

    Science.gov (United States)

    Himmelein, Sabine; Sporenberg, Nora; Schönhoff, Monika; Ravoo, Bart Jan

    2014-04-15

    Cyclodextrin vesicles (CDVs) consist of a bilayer of amphiphilic cyclodextrins (CDs). CDVs exhibit CD cavities at their surface that are able to recognize and bind hydrophobic guest molecules via size-selective inclusion. In this study, the permeability of α- and β-CDVs is investigated by pulsed field gradient-stimulated echo (PFG-STE) nuclear magnetic resonance. Diffusion experiments with water and two types of water-soluble polymers, polyethylene glycol (PEG) and polypropylene glycol (PPG), revealed three main factors that influence the exchange rate and permeability of CDVs. First, the length of the hydrophobic chain of the CD amphiphile plays a crucial role. Reasonably, vesicles consisting of amphiphiles with a longer aliphatic chain are less permeable since both membrane thickness and melting temperature T(m) increase. Second, the exchange rate through the bilayer membrane depends on the molecular weight of the polymer and decreases with increasing weight of the polymer. Most interestingly, a size-selective distinction of permeation due to the embedded CDs in the bilayer membrane was found. The mechanism of permeation is shown to occur through the CD cavity, such that depending on the size of the cavity, permeation of polymers with different cross-sectional diameters takes place. Whereas PPG permeates through the membrane of β-CD vesicles, it does not permeate α-CD vesicles.

  19. Impact of Polymer Conformation on the Crystal Growth Inhibition of a Poorly Water-Soluble Drug in Aqueous Solution

    OpenAIRE

    Schram, Caitlin J.; Beaudoin, Stephen P.; Taylor, Lynne S.

    2014-01-01

    Poor aqueous solubility is a major hindrance to oral delivery of many emerging drugs. Supersaturated drug solutions can improve passive absorption across the gastrointestinal tract membrane as long as crystallization can be inhibited, enhancing the delivery of such poorly soluble therapeutics. Polymers can inhibit crystallization and prolong supersaturation; therefore, it is desirable to understand the attributes which render a polymer effective. In this study, the conformation of a polymer a...

  20. Electrochemical Deposition of Zinc Oxide on the Surface of Composite Membrane Polysulfone-Graphene-Polystyrene in the Presence of Water Soluble Polymers

    Directory of Open Access Journals (Sweden)

    Alexandra Mocanu

    2017-01-01

    Full Text Available The aim of this study consisted in the development of an alternative synthesis procedure for hybrid ultrafiltration membranes for water purification. The membranes were obtained by wet-phase inversion method based on aliquots of polysulfone (PSF and graphene nanoplatelets modified with poly(styrene (G-PST. The hybrid materials were modified by electrochemical deposition of zinc oxide (ZnO on one side of the membranes in the presence of water soluble polymers. Raman, XPS, and TGA analyses were used to characterize the chemical and thermal characteristics of the PST-G. SEM analysis showed the formation of asymmetric porous configuration in all cases and the generation of ZnO with different shapes/structures on the bottom surface of the membrane or inside the porous channels. EDS analysis confirmed the formation of ZnO.

  1. Photophysical Diversity of Water-Soluble Fluorescent Conjugated Polymers Induced by Surfactant Stabilizers for Rapid and Highly Selective Determination of 2,4,6-Trinitrotoluene Traces.

    Science.gov (United States)

    Alizadeh, Naader; Akbarinejad, Alireza; Ghoorchian, Arash

    2016-09-21

    The increasing application of fluorescence spectroscopy in development of reliable sensing platforms has triggered a lot of research interest for the synthesis of advanced fluorescent materials. Herein, we report a simple, low-cost strategy for the synthesis of a series of water-soluble conjugated polymer nanoparticles with diverse emission range using cationic (hexadecyltrimethylammonium bromide, CTAB), anionic (sodium dodecylbenzenesulfonate, SDBS), and nonionic (TX114) surfactants as the stabilizing agents. The role of surfactant type on the photophisical and sensing properties of resultant polymers has been investigated using dynamic light scattering (DLS), FT-IR, UV-vis, fluorescence, and energy dispersive X-ray (EDS) spectroscopies. The results show that the surface polarity, size, and spectroscopic and sensing properties of conjugated polymers could be well controlled by the proper selection of the stabilizer type. The fluorescent conjugated polymers exhibited fluorescence quenching toward nitroaromatic compounds. Further studies on the fluorescence properties of conjugated polymers revealed that the emission of the SDBS stabilized polymer, N-methylpolypyrrole-SDBS (NMPPY-SDBS), is strongly quenched by 2,4,6-trinitrotoluene molecule with a large Stern -Volmer constant of 59 526 M(-1) and an excellent detection limit of 100 nM. UV-vis and cyclic voltammetry measurements unveiled that fluorescence quenching occurs through a charge transfer mechanism between electron rich NMPPY-SDBS and electron deficient 2,4,6-trinitrotoluene molecules. Finally, the as-prepared conjugated polymer and approach were successfully applied to the determination of 2,4,6-trinitrotoluene in real water samples.

  2. Composites based on cellulose fiber nonwovens and a water-soluble polymer 2. Strength-deformation characteristics of the composites

    Science.gov (United States)

    Cerpakovska, D.; Kalnins, M.

    2012-09-01

    The relationship between the strength-deformation properties and certain structural characteristics (volume content of polymer and voids, orientation of fibers) of composites prepared by impregnation of cellulose fiber nonwovens (CFNs) with poly(vinyl alcohol) water solutions is discussed. With growth in the volume fraction of polymer to 0.25-0.30, the tensile elastic modulus and ultimate strength of the composites increase compared with those of CFN. As a consequence of enhanced adhesion among the cellulose fibers, the relative values of tensile strength and elastic modulus in the main orientation direction of the fibers is higher than in the perpendicular one. Therefore, with increasing content of polymer in the composite, its degree of anisotropy diminishes significantly. The punching strength almost linearly correlates with the tensile strength. The breaking strain in tension increases considerably with growing content of polymer, but the tearing strength changes only slightly.

  3. Selective recognition and discrimination of water-soluble azo dyes by a seven-channel molecularly imprinted polymer sensor array.

    Science.gov (United States)

    Long, Zerong; Lu, Yi; Zhang, Mingliang; Qiu, Hongdeng

    2014-10-01

    A seven-channel molecularly imprinted polymer sensor array was prepared and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and nitrogen physisorption studies. The results revealed that the imprinted polymers have distinct-binding affinities from those of structurally similar azo dyes. Analysis of the UV-Vis spectral response patterns of the seven dye analytes against the imprinted polymer array suggested that the different selectivity patterns of the array were closely connected to the imprinting process. To evaluate the effectiveness of the array format, the binding of a series of analytes was individually measured for each of the seven polymers, made with different templates (including one control polymer synthesized without the use of a template). The response patterns of the array to the selected azo dyes were processed by canonical discriminant analysis. The results showed that the molecularly imprinted array was able to discriminate each analyte with 100% accuracy. Moreover, the azo dyes in two real samples, spiked chrysoidin in smoked bean curd extract and Fanta lime soda (containing tartrazine), were successfully classified by the array.

  4. The fabrication and enhanced nonlinear optical properties of electrostatic self-assembled film containing water-soluble chiral polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang Qiuyun, E-mail: qyouyang7823@yahoo.cn [College of Science, Harbin Engineering University, Harbin 150001 (China); Chen Yujin; Li Chunyan [College of Science, Harbin Engineering University, Harbin 150001 (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin film containing the chiral PPV and oligo-thiophene derivatives was fabricated. Black-Right-Pointing-Pointer The third-order NLO properties were studied of the ultra-thin film. Black-Right-Pointing-Pointer The reverse saturable absorption and self-defocusing were observed. Black-Right-Pointing-Pointer The nonlinear optical mechanism was discussed. - Abstract: An ultra-thin film containing a water-soluble chiral PPV derivative and oligo-thiophene derivative was fabricated through the electrostatic self-assembly technique. The PPV and thiophene derivatives are poly{l_brace}(2,5-bis(3-bromotrimethylammoniopropoxy)-phenylene-1,4-divinylene) -alt-1,4-(2,5-bis((3-hydroxy-2-(S)-methyl)propoxy)phenylenevinylene) (BHP-PPV) and 4 Prime ,3 Double-Prime -dipentyl-5,2 Prime :5 Prime ,2 Double-Prime :5 Double-Prime ,2 Double-Prime Prime -quaterthiophene-2,5 Double-Prime Prime -dicarboxylic acid (QTDA), respectively. The circular dichroism (CD) spectrum of BHP-PPV cast film on quartz substrate proved the chirality of BHP-PPV. The UV-vis spectra showed a continuous deposition process of BHP-PPV and QTDA. The film structure was characterized by small angle X-ray diffraction (XRD) measurement and atomic force microscopy (AFM) images. The nonlinear optical (NLO) properties of BHP-PPV/QTDA ultra-thin film with different number of bilayers were investigated by the Z-scan technique with 8 ns laser pulse at 532 nm. The Z-scan experimental data were analyzed with the double-sided film Z-scan theory. The BHP-PPV/QTDA film exhibits enhanced reverse saturable absorption (RSA) and self-defocusing effects, which may be attributed to the conjugated strength, chirality and well-ordered film structure. The chirality may lead to the RSA of BHP-PPV/QTDA film contrary to the SA of the other electrostatic self-assembled films without chiral units. The self-defocusing effect should be due to the thermal effect.

  5. Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution.

    Science.gov (United States)

    Schram, Caitlin J; Beaudoin, Stephen P; Taylor, Lynne S

    2015-01-01

    Poor aqueous solubility is a major hindrance to oral delivery of many emerging drugs. Supersaturated drug solutions can improve passive absorption across the gastrointestinal tract membrane as long as crystallization can be inhibited, enhancing the delivery of such poorly soluble therapeutics. Polymers can inhibit crystallization and prolong supersaturation; therefore, it is desirable to understand the attributes which render a polymer effective. In this study, the conformation of a polymer adsorbed to a crystal surface and its impact on crystal growth inhibition were investigated. The crystal growth rate of a poorly soluble pharmaceutical compound, felodipine, was measured in the presence of hydroxypropyl methylcellulose acetate succinate (HPMCAS) at two different pH conditions: pH 3 and pH 6.8. HPMCAS was found to be a less effective growth rate inhibitor at pH 3, below its pKa. It was expected that the ionization state of HPMCAS would most likely influence its conformation at the solid-liquid interface. Further investigation with atomic force microscopy (AFM) revealed significant differences in the conformation of HPMCAS adsorbed to felodipine at the two pH conditions. At pH 3, HPMCAS formed coiled globules on the surface, whereas at pH 6.8, HPMCAS adsorbed more uniformly. Thus, it appeared that the reduced effectiveness of HPMCAS at pH 3 was directly related to its conformation. The globule formation leaves many felodipine growth sites open and available for growth units to attach, rendering the polymer less effective as a growth rate inhibitor.

  6. Quantitative assays of the amount of diethylenetriaminepentaacetic acid conjugated to water-soluble polymers using isothermal titration calorimetry and colorimetry.

    Science.gov (United States)

    Gouin, S; Winnik, F M

    2001-01-01

    The level of conjugation of diethylenetriaminepentaacetic acid (DTPA) to the polysaccharide sodium hyaluronan (HA) has been measured by a colorimetric assay, isothermal titration calorimetry (ITC), and (1)H NMR spectroscopy. The colorimetric assay is based on the red shift, upon complexation with gadolinium ion (Gd3+), of the wavelength of maximum absorption of the dye arsenazo III. It can be performed in a few minutes using as little as 10 microg of polymer with a detection limit of approximately 0.03 mmol of DTPA (gram of polymer)-1. The ITC measurements yield values of the amount of DTPA linked to HA identical to those obtained by colorimetry. The levels of DTPA conjugation calculated by integration of signals at 3.1-3.2 ppm (DTPA protons) and at 2.0 ppm (HA acetamide protons) in the 1H NMR spectrum of HA-DTPA are consistently overestimated by a factor of approximately 2, compared to the data obtained by ITC and colorimetry. The longer relaxation times of protons of the polymer backbone, compared to those of protons attached to the freely moving DTPA side-chains may account for the discrepancy.

  7. Investigation of some locally water-soluble natural polymers as circulation loss control agents during oil fields drilling

    Directory of Open Access Journals (Sweden)

    A.M. Alsabagh

    2014-03-01

    Full Text Available Eliminating or controlling lost circulation during drilling process is costly and time-consuming. Polymers play an important role in mud loss control for their viscosity due to their high molecular weight. In this paper, three natural cellulosic polymers (carboxymethyl cellulose, guar gum and potato starch were investigated as lost circulation control material by measuring different filtration parameters such as; spurt loss, fluid loss and permeability plugging tester value according to the American Petroleum Institute (API standard. The experiments were conducted in a permeability plugging apparatus (PPA at a differential pressure of 100 and 300 psi, using 10, 60 and 90 ceramic discs. From the obtained data, it was found that the 0.1% from the carboxymethyl cellulose exhibited the best results in the filtration parameters among 0.3% guar gum and 0.6% potato starch. At the same time the carboxymethyl cellulose (CMC enhanced the rheological properties of the drilling mud better than the two other used natural polymers in the term of gel strength, thixotropy, plastic and apparent viscosity. These results were discussed in the light of the adsorption and micellar formation.

  8. Preparation and characterization of water-soluble carbon nanotube reinforced Nafion membranes and so-based ionic polymer metal composite actuators

    Science.gov (United States)

    Ru, Jie; Wang, Yanjie; Chang, Longfei; Chen, Hualing; Li, Dichen

    2016-09-01

    In this paper, we developed a new kind of ionic polymer metal composite (IPMC) actuator by doping water-soluble sulfonated multi-walled carbon nanotube (sMWCNT) into Nafion matrix to overcome some major drawbacks of traditional IPMCs, such as relatively low bending deformation and carring capacity at low driving voltages. Firstly, sMWCNT was synthesized via diazotization coupling reaction, and then doped into Nafion matrix by casting method. Subsequently, the electrochemical and electromechanical properties of sMWCNT-reinforced Nafion membranes and the corresponding IPMCs were investigated. Finally, the effects of sMWCNT on the performances of IPMCs were evaluated and analyzed systematacially. The results showed that sMWCNT was homogeneously dispersed in Nafion matrix without any entangled structure or obvious agglomeration. The main factors for superior actuation performances, like water-uptake ratio, proton conductivity and elastic modulus, increased significantly. Compared to the pure Nafion IPMC and MWCNT/Nafion IPMC, much superior electrochemical and electromechanical performances were achieved in the sMWCNT/Nafion IPMC, which were attributed to the numerous insertion sites, high surface conductivity and excellent mechanical strength as well as the homogeneous dispersity of the incorporated sMWCNT. Herein, a trace amount of sMWCNT can improve the performances of IPMCs significantly for realistic applications.

  9. Organic/Organic Cathode Bi-Interlayers Based on a Water-Soluble Nonconjugated Polymer and an Alcohol-Soluble Conjugated Polymer for High Efficiency Inverted Polymer Solar Cells.

    Science.gov (United States)

    Cai, Ping; Jia, Hongfu; Chen, Junwu; Cao, Yong

    2015-12-23

    In this work, organic/organic cathode bi-interlayers based on a water-soluble nonconjugated polymer PDMC and an alcohol-soluble conjugated polymer PFN were introduced to modifythe ITO cathode for inverted polymer solar cells (PSCs). PDMC with ultrahigh molecular weight would facilitate to form strong adsorption on the ITO substrate, while PFN could provide both compatibly interfacial contacts with the bottom PDMC interlayer and the upper organic active layer. The PDMC/PFN cathode bi-interlayers could decrease work function of the ITO cathode to 3.8 eV, supplying the most efficient ohmic interfacial contacts for electron collection at the ITO cathode. With a PTB7:PC71BM blend as the active layer, inverted PSCs based on the PDMC/PFN cathode bi-interlayers showed the highest efficiency of 9.01% and the best air stability within 60 days if compared with devices based on a separate PDMC or PFN cathode interlayer. The results suggest that the PDMC/PFN cathode bi-interlayers would play an important role to achieve high efficiency and stable inverted PSCs.

  10. Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Hadjira Rabti

    2014-06-01

    Full Text Available Elementary osmotic pump (EOP is a unique extended release (ER drug delivery system based on the principle of osmosis. It has the ability to minimize the amount of the drug, accumulation and fluctuation in drug level during chronic uses. Carbamazepine (CBZ, a poorly water-soluble antiepileptic drug, has serious side effects on overdoses and chronic uses. The aim of the present study was to design a new EOP tablet of CBZ containing a solubility enhancers and swellable polymer to reduce its side effects and enhance the patient compliance. Firstly, a combination of solubilizing carriers was selected to improve the dissolution of the slightly soluble drug. Then, designing the new EOP tablet and investigating the effect of different variables of core and coat formulations on drug release behavior by single parameter optimization and by Taguchi orthogonal design with analysis of variance (ANOVA, respectively. The results showed that CBZ solubility was successfully enhanced by a minimum amount of combined polyvinyl pyrrolidone (PVP K30 and sodium lauryl sulfate (SLS. The plasticizer amount and molecular weight (MW together with the osmotic agent amount directly affect the release rate whereas the swellable polymer amount and viscosity together with the semi-permeable membrane (SPM thickness inversely influence the release rate. In addition, the tendency of following zero order kinetics was mainly affected by the coat components rather than those of the core. Further, orifice size does not have any significant effect on the release behavior within the range of 0.1 mm to 0.8 mm. In this study we report the successful formulation of CBZ-EOP tablets, which were similar to the marketed product Tegretol CR 200 and able to satisfy the USP criterion limits and to deliver about 80% of CBZ at a rate of approximately zero order for up to 12 h.

  11. Rational design on controlled release ion-exchange polymeric microspheres and polymer-lipid hybrid nanoparticles for the delivery of water-soluble drugs through a multidisciplinary approach

    Science.gov (United States)

    Li, Yongqiang

    Sulfopropyl dextran sulfate (SP-DS) microspheres and polymer-lipid hybrid nanoparticles (PLN) for the delivery of water-soluble anticancer drugs and P-glycoprotein inhibitors were developed by our group recently and demonstrated effectiveness in local chemotherapy. To optimize the delivery performance of these particulate systems, particularly PLN, an integrated multidisciplinary approach was developed, based on an in-depth understanding of drug-excipient interactions, internal structure, drug loading and release mechanisms, and application of advanced modeling/optimization techniques. An artificial neural networks (ANN) simulator capable of formulation optimization and drug release prediction was developed. In vitro drug release kinetics of SP-DS microspheres, with various drug loading and in different release media, were predicted by ANN. The effects of independent variables on drug release were evaluated. Good modeling performance suggested that ANN is a useful tool to predict drug release from ion-exchange microspheres. To further improve the performance of PLN, drug-polymer-lipid interactions were characterized theoretically and experimentally using verapamil hydrochloride (VRP) as a model drug and dextran sulfate sodium (DS) as a counter-ion polymer. VRP-DS complexation followed a stoichiometric rule and solid-state transformation of VRP were observed. Dodecanoic acid (DA) was identified as the lead lipid carrier material. Based upon the optimized drug-polymer-lipid interactions, PLN with high drug loading capacity (36%, w/w) and sustained release without initial burst release were achieved. VRP remained amorphous and was molecularly dispersed within PLN. H-bonding contributed to the miscibility between the VRP-DS complex and DA. Drug release from PLN was mainly controlled by diffusion and ion-exchange processes. Drug loading capacity and particle size of PLN depend on the formulation factors of the weight ratio of drug to lipid and concentrations of

  12. 水溶性荧光聚合物的制备与性能分析%Preparation and properties of water-soluble fluorescent polymers

    Institute of Scientific and Technical Information of China (English)

    张宝华; 张所明; 沈萍萍; 王新俊; 孙超; 许丽瑛

    2015-01-01

    基于Wittig-Horner反应,以对氯甲基苯甲酸甲酯、亚磷酸三乙酯、对苯二甲醛为主要原料,经酯化、缩合得到二苯乙烯型荧光单体,研究了各种反应条件对单体合成的影响。将二苯乙烯型荧光单体高分子化得到了水溶性好、荧光性强、稳定性与安全性高的荧光聚合物。用红外光谱对荧光单体结构进行了表征,用紫外及荧光分光光度计对荧光单体及聚合物的荧光性能进行了研究。结果表明:荧光单体聚合后紫外吸收发生红移,吸收强度下降,但荧光发射强度提高,这说明近紫外吸收有利于荧光发射强度的提高。%Stilbene fluorescence monomer was synthesized by esterification and condensa-tion with the main raw materials of chloromethyl benzoate, triethyl phosphate and tereph-thalaldehyde through Wittig-Horner reaction. Stilbene fluorescence monomer was then polymerized to produce fluorescent polymer with good water solubility, strong fluorescence, high stability and safety. The fluorescent monomer structure was characterized by infrared (IR) spectra. The fluorescence properties of fluorescent monomer and polymer were studied with a ultraviolet (UV) absorption spectrophotometer and a fluorescence spectrophotome-ter. It was found that, compared with fluorescence monomer, the ultraviolet absorption peak of fluorescence polymer was red drifted with the absorption intensity lowered, but the fluorescence emission intensity was increased, meaning that near ultraviolet absorption is in favor of the increase of fluorescence emission intensity.

  13. A comparative study on the effects of amphiphilic and hydrophilic polymers on the release profiles of a poorly water-soluble drug.

    Science.gov (United States)

    Irwan, Anastasia W; Berania, Jacqueline E; Liu, Xueming

    2016-03-01

    This paper reports the use of two crystalline polymers, an amphiphilic Pluronic® F-127 (PF-127) and a hydrophilic poly(ethylene glycol) (PEG6000) as drug delivery carriers for improving the drug release of a poorly water-soluble drug, fenofibrate (FEN), via micelle formation and formation of a solid dispersion (SD). In 10% PF-127 (aq.), FEN showed an equilibrium solubility of ca. 0.6 mg/mL, due to micelle formation. In contrast, in 10% PEG6000 (aq.), FEN only exhibited an equilibrium solubility of 0.0037 mg/mL. FEN-loaded micelles in PF-127 were prepared by direct dissolution and membrane dialysis. Both methods only yielded a highest drug loading (DL) of 0.5%. SDs of FEN in PF-127 and PEG6000, at DLs of 5-80%, were prepared by solvent evaporation. In-vitro dissolution testing showed that both micelles and SDs significantly improved FEN's release rate. The SDs of FEN in PF-127 showed significantly faster release than crystalline FEN, when the DL was as high as 50%, whereas SDs of PEG6000 showed similar enhancement in the release rate when the DL was not more than 20%. The DSC thermograms of SDs of PF-127 exhibited a single phase transition peak at ca. 55-57 °C when the DL was not more than 50%, whereas those in PEG6000 exhibited a similar peak at ca. 61-63 °C when the DL was not more than 35%. When the DL exceeded 50% for SDs of PF-127 and 35% for SDs of PEG6000, DSC thermograms showed two melting peaks for the carrier polymer and FEN, respectively. FT-IR studies revealed that PF-127 has a stronger hydrophobic-hydrophobic interaction with FEN than PEG6000. It is likely that both dispersion and micelle formation contributed to the stronger effect of PF-127 on enhancing the release rate of FEN in its SDs.

  14. Polymères hydrosolubles d'origine naturelle et synthétique Relation structure/propriétés en solution Water-Soluble Polymers of Natural and Synthetic Origin. Structure/Property Relations in Solution

    Directory of Open Access Journals (Sweden)

    Muller G.

    2006-11-01

    Full Text Available Les polymères hydrosolubles utilisés dans les opérations pétrolières (forage, cimentation, stimulation, récupération assistée peuvent être d'origine très variée (polymères naturels, de fermentation, semi-synthétiques et synthétiques. Leur utilisation et leur efficacité sont directement liées à la connaissance de la relation existant entre leur structure chimique (macrostructure et microstructure et leurs propriétés en solution. Ce rapport fait la synthèse des divers types de polymères hydrosolubles qui ont un intérêt pratique et définit les paramètres structuraux et fonctionnels gouvernant leur efficacité en fonction d'un certain nombre de paramètres extérieurs (pH, salinité, température. The capacity of water-soluble polymers to modify the rheology of aqueous solutions explains their importance for various oil-recovery operations. The choice of the most appropriate polymer depends on its molecular and macromolecular properties in solution, which are closely related to the nature of their primary, secondary and tertiary structures and of their microstructure. This article describes the different types of water-soluble polymers that are of practical interest, and it defines the structural and functional parameters that govern their efficacy as a function of external parameters (pH, salinity and temperature. There are four main types of polymers, depending on their origin. They are :(a Natural biopolymers (of vegetable origin and biotechnological biopolymers (produced by microorganisms, i. e. neutral and/or charged polysaccharides. (b Modified biopolymers having synthetic side chains. (c Polyvinylsaccharides (synthetic side chains. (d Synthetic polymers. For all of them, it is indispensable to know the relationship between structure, conformation and functional properties. The solubility in water and the properties in solution of polysaccharides depend on four main factors: (i the presence of branched chains, (ii the

  15. Control of the structure and properties of water-soluble associating polymers synthesized by micellar copolymerization; Controle de la structure et des proprietes de polymeres hydrosolubles associatifs synthetises par copolymerisation micellaire

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, M.R.; Selb, J. [Institut Charles Sadron, CNRS, 67 - Strasbourg (France)

    2001-07-01

    In the so-called micellar copolymerization process, hydrophilic and hydrophobic monomers are radically co-polymerized in aqueous solution in the presence of surfactant micelles. This process leads to water-soluble polymers in which hydrophobic units are distributed as short blocks whose length can be easily varied. Such copolymers exhibit associative thickening properties. The kinetics of the hydrophobia incorporation within the hydrophilic polyacrylamide backbone has been compared for various anionic and cationic surfactants. A fluorescence technique based on excimer formation between fluorescent hydrophobic groups has been used to characterize the copolymer structure and the chain conformation in solution. (author)

  16. Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells.

    Science.gov (United States)

    Manju, S; Sreenivasan, K

    2012-02-15

    Curcumin (Cur) shows low anticancer activity in vivo due to its reduced systemic bioavailability stemmed from its poor aqueous solubility and instability. Suitably functionalized nanocarriers designed to empty the drug specifically at tumor sites can potentially enhance the antitumor activity of Cur. We devised a simple method for the fabrication of water soluble Cur conjugated gold nanoparticles to target various cancer cell lines. Cur was conjugated to hyaluronic acid (HA) to get a water soluble conjugate (HA-Cur). We generated gold nanoparticles (AuNPs) by reducing chloroauric acid using HA-Cur, which played the dual role of a reducing and stabilizing agent and subsequently anchored folate conjugated PEG. These entities were probed using different analytical techniques, assayed the blood compatibility and cytotoxicity. Their interaction with cancer cell lines (HeLa cells, glyoma cells and Caco 2 cells) was followed by flow cytometry and confocal microscopy. Blood-materials interactions studies showed that the nanoparticles are highly hemocompatible. Flow cytometry and confocal microscopy results showed significant cellular uptake and internalization of the particles by cells. HA-Cur@AuNPs exhibited more cytotoxicity comparing to free Cur. The strategy, we adopted here, resulted the formation blood compatible Cur conjugated AuNPs with enhanced targeting and improved efficacy. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method

    Science.gov (United States)

    van Ngoc, Huynh; Qian, Yongteng; Han, Suk Kil; Kang, Dae Joon

    2016-09-01

    We have explored a facile technique to transfer large area 2-Dimensional (2D) materials grown by chemical vapor deposition method onto various substrates by adding a water-soluble Polyvinyl Alcohol (PVA) layer between the polymethyl-methacrylate (PMMA) and the 2D material film. This technique not only allows the effective transfer to an arbitrary target substrate with a high degree of freedom, but also avoids PMMA etching thereby maintaining the high quality of the transferred 2D materials with minimum contamination. We applied this method to transfer various 2D materials grown on different rigid substrates of general interest, such as graphene on copper foil, h-BN on platinum and MoS2 on SiO2/Si. This facile transfer technique has great potential for future research towards the application of 2D materials in high performance optical, mechanical and electronic devices.

  18. Rheological properties of reversible thermo-setting in situ gelling solutions with the methylcellulose-polyethylene glycol-citric acid ternary system (2): Effects of various water-soluble polymers and salts on the gelling temperature.

    Science.gov (United States)

    Shimokawa, Ken-ichi; Saegusa, Katsuhiko; Ishii, Fumiyoshi

    2009-11-01

    The influences of various salts and water-soluble polymers on the phase transition temperature of thermo-setting gels prepared by combining methylcellulose (MC)-sodium citrate (SC)-polyethylene glycol (PEG) at appropriate ratios (the MC-SC-PEG system) were investigated. Concerning cations, comparison of the phase transition temperature between SC and tripotassium citrate (PC) showed a rapid increase in the viscosity of SC between 20 degrees C and 25 degrees C and an increase in the viscosity of PC between 30 degrees C and 35 degrees C. Concerning the valency of anions, comparisons among SC, disodium tartrate dihydrate (ST), disodium maleate hemihydrates (SM), and sodium sulfate (SS) showed a rapid increase in the viscosity of trivalent SC between 20 degrees C and 25 degrees C and changes in the viscosity of the three bivalent sodium salts (ST, SM, and SS) at > or =30 degrees C. Thus the phase transition temperature decreased with an increase in the valency of anions. Subsequently, the influences of various water-soluble polymers on the gelling temperature were compared. Using polyvinylpyrrolidone (PVP) instead of PEG, the gelling temperature decreased with an increase in the PVP concentration even without the addition of SC. Unlike PVP, the addition of xanthan gum as a viscosity-increasing polysaccharide did not reduce the gelling temperature irrespective of its concentration. Temperature-associated changes in viscosity were observed at a fixed SC concentration with changes in the concentration of PVP or PEG. The gel phase transition temperature increased from 46 degrees C to 50 degrees C in gels not containing PVP or PEG. The viscosity did not differ between the addition of PVP or PEG at a low concentration and its absence. However, the viscosity clearly changed after the addition of each agent at a high concentration.

  19. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries

    Science.gov (United States)

    Zhong, Haoxiang; He, Aiqin; Lu, Jidian; Sun, Minghao; He, Jiarong; Zhang, Lingzhi

    2016-12-01

    A water-soluble conductive composite binder consisting of carboxymethyl chitosan (CCTS) as a binder and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a conduction-promoting agent is reported for the LiFePO4 (LFP) cathode in Li-ion batteries. The introduction of conductive PEDOT:PSS as a conductive composite binder facilitates the formation of homogeneous and continuous conducting bridges throughout the electrode and raises the compaction density of the electrode sheet by decreasing the amounts of the commonly used conducting agent of acetylene black. The optimized replacement ratios of acetylene black with PEDOT:PSS (acetylene black/PEDOT:PSS = 1:1, by weight) are obtained by measuring electrical conductivity, peel strength and compaction density of the electrode sheets. The LFP half-cell with the optimized conductive binder exhibits better cycling and rate performance and more favorable electrochemical kinetics than that using only acetylene black conducting agent. The pilot application of PEDOT:PSS/CCTS binder in 10 Ah CCTS-LFP prismatic cell exhibits a comparable cycling performance, retaining 89.7% of capacity at 1 C/2 C (charge/discharge) rate as compared with 90% for commercial PVDF-LFP over 1000 cycles, and better rate capability than that of commercial PVDF-LFP, retaining 98% capacity of 1 C at 7 C rate as compared with 95.4% for PVDF-LFP.

  20. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS2 Nanosheets

    Directory of Open Access Journals (Sweden)

    Junting Li

    2016-06-01

    Full Text Available We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium-fluorene-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene] (PFVCN and tungsten disulfide (WS2 nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS2 is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS2 and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS2 can sense S1 nuclease with a low detection limit of 5 × 10−6 U/mL. Additionally, this method is cost-effective by using affordable WS2 as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening.

  1. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS₂ Nanosheets.

    Science.gov (United States)

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-06-13

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening.

  2. Assessing the impact of polymers on the pH-induced precipitation behavior of poorly water soluble compounds using synchrotron wide angle X-ray scattering.

    Science.gov (United States)

    Hsieh, Yi-Ling; Box, Karl; Taylor, Lynne S

    2014-09-01

    The aim of this study was to investigate the pH-induced precipitation behavior of four ionizable compounds (papaverine, dipyridamole, glyburide, and warfarin) in the absence and presence of polymers. Polymers selected included nonionic, anionic, and cationic polymers. Precipitates were analyzed immediately after formation using high-energy radiation wide-angle X-ray scattering analysis and polarized light microscopy. Papaverine immediately crystallized to the original solid-state form upon creation of a highly supersaturated solution and polymers were unable to prevent crystallization. Dipyridamole also crystallized rapidly, forming a metastable polymorph that was stabilized by several of the cellulosic polymers. For glyburide and warfarin, although the compounds readily crystallized in the absence of the polymers, several of the polymers were able to prevent crystallization for more than 6 h. In general, measurements of solution concentration immediately following precipitation corroborated the solid-state analysis results, with the solution phase for the noncrystalline precipitates having a concentration considerably higher than that of the equilibrium solubility value, whereas for the crystalline precipitates, values were closer to the equilibrium solubility. Thus, precipitation to a noncrystalline solid was found to be promoted by the presence of some polymers, resulting in the formation of a supersaturated solution.

  3. Molecular mechanism of polymer-assisting supersaturation of poorly water-soluble loratadine based on experimental observations and molecular dynamic simulations.

    Science.gov (United States)

    Zhang, Shenwu; Sun, Mengchi; Zhao, Yongshan; Song, Xuyang; He, Zhonggui; Wang, Jian; Sun, Jin

    2017-07-05

    Polymers have been usually used to retard nucleation and crystal growth in order to maintain supersaturation, yet their roles in inhibition of nucleation and crystal growth are poorly understood. In our work, the polymer-based supersaturation performances and molecular mechanisms of poorly aqueous soluble loratadine were investigated. Two common hydrophilic polymers (hydroxylpropylmethyl cellulose acetate succinate (HPMC-AS) and poly(vinylpyrrolidone-co-vinyl-acetate) (PVP-VA)) were used. It was found that HPMC-AS was a better polymer to prevent drug molecules from aggregation and to maintain the supersaturated state in solution than PVP-VA. The in vitro dissolution experiments showed that HPMC-AS solid dispersions had more rapid release at pH 4.5 and 6.8 media than PVP-VA solid dispersions under the un-sink condition. Moreover, molecular dynamic simulation results showed that HPMC-AS was more firmly absorbed onto a surface of the drug nanoparticles than PVP-VA due to bigger hydrophobic areas of HPMC-AS. Thereby, crystallization process of loratadine was inhibited in the presence of water to provide prolonged stability of the supersaturated state. In conclusion, polymers played a key role in maintaining supersaturation state of loratadine solid dispersions by strong drug-polymer interactions and the hydrophobic characteristic of polymers.

  4. Composites based on cellulose fiber nonwovens and a water soluble polymer 1. Structure and strength-deformation characteristics of cellulose fiber nonwovens and structural characteristics of the composites

    Science.gov (United States)

    Cerpakovska, D.; Kalnins, M.

    2012-03-01

    The results of a study on the strength-deformation characteristics (tensile elastic modulus, ultimate strength, elongation at break, and punching and tearing strengths) of two kinds of cellulose fiber nonwovens (CFNs) with dissimilar void content and different geometrical parameters of cellulose fibers are discussed. The structural characteristics of composites prepared by impregnation with poly(vinyl alcohol) water solutions are analyzed, too. Composites with volume fractions of polymer up to 0.4% and volume fractions of voids up to 0.3% were prepared. Filling of voids by the polymer occurred without significant changes in the structure of CFNs. The fraction of closed voids increased with polymer content.

  5. Water-soluble multidentate polymers compactly coating Ag2S quantum dots with minimized hydrodynamic size and bright emission tunable from red to second near-infrared region

    Science.gov (United States)

    Gui, Rijun; Wan, Ajun; Liu, Xifeng; Yuan, Wen; Jin, Hui

    2014-04-01

    Hydrodynamic size-minimized quantum dots (QDs) have outstanding physicochemical properties for applications in multicolor molecular and cellular imaging at the level of single molecules and nanoparticles. In this study, we have reported the aqueous synthesis of Ag2S QDs by using thiol-based multidentate polymers as capping reagents. By regulating the composition of the precursors (AgNO3 and sulfur-N2H4.H2O complex) and multidentate polymers (poly(acrylic acid)-graft-cysteamine-graft-ethylenediamine), as well as the reaction time, Ag2S QDs (2.6-3.7 nm) are prepared, displaying tunable photoluminescence (PL) emission from red to the second near-infrared region (687-1096 nm). The small hydrodynamic thickness (1.6-1.9 nm) of the multidentate polymers yields a highly compact coating for the QDs, which results in the bright fluorescent QDs with high PL quantum yields (QYs: 14.2-16.4%). Experimental results confirm that the QDs have high PL stability and ultralow cytotoxicity, as well as high PLQYs and small hydrodynamic sizes (4.5-5.6 nm) similar to fluorescent proteins (27-30 kDa), indicating the feasibility of highly effective PL imaging in cells and living animals.Hydrodynamic size-minimized quantum dots (QDs) have outstanding physicochemical properties for applications in multicolor molecular and cellular imaging at the level of single molecules and nanoparticles. In this study, we have reported the aqueous synthesis of Ag2S QDs by using thiol-based multidentate polymers as capping reagents. By regulating the composition of the precursors (AgNO3 and sulfur-N2H4.H2O complex) and multidentate polymers (poly(acrylic acid)-graft-cysteamine-graft-ethylenediamine), as well as the reaction time, Ag2S QDs (2.6-3.7 nm) are prepared, displaying tunable photoluminescence (PL) emission from red to the second near-infrared region (687-1096 nm). The small hydrodynamic thickness (1.6-1.9 nm) of the multidentate polymers yields a highly compact coating for the QDs, which results in

  6. Embedding nano-Li{sub 4}Ti{sub 5}O{sub 12} in hierarchical porous carbon matrixes derived from water soluble polymers for ultra-fast lithium ion batteries anodic materials

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chun-Kai; Bao, Qi; Huang, Yao-Hui; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2016-07-15

    Li{sub 4}Ti{sub 5}O{sub 12}/hierarchical porous carbon matrixes composites are successfully prepared by a facile and fast polymers assisted sol–gel method, aiming to promote both electronic and ionic conductivity. As indicated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis, three less expensive cost and available water soluble polymers (e.g. PAA, CMC, and SA) can homogeneously react with Li–Ti–O precursor to incorporate into interior of nano-scale lithium titanate and provide a continues conductive network after pyrolysis. In addition, the results of scanning electron microscopy and transmission electron microscopy also prove that the Li{sub 4}Ti{sub 5}O{sub 12} nanoparticles are firmly embedded in porous carbon matrix with no obvious agglomeration. EIS measurement and cyclic voltammetry further reveal that the facilitated electrode kinetics and better ionic transport of Li{sub 4}Ti{sub 5}O{sub 12}/hierarchical porous carbon matrixes composites than that of Li{sub 4}Ti{sub 5}O{sub 12}. The c-CMC-LTO exhibits a superior capacity of 92 mAh g{sup −1} and retains its initial value with no obviously capacity decay over 200 cycles under an ultra-high C rate (50 C). - Graphical abstract: Schematic illustrations of the formation process of embedding LTO into Carbon matrixes derived from water soluable polymers (upper) and the electrochemical reaction paths in LTO/Carbon composites during charging/discharging processes (lower). - Highlights: • Hierarchical porous carbon matrixes were used to improve the Li{sub 4}Ti{sub 5}O{sub 12} anodes. • Carbon matrixes could suppress the agglomeration of Li{sub 4}Ti{sub 5}O{sub 12} nanoparticles. • meso-nanoporous carbon structure was beneficial for filtration of electrolyte. • The c-CMC-LTO exhibited superior high rate capability and cycling durability.

  7. 水溶性聚合物在多孔介质中动态滞留量研究%Research on dynamic hold-up of water-soluble polymer in porous medium

    Institute of Scientific and Technical Information of China (English)

    李宜强; 曲成永

    2011-01-01

    During the oil extraction process, liquid hold-up is one of the key factors in influencing the effect of polymer flooding.Directing at the application conditions limitation of water- soluble polymer on site, the dynamical hold up law of polyacrylamide solution in artificial core was conducted with starch-cadmium iodide colorimetry in this paper, and the effect of kaolin clay, surfactant on liquid hold up was inspected. The results show that the retention volume of polymer was decreased when surfactant have been contained in the solution, on the other hand, the exist of kaolin clay in solution raised retention volume of polymer in the core, and the hold- up volume was increased with the increasing of kaolin content. When both the surfactant and polymer were included in solution, these two would react to each other which resulted in competitive adsorption in rock surface and reduced their effective content. So, in order to enhance the flooding efficiency, the concentration of surfactant and polymer should adjust based on the contribution of the two to EOR and their differences of adsorption and liquid hold up.%滞留量是影响聚合物驱油效果的关键因素之一.针对水溶性聚合物在现场应用条件的局限性,利用淀粉一碘化锅比色法研究了聚丙烯酰胺水溶液在人造均质岩心中的动态滞留规律,并考察了高岭土、表面活性剂对其滞留量产生的影响.结果表明,溶液中含有表面活性剂时,聚合物的滞留量减少;高岭土的存在使聚合物在岩心中的滞留量增加,随着高岭土含量的增加,滞留量增大.表活剂与聚合物同时存在时,二者之间会发生一定的相互作用,在岩石表面会产生竞争吸附,造成其有效含量降低,因此要保证驱油效率的提高,应当依据二者时提高采收率的贡献及吸附滞留的差异对其浓度进行适当的调高.

  8. A New FRET-Based Sensitive DNA Sensor for Medical Diagnostics using PNA Probe and Water-Soluble Blue Light Emitting Polymer

    Directory of Open Access Journals (Sweden)

    Nidhi Mathur

    2008-01-01

    Full Text Available A reliable, fast, and low-cost biosensor for medical diagnostics using DNA sequence detection has been developed and tested for the detection of the bacterium “Bacillus anthracis.” In this sensor, Poly [9,9-di (6,6′- N, N′ trimethylammonium hexylfluorenyl-2, 7-diyl-alt-co- (1,4-phenylene] dibromide salt (PFP has been taken as cationic conjugated polymer (CCP and PNA attached with fluorescein dye (PNAC∗ as a probe. The basic principle of this sensor is that when a PNAC∗ probe is hybridized with a single strand DNA (ssDNA having complementary sequence, Forster resonance energy transfer (FRET may take place from PFP to the PNAC∗/DNA complex. If the FRET is efficient, the photoluminescence from the PFP will be highly quenched and that from PNAC∗ will be enhanced. On the other hand, if the DNA sequence is noncomplementary to PNA, FRET will not occur.

  9. Hyper-crosslinked β-cyclodextrin porous polymer: an adsorption-facilitated molecular catalyst support for transformation of water-soluble aromatic molecules.

    Science.gov (United States)

    Li, Haiying; Meng, Bo; Chai, Song-Hai; Liu, Honglai; Dai, Sheng

    2016-02-01

    A hyper-crosslinked β-cyclodextrin porous polymer (BnCD-HCPP) was designed and synthesized facilely by β-cyclodextrin benzylation and subsequent crosslinking via a Friedel-Crafts alkylation route. The BnCD-HCPP shows an extremely high BET surface area, large pore volume, and high thermal stability, making it a highly efficient adsorbent for removal of aromatic pollutants from water. The adsorption efficiency in terms of distribution coefficient, defined as the ratio of adsorption capacity to equilibrium adsorbate concentration, ranged from 10(3) to 10(6) mL g(-1) within a concentration of 0-100 ppm, one order of magnitude higher than that of other β-cyclodextrin-based adsorbents reported previously. The molar percentage of adsorbate to β-cyclodextrin exceeded 300%, suggesting that the adsorption occurred not only in the cyclodextrin cavities via a 1 : 1 complexation, but also in the nanopores of the BnCD-HCPP created during the hyper-crosslinking. The BnCD-HCPP can be further functionalized by incorporation of gold nanoparticles for catalytic transformation of adsorbed phenolic compounds such as 4-nitrophenol to 4-aminophenol.

  10. High Performance Small-Molecule Cathode Interlayer Materials with D-A-D Conjugated Central Skeletons and Side Flexible Alcohol/Water-Soluble Groups for Polymer Solar Cells.

    Science.gov (United States)

    Han, Jianxiong; Chen, Youchun; Chen, Weiping; Yu, Chengzhuo; Song, Xiaoxian; Li, Fenghong; Wang, Yue

    2016-12-07

    A new class of organic cathode interfacial layer (CIL) materials based on isoindigo derivatives (IID) substituted with pyridinium or sulfonate zwitterion groups were designed, synthesized, and applied in polymer solar cells (PSCs) with PTB7:PC71BM (PTB7: polythieno[3,4-b]-thiophene-co-benzodithiophene and PC71BM: [6,6]-phenyl C71-butyric acidmethyl ester) as an active layer. Compared with the control device, PSCs with an IID-based CIL show simultaneous enhancement of open-circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF). Systematic optimizations of the central conjugated core and side flexible alcohol-soluble groups demonstrated that isoindigo-based CIL material with thiophene and sulfonate zwitterion substituent groups can efficiently enhance the PSC performance. The highest power conversion efficiency (PCE) of 9.12%, which is 1.75 times that of the control device without CIL, was achieved for the PSC having an isoindigo-based CIL. For the PSCs with an isoindigo-based CIL, the molecule-dependent performance property studies revealed that the central conjugated core with D-A-D characteristics and the side chains with sulfonate zwitterions groups represents an efficient strategy for constructing high performance CILs. Our study results may open a new avenue toward high performance PSCs.

  11. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    Science.gov (United States)

    Rezayan, Ali Hossein; Mousavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad

    2016-12-01

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe3O4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe3O4 was 45 emu/g, which was less than the unmodified Fe3O4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe3O4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T2) decreased, which subsequently resulted in MR signal enhancement. T2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l-1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs.

  12. Method of cross-linking polyvinyl alcohol and other water soluble resins

    Science.gov (United States)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  13. “ Enhancement of Solubility of poorly water soluble drug by solid dispersion technique”

    Directory of Open Access Journals (Sweden)

    V.R.Tagalpallewar

    2015-02-01

    Full Text Available Atovaquone and Satrinidazole has poor solubility resulting in low oral absorption hence low oral bioavailability. Hence to improve the solubility of poorly Atovaquone and Satrinidazole , hydrophilic polymers were used to enhance the dissolution by solid dispersion technique. Polyehylene Glycol 4000 and PVP k30 used to enhance the dissolution of both the drug by Solubilisation. Many alternative techniques have been used to improve such bioavailability; this study thus employed the simple solid dispersion technique and incorporated excipients which can increase the bioavailability of these drugs directly enhancing the dissolution rate of the drug and indirectly by reducing particle size.The aim of present work is to enhance the dissolution of poorly water soluble drug by using solid dispersion technique. To improve the dissolution rate, by using the various concentration of carrier or matrix with drug and hence ,improve the bioavailability of poorly water soluble drug by formulating solid dispersion.To enhance the solubility of poorly water soluble drug ,by means of solubilising agent. In case of poorly water soluble drug, dissolution may be the rate limiting step in the process of absorption. In such case ,we can improve their solubility and dissolution rate.To study the effect of surfactant on the solid dispersion of poorly water soluble drug.

  14. Application of Hydrogen-bonding Association Model to the Liquid-liquid Equilibrium of Water-soluble Polymer Solution%氢键缔合模型在水溶性聚合物液-液相平衡研究中的应用

    Institute of Scientific and Technical Information of China (English)

    江成发; 王毓; 张晟姝; 张允湘

    2002-01-01

    水溶性聚合物水溶液中存在聚合物和水之间的氢键缔合化学平衡,溶液的混合Gibbs自由能由氢键缔合化学平衡和Flory-Huggins理论二部分组成,在此基础上建立了能描述水溶性聚合物液-液平衡的氢键缔合模型.将该模型用于研究PEG2180-水和PEG2290 -水两个体系的液-液相平衡,计算值能较好地吻合实验值.由该模型得到的氢键生成焓的数值和符号能够用于解释在水溶性聚合物水溶液中,存在低临介溶液温度(LCST)的现象.应用氢键缔合模型计算了水溶液中水的化学位.在不同温度下水的化学位随聚合物体积分率的变化规律,能够阐明同时存在高临介溶液温度(UCST)和低临介溶液温度(LCST)的水溶性聚合物液-液相平衡的特征.%In aqueous water-soluble polymer solutions it is assumed to exist a hydrogen-bonding association equilibrium between the polymer and water.The Gibbs free energy of mixing is taken as the sum of two contributions:one is the contribution from hydrogen-bonding association equilibrium and another one is from the Flory-Huggins theory.Based on these considerations,a new association model is put forward.This model is applied to correlate and predict the liquid-liquid equilibria of poly (ethylene glycol) 2180-water and poly (ethylene glycol) 2290-water systems and a fairly good agreement between the calculated and experimental liquid-liquid equilibrium compositions is obtained.The magnitudes and signs of the enthalpy of formation of hydrogen bonds that are estimated from this association model can be used to explain the existence of lower critical solution temperature in liquid-liquid equilibrium of aqueous water-soluble polymer solution. The model is used to calculate the chemical potential of water.The variation of the chemical potential of water with the volume fraction of polymer at several temperatures illustrate the features of liquid-liquid equilibrium of aqueous water-soluble polymer

  15. Determination of biodegradation rates of water-soluble polymers by three-group-bottles method%3组瓶法测定水溶性高聚物的生物降解率

    Institute of Scientific and Technical Information of China (English)

    吴新世; 刘连遵; 孙波; 王菁; 师慈

    2009-01-01

    A three-group-bottles method namely culturing bottle, toxic bottle, and neutral bottle for determining the biode gradability of water-soluble polyaspartie acid-chitosan copolyrner was established and studied from the pretreatment of the remained sample, ehoiee of the analyzing method, and analysis of the testing data, etc. Compared with the routine testing method, the basic determination approach had two advantages at least: on the one hand, it bad more logic by working out the neutral bottle in the test design, and on the other, after the eopolymer was treated by the active sludge for 28 days sim-ultaneously, the maximum degradation rate arrived to 55. 47% by the determination approach, while that was only 47.51% by the latter, which was lower 7.96% than the former.%以水溶性聚天冬氨酸壳聚糖共聚物为研究对象,初步建立了一套以聚合物降解3组瓶即样品瓶、毒性瓶和中性瓶培养为核心内容,包括样品预处理、检测方法选择、结果分析处理等的水溶性高聚物生物降解率测定的基本方法.与常规分析方法相比,一方面本实验方案因增加了中性瓶设计而使得其逻辑性更加严密;另一方面,将聚天冬氨酸壳聚糖共聚物用活性污泥滤液处理28 d,由本实验方案得到的生物降解率为55.47%,而常规方法仅为47.51%,前者比后者约高出7.96%.

  16. 荧光双重敏感响应型水溶聚合物的合成及其发光性能研究%SYNTHESIS AND LUMINESCENCE PROPERTIE OF BIFUNCTIONAL WATER-SOLUBLE LUMINESCENCE POLYMER MATERIALS

    Institute of Scientific and Technical Information of China (English)

    关晓琳; 来守军

    2012-01-01

    An unsaturated monomer bearing luminescence group, acryloyloxyfluorescein ( Ac-Flu) was synthesized from fluorescein and acryloyl chloride in the presence of triethylamine in dry dichloromethane (CH2C12) at room temperature. The synthesized Ac-Flu was identified by IR, MS and 'H-NMR spectra. Copolymer of Ac-Flu and acrylamide was synthesized with thermal initiator, and poly ( Ac-Flu -co- AM) was characterized by the method of IR, UV-Vis and DSC. The photophysical behaviors of the copolymer were explored by recording the fluorescence spectra in solution and film. In addition, the pH and temperature dependence of fluorescence of the water-soluble poly ( Ac-Flu-co-AM) was investigated in detail. The results showed that the relative fluorescence intensity of poly(Ac-Flu-co-AM) at near 520 nm had an excellent linear response to temperature in the range of 0 ~60℃ ,the linear regression equation of the calibration graph was FI = 740. 06 -3. 0683T, ( FI was relative fluorescence intensity,T was temperature) ,with a correlation coefficient of linear regression of 0. 9974. Moreover,the fluorescence intensity increased continuously from low pH to high pH from 4. 0 to 10. 0 after the addition of HC1 or NaOH, which resulted from the fact that the predominance of tautomeric forms of Ac-Flu changed at different medium. This investigation may provide a convenient way to prepare multifunctional macromolecule biomaterial bearing fluorescein to probe pH and temperature in biological system.%将丙烯酰氯与荧光素反应,合成出丙烯酸酯单体3-丙烯酰氧基荧光素(Ac-Flu),然后采用自由基溶液聚合法将Ac-Flu与丙烯酰胺(AM)共聚,制备得到含有荧光素生色团的水溶性荧光共聚物poly( Ac-Flu-co-AM).合成单体Ac-Flu和共聚物poly( Ac-Flu-co-AM)采用核磁(NMR),质谱(HR-MS),红外光谱(FTIR),示差扫描量热法( DSC),可见紫外分光光度仪(UV-Vis)等方法进行了结构表征,同时采用荧光光谱对共聚物poly( Ac-Flu-co-AM)

  17. Progress in the application of water soluble polymer complexing ultrafiltration to the treatment of heavy metal wastewater%水溶性聚合物络合超滤技术处理重金属废水进展

    Institute of Scientific and Technical Information of China (English)

    汪成运; 包立超

    2011-01-01

    The mechanism of wa ter soluble polymer complexing ultrafiltration for removing heavy metals is analyzed, and the influencing factors in the separation process, such as pH, concentration ratio of metal ions and polymer, and added salt are summarized. In addition, the research progress in the technology of selective separation and that of polymer regeneration by acidification and electrolysis are reviewed. At the end, the membrane fouling problem, which is the restrictive factor hindering the industrialization of this technology, is emphatically overviewed, and the developing foreground is predicted.%分析了水溶性聚合物络合超滤技术去除重金属的机理,总结了分离重金属离子过程的影响因素,如pH、金属离子与聚合物浓度比和外加盐.综述了该技术在金属离子选择性分离中的研究进展以及聚合物再生时使用的酸化法和电解法的研究进展.最后,着重对限制该技术工业化的膜污染问题进行了综述,并展望了该技术的发展前景.

  18. Predicted metal binding sites for phytoremediation

    OpenAIRE

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-01-01

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do no...

  19. Predicted metal binding sites for phytoremediation.

    Science.gov (United States)

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-09-05

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain.

  20. Water-soluble cavitands - synthesis, solubilities and binding properties

    NARCIS (Netherlands)

    Middel, Oskar; Verboom, Willem; Reinhoudt, David N.

    2002-01-01

    Water-soluble cavitand receptors have been obtained by the introduction of ionizable groups (5, 21-28, 39) and neutral hydrophilic tetraethylene glycol based dendritic wedges (19, 20). The synthesis of these cavitands and a study of their water solubilities and binding properties toward neutral orga

  1. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  2. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  3. Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes

    Science.gov (United States)

    Bourlinos, Athanasios B.; Georgakilas, Vasilios; Zboril, Radek; Steriotis, Theodore A.; Stubos, Athanasios K.; Trapalis, Christos

    2009-12-01

    Treatment of crystalline graphite fine powder with an aqueous solution of the harmless and versatile substance polyvinylpyrrolidone under sonication results in water-soluble, polymer-protected graphene single layers without oxidation or destruction of the sp 2 character of the carbon core. The liquid-phase extraction of graphene monolayers was evidenced by TEM and AFM techniques, while their graphitic character was checked with Raman spectroscopy. Besides PVP, the water-soluble biopolymers albumin and sodic carboxymethylcellulose were also employed successfully in the aqueous-phase exfoliation of graphite, thereby supporting the generic character of the present method using a variety of suitable polymeric extractants.

  4. Which Starch Fraction is Water-Soluble, Amylose or Amylopectin?

    Science.gov (United States)

    Green, Mark M.; And Others

    1975-01-01

    A survey of 22 popular organic chemistry textbooks showed that only four correctly stated that of the two components of starch, amylopectin is the water-soluble, and amylose is the water-insoluble. (MLH)

  5. Deep cavitand receptors with pH-independent water solubility.

    Science.gov (United States)

    Lledó, Agustí; Rebek, Julius

    2010-12-07

    Pendant oligoethyleneglycol groups confer water solubility to a cavitand over a wide pH range. The kinetic stability of the host-guest complexes reveals an effective stabilization through hydrogen bonding even in the highly competitive aqueous environment.

  6. Water-soluble pyrrolopyrrole cyanine (PPCy) NIR fluorophores.

    Science.gov (United States)

    Wiktorowski, Simon; Rosazza, Christelle; Winterhalder, Martin J; Daltrozzo, Ewald; Zumbusch, Andreas

    2014-05-11

    Water-soluble derivatives of pyrrolopyrrole cyanines (PPCys) have been synthesized by a post-synthetic modification route. In highly polar media, these dyes are excellent NIR fluorophores. Labeling experiments show how these novel dyes are internalized into mammalian cells.

  7. Physical and ionic characteristics in water soluble fraction (WSF) of ...

    African Journals Online (AJOL)

    SERVER

    2008-01-04

    Jan 4, 2008 ... Key words: Physical and ionic characteristics, heavy metals, water soluble fraction, crude oil and Azolla africana. ... impact on aquatic life (Camougis, 1981). Water ..... Fish, fisheries, aquatic macrophytes and water quality in.

  8. Plasma concentrations of water-soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    2012-01-21

    Jan 21, 2012 ... levels of water-soluble vitamins with metabolic syndrome and its various components. Aims: This ... thiamine has a role in reducing cellular oxidative stress.[2,12] ... a protective effect on pancreatic beta-cell survival, probably.

  9. Conjugated polyions : Polymers with ionic, water-soluble backbones

    NARCIS (Netherlands)

    Voortman, Thomas Pieter

    2016-01-01

    Organic photovoltaics (OPV) is an emerging solar power technology in which the active layer consists of molecules that are built-up mostly from carbon and hydrogen. However, OPV technologies still face major scientific challenges: high performance materials with good synthetic accessibility must be

  10. Influence of polymethacrylates and compritol on release profile of a highly water soluble drug metformin hydrochloride

    Directory of Open Access Journals (Sweden)

    Sunita Dahiya

    2015-01-01

    Full Text Available Aims: The present investigation studied effect of polymethacrylates Eudragit RSPO, Eudragit RLPO and compritol 888 ATO on release profile of highly water soluble drug metformin hydrochloride (MET. Materials and Methods: The solid dispersions were prepared using drug:polymer ratios 1:1 and 1:5 by coevaporation and coprecipitation techniques. Solid dispersions were characterized by infrared Spectroscopy (IR, differential scanning calorimetry (DSC, X-ray diffractometry (XRD as well as content uniformity, in vitro dissolution studies in 0.1 N HCl pH 1.2, phosphate buffer pH 6.8. Results and Discussion: Results of the studies suggested that there were progressive disappearance or changes of prominent peaks in IR, X-ray diffraction and thermotropic drug signals in coevaporates and coprecipitates with increased amount of polymers. Moreover, the in vitro release of highly water soluble MET could be extended at higher drug:polymer ratios. Conclusion: It was summarized that Eudragit RLPO had greater capacity of drug release than Eudragit RSPO and Comproitol 888 and its coevaporates in 1:5 drug:polymer ratio (F11 displayed extended drug release with comparatively higher dissolution rates (92.15 % drug release at 12 hour following near Zero order kinetics (r² =0.9822.

  11. Survey on synthesis and reaction of environmentally benign water-soluble metal complex catalysts; Kankyo chowagata suiyosei sakutai shokubai no gosei hanno no chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the research trend survey results on the synthesis and reaction of water-soluble metal complexes which are regarded as environmentally benign catalysts. For the synthesis and catalysis of water-soluble complexes, synthetic methods of water-soluble phosphines, such as sulfonated TPPMS and TPPTS, are described in detail. Synthesis and reactivity of hydroxymethylphosphines are introduced, and the application of electrospray mass spectroscopy is elucidated as a tool for the analysis of them. Changes of the application of transition metal complexes with water-soluble phosphines to catalysis are described. Dual catalysts which have both functions of phase transfer catalysts and homogeneous catalysts are introduced. Concept of counter phase transfer catalysts is also introduced, and some catalytic reactions are described. In addition, this report introduces catalysis of water-soluble polymer-supported metal complexes, immobilization of metal colloids with water-soluble ligands and their analysis, and water-soluble complexes as hybrid catalysts. 144 refs., 94 figs., 10 tabs.

  12. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt.

    Science.gov (United States)

    Zhu, Dan; Cheng, Honghao; Li, Jianna; Zhang, Wenwen; Shen, Yuanyuan; Chen, Shaojun; Ge, Zaochuan; Chen, Shiguo

    2016-04-01

    Chitosan (CS) has been widely recognized as an important biomaterial due to its good antimicrobial activity, biocompatibility and biodegradability. However, CS is insoluble in water in neutral and alkaline aqueous solution due to the linear aggregation of chain molecules and the formation of crystallinity. This is one of the key factors that limit its practical applications. Therefore, improving the solubility of CS in neutral and alkaline aqueous solution is a primary research direction for biomedical applications. In this paper, a reactive antibacterial compound (4-(2,5-Dioxo-pyrrolidin-1-yloxycarbonyl)-benzyl)-triphenyl-phosphonium bromide (NHS-QPS) was synthesized for chemical modification of CS, and a series of novel polymeric antimicrobial agents, N-quaternary phosphonium chitosan derivatives (N-QPCSxy, x=1-2,y=1-4) were obtained. The water solubilities and antibacterial activities of N-QPCSxy against Escherichia coli and Staphylococcus aureus were evaluated compare to CS. The water solubility of N-QPCSxy was all better than that of CS at neutral pH aqueous solution, particularly, N-QPCS14 can be soluble in water over the pH range of 3 to 12. The antibacterial activities of CS derivatives were improved by introducing quaternary phosphonium salt, and antibacterial activity of N-QPCSxy increases with degree of substitution. Overall, N-QPCS14 represents a novel antibacterial polymer material with good antibacterial activity, waters solubility and low cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Reinforced films based on cross-linked water-soluble sulfonated carbon nanotubes with sulfonated polystyrene.

    Science.gov (United States)

    Dai, Ying; Haiping, Hong; Guiver, Michael; Welsh, Jeffry S

    2009-09-01

    Reinforced films based on sulfonated polystyrene cross-linked with water-soluble sulfonated carbon nanotubes were fabricated using a free-standing film-making method. Transmission and scanning electron microscopy (TEM and SEM), and X-ray photoelectron spectroscopy (XPS) were used to verify the cross-linking reaction. The mechanical properties of these films demonstrated that the tensile strength increases with an increase in the sulfonated nanotube concentration. At 5 wt% nanotube loading, the tensile strength increased 84% compared with polymer containing no nanotube loading. The relationships between structure and mechanical properties are discussed and a possible direction for making ultra thin and ultra lightweight film is proposed.

  14. Reinforced membrane based on crosslink reaction between water soluble sulfonated carbon nanotubes and sulfonated polystyrene

    Science.gov (United States)

    Dai, Ying; Hong, Haiping; Welsh, Jeffry S.

    2008-08-01

    Reinforced films based on sulfonated polystyrene cross-linked with water-soluble sulfonated carbon nanotubes were fabricated using a free-standing film-making method. Transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis were used to verify the cross-linking reaction. The mechanical properties of these films demonstrated that the tensile strength increases with an increase in the sulfonated nanotube concentration. At 5 wt% nanotube loading, the tensile strength increased 84% compared with polymer containing no nanotube loading. The relationships between structure and mechanical properties are discussed and a possible direction for making ultra thin and ultra lightweight film is proposed

  15. Improved water solubility of neohesperidin dihydrochalcone in sweetener blends.

    Science.gov (United States)

    Benavente-García, O; Castillo, J; Del Baño, M J; Lorente, J

    2001-01-01

    Significant technological advantages in terms of sweetness synergy and hence cost-saving can be obtained if neohesperidin dihydrochalcone (NHDC) is used in sweetener blends with other intense or bulk sweeteners. The combination of NHDC with sodium saccharin or sodium cyclamate is an excellent method to improve the water solubility at room temperature of NHDC. In the case of NHDC-sodium saccharin, two different methods for blend preparation, a simple mixture and a cosolubilized mixture, can be used, with similar results obtained for solubility and solution stability properties. To improve temporally the water solubility of NHDC in combination with sodium cyclamate, it is absolutely necessary to prepare cosolubilized blends.

  16. Phosphoryl choline-grafted water-soluble carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Kai Xi; Min Gu; Zheng Sheng Jiang

    2008-01-01

    Water-soluble property is the precondition of biomedical evaluation and application of carbon nanotube (CNT). Novel watersoluble CNT was synthesized in this letter by grafting phosphoryi choline (PC) onto multi-wall CNTs. Utilizing FTIR, XPS, TGAand TEM, the title CNTs were characterized and it was found that the target products could facilely dissolve in water.

  17. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with ... central area and major road systems and possible aerosol sources include biomass ..... Tanzania than at European rural sites32 and Asia.33,34. To determine the ...

  18. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  19. Water-soluble constituents of cumin: monoterpenoid glucosides.

    Science.gov (United States)

    Ishikawa, Toru; Takayanagi, Tomomi; Kitajima, Junichi

    2002-11-01

    From the water-soluble portion of the methanol extract of cumin (fruit of Cuminum cyminum L.), which has been used as a spice and medicine since antiquity, sixteen monoterpenoid glucosides, including twelve new compounds, were isolated. Their structures were clarified by spectral investigation.

  20. Efficient and Convenient Preparation of Water-Soluble Fullerenol

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Min章建民; YANG Wen杨文; HE Ping何萍; ZHU Shi-Zheng朱士正

    2004-01-01

    An efficient and convenient preparation of fullerenols was described. With polyethylene glycol (PEG) 400 as catalyst, fullerenols were conveniently synthesized via the direct reaction of fullerene with aqueous NaOH. By control of reaction conditions, either water-soluble C60 fullerenol or water-insoluble C60 fullerenol could be obtained selectively.

  1. Water-soluble polythiophene-single walled carbon Nanotube bulk heterojunction.

    Science.gov (United States)

    Kim, Daeyoung; Choi, Jaewu

    2011-10-01

    Two symmetrical terminal electrodes made of indium tin oxide (ITO) were employed to study the current-voltage characteristics of a bulk-heterojunction consisting of water soluble polythiophene and single walled carbon nanotubes (SWCNT). However, the current-voltage curves were asymmetrical, attributed to the polarization induced by the initial bias voltage. The polymer-SWCNT heterojunction were superior to the pristine polymer in both dark conductivity and photoconductivity by two orders of magnitude. Additionally, the open-cell voltage of 0.075 V was observed from the heterojunction even though the electrodes were symmetrical. The high conductivity and photoresponse originated from the high conductivity, high interconnectivity and hole doping capability of CNT.

  2. Water-soluble phosphate-functionalized polyfluorene as fluorescence biosensors toward cytochrome c

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6′-phosphatehexyl)fluorene-alt-1,4-pheny lene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3′-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer. Moreover, polymer PFHPNa showed higher fluorescence quenching toward large biomolecules than PFPPNa. The corresponding Stern-Volmer (Ksv) value of polymer PFHPNa was determined to be 2.1×108 M-1 for cytochrome c. It could be used as a sensitive and selective fluorescence sensor for protein cytochrome c.

  3. Water-soluble phosphate-functionalized polyfluorene as fluorescence biosensors toward cytochrome c

    Institute of Scientific and Technical Information of China (English)

    QIN ChuanJiang; TONG Hui; WANG LiXiang

    2009-01-01

    An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6'-phosphatehexyl)fluorene-a/t-1,4-pheny-lene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluo-rescenoe sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(g,9-bis(3"phosphatepropyl)fluorene-a/t-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensi-tivity due to the much longer side chain length. The positively charged metalloprotein cytoohrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer. Moreover, polymer PFHPNa showed higher fluorescence quenching toward large biomolecules than PFPPNa. The corre-sponding Stern-Volmer (Ksv) value of polymer PFHPNa was determined to be 2.1×108 M-1 for cytochrome c. It could be used as a sensitive and selective fluorescence sensor for protein cytochrome c.

  4. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    in the development of lipid-based formulations. However, in order for optimum formulations to be developed, knowledge of the mechanisms of absorption of poorly water-soluble drug substances is desired. Accordingly, the purpose of this PhD study was to study the effects of endogenous surfactants (bile salts...... the intake of a lipid-rich meal can increase the bioavailability due to slower gastric emptying, increased solubilization of the drug substance in the intestinal fluids by endogenous and exogenous components, inhibition of efflux carriers and induction of intestinal lymphatic transport. Some...... of these processes can also be obtained by formulating the poorly water-soluble drug substances in lipid-based formulations. Then the drug substance is in solution when administered. Consequently, an enhanced and less variable bioavailability can be obtained, and this has led to an increasing interest...

  5. New water-soluble carbamate ester derivatives of resveratrol

    OpenAIRE

    Andrea Mattarei; Massimo Carraro; Michele Azzolini; Cristina Paradisi; Mario Zoratti; Lucia Biasutto

    2014-01-01

    Low bioavailability severely hinders exploitation of the biomedical potential of resveratrol. Extensive phase-II metabolism and poor water solubility contribute to lowering the concentrations of resveratrol in the bloodstream after oral administration. Prodrugs may provide a solution—protection of the phenolic functions hinders conjugative metabolism and can be exploited to modulate the physicochemical properties of the compound. We report here the synthesis and characterization of carb...

  6. Water Soluble Iron aminoclay for Catalytic Reduction of Nitrophenol

    Directory of Open Access Journals (Sweden)

    S. ANBU ANJUGAM VANDARKUZHALI

    2013-06-01

    Full Text Available Water soluble iron decorated phyllosilicate is synthesized through one pot sol-gel synthesis by a wet chemical method using NaBH4 as reducing agent. The as-synthesized nanocomposite is characterized by powder-XRD and TGA techniques. The morphology of the composite is obtained using HRSEM and HRTEM. The prepared nanocomposite is an efficient catalyst for the reduction of nitrophenol.

  7. Preparation of water-soluble multi-walled carbon nanotubes by Ce(Ⅳ)-induced redox radical polymerization

    Institute of Scientific and Technical Information of China (English)

    Dong Yang; Xiaohong Zhang; Changchun Wang; Yuechao Tang; Junjun Li; Jianhua Hu

    2009-01-01

    Poly(acrylic acid), poly(N-isopropylacrylamide) and polyacrylamide functionalized MWNTs were prepared by Ce(IV)-induced redox radical polymerization. The reaction can be conducted in aqueous media at room temperature, and the polymer graft ratio increased with the increase of monomer feed ratio. MWNTs anchored with PAA on the surface are pH sensitive and exhibit a reversible assembly-deas-sembly response in aqueous solution, whereas those coated with PNIPAM are thermally sensitive. All the polymer-functionalized MWNTs are highly soluble in water to give robust stable black solutions. Such water-soluble MWNTs are promising for biological and biomedical applications.

  8. Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization

    Directory of Open Access Journals (Sweden)

    Andreas Taubert

    2016-10-01

    Full Text Available The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer contents reach 10% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials.

  9. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  10. Structural, functional, and ACE inhibitory properties of water-soluble polysaccharides from chickpea flours.

    Science.gov (United States)

    Mokni Ghribi, Abir; Sila, Assaâd; Maklouf Gafsi, Ines; Blecker, Christophe; Danthine, Sabine; Attia, Hamadi; Bougatef, Ali; Besbes, Souhail

    2015-04-01

    The present study aimed to characterize and investigate the functional and angiotensin-I converting enzyme (ACE) inhibition activities of chickpea water-soluble polysaccharides (CPWSP). Physico-chemical characteristics were determined by nuclear magnetic resonance spectroscopy (NMR), Fourier transform-infrared spectroscopy (FT-IR) analysis, and X-ray diffractometry (XRD). Functional properties (water holding capacity: WHC, water solubility index: WSI, swelling capacity: SC, oil holding capacity: OHC, foaming, and emulsion properties) and ACE activities were also investigated using well-established procedures. The FT-IR spectra obtained for the CPWSP revealed two significant peaks, at about 3500 and 500 cm(-1), which corresponded to the carbohydrate region and were characteristic of polysaccharides. All spectra showed the presence of a broad absorption between 1500 and 670 cm(-1), which could be attributed to CH, CO, and OH bands in the polysaccharides. CPWSP had an XRD pattern that was typical for a semi-crystalline polymer with a major crystalline reflection at 19.6 °C. They also displayed important techno-functional properties (SWC, WSI, WHC, and OHC) that can be modulated according to temperature. The CPWSP were also noted to display good anti-hypertensive activities. Overall, the results indicate that CPWSP have attractive chemical, biological, and functional properties that make them potential promising candidates for application as alternative additives in various food, cosmetic, and pharmaceutical preparations.

  11. A predictive model for the release of slightly water-soluble drugs from HPMC matrices.

    Science.gov (United States)

    Fu, X C; Wang, G P; Wang, Y H; Liang, W Q

    2004-08-01

    A model to predict the fraction of slightly water-soluble drug released as a function of release time (t, h), HPMC concentration (C(H), w/w), drug solubility in distilled water at 37 degrees C (C(s), g/100 mL), and volume of drug molecule (V, nm3) was derived when theophyline, tinidazole, and propylthiouracil were selected as model drugs. The model is log (M(t)/M(infinity)) = 0.8683 logt-0.1930C(s) logt + 0.5406V logt-1.227C(H) + 0.1594C(s) + 0.4423C(H)C(s) - 0.8655 (n = 130, r = 0.9969), where Mt is the amount of drug released at time t, Minfinity is the amount of drug released over a very long time, which corresponds in principle to the initial loading, n is the number of samples, and r is the correlation coefficient. The model was validated using sulfamethoxazole and satisfactory results were obtained. The model can be used to predict the release fraction of variousslightly water-soluble drugs from HPMC matrices having different polymer levels.

  12. Incorporation of titanate nanosheets to enhance mechanical properties of water-soluble polyamic acid

    Science.gov (United States)

    Harito, C.; Bavykin, Dmitry V.; Walsh, Frank C.

    2017-07-01

    Pyromeliticdianhydride (PMDA) and 4’,4’-oxydianiline (ODA) were used as monomers of polyimide. To synthesise a water soluble polyimide precursor (polyamic acid salt), triethylamine (TEA) was added to polyamic acid with a TEA/COOH mole ratio of 1:1. Titanate nanosheets were synthesised by solid-state reaction, ion-exchanged with acid, and exfoliated by TEA. Exfoliated titanate nanosheets were mixed with water soluble polyamic acid salt as reinforcing filler. Drop casting was deployed to synthesise polyamic acid/titanate nanosheet nanocomposite films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the morphology and dispersion of nanosheets in the colloidal dispersion and the solid film composite. Modulus and hardness of nanocomposites was provided by nanoindentation. Hardness increased by 90% with addition of 2% TiNS while modulus increased by 103% compared to pure polymer. This behaviour agrees well with Halpin-Tsai theoretical predictions up to 2 wt% filler loading; agglomeration occurs at higher concentrations.

  13. RADICAL GRAFTING REACTIONS ONTO STARCH AND OTHER WATER-SOLUBLE COPOLYMERS IN ISOLATED GEL DROPLETS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liansheng; A.F.Johnson

    1993-01-01

    A novel radical grafting copolymerization process has been designed for water-soluble polymers which avoids the problems of conducting grafting reactions in highly viscous polymerization media.A variety of water-soluble graft copolymers having starch or dextran as the backbone chain with grafted side chains of polyacrylamide (-AM-),poly (acrylic acid) (-AA-),poly (acrylamide-co-acrylic acid) (-AM-NH4AA-) or poly (acrylamide-co-2-acrylamido-2-methyl-1-propanesulphinic acid)(-AM-AMPS-) have been synthesized in gel droplets using a ceric sulphate redox initiator,and their properties compared.The reaction conditions were optimized taking into account reaction kinetic data and the observed properties of the products produced under different reaction conditions.The effects of the ratios of [backbone]/[graft monomer],[AM]/[AA]/[AMPS],[Ce4+]/[S2O8=] and pH value on the reaction rate,conversion,grafting degree,grafted chain length and the product molecular weight have been investigated.

  14. Drug incorporation and release of water soluble drugs from novel functionalized poly(glycerol adipate) nanoparticles.

    Science.gov (United States)

    Puri, Sanyogita; Kallinteri, Paraskevi; Higgins, Sean; Hutcheon, Gillian A; Garnett, Martin C

    2008-01-04

    We have previously demonstrated the ability of poly(glycerol adipate) backbone (PGA) and PGA polymer backbone substituted with varying amounts of pendant C(18) chain length acyl groups to yield Dexamethasone phosphate DXMP loaded nanoparticles. The aim of this study was to obtain a deeper understanding of the underlying principles responsible for good drug incorporation and controlled release of drugs from poly (glycerol adipate) (PGA) nanoparticles. We compared the incorporation of the water soluble drugs DXMP and Cytosine arabinoside (CYT-ARA) in both unmodified and substituted PGA polymers. We investigated the effect of change in acyl group chain length and the degree of substitution on the physicochemical properties, drug loading and release of DXMP and CYT-ARA. Nanoparticles were prepared by the interfacial deposition technique and the simultaneous emulsification method. Amongst the nanoparticles prepared using acylated polymers with varying chain lengths (C(2) to C(10)) for DXMP incorporation, polymers with acyl group chain lengths containing 8 carbon atoms (C(8)) showed maximum drug incorporation. Amongst the C(8) series, polymers with 100% acylation provided both good drug incorporation and a controlled release for DXMP while for CYT-ARA it was the unsubstituted polymer backbone that had maximum drug loading and slower release. A number of inter-related factors are responsible for producing particles with particular size, zeta potential, drug loading and release characteristics. Drug loading and release from nanoparticles are primarily influenced by the nature of interactions between the drug and polymers which in turn depend upon the type of drug used and the physical chemistry of the polymer.

  15. A mathematical model to predict the release of water-soluble drugs from HPMC matrices.

    Science.gov (United States)

    Fu, X C; Wang, G P; Fu, C Y; Liang, W Q

    2004-09-01

    A mathematical model to predict the fraction of water-soluble drug released as a function of release time (t, h), HPMC concentration (CH, w/w), and volume of drug molecule (V, nm3) was derived with ranitidine hydrochloride, diltiazem hydrochloride, and ribavirin as model drugs. The model is log (M(t)/M(infinity)) = 0.5 log t-0.3322CH-0.2222V-0.2988 (n = 140, r = 0.9848), where M(t) is the amount of drug released at time t, M(infinity) is the amount of drug released over a very long time, which corresponds in principle to the initial loading, n is the number of samples, and r is the correlation coefficient. The model was validated using isoniazid and satisfactory results were obtained. The model can be used to predict the release fraction of various soluble drugs from HPMC matrices having different polymer levels.

  16. Effects of sulfite ions on water-soluble chlorophyll proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sugahara, K.; Uchida, S.; Takimoto, M.

    1980-01-01

    To clarify the mechanisms and processes of chlorophyll destruction and the relation to the appearance of visible symptoms in SO/sub 2/-injured plants, model experiments were carried out by utilizing the peculiar properties of a water-soluble chlorophyll protein from Chenopodium album. The acceleration of chlorophyll destruction by sulfite ions under aerobic and illuminated conditions, reported previously in organic solvent, was not observed for the water-soluble pigment-protein complex, even in 4 x 10/sup -2/ M sulfite. This indicates that pigments are stabilized by combining with protein molecules. On comparison of pigment destruction between the reconstituted chlorophyll a- and chlorophyllide a-proteins in the presence of sulfite ions, the former was slightly sensitive to sulfite ions. On the other hand, it was demonstrated that photoconversion of water-soluble chlorophyll protein was inhibited by denaturation of the protein moiety caused by sulfite ions in the presence of light. In addition it was shown that it was necessary for the pigment absorbing the light energy to be structurally related to the protein moiety for inhibition of photoconversion. From these results, the inhibition processes of photoconversion are inferred as follows: conformational changes of apoprotein molecules were induced by light energy absorbed by the pigments and which allowed sulfite ions to attack the apoprotein molecules. The mechanism of the sulfite action on the apoprotein is the breakdown of disulfide bonds in proteins, the disulfide bonds having important functions in the photoconversion process. From the present model experiments, it is suggested that the breakdown of disulfide bonds occurred and induced damage to the chloroplast lamellae or physiological functions in the SO/sub 2/-injured plant tissues. 17 references, 8 figures.

  17. Electrospinning of calcium phosphate-poly (d,l-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization.

    Science.gov (United States)

    Fu, Qi-Wei; Zi, Yun-Peng; Xu, Wei; Zhou, Rong; Cai, Zhu-Yun; Zheng, Wei-Jie; Chen, Feng; Qian, Qi-Rong

    Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP) nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(d,l-lactic acid) (ACP-PLA) nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63) cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due to the high biocompatibility, sustained drug release, and fast mineralization, the as-prepared composite nanofibers may have potential applications in water-soluble drug loading and release for tissue engineering.

  18. Electrospinning of calcium phosphate-poly (d,l-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization

    Science.gov (United States)

    Fu, Qi-Wei; Zi, Yun-Peng; Xu, Wei; Zhou, Rong; Cai, Zhu-Yun; Zheng, Wei-Jie; Chen, Feng; Qian, Qi-Rong

    2016-01-01

    Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP) nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(d,l-lactic acid) (ACP-PLA) nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63) cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due to the high biocompatibility, sustained drug release, and fast mineralization, the as-prepared composite nanofibers may have potential applications in water-soluble drug loading and release for tissue engineering. PMID:27785016

  19. SOLUBILITY ENHANCEMENT OF POORLY WATER SOLUBLE DRUGS BY SOLID DISPERSIO

    Directory of Open Access Journals (Sweden)

    Amita Verm

    2012-01-01

    Full Text Available Solid dispersions have been employed to enhance the dissolution rates of poorly water-soluble drugs. Many approaches have been investigated for the preparation of solid dispersions. This paper reports the various solubility enhancement strategies in solid dispersion. The approaches described are fusion (melting, solvent evaporation, lyophilization (freeze drying, melt agglomeration process, extruding method, spray drying technology, use of surfactant, electro static spinning method and super critical fluid technology. This paper also highlights the potential applications and limitations of theseapproaches in solid dispersions.

  20. [Mutagen properties of water-soluble polysaccharides from Acorus calamus].

    Science.gov (United States)

    Gur'ev, A M; Belousov, M B; Akhmedzhanov, R R; Iusubov, M S; Voronova, O L; Karpova, G V; Churin, A A

    2010-08-01

    Mutagenic properties of water soluble polysaccharides (WSPS) extracted from Acorus calamus L. have been studied. Neither a single intravenous injection nor a course intraperitoneal introduction of WSPS in a dose of 1/2 LD50 to mice of the CBA/CaLac line increases the level of cytogenetic disorders in the bone marrow cells. The investigation of WSPS by means of the somatic mosaicism test showed that the given dose of WSPS does not increase the rate of mutant spots on Drosophila wings.

  1. Water-soluble constituents from aerial roots of Ficus microcarpa.

    Science.gov (United States)

    Ouyang, M-A; Kuo, Y-H

    2006-01-01

    Three new water-soluble constituents [ficuscarpanoside B (1), (7E,9Z)-dihydrophaseic acid 3-O-beta-D-glucopyranoside (4) and ficuscarpanic acid (6)] and the natural product 2,2'-dihydroxyl ether (7) have been isolated, together with three known compounds [(7S,8R)-syringoylglycerol (2), (7S,8R)-syringoylglycerol-7-O-beta-D-glucopyranoside (3) and icariside D2 (5)] from the aerial roots of Ficus microcarpa. Identification of their structures was achieved by 1D and 2D NMR experiments, including 1H-1H COSY, NOESY, HMQC and HMBC methods and FAB mass spectral data.

  2. Zwitterionic phosphorylcholine-protected water-soluble nanoparticles

    Institute of Scientific and Technical Information of China (English)

    JIN Qiao; LIU XiangSheng; XU JianPing; JI Jian; SHEN JiaCong

    2009-01-01

    The water-soluble Ag nanoparticles capped with novel zwitterionic thioalkylated phosphorylcholine were synthesized. The Ag nanoparticles showed remarkable stability in saline media with salt concen-trations as high as 2.0 mol/L and plasma using UV-vis absorption spectroscopy. Similarly, compared with tiopronin and citrate-protected Ag nanoparticles, the zwitterionic phosphorylcholine Ag nanopar-ticles did not precipitate out of solution when charged polyelectrolytes or biopolymers were added. The zwitterionic phosphorylcholine might be a better ligand for stabilizing metal nanoparticles.

  3. Zwitterionic phosphorylcholine-protected water-soluble Ag nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The water-soluble Ag nanoparticles capped with novel zwitterionic thioalkylated phosphorylcholine were synthesized.The Ag nanoparticles showed remarkable stability in saline media with salt concen-trations as high as 2.0 mol/L and plasma using UV-vis absorption spectroscopy.Similarly,compared with tiopronin and citrate-protected Ag nanoparticles,the zwitterionic phosphorylcholine Ag nanopar-ticles did not precipitate out of solution when charged polyelectrolytes or biopolymers were added.The zwitterionic phosphorylcholine might be a better ligand for stabilizing metal nanoparticles.

  4. Preparation and Properties of Water-soluble Conjugated Polyelectrolyte

    Institute of Scientific and Technical Information of China (English)

    BAO Xiangjun; HONG Ruibin; HU Jianhua; ZHONG Yiping; LIU Ping; DENG Wenji

    2014-01-01

    The water-soluble conjugated polyelectrolyte, poly[3-(1′-ethyloxy-2′-N- methylimidazole) thiophene] (PEOIMT), was prepared. Its photophysical and electrochemical properties, and response characteristics to the external condition (e g, temperature response, solvent response and pH response), were investigated. The results show the PEOIMT belongs to the organic semiconductor. The interaction between the PEOIMT and the bovine serum albumin (BSA) was investigated using UV-vis spectroscopy. It was found that the PEOIMT could interact with the BSA. The PEOIMT can be used as a biosensor to detect the BSA.

  5. Synthesis of water-dispersible silver nanoparticles by thermal decomposition of water-soluble silver oxalate precursors.

    Science.gov (United States)

    Togashi, Takanari; Saito, Kota; Matsuda, Yukiko; Sato, Ibuki; Kon, Hiroki; Uruma, Keirei; Ishizaki, Manabu; Kanaizuka, Katsuhiko; Sakamoto, Masatomi; Ohya, Norimasa; Kurihara, Masato

    2014-08-01

    Silver oxalate, one of the coordination polymer crystals, is a promising synthetic precursor for transformation into Ag nanoparticles without any reducing chemicals via thermal decomposition of the oxalate ions. However, its insoluble nature in solvents has been a great disadvantage, especially for systematic control of crystal growth of the Ag nanoparticles, while such control of inorganic nanoparticles has been generally performed using soluble precursors in homogeneous solutions. In this paper, we document our discovery of water-soluble species from the reaction between the insoluble silver oxalate and N,N-dimethyl-1,3-diaminopropane. The water-soluble species underwent low-temperature thermal decomposition of the oxalate ions at 30 °C with evolution of CO2 to reduce Ag+ to Ag0. Water-dispersible Ag nanoparticles have been successfully synthesized from the water-soluble species in the presence of gelatin via similar thermal decomposition at 100 °C. The gelatin-protected and water-dispersible Ag nanoparticles with a mean diameter of 25.1 nm appeared. In addition, antibacterial activity of the prepared water-dispersible Ag nanoparticles has been preliminarily investigated.

  6. Therapeutic Effects of Water Soluble Danshen Extracts on Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Yoon Hee Cho

    2013-01-01

    Full Text Available Danshen is a traditional Chinese medicine with many beneficial effects on cardiovascular diseases. The aim of this study was to evaluate the mechanisms responsible for the antiatherogenic effect of water soluble Danshen extracts (DEs. Rat vascular smooth muscle cells (VSMCs and human umbilical vein endothelial cells (HUVECs were treated with DE. To evaluate the effects of DE in vivo, carotid balloon injury and tail vein thrombosis were induced in Sprague-Dawley (SD rats and iliac artery stent was induced in New Zealand white rabbits. The inhibitory action of DE on platelet aggregation was confirmed with an impedance aggregometer. DE inhibited the production of reactive oxygen species, and the migration and proliferation of platelet-derived growth factor-BB stimulated VSMCs. Furthermore, DE prevented inflammation and apoptosis in HUVECs. Both effects of DE were reconfirmed in both rat models. DE treatment attenuated platelet aggregation in both in vivo and ex vivo conditions. Pretreatment with DE prevented tail vein thrombosis, which is normally induced by κ-carrageenan injection. Lastly, DE-treated rabbits showed decreased in-stent restenosis of stented iliac arteries. These results suggest that water soluble DE modulates key atherogenic events in VSMCs, endothelial cells, and platelets in both in vitro and in vivo conditions.

  7. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zejing; Li, Yejia; Zhang, Boyu; Purkait, Tapas [Tulane University, Department of Chemistry (United States); Alb, Alina [Tulane University, Department of Physics and Engineering Physics (United States); Mitchell, Brian S. [Tulane University, Department of Chemical and Biomolecular Engineering (United States); Grayson, Scott M.; Fink, Mark J., E-mail: fink@tulane.edu [Tulane University, Department of Chemistry (United States)

    2015-01-15

    Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core–shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC “click” reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites.

  8. Phase transfer of hydrophobic QDs for water-soluble and biocompatible nature through silanization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping, E-mail: mse_yangp@ujn.edu.cn [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Zhou, Guangjun [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2011-12-15

    Graphical abstract: A facile and novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots with a small hydrodynamic diameter (less than 10 nm) via silanization. Highlights: Black-Right-Pointing-Pointer A facile and novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). Black-Right-Pointing-Pointer The control of ligand exchange plays an important role to retain high fluorescence quantum yields. Black-Right-Pointing-Pointer The functional SiO{sub 2}-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. Black-Right-Pointing-Pointer The QD phase transfer by silanization is a well-established method for generating biocompatible QDs. -- Abstract: A novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). The silanization of the QDs was carried out by using partially hydrolyzed tetraethyl orthosilicate (TEOS) to replace organic ammine or tri-n-octylphosphine oxide on the surface of the QDs. The partially hydrolyzed 3-mercaptopropyltrimethoxysilane attached to the hydrolyzed TEOS layer on the QDs prevented the QDs from agglomeration when the QDs were transferred into water. The functional SiO{sub 2}-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. The SiO{sub 2}-coated QDs exhibited the same absorption and photoluminescence (PL) spectra as those of initial QDs in organic solvents. The SiO{sub 2}-coated QDs preserved PL intensities, is colloidally stable over a wide pH range (pH 6-11). Because the mean diameter of amphiphilic polymer-coated QDs was almost 2 times of that of functional SiO{sub 2}-coated QDs, the QD phase transfer by silanization is a well-established method for generating biocompatible QDs.

  9. Hydroxypropyl cellulose stabilizes amorphous solid dispersions of the poorly water soluble drug felodipine.

    Science.gov (United States)

    Sarode, Ashish L; Malekar, Swapnil A; Cote, Catherine; Worthen, David R

    2014-11-04

    Overcoming the low oral bioavailability of many drugs due to their poor aqueous solubility is one of the major challenges in the pharmaceutical industry. The production of amorphous solid dispersions (ASDs) of these drugs using hydrophilic polymers may significantly improve their solubility. However, their storage stability and the stability of their supersaturated solutions in the gastrointestinal tract upon administration are unsolved problems. We have investigated the potential of a low viscosity grade of a cellulosic polymer, hydroxypropyl cellulose (HPC-SSL), and compared it with a commonly used vinyl polymer, polyvinylpyrrolidone vinyl acetate (PVP-VA), for stabilizing the ASDs of a poorly water soluble drug, felodipine. The ASDs were produced using hot melt mixing and stored under standard and accelerated stability conditions. The ASDs were characterized using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. Drug dissolution and partitioning rates were evaluated using single- and biphasic dissolution studies. The ASDs displayed superior drug dissolution and partitioning as compared to the pure crystalline drug, which might be attributed to the formation of a drug-polymer molecular dispersion, amorphous conversion of the drug, and drug-polymer hydrogen bonding interactions. Late phase separation and early re-crystallization occurred at lower and higher storage temperatures, respectively, for HPC-SSL ASDs, whereas early phase separation, even at low storage temperatures, was noted for PVP-VA ASDs. Consequently, the partitioning rates for ASDs dispersed in HPC-SSL were greater than those of PVP-VA at lower and room temperature storage, whereas the performance of both of the ASDs was similar when stored at higher temperatures.

  10. Fluorescence characteristics of water soluble organic carbon in eastern China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fluorescence excitation and average molecular weight of 46 water soluble organic matter (WSOC) samples extracted from 20 soil types in eastern China were determined. It was found all samples shared similar spectroscopy. A good linear relationship existed between total organic carbon and excitation in the range of 350 to 450 nm though the content of organic carbon and pH of the samples vary in a wide range. No significant correlation between relative excitation intensity and average molecular weight of WSOC and FA was found, but the partial correlation became significant with pH as the controlling factor for WSOC samples. The relative excitation intensity showed a general trend of increasing from south to north in the study area. The pH value might play an important role in regulating the fluorescent spatial variation of WSOC.

  11. Interaction of water-soluble bridged porphyrin with DNA

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Zhi ZHANG; Qianni GUO; Xiaoping BAO; Zaoying LI

    2008-01-01

    A water-soluble porphyrin dimer (Por Dimer) containing eight positive charges, bridged by 4,4'-dicarboxy-2,2'-bipyridine, has been synthesized. With Meso-tetrakis(N-methyl-pyridium-4-yl)porphyrin (H2TMPyP) as the reference compound, the water-sol-uble porphyrin dimer was investigated for its inter-action with DNA by absorption, fluorescence, and circular dichroism (CD) spectroscopy. The apparent affinity binding constant (Kapp= 1.2×106) of Por Dimer binding to CT DNA was measured by a com-petition method with ethidium bromide (EB) (that of H2TMPyP was 6.9×106). The cleavage ability of Por Dimer to pBR322 plasmid DNA was studied by gel electrophoresis. The results suggest that the binding modes of Por Dimer were complex and involve both intercalation and outside binding.

  12. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid.

  13. Biological activities of water-soluble fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Mashino, T [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512 (Japan)], E-mail: mashino-td@pha.keio.ac.jp

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C{sub 60}-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C{sub 60}-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC{sub 50} values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  14. Water Soluble Fluorescent Carbon Nanodots from Biosource for Cells Imaging

    Directory of Open Access Journals (Sweden)

    Kumud Malika Tripathi

    2017-01-01

    Full Text Available Carbon nanodots (CNDs derived from a green precursor, kidney beans, was synthesized with high yield via a facile pyrolysis technique. The CND material was easily modified through simple oxidative treatment with nitric acid, leading to a high density “self-passivated” water soluble form (wsCNDs. The synthesized wsCNDs have been extensively characterized by using various microscopic and spectroscopic techniques and were crystalline in nature. The highly carboxylated wsCNDs possessed tunable-photoluminescence emission behavior throughout the visible region of the spectrum, demonstrating their application for multicolor cellular imaging of HeLa cells. The tunable-photoluminescence properties of “self-passivated” wsCNDs make them a promising candidate as a probe in biological cell-imaging applications.

  15. Drug delivery by water-soluble organometallic cages.

    Science.gov (United States)

    Therrien, Bruno

    2012-01-01

    Until recently, organometallic derivatives were generally viewed as moisture- and air-sensitive compounds, and consequently very challenging to synthesise and very demanding in terms of laboratory requirements (Schlenk techniques, dried solvent, glove box). However, an increasing number of stable, water-soluble organometallic compounds are now available, and organometallic chemistry in aqueous phase is a flourishing area of research. As such, coordination-driven self-assemblies using organometallic building blocks are compatible with water, thus opening new perspectives in bio-organometallic chemistry.This chapter gives a short history of coordination-driven self-assembly, with a special attention to organometallic metalla-cycles, especially those composed of half-sandwich complexes. These metalla-assemblies have been used as sensors, as anticancer agents, as well as drug carriers.

  16. Drug delivery strategies for poorly water-soluble drugs.

    Science.gov (United States)

    Fahr, Alfred; Liu, Xiangli

    2007-07-01

    The drug candidates coming from combinatorial chemistry research and/or the drugs selected from biologically based high-throughput screening are quite often very lipophilic, as these drug candidates exert their pharmacological action at or in biological membranes or membrane-associated proteins. This challenges drug delivery institutions in industry or academia to develop carrier systems for the optimal oral and parenteral administration of these drugs. To mention only a few of the challenges for this class of drugs: their oral bioavailability is poor and highly variable, and carrier development for parenteral administration is faced with problems, including the massive use of surface-active excipients for solubilisation. Formulation specialists are confronted with an even higher level of difficulties when these drugs have to be delivered site specifically. This article addresses the emerging formulation designs for delivering of poorly water-soluble drugs.

  17. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  18. Synthesis and properties of water-soluble asterisk molecules.

    Science.gov (United States)

    Menger, Fredric M; Azov, Vladimir A

    2002-09-18

    An asterisk is comprised of six semirigid arms projecting from a benzene nucleus. In the case at hand, asterisks were synthesized with one, two, or three aromatic rings (connected by sulfur atoms) in each of the six arms. A phosphomonoester at the termini of each arm solubilized the asterisks in water. The colloidal properties of these amphiphilic molecules were investigated by UV-vis and fluorescence spectroscopy, calorimetry, light scattering, surface tensiometry, and pulse-gradient spin-echo NMR. Solubility, solubilization, metal binding, and micelle "seeding" experiments were also carried out. Chain-conformation and supramolecular assembly into remarkable molecular "scrolls" were investigated by X-ray analysis and electron microscopy, respectively. One of the more interesting properties of the asterisks is that they remain monomeric in water despite having as many as 19 hydrophobic aromatic rings exposed to the water. The reasons for this behavior, and the possibility of exploiting it for constructing enzyme models free from aggregation equilibria, are discussed.

  19. A Novel Injectable Water-Soluble Amphotericin B-Arabinogalactan Conjugate

    OpenAIRE

    Falk, Rama; Domb, Abraham J.; Polacheck, Itzhack

    1999-01-01

    New, stable, highly water-soluble, nontoxic polysaccharide conjugates of amphotericin B (AmB) are described. AmB was conjugated by a Schiff-base reaction with oxidized arabinogalactan (AG). AG is a highly branched natural polysaccharide with unusual water solubility (70% in water). A high yield of active AmB was obtained with the conjugates which were similarly highly water soluble and which could be appropriately formulated for injection. They showed comparable MICs for Candida albicans and ...

  20. Synthesis of water-soluble acryl terpolymers and their anticorrosion properties on mild steel in 1 mol·L-1 HCl

    Institute of Scientific and Technical Information of China (English)

    R. Geethanjali; S. Subhashini

    2016-01-01

    Two water soluble acryl terpolymers containing polyvinyl alcohol, acrylamide/acrylic acid and vinyl sulphonic acid (VSA) were synthesized by free radical polymerization in aqueous medium. The morphological structure of the polymers were analysed using FTIR and 1H NMR, while the thermal properties were analysed by TGA and DSC. The inhibitive action of the terpolymers on corrosion of mid-steel in 1 mol·L−1 HCl was studied using gravimetric, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) at 303 K. Both the polymers provided inhibition efficiency around 90%which clearly demonstrate that the grafted poly-mers have effective corrosion inhibiting ability on MS corrosion.

  1. Formulation and particle size reduction improve bioavailability of poorly water-soluble compounds with antimalarial activity.

    Science.gov (United States)

    Wang, Hongxing; Li, Qigui; Reyes, Sean; Zhang, Jing; Xie, Lisa; Melendez, Victor; Hickman, Mark; Kozar, Michael P

    2013-01-01

    Decoquinate (DQ) is highly effective at killing malaria parasites in vitro; however, it is extremely insoluble in water. In this study, solid dispersion method was used for DQ formulation which created a suitable physical form of DQ in aqueous phase for particle manipulation. Among many polymers and surfactants tested, polyvinylpyrrolidone 10, a polymer, and L- α -phosphatidylcholine or polysorbate, two surfactants, were chosen as DQ formulation components. The formulation particles were reduced to a mean size between 200 to 400 nm, which was stable in aqueous medium for at least three weeks. Pharmacokinetic (PK) studies showed that compared to DQ microparticle suspension, a nanoparticle formulation orally dosed to mice showed a 14.47-fold increase in area under the curve (AUC) of DQ plasma concentration and a 4.53-fold increase in AUC of DQ liver distribution. WR 299666, a poorly water-soluble compound with antimalarial activity, was also tested and successfully made into nanoparticle formulation without undergoing solid dispersion procedure. We concluded that nanoparticles generated by using appropriate formulation components and sufficient particle size reduction significantly increased the bioavailability of DQ and could potentially turn this antimalarial agent to a therapeutic drug.

  2. Statistical optimization of controlled release microspheres containing cetirizine hydrochloride as a model for water soluble drugs.

    Science.gov (United States)

    El-Say, Khalid M; El-Helw, Abdel-Rahim M; Ahmed, Osama A A; Hosny, Khaled M; Ahmed, Tarek A; Kharshoum, Rasha M; Fahmy, Usama A; Alsawahli, Majed

    2015-01-01

    The purpose was to improve the encapsulation efficiency of cetirizine hydrochloride (CTZ) microspheres as a model for water soluble drugs and control its release by applying response surface methodology. A 3(3) Box-Behnken design was used to determine the effect of drug/polymer ratio (X1), surfactant concentration (X2) and stirring speed (X3), on the mean particle size (Y1), percentage encapsulation efficiency (Y2) and cumulative percent drug released for 12 h (Y3). Emulsion solvent evaporation (ESE) technique was applied utilizing Eudragit RS100 as coating polymer and span 80 as surfactant. All formulations were evaluated for micromeritic properties and morphologically characterized by scanning electron microscopy (SEM). The relative bioavailability of the optimized microspheres was compared with CTZ marketed product after oral administration on healthy human volunteers using a double blind, randomized, cross-over design. The results revealed that the mean particle sizes of the microspheres ranged from 62 to 348 µm and the efficiency of entrapment ranged from 36.3% to 70.1%. The optimized CTZ microspheres exhibited a slow and controlled release over 12 h. The pharmacokinetic data of optimized CTZ microspheres showed prolonged tmax, decreased Cmax and AUC0-∞ value of 3309 ± 211 ng h/ml indicating improved relative bioavailability by 169.4% compared with marketed tablets.

  3. Continuous twin-screw granulation for enhancing the dissolution of poorly water soluble drug.

    Science.gov (United States)

    Maniruzzaman, Mohammed; Nair, Arun; Renault, Maxcene; Nandi, Uttom; Scoutaris, Nicholaos; Farnish, Richard; Bradley, Michael S A; Snowden, Martin J; Douroumis, Dennis

    2015-12-30

    The article describes the application of a twin-screw granulation process to enhance the dissolution rate of the poorly water soluble drug, ibuprofen (IBU). A quality-by-design (QbD) approach was used to manufacture IBU loaded granules via hot-melt extrusion (HME) processing. For the purpose of the study, a design of experiment (DoE) was implemented to assess the effect of the formulation compositions and the processing parameters. This novel approach allowed the use of, polymer/inorganic excipients such as hydroxypropyl methylcellulose (HPMC) and magnesium aluminometasilicate (Neusilin(®)-MAS) with polyethylene glycol 2000 (PEG) as the binder without requiring a further drying step. IBU loaded batches were processed using a twin screw extruder to investigate the effect of MAS/polymer ratio, PEG amount (binder) and liquid to solid (L/S) ratios on the dissolution rates, mean particle size and the loss on drying (LoD) of the extruded granules. The DoE analysis showed that the defined independent variables of the twin screw granulation process have a complex effect on the measured outcomes. The solid state analysis showed the existence of partially amorphous IBU state which had a significant effect on the dissolution enhancement in acidic media. Furthermore, the analysis obtained from the surface mapping by Raman proved the homogenous distribution of the IBU in the extruded granulation formulations.

  4. Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process.

    Science.gov (United States)

    Park, Junsung; Cho, Wonkyung; Cha, Kwang-Ho; Ahn, Junhyun; Han, Kang; Hwang, Sung-Joo

    2013-01-30

    Telmisartan is a biopharmaceutical classification system (BCS) class II drug that has extremely low water solubility but is freely soluble in highly alkalized solutions. Few organic solvents can dissolve telmisartan. This solubility problem is the main obstacle achieving the desired bioavailability. Because of its unique characteristics, the supercritical anti-solvent (SAS) process was used to BCS class II drug in a variety of ways including micronization, amorphization and solid dispersion. Solid dispersions were prepared using hydroxypropylmethylcellulose/polyvinylpyrrolidone (HPMC/PVP) at 1:0.5, 1:1, and 1:2 weight ratios of drug to polymer, and pure telmisartan was also treated using the SAS process. Processed samples were characterized for morphology, particle size, crystallinity, solubility, dissolution rate and polymorphic stability. After the SAS process, all samples were converted to the amorphous form and were confirmed to be hundreds nm in size. Solubility and dissolution rate were increased compared to the raw material. Solubility tended to increase with increases in the amount of polymer used. However, unlike the solubility results, the dissolution rate decreased with increases in polymer concentration due to gel layer formation of the polymer. Processed pure telmisartan showed the best drug release even though it had lower solubility compared to other solid dispersions; however, because there were no stabilizers in processed pure telmisartan, it recrystallized after 1 month under severe conditions, while the other solid dispersion samples remained amorphous form. We conclude that after controlling the formulation of solid dispersion, the SAS process could be a promising approach for improving the solubility and dissolution rate of telmisartan.

  5. Electrospinning of calcium phosphate-poly(D,L-lactic acid nanofibers for sustained release of water-soluble drug and fast mineralization

    Directory of Open Access Journals (Sweden)

    Fu QW

    2016-10-01

    Full Text Available Qi-Wei Fu,1,* Yun-Peng Zi,1,* Wei Xu,1 Rong Zhou,1 Zhu-Yun Cai,1 Wei-Jie Zheng,1 Feng Chen,2 Qi-Rong Qian1 1Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(D,L-lactic acid (ACP-PLA nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63 cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due

  6. "Mixed-solvency approach" - Boon for solubilization of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Maheshwari R

    2010-01-01

    Full Text Available Based on a large number of experiments on solubilization of poorly water-soluble drugs, the author is of the opinion that hydrotropy is another type of cosolvency and all water-soluble substances whether liquids, solids, or gases may act as solubilizers for poorly water-soluble drugs. In the present investigation, a mixed-solvency approach has been utilized for solubility enhancement of poorly water-soluble drug, salicylic acid (as a model drug. Sixteen blends (having total 40% w/v strength of solubilizers containing various solubilizers among the commonly used hydrotropes (urea and sodium citrate, cosolvents (glycerin, propylene glycol, PEG 300 and PEG 400, and water-soluble solids (PEG 4000 and PEG 6000 were made to study the influence on solubility of salicylic acid. Twelve blends were found to increase the solubility of salicylic acid, synergistically. This approach shall prove a boon in pharmaceutical field to develop various formulations of poorly water-soluble drugs by combining various water-soluble excipients in safe concentrations to give a strong solution (say 25% w/v or so to produce a desirable aqueous solubility of poorly water-soluble drugs. In the present investigation, the mixed-solvency approach has been employed to analyze salicylic acid in the bulk drug sample (using six blends precluding the use of organic solvents (a way to green chemistry.

  7. [Study of water-soluble compounds from fungus garden of Odontotermes formosanus].

    Science.gov (United States)

    Xue, Dejun; Zhou, Hui; Zhang, Min; Xie, Kang; Zhang, Yong

    2005-10-01

    To study water-soluble compounds from fungus garden of Odontotermes formosanus. The chemical constituents of fungus garden were analyzed and identified by GC-MS. 28 compounds were separated and 11 chemical constituents were identified. The main constituents in water-solubles from fungus garden of Odontotermes formosanus are palmitic acid, linolei acid and oleic aid.

  8. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  9. Water-soluble primary amine compounds in rural continental precipitation

    Science.gov (United States)

    Gorzelska, Krystyna; Galloway, James N.; Watterson, Karen; Keene, William C.

    Procedures for collecting, storing and analysing precipitation samples for organic nitrogen studies were developed. These procedures preserve chemical integrities of the species of interest, allow for up to 3 months storage and quantitative determination of water-soluble primary amine compounds, with the overall error at the 2 nM detection limit of less than 30%. This methodology was applied to study amino compounds in precipitation samples collected over a period of one year in central Virginia. Nitrogen concentrations of 13 amino acids and 3 aliphatic amines were summed to calculate the total amine nitrogen (TAN). The concentration of TAN ranged from below our detection level to 6658 nM, and possibly reflected a seasonal variation in the source strength of the atmospheric amines. Overall, the most commonly occurring amino compounds were methyl amine, ethyl amine, glutamic acid, glycine and serine. On average, the highest overall contribution to the TAN came from arginine, asparagine, glutamine, methyl amine, serine and alanine. However, large qualitative and quantitative variations observed among samples warrant caution in interpretation and application of the averaged values. TAN in Charlottesville precipitation contributed from less than 1 to ca 10% of the ammonium nitrogen level. However, our estimates show that amino compounds may contribute significantly to reduced nitrogen budget in precipitation in remote regions.

  10. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  11. Aqueous coating dispersion (pseudolatex) of zein improves formulation of sustained-release tablets containing very water-soluble drug.

    Science.gov (United States)

    Li, X N; Guo, H X; Heinamaki, J

    2010-05-01

    Zein is an alcohol soluble protein of corn origin that exhibits hydrophobic properties. Pseudolatexes are colloidal dispersions containing spherical solid or semisolid particles less than 1 microm in diameter and can be prepared from any existing thermoplastic water-insoluble polymer. The novel plasticized film-coating pseudolatex of zein was studied in formulation of sustained-release tablets containing very water-soluble drug. Film formation of plasticized aqueous dispersion was compared with film forming properties of plasticized organic solvent system (ethanol) of zein. The water vapor permeability (WVP), water uptake and erosion, and moisture sorption were evaluated with free films. The tablets containing metoprolol tartrate as a model drug were used in pan-coating experiments. Aqueous film coatings plasticized with PEG 400 exhibited very low water uptake. No significant difference in WVP, moisture sorption and erosion were found between aqueous films and organic solvent-based films of zein plasticized with PEG 400. The atomic force microscopy (AFM) images on microstructure of films showed that colloidal particle size of zein in the aqueous films was smaller than that observed in the solvent-based films. In addition, the aqueous-based films were more compact and smoother than the respective solvent-based films. The aqueous zein-coated tablets containing very water-soluble drug (metoprolol tartrate) exhibited clear sustained-release dissolution profiles in vitro, while the respective solvent-based film-coated tablets showed much faster drug release. Furthermore, aqueous zein-coated tablets had lower water absorption at high humidity conditions. In conclusion, the plasticized aqueous dispersion (pseudolatex) of zein can be used for moisture resistant film coating of sustained-release tablets containing very water-soluble drug.

  12. Water-soluble ruthenium complexes bearing activity against protozoan parasites.

    Science.gov (United States)

    Sarniguet, Cynthia; Toloza, Jeannette; Cipriani, Micaella; Lapier, Michel; Vieites, Marisol; Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Moreno, Virtudes; Maya, Juan Diego; Azar, Claudio Olea; Gambino, Dinorah; Otero, Lucía

    2014-06-01

    Parasitic illnesses are major causes of human disease and misery worldwide. Among them, both amebiasis and Chagas disease, caused by the protozoan parasites, Entamoeba histolytica and Trypanosoma cruzi, are responsible for thousands of annual deaths. The lack of safe and effective chemotherapy and/or the appearance of current drug resistance make the development of novel pharmacological tools for their treatment relevant. In this sense, within the framework of the medicinal inorganic chemistry, metal-based drugs appear to be a good alternative to find a pharmacological answer to parasitic diseases. In this work, novel ruthenium complexes [RuCl2(HL)(HPTA)2]Cl2 with HL=bioactive 5-nitrofuryl containing thiosemicarbazones and PTA=1,3,5-triaza-7-phosphaadamantane have been synthesized and fully characterized. PTA was included as co-ligand in order to modulate complexes aqueous solubility. In fact, obtained complexes were water soluble. Their activity against T. cruzi and E. histolytica was evaluated in vitro. [RuCl2(HL4)(HPTA)2]Cl2 complex, with HL4=N-phenyl-5-nitrofuryl-thiosemicarbazone, was the most active compound against both parasites. In particular, it showed an excellent activity against E. histolytica (half maximal inhibitory concentration (IC50)=5.2 μM), even higher than that of the reference drug metronidazole. In addition, this complex turns out to be selective for E. histolytica (selectivity index (SI)>38). The potential mechanism of antiparasitic action of the obtained ruthenium complexes could involve oxidative stress for both parasites. Additionally, complexes could interact with DNA as second potential target by an intercalative-like mode. Obtained results could be considered a contribution in the search for metal compounds that could be active against multiple parasites.

  13. Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Prozorova GF

    2014-04-01

    Full Text Available Galina F Prozorova,1 Alexsandr S Pozdnyakov,1 Nadezhda P Kuznetsova,1 Svetlana A Korzhova,1 Artem I Emel'yanov,1 Tamara G Ermakova,1 Tat'yana V Fadeeva,2 Larisa M Sosedova31AE Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 2Scientific Center of Reconstructive and Restorative Surgery Siberian Branch of Russian Academy of Medicinal Sciences, Irkutsk, 3Institute of Occupational Health and Human Ecology, Siberian Branch of Russian Academy of Medicinal Sciences, Angarsk, RussiaAbstract: New water-soluble nontoxic nanocomposites of nanosized silver particles in a polymer matrix were synthesized by a green chemistry method. Nontoxic poly(1-vinyl-1,2,4-triazole was used as a stabilizing precursor agent in aqueous medium. Glucose and dimethyl sulfoxide were used as the silver ion-reducing agents to yield silver nanoparticles 2–26 nm and 2–8 nm in size, respectively. The nanocomposites were characterized by transmission electron microscopy, ultraviolet-visible and Fourier transform infrared spectroscopy, X-ray diffraction, atomic absorption, and thermogravimetric data analysis. The nanocomposites showed strong antimicrobial activity against Gram-negative and Gram-positive bacteria.Keywords: silver nanoparticles, poly(1-vinyl-1,2,4-triazole, glucose, dimethyl sulfoxide, green synthesis

  14. Synthesis of a novel water-soluble chitosan derivative for flocculated decolorization

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xue, E-mail: jiangx@jiangnan.edu.cn [School of Textiles and Clothing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Cai Ke; Zhang Jing [School of Textiles and Clothing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Shen Yan [Jiangsu Environmental Monitoring Center, Nanjing 210036 (China); Wang Shugen [School of Textiles and Clothing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Tian Xiuzhi, E-mail: tianxz@jiangnan.edu.cn [School of Textiles and Clothing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122 (China)

    2011-01-30

    To increase the water solubility and cationic charges at pH 7, cationic moieties were introduced onto both the C{sub 6}-OH and C{sub 2}-NH{sub 2} groups in the chitosan (CTS) matrix by graft modification. The chemical structure of the obtained copolymer was demonstrated by characterizations of FT-IR, {sup 13}C NMR, WXRD, SEM. Its excellent decolorization properties as a novel flocculant were evaluated with the C.I. Reactive Orange 5 (RO 5) and C.I. Reactive Blue 19 (RB 19) solutions using a jar test method. Both the nature of the anionic dyes and the pH of the initial dye solutions had effects on the decolorization properties. Charge neutralization played a dominant role for the color removal at pH 4, while polymer bridging contributed mainly to the color removal at pH 7. For the given flocculant/dye solutions, added salt was not in favor of the flocculated decolorization. At 25 deg. C, the flocculant needed for the highest color removal at pH 4 was 60 wt% of the dye (RO 5 or RB 19), but that at pH 7 were 100 wt% of RB 19 and 120 wt% of RO 5, respectively.

  15. Polyelectrolyte multilayers prepared from water-soluble poly(alkoxythiophene) derivatives.

    Science.gov (United States)

    Lukkari, J; Salomäki, M; Viinikanoja, A; Aäritalo, T; Paukkunen, J; Kocharova, N; Kankare, J

    2001-06-27

    Electronically conducting polyanion and polycation based on poly(alkoxythiophene) derivatives, poly-3-(3'-thienyloxy)propanesulfonate (P3TOPS) and poly-3-(3'-thienyloxy)propyltriethylammonium (P3TOPA) have been synthesized. Both polymers are water-soluble and exhibit high conjugation length in solution and in the solid state. These polyelectrolytes were used to prepare conducting and electroactive polyelectrolyte multilayers by the sequential layer-by-layer adsorption technique. In aqueous solutions multilayers of P3TOPS with inactive polyelectrolytes (e.g., poly(diallyldimethylammonium chloride), PDADMA) displayed electrochemical and optical behavior similar to polythiophene films prepared in organic media. Their in-plane conductivity was low (ca. 1.6 x 10(-)(5) S cm(-)(1)). The conductivity could, however, be increased by a factor of ca. 40 in "all-thiophene" films, in which P3TOPA was substituted for the inactive polycation (PDADMA). The interpenetration of layers is of prime importance in films containing conducting components. The interpenetration of P3TOPS was studied by measuring the charge-transfer rate across an insulating polyelectrolyte multilayer between the substrate and the P3TOPS layer with modulated electroreflectance. The extent of interpenetration was 8-9 polyelectrolyte layers, the length scale (7-15 nm) depending on the nature of the insulating layer and, especially, on the ionic strength of the solution used for the adsorption of P3TOPS.

  16. Methane hydrate stability in the presence of water-soluble hydroxyalkyl cellulose

    Institute of Scientific and Technical Information of China (English)

    M. Mohammad-Taheri; A. Zarringhalam Moghaddam; K. Nazari; N. Gholipour Zanjani

    2012-01-01

    The effect of low-dosage water-soluble hydroxyethyl cellulose (approximate Mw~90,000 and 250,000) as a member ofhydroxyalkyl cellulosic polymer group on methane hydrate stability was investigated by monitoring hydrate dissociation at pressures greater than atmospheric pressure in a closed vessel.In particular,the influence of molecular weight and mass concentration of hydroxyethyl cellulose (HEC) was studied with respect to hydrate formation and dissociation.Methane hydrate formation was performed at 2 ℃ and at a pressure greater than 100 bar.Afterwards,hydrate dissociation was initiated by step heating from - 10 ℃ at a mild pressure of 13 bar to -3 ℃,0 ℃ and 2 ℃.With respect to the results obtained for methane hydrate formation/dissociation and the amount of gas uptake,we concluded that HEC 90,000 at 5000 ppm is suitable for long-term gas storage and transportation under a mild pressure of 13 bar and at temperatures below the freezing point.

  17. Ionic Conductivity of Water-Soluble Fully Conjugated Heterocyclic Aromatic Polyelectrolytes

    Science.gov (United States)

    Bai, S. J.; Chen, Y. S.; Sun, J. P.; Dang, T. D.; Arnold, F. E.

    2002-03-01

    Fully conjugated poly[(1,7-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)- 2-(2-sulfo)-p-phenylene], sPBI, has a para-catenated backbone. This rod-like polymer displays superior thermal and solvent stabilities. The stabilities hamper its processing for critical applications. Chemical derivative of the sPBI was achieved using pendants of propane-sulfonated Li^+ ionomer for a water-soluble polyelectrolyte, sPBI-PS(Li^+). sPBI-PS(Li^+) aqueous solutions were cast into freestanding films. Room-temperature direct current conductivity parallel to the film surface σ _|| was as high as 9.7 x 10-5 S/cm. Constant-voltage measurements indicated that σ _|| was mainly ionic. sPBI-PS(Li^+) doped with Li salts showed a σ _|| of 3 ~8 mS/cm. X-ray scattering revealed that the cast films were in-plane isotropic but out-of-the plane anisotropic with the rigid-rod backbone lying in the plane of the films. The anisotropic structure caused the conductivity transverse to the film surface was 10-3 ~ 10-4 to that of σ _||. Benzene-1,3,5-tricarboxylic acid with functional groups was added in the polycondensation reaction leading to heteroaromatic copolymer with fully conjugated but acticulated backbone. Cast films of the articulated copolymer had three-dimensionally isotropic σ as high as 3 mS/cm.

  18. Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes

    Directory of Open Access Journals (Sweden)

    Francesco Di Stasio

    2013-10-01

    Full Text Available We demonstrate control of the photoluminescence spectra and decay rates of water-soluble green-emitting conjugated polyrotaxanes by incorporating them in polystyrene opals with a stop-band spectrally tuned on the rotaxane emission (405–650 nm. We observe a suppression of the luminescence within the photonic stop-band and a corresponding enhancement of the high-energy edge (405–447 nm. Time-resolved measurements reveal a wavelength-dependent modification of the emission lifetime, which is shortened at the high-energy edge (by ∼11%, in the range 405–447 nm, but elongated within the stop-band (by ∼13%, in the range 448–482 nm. We assign both effects to the modification of the density of photonic states induced by the photonic crystal band structure. We propose the growth of fluorescent composite photonic crystals from blends of “solvent-compatible” non-covalently bonded nanosphere-polymer systems as a general method for achieving a uniform distribution of polymeric dopants in three-dimensional self-assembling photonic structures.

  19. A Polymer "Pollution Solution" Classroom Activity.

    Science.gov (United States)

    Helser, Terry L.

    1996-01-01

    Explains an approach to presenting polymer chemistry to nonmajors that employs polystyrene foam, foam peanuts made from water soluble starch, and water soluble plastic bags. Students are presented with a pollution scenario and are guided to the discovery of solutions. (DDR)

  20. Cellular Responses to the Metal-Binding Properties of Metformin

    Science.gov (United States)

    Logie, Lisa; Harthill, Jean; Patel, Kashyap; Bacon, Sandra; Hamilton, D. Lee; Macrae, Katherine; McDougall, Gordon; Wang, Huan-Huan; Xue, Lin; Jiang, Hua; Sakamoto, Kei; Prescott, Alan R.; Rena, Graham

    2012-01-01

    In recent decades, the antihyperglycemic biguanide metformin has been used extensively in the treatment of type 2 diabetes, despite continuing uncertainty over its direct target. In this article, using two independent approaches, we demonstrate that cellular actions of metformin are disrupted by interference with its metal-binding properties, which have been known for over a century but little studied by biologists. We demonstrate that copper sequestration opposes known actions of metformin not only on AMP-activated protein kinase (AMPK)-dependent signaling, but also on S6 protein phosphorylation. Biguanide/metal interactions are stabilized by extensive π-electron delocalization and by investigating analogs of metformin; we provide evidence that this intrinsic property enables biguanides to regulate AMPK, glucose production, gluconeogenic gene expression, mitochondrial respiration, and mitochondrial copper binding. In contrast, regulation of S6 phosphorylation is prevented only by direct modification of the metal-liganding groups of the biguanide structure, supporting recent data that AMPK and S6 phosphorylation are regulated independently by biguanides. Additional studies with pioglitazone suggest that mitochondrial copper is targeted by both of these clinically important drugs. Together, these results suggest that cellular effects of biguanides depend on their metal-binding properties. This link may illuminate a better understanding of the molecular mechanisms enabling antihyperglycemic drug action. PMID:22492524

  1. Formulation and comparative evaluation of HPMC and water soluble chitosan-based sparfloxacin nanosuspension for ophthalmic delivery.

    Science.gov (United States)

    Ambhore, Nitin Prabhakar; Dandagi, Panchaxari Mallapa; Gadad, Anand Panchakshari

    2016-02-01

    Ophthalmic nanosuspensions (ONS) have shown a potential for ophthalmic delivery over the conventional ocular formulations. The objective of the study was to assess the effect of surfactants and polymers on particle size and drug release. Sparfloxacin ONS were prepared by optimizing the concentration of HPMC E5 and water soluble chitosan by using solvent diffusion method followed by probe sonication. The Poloxamer 407 and Kolliphor P188 were used as a surfactant. The produced nanosuspensions were characterized for particle size, shape, zeta potential and drug release. The average particle size of the nanosuspension was 300 to 500 nm. The in vitro drug release study showed that the optimized nanosuspension of water soluble chitosan sustained drug release up to 9 h compared to 6 h for the hydroxypropylmethylcellulose (HPMC) nanosuspension. Further, the sparfloxacin ONS formulation showed excellent ocular tolerance and biocompatibility as determined by hen's egg test chorioallantoic membrane (HET CAM) and resazurin assay on Vero cell lines. Moreover, optimized formulation was found to be stable, isotonic, non-toxic with higher in vitro and in vivo antimicrobial potential.

  2. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs: a particle engineering approach.

    Science.gov (United States)

    Bohr, Adam; Boetker, Johan P; Rades, Thomas; Rantanen, Jukka; Yang, Mingshi

    2014-01-01

    Solid dispersions have been widely studied as an attractive formulation strategy for the increasingly prevalent poorly water-soluble drug compounds, including herbal medicines, often leading to improvements in drug dissolution rate and bioavailability. However, several challenges are encountered with solid dispersions, for instance regarding their physical stability, and the full potential of these formulations has yet to be reached. Solid dispersions have mainly been used to produce immediate release systems using water-soluble polymers but an extended release system may provide equal or better performance due to enhancement in the pharmacokinetics and low variability in plasma concentration. Progress in processing technologies and particle engineering provides new opportunities to prepare particle-based solid dispersions with control of physical characteristics and tailored drug release kinetics. Spray-drying and electrospraying are both technologies that allow production and continuous manufacturing of particle-based amorphous solid dispersions in a single step process and electrospinning further allows the production of fiber based systems. This review presents the use of spray drying and electrospraying/electrospinning as techniques for preparing particle-based solid dispersions, describes the particle formation processes via numerical and experimental models and discusses particle engineering using these techniques. Examples are given on the applications of these techniques for preparing solid dispersions and the challenges associated with the techniques such as stability, preparation of final dosage form and scale-up are also discussed.

  3. Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Qinfu [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Wang Tianyi [Department of Clinical Pharmacy, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Wang Jing [Department of Physical Chemistry, School of Basic Science, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Zheng Li; Jiang, Tongying; Cheng Gang [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Wang Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China)

    2011-09-15

    In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N{sub 2} adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.

  4. Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2014-08-01

    Full Text Available We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG, to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND. Mesoporous silica nanospheres (MSNs were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs, IND loaded AP-MSNs (IND-AP-MSNs were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.

  5. The water soluble composite poly(vinylpyrrolidone–methylaniline: A new class of corrosion inhibitors of mild steel in hydrochloric acid media

    Directory of Open Access Journals (Sweden)

    R. Karthikaiselvi

    2017-02-01

    Full Text Available In recent years poly methyl aniline has been reported as one of the efficient corrosion inhibitors of mild steel in acidic media. In view of the major limitation of the insolubility of polymethyl aniline PMA, we propose to convert PMA into a water soluble composite using supporting polymer polyvinylpyrrolidone to get higher solubility and corrosion inhibition efficiency. The water soluble composite poly(vinylpyrrolidone-methyl aniline was synthesized by chemical oxidative polymerization and its inhibitive effect on mild steel in 1 M HCl has been investigated using weight loss and electrochemical techniques (potentiodynamic polarization studies and impedance spectroscopy. SEM and EDX analyses are carried out to establish a protective film formation on the metal surface.

  6. Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P. S.; Moore, Evan G.; Melchior, Marco; Xu, Jide; Raymond, Kenneth N.

    2008-02-20

    A series of octadentate ligands featuring the 2-hydroxyisophthalamide (IAM) antenna chromophore (to sensitize Tb(III) and Eu(III) luminescence) has been prepared and characterized. The length of the alkyl amine scaffold that links the four IAM moieties has been varied in order to investigate the effect of the ligand backbone on the stability and photophysical properties of the Ln(III) complexes. The amine backbones utilized in this study are N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-ethane-1,2-diamine [H(2,2)-], N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-propane-1,3-diamine [H(3,2)-] and N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-butane-1,4-diamine [H(4,2)-]. These ligands also incorporate methoxyethylene [MOE] groups on each of the IAM chromophores to increase their water solubility. The aqueous ligand protonation constants and Tb(III) and Eu(III) formation constants were determined from solution thermodynamic studies. The resulting values indicate that at physiological pH, the Eu(III) and Tb(III) complexes of H(2,2)-IAM-MOE and H(4,2)-IAM-MOE are sufficiently stable to prevent dissociation at nanomolar concentrations. The photophysical measurements for the Tb(III) complexes gave overall quantum yield values of 0.56, 0.39, and 0.52 respectively for the complexes with H(2,2)-IAM-MOE, H(3,2)-IAM-MOE and H(4,2)-IAM-MOE, while the corresponding Eu(III) complexes displayed significantly weaker luminescence, with quantum yield values of 0.0014, 0.0015, and 0.0058, respectively. Analysis of the steady state Eu(III) emission spectra provides insight into the solution symmetries of the complexes. The combined solubility, stability and photophysical performance of the Tb(III) complexes in particular make them well suited to serve as the luminescent reporter group in high sensitivity time-resolved fluoroimmunoassays.

  7. Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P. S.; Moore, Evan G.; Melchior, Marco; Xu, Jide; Raymond, Kenneth N.

    2008-02-20

    A series of octadentate ligands featuring the 2-hydroxyisophthalamide (IAM) antenna chromophore (to sensitize Tb(III) and Eu(III) luminescence) has been prepared and characterized. The length of the alkyl amine scaffold that links the four IAM moieties has been varied in order to investigate the effect of the ligand backbone on the stability and photophysical properties of the Ln(III) complexes. The amine backbones utilized in this study are N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-ethane-1,2-diamine [H(2,2)-], N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-propane-1,3-diamine [H(3,2)-] and N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-butane-1,4-diamine [H(4,2)-]. These ligands also incorporate methoxyethylene [MOE] groups on each of the IAM chromophores to increase their water solubility. The aqueous ligand protonation constants and Tb(III) and Eu(III) formation constants were determined from solution thermodynamic studies. The resulting values indicate that at physiological pH, the Eu(III) and Tb(III) complexes of H(2,2)-IAM-MOE and H(4,2)-IAM-MOE are sufficiently stable to prevent dissociation at nanomolar concentrations. The photophysical measurements for the Tb(III) complexes gave overall quantum yield values of 0.56, 0.39, and 0.52 respectively for the complexes with H(2,2)-IAM-MOE, H(3,2)-IAM-MOE and H(4,2)-IAM-MOE, while the corresponding Eu(III) complexes displayed significantly weaker luminescence, with quantum yield values of 0.0014, 0.0015, and 0.0058, respectively. Analysis of the steady state Eu(III) emission spectra provides insight into the solution symmetries of the complexes. The combined solubility, stability and photophysical performance of the Tb(III) complexes in particular make them well suited to serve as the luminescent reporter group in high sensitivity time-resolved fluoroimmunoassays.

  8. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Science.gov (United States)

    Pu, Jian; Fukushi, Kensuke

    2013-01-01

    In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA) and biopolymer solution extracted from cultivated activated sludge (ASBP). The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE) method (R2 = 0.989 for BSA, 0.985 for ASBP). PMID:24194678

  9. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Directory of Open Access Journals (Sweden)

    Jian Pu

    2013-01-01

    Full Text Available In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA and biopolymer solution extracted from cultivated activated sludge (ASBP. The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE method (R2=0.989 for BSA, 0.985 for ASBP.

  10. A clear coat from a water soluble precursor

    NARCIS (Netherlands)

    Yang, Juan; Bos, Inge; Pranger, Wim; Stuiver, Anthonie; Velders, Aldrik H.; Cohen Stuart, Martien A.; Kamperman, Marleen

    2016-01-01

    Traditional paints consist of hydrophobic polymers dissolved in hydrocarbons; they are appreciated for their rheological properties and the smooth and glossy films they form upon drying and crosslinking, but are now largely banned because of the hazards associated with the solvents. In terms of

  11. A clear coat from a water soluble precursor

    NARCIS (Netherlands)

    Yang, Juan; Bos, Inge; Pranger, Wim; Stuiver, Anthonie; Velders, Aldrik H.; Cohen Stuart, Martien A.; Kamperman, Marleen

    2016-01-01

    Traditional paints consist of hydrophobic polymers dissolved in hydrocarbons; they are appreciated for their rheological properties and the smooth and glossy films they form upon drying and crosslinking, but are now largely banned because of the hazards associated with the solvents. In terms of h

  12. Biosynthetic regulation of phytochelatins, heavy metal-binding peptides.

    Science.gov (United States)

    Hirata, Kazumasa; Tsuji, Naoki; Miyamoto, Kazuhisa

    2005-12-01

    Phytochelatins (PCs) are heavy metal-binding peptides that play important roles in the detoxification of toxic heavy metals and the regulation of intracellular concentrations of essential metals in eukaryotes, including higher plants, fungi, and microalgae. Recently, PC synthase genes in higher plants and fission yeast have been identified and characterized, enabling molecular biological studies to unravel the mechanisms underlying PC synthesis. Moreover, recent routine database searches have unexpectedly identified genes that are similar to plant PC synthase genes in the genomes of worms and some prokaryotes. In this review, we introduce these recent advances in our understanding of the molecular mechanisms for PC biosynthesis and functions in order to supply basic information about the unique and attractive peptides applicable to various fields.

  13. Comparative toxicity of water soluble fractions of four oils on the growth of a Microalga

    Digital Repository Service at National Institute of Oceanography (India)

    Phatarpekar, P.V.; Ansari, Z.A.

    Toxic effects of water soluble fractions (WSF) of four different fuel oils on a microalga. Tetraselmis gracilis, were examined and compared. On applying different concentrations of WSF, a decrease in cell population was observed. Depending...

  14. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    Directory of Open Access Journals (Sweden)

    Johannes Ranke

    2009-03-01

    Full Text Available The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities.

  15. Hydroaminomethylation of 1-Dodecene Catalyzed by Water-soluble Rhodium Complex

    Institute of Scientific and Technical Information of China (English)

    Ying Yong WANG; Mei Ming LUO; Yao Zhong LI; Hua CHEN; Xian Jun LI

    2004-01-01

    The hydroaminomethylation of 1-dodecene catalyzed by water soluble rhodium complex RhCl(CO)(TPPTS)2 in the presence of surfactant CTAB was investigated. High reactivity and selectivity for tertiary amine were achieved under relatively mild conditions.

  16. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  17. Synthesis and Cytotoxic Activity of Novel Water-soluble Prodrugs of Combretastatin A-4

    Institute of Scientific and Technical Information of China (English)

    Zhi Quan YONG; Xiao Ping XU; Ying Chun CHEN; Xu BAO; Ling Ling WENG; Hu ZHENG

    2006-01-01

    Novel water-soluble prodrugs of combretastatin A-4 (5-8) were synthesized and evaluated for their in vitro cytotoxicity against lung carcinoma A549. Compound 5, bearing phosphoryl choline (PC) moiety, showed 90% inhibition at 32 μg/mL concentration after 24 h. The findings showed the PC derivative would be a promising candidate for the development of new water-soluble prodrug of cytotoxic combretastatin A-4.

  18. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat M. Hassan

    2013-06-01

    Full Text Available Corrosion inhibition of aluminum (Al in hydrochloric acid by anionic polyeletrolyte pectates (PEC as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  19. Effect of surfactants on the fluorescence spectra of water-soluble MEHPPV derivatives having grafted polyelectrolyte chains

    Indian Academy of Sciences (India)

    Nagesh Kolishetti; S Ramakrishnan

    2007-03-01

    Poly(2-methoxy-5-[2'-ethylhexyoxy]-1,4-phenylenevinylene) (MEHPPV) derivatives with polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhibited a dramatic increase in their fluorescence intensity in the presence of a variety of surfactants, even at concentrations far below their critical micelle concentrations (CMC). This increase was accompanied by a blue-shift in the emission maximum. These observations are rationalized based on the postulate that the backbone conformation of the conjugated polymer is modulated upon interaction of the surfactant molecules with the polyelectrolytic tethers, which in turn results in a significant depletion of intra-chain interchromophore interactions that are known to cause red-shifted emission bands with significantly lower emission yields.

  20. Enhanced near infrared emission in water-soluble NdF3 nanocrystals by Ba2+ doping

    Institute of Scientific and Technical Information of China (English)

    Ting Fan; Qinyuan Zhang; Zhonghong Jiang

    2012-01-01

    A simple and efficient method for the synthesis of water-soluble NdF3 and NdF3:Ba2+ nanocrystals under hydrothermal conditions is established. The method involves the coating of the nanocrystals with a layer of hydrophilic polymer polyvinylpyrrolidone (PVP). The as-prepared products are characterized by powder X-ray diffraction, field emission scanning electronic microscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy. The PVP coating transforms the nanocrystals into a biocompatible material and improves the fluorescence intensity of NdF3 in the near infrared (NIR) region. The morphology of the nanoparticles changes, whereas the fluorescence intensity of NdF3 in the NIR region increases when a small amount of Ba2+ is doped into the NdFs/PVP nanoparticles.%A simple and efficient method for the synthesis of water-soluble NdF3 and NdF3∶Ba2+ nanocrystals under hydrothermal conditions is established.The method involves the coating of the nanocrystals with a layer of hydrophilic polymer polyvinylpyrrolidone (PVP).The as-prepared products are characterized by powder X-ray diffraction,field emission scanning electronic microscopy,Fourier transform infrared spectroscopy,and photoluminescence spectroscopy.The PVP coating transforms the nanocrystals into a biocompatible material and improves the fluorescence intensity of NdF3 in the near infrared (NIR) region.The morphology of the nanoparticles changes,whereas the fluorescence intensity of NdF3 in the NIR region increases when a small amount of Ba2+ is doped into the NdF3/PVP nanoparticles.

  1. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: Ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Hassani Najafabadi, Alireza [Department of Chemistry, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran (Iran, Islamic Republic of); Abdouss, Majid, E-mail: phdabdouss44@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran (Iran, Islamic Republic of); Faghihi, Shahab [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-08-01

    Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ({sup 1}HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and {sup 1}HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. - Highlights: • A facile novel method for conjugating methoxy polyethylene glycol (mPEG) to chitosan is introduced. • Fabricated PEG

  2. Dissolution Enhancement of Poorly Water Soluble Efavirenz by Hot Melt Extrusion Technique

    Directory of Open Access Journals (Sweden)

    Smita Kolhe

    2013-06-01

    studies also showed enhancement in release rate of HME complex. Stability studies at 40 º C/75 % RH (relative humidity were studied and it shows that the sample is stable even after 3 months study. HME is simple and efficient method to improve dissolution and permeability of poorly water soluble Efv.

  3. Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis

    Directory of Open Access Journals (Sweden)

    Chih-Yu Chen

    2012-12-01

    Full Text Available Dental caries is still a major oral health problem in most industrialized countries. The development of dental caries primarily involves Lactobacilli spp. and Streptococcus mutans. Although antibacterial ingredients are used against oral bacteria to reduce dental caries, some reports that show partial antibacterial ingredients could result in side effects. OBJECTIVES: The main objective is to test the antibacterial effect of water-soluble chitosan while the evaluation of the mouthwash appears as a secondary aim. MATERIAL AND METHODS: The chitosan was obtained from the Application Chemistry Company (Taiwan. The authors investigated the antibacterial effects of water-soluble chitosan against oral bacteria at different temperatures (25-37ºC and pH values (pH 5-8, and evaluated the antibacterial activities of a self-made water-soluble chitosan-containing mouthwash by in vitro and in vivo experiments, and analyzed the acute toxicity of the mouthwashes. The acute toxicity was analyzed with the pollen tube growth (PTG test. The growth inhibition values against the logarithmic scale of the test concentrations produced a concentrationresponse curve. The IC50 value was calculated by interpolation from the data. RESULTS: The effect of the pH variation (5-8 on the antibacterial activity of water-soluble chitosan against tested oral bacteria was not significant. The maximal antibacterial activity of water-soluble chitosan occurred at 37ºC. The minimum bactericidal concentration (MBC of water-soluble chitosan on Streptococcus mutans and Lactobacilli brevis were 400 µg/mL and 500 µg/mL, respectively. Only 5 s of contact between water-soluble chitosan and oral bacteria attained at least 99.60% antibacterial activity at a concentration of 500 µg/mL. The water-soluble chitosan-containing mouthwash significantly demonstrated antibacterial activity that was similar to that of commercial mouthwashes (>99.91% in both in vitro and in vivo experiments. In addition

  4. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Courtel, Fabrice M.; Niketic, Svetlana; Duguay, Dominique; Abu-Lebdeh, Yaser; Davidson, Isobel J. [National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)

    2011-02-15

    We have investigated the suitability of four different binders for the conventional mesocarbon microbeads (MCMBs) anode material in Li-ion batteries. Unlike the conventional polyvinylidene fluoride (PVDF), the binders were water soluble and were either cellulose based, such as the lithium and sodium salts of carboxymethyl cellulose (NaCMC, and LiCMC) and Xanthan Gum (XG), or the conjugated polymer: poly(3,4-ethylendioxythiophene) (PEDOT, a.k.a. Baytron). All binders were commercially available except LiCMC, which was synthesized and characterized by FTIR and NMR. Thermal studies of the binders by TGA and DSC showed that, in air, the binders have a broad melting event at 100-150 C, with an onset temperature for decomposition above 220 C. Li/MCMB half-cell batteries were assembled using the studied binders. Slow scan voltammograms of all cells showed characteristic lithium insertion and de-insertion peaks including that of the SEI formation which was found to be embedded into the insertion peaks during the first cycle. Cycling of the cells showed that the one containing XG binder gave the highest capacities reaching 350 mAh g{sup -1} after 100 cycles at C/12, while the others gave comparable capacities to those of the conventional binder PVDF. The rate capabilities of cells were examined and found to perform well up to the studied C/2 rate with more than 50% capacity retained. Further studies of the XG-based MCMB electrodes were performed and concluded that an optimal thickness of 300-365 {mu}m gave the highest capacities and sustained high C-rates. (author)

  5. Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies.

    Science.gov (United States)

    Lee, Teng Huar; Wang, Jianjun; Wang, Chi-Hwa

    2002-10-30

    Composite double-walled microspheres with biodegradable poly(L-lactic acid) (PLLA) shells and poly(D,L-lactic-co-glycolic acid) (PLGA) cores were fabricated with highly water-soluble etanidazole entrapped within the core as solid crystals. This paper discusses the characterization, in vitro release and the effects of irradiation on this class of microsphere. Through the variation of polymer mass ratios, predictable shell and core dimensions could be fabricated and used to regulate the release rates. A direct and simple method was devised to determine the composition of the shell and core polymer based on the different solubilities of the polymer pair in ethyl acetate. A distribution theory based on solubility parameter explains why highly hydrophilic etanidazole has the tendency to be distributed consistently to the more hydrophilic polymer. Release profiles for normal double-walled samples have about 80% of drug released over 10 days after the initial time lag, while for irradiated double-walled samples, the sustained release lasted for more than 3 weeks. Although sustained release was short of the desired 6-8 weeks required for therapy, a low initial burst of less than 5% and time lags that can be manipulated, allows for administration of these microspheres together with traditional ones to generate pulsatile or new type of releases. The effects of irradiation were also investigated to determine the suitability of these double-walled microspheres as delivery devices to be used in conjunction with radiotherapy. Typical therapeutic dosage of 50 Gy was found to be too mild to have noticeable effects on the polymer and its release profiles, while, sterilization dosages of 25 kGy, lowered the glass transition temperatures and crystalline melting point, indirectly indicating a decrease in molecular weight. This accelerated degradation of the polymer, hence releasing the drug.

  6. Complex rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris.

    Science.gov (United States)

    Goh, Kelvin K T; Matia-Merino, Lara; Hall, Christopher E; Moughan, Paul J; Singh, Harjinder

    2007-11-01

    A water-soluble extract was obtained from the fronds of a New Zealand native black tree fern (Cyathea medullaris or Mamaku in Māori). The extract exhibited complex rheological behavior. Newtonian, shear-thinning, shear-thickening, thixotropic, antithixotropic, and viscoelastic behaviors were observed depending on polymer concentration, shear rate, and shear history. The extract also displayed rod-climbing and self-siphoning properties typical of viscoelastic fluids. Such complex rheological properties have been reported in synthetic or chemically modified polymers but are less frequent in unmodified biopolymers. Although Mamaku extract obtained from the pith of the fern has been traditionally used by the Māori in New Zealand for treating wounds and diarrhea among other ailments, this material has never been characterized before. This study reports on the chemical composition of the extract and on its viscoelastic properties through rotational and oscillatory rheological measurements. Explanations of the mechanism behind the rheological properties were based on transient network models for associating polymers.

  7. Polymers for enhanced oil recovery : A paradigm for structure-property relationship in aqueous solution

    NARCIS (Netherlands)

    Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A.

    2011-01-01

    Recent developments in the field of water-soluble polymers aimed at enhancing the aqueous solution viscosity are reviewed. Classic and novel associating water-soluble polymers for enhanced oil recovery (EOR) applications are discussed along with their limitations. Particular emphasis is placed on th

  8. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    Directory of Open Access Journals (Sweden)

    Pietro Vidossich

    2014-07-01

    Full Text Available Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu and main group (Mg metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.

  9. Novel water-soluble polyurethane nanomicelles for cancer chemotherapy: physicochemical characterization and cellular activities

    Directory of Open Access Journals (Sweden)

    Khosroushahi Ahmad

    2012-01-01

    Full Text Available Abstract Background Efficient delivery of anticancer chemotherapies such as paclitaxel (PTX can improve treatment strategy in a variety of tumors such as breast and ovarian cancers. Accordingly, researches on polymeric nanomicelles continue to find suitable delivery systems. However, due to biocompatibility concerns, a few micellar nanoformulations have exquisitely been translated into clinical uses. Here, we report the synthesis of novel water-soluble nanomicelles using bioactive polyurethane (PU polymer and efficient delivery of PTX in the human breast cancer MCF-7 cells. Results The amphiphilic polyurethane was prepared through formation of urethane bounds between hydroxyl groups in poly (tetramethylene ether glycol (PTMEG and dimethylol propionic acid with isocyanate groups in toluene diisocyanate (TDI. The free isocyanate groups were blocked with phenol, while the free carboxyl groups of dimethylol propionic acid were reacted with triethylamine to attain ionic centers in the polymer backbone. These hydrophobic PTMEG blocks displayed self-assembly forming polymeric nanomicelles in water. The PTX loaded PU nanomicelles showed suitable physical stability, negative zeta potential charge (-43 and high loading efficiency (80% with low level of critical micelle concentration (CMC. In vitro drug release profile showed a faster rate of drug liberation at pH 5.4 as compared to that of pH 7.4, implying involvement of a pH-sensitive mechanism for drug release from the nanomicelles. The kinetic of release exquisitely obeyed the Higuchi model, confirming involvement of diffusion and somewhat erosion at pH 5.4. These nanomicelles significantly inhibited the growth and proliferation of the human breast cancer MCF-7 cells, leading them to apoptosis. The real time RT-PCR analysis confirmed the activation of apoptosis as result of liberation of cytochrome c in the cells treated with the PTX loaded PU nanomicelles. The comet assay analysis showed somewhat DNA

  10. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. PRESENCE OF WATER-SOLUBLE COMPOUNDS IN THERMALLY MODIFIED WOOD: CARBOHYDRATES AND FURFURALS

    Directory of Open Access Journals (Sweden)

    Olov Karlsson,

    2012-06-01

    Full Text Available With thermal modification, changes in properties of wood, such as the presence of VOC and water-soluble carbohydrates, may occur. Thermal modifications under saturated steam conditions (160 °C or 170 °C and superheated steam conditions (170, 185, and 212 °C were investigated by analysing the presence of water-soluble 5-(hydroxymethylfurfural (HMF, furfural, and carbohydrates in heat-treated wood. The influence of thermal modifications on Scots pine, Norway spruce, and silver birch was also studied. Furfurals were analysed using HPLC at 280 nm, while monosaccharides and water-soluble carbohydrates were determined by GC-FID as their acetylated alditiols and, after methanolysis, as their trimethylsilylated methyl-glycosides, respectively. The amount of furfurals was larger in boards thermally modified under saturated steam conditions than those treated under superheated steam conditions. Generally, more of HMF than furfural was found in the thermally modified boards. In process water, in which saturated steam conditions had been used, furfural and only traces of HMF were found. Higher content of water-soluble carbohydrates was found in boards treated in saturated steam rather than in superheated steam. After modification in saturated steam, substantial parts of the water-soluble carbohydrates were due to monosaccharides, but only traces of monosaccharides were found in boards treated under superheated steam conditions.

  12. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  13. Teratogenicity and metabolism of water-soluble forms of vitamin A in the pregnant rat

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, D.B.; Barua, A.B.; Olson, J.A. (Iowa State Univ., Ames (United States))

    1990-02-26

    Retinoyl {beta}-glucuronide, unlike retinoic acid, has been shown to be non-teratogenic when administered orally, even in large doses, to pregnant rats. The degree to which water-solubility is associated with low teratogenicity is not known. Other water-soluble forms of vitamin A have now been synthesized in our laboratory and are being evaluated for teratogenicity. New water-soluble forms of vitamin A were administered orally to pregnant Sprague-Dawley rats in a single dose of 0.35 mmole/kg bw on day 8 of gestation. On day 19, the dams were sacrificed and the litters were examined. Control animals received either vehicle only or an equivalent dose of all-trans retinoic acid. Maternal and fetal tissues were taken and analyzed by HPLC for vitamin A metabolites. In another experiment, a large single oral dose of the radiolabelled water-soluble compound was administered on day 10. At either 30 minutes or 1 hour after the dose, dams were sacrificed and the embryos analyzed both for radioactivity and for specific metabolites. In contrast to retinoyl {beta}-glucuronide, retinoyl {beta}-glucose is highly teratogenic under identical conditions. Thus, water-solubility does not seem to be the determining factor in the teratogenicity of retinoic acid conjugates.

  14. Fabrication and Mechanical Characterization of Water-Soluble Resin-Coated Natural Fiber Green Composites

    Science.gov (United States)

    Manabe, Ken-Ichi; Hayakawa, Tomoyuki

    In this study, water-soluble biodegradable resin was introduced as a coating agent to improve the interfacial strength and then to fabricate a high-performance green composite with polylactic acid (PLA) and hemp yarn. Dip coating was carried out for hemp yarn and the green composites were fabricated by hot processing. The coated green composite achieves a high tensile strength of 117 MPa even though the fiber volume fraction is less than 30%. Interfacial shear strength (IFSS) was measured by a single fiber pull-out test, and the effect of water-soluble resin on the tensile properties of the composites was evaluated. As a result, when using coated natural bundles, the IFSS value is smaller than when using noncoated natural bundles. On the basis of observations of the fractured surface of composites and initial yarns using a scanning electron microscope (SEM), the effect of the impregnation of water-soluble resin into the natural bundles on the tensile strength is discussed in detail. It is found that water-soluble resin is effective in improving the mechanical properties of the composite, although the interfacial strength between PLA and water-soluble resin was decreased, and as a result, the tensile strength of green composites increases by almost 20%.

  15. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Göl, Cem [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Çakır, Volkan [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Kantekin, Halit [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2015-03-15

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies.

  16. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, Bahattin; Tincer, Teoman E-mail: teotin@metu.edu.tr

    2001-10-01

    Radiation induced grafted polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyacrylamide (PAAm), poly N,N-dimethyl acrylamide (PNDAAm) and poly 1-vinyl-2 pyrrolidone (PVP) on ultra-high molecular weight polyethylene (UHMWPE) were characterised by DSC, FTIR and SEM analysis. While the effect of irradiation on pure UHMWPE was found to increase crystallinity and cause higher enthalpy of crystallisation, grafted UHMWPE powders showed lower crystallinity and enthalpy of crystallisation. In all grafted UHMWPE there existed secondary transitions corresponding to grafting polymers in the first run of DSC above 60 deg. C and they became clearer at a higher grafting level. In the second run of DSC some T{sub g} values appeared to shift to higher temperatures while some were not detected. FTIR analysis indicated the presence of water-soluble polymers in the grafted UHMWPE. The characteristic peaks of water-soluble polymers became sharper in the grafted UHMWPE. SEM analysis revealed that the grafting occurs both on fiber and microparticles of UHMWPE while flowing characteristic of powder is retained.

  17. BIOENHANCED TRANSDERMAL DELIVERY SYSTEM OF A POORLY WATER SOLUBLE

    Directory of Open Access Journals (Sweden)

    K. PRAMOD

    2016-05-01

    Full Text Available Objective: The absolute bioavailability of atorvastatin, a selective, competitive inhibitor of HMG-CoA reductase, is very low. The nanoemulsion gel formulation offers better platform for delivering a drug with poor oral bioavailability. Methods: In this study, we prepared the nanoemulsion gel which contained atorvastatin loaded sunflower oil and using Carbopol 940 polymer as gelling agent. Cumulative percentage of drug release was determined from the in vitro drug release study. Results: Cumulative drug release data showed sustained release of the drug up to 8 hours. The ex-vivo permeation study was performed on rat skin. In vivo study was carried out using animal model for evaluating anti-hypercholesterolemic activity. In the in vivo studies, atorvastatin nanoemulsion gel demonstrated a marked decreasing effect in total cholesterol (TC level, low density lipoprotein (LDL level and (TG triglycerides level. High density lipoprotein (HDL level was significantly increased by atorvastatin nanoemulsion gel. Conclusion: Thus, transdermal nanoemulsion gel of atorvastatin was found to be an effective formulation in treating hypercholesterolemia.

  18. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine.

    Science.gov (United States)

    Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers.

  19. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  20. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents.

    Science.gov (United States)

    Jiang, Hongliang; Wang, Liqun; Zhu, Kangjie

    2014-11-10

    Coaxial electrospinning is a robust technique for one-step encapsulation of fragile, water-soluble bioactive agents, including growth factors, DNA and even living organisms, into core-shell nanofibers. The coaxial electrospinning process eliminates the damaging effects due to direct contact of the agents with organic solvents or harsh conditions during emulsification. The shell layer serves as a barrier to prevent the premature release of the water-soluble core contents. By varying the structure and composition of the nanofibers, it is possible to precisely modulate the release of the encapsulated agents. Promising work has been done with coaxially electrospun non-woven mats integrated with bioactive agents for use in tissue engineering, in local delivery and in wound healing, etc. This paper reviews the origins of the coaxial electrospinning method, its updated status and potential future developments for controlled release of the class of fragile, water-soluble bioactive agents.

  1. Effect of thatch on water-soluble phosphorus of pasture soil fertilized with broiler litter

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 t@hm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kg@hm-2) of the cores with the thatch layer was higher than that (20 kg@hm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.

  2. [Relationship of resistance to diseases and water-soluble amino acids in Konjac leaves].

    Science.gov (United States)

    Chen, Yongbo; Jiang, Qiaolong

    2008-05-01

    Reversed-phase high performance liquid chromatography was used to analyze water-soluble amino acids in the normal Amorphophallus Konjac, Amorphophallus albus, Amorphophallus bulbifer, and the soft rot Amorphophallus Konjac, to determine the relationship of the different soft-rot resistant Konjac varieties and the proportion and content of the multiple water-soluble amino acids. The results showed that there are remarkable differences in the content and proportion of water-soluble amino acids in different resistant varieties and the same variety of normal and diseased leaves of Amorphophallus. In this study, the bank of fingerprint 15 chromatogram was established and can be used to analyze the related characteristic peaks and the resistance of Amorphophallus.

  3. Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water.

    Science.gov (United States)

    Ravber, Matej; Knez, Željko; Škerget, Mojca

    2015-01-01

    In this study, the subcritical water extraction is proposed as an alternative and greener processing method for simultaneous removal of oil- and water-soluble phase from sunflower seeds. Extraction kinetics were studied at different temperatures and material/solvent ratios in a batch extractor. Degree of hydrothermal degradation of oils was observed by analysing amount of formed free fatty acids and their antioxidant capacities. Results were compared to oils obtained by conventional methods. Water soluble extracts were analysed for total proteins, carbohydrates and phenolics and some single products of hydrothermal degradation. Highest amount of oil was obtained at 130 °C at a material/solvent ratio of 1/20 g/mL after 30 min of extraction. For all obtained oils minimal degree of hydrothermal degradation could be identified. High antioxidant capacities of oil samples could be observed. Water soluble extracts were degraded at temperatures ≥100 °C, producing various products of hydrothermal degradation.

  4. Development of water soluble binder systems for low pressure injection molding of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, H.I.; Gunes, M. [TUBITAK-MRC Materials and Chemical Technologies Research Inst., Kocaeli (Turkey)

    2004-07-01

    Low pressure injection molding of alumina powder using a water-soluble binder system has been carried out successfully. The water-soluble based binder system consisted of poly (2-ethyl-2-oxaline), low density polyethylene and stearic acid. The critical powder loading of the binder-powder mixture was determined based on torque rheometry experiments. The rheological properties of the powder-binder mixture were investigated systematically. The binder system used provides satisfactory mixture stability, excellent mouldability and reasonably fast water leaching and thermal debinding rates. The water-soluble constituent, poly (2-ethyl-2-oxaline), was removed by leaching in convecting water at 60 C within 6 hour. The remaining binder constituents were thermally removed during heating to 450 C. Sintering of the parts was conducted at 1550 C for an hour in air. (orig.)

  5. Urinary excretion levels of water-soluble vitamins in pregnant and lactating women in Japan.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu; Sasaki, Satoshi; Sano, Mitsue; Suzuki, Kahoru; Hiratsuka, Chiaki; Aoki, Asami; Nagai, Chiharu

    2013-01-01

    Recent studies have shown that the urinary excretion levels of water-soluble vitamins can be used as biomarkers for the nutritional status of these vitamins. To determine changes in the urinary excretion levels of water-soluble vitamins during pregnant and lactating stages, we surveyed and compared levels of nine water-soluble vitamins in control (non-pregnant and non-lactating women), pregnant and lactating women. Control women (n=37), women in the 2nd (16-27 wk, n=24) and 3rd trimester of pregnancy (over 28 wk, n=32), and early- (0-5 mo, n=54) and late-stage lactating (6-11 mo, n=49) women took part in the survey. The mean age of subjects was ~30 y, and mean height was ~160 cm. A single 24-h urine sample was collected 1 d after the completion of a validated, self-administered comprehensive diet history questionnaire to measure water-soluble vitamins or metabolites. The average intake of each water-soluble vitamin was ≍ the estimated average requirement value and adequate intake for the Japanese Dietary Reference Intakes in all life stages, except for vitamin B6 and folate intakes during pregnancy. No change was observed in the urinary excretion levels of vitamin B2, vitamin B6, vitamin B12, biotin or vitamin C among stages. Urine nicotinamide and folate levels were higher in pregnant women than in control women. Urine excretion level of vitamin B1 decreased during lactation and that of pantothenic acid decreased during pregnancy and lactation. These results provide valuable information for setting the Dietary Reference Intakes of water-soluble vitamins for pregnant and lactating women.

  6. Lipid-based formulations for oral administration of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-01-01

    Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving....../dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect...

  7. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    Science.gov (United States)

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  8. Hydrogen production by a hyperthermophilic membrane-bound hydrogenase in water-soluble nanolipoprotein particles.

    Science.gov (United States)

    Baker, Sarah E; Hopkins, Robert C; Blanchette, Craig D; Walsworth, Vicki L; Sumbad, Rhoda; Fischer, Nicholas O; Kuhn, Edward A; Coleman, Matt; Chromy, Brett A; Létant, Sonia E; Hoeprich, Paul D; Adams, Michael W W; Henderson, Paul T

    2009-06-10

    Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBHs), poor water solubility. Nanolipoprotein particles (NLPs) formed from apolipoproteins and phospholipids offer a novel means of incorporating MBHs into a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity, and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen-production devices.

  9. Water-Soluble Silicon Quantum Dots with Quasi-Blue Emission

    Science.gov (United States)

    Wang, Yun; Wang, Hao; Guo, Jun; Wu, Jiang; Gao, Li J.; Sun, Ying H.; Zhao, J.; Zou, Gui F.

    2015-07-01

    In this study, water-soluble silicon quantum dots have quasi-blue emission at 390 nm by being capped with 1-vinylimidazole in resese micelles. As-obtained silicon quantum dots have a diameter of 2~5 nm and high crystallinity. The quasi-blue emission of the silicon quantum dots is likely attributed to the polarity of the capping ligands. Moreover, the silicon quantum dots are water-soluble and have photoluminescence nanosecond decay time, suggesting their potential application in biological field.

  10. Method of immobilizing water-soluble bioorganic compounds on a capillary-porous carrier

    Science.gov (United States)

    Ershov, Gennady Moiseevich; Timofeev, Eduard Nikolaevich; Ivanov, Igor Borisovich; Florentiev, Vladimir Leonidovich; Mirzabekov, Andrei Darievich

    1998-01-01

    The method for immobilizing water-soluble bioorganic compounds to capillary-porous carrier comprises application of solutions of water-soluble bioorganic compounds onto a capillary-porous carrier, setting the carrier temperature equal to or below the dew point of the ambient air, keeping the carrier till appearance of water condensate and complete swelling of the carrier, whereupon the carrier surface is coated with a layer of water-immiscible nonluminescent inert oil and is allowed to stand till completion of the chemical reaction of bonding the bioorganic compounds with the carrier.

  11. Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing

    Science.gov (United States)

    Wang, Qingqing; Ma, Yongliang; Tan, Jihua; Zheng, Naijia; Duan, Jingchun; Sun, Yele; He, Kebin; Zhang, Yuanxun

    2015-10-01

    The abundance and behaviour of metals and water-soluble metals (V, Cr, Mn, Fe, Cu, Zn, As, Sr, Ag, Cd, Sn, Sb, Ba and Pb) in size-fractionated aerosols were investigated during two typical episodes in Beijing. Water-soluble inorganic ions (Na+, K+, Mg2+, Ca2+, NH4+ , F-, Cl-, SO42- and NO3-) were also measured. Atmospheric metals and water-soluble metals were both found at high levels; for PM2.5, average As, Cr, Cd, Cu, Mn and Pb concentrations were 14.8, 203.3, 2.5, 18.5, 42.6 and 135.3 ng/m3, respectively, and their water-soluble components were 11.1, 1.7, 2.4, 14.5, 19.8 and 97.8 ng/m3, respectively. Daily concentrations of atmospheric metals and water-soluble metals were generally in accordance with particle mass. The highest concentrations of metals and water-soluble metals were generally located in coarse mode and droplet mode, respectively. The lowest mass of metals and water-soluble metals was mostly in Aitken mode. The water solubility of all metals was low in Aitken and coarse modes, indicating that freshly emitted metals have low solubility. Metal water solubility generally increased with the decrease in particle size in the range of 0.26-10 μm. The water solubility of metals for PM10 was: 50% ≤ Cd, As, Sb, Pb; 26% water-soluble metals and their water solubility increased when polluted air mass came from the near west, near north-west, south-west and south-east of the mainland, and decreased when clean air mass came from the far north-west and far due south. The influence of dust-storms and clean days on water-soluble metals and size distribution was significant; however, the influence of rainfall was negligible. Aerosols with high concentrations of SO42- , K+ and NH4+ might indicate increased potential for human health effects because of their high correlation with water-soluble metals. Industrial emissions contribute substantially to water-soluble metal pollution as water-soluble metals show higher correlation with Cd, Sn, Sb and Pb that are mainly

  12. Growth and Histopathological Effects of Chronic Exposition of Marine Pejerrey Odontesthes argentinensis Larvae to Petroleum Water-Soluble Fraction (WSF)

    National Research Council Canada - National Science Library

    Emeline Pereira Gusmão; Ricardo Vieira Rodrigues; Cauê Bonucci Moreira; Luis Alberto Romano; Luís André Sampaio; Kleber Campos Miranda-Filho

    2012-01-01

    The water-soluble fraction (WSF) of petroleum contains a mixture of polycyclic aromatic hydrocarbons, volatile hydrocarbons, phenols, and heterocyclic compounds, considered deleterious to aquatic biota...

  13. Preparation of thermally stable well-dispersed water-soluble CdTe quantum dots in montmorillonite clay host media.

    Science.gov (United States)

    Cao, Yuan-Cheng

    2012-02-15

    In this work, a method to prepare a thermally stable QDs/clay powder is reported. First, several water soluble CdTe QDs characterised by different size-dependent emission wavelengths were synthesised through wet chemistry. Montmorillonite-Na(+) clay in water was dispersed into a muddy suspension by sonication. Then, the clay-water suspension was used as the host media for CdTe QDs to prepare the QDs/clay powder by freeze drying. The experiments showed that QDs/clay powder could be re-dispersed in water without changing the luminescent property of the QDs; this process was reversible. EDX showed that Cd and Te elements existed in the QDs/clay powder and the XRD tests showed that the clay [001] reflection peaks for raw clay, QDs (λ(em)=514 nm)/clay and QDs (λ(em)=560 nm)/clay were the same, namely 2θ=7.4°. Finally, QDs/clay powder was applied to the HDPE polymer extrusion process at 200 °C to produce thin films; the resultant QDs-polymer nanocomposite film exhibited strong fluorescence.

  14. Development and characterisation of sustained release solid dispersion oral tablets containing the poorly water soluble drug disulfiram.

    Science.gov (United States)

    Shergill, Mandip; Patel, Mina; Khan, Siraj; Bashir, Ayesha; McConville, Christopher

    2016-01-30

    Administration of drugs via the oral route is the most common and preferred route due to its ease of administration, cost-effectiveness and flexibility in design. However, if the drug being administered has limited aqueous solubility it can result in poor bioavailability. Furthermore, the low pH of the stomach as well as enzymatic activity can result in drugs delivered via the oral route being rapidly metabolised and degraded. Here we demonstrate the development and characterisation of sustained release solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram (DSF). The tablets, which are manufactured from two different polymers (Kolliphor(®) P 188 and P 237) specifically designed for the manufacture of solid dispersions and two different polymers (Kollidon(®) SR and HPMC) specifically designed to provide sustained release, can enhance the solubility of DSF, sustain its release, while protecting it from degradation in simulated gastric fluid (SGF). The paper demonstrates that when using the hot melt method at 80°C the DSF loading capacity of the Kolliphor(®) P 188 and P 237 polymers is approximately 43 and 46% respectively, with the DSF completely in an amorphous state. The addition of 80% Kollidon(®) SR to the formulation completely protected the DSF in SGF for up to 70 min with 16% degradation after 120 min, while 75% degradation occurred after 120 min with the addition of 80% HPMC. The release rate of DSF can be manipulated by both the loading and type of sustained release polymer used, with HPMC providing for a much faster release rate compared to Kollidon(®) SR.

  15. Influence of sulfhydryl sites on metal binding by bacteria

    Science.gov (United States)

    Nell, Ryan M.; Fein, Jeremy B.

    2017-02-01

    The role of sulfhydryl sites within bacterial cell envelopes is still unknown, but the sites may control the fate and bioavailability of metals. Organic sulfhydryl compounds are important complexing ligands in aqueous systems and they can influence metal speciation in natural waters. Though representing only approximately 5-10% of the total available binding sites on bacterial surfaces, sulfhydryl sites exhibit high binding affinities for some metals. Due to the potential importance of bacterial sulfhydryl sites in natural systems, metal-bacterial sulfhydryl site binding constants must be determined in order to construct accurate models of the fate and distribution of metals in these systems. To date, only Cd-sulfhydryl binding has been quantified. In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low

  16. Water-soluble constituents of caraway: aromatic compound, aromatic compound glucoside and glucides.

    Science.gov (United States)

    Matsumura, Tetsuko; Ishikawa, Toru; Kitajima, Junichi

    2002-10-01

    From the water-soluble portion of the methanolic extract of caraway (fruit of Carum carvi L.), an aromatic compound, an aromatic compound glucoside and a glucide were isolated together with 16 known compounds. Their structures were clarified as 2-methoxy-2-(4'-hydroxyphenyl)ethanol, junipediol A 2-O-beta-D-glucopyranoside and L-fucitol, respectively.

  17. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) crosslinked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide hydrochloride and N-hydroxysuccinimide (E/N-DSC) towards enzymatic degradation. Contrary to

  18. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) cross-inked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EIN-DSC) towards enzymatic degradation. Contrary to

  19. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Bioassay using the water soluble fraction of a Nigerian Light Crude oil on Clarias ... Heavy metal and total hydrocarbon contents of the water and fish were ... THC concentrations in fish were higher at 96 hours and 14days than in the water ...

  20. Antioxidative activity of water soluble polysaccharide in pumpkin fruits (Cucurbita maxima Duchesne).

    Science.gov (United States)

    Nara, Kazuhiro; Yamaguchi, Akira; Maeda, Naomi; Koga, Hidenori

    2009-06-01

    We evaluated the antioxidative activity of a water soluble polysaccharide fraction (WSP) from pumpkin fruits (Cucurbita maxima Duchesne). In the WSP, DPPH radical scavenging and superoxide dismutase-like activity increased depending on the total sugar content. Furthermore, the WSP can serve as an inhibitor of ascorbic acid oxidation. The efficacy was also affected by the total sugar content.

  1. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM, info

  2. Photocatalytic hydrogen production from a simple water-soluble [FeFe]-hydrogenase model system.

    Science.gov (United States)

    Cao, Wei-Ning; Wang, Feng; Wang, Hong-Yan; Chen, Bin; Feng, Ke; Tung, Chen-Ho; Wu, Li-Zhu

    2012-08-21

    Combined with a simple water soluble [FeFe]-hydrogenase mimic 1, Ru(bpy)(3)(2+) and ascorbic acid enable hydrogen production photocatalytically. More than 88 equivalents of H(2) were achieved in water, which is much better than that obtained in an organic solvent or a mixture of organic solvent and water.

  3. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    1996-01-01

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) cross-inked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EIN-DSC) towards enzymatic degradation. Contrary to non-cross-

  4. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde Damink, L.H.H.; Dijkstra, P.J.; Luyn, van M.J.A.; Wachem, van P.B.; Nieuwenhuis, P.; Feijen, J.

    1996-01-01

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) crosslinked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide hydrochloride and N-hydroxysuccinimide (E/N-DSC) towards enzymatic degradation. Contrary to non-cross

  5. Temperature-dependent photoluminescence of highly luminescent water-soluble CdTe quantum dots

    Institute of Scientific and Technical Information of China (English)

    Ji Wei Liu; Yu Zhang; Cun Wang Ge; Yong Long Jin; Sun Ling Hu; Ning Gu

    2009-01-01

    Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable stability. Furthermore, a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs.

  6. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde Damink, L.H.H.; Dijkstra, P.J.; Luyn, van M.J.A.; Wachem, van P.B.; Nieuwenhuis, P.; Feijen, J.

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  7. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    2013-01-01

    Water-soluble polysaccharide material, extracted from the stipes of the fruit bodies of Coprinus comatus by hot water, was fractionated by sequential weak anion-exchange and size-exclusion chromatography. The relevant fractions were subjected to structural analysis, including (D/L) monosaccharide/me

  8. Processes controlling the production of aromatic water-soluble organic matter during litter decomposition

    NARCIS (Netherlands)

    Klotzbücher, T.; Kaiser, K.; Filley, T.R.; Kalbitz, K.

    2013-01-01

    Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a

  9. Novel Water Soluble Fluorescent Trimethine Indocyanines Containing N-p-Carboxybenzyl Group

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Two fluorescent indocyanine dyes containing at least one p-carboxybenzyl group on the nitrogen atoms in the hetcrocyclic rings were designed and synthesized. Their absorption maxima were 549 nm and 551 nm in water respectively. They had good water solubility and photostability.

  10. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    Science.gov (United States)

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement.

  11. Differences in dinucleotide frequencies of thermophilic genes encoding water soluble and membrane proteins

    Institute of Scientific and Technical Information of China (English)

    Hiroshi NAKASHIMA; Yuka KURODA

    2011-01-01

    The occurrence frequencies of the dinucleotides of genes of three thermophilic and three mesophilic species from both archaea and eubacteria were investigated in this study. The genes encoding water soluble proteins were rich in the dinucleotides of purine dimers, whereas the genes encoding membrane proteins were rich in pyrimidine dimers. The dinucleotides of purine dimers are the counterparts of pyrimidine dimers in a double-stranded DNA. The purine/pyrimidine dimers were favored in the thermophiles but not in the mesophiles, based on comparisons of observed and expected frequencies. This finding is in agreement with our previous study which showed that purine/pyrimidine dimers are positive factors that increase the thermal stability of DNA. The dinucleotides AA, AG, and GA are components of the codons of charged residues of Glu, Asp, Lys, and Arg, and the dinucleotides TT, CT, and TC are components of the codons of hydrophobic residues of Leu, He, and Phe. This is consistent with the suitabilities of the different amino acid residues for water soluble and membrane proteins. Our analysis provides a picture of how thermophilic species produce water soluble and membrane proteins with distinctive characters: the genes encoding water soluble proteins use DNA sequences rich in purine dimers, and the genes encoding membrane proteins use DNA sequences rich in pyrimidine dimers on the opposite strand.

  12. Sensory and chromatographic evaluations of water soluble fractions from air-dried sausages

    DEFF Research Database (Denmark)

    Henriksen, Anders Peter; Stahnke, Marie Louise Heller

    1997-01-01

    Low molecular weight water soluble compounds were extracted from Danish salami, Italian sausage, and Spanish Chorizo. The extracts were fractionated by gel filtration chromatography revealing peptides with a molecular weight less than 4200 Dalton. Fractions consisting of smaller peptides and free...

  13. Water-soluble vitamin deficiencies in complicated peptic ulcer patients soon after ulcer onset in Japan.

    Science.gov (United States)

    Miyake, Kazumasa; Akimoto, Teppei; Kusakabe, Makoto; Sato, Wataru; Yamada, Akiyoshi; Yamawaki, Hiroshi; Kodaka, Yasuhiro; Shinpuku, Mayumi; Nagoya, Hiroyuki; Shindo, Tomotaka; Ueki, Nobue; Kusunoki, Masafumi; Kawagoe, Tetsuro; Futagami, Seiji; Tsukui, Taku; Sakamoto, Choitsu

    2013-01-01

    We investigated over time whether contemporary Japanese patients with complicated peptic ulcers have any water-soluble vitamin deficiencies soon after the onset of the complicated peptic ulcers. In this prospective cohort study, fasting serum levels of water-soluble vitamins (vitamins B1, B2, B6, B12, C, and folic acid) and homocysteine were measured at 3 time points (at admission, hospital discharge, and 3 mo after hospital discharge). Among the 20 patients who were enrolled in the study, 10 consecutive patients who completed measurements at all 3 time points were analyzed. The proportion of patients in whom any of the serum water-soluble vitamins that we examined were deficient was as high as 80% at admission, and remained at 70% at discharge. The proportion of patients with vitamin B6 deficiency was significantly higher at admission and discharge (50% and 60%, respectively, ppeptic ulcers may have a deficiency of one or more water-soluble vitamins in the early phase of the disease after the onset of ulcer complications, even in a contemporary Japanese population.

  14. CORAL: QSPR model of water solubility based on local and global SMILES attributes.

    Science.gov (United States)

    Toropov, Andrey A; Toropova, Alla P; Benfenati, Emilio; Gini, Giuseppina; Leszczynska, Danuta; Leszczynski, Jerzy

    2013-01-01

    Water solubility is an important characteristic of a chemical in many aspects. However experimental definition of the endpoint for all substances is impossible. In this study quantitative structure-property relationships (QSPRs) for negative logarithm of water solubility-logS (mol L(-1)) are built up for five random splits into the sub-training set (≈55%), the calibration set (≈25%), and the test set (≈20%). Simplified molecular input-line entry system (SMILES) is used as the representation of the molecular structure. Optimal SMILES-based descriptors are calculated by means of the Monte Carlo method using the CORAL software (http://www.insilico.eu/coral). These one-variable models for water solubility are characterized by the following average values of the statistical characteristics: n(sub_train)=725-763; n(calib)=312-343; n(test)=231-261; r(sub_train)(2)=0.9211±0.0028; r(calib)(2)=0.9555±0.0045; r(test)(2)=0.9365±0.0073; s(sub_train)=0.561±0.0086; s(calib)=0.453±0.0209; s(test)=0.520±0.0205. Thus, the reproducibility of statistical quality of suggested models for water solubility confirmed for five various splits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading.

    Science.gov (United States)

    Krull, Scott M; Moreno, Jacqueline; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-03-16

    Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films.

  16. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles

    Science.gov (United States)

    Wais, Ulrike; Jackson, Alexander W.; He, Tao; Zhang, Haifei

    2016-01-01

    During the last few decades the nanomedicine sector has emerged as a feasible and effective solution to the problems faced by the high percentage of poorly water-soluble drugs. Decreasing the size of such drug compounds to the nanoscale can significantly change their physical properties, which lays the foundation for the use of nanomedicine for pharmaceutical applications. Various techniques have been developed to produce poorly water-soluble drug nanoparticles, mainly to address the poor water-soluble issues but also for the efficient and targeted delivery of such drugs. These techniques can be generally categorized into top-down, bottom-up and encapsulation approaches. Among them, the top-down approaches have been the main choice for industrial preparation of drug nanoparticles while other methods are actively investigated by researchers. In this review, we aim to give a comprehensive overview and latest progress of the top-down, bottom-up, and encapsulation methods for the preparation of poorly water-soluble drug nanoparticles and how solvents and additives can be selected for these methods. In addition to the more industrially applied top-down approaches, the review is focused more on bottom-up and encapsulation methods, particularly covering supercritical fluid-related methods, cryogenic techniques, and encapsulation with dendrimers and responsive block copolymers. Some of the approved and mostly used nanodrug formulations on the market are also covered to demonstrate the applications of poorly water-soluble drug nanoparticles. This review is complete with perspectives on the development and challenges of fabrication techniques for more effective nanomedicine.

  17. Characterization of the spontaneously forming hydrogels composed of water-soluble phospholipid polymers.

    Science.gov (United States)

    Nam, Kwang Woo; Watanabe, Junji; Ishihara, Kazuhiko

    2002-01-01

    Spontaneously forming hydrogels composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymers, poly(MPC-co-methacrylic acid) (PMA), and poly(MPC-co-n-butyl methacrylate) (PMB) were examined. The MPC copolymer hydrogel was observed to have a spontaneous gelation property. To determine the properties of the hydrogels and why the gelation takes place, we have studied the properties of the hydrogels by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC). The morphologies of the hydrogels were spongelike with a homogeneous structure. By XPS analysis in terms of the molecular distributions in the hydrogels, it was observed that a stabilization time was required for the hydrogel to undergo chain rearrangement. DSC thermograms of the hydrogels were different from their components, PMA and PMB. For the hydrogel, a crystallization peak around -30 degrees C was observed. This result indicated that some ordered structures existed in the hydrogels. To determine the role of the MPC groups, aqueous solutions of poly(methacrylic acid) (PMAc) and PMB were mixed. The mixture of PMAc-PMB turned into a sol state, and the sol state remained for a week. When the mixture was cooled, a very weak hydrogel was prepared. This result suggested that the MPC groups were the dominant unit for spontaneously forming the hydrogels.

  18. Adsorption of water-soluble polymers onto barium titanate and its effects on colloidal stability

    NARCIS (Netherlands)

    Laat, de A.W.M.

    1995-01-01

    Ceramic products are usually made from powders which are processed into a green body, with a shape dictated by the final product. Organic binders are used to give the green product sufficient mechanical strength. A sintering process at high temperature converts the green body into the final ceramic

  19. Adsorption of water-soluble polymers onto barium titanate and its effect on colloidal stability.

    NARCIS (Netherlands)

    Laat, de A.W.M.

    1995-01-01

    Ceramic products are usually made from powders which are processed into a green body, with a shape dictated by the final product. Organic binders are used to give the green product sufficient mechanical strength. A sintering process at high temperature converts the green body into the final ceramic

  20. Forming nanoparticles of water-soluble ionic molecules and embedding them into polymer and glass substrates

    Directory of Open Access Journals (Sweden)

    Stella Kiel

    2012-03-01

    Full Text Available This work describes a general method for the preparation of salt nanoparticles (NPs made from an aqueous solution of ionic compounds (NaCl, CuSO4 and KI. These nanoparticles were created by the application of ultrasonic waves to the aqueous solutions of these salts. When the sonication was carried out in the presence of a glass microscope slide, a parylene-coated glass slide, or a silicon wafer the ionic NPs were embedded in these substrates by a one-step, ultrasound-assisted procedure. Optimization of the coating process resulted in homogeneous distributions of nanocrystals, 30 nm in size, on the surfaces of the substrates. The morphology and structure of each of the coatings were characterized by physical and chemical methods, such as X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS. After 24 h of leaching into water the nanoparticles of the inorganic salts were still present on the slides, and complete leaching of nanoparticles occurred only after 96 h. A mechanism of the ultrasound-assisted coating is proposed.

  1. Synthesis and physicochemical and dynamic mechanical properties of a water-soluble chitosan derivative as a biomaterial.

    Science.gov (United States)

    Cho, Jaepyoung; Grant, Justin; Piquette-Miller, Micheline; Allen, Christine

    2006-10-01

    The physicochemical and rheological properties of a water-soluble chitosan (WSC) derivative were characterized in order to facilitate its use as a novel material for biomedical applications. The WSC was prepared by conjugating glycidyltrimethylammonium chloride (GTMAC) onto chitosan chains. Varying the molar ratio of GTMAC to chitosan from 3:1 to 6:1 produced WSCs with a degree of substitution (DS) that ranged from 56% to 74%. The WSC with the highest DS was soluble in water up to concentrations of 25 g/dL at room temperature. An increase in the polymer concentration gradually increased both the pH and conductivity of the WSC solutions. The rheological properties of the WSC solutions were found to be dependent on the salt and polymer concentrations as well as the DS value. In the absence of salt, the rheological behavior of the WSC was found to be typical of that for a polyelectrolyte in the dilute solution regime. However, the addition of salt decreased the viscosity of the polymer solution due to the reduction of electrostatic repulsions by the positively charged trimethylated ammonium groups of the WSC. In the concentrated regime, the viscosity of the WSCs was found to follow a power-law expression. The lowest DS WSC had the more favorable viscoelastic properties that were attributed to its high molecular weight, as confirmed by the stress relaxation spectra and intrinsic viscosity measurements. The effect of DS on the degree of interaction between WSC and the lipid egg phosphatidylcholine was investigated by FTIR analysis. Overall, the lower DS WSC had enhanced rheological properties and was capable of engaging in stronger intermolecular physical interactions.

  2. 羧基改性聚乙烯醇的制备及水溶性研究%Preparation and water soluble research for carboxyl modified polyvinyl alcohol

    Institute of Scientific and Technical Information of China (English)

    江龙; 杨同禄; 淡宜

    2014-01-01

    Polyvinyl alcohol (PVA) with high alcoholysis degree but low crystallinity and high water-solubility was achieved by copolymerization of vinyl acetate (VAc) with acrylic acid (AA) and following alcoholysis. The chemical structures of the obtained polymers were characterized by FTIR and 1H NMR. The influence of AA unit on the crystallinity and water solubility of the modified PVA was investigated by XRD, UV-Vis, and the results indicated that high suppression of the crystallization and significant enhancement of the water solubility were achieved through AA modification. Moreover, the rheological investigation suggested that the relative strength of hydrogen bonding interactions existing between PVA chains was enhanced after AA modification, affording the PVA aqueous solution the possibility of withstanding apparent viscosity under a high shear rate.%通过丙烯酸(AA)与乙酸乙烯酯(VAc)共聚进而醇解的方法合成出具有高醇解度、低结晶度的丙1烯酸改性聚乙烯醇。通过FT-IR和H-NMR对聚合物的化学结构进行了表征;通过XRD、UV-Vis、剪切流变测试等手段研究了丙烯酸结构单元含量对改性PVA的结晶性能、水溶性能和溶液表观黏度的影响。结果显示,通过引入适量丙烯酸结构单元,可降低PVA结晶度,提高PVA水溶性,增强PVA水溶液表观黏度的剪切稳定性。

  3. An Electrochemical Study of Two Self-Dopable Water-Soluble Aniline Derivatives: Electrochemical Deposition of Copolymers

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2012-01-01

    Full Text Available An electrochemical study of two water-soluble aniline derivatives, N-(3-sulfopropyl aniline (AnPS and N-(3-sulfopropyl p-aminodiphenylamine (DAnPS, in aqueous acidic electrolytic solutions containing different kinds of doping anions (Cl −, SO4 2−, and ClO4 − was carried out. At sufficiently high anodic potential, the sulfonated aniline derivatives undergo oxidation processes yielding cation-radical and dimer intermediates, but no polymer deposition was observed on the working electrode surface. Experimental results showed that both aniline derivatives are electroactive compounds exhibiting redox behaviour in the range of potential of −0.2 V–1.6 V. Due to the self-doping effect induced by sulfonic groups, AnPS and DAnPS compounds have good electroactivity even in neat water solution. By adding a small amount of aniline into electrolytic system, thin layers of copolymers were deposited on the working electrode surface. The copolymer layers formed on the electrodes show a highly orientational and positional order, confirmed by AFM and XRD spectroscopic techniques. During the anodic oxidation processes some distinct colour changes were observed.

  4. Synthesis and characterization of a novel water-soluble cationic diblock copolymer with star conformation by ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuzhao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Miaomiao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); Zheng, Anna [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining, E-mail: hxiao@unb.ca [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)

    2014-10-01

    A water-soluble cationic diblock copolymer, CD-PAM-b-PMeDMA, was synthesized through atom transfer radical polymerization (ATRP) from a β-cyclodextrin (CD) macroinitiator with 10-active sites (10Br-β-CD). In order to reduce the cytotoxicity of the CD-PAM-b-PMeDMA, biocompatible polyacrylamide (PAM) was first introduced onto the surface of β-CD as a scaffold structure by ATRP using the 10Br-β-CD as a macroinitiator. The reaction conditions of AM were explored and optimized. The ATRP of [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (MeDMA) was also performed to synthesize the second cationic block using the resulting CD-PAM as a macroinitiator. The resulting diblock copolymer shows an increased hydrodynamic radius in aqueous solution with a pretty low concentration compared with β-CD. In addition, it appears a near-uniform coniform after being deposited on mica ascribed to the presence of an asymmetric 10-arm structure. - Highlights: • A 10-arm diblock polymer was prepared by ATRP for the potential use as a non-viral gene delivery. • PAM was first synthesized in a controlled manner considering its biocompatibility. • The hydrodynamic radius of the copolymer in aqueous solution increase to 130 nm from 7.5 nm of CD. • The copolymer appears coniform after deposited on mica surface due to the charge attraction.

  5. Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure

    Science.gov (United States)

    Namvari, Mina; Biswas, Chandra S.; Galluzzi, Massimiliano; Wang, Qiao; Du, Bing; Stadler, Florian J.

    2017-01-01

    Nanohybrids of graphene with water soluble polymer were synthesized using ‘grafting from’ method. GO, prepared by modified Hummers’ method, was first reacted with sodium azide. Alkyne-terminated RAFT-CTA was synthesized by reaction of propargyl alcohol and S-1-dodecyl-S’-(α,α‘-dimethyl-α”-acetic acid) trithiocarbonate. RAFT-CTA was grafted onto the GO sheets by facile click-reaction and subsequently, N-isopropylacrylamide (NIPAM) and N-ethyleacrylamide (NEAM) were polymerized on graphene sheets via RAFT polymerization method. The respective copolymers with different ratios were also prepared. The nanohybrids were characterized by FTIR, XRD, TGA, Raman, SEM, and AFM. Both SEM and AFM clearly showed rod-like structures for rGO-PNEAM. XRD showed a small peak at 2θ = 19.21°, corresponding to d-spacing ≈ 4.6 Å. In addition, the nanohybrids showed a very broad temperature range for the LCST in water between ca. 30 and 70 °C. PMID:28291225

  6. Synthesis, photophysical and antimicrobial activity of new water soluble ammonium quaternary benzanthrone in solution and in polylactide film.

    Science.gov (United States)

    Staneva, Desislava; Vasileva-Tonkova, Evgenia; Makki, Mohamad Saleh I; Sobahi, Tariq Rashad; Abdеl-Rahman, Reda Mohamed; Asiri, Abdullah M; Grabchev, Ivo

    2015-02-01

    The synthesis of a new cationic water soluble fluorescent 1-[(7-oxo-7H-benzo[de]anthracen-3-ylcarbamoyl)-methyl]-triethylammonium chloride (B) has been described. Due to the presence of the quaternary amino group, the compound is soluble in water. Its photophysical characteristics in aqueous solution and organic solvents with different polarity have been determined using absorption and fluorescence spectroscopy. The photostability of compound B has been investigated in aqueous media. The newly synthesized compound has been tested in vitro for its antimicrobial activity against eight bacterial and two yeasts cultures. The results obtained suggest that the newly synthesized compound is effective in treating the relevant pathogens and is suitable in designing new effective antimicrobial preparations. The incorporation of the compound into thin polylactic acid film and its release into water solution has been also investigated. It was demonstrated that the compound released from the polymer polylactic acid matrix exhibited a prolonged good antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Solution Properties of Water-Soluble “Smart” Poly(N-acryloyl-N′-ethyl piperazine-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    G. Roshan Deen

    2012-01-01

    Full Text Available Water-soluble copolymers of N-acryloyl-N′-ethylpiperazine (AcrNEP with methyl methacrylate (MMA were synthesized to high conversion by free-radical solution polymerization. The composition of the copolymers was determined using Fourier Transform Infra-red Spectroscopy (FTIR. Copolymers containing AcrNEP content above 44 mol% were readily soluble in water and exhibited the critical solution temperature behavior. The copolymers were strongly responsive to changes in pH of the external medium due to the presence of tertiary amine functions that could be protonated at low pH. The influence of various factors such as copolymer composition, pH, temperature, salt and surfactant concentration on the LCST of the copolymers were systematically studied. The intrinsic viscosity of the copolymers in dimethyl formamide decreased with increase in temperature due to a decrease in thermodynamic affinity between polymer chains and solvent molecules. The viscosity behavior of the copolymers in sodium chloride solution was similar to that of classical polyelectrolytes and hydrophobically modified polyacrylate systems.

  8. Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure

    Science.gov (United States)

    Namvari, Mina; Biswas, Chandra S.; Galluzzi, Massimiliano; Wang, Qiao; Du, Bing; Stadler, Florian J.

    2017-03-01

    Nanohybrids of graphene with water soluble polymer were synthesized using ‘grafting from’ method. GO, prepared by modified Hummers’ method, was first reacted with sodium azide. Alkyne-terminated RAFT-CTA was synthesized by reaction of propargyl alcohol and S-1-dodecyl-S’-(α,α‘-dimethyl-α”-acetic acid) trithiocarbonate. RAFT-CTA was grafted onto the GO sheets by facile click-reaction and subsequently, N-isopropylacrylamide (NIPAM) and N-ethyleacrylamide (NEAM) were polymerized on graphene sheets via RAFT polymerization method. The respective copolymers with different ratios were also prepared. The nanohybrids were characterized by FTIR, XRD, TGA, Raman, SEM, and AFM. Both SEM and AFM clearly showed rod-like structures for rGO-PNEAM. XRD showed a small peak at 2θ = 19.21°, corresponding to d-spacing ≈ 4.6 Å. In addition, the nanohybrids showed a very broad temperature range for the LCST in water between ca. 30 and 70 °C.

  9. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Leenheer, J.A.; Brown, G.K.; Cabaniss, S.E. [Geological Survey, Denver, CO (United States); MacCarthy, P. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemistry

    1998-08-15

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca{sup 2+} ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The metal binding fraction was characterized by quantitative {sup 13}C NMR, {sup 1}H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca{sup 2+} binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.

  10. Water-soluble UV curable urethane methyl acrylate coating:preparation and properties

    Institute of Scientific and Technical Information of China (English)

    魏燕彦; 罗英武; 李宝芳; 李伯耿

    2004-01-01

    Two kinds of water-soluble and ultraviolet (UV) curable oligomers were synthesized and characterized. The oligomers were evaluated as resins for water-based UV curable coating. The rheology of the two oligomers' aqueous so-lutions was investigated in terms of solid fraction, pH dependence, and temperature dependence. The solutions were found to be Newtonian fluid showing rather low viscosity even at high solid fraction of 0.55. The drying process of the coatings and the properties of the cured coatings were studied by comparing them with water-dispersed UV-curable polyurethane methyl acrylate. It was evident that the water-soluble coating dried more slowly; and that the overall properties were inferior to those of the water-dispersed coating.

  11. Water-soluble UV curable urethane methyl acrylate coating:preparation and properties

    Institute of Scientific and Technical Information of China (English)

    魏燕彦; 罗英武; 李宝芳; 李伯耿

    2004-01-01

    Two kinds of water-soluble and ultraviolet (UV) curable oligomers were synthesized and characterized. The oligomers were evaluated as resins for water-based UV curable coating. The rheology of the two oligomers' aqueous solutions was investigated in terms of solid fraction, pH dependence, and temperature dependence. The solutions were found to be Newtonian fluid showing rather low viscosity even at high solid fraction of 0.55. The drying process of the coatings and the properties of the cured coatings were studied by comparing them with water-dispersed UV-curable polyurethane methyl acrylate. It was evident that the water-soluble coating dried more slowly; and that the overall properties were inferior to those of the water-dispersed coating.

  12. Rapid screening of water soluble arsenic species in edible oils using dispersive liquid-liquid microextraction.

    Science.gov (United States)

    López-García, Ignacio; Briceño, Marisol; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2015-01-15

    A methodology for the non-chromatographic screening of the main arsenic species present in edible oils is discussed. Reverse dispersive liquid-liquid microextraction was used to extract water soluble arsenic compounds (inorganic arsenic, methylarsonate, dimethylarsinate and arsenobetaine) from the edible oils into a slightly acidic aqueous medium. The total arsenic content was measured in the extracts by electrothermal atomic absorption spectrometry using palladium as the chemical modifier. By repeating the measurement using cerium instead of palladium, the sum of inorganic arsenic and methylarsonate was obtained. The detection limit was 0.03 ng As per gram of oil. Data for the total and water-soluble arsenic levels of 29 samples of different origin are presented. Inorganic arsenic was not found in any of the samples marketed as edible oils.

  13. Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds

    Directory of Open Access Journals (Sweden)

    Cira Mollings Puentes

    2017-01-01

    Full Text Available The utility of phosphated α-, β- and γ-cyclodextrins as water-soluble chiral NMR solvating agents for cationic substrates is described. Two sets of phosphated cyclodextrins, one with degrees of substitution in the 2–6 range, the other with degrees of substitution in the 6–10 range, are examined. Results with 33 water-soluble cationic substrates are reported. We also explored the possibility that the addition of paramagnetic lanthanide ions such as praseodymium(III and ytterbium(III further enhances the enantiomeric differentiation in the NMR spectra. The chiral differentiation with the phosphated cyclodextrins is compared to prior results obtained with anionic carboxymethylated cyclodextrins. There are a number of examples where a larger differentiation is observed with the phosphated cyclodextrins.

  14. CYCLODEXTRIN INCLUSION COMPLEX TO ENHANCE SOLUBILITY OF POORLY WATER SOLUBLE DRUGS: A REVIEW

    Directory of Open Access Journals (Sweden)

    V.B. Chaudhary * 1 and J. K. Patel 2

    2013-01-01

    Full Text Available Low solubility compounds show dissolution rate limited absorption and hence poor absorption, distribution and target organ delivery. Improvement of aqueous solubility in such a case is valuable goal to improve therapeutic efficacy. Complexation with CDs by different methods like physical mixing, melting, kneding, spray drying, freeze drying, co-evaporation has been reported to enhance the solubility, dissolution rate and bioavability of poorly water soluble drugs. The formation of inclusion complex can be confirmed by DSC, FTIR, XRD and SEM study. This review aims to assess the use of cyclodextrines as complexing agents to enhance the solubility of poorly soluble drugs and hence to resolve the many issues associated with developing and commercializing poorly water soluble drugs.

  15. Photophysical Properties and Singlet Oxygen Generation Efficiencies of Water-Soluble Fullerene Nanoparticles

    Science.gov (United States)

    Stasheuski, Alexander S; Galievsky, Victor A; Stupak, Alexander P; Dzhagarov, Boris M; Choi, Mi Jin; Chung, Bong Hyun; Jeong, Jin Young

    2014-01-01

    As various fullerene derivatives have been developed, it is necessary to explore their photophysical properties for potential use in photoelectronics and medicine. Here, we address the photophysical properties of newly synthesized water-soluble fullerene-based nanoparticles and polyhydroxylated fullerene as a representative water-soluble fullerene derivative. They show broad emission band arising from a wide-range of excitation energies. It is attributed to the optical transitions from disorder-induced states, which decay in the nanosecond time range. We determine the kinetic properties of the singlet oxygen (1O2) luminescence generated by the fullerene nanoparticles and polyhydroxylated fullerene to consider the potential as photodynamic agents. Triplet state decay of the nanoparticles was longer than 1O2 lifetime in water. Singlet oxygen quantum yield of a series of the fullerene nanoparticles is comparably higher ranging from 0.15 to 0.2 than that of polyhydroxylated fullerene, which is about 0.06. PMID:24893622

  16. Biodegradation of the water-soluble gasoline components in a novel hybrid bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De-Jesus, A.; Lara-Rodriguez, A.; Santoyo-Tepole, F.; Juarez-Ramirez, C.; Cristiani-Urbina, E.; Ruiz-Ordaz, N.; Galindez Mayer, J. [Escuela Nacional de Ciencias Biologicas, del Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, Carpio y Plan de Ayala, ' ' Centro Operativo Naranjo' ' , Mexico, D.F. (Mexico)

    2003-07-01

    A novel hybrid bioreactor was designed to remove volatile organic compounds from water contaminated with water-soluble gasoline components, and the performance of this new bioreactor was investigated. It was composed of two biotrickling filter sections and one biofilter section. The liquid phase pollutants were removed by a mixed culture in the biotrickling filter sections and the gas phase pollutants stripped by air injection in the biofilter section. The specific rates of chemical oxygen demand (COD) removal obtained in the reactor were directly proportional to the pollutant-loading rate. A stable operation of the hybrid bioreactor was attained for long periods of time. The bioreactor had the potential to simultaneously treat a complex mixture of volatile organic compounds, e.g., those present in the water-soluble fraction of gasoline, as well as the capacity to readily adapt to changing operational conditions, such as an increased contaminant loading, and variations in the airflow rate. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  17. Water soluble nanocurcumin extracted from turmeric challenging the microflora from human oral cavity.

    Science.gov (United States)

    Gopal, Judy; Muthu, Manikandan; Chun, Se-Chul

    2016-11-15

    Water soluble nanocurcumin prepared from commercial turmeric powders was compared against ethanol extracted curcumin particles. The oral microflora from five different human volunteers was collected and the efficacy of solvent extracted curcumin versus water extracted nanocurcumin was demonstrated. Nanocurcumin activity against oral microflora confirms its antimicrobial potency. Confocal laser scanning microscopic results revealed the enhanced entry of nanocurcumin particles into microbial cells. The nanosized nature of nanocurcumin appears to have led to increased cellular interaction and thereby efficient destruction of microbial cells in the mouth. In addition, solubility of nanocurcumin is also believed to be a crucial factor behind its successful antimicrobial activity. This study proves that the bioactivity of a compound is greatly influenced by its solubility in water. This work recommends the use of water soluble nanocurcumin (extracted from turmeric) as potent substitute for curcumin in dental formulations.

  18. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment.

    Science.gov (United States)

    Pierce, Brian C; Wichmann, Jesper; Tran, Tam H; Cheetamun, Roshan; Bacic, Antony; Meyer, Anne S

    2016-06-25

    In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than 70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation of soluble soy polysaccharides and opens a new range of opportunities for this abundant and underutilized material in future research and industrial applications.

  19. Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds

    Science.gov (United States)

    Puentes, Cira Mollings

    2017-01-01

    Summary The utility of phosphated α-, β- and γ-cyclodextrins as water-soluble chiral NMR solvating agents for cationic substrates is described. Two sets of phosphated cyclodextrins, one with degrees of substitution in the 2–6 range, the other with degrees of substitution in the 6–10 range, are examined. Results with 33 water-soluble cationic substrates are reported. We also explored the possibility that the addition of paramagnetic lanthanide ions such as praseodymium(III) and ytterbium(III) further enhances the enantiomeric differentiation in the NMR spectra. The chiral differentiation with the phosphated cyclodextrins is compared to prior results obtained with anionic carboxymethylated cyclodextrins. There are a number of examples where a larger differentiation is observed with the phosphated cyclodextrins.

  20. Chemical composition, properties, and antimicrobial activity of the water-soluble pigments from Castanea mollissima shells.

    Science.gov (United States)

    You, Ting-Ting; Zhou, Su-Kun; Wen, Jia-Long; Ma, Chao; Xu, Feng

    2014-02-26

    Agricultural residues Castanea mollissima shells represent a promising resource for natural pigments for the food industry. This study provides a comprehensive and systematic evaluation of water-soluble pigments (CSP) from C. mollissima shells, which were obtained by 50% ethanol with microwave-assisted extraction. Spectroscopic techniques (UV, FT-IR, (13)C NMR), elemental analysis, and chromatographic techniques (HPAEC, GPC) revealed that the main components in the CSP were flavonoids procyanidin B3 (condensed tannin), quercetin-3-O-glycoside, and steroidal sapogenins. As a consequence, CSP was water-soluble and presented significant DPPH scavenge capacity (EC50 value was 0.057 mg/mL). Specially, CSP gave excellent antibacterial activity, and even better than 5% aqueous phenol in some case. Moreover, CSP was practically nontoxic and exhibited good stability with temperature, natural light, and metal ions. These outstanding properties will enlarge the application of CSP for natural food additives production.

  1. Design, synthesis and in vitro evaluation of novel water-soluble prodrugs of buparvaquone.

    Science.gov (United States)

    Mäntylä, Antti; Rautio, Jarkko; Nevalainen, Tapio; Keski-Rahkonen, Pekka; Vepsälainen, Jouko; Järvinen, Tomi

    2004-10-01

    Novel water-soluble phosphate prodrugs (2b-5b) of buparvaquone-oxime (1a) and buparvaquone-O-methyloxime (1b) were synthesized and evaluated in vitro as potential oral prodrugs against leishmaniasis. Buparvaquone-oxime (1a), and most probably also buparvaquone-O-methyloxime (1b), released the parent buparvaquone via a cytochrome P450-catalysed reaction. The prodrugs 2b-5b showed significantly higher aqueous solubilities (>4 mg/ml) than buparvaquone ( 8 days). Although buparvaquone-oxime (1a) has been shown to undergo a cytochrome P450-catalysed oxidation in liver microsomes to the parent buparvaquone and behave as a novel bioreversible prodrug, its usefulness is limited in oral drug delivery due to its poor aqueous solubility, like buparvaquone itself. Further phosphorylation of an oxime form of buparvaquone significantly increased water solubility, and this novel approach is therefore useful to improve physicochemical properties of drugs containing a ketone functional group.

  2. Biosynthetic Studies on Water-Soluble Derivative 5c (DTX5c

    Directory of Open Access Journals (Sweden)

    José J. Fernández

    2012-10-01

    Full Text Available The dinoflagellate Prorocentrum belizeanum is responsible for the production of several toxins involved in the red tide phenomenon known as Diarrhetic Shellfish Poisoning (DSP. In this paper we report on the biosynthetic origin of an okadaic acid water-soluble ester derivative, DTX5c, on the basis of the spectroscopical analysis of 13C enriched samples obtained by addition of labelled sodium [l-13C], [2-13C] acetate to artificial cultures of this dinoflagellate.

  3. Mechanisms and Regulation of Intestinal Absorption of Water-soluble Vitamins: Cellular and Molecular Aspects

    DEFF Research Database (Denmark)

    Nexø, Ebba; Said, Hamid M

    2012-01-01

    The water-soluble vitamins represent a group of structurally and functionally unrelated compounds that share the common feature of being essential for normal cellular functions, growth, and development. With the exception of some endogenous production of niacin, human cells cannot synthesize...... or deficiency. An impaired absorptive function occurs in a variety of conditions including congenital defects in the digestive or absorptive processes, intestinal diseases, drug interaction, and chronic alcohol use....

  4. Water-soluble phenylpropanoid constituents from aerial roots of Ficus microcarpa.

    Science.gov (United States)

    Ouyang, Ming-An; Chen, Pei-Qing; Wang, Si-Bing

    2007-07-20

    New water-soluble phenylpropanoid constituents, ficuscarpanoside A, guaiacylglycerol 9-O-beta-D-glucopyranoside, and erythro-guaiacylglycerol 9-O-beta-D-glucopyranoside, along with known guaiacylglycerol, erythro-guaiacylglycerol, 4-methoxy guaiacylglycerol 7-O-beta-D-glucopyranoside, and 3-(4-hydroxy-3-methoxy phenyl) propan-1,2-diol, have been isolated from the aerial roots of Ficus microcarpa. Their structures were elucidated on the basis of 1D and 2D NMR experiments.

  5. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured...... the concentrations reached are typically below the limit of detection. The following guidelines were established: for compounds with Sapp >1 mg/mL, the disc method is recommended. For compounds with Sapp

  6. Phytoactivity of secondary compounds in aromatic plants by volatile and water-soluble ways of release

    OpenAIRE

    A. S. Dias; Dias, L. S.

    2005-01-01

    Phytoactivity should be expected as a generalized trait of secondary plant compounds if their primary role is defence against co-occurring plants, and volatilization should be their predominant way of release in dry climates while in wet climates water leaching should prevail. Bioassays were designed to compare the ability of volatiles and water-solubles of four aromatic species thriving in dry environments (Cistus salvifolius L., Foeniculum vulgare Miller, Myrtus communis L., and Rosmarinus ...

  7. Lipid-nanoemulsions as drug delivery carriers for poorly-water soluble drug

    OpenAIRE

    Veerendra K. Nanjwade; F. V. Manvi; Basavaraj K. Nanjwade; Katare, O P

    2013-01-01

    To enhance the bioavailability of the poorly water-soluble drug Aceclofenac, a lipidnanoemulsion comprising ethanolic solution of phospholipid 90 G and tween 80 in 1:1 ratio (Smix), triacetin and anseed oil as oil phase and distilled water as aqueous phase, in the ratio of 55:15:30 (% w/w) was developed by constructing pseudo-ternary phase diagrams and evaluated for viscosity, % transmittance, and surface morphology of nanoemulsions. In vitro diffusion (release) of Aceclofenac from three diff...

  8. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan.

    Science.gov (United States)

    Chen, Yuxiang; Li, Jianna; Li, Qingqing; Shen, Yuanyuan; Ge, Zaochuan; Zhang, Wenwen; Chen, Shiguo

    2016-06-05

    Chitosan (CS) has attracted much attention due to its good antibacterial activity and biocompatibility. However, CS is insoluble in neutral and alkaline aqueous solution, limiting its biomedical application to some extent. To circumvent this drawback, we have synthesized a novel N-quaternary ammonium-O-sulfobetaine-chitosan (Q3BCS) by introducing quaternary ammonium compound (QAC) and sulfobetaine, and its water-solubility, antibacterial activity and biocompatibility were evaluated compare to N-quaternary ammonium chitosan and native CS. The results showed that by introducing QAC, antibacterial activities and water-solubilities increase with degrees of substitution. The largest diameter zone of inhibition (DIZ) was improved from 0 (CS) to 15mm (N-Q3CS). And the water solution became completely transparent from pH 6.5 to pH 11; the maximal waters-solubility was improved from almost 0% (CS) to 113% at pH 7 (N-Q3CS). More importantly, by further introducing sulfobetaine, cell survival rate of Q3BCS increased from 30% (N-Q3CS) to 85% at 2000μg/ml, which is even greater than that of native CS. Furthermore, hemolysis of Q3BCS was dropped sharply from 4.07% (N-Q3CS) to 0.06%, while the water-solution and antibacterial activity were further improved significantly. This work proposes an efficient strategy to prepare CS derivatives with enhanced antibacterial activity, biocompatibility and water-solubility. Additionally, these properties can be finely tailored by changing the feed ratio of CS, glycidyl trimethylammonium chloride and NCO-sulfobetaine.

  9. Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation

    OpenAIRE

    Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.

    2012-01-01

    Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weigh...

  10. Prediction of water solubilities for selected PCDDs/PCCDFs with COSMO-RS model

    Energy Technology Data Exchange (ETDEWEB)

    Oleszek-Kudlak, S.; Grabda, M.; Shibata, E.; Nakamura, T. [Inst. of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku Univ., Sendai (Japan); Rosik-Dulewska, C. [Inst. of Environmental Engineering of the Polish Academy of Sciences, Zabrze (Poland)

    2004-09-15

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are well identified contaminants ubiquitous in the environment. Of the various parameters that affect the fate and behavior of environmental organic compounds, water solubility is one of the most important. However, when we are studying the aqueous behavior of organic chemicals, we should also take into consideration and evaluate several parameters (temperature, salinity, dissolved organic matter) influencing their solubility. Among the 210 congeners (mono- to octa-chlorinated) of PCDDs and PCDFs, water solubility values are available for a few congeners only. The reported aqueous solubilities of PCDDs and PCDFs are often scattered, despite most of them having been measured by the generator column method, recognized as the most accurate for the determination of the water solubility of hydrophobic organic chemicals. These discrepancies reflect an important problem associated with difficulties in the preparation of the saturated solution and in the analytical measurements, particularly of compounds with a solubility below 1 ppb. In practice, the high cost of the experimental determinations also limits the field of research. In recent years, investigators have developed a number of calculational methods to predict the water solubility of organic chemicals. One of them is the Conductor-like Screening Model for Real Solvents (COSMO-RS) introduced by Klamt et al. This model was successfully used for finding the solubilities of chlorobenzenes (ClBZs) at a wider range of temperatures (from 5 to 60 C) and in a salty environment. In this study, we have applied COSMO-RS to determine the aqueous solubilities of 19 PCDDs/ PCDFs at 25 C. Additionally, we measured the solubilities of 7 PCDDs/PCDFs using the generator column method at 25 C. We used these data and those available from the literature to estimate the accuracy of the COSMO-RS calculations.

  11. Effect of New Water-Soluble Dendritic Phthalocyanines on Human Colorectal and Liver Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ebru YABAŞ

    2017-08-01

    Full Text Available Human hepatocellular carcinoma (HepG2 cells and colorectal adenocarcinoma (DLD-1 cells were treated with the synthesized water soluble phthalocyanine derivatives to understand the effect of the compounds both on colorectal and liver cancer cells. The compounds inhibited cell proliferation and displayed cytotoxic effect on these cancer cell lines however; the effect of the compounds on healthy control fibroblast cell line was comparatively lower. The compounds can be employed for cancer treatment as anticancer agents.

  12. Filterable water-soluble organic nitrogen in fine particles over the southeastern USA during summer

    Science.gov (United States)

    Rastogi, Neeraj; Zhang, Xiaolu; Edgerton, Eric S.; Ingall, Ellery; Weber, Rodney J.

    2011-10-01

    Time integrated high-volume PM 2.5 samples were collected separately during day and night from 1 August to 10 September 2008 at a paired urban (Atlanta)-rural (Yorkville) sites as part of the August Mini-Intensive Gas and Aerosol Study (AMIGAS). Selected filters ( n = 96, 48 for each site) were analyzed for a suite of water-soluble chemical species, including major inorganic ions, water-soluble organic carbon (WSOC), water-soluble total and inorganic nitrogen (WSTN and WSIN), and levoglucosan. Semi-continuous analyses of PM 2.5 mass, soluble ions, WSOC, and gaseous O 3, SO 2, NO, NO 2, NO y, CO, and meteorological parameters were also carried out in parallel. This study focuses on the characteristics of filterable water-soluble organic nitrogen (WSON), estimated by the difference in the measured concentrations of WSTN and WSIN, determined from aqueous filter extracts. At both sites, WSON varied from below the limit of detection (25 ng-N m -3) to ˜600 ng-N m -3 and on average contributed ˜10% to WSTN mass, with the majority of soluble nitrogen being ammonium (˜82%). WSON:WSOC (or N:C) mass ratios ranged between 0 and 27% at both the sites with a median value of ˜5%, similar to what has been reported in another study in the southeastern USA. At both the urban and rural sites median nighttime levels of WSON and N:C were observed to be consistently higher than daytime values. Based on correlation analyses, daytime WSON sources appeared different than nighttime sources, especially at the urban site. Overall, the data suggest the importance of coal-combustion (e.g., link to SO 2), vehicle emissions, soil dust and biomass burning as WSON sources, and that nitrogenous organic compounds are likely a fairly small fraction of the secondary organic aerosol for this location during summer.

  13. Preparation and characterization of complexes of RE3+ with furfural modified water-soluble chitosan

    Institute of Scientific and Technical Information of China (English)

    WANG Maoyuan; QIU Ligan; MA Guilin

    2008-01-01

    Degraded chitosan, with highly water-solubility, was obtained by the oxidation of chitosan with H2O2, and then reacted with furfural The final product coordinated with the rare earth ions (RE3+ = Sm3+,Eu3+), which led to the formation of the complexes. The prepared complexes were characterized with Inflated Spectroscopy (IR), Ultra Violet (UV), fluorescence, X-Ray Diffraction (XRD), and Thermogravimetric-Differential Scanning Calorimetry (TG-DSC) measurements.

  14. Structural features of a water soluble gum polysaccharide from Murraya paniculata fruits.

    Science.gov (United States)

    Mondal, S K; Ray, B; Ghosal, P K; Teleman, A; Vuorinen, T

    2001-10-22

    A water soluble gum polysaccharide was isolated from Murraya paniculata fruits. Hydrolytic experiments, methylation analysis, periodate oxidation studies and NMR data revealed that the polysaccharide was extensively branched and it consisted of 1,3-, and 1,3,6-linked beta-D-galactopyranosyl units, terminal beta-D-galactopyranosyl units and terminal alpha-D-glucopyranosyl 1,4-beta-D-galactopyranosyl units. Small amounts of 4-O-methylglucuronic acid residues were also present.

  15. NASA Workmanship Hot Topics: Water Soluble Flux and ESD Charge Device Model

    Science.gov (United States)

    Plante, Jeannette F.

    2009-01-01

    This slide presentation reviews two topics of interest to NASA Workmanship: (1) Water Soluble Flux (WSF) and Electrostatic Discharge (ESD) safety. In the first topic, WSF, the presentation reviews voiding and the importance of cleanliness in using WSF for welding and soldering operations. The second topic reviews the NASA-HDBK-8739.21 for Human Body Model, and Machine Model safety methods, and challenges associated with the Charged Device Model (CDM)

  16. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1: preparation, stability and dissolution enhancement.

    Science.gov (United States)

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka; Strachan, Clare; Rades, Thomas

    2013-11-01

    Poor aqueous solubility of an active pharmaceutical ingredient (API) is one of the most pressing problems in pharmaceutical research and development because up to 90% of new API candidates under development are poorly water soluble. These drugs usually have a low and variable oral bioavailability, and therefore an unsatisfactory therapeutic effect. One of the most promising approaches to increase dissolution rate and solubility of these drugs is the conversion of a crystalline form of the drug into its respective amorphous form, usually by incorporation into hydrophilic polymers, forming glass solutions. However, this strategy only led to a small number of marketed products usually because of inadequate physical stability of the drug (crystallization). In this study, we investigated a fundamentally different approach to stabilize the amorphous form of drugs, namely the use of amino acids as small molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug and the amino acids arginine, phenylalanine, tryptophan and tyrosine were prepared by vibrational ball milling. Solid-state characterization with X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed that the various blends could be prepared as homogeneous, single phase co-amorphous formulations indicated by the appearance of an amorphous halo in the XRPD diffractograms and a single glass transition temperature (Tg) in the DSC measurements. In addition, the Tgs of the co-amorphous mixtures were significantly increased over those of the individual drugs. The drugs remained chemically stable during the milling process and the co-amorphous formulations were generally physically stable over at least 6 months at 40 °C under dry conditions. The

  17. Characterization of human monocyte activation by a water soluble preparation of Aphanizomenon flos-aquae.

    Science.gov (United States)

    Pugh, N; Pasco, D S

    2001-11-01

    Aphanizomenon flos-aquae (AFA) is a fresh-water microalgae that is consumed as a nutrient-dense food source and for its health-enhancing properties. The current research characterizes the effect of a water soluble preparation from AFA on human monocyte/macrophage function and compares the effect of AFA with responses from known agents that modulate the immune system. At 0.5 pg/ml the AFA extract robustly activated nuclear factor kappa B (NF-kappa B) directed luciferase expression in THP-1 human monocytic cells to levels at 50% of those achieved by maximal concentrations (10 microg/ml) of bacterial lipopolysaccharide (LPS). In addition, the AFA extract substantially increased mRNA levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), and enhanced the DNA binding activity of NF-kappa B. The effects of AFA water soluble preparation were similar to the responses displayed by LPS, but clearly different from responses exhibited by tetradecanoyl phorbol acetate (TPA) and interferon-gamma (INF-gamma). Pretreatment of THP-1 monocytes with factors known to induce hyporesponsiveness suppressed both AFA-dependent and LPS-dependent activation. These results suggest that the macrophage-activating properties of the AFA water soluble preparation are mediated through pathways that are similar to LPS-dependent activation.

  18. Studies on Dissolution Enhancement of Prednisolone, a Poorly Water-Soluble Drug by Solid Dispersion Technique

    Directory of Open Access Journals (Sweden)

    Parvin Zakeri-Milani

    2011-06-01

    Full Text Available Introduction: Prednisolone is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble agent. The aim of the present study was to improve dissolution rate of a poorly water-soluble drug, prednisolone, by a solid dispersion technique. Methods: Solid dispersion of prednisolone was prepared with PEG 6000 or different carbohydrates such as lactose and dextrin with various ratios of the drug to carrier i.e., 1:10, 1:20 and 1:40. Solid dispersions were prepared by coevaporation method. The evaluation of the properties of the dispersions was performed using dissolution studies, Fourier-transform infrared spectroscopy and x-ray powder diffractometery. Results: The results indicated that lactose is suitable carriers to enhance the in vitro dissolution rate of prednisolone. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions prepared by dextrin as carrier. The results from infrared spectroscopy showed no well-defined drug–carrier interactions for coevaporates. Conclusion: Solid dispersion of a poorly water-soluble drug, prednisolone may alleviate the problems of delayed and inconsistent rate of dissolution of the drug.

  19. Encapsulation of poorly water-soluble drugs into organic nanotubes for improving drug dissolution.

    Science.gov (United States)

    Moribe, Kunikazu; Makishima, Takashi; Higashi, Kenjirou; Liu, Nan; Limwikrant, Waree; Ding, Wuxiao; Masuda, Mitsutoshi; Shimizu, Toshimi; Yamamoto, Keiji

    2014-07-20

    Hydrocortisone (HC), a poorly water-soluble drug, was encapsulated within organic nanotubes (ONTs), which were formed via the self-assembly of N-{12-[(2-α,β-d-glucopyranosyl) carbamoyl]dodecanyl}-glycylglycylglycine acid. The stability of the ONTs was evaluated in ten organic solvents, of differing polarities, by field emission transmission electron microscopy. The ONTs maintained their stable tubular structure in the highly polar solvents, such as ethanol and acetone. Furthermore, solution-state (1)H-NMR spectroscopy confirmed that they were practically insoluble in acetone at 25°C (0.015 mg/mL). HC-loaded ONTs were prepared by solvent evaporation using acetone. A sample with a 3/7 weight ratio of HC/ONT was analyzed by powder X-ray diffraction, which confirmed the presence of a halo pattern and the absence of any crystalline HC peak. HC peak broadening, observed by solid-state (13)C-NMR measurements of the evaporated sample, indicated the absence of HC crystals. These results indicated that HC was successfully encapsulated in ONT as an amorphous state. Improvements of the HC dissolution rate were clearly observed in aqueous media at both pH 1.2 and 6.8, probably due to HC amorphization in the ONTs. Phenytoin, another poorly water-soluble drug, also showed significant dissolution improvement upon ONT encapsulation. Therefore, ONTs can serve as an alternative pharmaceutical excipient to enhance the bioavailability of poorly water-soluble drugs.

  20. Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments

    Directory of Open Access Journals (Sweden)

    C. Baduel

    2010-05-01

    Full Text Available Major contributors to the organic aerosol include water-soluble macromolecular compounds (e.g. HULISWS: Water Soluble Humic LIke Substances. The nature and sources of HULISWS are still largely unknown. This work is based on a monitoring in six different French cities performed during summer and winter seasons. HULISWS analysis was performed with a selective method of extraction complemented by carbon quantification. UV spectroscopy was also applied for their chemical characterisation. HULISWS carbon represent an important contribution to the organic aerosol mass in summer and winter, as it accounts for 12–22% of Organic Carbon and 34–40% of Water Soluble Organic Carbon. We found strong differences in the optical properties (specific absorbance at 250, 272, 280 nm and E2/E3 ratio and therefore in the chemical structure between HULISWS from samples of summer- and wintertime. These differences highlight different processes responsible for emissions and formation of HULISWS according to the season, namely biomass burning in winter, and secondary processes in summer. Specific absorbance can also be considered as a rapid and useful indicator of the origin of HULISWS in urban environment.

  1. Synthesis and properties of amino acid functionalized water-soluble perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongshan; Li, Xuemei; Wei, Xiaofeng; Jiang, Tianyi; Wu, Junsen; Ren, Huixue [Shandong Jianzhu University, Jinan (China)

    2015-07-15

    We prepared amino acid functionalized water-soluble perylene diimides: N,N'-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N'-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N'-bi(Lglutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N'-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by {sup 1}H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H{sup +} led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1-2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

  2. Supercritical fluid particle design for poorly water-soluble drugs (review).

    Science.gov (United States)

    Sun, Yongda

    2014-01-01

    Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.

  3. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  4. A novel injectable water-soluble amphotericin B-arabinogalactan conjugate.

    Science.gov (United States)

    Falk, R; Domb, A J; Polacheck, I

    1999-08-01

    New, stable, highly water-soluble, nontoxic polysaccharide conjugates of amphotericin B (AmB) are described. AmB was conjugated by a Schiff-base reaction with oxidized arabinogalactan (AG). AG is a highly branched natural polysaccharide with unusual water solubility (70% in water). A high yield of active AmB was obtained with the conjugates which were similarly highly water soluble and which could be appropriately formulated for injection. They showed comparable MICs for Candida albicans and Cryptococcus neoformans (MICs, 0.1 to 0.2 microg/ml). The reduced AmB conjugate, which was synthesized at pH 11 for 48 h at 37 degrees C, was nonhemolytic and was much safer than conventional micellar AmB-deoxycholate. It was the least toxic AmB-AG conjugate among those tested with mice (maximal tolerated dose, 50 mg/kg of body weight), and histopathology indicated no damage to the liver or kidneys. This conjugate, similarly to the liposomal formulation (AmBisome), was more effective than AmB-deoxycholate in prolonging survival. It was more effective than both the liposomal and the deoxycholate formulations in eradicating yeast cells from target organs. The overall results suggest that after further development of the AmB-AG conjugate, it may be a potent agent in the treatment of fungal infections.

  5. Nanosizing of poorly water soluble compounds using rotation/revolution mixer.

    Science.gov (United States)

    Takatsuka, Takayuki; Endo, Tomoko; Jianguo, Yao; Yuminoki, Kayo; Hashimoto, Naofumi

    2009-10-01

    In this study, nanoparticles of various poorly water soluble compounds were prepared by wet milling that was carried out using a rotation/revolution mixer and zirconia balls. To be compared with Beads mill, rotation/revolution mixer has superior in very quick process (5 min) and needs very few amounts of zirconia balls (2.4 g) for pulverizing drugs to nanometer range. Phenytoin, indomethacin, nifedipine, danazol, and naproxen were selected as the standard poorly water soluble compounds. Various parameters of the rotation/revolution mixer were studied to decide the optimal pulverization conditions for the production of nanoparticles of the abovementioned compounds. The rotation/revolution speed, shape of the mixing vessel, amount of zirconia balls, and volume of the vehicle (methylcellulose solution) mainly affected the pulverization of the compounds. Using the mixer, phenytoin could be pulverized to nanoparticles within a few minutes. The particle size was confirmed by using a scanning electron microscope and a particle size analyzer. The crystallinity of the pulverized phenytoin particles was confirmed by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). It was observed that the pulverized phenytoin particles retained their crystallinity, and amorphous phenytoin was not detected. Particles of other poorly water soluble compounds were also reduced to the nanometer range by using this method.

  6. Water-Soluble Coenzyme Q10 Reduces Rotenone-Induced Mitochondrial Fission.

    Science.gov (United States)

    Li, Hai-Ning; Zimmerman, Mary; Milledge, Gaolin Z; Hou, Xiao-Lin; Cheng, Jiang; Wang, Zhen-Hai; Li, P Andy

    2017-02-11

    Parkinson's disease is a neurodegenerative disorder characterized by mitochondrial dysfunction and oxidative stress. It is usually accompanied by an imbalance in mitochondrial dynamics and changes in mitochondrial morphology that are associated with impaired function. The objectives of this study were to identify the effects of rotenone, a drug known to mimic the pathophysiology of Parkinson's disease, on mitochondrial dynamics. Additionally, this study explored the protective effects of water-soluble Coenzyme Q10 (CoQ10) against rotenone-induced cytotoxicity in murine neuronal HT22 cells. Our results demonstrate that rotenone elevates protein expression of mitochondrial fission markers, Drp1 and Fis1, and causes an increase in mitochondrial fragmentation as evidenced through mitochondrial staining and morphological analysis. Water-soluble CoQ10 prevented mitochondrial dynamic imbalance by reducing Drp1 and Fis1 protein expression to pre-rotenone levels, as well as reducing rotenone treatment-associated mitochondrial fragmentation. Hence, water-soluble CoQ10 may have therapeutic potential in treating patients with Parkinson's disease.

  7. Development and evaluation of natural gum-based extended release matrix tablets of two model drugs of different water solubilities by direct compression.

    Science.gov (United States)

    Ofori-Kwakye, Kwabena; Mfoafo, Kwadwo Amanor; Kipo, Samuel Lugrie; Kuntworbe, Noble; Boakye-Gyasi, Mariam El

    2016-01-01

    The study was aimed at developing extended release matrix tablets of poorly water-soluble diclofenac sodium and highly water-soluble metformin hydrochloride by direct compression using cashew gum, xanthan gum and hydroxypropylmethylcellulose (HPMC) as release retardants. The suitability of light grade cashew gum as a direct compression excipient was studied using the SeDeM Diagram Expert System. Thirteen tablet formulations of diclofenac sodium (∼100 mg) and metformin hydrochloride (∼200 mg) were prepared with varying amounts of cashew gum, xanthan gum and HPMC by direct compression. The flow properties of blended powders and the uniformity of weight, crushing strength, friability, swelling index and drug content of compressed tablets were determined. In vitro drug release studies of the matrix tablets were conducted in phosphate buffer (diclofenac: pH 7.4; metformin: pH 6.8) and the kinetics of drug release was determined by fitting the release data to five kinetic models. Cashew gum was found to be suitable for direct compression, having a good compressibility index (ICG) value of 5.173. The diclofenac and metformin matrix tablets produced generally possessed fairly good physical properties. Tablet swelling and drug release in aqueous medium were dependent on the type and amount of release retarding polymer and the solubility of drug used. Extended release of diclofenac (∼24 h) and metformin (∼8-12 h) from the matrix tablets in aqueous medium was achieved using various blends of the polymers. Drug release from diclofenac tablets fitted zero order, first order or Higuchi model while release from metformin tablets followed Higuchi or Hixson-Crowell model. The mechanism of release of the two drugs was mostly through Fickian diffusion and anomalous non-Fickian diffusion. The study has demonstrated the potential of blended hydrophilic polymers in the design and optimization of extended release matrix tablets for soluble and poorly soluble drugs by direct

  8. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    Science.gov (United States)

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations.

  9. Synthesis of poly(ethylene glycol)-graft-chitosan and using as ligand for fabrication of water-soluble quantum dots.

    Science.gov (United States)

    Jiang, Zhenchao; Zhao, Chunbao; Liu, Xiaoheng

    2014-03-01

    The synthesis of water-soluble, stable and biocompatible quantum dots (QDs) is of crucial importance for nanobiotechnology. A chitosan derivative, poly(ethylene glycol)-graft-chitosan (PEG-g-CS), was successfully synthesized and employed as ligand for the growth of CdSe QDs in aqueous solution. The bivalent Cd(2+) ions can coordinate with multiple amino-groups, thus they act as both inter- and intramolecular cross-linking agents. When the concentration of Cd(2+) was 0.2 mmol/L, the CdSe/PEG-g-CS aggregates formed an irregular cross-linked network; when the concentration was 1 mmol/L, a phenomenon of micro-phase separation emerged as a result of enrichment of CS phase; when the concentration was 2 mmol/L, spherical nanohybrids with the size of 30-50 nm were obtained. Moreover, a possible mechanism was proposed for the formation of CdSe/PEG-g-CS aggregates. Meantime, in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity tests against HepG2 cells were carried out, the corresponding results suggested that the CdSe QDs prepared using PEG-g-CS as ligand displayed very low cytotoxicity. Therefore, these water-soluble QD-polymer hybrids are expected to find promising applications in medical field.

  10. Immunomodulatory effect of water soluble extract separated from mycelium of Phellinus linteus on experimental atopic dermatitis

    Directory of Open Access Journals (Sweden)

    Hwang Ji

    2012-09-01

    Full Text Available Abstract Background Complementary and alternative medicine (CAM is becoming a popular treatment for modulating diverse immune disorders. Phellinus linteus (P. linteus as one of the CAMs has been used to modulate cancers, inflammation and allergic activities. However, little evidence has been shown about its underlying mechanism of action by which it exerts a beneficial role in dermatological disease in vivo. In this study, we examined the immunomodulatory effects of P. linteus on experimental atopic dermatitis (AD and elucidated its action mechanism. Methods The immunomodulatory effect of total extract of P. linteus on IgE production by human myeloma U266B1 cells was measured by ELISA. To further identify the effective components, P. linteus was fractionated into methanol soluble, water soluble and boiling water soluble extracts. Each extract was treated to U266B1 cells and primary B cells to compare their inhibitory effects on IgE secretion. To test the in vivo efficacy, experimental atopic dermatitis (AD was established by alternative treatment of DNCB and house dust mite extract into BALB/c mice. Water soluble extract of P. linteus (WA or ceramide as a positive control were topically applied to ears of atopic mouse every day for 2 weeks and progression of the disease was estimated by the following criteria: (a ear thickness, clinical score, (b serum total IgE, IgG and mite specific IgE level by ELSIA, (c histological examination of ear tissue by H&E staining and (d cytokine profile of total ear cells and CD4+ T cells by real time PCR and ELSIA. Results Treatment of total extracts of P. linteus to U266B1 inhibited IgE secretion. Among the diverse extracts of P. linteus, water soluble extract of P. linteus (WA significantly reduced the IgE production in primary B cells and B cell line U266B1. Moreover, treatment of WA reduced AD symptoms such as ear swelling, erythema, and dryness and decreased recruitment of lymphocyte into the inflamed site

  11. Effect Of Pressure On The Temperature Dependence Of Water Solubility In Forsterite

    Science.gov (United States)

    Bali, E.; Bolfan-Casanova, N.; Koga, K.

    2005-12-01

    Water storage capacity of the upper mantle largely depends on water solubility in mantle olivine. Realistic models must take into account the simultaneous effects of variables such as pressure, temperature, iron content and silica activity. Previous experimental studies have shown that the water solubility in olivine increases with increasing water fugacity up to 12 GPa at 1100°C. Water incorporation in olivine was also observed to increase with increasing temperature and increasing iron content at 0.3 GPa, however the temperature dependence was not studied at higher pressures. Interestingly, the only high-pressure data available, that is for wadsleyite and ringwoodite, show that their water solubility decreases with increasing temperature. The goal of this study is to determine the dependence of water maximum concentration on temperature at pressures higher than 0.3 GPa. We performed experiments at 3 and 6 GPa, and temperatures ranging from 1000 to 1400°C in the MgO-SiO2-H2O system using a multi-anvil apparatus. The olivine and orthopyroxene molar ratio was 1 to 1 in the starting material with 5 wt% H2O. The samples were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The mineralogical assemblage consisted of olivine+orthopyroxene+fluid at temperatures below 1250°C both at 3 and 6 GPa and olivine+melt+/-orthopyroxene at higher temperatures. At 3 GPa, above 1325°C orthopyroxene was missing from the assemblage, whereas in case of the 6 GPa experiments it was present even at higher temperatures. This indicates a change in fluid composition from 3 to 6 GPa. Preliminary data using unpolarized FTIR measurements, but comparing same orientations, indicate that water solubility in olivine at 6 GPa decreases with increasing temperature. This observation agrees with the results on wadsleyite and ringwoodite, but contradict the results of the existing low-pressure data. The explaination we propose for the change in temperature

  12. Effect of Water Soluble PVA on the Microstructure Characteristics of C-S-H Formed in Na2SiO3-Ca(NO3)2 Solution System

    Institute of Scientific and Technical Information of China (English)

    HE Yongjia; SHANG Zhanfei; L(U) Linnü; HU Shuguang

    2011-01-01

    The structure characteristics of hydrated calcium silicate synthesized by solution reaction method with the existing of water soluble polymer polyvinyl alcohol (PVA) are investigated. Using Na2SO3 and Ca(NO3)2 as the main raw materials, in the condition of 2%(in weight) addition of PVA and the water to solid ratio of 20, hydrated calcium silicate samples (Ca/Si=1.0 and 1.5) were prepared with 60 ℃ water bath. IR, BET, XRD and SEM methods were used to study the microstructure of the hydration products. The results showed that the addition of water soluble PVA did not alter obviously the amorphous structure characteristic of hydrated calcium silicate, but it had effects on the polymerization status of Si-O chain and the pore structure.The effects are somewhat obvious in the samples with the Ca/Si of 1.0.

  13. Investigation of the metal binding site in methionine aminopeptidase by density functional theory

    DEFF Research Database (Denmark)

    Jørgensen, Anne Techau; Norrby, Per-Ola; Liljefors, Tommy

    2002-01-01

    All methionine aminopeptidases exhibit the same conserved metal binding site. The structure of this site with either Co2+ ions or Zn2+ ions was investigated using density functional theory. The calculations showed that the structure of the site was not influenced by the identity of the metal ions...... oxygen, which is part of either a water molecule or a hydroxide ion. Within the site of hMetAP-2 the results strongly indicate that a hydroxide ion bridges the metal ions. By contrast, the nature of the oxygen bridging the metal ions within the metal binding site of eMetAP-1 cannot be determined based...

  14. Effect of Bombay high crude oil and its water-soluble fraction on growth and metabolism of diatom Thalassiosira sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Parab, S.R.; Pandit, R.A.; Kadam, A.N.; Indap, M.M.

    Effect of Bombay high crude oil (BHC) and its water-soluble fraction (WSF) on growth and metabolism of the phytoplankton, Thalassiosira sp. was assessed. The study revealed the signs of acute toxicity at higher concentrations of crude oil (0...

  15. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder:. Part I. Grafting conditions and grafting yield

    Science.gov (United States)

    Aydinli, Bahattin; Tinçer, Teoman

    2001-02-01

    Monomers of some water-soluble polymers; acrylic acid, methacrylic acid, acrylamide, N, N -dimethyl acrylamide and 1-vinyl-2 pyrrolidone, were grafted on ultra-high molecular weight polyethylene (UHMWPE) powders by a direct grafting method in an aqueous medium in air. Inhibition of homopolymerisation was achieved by adding various concentrations of Fe 2+ or Cu 2+ ions. It was found that the degree of grafting increases linearly with dose till a gelation state is reached, and varies between 40 and 12% depending on the monomer. Four million molecular weight UHMWPE gave a higher per cent grafting than a 6 million counterpart for the monomers used, with the exception of acrylic acid monomer grafting.

  16. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder: Part I. Grafting conditions and grafting yield

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, Bahattin; Tincer, Teoman E-mail: teotin@metu.edu.tr

    2001-02-01

    Monomers of some water-soluble polymers; acrylic acid, methacrylic acid, acrylamide, N, N-dimethyl acrylamide and 1-vinyl-2 pyrrolidone, were grafted on ultra-high molecular weight polyethylene (UHMWPE) powders by a direct grafting method in an aqueous medium in air. Inhibition of homopolymerisation was achieved by adding various concentrations of Fe{sup 2+} or Cu{sup 2+} ions. It was found that the degree of grafting increases linearly with dose till a gelation state is reached, and varies between 40 and 12% depending on the monomer. Four million molecular weight UHMWPE gave a higher per cent grafting than a 6 million counterpart for the monomers used, with the exception of acrylic acid monomer grafting. (author)

  17. Removal of CO from CO-contaminated hydrogen gas by carbon-supported rhodium porphyrins using water-soluble electron acceptors

    Science.gov (United States)

    Yamazaki, Shin-ichi; Siroma, Zyun; Asahi, Masafumi; Ioroi, Tsutomu

    2016-10-01

    Carbon-supported Rh porphyrins catalyze the oxidation of carbon monoxide by water-soluble electron acceptors. The rate of this reaction is plotted as a function of the redox potential of the electron acceptor. The rate increases with an increase in the redox potential until it reaches a plateau. This profile can be explained in terms of the electrocatalytic CO oxidation activity of the Rh porphyrin. The removal of CO from CO(2%)/H2 by a solution containing a carbon-supported Rh porphyrin and an electron acceptor is examined. The complete conversion of CO to CO2 is achieved with only a slight amount of Rh porphyrins. Rh porphyrin on carbon black gives higher conversion than that dissolved in solution. This reaction can be used not only to remove CO in anode gas of stationary polymer electrolyte fuel cells but also to regenerate a reductant in indirect CO fuel cell systems.

  18. Spectroscopic Signature of a Ubiquitous Metal Binding Site in the Metallo-beta-lactamase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    V Campos-Bermudez; J Gonzalez; D Tierney; A Vila

    2011-12-31

    The metallo-{beta}-lactamase (M{beta}L) superfamily is a functionally diverse group of metalloproteins sharing a distinctive {alpha}{beta}/{alpha}{beta} fold and a characteristic metal binding motif. A large number of open reading frames identified in genomic sequencing efforts have been annotated as members of this superfamily through sequence comparisons. However, structural and functional studies performed on purified proteins are normally needed to unequivocally include a newly discovered protein in the M{beta}L superfamily. Here we report the spectroscopic characterization of recombinant YcbL, a gene product annotated as a member of the M{beta}L superfamily whose function in vivo remains unknown. By taking advantage of the structural features characterizing the M{beta}L superfamily metal binding motif, we performed spectroscopic studies on Zn(II)- and Co(II)-substituted YcbL to structurally interrogate the metal binding site. The dinuclear center in Co(II)-YcbL was shown to display characteristic electronic absorption features in the visible region, which were also observed in an engineered M{beta}L aimed at mimicking this metal site. Thus, the spectroscopic features reported herein can be employed as a signature to readily identify and characterize the presence of these ubiquitous metal binding sites.

  19. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B

    1999-01-01

    We have optimised the overexpression and purification of the N-terminal end of the Menkes disease protein expressed in Escherichia coli, containing one, two and six metal binding domains (MBD), respectively. The domain(s) have been characterised using circular dichroism (CD) and fluorescence spec...

  20. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids

    NARCIS (Netherlands)

    Drienovska, Ivana; Rioz-Martinez, Ana; Draksharapu, Apparao; Roelfes, Gerard

    2015-01-01

    Artificial metalloenzymes have emerged as an attractive new approach to enantioselective catalysis. Herein, we introduce a novel strategy for preparation of artificial metalloenzymes utilizing amber stop codon suppression methodology for the in vivo incorporation of metal-binding unnatural amino aci

  1. Water solubility of selected C9-C18 alkanes using a slow-stir technique: Comparison to structure - property models.

    Science.gov (United States)

    Letinski, Daniel J; Parkerton, Thomas F; Redman, Aaron D; Connelly, Martin J; Peterson, Brian

    2016-05-01

    Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 μg/L to 250 μg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes.

  2. Urinary water-soluble vitamins and their metabolite contents as nutritional markers for evaluating vitamin intakes in young Japanese women.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Shibata, Katsumi

    2008-06-01

    Little information is available to estimate water-soluble vitamin intakes from urinary vitamins and their metabolite contents as possible nutritional markers. Determination of the relationships between the oral dose and urinary excretion of water-soluble vitamins in human subjects contributes to finding valid nutrition markers of water-soluble vitamin intakes. Six female Japanese college students were given a standard Japanese diet in the first week, the same diet with a synthesized water-soluble vitamin mixture as a diet with approximately onefold vitamin mixture based on Dietary Reference Intakes (DRIs) for Japanese in the second week, with a threefold vitamin mixture in the third week, and a sixfold mixture in the fourth week. Water-soluble vitamins and their metabolites were measured in the 24-h urine collected each week. All urinary vitamins and their metabolite levels except vitamin B(12) increased linearly in a dose-dependent manner, and highly correlated with vitamin intake (r=0.959 for vitamin B(1), r=0.927 for vitamin B(2), r=0.965 for vitamin B(6), r=0.957 for niacin, r=0.934 for pantothenic acid, r=0.907 for folic acid, r=0.962 for biotin, and r=0.952 for vitamin C). These results suggest that measuring urinary water-soluble vitamins and their metabolite levels can be used as good nutritional markers for assessing vitamin intakes.

  3. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties.

    Science.gov (United States)

    Rizzello, C G; Losito, I; Gobbetti, M; Carbonara, T; De Bari, M D; Zambonin, P G

    2005-07-01

    Water-soluble extracts of 9 Italian cheese varieties that differed mainly for type of cheese milk, starter, technology, and time of ripening were fractionated by reversed-phase fast protein liquid chromatography, and the antimicrobial activity of each fraction was first assayed toward Lactobacillus sakei A15 by well-diffusion assay. Active fractions were further analyzed by HPLC coupled to electrospray ionization-ion trap mass spectrometry, and peptide sequences were identified by comparison with a proteomic database. Parmigiano Reggiano, Fossa, and Gorgonzola water-soluble extracts did not show antibacterial peptides. Fractions of Pecorino Romano, Canestrato Pugliese, Crescenza, and Caprino del Piemonte contained a mixture of peptides with a high degree of homology. Pasta filata cheeses (Caciocavallo and Mozzarella) also had antibacterial peptides. Peptides showed high levels of homology with N-terminal, C-terminal, or whole fragments of well known antimicrobial or multifunctional peptides reported in the literature: alphaS1-casokinin (e.g., sheep alphaS1-casein (CN) f22-30 of Pecorino Romano and cow alphaS1-CN f24-33 of Canestrato Pugliese); isracidin (e.g., sheep alphaS1-CN f10-21 of Pecorino Romano); kappacin and casoplatelin (e.g., cow kappa-CN f106-115 of Canestrato Pugliese and Crescenza); and beta-casomorphin-11 (e.g., goat beta-CN f60-68 of Caprino del Piemonte). As shown by the broth microdilution technique, most of the water-soluble fractions had a large spectrum of inhibition (minimal inhibitory concentration of 20 to 200 microg/mL) toward gram-positive and gram-negative bacterial species, including potentially pathogenic bacteria of clinical interest. Cheeses manufactured from different types of cheese milk (cow, sheep, and goat) have the potential to generate similar peptides with antimicrobial activity.

  4. Water-soluble undenatured type II collagen ameliorates collagen-induced arthritis in mice.

    Science.gov (United States)

    Yoshinari, Orie; Shiojima, Yoshiaki; Moriyama, Hiroyoshi; Shinozaki, Junichi; Nakane, Takahisa; Masuda, Kazuo; Bagchi, Manashi

    2013-11-01

    Earlier studies have reported the efficacy of type II collagen (C II) in treating rheumatoid arthritis (RA). However, a few studies have investigated the ability of the antigenic collagen to induce oral tolerance, which is defined as active nonresponse to an orally administered antigen. We hypothesized that water-soluble undenatured C II had a similar effect as C II in RA. The present study was designed to examine the oral administration of a novel, water-soluble, undenatured C II (commercially known as NEXT-II) on collagen-induced arthritis (CIA) in mice. In addition, the underlying mechanism of NEXT-II was also identified. After a booster dose (collagen-Freund's complete adjuvant), mice were assigned to control CIA group, or NEXT-II treatment group, to which saline and NEXT-II were administered, respectively. The arthritis index in the NEXT-II group was significantly lower compared with the CIA group. Serum IL-6 levels in the NEXT-II group were significantly lower compared with the CIA group, while serum IL-2 level was higher. Furthermore, oral administration of NEXT-II enhanced the proportion of CD4+CD25+T (Treg) cells, and gene expressions of stimulated dendritic cells induced markers for regulatory T cells such as forkhead box p3 (Foxp3), transforming growth factor (TGF)-β1, and CD25. These results demonstrated that orally administered water-soluble undenatured C II (NEXT-II) is highly efficacious in the suppression of CIA by inducing CD4+CD25+ Treg cells.

  5. Sensitive detection of mercury (II) ion using water-soluble captopril-stabilized fluorescent gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jiu-Ju; Huang, Hong; Chen, Wei-Jie; Chen, Jian-Rong; Lin, Hong-Jun; Wang, Ai-Jun, E-mail: ajwang@zjnu.cn

    2013-07-01

    In our work, a simple, facile, and green method was developed for the synthesis of water-soluble and well-dispersed fluorescent gold nanoparticles (Au NPs) within 5 min, using captopril as a capping agent. The as-prepared Au NPs showed strong emission at 414 nm, with a quantum yield of 5.5%. The fluorescence of the Au NPs can be strongly quenched by mercury (II) ion (Hg{sup 2+}) due to the stronger interactions between thiolates (RS{sup −}) and Hg{sup 2+}. It was applied to the detection of Hg{sup 2+} in water samples in the linear ranges of 0.033–0.133 μM and 0.167–2.500 μM, with a detection limit of 0.017 μM. Therefore, the as-prepared Au NPs can meet the requirement for monitoring Hg{sup 2+} in environmental samples. - Graphical abstract: In this work, we developed a simple, fast and facile method for the preparation of water-soluble and fluorescent gold nanoparticles (Au NPs). The trace existence of Hg{sup 2+} could strongly quench the fluorescence of the Au NPs. The Au NPs were used to detect highly toxic Hg{sup 2+} in water samples with high sensitivity and selectivity. Highlights: ► Water-soluble fluorescent Au NPs stabilized by captopril ► The synthesis procedure was simple, fast and facile. ► The fluorescence of the Au NPs can be strongly quenched by Hg{sup 2+}. ► The Au NPs were used to the assay of Hg{sup 2+} in water samples with high sensitivity and selectivity.

  6. Modeling phase distribution of water-soluble organics in aqueous solutions using surface tension data

    Science.gov (United States)

    Cline, B.; Hiatt, J.; Aumann, E.; Cabrera, J.; Tabazadeh, A.

    2006-12-01

    A good fraction (greater than 30 percent) of submicron particle mass in the atmosphere is often composed of water-soluble organic carbon. Identifiable, water-miscible organics, such as, known sugars, small alcohols, small diacids, etc. comprise only a small fraction of the water-soluble mass (about 1-2 percent). Most of the water-soluble mass is often composed of unidentifiable, humic-like materials, which are commonly refereed to as HULIS. Humic substances are known to form colloids in aqueous solutions at very low aqueous concentrations. Thus, it is likely for HULIS to also be colloid-forming in aqueous solutions. Here, we present surface tension measurements of water-miscible and colloid-forming organics, using methanol and sodium laurate as analogs, respectively. By relating the change in surface tension to chemical potential of the solution, we determine a relationship between surface tension and the surface excess of solute; that is, the number of molecules of solute adsorbed at the surface. Assuming surface acts as a monolayer, we model the adsorption with a Langmuir isotherm to extract the surface excess as a function of solute mole fraction. This relationship allows us to calculate the solute's distribution between bulk and surface phases for methanol, and in bulk, surface and colloid phases for sodium laurate. A colloid of sodium laurate contains approximately 100 laurate anions in a spherical cluster. We present adsorption constants for methanol and sodium laurate (derived from our surface tension data), critical micelle concentration for sodium laurate (derived from our surface tension data), and all the other thermocehmical constants (obtained from the literature) required to constrain a model for determining phase partitioning of organics in aqueous solutions.

  7. Geochemical evidence of water-soluble gas accumulation in the Weiyuan gas field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shengfei Qin

    2016-01-01

    Full Text Available At present, there are several different opinions on the formation process of the Weiyuan gas field in the Sichuan Basin and the source of its natural gas. In view of the fact that the methane carbon isotope of the natural gas in the Weiyuan gas field is abnormally heavy, the geologic characteristics of gas reservoirs and the geochemical characteristics of natural gas were first analyzed. In the Weiyuan gas field, the principal gas reservoirs belong to Sinian Dengying Fm. The natural gas is mainly composed of methane, with slight ethane and trace propane. The gas reservoirs are higher in water saturation, with well preserved primary water. Then, it was discriminated from the relationship of H2S content vs. methane carbon isotope that the heavier methane carbon isotope of natural gas in this area is not caused by thermochemical sulfate reduction (TSR. Based on the comparison of methane carbon isotope in this area with that in adjacent areas, and combined with the tectonic evolution background, it is regarded that the natural gas in the Weiyuan gas field is mainly derived from water-soluble gas rather than be migrated laterally from adjacent areas. Some conclusions are made. First, since methane released from water is carbon isotopically heavier, the water-soluble gas accumulation after degasification results in the heavy methane carbon isotope of the gas produced from Weiyuan gas field. Second, along with Himalayan movement, great uplift occurred in the Weiyuan area and structural traps were formed. Under high temperature and high pressure, the gas dissolved in water experienced decompression precipitation, and the released natural gas accumulated in traps, consequently leading to the formation of Weiyuan gas field. Third, based on calculation, the amount of natural gas released from water which is entrapped in the Weiyuan gas field after the tectonic uplift is basically equal to the proved reserves of this field, confirming the opinion of water-soluble

  8. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  9. Encapsulation of Polythiophene by Glycopolymer for Water Soluble Nano-wire

    Energy Technology Data Exchange (ETDEWEB)

    T Fukuda; Y Inoue; T Koga; M Matsuoka; Y Miura

    2011-12-31

    A water-soluble polythiophene (PT) was prepared by the self-assembling complex with a glycopolymer. The glycopolymer of poly(N-p-vinylbenzyl-D-lactonamide) (PVLA) formed self-assembling cylindrical structure based on the amphiphilicity even after the complexation with PT. We confirmed the improved optical functionality of PT due to the longer conjugated {pi}-orbital. It suggested that PT behaved like molecular nanowire with the self-assembled structure in the hydrophobic core of PVLA. PVLA-PT also showed specific biorecognition against corresponding lectin. These results suggested that the bioactive nanowire formation of PT with the glycopolymer was developed.

  10. Spectral Properties of a Water-Soluble Squaraine Dye and Its Application in Cell Fluorescent Imaging

    Science.gov (United States)

    Hu, L.; Yuan, H.; Li, Q. Q.; Jin, J. C.; Chang, W. G.; Yan, Z. Q.

    2015-09-01

    A water-soluble bis-1,3,5-trihydroxybenzene squaraine dye (t-OH-SQ) with a D-π-A-π-D conjugated structure was identified and prepared. After its structure was characterized by FTIR, 1H NMR and elemental analysis, the UV-Vis absorption and fluorescent spectra of the target dye were studied in detail. The results showed that t-OH-SQ combining multi-hydroxyl groups possessed excellent optical properties changing with pH and solvents. In aqueous solution under physiological pH ~ 7-8, it had especially high near-infrared fluorescence, which might be a latent application for cell fluorescent imaging.

  11. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper; Tran, Tam H.

    2016-01-01

    In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than...... 70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product...

  12. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    Energy Technology Data Exchange (ETDEWEB)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica]. E-mail: capedriali@hotmail.com; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica

    2008-07-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  13. Capacity for absorption of water-soluble secondary metabolites greater in birds than in rodents.

    Directory of Open Access Journals (Sweden)

    William H Karasov

    Full Text Available Plant secondary metabolites (SMs are pervasive in animal foods and potentially influence feeding behavior, interspecies interactions, and the distribution and abundance of animals. Some of the major classes of naturally occurring SMs in plants include many water-soluble compounds in the molecular size range that could cross the intestinal epithelium via the paracellular space by diffusion or solvent drag. There are differences among species in paracellular permeability. Using Middle Eastern rodent and avian consumers of fruits containing SMs, we tested the hypothesis that avian species would have significantly higher paracellular permeability than rodent species. Permeability in intact animals was assessed using standard pharmacological methodology to measure absorption of two radiolabeled, inert, neutral water-soluble probes that do not interact with intestinal nutrient transporters, L-arabinose (M(r = 150.1 Da and lactulose (M(r = 342.3 Da. We also measured absorption of labeled 3-O-methyl-D-glucose (3OMD-glucose; M(r = 194.2 Da, which is a nonmetabolized analogue of D-glucose that is passively absorbed through the paracellular space but also transported across the enterocyte membranes. Most glucose was absorbed by all species, but arabinose fractional absorption (f was nearly three times higher in birds (1.03±0.17, n = 15 in two species compared to rodents (0.37±0.06, n = 10 in two species (P<0.001. Surprisingly, the apparent rates of absorption in birds of arabinose exceeded those of 3OMD-glucose. Our findings are in agreement with previous work showing that the paracellular pathway is more prominent in birds relative to nonflying mammals, and suggests that birds may be challenged by greater absorption of water-soluble, dietary SMs. The increased expression of the paracellular pathway in birds hints at a tradeoff: the free energy birds gain by absorbing water-soluble nutrients passively may be offset by the metabolic

  14. Biomolecule-assisted synthesis of highly stable dispersions of water-soluble copper nanoparticles.

    Science.gov (United States)

    Xiong, Jing; Wu, Xue-dong; Xue, Qun-ji

    2013-01-15

    Water-soluble and highly stable dispersions of copper nanoparticles were obtained using a biomolecule-assisted synthetic method. Dopamine was utilized as both reducing and capping agent in aqueous medium. The successful formation of DA-stabilized copper particles was demonstrated by ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), Zeta potential measurement, and Fourier transform infrared spectroscopy (FT-IR). The mechanism of dopamine on the effective reduction and excellent stability of copper nanoparticles was also discussed. This facile biomolecule-assisted technique may provide a useful tool to synthesize other nanoparticles that have potential application in biotechnology.

  15. Active Oxygen Radical Scavenging Ability of Water-Soluble β-Alanine C60 Adducts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water-soluble β-alanine C60 adducts were synthesized, and the scavenging ability to superoxygen anion radical O2-and hydroxyl radicalOH were studied by autoxidation ofpyrogallol and chemiluminescence, respectively. It was found that β-alanine C60 adducts showed an excellent efficiency in eliminating superoxygen anion radical and hydroxyl radical. The 50% inhibition concentration (IC50) for superoxygen anion radical and hydroxyl radical were 0.15 mg/mL and 0.048 mg/mL, respectively. The difference should be mainly attributed to the different scavenging mechanisms.

  16. [Nutrition and bone health. The bone and the foods containing many water-soluble vitamins].

    Science.gov (United States)

    Ishida, Hiromi

    2009-08-01

    On the Dietary Reference Intakes in Japan, nine kinds of water-soluble vitamins are taken up. Those vitamins are supplied from various food. Food from animal sources and vegetable sources are those vitamins source of supply. Vitamin C participates in generation of collagen. Vitamin C is supplied from vegetables or fruits. Since vitamin C is lost by cooking processing, the content of a raw state is not expectable after cooking. Moreover, the vitamin B group of food origin has combined with protein etc., and free types, such as supplement, differ in the bioavailability.

  17. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery.

    Science.gov (United States)

    Brough, Chris; Williams, R O

    2013-08-30

    Poor water-solubility is a common characteristic of drug candidates in pharmaceutical development pipelines today. Various processes have been developed to increase the solubility, dissolution rate and bioavailability of these active ingredients belonging to BCS II and IV classifications. Over the last decade, nano-crystal delivery forms and amorphous solid dispersions have become well established in commercially available products and industry literature. This article is a comparative analysis of these two methodologies primarily for orally delivered medicaments. The thermodynamic and kinetic theories relative to these technologies are presented along with marketed product evaluations and a survey of commercial relevant scientific literature.

  18. In vitro and in vivo antioxidant activity of a water-soluble polysaccharide from dendrobium denneanum

    Science.gov (United States)

    Luo, A.; Ge, Z.; Fan, Y.; Chun, Z.; Jin, He X.

    2011-01-01

    The water-soluble crude polysaccharide (DDP) obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant. ?? 2011.

  19. Similar Energetic Contributions of Packing in the Core of Membrane and Water-Soluble Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Nathan H.; Oberai, Amit; Yang, Duan; Whitelegge, Julian P.; Bowie, James U.; (UCLA)

    2009-09-15

    A major driving force for water-soluble protein folding is the hydrophobic effect, but membrane proteins cannot make use of this stabilizing contribution in the apolar core of the bilayer. It has been proposed that membrane proteins compensate by packing more efficiently. We therefore investigated packing contributions experimentally by observing the energetic and structural consequences of cavity creating mutations in the core of a membrane protein. We observed little difference in the packing energetics of water and membrane soluble proteins. Our results imply that other mechanisms are employed to stabilize the structure of membrane proteins.

  20. Water soluble decontamination coating for Defense Waste Processing Facility (DWPF) canisters

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.L.

    1986-12-17

    Water soluble sodium borate glass coating was successfully codeveloped by Clemson University (Dr. H.G. Lefort) and Du Pont as an alternative decontamination process to frit slurry blasting of Defense Waste Processing Facility (DWPF) canisters. Slurry blasting requires transport of abrasive slurries, might cause galling by entrapped frit particles, and could result in frit slurry freezeup in pumps and retention basins. Contamination can be removed from precoated canisters with a gentle hot water rinse. Glass waste spilled on a coated canister will spall off spontaneously during canister cooling. A glass coating appears to prevent transfer of contamination to the Canister Decontamination Cell (CDC) guides and cradle. 1 ref., 5 tabs.

  1. Sensory and chromatographic evaluations of water soluble fractions from air-dried sausages

    DEFF Research Database (Denmark)

    Henriksen, Anders Peter; Stahnke, Marie Louise Heller

    1997-01-01

    Low molecular weight water soluble compounds were extracted from Danish salami, Italian sausage, and Spanish Chorizo. The extracts were fractionated by gel filtration chromatography revealing peptides with a molecular weight less than 4200 Dalton. Fractions consisting of smaller peptides and free...... squares regression of the amino acid data and the sensory results indicated that bouillon taste was related to a mixture of different amino acids and peptides, that potato odor in particular correlated with high content of tyrosine, free and as the peptide residue, that bitterness was related to the level...

  2. In Vitro and In Vivo Antioxidant Activity of a Water-Soluble Polysaccharide from Dendrobium denneanum

    Directory of Open Access Journals (Sweden)

    XingJin He

    2011-02-01

    Full Text Available The water-soluble crude polysaccharide (DDP obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw of about  484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant.

  3. Water soluble reduced graphene oxide as an efficient photoluminescence quencher for semiconductor quantum dots

    Science.gov (United States)

    Tang, Haiping; Sun, Luwei; He, Haiping

    2017-02-01

    Chemically derived water soluble reduced graphene oxide (rGO) is synthesized via a two-step reduction approach assisted with sulfonation. X-ray photoelectron spectroscopy confirms the removal of oxygen-related groups from GO. The obtained rGO can effectively quench the photoluminescence (PL) of CdTe quantum dots. Concentration- and volume-dependent quenching behaviors are investigated to reveal the quenching mechanism. The Stern-Volmer plot shows exponential dependence on the rGO concentration, indicating that "sphere of action" model works when the extent of quenching is large.

  4. Water-soluble constituents of anise: new glucosides of anethole glycol and its related compounds.

    Science.gov (United States)

    Ishikawa, Toru; Fujimatu, Eiko; Kitajima, Junichi

    2002-11-01

    From the water-soluble portion of the methanolic extract of the fruit of anise (Pimpinella anisum L.), which has been used as a spice and medicine since antiquity, twelve new and five known glucosides of phenylpropanoids, including four stereoisomers of anethole glycol 2'-O-beta-D-glucopyranoside and four stereoisomers of 1'-(4-hydroxyphenyl)propane-1',2'-diol 2'-O-beta-D-glucopyranoside were isolated together with anethole glycols and guaiacyl glycerol. The structures of the new compounds were clarified by spectral investigation.

  5. Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Anshu Bhati

    2016-01-01

    Full Text Available Water-soluble graphitic hollow carbon nanorods (wsCNRs are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.

  6. Water-Soluble Metalloporphyrins as Mimics of Heme-containing Enzymes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This letter compared catalase-, peroxidase-and cytochrome P450-1ike catalytic activities of 15 water-soluble metalloporphyrins produced from Fe, Mn and Co ions and 5 porphyrins. The metalloporphyrins with Fe and Mn as central ions show relatively high catalytic activities of catalase and peroxidase at pH 11.0. Only Mn-meso-tetrakis (4-N-methylpyridinium) porpho-phine of the 15 metalloporphyfins exhibits high cytochrome P450-1ike activity. Effects of imidazole on the catalytic reactions were also studied.

  7. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites.

    Science.gov (United States)

    Shi, Lixin; Hernandez, Billy; Selke, Matthias

    2006-05-17

    Water-soluble quantum dot-organic dye nanocomposites have been prepared via electrostatic interaction. We used CdTe quantum dots with diameters up to 3.4 nm, 2-aminoethanethiol as a stabilizer, and meso-tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP) as an organic dye. The photophysical properties of the nanocomposite have been investigated. The fluorescence of the parent CdTe quantum dot is largely suppressed. Instead, indirect excitation of the TSPP moiety leads to production of singlet oxygen with a quantum yield of 0.43. The nanocomposite is sufficiently photostable for biological applications.

  8. Relationship between water solubility of chlorobenzenes and their effects on a freshwater green alga

    Energy Technology Data Exchange (ETDEWEB)

    Wong, P.T.S.; Chau, Y.K.; Rhamey, J.S.; Docker, M.

    1984-01-01

    The effective concentrations of benzene and 12 chlorobenzenes that reduced 50% of the primary productivity (EC/sub 50/) of a freshwater green alga, Ankistrodesmus falcatus, were determined. Benzene was the least toxic chemical and the toxicity increased as the degree of chlorine substitution in the aromatic ring increased. No EC/sub 50/ value could be obtained for HCB. A quantitative relationship was found to exist between water solubility, lipophilicity and the EC/sub 50/. A good correlation was also observed between the EC/sub 50/ for this alga and other toxicity data for various aquatic biota.

  9. Water-soluble material on aerosols collected within volcanic eruption clouds ( Fuego, Pacaya, Santiaguito, Guatamala).

    Science.gov (United States)

    Smith, D.B.; Zielinski, R.A.; Rose, W.I.; Huebert, B.J.

    1982-01-01

    In Feb. and March of 1978, filter samplers mounted on an aircraft were used to collect the aerosol fraction of the eruption clouds from three active Guatemalan volcanoes (Fuego, Pacaya, and Santiaguito). The elements dissolved in the aqueous extracts represent components of water-soluble material either formed directly in the eruption cloud or derived from interaction of ash particles and aerosol components of the plume. Calculations of enrichment factors, based upon concentration ratios, showed the elements most enriched in the extracts relative to bulk ash composition were Cd, Cu, V, F, Cl, Zn, and Pb.-from Authors

  10. Biodegradability of soil water soluble organic carbon extracted from seven different soils

    Institute of Scientific and Technical Information of China (English)

    SCAGLIA Barbara; ADANI Fabrizio

    2009-01-01

    Water soluble organic carbon (WSOC) is considered the most mobile and reactive soil carbon source and its characterization is an important issue for soil ecology study. A biodegradability test was set up to study WSOC extracted from 7 soils differently managed. WSOC was extracted from soil with water (soil/water ratio of 1:2, W/V) for 30 min, and then tested for biodegradability by a liquid state respirometric test. Result obtained confirmed the finding that WSOC biodegradability depended on both land use and management practice. These results suggested the biodegradability test as suitable method to characterize WSOC, adding useful information to soil fertility.

  11. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Directory of Open Access Journals (Sweden)

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  12. Preparation of fructone catalyzed by water-soluble Br(φ)nsted acid ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan Wang; Rong Wang; Liang Chun Wu; Li Yi Dai

    2007-01-01

    Fructone (2-methyl-2-ethylacetoacetate-1,3-dioxolane), a flavouring material, has been synthesized from ethyl acetoacetate and glycol using five water-soluble Br(φ)nsted acid ionic liquids as catalysts for the first time. The used Br(φ)nsted acid ionic liquids include [Hmim]Tfa, [Hmim]Tsa, [Hmim]BF4, [Bmim]HSO4, [Bmim]H2PO4, and [Hmim]BF4 showed the highest catalytic activity for the preparation of fructone. After reaction, the product could be isolated from the reaction system automatically, and the ionic liquid could be directly reused without dehydration.

  13. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    Science.gov (United States)

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields.

  14. Lightsticks content toxicity: effects of the water soluble fraction on the oyster embryonic development.

    Science.gov (United States)

    de Araujo, Milena Maria Sampaio; Menezes Filho, Adalberto; Nascimento, Iracema Andrade; Pereira, Pedro Afonso P

    2015-11-01

    Lightsticks are artifacts used as attractors in a type of commercial fishery, known as surface longline gear. Despite the excessive use, the contamination risks of these devices have not yet been properly investigated. This research aimed to fill up this gap by determining the chemical composition and the toxicity of lightsticks recently activated, compared to those one year after activation and to the ones collected on the beaches. The analyzes were carried out by Gas Chromatography coupled with Mass Spectrometry (GC-MS). Additionally, the variations in composition and the toxicity of their sea Water Soluble Fractions (WSF) were evaluated based on the WSF-effects of Crassostrea rhizophorae embryonic development. The GC-MS analysis made possible the identification of nineteen substances in the water soluble fraction of the lightsticks, such as dibutyl phthalate (DBP) and dimethyl phthalate (DMP). The value of the WSF-effective concentration (EC50) was in an average of 0.35%. After one year of the lightsticks activation, the toxicity was even higher (0.65%). Furthermore, other substances, also present in the lightsticks-WSF caused persistent toxicity even more dangerous to the environment than DBP and DMP. This essay discusses their toxicity effects and possible environment damages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Preparation of water-soluble nanographite and its application in water-based cutting fluid

    Science.gov (United States)

    Chen, Qiang; Wang, Xue; Wang, Zongting; Liu, Yu; You, Tingzheng

    2013-01-01

    Water-soluble nanographite was prepared by in situ emulsion polymerization using methacrylate as polymeric monomer. The dispersion stability and dispersion state of graphite particles were evaluated by UV-visible spectrophotometry and scanning electron microscopy, respectively. The water-soluble nanographite was then added into the water-based cutting fluid as lubricant additive. The lubrication performance of water-based cutting fluid with the nanographite additive was studied on four-ball friction tester and surface tensiometer. Results indicate that the modification method of in situ emulsion polymerization realizes the uniform and stabilized dispersion of nanographite in aqueous environment. The optimal polymerization condition is 70°C (polymerization temperature) and 5 h (polymerization time). The addition of nanographite decreases the friction coefficient and wear scar diameter by 44% and 49%. Meanwhile, the maximum non-seizure load ( P B ) increases from 784 to 883 N, and the value of surface tension (32.76 × 10-3 N/m) is at low level. Nanographite additive improves apparently the lubrication performance of water-based cutting fluid.

  16. Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species.

    Science.gov (United States)

    Mancilla-Margalli, N Alejandra; López, Mercedes G

    2006-10-04

    Fructans, storage carbohydrates with beta-fructofuranosyl linkages, are found in approximately 15% of higher plants. The metabolic flexibility of those molecules allows them easily to polymerize and depolymerize to soluble carbohydrates according to plant development stage and environmental conditions. In this work, water-soluble carbohydrates, including fructan structure patterns, were compared among Agave and Dasylirion species grown in different environmental regions in Mexico. Fructans were the main storage carbohydrate present in Agave stems, in addition to other carbohydrates related to its metabolism, whereas Dasylirion spp. presented a different carbohydrate distribution. A good correlation of water-soluble carbohydrate content with climatic conditions was observed. Fructans in Agave and Dasylirion genera were found in the form of polydisperse molecules, where structural heterogeneity in the same plant was evidenced by methylation linkage analysis and chromatographic methods. Fructans from the studied species were classified into three groups depending on DP and linkage-type abundance. These storage carbohydrates share structural characteristics with fructans in plants that belong to the Asparagales members. Agave and Dasylirion fructans can be categorized as graminans and branched neo-fructans, which we have termed agavins.

  17. Spray Freeze-drying - The Process of Choice for Low Water Soluble Drugs?

    Energy Technology Data Exchange (ETDEWEB)

    Leuenberger, H. [University of Basel, Pharmacenter, Institute of Pharmaceutical Technology (Switzerland)], E-mail: hans.leuenberger@unibas.ch

    2002-04-15

    Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins.

  18. The ultrafast reactions in the photochromic cycle of water-soluble fulgimide photoswitches.

    Science.gov (United States)

    Slavov, C; Boumrifak, C; Hammer, C A; Trojanowski, P; Chen, X; Lees, W J; Wachtveitl, J; Braun, M

    2016-04-21

    Photochromic switches are essential for the control and manipulation of nanoscale reactions and processes. The expansion of their application to aqueous environments depends strongly on the development of optimized water-soluble photoswitches. Here we present a femtosecond time-resolved investigation of the photochromic reactions (transition between the open and the closed form) of a water-soluble indolylfulgimide. We observe a pronounced effect of the protic nature of water as a solvent on the ultrafast ring-opening reaction. Typically, the excited state of the closed form has a larger dipole moment than the ground state, which leads to stabilization of the excited state in polar solvents and hence a lifetime (3 ps) longer than in non-polar solvents (2 ps). However, in water, despite the increased solvent polarity and the increased excited state dipole moment, the opposite trend for the excited state lifetime is observed (1.8 ps). This effect is caused by the opening of a new excited state deactivation pathway involving proton transfer reactions.

  19. Lipid nanoparticles with no surfactant improve oral absorption rate of poorly water-soluble drug.

    Science.gov (United States)

    Funakoshi, Yuka; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2013-07-15

    A pharmacokinetic study was performed in rats to evaluate the oral absorption ratios of nanoparticle suspensions containing the poorly water-soluble compound nifedipine (NI) and two different types of lipids, including hydrogenated soybean phosphatidylcholine and dipalmitoylphosphatidylglycerol. NI-lipid nanoparticle (LN) suspensions with a mean particle size of 48.0 nm and a zeta potential of -57.2 mV were prepared by co-grinding combined with a high-pressure homogenization process. The oral administration of NI-LN suspensions to rats led to a significant increase in the NI plasma concentration, and the area under the curve (AUC) value was found to be 108 min μg mL⁻¹, indicating a 4-fold increase relative to the NI suspensions. A comparison of the pharmacokinetic parameters of the NI-LN suspensions with those of the NI solution prepared using only the surfactant polysorbate 80 revealed that although the AUC and bioavailability (59%) values were almost identical, a rapid absorption rate was still observed in the NI-LN suspensions. These results therefore indicated that lipid nanoparticles prepared using only two types of phospholipid with a mean particle size of less than 50 nm could improve the absorption of the poorly water-soluble drug. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica.

    Science.gov (United States)

    Mellaerts, Randy; Mols, Raf; Jammaer, Jasper A G; Aerts, Caroline A; Annaert, Pieter; Van Humbeeck, Jan; Van den Mooter, Guy; Augustijns, Patrick; Martens, Johan A

    2008-05-01

    This study aims to evaluate the in vivo performance of ordered mesoporous silica (OMS) as a carrier for poorly water soluble drugs. Itraconazole was selected as model compound. Physicochemical characterization was carried out by SEM, TEM, nitrogen adsorption, DSC, TGA and in vitro dissolution. After loading itraconazole into OMS, its oral bioavailability was compared with the crystalline drug and the marketed product Sporanox in rabbits and dogs. Plasma concentrations of itraconazole and OH-itraconazole were determined by HPLC-UV. After administration of crystalline itraconazole in dogs (20mg), no systemic itraconazole could be detected. Using OMS as a carrier, the AUC0-8 was boosted to 681+/-566 nM h. In rabbits, the AUC0-24 increased significantly from 521+/-159 nM h after oral administration of crystalline itraconazole (8 mg) to 1069+/-278 nM h when this dose was loaded into OMS. Tmax decreased from 9.8+/-1.8 to 4.2+/-1.8h. No significant differences (AUC, Cmax, and Tmax) could be determined when comparing OMS with Sporanox in both species. The oral bioavailability of itraconazole formulated with OMS as a carrier compares well with the marketed product Sporanox, in rabbits as well as in dogs. OMS can therefore be considered as a promising carrier to achieve enhanced oral bioavailability for drugs with extremely low water solubility.

  1. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan.

    Science.gov (United States)

    Zhang, Yanzhuo; Zhi, Zhuangzhi; Jiang, Tongying; Zhang, Jinghai; Wang, Zhanyou; Wang, Siling

    2010-08-03

    The purpose of this study was to develop mesoporous silica nanoparticles (MSNs) loaded with a poorly water-soluble drug, intended to be orally administered, able to improve the dissolution rate and enhance the drug loading capacity. Spherical MSNs were synthesized using an organic template method in an oil/water phase, and large pore diameter MSNs were functionalized with aminopropyl groups through postsynthesis. MSNs as well as the resulting functionalized MSNs were investigated as matrices for loading and release of the model drug telmisartan (TEL). The effects of different pore sizes and surface chemical groups on TEL uptake and release were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and HPLC. The total pore volume and the pore diameter of MSNs were the two main factors limiting the maximum drug load capacity. MSNs allow a very high drug loading of about 60% in weight. The release rate of TEL from MSNs with a pore diameter of 12.9 nm was found to be effectively increased and the release rate of TEL from the functionalized MSNs was effectively controlled compared with that from the unmodified MSNs. We believe that the present study will help in the design of oral drug delivery systems for the dissolution enhancement and/or sustained release of poorly water-soluble drugs.

  2. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Ratna Chaturvedi

    Full Text Available The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.

  3. [Immunoproteomics of non water-soluble allergens from 4 legumes flours: peanut, soybean, sesame and lentil].

    Science.gov (United States)

    Bouakkadia, Hayette; Boutebba, Aissa; Haddad, Iman; Vinh, Joëlle; Guilloux, Laurence; Sutra, Jean-Pierre; Sénéchal, Hélène; Poncet, Pascal

    2015-01-01

    Peanut, soybean, sesame and lentil are members of legumes worldwide consumed by human that can induce food allergy in genetically predisposed individuals. Several protein allergens, mainly water-soluble, have been described. We studied the non water-soluble fraction from these 4 food sources using immunoproteomics tools and techniques. Flour extracts were solubilized in detergent and chaotropes and analysed in 1 and 2 dimensional gel electrophoresis (2D). Results showed numerous proteins exhibiting wide ranges of isoelectric points and relative molecular masses. When IgE immunoreactivities of 18 food allergy patients were individually tested in 1 and 2D western-blots, a very diversified IgE repertoire was observed, reflecting extensive cross-reactivities but also co-sensitizations. Besides already well known and characterized allergens, mass spectrometry analysis allowed the identification of 22 allergens undescribed until now: 10 in peanut, 2 in soybean, 3 in sesame and 7 in lentil. Three allergens are legume storage proteins and the others belong to transport proteins, nucleotide binding proteins and proteins involved in the regulation of metabolism. Seven proteins are potentially similar to allergens described in plants and fungi and 11 are not related to any known allergen. Our results contribute to increase the repertoire of legume allergens that may improve the diagnosis, categorize patients and thus provide a better treatment of patients.

  4. Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents.

    Science.gov (United States)

    O'Farrell, Courtney M; Chudomel, J Matthew; Collins, Jan M; Dignam, Catherine F; Wenzel, Thomas J

    2008-04-04

    Water-soluble calix[4]resorcinarenes containing 3- and 4-hydroxyproline, d-nipecotic acid, (S)-2-(methoxymethyl)pyrrolidine, (S)-2-pyrrolidine methanol, and (S,S)-(+)-2,4-bis(methoxymethyl)pyrrolidine substituents are synthesized and evaluated as chiral NMR solvating agents. The derivatives with the hydroxyproline groups are especially effective at causing enantiomeric discrimination in the spectra of water-soluble cationic and anionic compounds with pyridyl, phenyl, and bicyclic aromatic rings. Binding studies show that mono- and ortho-substituted phenyl rings associate within the cavity of the calix[4]resorcinarenes, as do naphthyl rings with mono-, 2,3-, and 1,8-substitution patterns. Anthracene derivatives with an amino or sulfonyl group at the 1-position bind within the cavity, as well. Aromatic resonances of the substrates exhibit substantial upfield shifts because of shielding from the aromatic rings of the calix[4]resorcinarene. The effectiveness of the reagents at producing chiral recognition in 1H NMR spectra is demonstrated with sodium mandelate, the sodium salt of tryptophan, and doxylamine succinate. While no one reagent is consistently the most effective, the calix[4]resorcinarenes with trans-4-hydroxyproline and trans-3-hydroxyproline moieties generally produce the largest nonequivalence in the 1H NMR spectra of the substrates.

  5. Release of small water-soluble drugs from multiblock copolymer microspheres: a feasibility study.

    Science.gov (United States)

    Sohier, J; van Dijkhuizen-Radersma, R; de Groot, K; Bezemer, J M

    2003-03-01

    Poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) multiblock copolymer was investigated as a possible matrix for controlled delivery of small water-soluble drugs. Two molecules were selected as sustained release candidates from microspheres: leuprorelin acetate (peptide of Mw = 1270 D) and vitamin B(12) (Mw = 1355 D). First, vitamin B(12)-loaded microspheres were prepared using a double emulsion method and preparation parameters were varied (surfactant in the first emulsion and copolymer composition). The resulting microsphere structure, entrapment efficiency and release rate were evaluated. Vitamin B(12)-loaded microsphere parameters could easily be tailored to achieve specific requirements. The addition of surfactant in the first preparation process led to a significant increase of the microsphere entrapment efficiency, whereas the decrease of the PEGT copolymer content allowed the release rates from microspheres to be precisely decreased. However, leuprorelin acetate-loaded microspheres did not show the same characteristics when prepared with the same parameters, possibly because of a high water solubility discrepancy between the vitamin B(12) and the peptide. This study shows the suitability of PEGT/PBT microspheres as a controlled release system for vitamin B(12), but not for leuprorelin acetate. It also underlines the necessity of tailored development for each individual drug and emphasizes the risk of using model molecules. Copyright 2002 Elsevier Science B.V.

  6. Improvement of dissolution property of poorly water-soluble drug by supercritical freeze granulation.

    Science.gov (United States)

    Sonoda, Ryoichi; Hara, Yuko; Iwasaki, Tomohiro; Watano, Satoru

    2009-10-01

    The dissolution property of the poorly water-soluble drug, flurbiprofen (FP) was improved by a novel supercritical freeze granulation using supercritical carbon dioxide. Supercritical freeze granulation was defined as a production method of the granulated substances by using the dry ice to generate intentionally for the rapid atomization of the supercritical carbon dioxide to the atmospheric pressure. This process utilized a rapid expansion of supercritical solutions (RESS) process with the mixture of the drug and lactose. In the supercritical freeze granulation, needle-like FP fine particles were obtained which adhered to the surface of lactose particles, which did not dissolve in supercritical carbon dioxide. The number of FP particles that adhered to the surface of particles decreased with an increase in the ratio of lactose added, leading to markedly improve the dissolution rate. This improvement was caused not only by the increase in the specific surface area but also the improvement of the dispersibility of FP in water. It is thus concluded that the supercritical freeze granulation is a useful technique to improve the dissolution property of the poorly water-soluble flurbiprofen.

  7. Rhodamine B piperazinoacetohydrazine: a water-soluble spectroscopic reagent for pyruvic acid labeling.

    Science.gov (United States)

    Jia, Jia; Wang, Ke; Shi, Wen; Chen, Suming; Li, Xiaohua; Ma, Huimin

    2010-06-11

    A new water-soluble reagent, rhodamine B piperazinoacetohydrazine (RBPH), with improved spectroscopic and reaction properties, has been developed and characterized for pyruvic acid labeling. The reagent RBPH is designed and synthesized by using rhodamine B as a spectroscopic unit, and hydrazine as a carbonyl-specific labeling unit; the two units are connected by a well-chosen linker of piperazine, which prohibits the formation of the nonfluorescent spirocyclic structure of rhodamine B, thereby keeping the spectroscopic response of the reagent in a stable state. Such a design enables RBPH not only to maintain its excellent spectroscopic properties over a wide pH range, but also to exist as a stable cation with high water solubility. Moreover, the hydrazino group of RBPH is expected to react selectively with carbonyl compounds under mild conditions through the rapid formation of hydrazones. These important features make RBPH of great potential use in the labeling of aldehydes or ketones in various biosystems, and such an application of RBPH as a precolumn derivatizing reagent has been successfully demonstrated on the analysis of pyruvic acid in human serum by high-performance liquid chromatography with common UV/Vis detection.

  8. P2O5 assisted green synthesis of multicolor fluorescent water soluble carbon dots.

    Science.gov (United States)

    Babar, Dipak Gorakh; Sonkar, Sumit Kumar; Tripathi, Kumud Malika; Sarkar, Sabyasachi

    2014-03-01

    A low cost synthesis of multicolor fluorescent carbon dots (C-dots) from edible sugars is described here. Common sugars like dextrose, lactose or maltose in aqueous medium gets dehydrated using phosphorus pentoxide (P2O5). The reaction is facile and completed within few minutes to form insoluble carbon (C-dots) mostly having the graphitic (G-band, Raman) sp2 hybridized carbon atoms (C-atoms). This insoluble carbon on oxidative treatment with nitric acid produced disordered sp3 (D-band retaining G-band, Raman) hybridized C-atoms, originated from the graphitic pool with sp2 hybridized C-atoms. This high density assimilation of self passivated "surfacial defects" become emissive during electronic transitions. Surfacial defects due to high degree of electrophilic carboxylation create the water soluble version of multicolor fluorescent C-dots as "water soluble fluorescent carbon dots" (wsFCDs). wsFCDs being itself self-passivated imposes the tunable multicolor emission throughout the visible spectrum without having any external coating and surface passivation and could be used as multicolor fluorescent probe especially in the emerging field of optical bio-imaging.

  9. Characterization of water-soluble ion species in urban ambient particles.

    Science.gov (United States)

    Lin, Jim Juimin

    2002-04-01

    Concentrations and distributions of water-soluble ion species contained in ambient particles were measured in a coastal urban area, Kaohsiung City, Taiwan. PM10 and PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and were analyzed for water-soluble ion species with ion chromatography. On the average, ion species measured in this study accounted for 42.2% of the PM2.5 and 35.7% of the PM10. It was found that SO4(2-) , NO3-, and NH4+ dominated the identifiable components within both fine (PM2.5) and coarse (PM2.5-10) fractions, and occupied 90.0% and 80.6% of total dissolved ionic concentrations for PM2.5 and PM10. The secondary aerosol formed through the NOx/SO2 gas-to-particle conversion was estimated based on the oxidation ratio of sulfur and nitrogen (SOR and NOR, respectively), i.e., sulfate sulfur/nitrate nitrogen to total sulfur/total nitrogen. The average SOR/NOR values were 0.25/0.07 and 0.29/0.12 for PM25 and PM10, respectively. The high SOR and NOR values obtained in this study suggested that there existed a secondary formation of SO4(2-) from SO2 along with NO3- from NOx in the atmosphere.

  10. Water-soluble extracts from defatted sesame seed flour show antioxidant activity in vitro.

    Science.gov (United States)

    Ben Othman, Sana; Katsuno, Nakako; Kanamaru, Yoshihiro; Yabe, Tomio

    2015-05-15

    Defatted white and gold sesame seed flour, recovered as a byproduct after sesame oil extraction, was extracted with 70% ethanol to obtain polar-soluble crude extracts. The in vitro antioxidant activity of the extract was evaluated by DPPH free radical scavenging activity and oxygen radical absorbing capacity (ORAC). The polar-soluble crude extracts of both sesame seed types exhibited good antioxidant capacity, especially by the ORAC method with 34,720 and 21,700 μmol Trolox equivalent/100g of white and gold sesame seed extract, respectively. HPLC, butanol extraction, and UPLC-MS analyses showed that different compounds contributed to the antioxidant activity of the polar-soluble crude extracts. Sesaminol glycosides were identified in the butanol-soluble fractions; whereas, purified water-soluble fraction contained ferulic and vanillic acids. This study shows that hydrophilic antioxidants in the purified water-soluble fraction contributed to the antioxidant activity of white and gold sesame seed polar-soluble crude extracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Water solubility enhancements of pyrene by single and mixed surfactant solutions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water solubility enhancements of pyrene by both single-surfactant and mixed-surfactant solutions were compared andevaluated. The solubility of pyrene in water was greatly enhanced by each of Triton X-100 (TX100), Triton X-405 (TX405), Brij 35 and SDS, in which the water solubility enhancements increased with increasing surfactant concentrations. The extent of solubility enhancements at surfactant concentrations below the CMC is the order of TX100 > Brij 35 > TX405 > SDS; the sequence at surfactantconcentrations above the CMC is TX100 > Brij 35 > SDS > TX405. Pyrene was solubilized synergistically by anionic-nonionic mixed surfactant solutions, especially at low surfactant concentrations. The synergistic power of the mixed surfactants is SDS-TX405 > SDS-Brij 35 > SDS-TX100. The synergism as noted is attributed to increasing Kmc and/or decreasing the CMC of the mixed surfactan solution. For SDS-TX405 and SDS-Brij 35 mixed surfactant solutions, an increase in Kmc is coupled with a decrease in the CMC; for SDS-TX100, only a decreased in the CMC value is noted. Mixed-surfactant solutions may improve the performance of the surfactant-enhanced remediation (SER) of soils by increasing the bioavailability and biodegradation of non-aqueous-phase organic pollutants and reducing the level of surfactant pollution and remediation expenses.

  12. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  13. One-step synthesis and antibacterial property of water-soluble silver nanoparticles by CGJ bio-template

    Science.gov (United States)

    Zhu, Zi-Chun; Wu, Qing-Sheng; Chen, Ping; Yang, Xiao-Hong

    2011-10-01

    In this article, a new synthetic method of nanoparticles with fresh Chinese gooseberry juice (CGJ) as bio-template was developed. One-step synthesis of highly water-soluble silver nanoparticles at room temperature without using any harmful reducing agents and special capping agent was fulfilled with this method. In the process, the products were obtained by adding AgNO3 to CGJ, which was used as reducing agent, capping agent, and the bio-template. The products of silver nanoparticles with diameter of 10-30 nm have strong water solubility and excellent antibiotic function. With the same concentration 0.047 μg mL-1, the antibacterial effect of water-soluble silver particles by fresh CGJ was 53%, whereas only 27% for silver nanoparticles synthesized using the template method of fresh onion inner squama coat (OISC). The excellent water solubility of the products would enable them have better applications in the bio-medical field. The synthetic method would also have potential application in preparing other highly water-soluble particles, because of its simple apparatus, high yield, mild conditions, and facile operation.

  14. Investigation of the metal binding site in methionine aminopeptidase by density functional theory

    DEFF Research Database (Denmark)

    Jørgensen, Anne Techau; Norrby, Per-Ola; Liljefors, Tommy

    2002-01-01

    All methionine aminopeptidases exhibit the same conserved metal binding site. The structure of this site with either Co2+ ions or Zn2+ ions was investigated using density functional theory. The calculations showed that the structure of the site was not influenced by the identity of the metal ions...... oxygen, which is part of either a water molecule or a hydroxide ion. Within the site of hMetAP-2 the results strongly indicate that a hydroxide ion bridges the metal ions. By contrast, the nature of the oxygen bridging the metal ions within the metal binding site of eMetAP-1 cannot be determined based...... on the results here, due to the similar structural results obtained with a bridging water molecule and a bridging hydroxide ion....

  15. Biosynthesis of metal-binding polypeptides and their precursors in response to cadmium in Datura innoxia

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.J.; Delhaize, E.; Kuske, C.R.

    1991-01-01

    Metal-tolerant Datura innoxia cells synthesize large amounts of a class of metal-binding polypeptides, poly({gamma}-glutamylcysteinyl) glycines (({gamma}-EC){sub n}G, n=2-5), when exposed to Cd. These polypeptides have a high affinity for Cd (2) and certain other metal ions and are thought to play a role in metal tolerance in higher plants. ({gamma}-EC){sub n}G is biosynthetically derived from glutathione. Therefore, the response of Datura cells to Cd must include an increase in production of glutathione and its precursors, since cells rapidly accumulate very high concentrations of these metal-binding polypeptides. The biosynthesis of ({gamma}-EC){sub n}Gs, glutathione, and cysteine in response to Cd exposure is described. The physiological significance of the synthesis of these polypeptides and their precursors and its relevance to Cd tolerance and metal homeostasis are discussed. 34 refs., 6 figs., 1 tab.

  16. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  17. Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Phoebe Z. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Chen, Huan [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Podgorski, David C. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); McKenna, Amy M. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Tarr, Matthew A., E-mail: mtarr@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States)

    2014-09-15

    Graphical abstract: Sunlight oxygenates petroleum. - Highlights: • Oxidation seen in water-soluble oil fraction after exposure to simulated sunlight. • Oxygen addition occurred across a wide range of carbon number and DBE. • Oil compounds were susceptible to addition of multiple oxygens to each molecule. • Results provide understanding of fate of oil on water after exposure to sunlight. - Abstract: In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid–liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O{sub 5}), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O{sub 2}). Higher-order oxygen classes (O{sub 5}–O{sub 9}) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N{sub 1}) concurrent with an increased abundance of N{sub 1}O{sub x} classes after irradiation. The predominance of higher

  18. Metal binding spectrum and model structure of the Bacillus anthracis virulence determinant MntA.

    Science.gov (United States)

    Vigonsky, Elena; Fish, Inbar; Livnat-Levanon, Nurit; Ovcharenko, Elena; Ben-Tal, Nir; Lewinson, Oded

    2015-10-01

    The potentially lethal human pathogen Bacillus anthracis expresses a putative metal import system, MntBCA, which belongs to the large family of ABC transporters. MntBCA is essential for virulence of Bacillus anthracis: deletion of MntA, the system's substrate binding protein, yields a completely non-virulent strain. Here we determined the metal binding spectrum of MntA. In contrast to what can be inferred from growth complementation studies we find no evidence that MntA binds Fe(2+) or Fe(3+). Rather, MntA binds a variety of other metal ions, including Mn(2+), Zn(2+), Cd(2+), Co(2+), and Ni(2+) with affinities ranging from 10(-6) to 10(-8) M. Binding of Zn(2+) and Co(2+) have a pronounced thermo-stabilizing effect on MntA, with Mn(2+) having a milder effect. The thermodynamic stability of MntA, competition experiments, and metal binding and release experiments all suggest that Mn(2+) is the metal that is likely transported by MntBCA and is therefore the limiting factor for virulence of Bacillus anthracis. A homology-model of MntA shows a single, highly conserved metal binding site, with four residues that participate in metal coordination: two histidines, a glutamate, and an aspartate. The metals bind to this site in a mutually exclusive manner, yet surprisingly, mutational analysis shows that for proper coordination each metal requires a different subset of these four residues. ConSurf evolutionary analysis and structural comparison of MntA and its homologues suggest that substrate binding proteins (SBPs) of metal ions use a pair of highly conserved prolines to interact with their cognate ABC transporters. This proline pair is found exclusively in ABC import systems of metal ions.

  19. Structural characterization of metal binding to a cold-adapted frataxin.

    Science.gov (United States)

    Noguera, Martín E; Roman, Ernesto A; Rigal, Juan B; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2015-06-01

    Frataxin is an evolutionary conserved protein that participates in iron metabolism. Deficiency of this small protein in humans causes a severe neurodegenerative disease known as Friedreich's ataxia. A number of studies indicate that frataxin binds iron and regulates Fe-S cluster biosynthesis. Previous structural studies showed that metal binding occurs mainly in a region of high density of negative charge. However, a comprehensive characterization of the binding sites is required to gain further insights into the mechanistic details of frataxin function. In this work, we have solved the X-ray crystal structures of a cold-adapted frataxin from a psychrophilic bacterium in the presence of cobalt or europium ions. We have identified a number of metal-binding sites, mainly solvent exposed, several of which had not been observed in previous studies on mesophilic homologues. No major structural changes were detected upon metal binding, although the structures exhibit significant changes in crystallographic B-factors. The analysis of these B-factors, in combination with crystal packing and RMSD among structures, suggests the existence of localized changes in the internal motions. Based on these results, we propose that bacterial frataxins possess binding sites of moderate affinity for a quick capture and transfer of iron to other proteins and for the regulation of Fe-S cluster biosynthesis, modulating interactions with partner proteins.

  20. Application of mineral bed materials during fast pyrolysis of rice husk to improve water-soluble organics production.

    Science.gov (United States)

    Li, R; Zhong, Z P; Jin, B S; Zheng, A J

    2012-09-01

    Fast pyrolysis of rice husk was performed in a spout-fluid bed to produce water-soluble organics. The effects of mineral bed materials (red brick, calcite, limestone, and dolomite) on yield and quality of organics were evaluated with the help of principal component analysis (PCA). Compared to quartz sand, red brick, limestone, and dolomite increased the yield of the water-soluble organics by 6-55% and the heating value by 16-19%. The relative content of acetic acid was reduced by 23-43% with calcite, limestone and dolomite when compared with quartz sand. The results from PCA showed all minerals enhanced the ring-opening reactions of cellulose into furans and carbonyl compounds rather than into monomeric sugars. Moreover, calcite, limestone, and dolomite displayed the ability to catalyze the degradation of heavy compounds and the demethoxylation reaction of guaiacols into phenols. Minerals, especially limestone and dolomite, were beneficial to the production of water-soluble organics.

  1. Au nanorods modulated NIR fluorescence and singlet oxygen generation of water soluble dendritic zinc phthalocyanine.

    Science.gov (United States)

    Zhou, Xuefei; He, Xiaohong; Wei, Shiliang; Jia, Kun; Liu, Xiaobo

    2016-11-15

    A novel cyano-terminated zinc phthalocyanine (ZnPc-CN) exhibiting visible near infrared (vis-NIR) emitting around 690nm in N,N-dimethylformamide (DMF) solvent has been synthesized. Furthermore, the peripheral cyano groups of newly synthesized zinc phthalocyanine were hydrolyzed in strong basic solution, leading to water soluble carboxylated zinc phthalocyanine (ZnPc-COOH) with completely quenched fluorescence in aqueous solution. Interestingly, we found that the NIR fluorescence of aqueous ZnPc-COOH was dramatically recovered in the presence of gold nanorods (Au NR), which was due to the alternation of ZnPc-COOH molecules self-assembling via electrostatic interaction between cetyltrimethylammonium bromide (CTAB) on the surface of Au NR and peripheral carboxyl of ZnPc-COOH. In addition, ZnPc-COOH/Au NR conjugates demonstrated an improved singlet oxygen generation, which could be served as potential bioimaging probe and photosensitizer for photodynamic therapy.

  2. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs - Part 2

    DEFF Research Database (Denmark)

    Löbmann, K.; Laitinen, R.; Strachan, C.

    2013-01-01

    The formation of co-amorphous drug-drug mixtures has proved to be a powerful approach to stabilize the amorphous form and at the same time increase the dissolution of poorly water-soluble drugs. Molecular interactions in these co-amorphous formulations can play a crucial role in stabilization...... and dissolution enhancement. In this regard, Fourier-transform infrared spectroscopy (FTIR) is a valuable tool to analyze the molecular near range order of the compounds in the co-amorphous mixtures. In this study, several co-amorphous drugs - low molecular weight excipient blends - have been analyzed with FTIR...... spectroscopy. Molecular interactions of the drugs carbamazepine and indomethacin with the amino acids arginine, phenylalanine, and tryptophan were investigated. The amino acids were chosen from the biological target site of both drugs and prepared as co-amorphous formulations together with the drugs...

  3. Chemical Characteristics and Antioxidant Properties of Crude Water Soluble Polysaccharides from Four Common Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Pei-Long Sun

    2012-04-01

    Full Text Available Four crude water soluble polysaccharides, CABP, CAAP, CFVP and CLDP, were isolated from common edible mushrooms, including Agaricus bisporus, Auricularia auricula, Flammulina velutipes and Lentinus edodes, and their chemical characteristics and antioxidant properties were determined. Fourier Transform-infrared analysis showed that the four crude polysaccharides were all composed of β-glycoside linkages. The major monosaccharide compositions were D-galactose, D-glucose and D-mannose for CABP, CAAP and CLDP, while CFVP was found to consist of L-arabinose, D-galactose, D-glucose and D-mannose. The main molecular weight distributions of CABP and the other three polysaccharides were 66.0 × 104 Da, respectively. Antioxidant properties of the four polysaccharides were evaluated in in vitro systems and CABP showed the best antioxidant properties. The studied mushroom species could potentially be used in part of well-balanced diets and as a source of antioxidant compounds.

  4. PREPARATION AND PHOTOSENSITIVITY OF WATER SOLUBLE PHENOLIC RESINS CONTAINING ACRYLOYL AND QUATERNARY AMMONIUM CHLORIDE GROUPS

    Institute of Scientific and Technical Information of China (English)

    Xiao-ming Tan; Hong-quan Xie; Nai-yu Huang

    2002-01-01

    New water soluble and photocrosslinkable prepolymers containing acrylate and quaternary ammonium salt groups were synthesized from epoxy phenolic resin via ring-opening reaction with acrylic acid and with aqueous solution of triethylamine hydrochloride successively. The second reaction needs no phase transfer catalyst to accelerate, since the product formed can act as a phase transfer catalyst. The prepolymer obtained contains both photocrosslinkable acrylate groups and hydrophilic quaternary ammonium salt groups. Optimum conditions for these reactions were studied. The photosensitivity of the prepolymer was also investigated. The effects of different photoinitiators, different crosslinkable diluent monomers and amine accelerator on the photosensitivity of the prepolymer were compared. The photoinitiator of hydrogen abstraction type is still effective without using amine or alcohol as accelerator, because the prepolymer contains α H beside the OH groups formed in the ring-opening reactions.

  5. LiFePO 4 water-soluble binder electrode for Li-ion batteries

    Science.gov (United States)

    Guerfi, A.; Kaneko, M.; Petitclerc, M.; Mori, M.; Zaghib, K.

    A new water-soluble elastomer from ZEON Corp. was evaluated as binder with LiFePO 4 cathode material in Li-ion batteries. The mechanical characteristic of this cathode was compared to that with PVdF-based cathode binder. The elastomer-based cathode shows high flexibility with good adhesion. The electrochemical performance was also evaluated and compared to PVdF-based cathodes at 25 and at 60 °C. A lower irreversible capacity loss was obtained with the elastomer-based cathode, however, aging at 60 °C shows a comparable cycle life to that observed with PVdF-based cathodes. The LiFePO 4-WSB at high rate shows a good performance with 120 mAh g -1 at 10 C rate at 60 °C.

  6. LiFePO{sub 4} water-soluble binder electrode for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Guerfi, A.; Petitclerc, M.; Zaghib, K. [Institut de Recherche d' Hydro-Quebec, 1800 Lionel-Boulet, Varennes, Que. J3X 1S1 (Canada); Kaneko, M.; Mori, M. [ZEON Corporation, R and D Center, 1-2-1 Yako, Kawasaki, Kanagawa 210-9507 (Japan)

    2007-01-01

    A new water-soluble elastomer from ZEON Corp. was evaluated as binder with LiFePO{sub 4} cathode material in Li-ion batteries. The mechanical characteristic of this cathode was compared to that with PVdF-based cathode binder. The elastomer-based cathode shows high flexibility with good adhesion. The electrochemical performance was also evaluated and compared to PVdF-based cathodes at 25 and at 60{sup o}C. A lower irreversible capacity loss was obtained with the elastomer-based cathode, however, aging at 60{sup o}C shows a comparable cycle life to that observed with PVdF-based cathodes. The LiFePO{sub 4}-WSB at high rate shows a good performance with 120mAhg{sup -1} at 10C rate at 60{sup o}C. (author)

  7. In Vitro Selection of Optimal DNA Substrates for Ligation by a Water-Soluble Carbodiimide

    Science.gov (United States)

    Harada, Kazuo; Orgel, Leslie E.

    1994-01-01

    We have used in vitro selection to investigate the sequence requirements for efficient template-directed ligation of oligonucleotides at 0 deg C using a water-soluble carbodiimide as condensing agent. We find that only 2 bp at each side of the ligation junction are needed. We also studied chemical ligation of substrate ensembles that we have previously selected as optimal by RNA ligase or by DNA ligase. As anticipated, we find that substrates selected with DNA ligase ligate efficiently with a chemical ligating agent, and vice versa. Substrates selected using RNA ligase are not ligated by the chemical condensing agent and vice versa. The implications of these results for prebiotic chemistry are discussed.

  8. Nanonization of poorly water-soluble drug clobetasone butyrate by using femtosecond laser

    Science.gov (United States)

    Pan, Sunqiang; Takebe, Gen; Suzuki, Masumi; Takamoto, Hisayoshi; Ge, Jianhong; Liu, Chong; Hiramatsu, Mitsuo

    2014-02-01

    Nanonization, which involves the formation of the drug with nanometer particle size, is an effective method to improve the dissolution rate and bioavailability of poorly water-soluble drugs. A pulsewidth-tunable femtosecond laser was used to produce nanoparticles of clobetasone butyrate using poloxamer 188 as stabilizing agent. The effects of temperature and pulsewidth on the particle size and concentration were studied for the first time. The particle size and drug concentration dependence on the laser intensity and irradiation time were also investigated. Permeability test releaved that laser nanonization improved the drug permeability across Caco-2 cell monolayer. This laser nanonization method has a great potential to be used for new drug development.

  9. Synthesis and Spectral Properties of Novel Water-soluble Near-infrared Fluorescent Indocyanines

    Institute of Scientific and Technical Information of China (English)

    Li Qiu WANG; Xiao Jun PENG; Wei Bing ZHANG; Fei YIN; Jing Nan CUI; Xin Qin GAO

    2005-01-01

    Two fluorescent pentamethine and a squarylium indocyanines containing at least one p-carboxybenzyl group on N atoms in the heterocyclic rings were synthesized. They had good water solubility and photostability. Their maximum absorption and maximum emission were600-700 nm in water. When it was anchored onto nanostructured TiO2 electrode, compared with in water, the squaraine showed double absorption peaks (one blue shifted and another red shifted)and absorption intensity of the red shift peak increased with the increase of the time of irradiation.The intensity of the blue one decreased simultaneously. We proposed that the presence of two electronic charge forms of squaraine anchored on the TiO2 film might be the reason.

  10. Water-soluble Hantzsch ester as switch-on fluorescent probe for efficiently detecting nitric oxide

    Science.gov (United States)

    Wang, Hui-Li; Liu, Fu-Tao; Ding, Ai-Xiang; Ma, Su-Fang; He, Lan; Lin, Lan; Lu, Zhong-Lin

    2016-12-01

    A water soluble Hantzsch ester derivative of coumarin, DHPS, was synthesized and successfully applied in the fluorescent sensing nitric oxide (NO) in aqueous solution. The fluorescence of probe DHPS is extremely weak, while its fluorescence was greatly switched on upon the addition of NO solution and showed high selectivity and sensitivity to NO. The limitation of the detection was calculated to be 18 nM. The NO-induced aromatization of dihydropyridine in DHPS to pyridine derivative (PYS) proved to be the switching mechanism for the fluorescent sensing process, which was confirmed through spectra characterization and computation study. Cytotoxicity assay demonstrated both DHPS and PYS are biocompatible, the DHPS was successfully applied to track the endogenously produced NO in the RAW 264.7 cells.

  11. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2015-06-02

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  12. Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods.

    Science.gov (United States)

    Wang, Nani; Zhang, Yang; Wang, Xuping; Huang, Xiaowen; Fei, Ying; Yu, Yong; Shou, Dan

    2016-02-01

    Poria cocos Wolf is a popular traditional medicinal plant that has invigorating activity. Water-soluble polysaccharides (PCPs) are its main active components. In this study, four different methods were used to extract PCPs, which include hot water extraction (PCP-H), ultrasonic-assisted extraction (PCP-U), enzyme-assisted extraction (PCP-E) and microwave-assisted extraction (PCP-M). Their chemical compositions and structure characterizations were compared. In vitro antioxidant activities were studied on the basis of DPPH radical, hydroxyl radical, reducing power and metal chelating ability. The results showed that PCPs were composed of mannose, glucose, galactose, and arabinose, and had typical IR spectra characteristics of polysaccharides. Compared with other PCPs, PCP-M had lower neutral sugar content, higher mannose content and higher uronic acid content. The molecular weight were determined as PCP-Ecocos Wolf.

  13. Two-Photon Photodynamic Therapy by Water-Soluble Self-Assembled Conjugated Porphyrins

    Directory of Open Access Journals (Sweden)

    Kazuya Ogawa

    2013-01-01

    Full Text Available Studies on two-photon absorption (2PA photodynamic therapy (PDT by using three water-soluble porphyrin self-assemblies consisting of ethynylene-linked conjugated bis (imidazolylporphyrin are reviewed. 2PA cross-section values in water were obtained by an open aperture Z-scan measurement, and values were extremely large compared with those of monomeric porphyrins such as hematoporphyrin. These compounds were found to generate singlet oxygen efficiently upon one- as well as two-photon absorption as demonstrated by the time-resolved luminescence measurement at the characteristic band of singlet oxygen at 1270 nm and by using its scavenger. Photocytotoxicities for HeLa cancer cells were examined and found to be as high as those of hematoporphyrin, demonstrating that these compounds are potential candidates for 2PA-photodynamic therapy agents.

  14. [Water-soluble galactomannan from the seeds of Lotus corniculatus L.: structure and properties].

    Science.gov (United States)

    Egorov, A V; Mestechkina, N M; Plennik, R Ia; Shcherbukhin, V D

    2003-01-01

    Galactomannan, a water-soluble heteropolysaccharide, was isolated from the seed of Far-Eastern population of ground honeysuckle Lotus corniculatus L. (yield, 1.65%). Analysis of this galactomannan showed that is consists of D-mannose and D-galactose residues (molar ratio, 1.22:1). Its aqueous solutions were characterized by specific rotation [alpha]D = +84.10 and characteristic viscosity [eta] = 559 ml/g. Analysis of this heteropolysaccharide using chemical and enzymatic procedures, as well as IR- and 13C-NMR spectroscopy, showed that its main chain comprises 1,4-beta-D-mannopyranose residues, 95.5% of which are substituted at C-6 with single residues of alpha-D-galactopyranose.

  15. A Highly Efifcient and Selective Water-Soluble Bimetallic Catalyst for Hydrogenation of Chloronitrobenzene to Chloroaniline

    Institute of Scientific and Technical Information of China (English)

    Zhou Yafen; Yang Wenjuan; Zhou Limei; Wang Manman; Ma Xiaoyan

    2015-01-01

    Selective hydrogenation of chloronitrobenzene (CNB) to chloroaniline (CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity increased ob-viously due to the addition of platinum. Ru/Pt bimetallic catalysts exhibited a strong synergistic effect when the molar ratio of Pt was in the range of 5%—80%. Under the mild conditions including a temperature of 25℃, a hydrogen pressure of 1.0 MPa and a Pt molar ratio of 20%, the conversion of p-chloronitrobenzene (p-CNB) reached 99.9%, with the selectivity to p-chloroaniline (p-CAN) equating to 99.4%. The Ru/Pt catalyst also showed high activity and selectivity for the hydrogena-tion of other chloro-and dichloro-nitrobenzenes with different substituted positions. In addition, the catalyst can be recycled ifve times without signiifcant loss of activity.

  16. Formulation of poorly water-soluble drugs via coacervation--a pilot study using febantel.

    Science.gov (United States)

    De Jaeghere, W; De Geest, B G; Van Bocxlaer, J; Remon, J P; Vervaet, C; Antunes da Fonseca, A

    2013-11-01

    In this study, febantel was dissolved under increased temperature in a nonionic surfactant Lutrol L44® and subsequently mixed into an aqueous maltodextrin solution. After 8h under static conditions, coacervation or phase separation took place. (1)H NMR spectra and HPLC analysis showed that the upper phase contained mainly all febantel, while no febantel was detected in the lower phase. Fluorescent microscopy showed that maltodextrin is distributed in the lower phase. Coacervation proved to be a promising formulation technology for certain poorly water-soluble drugs, such as febantel. The coacervate phase showed an increase in in vitro dissolution kinetics, compared to Rintal® granules. These results were confirmed in an in vivo study performed on dogs. Febantel and fenbendazole showed a significant increase in plasma concentration compared to Rintal® granules. Further studies have to be performed to transform coacervates into a solid dosage form and to prove broad applicability to other poorly soluble drugs.

  17. Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment

    Science.gov (United States)

    Wu, Jeslin J.; Kondeti, Vighneswara Siva Santosh Kumar; Bruggeman, Peter J.; Kortshagen, Uwe R.

    2016-03-01

    Silicon quantum dots (SiQDs), with their broad absorption, narrow and size-tunable emission, and potential biocompatibility are highly attractive materials in biological imaging applications. The inherent hydrophobicity and instability of hydrogen-terminated SiQDs are obstacles to their widespread implementation. In this work, we successfully produced highly luminescent, hydrophilic SiQDs with long-term stability in water using non-thermal plasma techniques. Hydrogen-terminated SiQDs were produced in a low-pressure plasma and subsequently treated in water using an atmospheric-pressure plasma jet for surface modification. Preliminary assessments of the chemical mechanism(s) involved in the creation of water-soluble SiQDs were performed using Fenton’s reaction and various plasma chemistries, suggesting both OH and O species play a key role in the oxidation of the SiQDs.

  18. Bioavailability Improvement Strategies for Poorly Water-Soluble Drugs Based on the Supersaturation Mechanism: An Update.

    Science.gov (United States)

    Yang, Meiyan; Gong, Wei; Wang, Yuli; Shan, Li; Li, Ying; Gao, Chunsheng

    2016-01-01

    The formulation development for poorly soluble drugs still remains a challenge. Supersaturating drug delivery systems (SDDS) or drug delivery systems based on supersaturating provide a promising way to improve the oral bioavailability of poorly water-soluble drugs. In supersaturable formulations, drug concentration exceeds the equilibrium solubility when exposed to gastrointestinal fluids, and the supersaturation state is maintained long enough to be absorbed, resulting in compromised bioavailability. In this article, the mechanism of generating and maintaining supersaturation and the evaluation methods of supersaturation assays are discussed. Recent advances in different drug delivery systems based on supersaturating are the focus and are discussed in detail.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  19. [Modulation of plant resistance to diseases by water-soluble chitosan].

    Science.gov (United States)

    Vasiukova, N I; Zinov'eva, S V; Il'inskaia, L I; Perekhod, E A; Chalenko, G I; Gerasimova, N G; Il'ina, A V; Varlamov, V P; Ozeretskovskaia, O L

    2001-01-01

    Low-molecular-weight water-soluble chitosan with a molecular weight of 5 kDa obtained after enzymatic hydrolysis of native crab chitosan was shown to display an elicitor activity by inducing the local and systemic resistance of Solanumi tuberosum potato and Lycopesicon esculentum tomato to Phytophthora infestans and nematodes, respectively. Chitosan induced the accumulation of phytoalexins in tissues of host plants, decreased the total content and changed the composition of free sterols producing adverse effects on infesters, activated chitinases, beta-glucanases, and lipoxygenases, and stimulated the generation of reactive oxygen species. The activation of protective mechanisms in plant tissues inhibited the growth of taxonomically different pathogens (parasitic fungus Phytophthora infestans and root knot nematode Meloidogyne incognita).

  20. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots.

    Science.gov (United States)

    Tang, Libin; Ji, Rongbin; Cao, Xiangke; Lin, Jingyu; Jiang, Hongxing; Li, Xueming; Teng, Kar Seng; Luk, Chi Man; Zeng, Songjun; Hao, Jianhua; Lau, Shu Ping

    2012-06-26

    Glucose-derived water-soluble crystalline graphene quantum dots (GQDs) with an average diameter as small as 1.65 nm (∼5 layers) were prepared by a facile microwave-assisted hydrothermal method. The GQDs exhibits deep ultraviolet (DUV) emission of 4.1 eV, which is the shortest emission wavelength among all the solution-based QDs. The GQDs exhibit typical excitation wavelength-dependent properties as expected in carbon-based quantum dots. However, the emission wavelength is independent of the size of the GQDs. The unique optical properties of the GQDs are attributed to the self-passivated layer on the surface of the GQDs as revealed by electron energy loss spectroscopy. The photoluminescence quantum yields of the GQDs were determined to be 7-11%. The GQDs are capable of converting blue light into white light when the GQDs are coated onto a blue light emitting diode.

  1. Interaction of Globular Plasma Proteins with Water-Soluble CdSe Quantum Dots.

    Science.gov (United States)

    Pathak, Jyotsana; Rawat, Kamla; Sanwlani, Shilpa; Bohidar, H B

    2015-06-08

    The interactions between water-soluble semiconductor quantum dots [hydrophilic 3-mercaptopropionic acid (MPA)-coated CdSe] and three globular plasma proteins, namely, bovine serum albumin (BSA), β-lactoglobulin (β-Lg) and human serum albumin (HSA), are investigated. Acidic residues of protein molecules form electrostatic interactions with these quantum dots (QDs). To determine the stoichiometry of proteins bound to QDs, we used dynamic light scattering (DLS) and zeta potential techniques. Fluorescence resonance energy transfer (FRET) experiments revealed energy transfer from tryptophan residues in the proteins to the QD particles. Quenching of the intrinsic fluorescence of protein molecules was noticed during this binding process (hierarchy HSA<β-Lg

  2. Removal of chromium from aqueous solution by complexation-ultrafiltration using a water-soluble macroligand.

    Science.gov (United States)

    Aliane, A; Bounatiro, N; Cherif, A T; Akretche, D E

    2001-06-01

    A process for purifying waste waters containing heavy and toxic metal such as chromium has been studied. A batch complexation-ultrafiltration process was used to concentrate and recover chromium from sulphate solution. As the chromium ions are too small to be retained by the filter, they are first complexed with a water-soluble macroligand (polyethylene-imine). Factors affecting the rejection rate and permeate flux such as pH, concentration ligand, chloride and sulphate concentration, membrane pore size, applied pressure and extraction factor were investigated. Best operating conditions can be obtained in order to achieve high levels of removal (> 95%). Then, decomplexation is obtained so that metal can be separated from macroligand by a second ultrafiltration plant to reuse the macroligand.

  3. Lumbar myelography using water-soluble contrast media. Lumbale Myelographie mit wasserloelichen Kontrastmitteln. Lehrbuch und Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Langlotz, M.

    1981-01-01

    With the new water-soluble contrast media developed in the last 10 years, lumbar myelography has become a simple and low-risk diagnostic method of great value which is hardly ever omitted before surgery is undertaken. The book attempts a synopsis of radiology and clinical examinations. In its first part, the pathological, clinical, and radiological aspects of diseases of the lumbosacral spinal duct are reviewed. The second part contains more than 300 myelographic pictures in original size. Each of the myelograms is supplemented by the case history of the patient (anamnesis, neurological examination, therapy and course). Interpretation is facilitated by drawings at the beginning of each chapter which show the major pathological and radiological changes.

  4. Reversible Covalent and Supramolecular Functionalization of Water-Soluble Gold(I) Complexes.

    Science.gov (United States)

    Kemper, Benedict; von Gröning, Maximilian; Lewe, Vanessa; Spitzer, Daniel; Otremba, Tobias; Stergiou, Natascha; Schollmeyer, Dieter; Schmitt, Edgar; Ravoo, Bart Jan; Besenius, Pol

    2017-02-09

    The ligation of gold(I) metalloamphiphiles with biomolecules is reported, using water-soluble Au(I) -N-alkynyl substituted maleimide complexes. For this purpose, two different polar ligands were applied: 1) a neutral, dendritic tetraethylene glycol-functionalized phosphane and 2) a charged, sulfonated N-heterocyclic carbene (NHC). The retro Diels-Alder reaction of a furan-protected maleimide gold(I) complex, followed by cycloaddition with a diene-functionalized biotin under mild conditions leads to a novel gold(I) metalloamphiphile. The strong streptavidin-biotin binding affinity in buffered aqueous solution of the resulting biotin alkynyl gold(I) phosphane conjugate remains intact. The cytotoxicity of the biotinylated gold(I) complex against a T47D human breast cancer cell line is higher than for cisplatin.

  5. Determination of Water Content of Water-soluble Paints by Gas Chromatography

    Institute of Scientific and Technical Information of China (English)

    顾润南; 钦维民; 肖舸

    2003-01-01

    This paper describes the determination of water content of water-soluble paints by gas chromatography. The water in paints is extracted by dimethyl formamide (DMF) as a solvent.Isopropanol is used as an internal standard. The mixture is separated by low-speed centrifugation.Then a 1-uL sample of the supernatant from the prepared solution is injected into the gas chromatograph. The water content is determined by internal standard calibration curve. The rate of recovery of added standard of this method is more than 98%. Relative mean deviation is less than 3‰.The linearity of calibration curve is good and relativity coefficient is higher than 0.998.

  6. Photocatalytic Degradation of Water-Soluble Dyes by LaCoO3

    Institute of Scientific and Technical Information of China (English)

    傅希贤; 杨秋华; 王俊珍; 白树林; 桑丽霞

    2003-01-01

    Perovskite-type oxides LaCoO3 was prepared by citrate method in granula of 20~30 nm. Using a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water-soluble dyes were carried out in the suspension system of LaCoO3. The results show that the perovskite-type oxide LaCoO3 has good photocatalytic activity. With the study of X-ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is mainly related with the factors such as the d-electron structure of ion Co3+, Co-O binding energy and adsorbed oxygen on the surface etc.

  7. Super fast detection of latent fingerprints with water soluble CdTe quantum dots.

    Science.gov (United States)

    Cai, Kaiyang; Yang, Ruiqin; Wang, Yanji; Yu, Xuejiao; Liu, Jianjun

    2013-03-10

    A new method based on the use of highly fluorescent water-soluble cadmium telluride (CdTe) quantum dots (QDs) capped with mercaptosuccinic acid (MSA) was explored to develop latent fingerprints. After optimized the effectiveness of QDs method contains pH value and developing time, super fast detection was achieved. Excellent fingerprint images were obtained in 1-3s after immersed the latent fingerprints into quantum dots solution on various non-porous surfaces, i.e. adhesive tape, transparent tape, aluminum foil and stainless steel. High sensitivity of the new latent fingerprints develop method was obtained by developing the fingerprints pressed on aluminum foil successively with the same finger. Compared with methyl violet and rhodamine 6G, the MSA-CdTe QDs showed the higher develop speed and fingerprint image quality. Clear image can be maintained for months by extending exposure time of CCD camera, storing fingerprints in a low temperature condition and secondary development.

  8. The Quality of Dory Fillets based on Water Soluble Protein, Color, and Myoglobin Concentration

    Directory of Open Access Journals (Sweden)

    Nurfajrin Nisa

    2016-04-01

    Full Text Available Fillet of dory is very easy to be find in Indonesian market with various brand and produsen.Imported dory fillet is preferred by consumer so far because it has a white color compare than localfillets. Color is the important parameter that used by consumers to determine the quality of filet. Thisstudy was aimed to determine the quality of local and imported fillets, including protein profile usingSDS PAGE, color measurement, and myoglobin extractability. The results of water soluble protein profilesshowed dory fillet contained 13-15 bands. The redness value (a* of local fillet (DN, DL, DM was highercompared others. However, imported fillet (DI had the highest if redness index (a/b. Imported fillet (DIshowed the lowest concentration of myoglobin compared other samples.

  9. The Quality of Dory Fillets based on Water Soluble Protein, Color, and Myoglobin Concentration

    Directory of Open Access Journals (Sweden)

    Nurfajrin Nisa

    2016-04-01

    Full Text Available Fillet of dory is very easy to be find in Indonesian market with various brand and produsen. Imported dory fillet is preferred by consumer so far because it has a white color compare than local fillets. Color is the important parameter that used by consumers to determine the quality of filet. This study was aimed to determine the quality of local and imported fillets, including protein profile using SDS PAGE, color measurement, and myoglobin extractability. The results of water soluble protein profiles showed dory fillet contained 13-15 bands. The redness value (a* of local fillet (DN, DL, DM was higher compared others. However, imported fillet (DI had the highest if redness index (a/b. Imported fillet (DI showed the lowest concentration of myoglobin compared other samples.

  10. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2017-08-08

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  11. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka

    2013-01-01

    . However, this strategy only led to a small number of marketed products usually because of inadequate physical stability of the drug (crystallization). In this study, we investigated a fundamentally different approach to stabilize the amorphous form of drugs, namely the use of amino acids as small...... molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug...... and the amino acids arginine, phenylalanine, tryptophan and tyrosine were prepared by vibrational ball milling. Solid-state characterization with X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed that the various blends could be prepared as homogeneous, single phase co...

  12. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2015-06-02

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  13. Controlled synthesis of titania using water-soluble titanium complexes: A review

    Science.gov (United States)

    Truong, Quang Duc; Dien, Luong Xuan; Vo, Dai-Viet N.; Le, Thanh Son

    2017-07-01

    The development of human society has led to the increase in energy and resources consumption as well as the arising problems of environmental damage and the toxicity to the human health. The development of novel synthesis method which tolerates utilization of toxic solvents and chemicals would fulfill the demand of the society for safer, softer, and environmental friendly technologies. For the past decades, a remarkable progress has been attained in the development of new water-soluble titanium complexes (WSTC) and their use for the synthesis of nanocrystalline titanium dioxide materials by aqueous solution-based approaches. The progress of synthesis of nanocrystalline titanium dioxide using such WSTCs is reviewed in this work. The key structural features responsible for the successfully controlled synthesis of TiO2 are discussed to provide guidelines for the morphology-controlled synthesis. Finally, this review ends with a summary and some perspectives on the challenges as well as new directions in this fascinating research.

  14. Antioxidant and nitric oxide synthase activation properties of water soluble polysaccharides from Pleurotus florida

    Directory of Open Access Journals (Sweden)

    Subarna Saha

    2013-01-01

    Full Text Available Context: Cellular damage caused by reactive oxygen species has been implicated in several diseases, and, at the same time, nitric oxide is recognized as an important messenger molecule for several pathophysiological conditions. Hence, a novel antioxidant and nitric oxide synthase (NOS activator from natural sources have significant importance in human health. Aims: The present study was conducted to evaluate the free radical-scavenging activity and NOS activation properties of water-soluble crude polysaccharide (Floridan from Pleurotus florida. Materials and Methods: Crude polysaccharide was precipitated from hot water extract of P. florida, and their physicochemical parameters were determined. Then, α and β glucan were estimated using mushroom and yeast β glucan assay kit and Fourier transform infrared spectroscopy (FT-IR. Floridan was analyzed for their free radical scavenging activity in different test systems, namely hydroxyl and superoxide radical scavenging activity, ferrous ion chelating ability, determination of reducing power and inhibition of lipid peroxidation. Floridan was also tested for NOS activation using oxyhaemoglobin method. Statistical Analysis: The results were statistically analyzed using the Student′s t-test. Results: Results showed that Floridan was rich in water-soluble β glucan with very low amount of protein and phenols. The EC 50 for hydroxyl and superoxide radical-scavenging activity were 140 and 320 μg/ml, respectively, 450 μg/ml for chelating ability, 300 μg/ml for inhibition of lipid peroxidation and 2 mg/ml for reducing power. Floridan also increased nitric oxide production significantly. Conclusions: The present results revealed that this mushroom polysaccharide may be utilized as a promising dietary supplement to combat several killer diseases.

  15. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    Purpose The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Methods Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. Results All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Conclusion Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate. PMID:26834471

  16. Bilirubin adsorption properties of water-soluble adsorbents with different cyclodextrin cavities in plasma dialysis system.

    Science.gov (United States)

    Wang, Zhi; Cao, Yaming; Wei, Houliang; Jia, Lingyun; Xu, Li; Xie, Jian

    2012-02-01

    In this study, we explored the use of α-, β- or γ-cyclodextrin (CD)-grafted polyethyleneimine (PEI) as water-soluble adsorbent for removing excess plasma bilirubin. To evaluate the bilirubin-binding capacity of these adsorbents, bovine serum albumin (BSA) solution or plasma with high level of bilirubin were dialyzed against CD-PEI-spiked dialysate. In BSA solution with an initial biliurbin concentration of 171.5mg/L, α-CD-PEI, β-CD-PEI and γ-CD-PEI achieved adsorption capacities of 2.5, 5.8 and 3.8 mg/g, respectively. In a plasma dialysis system, 45.6% of bilirubin (260 mg/L) was removed from 200 mL plasma by 1L dialysate spiked with 10mg/mL β-CD-PEI, which was significantly higher than that removed by the same volume of BSA-spiked dialysate (Padsorption was related to the CD functional group, not the PEI matrix. Subsequent molecular docking study indicated that the size of CD cavity could affect the affinity energy of CD-bilirubin complex. The cavity of β-CD was most suitable for accommodating the pyrrole rings of bilirubin. The inclusion complex of bilirubin and β-CD in the molar ratio of 1:2 was more logical in terms of affinity energy. All the results demonstrated the potential of β-CD-PEI (water-soluble adsorbent) as an effective agent for removing of bilirubin from plasma in dialysis system. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. EPR and Structural Characterization of Water-Soluble Mn(2+)-Doped Si Nanoparticles.

    Science.gov (United States)

    Atkins, Tonya M; Walton, Jeffrey H; Singh, Mani P; Ganguly, Shreyashi; Janka, Oliver; Louie, Angelique Y; Kauzlarich, Susan M

    2017-01-26

    Water-soluble poly(allylamine) Mn(2+)-doped Si (SiMn) nanoparticles (NPs) were prepared and show promise for biologically related applications. The nanoparticles show both strong photoluminescence and good magnetic resonance contrast imaging. The morphology and average diameter were obtained through transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM); spherical crystalline Si NPs with an average diameter of 4.2 ± 0.7 nm were observed. The doping maximum obtained through this process was an average concentration of 0.4 ± 0.3% Mn per mole of Si. The water-soluble SiMn NPs showed a strong photoluminescence with a quantum yield up to 13%. The SiMn NPs had significant T1 contrast with an r1 relaxivity of 11.1 ± 1.5 mM(-1) s(-1) and r2 relaxivity of 32.7 ± 4.7 mM(-1) s(-1) where the concentration is in mM of Mn(2+). Dextran-coated poly(allylamine) SiMn NPs produced NPs with T1 and T2 contrast with a r1 relaxivity of 27.1 ± 2.8 mM(-1) s(-1) and r2 relaxivity of 1078.5 ± 1.9 mM(-1) s(-1). X-band electron paramagnetic resonance spectra are fit with a two-site model demonstrating that there are two types of Mn(2+) in these NP's. The fits yield hyperfine splittings (A) of 265 and 238 MHz with significant zero field splitting (D and E terms). This is consistent with Mn in sites of symmetry lower than tetrahedral due to the small size of the NP's.

  18. A general strategy to fabricate ligand-free water-soluble up-conversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhihua, E-mail: lizhihua2006@126.com [Department of Chemistry, Shandong Normal University, Jinan 250014 (China); State Key Lab of Crystal Materials, Shandong University, Jinan 250100 (China); Li, Ying; Wang, Yanan; Miao, Haixia; Du, Yu [Department of Chemistry, Shandong Normal University, Jinan 250014 (China); Liu, Hong [State Key Lab of Crystal Materials, Shandong University, Jinan 250100 (China)

    2014-11-15

    Highlights: • We notice that the coordination energy of Y{sup 3+} ions with oleate is less than the normal chemical bond, which can be broken by high power external force. • We report a simple and easily-operated physical method, ultrasonic separation, to remove the oleate ligand from the surface of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+}. • The oleate removing method can be applied to the converting of many nanomaterials from oil soluble to water soluble. - Abstract: It is a generally accepted method to synthesize the monodisperse NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} with uniform size and shape by using oleic acid (OA) as surfactant or solvent. However, the obtained oleate-capped up-conversion nanoparticles NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} (Ln-UCNPs, Ln = Yb{sup 3+}, Er{sup 3+}) have inherent hydrophobia properties, which should be processed by complicated post-treatments to render them water dispersible before used in biomedicine. Herein, we introduce a facile approach, ultrasonic separation, to obtain water-soluble and ligand-free Ln-UCNPs by analyzing the capping effect between Ln{sup 3+} and the carboxy group of oleate anions. After ultrasonic separation, the ligand-free of Ln-UCNPs disperse in water and ethanol easily, which are characterized by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), nuclear magnetic resonance (NMR) and zeta potential. The experiments demonstrate that the present method is simple and effective to remove oleate layers from the surface of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+}, and worthy of being generalized.

  19. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.

    Science.gov (United States)

    Azad, Mohammad; Moreno, Jacqueline; Bilgili, Ecevit; Davé, Rajesh

    2016-11-20

    Formation of core-shell nanocomposites of Fenofibrate and Itraconazole, model poorly water soluble drugs, via fluidized bed (FB) coating of their well-stabilized high drug loaded nanosuspensions is investigated. Specifically, the extent of dissolution enhancement, when fine carrier particles (sub-50μm) as opposed to the traditional large carrier particles (>300μm) are used, is examined. This allows testing the hypothesis that greatly increased carrier surface area and more importantly, thinner shell for finer carriers at the same drug loading can significantly increase the dissolution rate when spray-coated nanosuspensions are well-stabilized. Fine sub-50μm lactose (GranuLac(®) 200) carrier particles were made fluidizable via dry coating with nano-silica, enabling decreased cohesion, fluidization and subsequent nanosuspension coating. For both drugs, 30% drug loaded suspensions were prepared via wet-stirred media milling using hydroxypropyl methyl cellulose and sodium dodecyl sulfate as stabilizers. The stabilizer concentrations were varied to affect the milled particle size and prepare a stable nanosuspension. The suspensions were FB coated onto hydrophilic nano-silica (M-5P) dry coated sub-50μm lactose (GranuLac(®) 200) carrier particles or larger carrier particles of median size >300μm (PrismaLac(®)40). The resulting finer composite powders (sub-100μm) based on GranuLac(®) 200 were freely flowing, had high bulk density, and had much faster, immediate dissolution of the poorly water-soluble drugs, in particular for Itraconazole. This is attributed to a much higher specific surface area of the carrier and corresponding thinner coating layer for fine carriers as opposed to those for large carrier particles.

  20. Water soluble drug releasing soft contact lens in response to pH of tears

    Science.gov (United States)

    Kim, G.; Noh, H.

    2016-06-01

    Human tear characteristics including pH and compositions can vary significantly depending on physical and environmental factors. Contact lenses directly contact with human tears can be swelled or de-swelled depending on the pH of the solution due to the nature of the hydrogel. For examples, anionic hydrogels, when the solution's pH is low, is shrunken due to the electric attraction force within the hydrogel network; the opposite phenomenon appears when the solution is basic. The purpose of this study was to evaluate the extent of water soluble drug, hydroxyl propyl methyl cellulose, released from contact lens according to the pH of the artificial tears. Artificial tears are prepared by mixing lysozyme, albumin, sodium chloride, potassium chloride, and calcium chloride following physiological concentrations. Hydrogel contact lens was thermally polymerized using HEMA, EGDMA, and AIBN. The prepared hydrogel lens was immersed in drug for 3 hours and the eluted drug mass was measured as a function of the time. As a result, the drug was released from the lens for 12 hours in all the pH of artificial tears. At the lower pH of artificial tears (pH 5.8), the total amount of dye emitted from the lens was increased than the total amount of dye emitted at the basic tear (pH 8.4). Also, initial burst at acidic tears was increased within 1 hour. Release pattern of water-soluble drug from hydrogel lens turned out to be different depending on the pH of the artificial tears. When designing drug releasing contact lens, physiological pH of tears should be considered.

  1. Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation

    Science.gov (United States)

    Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.

    2012-01-01

    Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weight ratio of 1:1 of indomethacin and lactose were ground using a high speed vibrating ball mill. Particle size was determined by electron microscopy, the reduction of crystallinity was determined by calorimetry and transmission electron microscopy, infrared spectroscopy was used to find evidence of any interactions between the drug and the carrier and the determination of apparent solubility allowed for the corroboration of changes in solubility. Before grinding, scanning electron microscopy showed the drug and lactose to have an average particle size of around 50 and 30 μm, respectively. After high speed grinding, indomethacin and the mixture had a reduced average particle size of around 5 and 2 μm, respectively, showing a morphological change. The ground mixture produced a solid dispersion that had a loss of crystallinity that reached 81% after 30 min of grinding while the drug solubility of indomethacin within the solid dispersion increased by 2.76 fold as compared to the pure drug. Drug activation due to hydrogen bonds between the carboxylic group of the drug and the hydroxyl group of lactose as well as the decrease in crystallinity of the solid dispersion and the reduction of the particle size led to a better water solubility of indomethacin. PMID:23798775

  2. Use of (113)Cd NMR to probe the native metal binding sites in metalloproteins: an overview.

    Science.gov (United States)

    Armitage, Ian M; Drakenberg, Torbjörn; Reilly, Brian

    2013-01-01

    Our laboratories have actively published in this area for several years and the objective of this chapter is to present as comprehensive an overview as possible. Following a brief review of the basic principles associated with (113)Cd NMR methods, we will present the results from a thorough literature search for (113)Cd chemical shifts from metalloproteins. The updated (113)Cd chemical shift figure in this chapter will further illustrate the excellent correlation of the (113)Cd chemical shift with the nature of the coordinating ligands (N, O, S) and coordination number/geometry, reaffirming how this method can be used not only to identify the nature of the protein ligands in uncharacterized cases but also the dynamics at the metal binding site. Specific examples will be drawn from studies on alkaline phosphatase, Ca(2+) binding proteins, and metallothioneins.In the case of Escherichia coli alkaline phosphatase, a dimeric zinc metalloenzyme where a total of six metal ions (three per monomer) are involved directly or indirectly in providing the enzyme with maximal catalytic activity and structural stability, (113)Cd NMR, in conjunction with (13)C and (31)P NMR methods, were instrumental in separating out the function of each class of metal binding sites. Perhaps most importantly, these studies revealed the chemical basis for negative cooperativity that had been reported for this enzyme under metal deficient conditions. Also noteworthy was the fact that these NMR studies preceded the availability of the X-ray crystal structure.In the case of the calcium binding proteins, we will focus on two proteins: calbindin D(9k) and calmodulin. For calbindin D(9k) and its mutants, (113)Cd NMR has been useful both to follow actual changes in the metal binding sites and the cooperativity in the metal binding. Ligand binding to calmodulin has been studied extensively with (113)Cd NMR showing that the metal binding sites are not directly involved in the ligand binding. The (113)Cd

  3. A water-soluble polycarbonate with dimethylamino pendant groups prepared by enzyme-catalyzed ring-opening polymerization.

    Science.gov (United States)

    Zhang, Xiaojin; Cai, Mengmeng; Zhong, Zhenlin; Zhuo, Renxi

    2012-04-23

    A water-soluble polycarbonate with dimethylamino pendant groups, poly(2-dimethylaminotrimethylene carbonate) (PDMATC), is synthesized and characterized. First, the six-membered carbonate monomer, 2-dimethylaminotrimethylene carbonate (DMATC), is prepared via the cyclization reaction of 2-(dimethylamino)propane-1,3-diol with triphosgene in the presence of triethylamine. Although the attempted ring-opening polymerization (ROP) of DMATC with Sn(Oct)(2) as a catalyst fails, the ROP of DMATC is successfully carried out with Novozym-435 as a catalyst to give water-soluble aliphatic polycarbonate PDMATC with low cytotoxicity and good degradability.

  4. The elevation effect on water-soluble polysaccharides and DPPH free radical scavenging activity of Ganoderma lucidum K

    Science.gov (United States)

    Darsih, C.; Apriyana, W.; Nur Hayati, S.; Taufika Rosyida, V.; Hernawan; Dewi Poeloengasih, C.

    2017-02-01

    Water soluble polysaccharide is one of the important phytochemical in Ganoderma lucidum K. Phytochemicals in the plants, microorganisms, and plants were affected by internal and external factors. The objective of the research was to evaluate the effect of elevation on the water-soluble polysaccharides and its DPPH radical scavenging activity. We found that the water-polysaccharides in mushroom from Godean (elevation free radical scavenging activity of Ganoderma lucidum K from Godean (IC50 11.5 ± 0.29 mg/mL) higher than Kaliurang (IC50 14.4 ± 0.27%).

  5. Investigation of preparation parameters of nanosuspension by top-down media milling to improve the dissolution of poorly water-soluble glyburide.

    Science.gov (United States)

    Singh, Sachin Kumar; Srinivasan, K K; Gowthamarajan, K; Singare, Dhananjay S; Prakash, Dev; Gaikwad, Narayan Babulal

    2011-08-01

    The objective of this study was to identify and optimize formulation and process variables affecting characteristic and scale-up of nanosuspension manufacturing process on bead mill considering industrial perspective. Formulation factors evaluated were ratio of polymer to drug and ratio of surfactant to drug, whereas process parameters were milling time and milling speed. Responses measured in this study include zeta potential and mean particle size d(90). The test revealed that ratio of polymer to drug and milling speed have significant effect on zeta potential whereas milling time and milling speed have significant effect on the particle size distribution of nanosuspension. The X-ray powder diffraction pattern of drug milled at high and low speed reveals no form conversion when compared with unmilled drug. The formulated nanosuspension has shown a faster dissolution profile (98.97% in 10 min), relative to that of raw glyburide (18.17% in 10 min), mainly due to the formation of nanosized particles. The ANOVA test revealed that there was no significant difference in the dissolution profiles of fresh and aged nanosuspension. These results indicate the suitability of formulation procedure for preparation of nanosized poorly water-soluble drug with significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect.

  6. Photoresist-free patterning by mechanical abrasion of water-soluble lift-off resists and bare substrates: toward green fabrication of transparent electrodes.

    Science.gov (United States)

    Printz, Adam D; Chan, Esther; Liong, Celine; Martinez, René S; Lipomi, Darren J

    2013-01-01

    This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process--"abrasion lithography"--takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II), the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary). The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq(-1) and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO) in thin-film electronics over large areas (i.e., solar cells) or as a method of rapid prototyping for laboratory-scale devices.

  7. Photoresist-free patterning by mechanical abrasion of water-soluble lift-off resists and bare substrates: toward green fabrication of transparent electrodes.

    Directory of Open Access Journals (Sweden)

    Adam D Printz

    Full Text Available This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process--"abrasion lithography"--takes two forms. In the first implementation (Method I, a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II, the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary. The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq(-1 and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS. Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO in thin-film electronics over large areas (i.e., solar cells or as a method of rapid prototyping for laboratory-scale devices.

  8. Selective enrichment of metal-binding proteins based on magnetic core/shell microspheres functionalized with metal cations.

    Science.gov (United States)

    Fang, Caiyun; Zhang, Lei; Zhang, Xiaoqin; Lu, Haojie

    2015-06-21

    Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.

  9. Water Soluble Organic Compounds over the Eastern Mediterranean: Study of their occurrence and sources

    Science.gov (United States)

    Tziaras, T.; Spyros, A.; Mandalakis, M.; Apostolaki, M.; Stephanou, E. G.

    2010-05-01

    Fine marine aerosols influence the climate system by acting as cloud condensation nuclei (CCN) in the atmosphere. The organic chemical composition and origin of the marine fine particulate matter are still largely unknown, because of the insufficient reports on in situ studies, the large variability in the emission from the sea, from the complex transfer of gases and particles at the air-sea interface, and the transport of aerosol particles from very distant sources. As important processes of formation of marine organic aerosol production we consider: transport of terrestrial particles, secondary organic aerosol (SOA) formation from the oxidation of biogenic dimethyl-sulfide (DMS), and biogenic particle emissions through sea spray. Specific compounds related to the above-mentioned processes have been proposed as molecular markers: e.g. n-alkanoic acids and n-alkanes (terrestrial particles), levoglucosan (biomass burning aerosol), aminoacids (biological terrestrial or marine particles), methanesulphonate (MSA) (DMS oxidation), C8 and C9 dicarboxylic acids and oxo-carboxylic acids (marine SOA) and other short-chain dicarboxylic acids (marine or terrestrial SOA), and humic-like compounds (emission of marine organic carbon). In our study, we made an effort to characterize the water-soluble organic fraction of marine aerosols collected at a background sampling site of Eastern Mediterranean (Finokalia, N35o20', E25o40', Island of Crete, Greece). The sampling period was 2007-2008. In order to identify and quantify the water-soluble organic compounds of marine aerosols determined in the present study we have used gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance spectroscopy (NMR) and ion chromatography (IC). The origin of air masses arriving in the study area was studied by using backward trajectories calculation (NOAA HYSPLIT Model). In addition, we have used the "MODIS fire products" for fire

  10. Highly water soluble nanoparticles as a draw solute in forward osmosis for the treatment of radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Heeman; Choi, Hye Min; Jang, Sungchan; Seo, Bumkyoung; Lee, Kune Woo; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    . In this study, we introduced highly water-soluble hyperbranched caroboxylated polyglycerol-coated magnetic nanoparticles (CPG-MNPs). It is known that the highly branched, globular architecture of PG significantly increase solubility compared to linear polymer and they are eco-friendly. The CPG-MNPs showed no aggregate of particles in water even after placing external magnet, and exhibited a high water flux in FO process. The CPG-MNPs are, therefore, potentially useful as a draw solute in FO processes. The operation of nuclear pressurized water reactors (PWRs) results in numerous radioactive waste streams which vary in radioactivity content. Most PWR stations have experienced leakages of boric acid into liquid radioactive waste systems. These wastes contain about 0.3∼0.8 wt% of boric acid. It is known that reverse osmosis (RO) membrane can eliminate boron at high pH and boron of 40∼90% can be removed by RO membrane in pH condition. RO uses hydraulic pressure to oppose, and exceed, the osmotic pressure of an aqueous feed solution containing boric acid. Forward osmosis (FO), a low energy technique based on membrane technologies, has recently garnered attention for its utility in wastewater treatment and desalination applications. In the FO process, water flows across a semi-permeable membrane from a solution with a low osmotic pressure (the feed solution) to a solution with a high osmotic pressure (the draw solution). The driving force in FO processes is provided by the osmotic gradient between the two solutions. Low energy costs and low degrees of membrane fouling are two of the advantages conveyed by FO processes over other processes, such as reverse osmosis processes that rely on a hydraulic pressure driving force. However, the challenges of FO still lie in the fabrication of eligible FO membranes and the readily separable draw solutes of high osmotic pressures. Superparamagnetic Fe3O4 nanoparticles can be separated from water by an external magnet field

  11. The Research of Biomedical Intelligent Polymer Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; CHEN Yuan-wei; TANG Chang-wei; QIU Kai; LUO Juan; XU Cheng-yin; WAN Chang-xiu

    2004-01-01

    The properties of biomedical intelligent polymer materials can be changed obviously when there is a little physical or chemical change caused by external condition. They are in the forms of solids, solutions and the polymers on the surface of carrier, and include water solution of hydrophilic polymers, cross-linking hydrophilic polymers(i.e. hydrogels) and the polymers on the surface of carrier. The environmental stimulating factors are temperature, pH value, composition of solution, ionic intention, light intention, electric field, stress field and magnetic field etc.. The properties of intelligent polymer are those of phase, photics, mechanics, electric field, surface energy,reaction ratio, penetrating ratio and recognition etc..Stimulation-response of intelligent water-soluble polymerWater-soluble intelligent polymer can be separated out from solution under special external condition. It can be used as the switch of temperature or pH indicator. When water-soluble intelligent polymer is mixed with soluble-enzyme matter or cell suspension, the polymer can bring phase separation and react with soluble-enzyme matter or cell membrane through accepting some external stimulation. Other water-soluble intelligent polymer is that can make the main chemical group of some natural biomolecular recognition sequence section to arrange on skeleton of polymer at random. It is the same ratio as natural biomolecules.Stimulation-response of intelligent polymer of carrier surface Intelligent polymer can be fixed on the surface of solid polymer carrier through chemical grafting or physical adsorption. When the external conditions are changed, the thickness, humidity and electric field of the surface layer will be changed. Intelligent polymer can be preparated the permanence switch by precipitating into the hole of porous surface, and it can control on-off state of the hole. When protein or cell interacts with intelligent polymer surface to be placed in to open or close, they can be

  12. Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods

    Science.gov (United States)

    Boaz, Segal M.; Champagne, Cory D.; Fowler, Melinda A.; Houser, Dorian H.; Crocker, Daniel E.

    2011-01-01

    Despite the importance of water-soluble vitamins to metabolism, there is limited knowledge of their serum availability in fasting wildlife. We evaluated changes in water-soluble vitamins in northern elephant seals, a species with an exceptional ability to withstand nutrient deprivation. We used a metabolomics approach to measure vitamins and associated metabolites under extended natural fasts for up to seven weeks in free-ranging lactating or developing seals. Water-soluble vitamins were not detected with this metabolomics platform, but could be measured with standard assays. Concentrations of measured vitamins varied independently, but all were maintained at detectable levels over extended fasts, suggesting that defense of vitamin levels is a component of fasting adaptation in the seals. Metabolomics was not ideal for generating complete vitamin profiles in this species, but gave novel insights into vitamin metabolism by detecting key related metabolites. For example, niacin level reductions in lactating females were associated with significant reductions in precursors suggesting downregulation of the niacin synthetic pathway. The ability to detect individual vitamins using metabolomics may be impacted by the large number of novel compounds detected. Modifications to the analysis platforms and compound detection algorithms used in this study may be required for improving water-soluble vitamin detection in this and other novel wildlife systems. PMID:21983145

  13. Cultivar by environment effects of perennial ryegrass cultivars selected for high water soluble carbohydrates managed under differing precipitation levels

    Science.gov (United States)

    Historic results of perennial ryegrass (Lolium perenne L.) breeding include improved disease resistance, biomass, and nutritional quality. Yet, lack of tolerance to water stress limits its wise use. Recent efforts to increase water soluble carbohydrate (WSC) content in perennial ryegrass may incre...

  14. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China

    Science.gov (United States)

    Kirillova, E. N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, Ö.

    2014-02-01

    High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over one billion people and impact the regional climate. A large fraction (17-80%) of this aerosol carbon is water-soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble "brown carbon" and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual carbon isotopes with light-absorption measurements of water-soluble organic carbon (WSOC) for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from northern China. The mass absorption cross section at 365 nm (MAC365) of WSOC for air masses from N. China were in general higher (0.8-1.1 m2 g-1), than from other source regions (0.3-0.8 m2 g-1). However, this effect corresponds to only 2-10% of the radiative forcing caused by light absorption by elemental carbon. Radiocarbon constraints show that the WSOC in Chinese outflow had significantly higher fraction fossil sources (30-50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements were consistent with aging during long-range air mass transport for this large fraction of carbonaceous aerosols.

  15. Synthesis and Characterization of A Novel Water-soluble Block Copolymer with A Rod-coil Structure

    Institute of Scientific and Technical Information of China (English)

    Zhijian Zhang; Wei Wei; Wei Huang

    2005-01-01

    @@ 1Introduction In this paper, a novel water-soluble block copolymer with rod-coil structures was prepared using polyfluorene (PF) as rod segment and polyethylene glycol (PEG) as coil segment in the main chain. A new but simple way of polycondensation ( shown in Scheme 1 ) was employed, compared with tedious atom transfer radical polymerization and ionic polymerization approaches.

  16. An Approach to New Water-soluble Oligo(ethylene glycol) Camptothecin Analogues by 1,3-Dipolar Cycloaddition

    Institute of Scientific and Technical Information of China (English)

    Chun Yan XU; Ming Zhi HUANG

    2006-01-01

    Combined with an effective copper-catalyzed triazole-forming reaction, a series of novel camptothecin derivatives were synthesized. Incorporating oligo(ethylene glycol) chains into the derivatives enhanced their water-solubility when compared to the parent compound (up to 55-fold).

  17. Enhanced in vitro and in vivo cellular imaging with green tea coated water-soluble iron oxide nanocrystals

    NARCIS (Netherlands)

    Xiao, Lisong; Mertens, Marianne; Wortmann, Laura; Kremer, Silke; Valldor, Martin; Lammers, Twan; Kiessling, Fabian; Mathur, Sanjay

    2015-01-01

    Fully green and facile redox chemistry involving reduction of colloidal iron hydroxide (Fe(OH)3) through green tea (GT) polyphenols produced water-soluble Fe3O4 nanocrystals coated with GT extracts namely epigallocatechin gallate (EGCG) and epicatechin (EC). Electron donating polyphenols stoichiomet

  18. Water-soluble organic compounds (WSOCs) in PM2.5 and PM10 at a subtropical site of India

    Science.gov (United States)

    Khare, Puja; Baruah, B. P.; Rao, P. G.

    2011-11-01

    PM2.5 and PM10 samples collected at a suburban site of northeastern part of India have been analysed for particle mass, total carbon (TC), water-soluble total carbon (WSTC), water-soluble organic carbon (WSOC), water-soluble inorganic carbon (WSIC), organic acids (formic, acetic, proponoic and oxalic acids) along with inorganic ions (NO3-, SO42- and NH4-). Most of the PM10 consists of PM2.5 in the present site (ratio 54-74%). WSTC content in PM2.5 and PM10 corresponds to 21% and 16%, respectively, of their total particle masses. Thermo gravimetric analysis showed the presence of humic-like substances (16-22%) in particulate samples. Domestic heating and stagnant atmospheric conditions enhanced the levels of these carbonaceous compounds in PM2.5 and PM10 in winter. Qualitative estimation of various functional groups by Fourier transform infrared (FTIR) analysis indicates the presence of carboxylic, hydroxyl, aliphatic and aromatic hydrocarbons, amines and sulphurous compounds in these aerosols. Absolute principal component analysis applied on the aerosol data resolves four factors. These factors are associated with carbonaceous aerosols released from combustion of coal and wood, secondary inorganic and organic aerosols and water-soluble inorganic fraction.

  19. Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods.

    Science.gov (United States)

    Boaz, Segal M; Champagne, Cory D; Fowler, Melinda A; Houser, Dorian H; Crocker, Daniel E

    2012-02-01

    Despite the importance of water-soluble vitamins to metabolism, there is limited knowledge of their serum availability in fasting wildlife. We evaluated changes in water-soluble vitamins in northern elephant seals, a species with an exceptional ability to withstand nutrient deprivation. We used a metabolomics approach to measure vitamins and associated metabolites under extended natural fasts for up to 7 weeks in free-ranging lactating or developing seals. Water-soluble vitamins were not detected with this metabolomics platform, but could be measured with standard assays. Concentrations of measured vitamins varied independently, but all were maintained at detectable levels over extended fasts, suggesting that defense of vitamin levels is a component of fasting adaptation in the seals. Metabolomics was not ideal for generating complete vitamin profiles in this species, but gave novel insights into vitamin metabolism by detecting key related metabolites. For example, niacin level reductions in lactating females were associated with significant reductions in precursors suggesting downregulation of the niacin synthetic pathway. The ability to detect individual vitamins using metabolomics may be impacted by the large number of novel compounds detected. Modifications to the analysis platforms and compound detection algorithms used in this study may be required for improving water-soluble vitamin detection in this and other novel wildlife systems.

  20. Cyanide antidotes for mass casualties: water-soluble salts of the dithiane (sulfanegen) from 3-mercaptopyruvate for intramuscular administration.

    Science.gov (United States)

    Patterson, Steven E; Monteil, Alexandre R; Cohen, Jonathan F; Crankshaw, Daune L; Vince, Robert; Nagasawa, Herbert T

    2013-02-14

    Current cyanide antidotes are administered by IV infusion, which is suboptimal for mass casualties. Therefore, in a cyanide disaster, intramuscular (IM) injectable antidotes would be more appropriate. We report the discovery of the highly water-soluble sulfanegen triethanolamine as a promising lead for development as an IM injectable cyanide antidote.

  1. Evaluating the ready biodegradability of two poorly water-soluble substances: comparative approach of bioavailability improvement methods (BIMs).

    Science.gov (United States)

    Sweetlove, Cyril; Chenèble, Jean-Charles; Barthel, Yves; Boualam, Marc; L'Haridon, Jacques; Thouand, Gérald

    2016-09-01

    Difficulties encountered in estimating the biodegradation of poorly water-soluble substances are often linked to their limited bioavailability to microorganisms. Many original bioavailability improvement methods (BIMs) have been described, but no global approach was proposed for a standardized comparison of these. The latter would be a valuable tool as part of a wider strategy for evaluating poorly water-soluble substances. The purpose of this study was to define an evaluation strategy following the assessment of different BIMs adapted to poorly water-soluble substances with ready biodegradability tests. The study was performed with two poorly water-soluble chemicals-a solid, anthraquinone, and a liquid, isodecyl neopentanoate-and five BIMs were compared to the direct addition method (reference method), i.e., (i) ultrasonic dispersion, (ii) adsorption onto silica gel, (iii) dispersion using an emulsifier, (iv) dispersion with silicone oil, and (v) dispersion with emulsifier and silicone oil. A two-phase evaluation strategy of solid and liquid chemicals was developed involving the selection of the most relevant BIMs for enhancing the biodegradability of tested substances. A description is given of a BIM classification ratio (R BIM), which enables a comparison to be made between the different test chemical sample preparation methods used in the various tests. Thereby, using this comparison, the BIMs giving rise to the greatest biodegradability were ultrasonic dispersion and dispersion with silicone oil or with silicone oil and emulsifier for the tested solid chemical, adsorption onto silica gel, and ultrasonic dispersion for the liquid one.

  2. A kinetic study of a poorly water soluble drug released from pectin microcapsules using diffusion/dissolution model

    Science.gov (United States)

    A new microcapsular system for controlled drug delivery was developed from pectins obtained from various sources, with different molecular weight and degree of esterification. The release kinetics of a poorly water-soluble drug from the pectin microcapsules was investigated in simulated gastrointes...

  3. The effect of sublethal concentrations of the water-soluble fraction of crude oil on the chemosensory function of Caspian roach, Rutilus caspicus (YAKOVLEV, 1870).

    Science.gov (United States)

    Lari, Ebrahim; Abtahi, Behrooz; Hashtroudi, Mehri Seyed; Mohaddes, Effat; Døving, Kjell B

    2015-08-01

    The water-soluble fraction of crude oil is a complex and toxic mixture of hydrocarbons. Because aquatic organisms directly encounter it, the water-soluble fraction plays an important role in the toxicity of crude oil in aquatic environments. To determine whether fish are attracted to or avoid the water-soluble fraction, Caspian roaches (Rutilus caspicus) were exposed to different concentrations of the water-soluble fraction in a choice maze apparatus. The results showed that Caspian roaches can detect and avoid 2 mg/L of the water-soluble fraction. To study the effect of the water-soluble fraction on the olfactory function of fish, Caspian roaches were exposed to 3.2 mg/L and 16 mg/L of the water-soluble fraction for 96 h; afterward, exposed fish encountered food extract in a choice maze apparatus. The present study showed that the water-soluble fraction significantly impairs the olfactory function of roaches. To investigate the effect of olfactory system dysfunction on the feeding behavior of fish, Caspian roaches were exposed to 3.2 mg/L and 16 mg/L of the water-soluble fraction. After 4 d, 8 d, and 12 d of exposure, the feeding behavior toward the food extract was tested. The results showed that both 3.2 mg/L and 16 mg/L of the water-soluble fraction suppress the feeding behavior of Caspian roaches. The present study demonstrates that sublethal concentrations of crude oil's water-soluble fraction impair the olfactory function of fish and consequently suppress the feeding behavior. © 2015 SETAC.

  4. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2016-01-01

    Full Text Available Abid Mehmood Yousaf,1,2 Omer Mustapha,1 Dong Wuk Kim,1 Dong Shik Kim,1 Kyeong Soo Kim,1 Sung Giu Jin,1 Chul Soon Yong,3 Yu Seok Youn,4 Yu-Kyoung Oh,5 Jong Oh Kim,3 Han-Gon Choi1 1College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, South Korea; 2Faculty of Pharmacy, University of Central Punjab, Johar, Lahore, Pakistan; 3College of Pharmacy, Yeungnam University, Gyongsan, North Gyeongsang, 4School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 5College of Pharmacy, Seoul National University, Seoul, South Korea Purpose: The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate.Methods: Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion.Results: All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1

  5. Effect of novel water soluble curcumin derivative on experimental type- 1 diabetes mellitus (short term study

    Directory of Open Access Journals (Sweden)

    Abdel Aziz Mohamed T

    2012-07-01

    Full Text Available Abstract Background Diabetes mellitus type 1 is an autoimmune disorder caused by lymphocytic infiltration and beta cells destruction. Curcumin has been identified as a potent inducer of heme-oxygenase-1 (HO-1, a redoxsensitive inducible protein that provides protection against various forms of stress. A novel water soluble curcumin derivative (NCD has been developed to overcome low in vivo bioavailability of curcumin. The aim of the present work is to evaluate the anti diabetic effects of the “NCD” and its effects on diabetes-induced ROS generation and lipid peroxidation in experimental type- 1 diabetes mellitus. We also examine whether the up regulation of HO-1 accompanied by increased HO activity mediates these antidiabetic and anti oxidant actions. Materials and methods Rats were divided into control group, control group receiving curcumin derivative, diabetic group, diabetic group receiving curcumin derivative and diabetic group receiving curcumin derivative and HO inhibitor ZnPP. Type-1 diabetes was induced by intraperitoneal injection of streptozotocin. Curcumin derivative was given orally for 45 days. At the planned sacrification time (after 45 days, fasting blood samples were withdrawn for estimation of plasma glucose, plasma insulin and lipid profile . Animals were sacrificed; pancreas, aorta and liver were excised for the heme oxygenase - 1 expression, activity and malondialdehyde estimation. Results NCD supplementation to diabetic rats significantly lowered the plasma glucose by 27.5% and increased plasma insulin by 66.67%. On the other hand, the mean plasma glucose level in the control group showed no significant difference compared to the control group receiving the oral NCD whereas, NCD supplementation to the control rats significantly increased the plasma insulin by 47.13% compared to the control. NCD decreased total cholesterol, triglycerides, LDL cholesterol and increased HDL cholesterol levels. Also, it decreased lipid

  6. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2008-09-01

    Full Text Available This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC, inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III by using a micro-orifice uniform deposit impactor (MOUDI. The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC and monosaccharide anhydrides from the filter samples (particle aerodynamic diameter smaller than 1 μm, PM1. Gravimetric mass concentration varied during the MOUDI samplings between 3.4 and 55.0 μg m−3 and the WSOC concentrations were between 0.3 and 7.4 μg m−3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6 to convert the analyzed carbon mass to organic matter mass comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1–10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1–10 aerosol mass.

    Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas. Categories were identified mainly using levoglucosan concentration level for wood combustion and air mass backward trajectories for other groups. Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs and aerosols as well as various transformation processes are likely

  7. Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils

    Energy Technology Data Exchange (ETDEWEB)

    Stankovikj, Filip; McDonald, Armando G.; Helms, Gregory L.; Olarte, Mariefel V.; Garcia-Perez, Manuel

    2017-01-31

    This paper reports a study of the chemical composition of the water soluble (WS) fraction obtained by cold water precipitation of two commercial wood pyrolysis oils (BTG and Amaron). The fraction studied accounts for between 50.3 and 51.3 wt. % of the oils. With the most common analytical techniques used today for the characterization of this fraction (KF titration, GC/MS, hydrolysable sugars and total carbohydrates), it is possible to quantify only between 45 and 50 wt. % of it. Our results confirm that most of the total carbohydrates (hydrolysable sugars and non-hydrolysable) are soluble in water. The ion chromatography hydrolysis method showed that between 11.6 and 17.3 wt. % of these oils were hydrolysable sugars. A small quantity of phenols detectable by GC/MS (between 2.5 and 3.9 wt. %) were identified. It is postulated that the unknown high molecular weight fraction (30-55 wt. %) is formed by highly dehydrated sugars rich in carbonyl groups and WS phenols. The overall content of carbonyl, carboxyl, hydroxyl and phenolic compounds in the WS fraction were quantified by titration, Folin-Ciocalteu, 31P-NMR and 1H-NMR. The WS fraction contains between 5.5 and 6.2 mmol/g of carbonyl groups, between 0.4 and 1.0 mmol/g of carboxylic acid groups, between 1.2 and 1.8 mmol/g phenolic -OH, and between 6.0 and 7.9 mmol/g of aliphatic alcohol groups. Translation into weight fractions of the WS was done by supposing surrogate structures for the water soluble phenols, carbonyl and carboxyl groups and we estimated the content of WS phenols (21-27 wt. %), carbonyl (5-14 wt.%), and carboxyl (0-4 wt.%). Together with the total carbohydrates (23-27 wt.%), this approach leads to > 90 wt. % of the WS material in the bio-oils being quantified. We speculate the larger portion of the difference between the total carbohydrates and hydrolysable sugars is the missing furanic fraction. Further refinement of the suggested methods and development of separation schemes to obtain and

  8. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  9. Water-soluble nitric-oxide-releasing acetylsalicylic acid (ASA) prodrugs.

    Science.gov (United States)

    Rolando, Barbara; Lazzarato, Loretta; Donnola, Monica; Marini, Elisabetta; Joseph, Sony; Morini, Giuseppina; Pozzoli, Cristina; Fruttero, Roberta; Gasco, Alberto

    2013-07-01

    A series of water-soluble (benzoyloxy)methyl esters of acetylsalicylic acid (ASA), commonly known as aspirin, are described. The new derivatives each have alkyl chains containing a nitric oxide (NO)-releasing nitrooxy group and a solubilizing moiety bonded to the benzoyl ring. The compounds were synthesized and evaluated as ASA prodrugs. After conversion to the appropriate salt, most of the derivatives are solid at room temperature and all possess good water solubility. They are quite stable in acid solution (pH 1) and less stable at physiological pH. In human serum, these compounds are immediately metabolized by esterases, producing a mixture of ASA, salicylic acid (SA), and of the related NO-donor benzoic acids, along with other minor products. Due to ASA release, the prodrugs are capable of inhibiting collagen-induced platelet aggregation of human platelet-rich plasma. Simple NO-donor benzoic acids 3-hydroxy-4-(3-nitrooxypropoxy)benzoic acid (28) and 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoic acid (48) were also studied as representative models of the whole class of benzoic acids formed following metabolism of the prodrugs in serum. These simplified derivatives did not trigger antiaggregatory activity when tested at 300 μM. Only 28 displays quite potent NO-dependent vasodilatatory action. Further in vivo evaluation of two selected prodrugs, {[2-(acetyloxy)benzoyl]oxy}methyl-3-[(3-[aminopropanoyl)oxy]-4-[3-(nitrooxy)propoxy]benzoate⋅HCl (38) and {[2-(acetyloxy)benzoyl]oxy}methyl 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoate oxalate (49), revealed that their anti-inflammatory activities are similar to that of ASA when tested in the carrageenan-induced paw edema assay in rats. The gastrotoxicity of the two prodrugs was also determined to be lower than that of ASA in a lesion model in rats. Taken together, these results indicated that these NO-donor ASA prodrugs warrant further investigation for clinical application.

  10. Release kinetics of coated, donut-shaped tablets for water soluble drugs.

    Science.gov (United States)

    Kim, C J

    1999-02-01

    Coated, donut-shaped tablets (CDST) were designed to achieve parabolic and linear drug release profiles. When rapidly erodible polymers (HPMC E3, HPC, PEG8000, PEOs (Mw=100000 and 200000)) were used, the release profiles of diltiazem HCl from the tablets becomes parabolic whereas zero-order release was achieved by using slowly erodible polymers (HPMC E5, HPMC E15, PEO (Mw=300000)). Drug release from the rapidly erodible polymers was governed by the pure erosion of the polymer while both polymer erosion and drug diffusion controlled drug release from the slowly erodible polymers. As drug loading was increased from 10% to 39% w/w, the drug release rate from CDST based on HPMC E3 became faster and parabolic whereas that from CDST based on HPMC E5 was linear. The slowly erodible polymer (HPMC E5) provided parabolic release profiles when drug loading was greater than 49% w/w. In this case, drug release mechanisms likely shifted from a combination of polymer erosion and drug diffusion to pure polymer erosion due to the enhancement of polymer erosion by faster influx of water. As drug solubility decreased from 61.6% w/v (diltiazem HCl), 1.0% w/v (theophylline), to 0.5% w/v (nicardipine HCl), the drug release rate from CDST based on HPMC E3 decreased due to polymer erosion mechanism but there was little difference in release rate from CDST based on HPMC E5 due to the greater contribution of drug diffusion to drug release kinetics along with polymer erosion. As expected, the drug release rate of diltiazem HCl from HPMC E3 and E5 was significantly influenced by stirring rate and hole size.

  11. Cucumber Metallothionein-Like 2 (CsMTL2) Exhibits Metal-Binding Properties

    Science.gov (United States)

    Pan, Yu; Pan, Yanglu; Zhai, Junpeng; Xiong, Yan; Li, Jinhua; Du, Xiaobing; Su, Chenggang; Zhang, Xingguo

    2016-01-01

    We identified a novel member of the metallothionein (MT) family, Cucumis sativus metallothionein-like 2 (CsMTL2), by screening a young cucumber fruit complementary DNA (cDNA) library. The CsMTL2 encodes a putative 77-amino acid Class II MT protein that contains two cysteine (Cys)-rich domains separated by a Cys-free spacer region. We found that CsMTL2 expression was regulated by metal stress and was specifically induced by Cd2+ treatment. We investigated the metal-binding characteristics of CsMTL2 and its possible role in the homeostasis and/or detoxification of metals by heterologous overexpression in Escherichia coli cells. Furthermore, we produced a deletion mutant form of the protein, CsMTL2m, that contained the two Cys-rich clusters but lacked the spacer region, in E. coli. We compared the metal-binding properties of CsMTL2 with those of CsMTL2m, the β domain of human metallothionein-like protein 1 (HsMTXb), and phytochelatin-like (PCL) heterologously expressed in E. coli using metal-binding assays. We found that E. coli cells expressing CsMTL2 accumulated the highest levels of Zn2+ and Cd2+ of the four transformed cell types, with levels being significantly higher than those of control cells containing empty vector. E. coli cells expressing CsMTL2 had a higher tolerance for cadmium than for zinc ions. These findings show that CsMTL2 improves metal tolerance when heterologously expressed in E. coli. Future studies should examine whether CsMTL2 improves metal tolerance in planta. PMID:27916887

  12. Characterization of Two Metal Binding Lipoproteins as Vaccine Candidates for Enterococcal Infections.

    Directory of Open Access Journals (Sweden)

    Felipe Romero-Saavedra

    Full Text Available Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens.We extrapolate the transcriptomic data from a mice peritonitis infection model in E. faecalis to identify putative up-regulated surface proteins under infection conditions in E. faecium. After the bionformatic analyses two metal binding lipoproteins were identified to have a high homology (>72% between the two species, the manganese ABC transporter substrate-binding lipoprotein (PsaAfm, and the zinc ABC transporter substrate-binding lipoprotein (AdcAfm. These candidate lipoproteins were overexpressed in Escherichia coli and purified. The recombinant proteins were used to produce rabbit polyclonal antibodies that were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Mice were passively immunized with the antibodies raised against recombinant lipoproteins, showing significant reduction of colony counts in mice livers after the bacterial challenge and demonstrating the efficacy of these metal binding lipoproteins as promising vaccine candidates to treat infections caused by these enterococcal pathogens.Overall, our results demonstrate that these two metal binding lipoproteins elicited specific, opsonic and protective antibodies, with an extensive cross-reactivity and serotype-independent coverage among these two important nocosomial pathogens. Pointing these two protein antigens as promising immunogens, that can be used as single components or as carrier

  13. Structure and Metal Binding Properties of ZnuA, a Periplasmic Zinc Transporter from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Yatsunyk,L.; Easton, J.; Kim, L.; Sugarbaker, S.; Bennett, B.; Breece, R.; Vorontsov, I.; Tierney, D.; Crowder, M.; Rosenzweig, A.

    2008-01-01

    ZnuA is the periplasmic Zn(2+)-binding protein associated with the high-affinity ATP-binding cassette ZnuABC transporter from Escherichia coli. Although several structures of ZnuA and its homologs have been determined, details regarding metal ion stoichiometry, affinity, and specificity as well as the mechanism of metal uptake and transfer remain unclear. The crystal structures of E. coli ZnuA (Eco-ZnuA) in the apo, Zn(2+)-bound, and Co(2+)-bound forms have been determined. ZnZnuA binds at least two metal ions. The first, observed previously in other structures, is coordinated tetrahedrally by Glu59, His60, His143, and His207. Replacement of Zn(2+) with Co(2+) results in almost identical coordination geometry at this site. The second metal binding site involves His224 and several yet to be identified residues from the His-rich loop that is unique to Zn(2+) periplasmic metal binding receptors. Electron paramagnetic resonance and X-ray absorption spectroscopic data on CoZnuA provide additional insight into possible residues involved in this second site. The second site is also detected by metal analysis and circular dichroism (CD) titrations. Eco-ZnuA binds Zn(2+) (estimated K (d) < 20 nM), Co(2+), Ni(2+), Cu(2+), Cu(+), and Cd(2+), but not Mn(2+). Finally, conformational changes upon metal binding observed in the crystal structures together with fluorescence and CD data indicate that only Zn(2+) substantially stabilizes ZnuA and might facilitate recognition of ZnuB and subsequent metal transfer.

  14. Cucumber Metallothionein-Like 2 (CsMTL2 Exhibits Metal-Binding Properties

    Directory of Open Access Journals (Sweden)

    Yu Pan

    2016-11-01

    Full Text Available We identified a novel member of the metallothionein (MT family, Cucumis sativus metallothionein-like 2 (CsMTL2, by screening a young cucumber fruit complementary DNA (cDNA library. The CsMTL2 encodes a putative 77-amino acid Class II MT protein that contains two cysteine (Cys-rich domains separated by a Cys-free spacer region. We found that CsMTL2 expression was regulated by metal stress and was specifically induced by Cd2+ treatment. We investigated the metal-binding characteristics of CsMTL2 and its possible role in the homeostasis and/or detoxification of metals by heterologous overexpression in Escherichia coli cells. Furthermore, we produced a deletion mutant form of the protein, CsMTL2m, that contained the two Cys-rich clusters but lacked the spacer region, in E. coli. We compared the metal-binding properties of CsMTL2 with those of CsMTL2m, the β domain of human metallothionein-like protein 1 (HsMTXb, and phytochelatin-like (PCL heterologously expressed in E. coli using metal-binding assays. We found that E. coli cells expressing CsMTL2 accumulated the highest levels of Zn2+ and Cd2+ of the four transformed cell types, with levels being significantly higher than those of control cells containing empty vector. E. coli cells expressing CsMTL2 had a higher tolerance for cadmium than for zinc ions. These findings show that CsMTL2 improves metal tolerance when heterologously expressed in E. coli. Future studies should examine whether CsMTL2 improves metal tolerance in planta.

  15. Novel third-generation water-soluble noscapine analogs as superior microtubule-interfering agents with enhanced antiproliferative activity.

    Science.gov (United States)

    Henary, Maged; Narayana, Lakshminarayana; Ahad, Shazia; Gundala, Sushma R; Mukkavilli, Rao; Sharma, Vibhuti; Owens, Eric A; Yadav, Yogesh; Nagaraju, Mulpuri; Hamelberg, Donald; Tandon, Vibha; Panda, Dulal; Aneja, Ritu

    2014-11-15

    Noscapine, an opium-derived 'kinder-gentler' microtubule-modulating drug is in Phase I/II clinical trials for cancer chemotherapy. However, its limited water solubility encumbers its development into an oral anticancer drug with clinical promise. Here we report the synthesis of 9 third-generation, water-soluble noscapine analogs with negatively charged sulfonato and positively charged quaternary ammonium groups using noscapine, 9-bromonoscapine and 9-aminonoscapine as scaffolds. The predictive free energy of solvation was found to be lower for sulfonates (6a-c; 8a-c) compared to the quaternary ammonium-substituted counterparts, explaining their higher water solubility. In addition, sulfonates showed higher charge dispersability, which may effectively shield the hydrophobicity of isoquinoline nucleus as indicated by hydrophobicity mapping methods. These in silico data underscore efficient net charge balancing, which may explain higher water solubility and thus enhanced antiproliferative efficacy and improved bioavailability. We observed that 6b, 8b and 8c strongly inhibited tubulin polymerization and demonstrated significant antiproliferative activity against four cancer cell lines compared to noscapine. Molecular simulation and docking studies of tubulin-drug complexes revealed that the brominated compound with a four-carbon chain (4b, 6b, and 8b) showed optimal binding with tubulin heterodimers. Interestingly, 6b, 8b and 8c treated PC-3 cells resulted in preponderance of mitotic cells with multipolar spindle morphology, suggesting that they stall the cell cycle. Furthermore, in vivo pharmacokinetic evaluation of 6b, 8b and 8c revealed at least 1-2-fold improvement in their bioavailability compared to noscapine. To our knowledge, this is the first report to demonstrate novel water-soluble noscapine analogs that may pave the way for future pre-clinical drug development.

  16. Metal binding affinity and selectivity in metalloproteins: insights from computational studies.

    Science.gov (United States)

    Dudev, Todor; Lim, Carmay

    2008-01-01

    This review highlights insights gained from computational studies on protein-metal recognition. We systematically dissect the various factors governing metal binding affinity and selectivity in proteins starting from (a) the intrinsic properties of the metal and neighboring metal cations (if present), to (b) the primary coordination sphere, (c) the second coordination shell, (d) the protein matrix, (e) the bulk solvent, and (f) competing non-protein ligands from the surrounding biological environment. The results herein reveal the fundamental principles and the molecular bases underlying protein-metal recognition, which serve as a guide to engineer novel metalloproteins with programmed properties.

  17. POLYMER MICELLE INTERACTIONS - PHYSICAL ORGANIC ASPECTS

    NARCIS (Netherlands)

    BRACKMAN, JC; ENGBERTS, JBFN

    1993-01-01

    This review presents a summary of attempts to characterize the morphology of the complexes formed between ionic and non-ionic surfactants and water-soluble polymers. It is now generally accepted that complex formation involves the binding of micelles to the macromolecule. This binding process modifi

  18. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  19. Case study of water-soluble metal containing organic constituents of biomass burning aerosol.

    Science.gov (United States)

    Chang-Graham, Alexandra L; Profeta, Luisa T M; Johnson, Timothy J; Yokelson, Robert J; Laskin, Alexander; Laskin, Julia

    2011-02-15

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Further research into the sources, dispersion, and persistence of metal-containing aerosols, as well as their environmental effects, is needed.

  20. Determination of water-soluble vitamins in soft drinks and vitamin supplements using capillary electrophoresis.

    Science.gov (United States)

    Schreiner, Matthias; Razzazi, Ebrahim; Luf, Wolfgang

    2003-08-01

    A method for the determination of six water-soluble vitamins based on capillary electrophoresis (CE) operated in micellar mode was developed. Thiamine hydrochloride (vitamin B1), riboflavin (vitamin B2), pyridoxine hydrochloride (vitamin B6), pantothenic acid (vitamin B5), nicotinamide (vitamin B3), and cobalamin (Vitamin B12) could be separated in a single run. All CE parameters such as buffer composition and operation temperature were optimized in order to achieve better separation. Relative standard deviations (RSDs) of the described method ranged from 1.08 to 3.68% (intra-day precision) and 1.26 to 3.35% (inter-day precision). The method was then used for measuring various soft drinks and vitamin supplements directly without any step of sample cleanup. The determination of niacin was successful for all samples tested, reaching recoveries near 100%. Riboflavin and pyridoxine were quantified successfully in some but not all samples. Therefore, an evaluation on a case-by-case basis is mandatory. When applicable, this method provides a fast, accurate, simple, and inexpensive way to quantify selected vitamins, and is therefore well suited for routine analysis in soft drink industry.

  1. The haemodynamic effects of iodinated water soluble radiographic contrast media: a review

    Energy Technology Data Exchange (ETDEWEB)

    Morcos, S.K. [Department of Diagnostic Imaging, Northern General Hospital NHS Trust, Sheffield S5 7AU (United Kingdom); Dawson, P. [Department of Imaging, Hammersmith Hospital, London W12 0NN (United Kingdom); Pearson, J.D. [Vascular Biology Research Centre, King' s College, Kensington, London W8 7AH (United Kingdom); Jeremy, J.Y. [Bristol Heart Institute, Bristol BS2 8HW (United Kingdom); Davenport, A.P. [Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 2QQ (United Kingdom); Yates, M.S. [Department of Pharmacology, University of Leeds, Leeds LS2 9JT (United Kingdom); Tirone, P.; Cipolla, P.; Haeen, C. de [Contrast Media Research, Bracco, Milan (Italy); Muschick, P.; Krause, W. [Contrast Media Research, Schering AG, Berlin (Germany); Refsum, H. [Research and Development, Nycomed Imaging AS and University of Oslo, Institute for Experimental Medical Research, Ullevaal Hospital, Oslo (Norway); Emery, C.J. [Department of Respiratory Medicine, Division of Clinical Sciences, University of Sheffield, Sheffield (United Kingdom); Liss, P.; Nygren, A. [Department of Diagnostic Radiology, University Hospital, S-751 85 Uppsala (Sweden); Haylor, J. [Sheffield Kidney Institute, Northern General Hospital, Sheffield (United Kingdom); Pugh, N.D. [Department of Medical Physics and Bioengineering, University Hospital of Wales, Heath Park, Cardiff CF4 4XW (United Kingdom); Karlsson, J.O.G. [Department of Physiology and Biomedical Engineering, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim (Norway)

    1998-11-01

    All classes of iodinated water-soluble radiographic contrast media (RCM) are vasoactive with the iso-osmolar dimers inducing the least changes in the vascular tone. The mechanisms responsible for RCM-induced changes in the vascular tone are not fully understood and could be multifactorial. A direct effect on the vascular smooth muscle cells causing alterations in the ion exchanges across the cell membrane is thought to be an important factor in RCM-induced vasodilatation. The release of the endogenous vasoactive mediators adenosine and endothelin may also play a crucial role in the haemodynamic effects of RCM particularly in the kidney. In addition, the effects of RCM on blood rheology can cause a reduction in the blood flow in the microcirculation. The purpose of this review is to discuss the pathophysiology of the haemodynamic effects of RCM and to offer some insight into the biology of the endothelium and vascular smooth muscle cells as well as the pharmacology of the important vasoactive mediators endothelin and adenosine. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Wettability and surface chemistry of crystalline and amorphous forms of a poorly water soluble drug.

    Science.gov (United States)

    Puri, Vibha; Dantuluri, Ajay K; Kumar, Mahesh; Karar, N; Bansal, Arvind K

    2010-05-12

    The present study compares energetics of wetting behavior of crystalline and amorphous forms of a poorly water soluble drug, celecoxib (CLB) and attempts to correlate it to their surface molecular environment. Wettability and surface free energy were determined using sessile drop contact angle technique and water vapor sorption energetics was measured by adsorption calorimetry. The surface chemistry was elucidated by X-ray photoelectron spectroscopy (XPS) and crystallographic evaluation. The two solid forms displayed distinctly different wetting with various probe liquids and in vitro dissolution media. The crystalline form surface primarily exhibited dispersive surface energy (47.3mJ/m(2)), while the amorphous form had a slightly reduced dispersive (45.2mJ/m(2)) and a small additional polar (4.8mJ/m(2)) surface energy. Calorimetric measurements, revealed the amorphous form to possess a noticeably high differential heat of absorption, suggesting hydrogen bond interactions between its polar energetic sites and water molecules. Conversely, the crystalline CLB form was found to be inert to water vapor sorption. The relatively higher surface polarity of the amorphous form could be linked to its greater oxygen-to-fluorine surface concentration ratio of 1.27 (cf. 0.62 for crystalline CLB), as determined by XPS. The crystallographic studies of the preferred cleavage plane (020) of crystalline CLB further supported its higher hydrophobicity. In conclusion, the crystalline and amorphous forms of CLB exhibited disparate surface milieu, which in turn can have implications on the surface mediated events.

  3. Effect of Thiobacillus, sulfur, and vermicompost on the water-soluble phosphorus of hard rock phosphate.

    Science.gov (United States)

    Aria, Marzieh Mohammady; Lakzian, Amir; Haghnia, Gholam Hosain; Berenji, Ali Reza; Besharati, Hosein; Fotovat, Amir

    2010-01-01

    Sulfur, organic matter, and inoculation with sulfur-oxidizing bacteria are considered as amendments to increase the availability of phosphorus from rock phosphate. The present study was conducted to evaluate the best combination of sulfur, vermicompost, and Thiobacillus thiooxidans inoculation with rock phosphate from Yazd province for direct application to agricultural lands in Iran. For such study, an experiment was carried out in a completely randomized design with factorial arrangement: Elemental sulfur originated from Sarakhs mine at three rates, 0% (S1), 10% (S2), 20% (S3), vermicompost at two rates, 0% (V1), 15% (V2), and inoculation without (B1) and with (B2) T. thiooxidans, in three replications. The results showed that water-soluble phosphorus (WSP) content was significantly higher in inoculated treatments compared to non-inoculated treatments. Sulfur had a significant effect on WSP. The highest solubility rate of rock phosphate was obtained in 20% of sulfur (S3) treatments and it was 2.4 times more than S1 treatments. Vermicompost also had a significant and positive effect on WSP of rock phosphate dissolution. The results also revealed that the highest concentration of WSP, sulfate and the lowest pH were obtained in treatments with 20% sulfur, 15% vermicompost inoculated with T. thiooxidans (B2S3V2).

  4. Water-soluble chemistry and weathering characteristics of some tills in Western Dronning Maud Land, Antarctica

    Directory of Open Access Journals (Sweden)

    Lintinen, P.

    1997-12-01

    Full Text Available The water-soluble chemistry and weathering characteristics of tills were studied on three nunataks with differing bedrock characteristics in the Vestfjella and Heimefrontfjella areas of the Western Dronning Maud Land, Antarctica. The chemical analyses were performed using ion chromatography and ICP-AES. The relative weathering characteristics of the till surface boulders was assessed in study locations. No colour differences were observed in test pits dug in Basen and Utpostane nunataks at Vestfjella, whereas the till in Mygehenget nunatak at Heimefrontfjella has a pronounced soil profile in which the surface part has a banded rusty brown and light-coloured accumulations. The highest concentrations of readily soluble ions were recorded in the Mygehenget samples characterized by high (SO42- (5800-39000 ppm and Mg concentrations (540-6000 ppm, while the Basen samples had the highest concentrations of Fe2+(23-390 ppm, Al3+ (60-1000 ppm and Si4+ (23-1700 ppm and the Utpostane samples the lowest ones. The SO4/Na+, Na+/CI- and Mg2+/Na+ ratios for the samples differ markedly from those typically encountered in sea water. The presence of the highest concentrations of many of the analysed ions in the Mygehenget soil samples is in line with the advanced weathering of the surface boulders. The high Fe2+ , Si4+ and Al3+ concentrations in the Basen samples may be attributable to the weathering of olivine alteration products.

  5. Effects of cell cycle on the uptake of water soluble quantum dots by cells

    Science.gov (United States)

    Zheng, Shen; Chen, Ji-Yao; Wang, Jun-Yong; Zhou, Lu-Wei; Peng, Qian

    2011-12-01

    Quantum dots (QDs) with excellent optical properties have become powerful candidates for cell imaging. Although numerous reports have studied the uptake of QDs by cells, little information exists on the effects of cell cycle on the cellular QD uptake. In this report, the effects of cell cycle on the uptake of water soluble thiol-capped CdTe QDs by the human cervical carcinoma Hela cell line, human hepatocellular carcinoma QGY7701 cell line, and human embryonic kidney 293T cell line were studied by means of laser scanning confocal microscopy and flow cytometry. All three cell lines show to take up CdTe QDs via endocytosis. After arresting cells at specific phases with pharmacological agents, the cells in G2/M phase take up the most CdTe QDs, probably due to an increased membrane expansion during mitosis; whereas the cells in G1 phase do the least. A mathematical physics model was built to calculate the relative uptake rates of CdTe QDs by cells in different phases of the cell cycle, with the result as the uptake rate in G2/M phase is 2-4 times higher than that in G1 phase for these three cell lines. The results obtained from this study may provide the information useful for intracellular delivery of QDs.

  6. Modeling the Release Kinetics of Poorly Water-Soluble Drug Molecules from Liposomal Nanocarriers

    Directory of Open Access Journals (Sweden)

    Stephan Loew

    2011-01-01

    Full Text Available Liposomes are frequently used as pharmaceutical nanocarriers to deliver poorly water-soluble drugs such as temoporfin, cyclosporine A, amphotericin B, and paclitaxel to their target site. Optimal drug delivery depends on understanding the release kinetics of the drug molecules from the host liposomes during the journey to the target site and at the target site. Transfer of drugs in model systems consisting of donor liposomes and acceptor liposomes is known from experimental work to typically exhibit a first-order kinetics with a simple exponential behavior. In some cases, a fast component in the initial transfer is present, in other cases the transfer is sigmoidal. We present and analyze a theoretical model for the transfer that accounts for two physical mechanisms, collisions between liposomes and diffusion of the drug molecules through the aqueous phase. Starting with the detailed distribution of drug molecules among the individual liposomes, we specify the conditions that lead to an apparent first-order kinetic behavior. We also discuss possible implications on the transfer kinetics of (1 high drug loading of donor liposomes, (2 attractive interactions between drug molecules within the liposomes, and (3 slow transfer of drugs between the inner and outer leaflets of the liposomes.

  7. Formulation of a Novel Nanoemulsion System for Enhanced Solubility of a Sparingly Water Soluble Antibiotic, Clarithromycin

    Directory of Open Access Journals (Sweden)

    Stuti Vatsraj

    2014-01-01

    Full Text Available The sparingly water soluble property of majority of medicinally significant drugs acts as a potential barrier towards its utilization for therapeutic purpose. The present study was thus aimed at development of a novel oil-in-water (o/w nanoemulsion (NE system having ability to function as carrier for poorly soluble drugs with clarithromycin as a model antibiotic. The therapeutically effective concentration of clarithromycin, 5 mg/mL, was achieved using polysorbate 80 combined with olive oil as lipophilic counterion. A three-level three-factorial central composite experimental design was utilized to conduct the experiments. The effects of selected variables, polysorbate 80 and olive oil content and concentration of polyvinyl alcohol, were investigated. The particle size of clarithromycin for the optimized formulation was observed to be 30 nm. The morphology of the nanoemulsion was explored using transmission electron microscopy (TEM. The emulsions prepared with the optimized formula demonstrated good physical stability during storage at room temperature. Antibacterial activity was conducted with the optimized nanoemulsion NESH 01 and compared with free clarithromycin. Zone of inhibition was larger for NESH 01 as compared to that with free clarithromycin. This implies that the solubility and hence the bioavailability of clarithromycin has increased in the formulated nanoemulsion system.

  8. Inhibition of complement activation by water-soluble polysaccharides of some far-eastern brown seaweeds.

    Science.gov (United States)

    Zvyagintseva, T N; Shevchenko, N M; Nazarova, I V; Scobun, A S; Luk'yanov, P A; Elyakova, L A

    2000-07-01

    Fucoidans and laminarans from Laminaria cichorioides, Laminaria japonica, Fucus evanescens, laminaran from Laminaria gurjanovae, other beta-D-glucans (translam, pustulan and zymosan) and lambda-carrageenan from Chondrus armatus were used to study the effect of water-soluble polysaccharides from seaweeds on the alternative pathway of complement (APC). beta-D-Glucans and fucoidans under study differed appreciably from each other by structural characteristics, and also by degree of purification. beta-D-glucans, on ability to bind complement, ranked in a line according to a degree of their purification. Highly purified beta-D-glucans under study did not reveal an ability to bind complement. The fucoidans were divided conventionally into three groups according to their action on APC. Highly sulfated alpha-L-fucan from L. cichorioides with the greatest activity toward APC and caused 50% inhibition of reaction of activation (RA) of APC in a concentration of 0.5-0.7 mg/ml. Opposite 50% of inhibition of lysis of erythrocytes by sulfated heterogeneous fucoidan from L. japonica was achieved with 20 mg/ml. All other fucoidans and lambda-carrageenan have activity at 6-10 mg/ml concentration. Decreasing the sulfate content from 36% up to 9% in sample fucoidans under study was not reflected practically in the 50% inhibition concentration. Apparently, the degree of sulfating of fucoidans did not influence their action on APC. But the positive influence of fucose in structure of polysaccharide was obvious.

  9. A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.

    Science.gov (United States)

    Zeng, Xianlai; Li, Jinhui; Xie, Henghua; Liu, Lili

    2013-10-01

    Recycling processes for waste printed circuit boards (WPCBs) have been well established in terms of scientific research and field pilots. However, current dismantling procedures for WPCBs have restricted the recycling process, due to their low efficiency and negative impacts on environmental and human health. This work aimed to seek an environmental-friendly dismantling process through heating with water-soluble ionic liquid to separate electronic components and tin solder from two main types of WPCBs-cathode ray tubes and computer mainframes. The work systematically investigates the influence factors, heating mechanism, and optimal parameters for opening solder connections on WPCBs during the dismantling process, and addresses its environmental performance and economic assessment. The results obtained demonstrate that the optimal temperature, retention time, and turbulence resulting from impeller rotation during the dismantling process, were 250 °C, 12 min, and 45 rpm, respectively. Nearly 90% of the electronic components were separated from the WPCBs under the optimal experimental conditions. This novel process offers the possibility of large industrial-scale operations for separating electronic components and recovering tin solder, and for a more efficient and environmentally sound process for WPCBs recycling.

  10. New water soluble phosphonate and polycarboxylate complexants for enhanced f element separations

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L.; Rickert, P.G.; Lessmann, E.P.; Mendoza, M.D.; Feil, J.F.; Sullivan, J.C.

    1994-08-01

    While lipophilic extractant molecules and ion exchange polymeric materials are clearly essential to efficient separation of metal ions by solvent extraction or ion exchange, the most difficult separations often could not be accomplished without the use of water soluble complexants. This report focuses on recent developments in design, synthesis and characterization of phosphonic acid and polycarboxylic acid ligands for enhanced f element separations. Emphasis is on the basic solution chemistry and crystal structures of complexes of the f elements with selected amino-derivatives of methanediphosphonic acid and with tetrahydrofuran-2,3,4,5-tetracarboxylic acid. The former series of compounds exhibit high affinity for lanthanides and actinides in acidic solutions. The latter ligand exhibits an unusual (and very useful) ``anti-selectivity`` for uranyl ion in a solvent extraction process, which permits efficient separation of uranyl from more radioactive components of nuclear wastes. Most of the observed effects can be explained through examination of the structure of the ligand, and comparison of the spectroscopic and thermodynamic parameters for complexation of various metal ions.

  11. Extraction of water-soluble polysaccharide and the antioxidant activity from Semen cassiae

    Directory of Open Access Journals (Sweden)

    Changjian Liu

    2014-12-01

    Full Text Available Water-soluble polysaccharide was isolated from Semen cassiae using water for extraction and ethanol for deposition. The optimized conditions for polysaccharide isolation by orthogonal experiments were a sample to liquid ratio of 1:30 at 80°C for 3.5 hours; the yield of polysaccharide from Semen cassiae under these conditions was 5.46%. Different polysaccharides (SCPW-1, SCPW-2, SCPW-3, SCPW-4, SCPW-5, SCPS-1, SCPS-2 were obtained from the extract (i.e., crude polysaccharide by DEAE-cellulose column chromatography. The polysaccharides obtained showed different structures by Fourier transform infrared therein the five elected from the seven kinds separated. The antioxidant activities of the extract were evaluated. The scavenging rates of the present extract on hydroxyl and superoxide were 43.32% and 64.97%, respectively, at a concentration of polysaccharide of 94.03 μg/mL, which was better than vitamin C at the same concentration. The scavenging rate of the present extract on 1,1-diphenyl-2-picrylhydrazyl was 13.33% at a polysaccharide concentration of 94.03 μg/mL, which was less than vitamin C at the same concentration.

  12. Synthesis and photophysicochemical studies of a water soluble conjugate between folic acid and zinc tetraaminophthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Khoza, Phindile; Antunes, Edith [Department of Chemistry, Rhodes University, PO Box 94, Grahamstown (South Africa); Chen, Ji-Yao [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, PO Box 94, Grahamstown (South Africa)

    2013-02-15

    This work reports on the synthesis of zinc tetraaminophthalocyanine (ZnTAPc) functionalized with folic acid (FA), forming ZnTAPcFA. The conjugate between FA and ZnTAPc was soluble in water whereas ZnTAPc alone is not. The structure of ZnTAPcFA conjugate was elucidated by {sup 1}H NMR, MALDI-TOF mass and FTIR spectra. Photophysical and photochemical studies of ZnTAPcFA were conducted in DMSO. The increase in fluorescence quantum yield of the conjugate was accompanied by a decrease in the triplet and singlet oxygen quantum yields. The changes in triplet quantum and singlet oxygen quantum yields were marginal when ZnTAPc was simply mixed with FA without a chemical bond. - Highlights: Black-Right-Pointing-Pointer A conjugate between folic acid and a zinc tetraaminophthalocyanine was formed. Black-Right-Pointing-Pointer The conjugate is water soluble even though the phthalocyanine alone is not. Black-Right-Pointing-Pointer The fluorescence quantum yield of the conjugate was enhanced compared to the phthalocyanine alone. Black-Right-Pointing-Pointer Triplet quantum yields decreased for the conjugate.

  13. DEVELOPMENT AND VALIDATION OF UV-VISIBLE SPECTROMETRIC METHOD FOR ESTIMATION OF WATER SOLUBLE VITAMIN RIBOFLAVIN

    Directory of Open Access Journals (Sweden)

    Himanshi Shah et al

    2012-09-01

    Full Text Available The present study describes a simple, accurate, precise and cost effective UV-Visible spectrophotometric method for the estimation of Riboflavin raw material. The Riboflavin is water soluble vitamin, so the solvent used throughout the experiment was 0.1N NaOH, the absorption maxima of drug was found at 445 nm. Beer’s law was obeyed in the range of 5ppm-30ppm. the developed method was successfully validated with respect to linearity, accuracy and precision. The method was validated and shown linearity in mentioned concentration. The correlation coefficient for Riboflavin was 0.999. The percentage relative standard deviation of inter-day precision range 0.66-1.04% and intra-day precision 1.05-1.39% both should be less than 2%. Hence proposed method was precise, accurate and cost effective, simple and rapid. This validated method can be applicable for quantitative determination of the titled drug with respect to assay from or for their solid dosage forms.

  14. Water-soluble organic carbon in urban aerosol: concentrations, size distributions and contribution to particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Timonen, H. J.; Saarikoski, S. K.; Aurela, M. A.; Saarnio, K. M.; Hillamo, R. E. (Finnish Meteorological Inst., Helsinki (Finland))

    2008-07-01

    The aim of this study was to characterize the concentrations and particle mass size distributions of water-soluble organic carbon (WSOC) in urban aerosols. The sample collection was carried out in spring 2006 at the SMEAR III station in Helsinki, Finland, by using a size-segregating method (MOUDI) and by collecting sub-micrometer fraction of aerosols on the filter. During the three-month measurement period, a major 12-day biomass burning pollution episode was observed. Concentrations of WSOC, organic carbon, monosaccharide anhydrides, inorganic ions and some organic acids (oxalic, succinic and malonic acid) were analyzed from the PM{sub 1} samples. The measured OC and WSOC concentrations varied in ranges 0.67-15.7 mug m-3 and 0.26-10.7 mug m3, respectively. The WSOC/OC concentration ratio was between 0.30 and 0.89 with an average of 0.54. Size distributions of WSOC, inorganic ions and total mass were determined from the MOUDI samples. WSOC had bimodal size distributions with a clear accumulation mode below 1 mum of particle aerodynamic diameter and minor coarse mode at sizes > 1 mum. (orig.)

  15. A study on antifungal activity of water-soluble chitosan against Macrophomina phaseolina.

    Science.gov (United States)

    Chatterjee, Sudipta; Chatterjee, Bishnu P; Guha, Arun K

    2014-06-01

    The objective of this study was to evaluate antifungal effect of water-soluble chitosan (s-chitosan) on Macrophomina phaseolina (M. phaseolina) causing jute seedling infection and monitor the change in activity of released enzymes during infection. The minimum inhibitory concentration (MIC) of s-chitosan for M. phaseolina was found at 12.5g/l and s-chitosan exhibited fungistatic mode of action against this pathogen. The application of s-chitosan (12.5g/l) during infection of jute seedlings by M. phaseolina inhibited fungal infection and length of the seedlings was found almost similar to seedlings without infection. M. phaseolina infected jute seedlings showed length of 22mm over 10 days of incubation and it increased to 58mm in presence of s-chitosan (12.5g/l) during incubation for 10 days. TEM study indicated presence of hyphae in the cortical and epidermal cells of fungus infected jute seedlings indicating colonization by the fungus and it disappeared after treatment with s-chitosan. The changes in enzyme profiles of jute seedling during prevention of fungal infection using s-chitosan helped in proper understanding of mode of action of s-chitosan as antifungal agent. The activity of defense related enzymes like chitosanase and peroxidase in infected seedlings was observed to be enhanced after treatment with s-chitosan. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effects of Water-Soluble Co-Solvent on Properties of W/O Pickering Emulsions

    Institute of Scientific and Technical Information of China (English)

    张旭斌; 谢世巍; 蔡旺锋; 王富民

    2016-01-01

    Effects of water-soluble co-solvents(WSCs)on the properties of water/oil Pickering emulsions were investigated. Pickering emulsions were prepared in the system of 1,2,4-trimethylbenzene(TMB)/ hydrophobic sil-ica/water with varied concentrations of WSCs(ethanol, acetic acid and glycerin). Mean droplet diameter distribu-tions of the obtained emulsions were studied to investigate the effects of WSCs types and concentrations. The re-sults demonstrated that mean droplet diameter distributions decreased at first and then increased with the increase of WSC concentration. Moreover, the effect of WSC concentration on the phase inversion locus was further investi-gated. At the same time, infrared radiation(IR)spectrometer was used to investigate the mechanism. The results showed that the WSC attaching on hydrophobic silica changed the wettability of the particles, which facilitated the formation and phase inversion of the emulsion. The hydrogen bonds between the co-solvent groups attaching on the solid particles made a great effect on the droplet size of the emulsion and strengthened the interaction among emul-sifiers. Overall, proper WSC was in favor of the stability of Pickering emulsion.

  17. A water soluble heteropolyoxotungstate as a selective, efficient and environment friendly oxidation catalyst

    Indian Academy of Sciences (India)

    Prasenjit Maity; Double Mukesh; Sumit Bhaduri; Goutam Kumar Lahiri

    2009-07-01

    A series of water soluble Keggin type heteropolyoxotungstates have been tested as oxidation catalysts in aqueous-biphasic media with dilute H2O2 (30%) as the oxygen atom donor, without using any phase transfer agent. The Zn substituted polyoxoanion {(NH4)7Zn0.5[-ZnO4W11O30ZnO5(OH2)].H2O} has been found to be the most efficient catalyst, which oxidizes a wide range of organic functionalities with good turnovers and high selectivities. The functionalities that undergo oxidations are: organic sulfides, pyridines, anilines, benzyl alcohols and benzyl halides. The oxidations of sulfides to sulfoxides and/or sulfones have been studied in detail, and a simple kinetic model consisting of two consecutive reactions, is shown to give good fit with the experimental data. In the catalytic system described here product isolation is easy, and the aqueous catalyst solution can be re-used several times with little loss in its efficiency.

  18. On-line Measurement of Water-Soluble Ions in Ambient Particles

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-line the concentrations of water-soluble ions in ambient particles. Here, the general scheme of RCFP-IC is described and its basic performance is tested. The detection limit of RCFP-IC for SO42-,NO-3, NO-2, Cl- and F- is below 0.3 μg m-3. The collection efficiency of RCFP-IC increases rapidly with increasing sized particles. For particles larger than 300 nm, the collection efficiency approaches 100%. The precision of RCFP-IC is more than 90% over 28 repetitions. The response of RCFP-IC is very sensitive and no obvious cross-pollution is found during measurement. A comparison of RCFP-IC with an integrated filter measurement indicates that the measurement of RCFP-IC is comparable in both laboratory experiments and field observations. The results of the field experiment prove that RCFP-IC is an effective on-line monitoring system and is helpful in source apportionment and pollution episode monitoring.

  19. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  20. Synthesis and characterization of water-soluble carbon nanotubes from mustard soot

    Indian Academy of Sciences (India)

    Prashant Dubey; Devarajan Muthukumaran; Subhashis Dash; Rupa Mukhopadhyay; Sabyasachi Sarkar

    2005-10-01

    Carbon nanotubes (CNT) has been synthesized by pyrolysing mustard oil using an oil lamp. It was made water-soluble (wsCNT) through oxidative treatment by dilute nitric acid and was characterized by SEM, AFM, XRD, Raman and FTIR spectroscopy. The synthesized wsCNT showed the presence of several junctions and defects in it. The presence of curved graphene structure (sp2) with frequent sp3 hybridized carbon is found to be responsible for the observed defects. These defects along with the presence of di- and tri-podal junctions showed interesting magnetic properties of carbon radicals formed by spin frustration. This trapped carbon radical showed ESR signal in aqueous solution and was very stable even under drastic treatment by strong oxidizing or reducing agents. Oxidative acid treatment of CNT introduced several carboxylic acid group functionalities in wsCNT along with the nicking of the CNT at different lengths with varied molecular weight. To evaluate molecular weights of these wsCNTs, an innovative method like gel electrophoresis using high molecular weight DNA as marker was introduced.