WorldWideScience

Sample records for water-soluble inorganic species

  1. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  2. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  3. Water soluble inorganic trace gases and related aerosol compounds in the tropical boundary layer. An analysis based on real time measurements at a pasture site in the Amazon Basin

    NARCIS (Netherlands)

    Trebs, I.

    2005-01-01

    This dissertation investigates the behavior of water-soluble inorganic trace gases and related aerosol species in the tropical boundary layer. Mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO;,) and the corresponding water-soluble

  4. Application of ion chromatography to the determination of water-soluble inorganic and organic ions in atmospheric aerosols.

    Science.gov (United States)

    Yu, Xue-Chun; He, Ke-Bin; Ma, Yong-Liang; Yang, Fu-Mo; Duan, Feng-Kui; Zheng, Ai-Hua; Zhao, Cheng-Yi

    2004-01-01

    A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F- , Cl- , NO2(-), NO3(-), SO3(2-), SO4(2-) , PO4(3-)), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 microg/m3 to 500 microg/m3 ( r = 0.999-0.9999). The relative standard deviation (RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.

  5. Seasonal Variations and Correlation Analysis of Water-Soluble Inorganic Ions in PM2.5 in Wuhan, 2013

    Directory of Open Access Journals (Sweden)

    Ting Huang

    2016-03-01

    Full Text Available Daily PM2.5 and water-soluble inorganic ions (NH4+, SO42−, NO3−, Cl−, Ca2+, Na+, K+, Mg2+ were collected at the Hongshan Air Monitoring Station at the China University of Geosciences (Wuhan (30°31′N, 114°23′E, Wuhan, from 1 January to 30 December 2013. A total of 52 effective PM2.5 samples were collected using medium flow membrane filter samplers, and the anionic and cationic ions were determined by ion chromatography and ICP, respectively. The results showed that the average mass concentration of the eight ions was 40.96 µg/m3, which accounted for 62% of the entire mass concentration. In addition, the order of the ion concentrations was SO42− > NO3− > NH4+ > Cl− >K+ > Ca2+ > Na+ > Mg2+. The secondary inorganic species SO42−, NO3− and NH4+ were the major components of water-soluble ions in PM2.5, with a concentration of 92% of the total ions of PM2.5, and the total concentrations of the three ions in the four seasons in descending order as follows: winter, spring, autumn, and summer. NH4+ had a significant correlation with SO42− and NO3−, and the highest correlation coefficients were 0.943 and 0.923 (in winter, while the minimum coefficients were 0.683 and 0.610 (in summer. The main particles were (NH42SO4 and NH4NO3 in PM2.5. The charge of the water-soluble ions was nearly balanced in PM2.5, and the pertinence coefficients of water-soluble anions and cations were more than 0.9. The highest pertinence coefficients were in the spring (0.9887, and the minimum was in summer (0.9459. That is, there were more complicated ions in PM2.5 in the summer. The mean value of NO3−/SO42− was 0.64, indicating that stationary sources of PM2.5 had a greater contribution in Wuhan.

  6. Solubility and stability of inorganic carbonates

    International Nuclear Information System (INIS)

    Taylor, P.

    1987-01-01

    The chemistry of inorganic carbonates is reviewed, with emphasis on solubility and hydrolytic stability, in order to identify candidate waste forms for immobilization and disposal of 14 C. At present, CaCO 3 and BaCO 3 are the two most widely favoured wasted forms, primarily because they are the products of proven CO 2 -scrubbing technology. However, they have relatively high solubilities in non-alkaline solutions, necessitating care in selecting and assessing an appropriate disposal environment. Three compounds with better solubility characteristics in near-neutral waters are identified: bismutite, (BiO) 2 CO 3 ; hydrocerussite, Pb 3 (OH) 2 (CO 3 ) 2 ; and rhodochrosite, MnCO 3 . Some of the limitations of each of these alternative waste forms are discussed

  7. Multi-Phase Equilibrium and Solubilities of Aromatic Compounds and Inorganic Compounds in Sub- and Supercritical Water: A Review.

    Science.gov (United States)

    Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao

    2017-11-02

    Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.

  8. [Characteristics of mass size distributions of water-soluble, inorganic ions during summer and winter haze days of Beijing].

    Science.gov (United States)

    Huang, Yi-Min; Liu, Zi-Rui; Chen, Hong; Wang, Yue-Si

    2013-04-01

    To investigate the size distribution characteristics of water soluble inorganic ions in haze days, the particle samples were collected by two Andersen cascade impactors in Beijing during summer and winter time and each sampling period lasted two weeks. Online measurement of PM10 and PM2.5 using TEOM were also conducted at the same time. Sources and formation mechanism of water soluble inorganic ions were analyzed based on their size distributions. The results showed that average concentrations of PM10 and PM 2.5 were (245.5 +/- 8.4) microg x m(-3) and (120.2 +/- 2.0) microg x m(-3) during summer haze days (SHD), and were (384.2 +/- 30.2) microg x m(-3) and (252.7 +/- 47.1) microg x m(-3) during winter haze days (WHD), which suggested fine particles predominated haze pollution episode in both seasons. Total water-soluble inorganic ions concentrations were higher in haze days than those in non-haze days, especially in fine particles. Furthermore, concentrations of secondary inorganic ions (SO4(2-), NO3(-) and NH4(+)) increased quicker than other inorganic ions in fine particles during haze days, indicating secondary inorganic ions played an important role in the formation of haze pollution. Similar size distributions were found for all Sinorganic water soluble ions except for NO3(-), during SHD and WHD. SO4(2-) and NH4(+) dominated in the fine mode (PM1.0) while Mg2+ and Ca2+ accumulated in coarse fraction, Na+, Cl- and K+ showed a bimodal distribution. For NO3(-), however, it showed a bimodal distribution during SHD and a unimodal distribution dominated in the fine fraction was found during WHD. The average mass median aerodynamic diameter (MMAD) of SO4(2-) was 0.64 microm in SHD, which suggested the formation of SO4(2-) was mainly attributed to in-cloud processes. Furthermore, a higher apparent conversion rate of sulfur dioxide (SOR) was found in SHD, indicating more fine particles were produced by photochemical reaction in haze days than that in non-haze days. The

  9. [Characterization of water-soluble inorganic ions in PM2.5 and PM1.0 in summer in Guangzhou].

    Science.gov (United States)

    Tao, Jun; Zhang, Ren-jian; Dong, Lin; Zhang, Tao; Zhu, Li-hua; Han, Jing-lei; Xu, Zhen-cheng

    2010-07-01

    PM2.5 and PM1.0 samples were collected simultaneously during July of 2008 in Guangzhou. The concentrations of water-soluble inorganic ions (Na+, NH4+, K+, Mg2+, Ca2+, F-, Cl-, NO3-, and SO4(2-)) were determined by ion chromatography. Meteorological parameters, atmospheric scattering, visibility, and concentrations of trace gases (SO2, NO2, and O3) for this period were also recorded. The results showed the total water-soluble inorganic ions concentrations were (25.5 +/- 10.9) microg x m(-1) and (22. 7 +/- 10.5) microg x m(-3) in PM2.5 and PM1.0, which occupied (47.9 +/- 4.3)% and (49.3 +/- 4.3)% of PM mass respectively. Sulfate was the most abundant ion and contributed (25.8 +/- 4.0)% of PM2.5 mass and (27.5 +/- 4.5)% of PM1.0 mass respectively. High temperature and high ozone level favored the formation of sulfate from sulfur dioxide, while the high relative humidity favored the formation of nitrate were observed. Moreover, sulfate, nitrate, and ammonium in PM2.5 and PM1.0 had great impact on the scattering coefficient and visibility degradation.

  10. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    Science.gov (United States)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  11. PM 2.5-10, PM 2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro

    Science.gov (United States)

    Mariani, Rauda L.; de Mello, William Z.

    The concentrations of PM 2.5-10, PM 2.5 and associated water-soluble inorganic species (WSIS) were determined in a coastal site of the metropolitan region of Rio de Janeiro, Southeastern Brazil, from October 1998 to September 1999 ( n=50). Samples were dissolved in water and analyzed for major inorganic ions. The mean (± standard deviation; median) concentrations of PM 2.5-10 and PM 2.5 were, respectively, 26 (± 16; 21) μg m -3 and 17 (± 13; 14) μg m -3. Their mean concentrations were 1.7-1.8 times higher in dry season (May-October) than in rainy season (November-April). The WSIS comprised, respectively, 34% and 28% of the PM 2.5-10 and PM 2.5 masses. Chloride, Na + and Mg 2+ were the predominant ions in PM 2.5-10, indicating a significant influence of sea-salt aerosols. In PM 2.5, SO 42- (˜97% nss-SO 42-) and NH 4+ were the most abundant ions and their equivalent concentration ratio (SO 42-/NH 4+ ˜1.0) suggests that they were present as (NH 4) 2SO 4 particles. The mean concentration of (NH 4) 2SO 4 was 3.4 μg m -3. The mean equivalent PM 2.5 NO 3- concentration was eight times smaller than those of SO 42- and NH 4+. The PM 2.5 NO 3- concentration in dry season was three times higher than in rainy season, probably due to reaction of NaCl (sea salt) with HNO 3 as a result of higher levels of NO y during the dry season and/or reduced volatilization of NH 4NO 3 due to lower wintertime temperature. Chloride depletion was observed in both size ranges, although more pronouncely in PM 2.5.

  12. Separation of methyltin species from inorganic tin, and their interactions with humates in natural waters

    International Nuclear Information System (INIS)

    Omar, M.; Bowen, H.J.M.

    1982-01-01

    Tin(II) and tin(IV) are absorbed from aqueous solutions by Sephadex G-25 gel, from which they can be eluted by humates or fulvates, with which they interact more strongly. Methyltin species are not absorbed by Sephadex G-25, and so can be separated from inorganic tin. Both inorganic tin and methyltin species in natural waters at pH 7.4 can be quantitatively retained by passing through small columns of Chelex-100 resin: the methyltin species can then be washed off the resin with 4M nitric acid. Trimethyltin chloride 113 Sn in water scarcely interacts with fulvates, humates, kaolinite or montmorillonite but is absorbed by Sphagnum peat. Dimethyltin dichloride- 113 Sn reacts significantly with all the above materials after 2 hours equilibration. Methyltin trichloride- 113 Sn interacts weakly in alkaline solutions. (author)

  13. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  14. A modelling exercise on the importance of ternary alkaline earth carbonate species of uranium(VI) in the inorganic speciation of natural waters

    International Nuclear Information System (INIS)

    Vercouter, Thomas; Reiller, Pascal E.; Ansoborlo, Eric; Février, Laureline; Gilbin, Rodolphe; Lomenech, Claire; Philippini, Violaine

    2015-01-01

    Highlights: • The U(VI) speciation in natural waters has been modelled through a modelling exercise. • The results evidence the importance of alkaline earth U(VI) carbonate complexes. • Possible solubility-controlling phases were reported and discussed. • The differences were related to the choice and reliability of thermodynamic data. • Databases need to be improved for reliable U(VI) speciation calculations. - Abstract: Predictive modelling of uranium speciation in natural waters can be achieved using equilibrium thermodynamic data and adequate speciation software. The reliability of such calculations is highly dependent on the equilibrium reactions that are considered as entry data, and the values chosen for the equilibrium constants. The working group “Speciation” of the CETAMA (Analytical methods establishment committee of the French Atomic Energy commission, CEA) has organized a modelling exercise, including four participants, in order to compare modellers’ selections of data and test thermodynamic data bases regarding the calculation of U(VI) inorganic speciation. Six different compositions of model waters were chosen so that to check the importance of ternary alkaline earth carbonate species of U(VI) on the aqueous speciation, and the possible uranium solid phases as solubility-limiting phases. The comparison of the results from the participants suggests (i) that it would be highly valuable for end-users to review thermodynamic constants of ternary carbonate species of U(VI) in a consistent way and implement them in available speciation data bases, and (ii) stresses the necessary care when using data bases to avoid biases and possible erroneous calculations

  15. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H

    2013-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  16. Water-soluble triazabutadienes that release diazonium species upon protonation under physiologically relevant conditions.

    Science.gov (United States)

    Kimani, Flora W; Jewett, John C

    2015-03-23

    Triazabutadienes are an understudied structural motif that have remarkable reactivity once rendered water-soluble. It is shown that these molecules readily release diazonium species in a pH-dependent manner in a series of buffer solutions with pH ranges similar to those found in cells. Upon further development, we expect that this process will be well suited to cargo-release strategies and organelle-specific bioconjugation reactions. These compounds offer one of the mildest ways of generating diazonium species in aqueous solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway.

    Science.gov (United States)

    Lazaridis, Mihalis; Aleksandropoulou, Victoria; Hanssen, Jan Erik; Dye, Christian; Eleftheriadis, Kostantinos; Katsivela, Eleftheria

    2008-03-01

    A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.

  18. Oral formulation strategies to improve solubility of poorly water-soluble drugs.

    Science.gov (United States)

    Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy

    2011-10-01

    In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.

  19. Solubility of 1:1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water : 1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2009-01-01

    To increase the available data oil systems containing supercritical water and inorganic compounds, all experimental setup was designed to investigate the solubilities of inorganic compounds Ill supercritical water, In this work, three alkali chloride salts (LiCl, NaCl, KCl) and three alkali nitrate

  20. Determination of Inorganic Arsenic in Natural Water by Solid Phase Extraction

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Amares Chatt, A.

    2011-01-01

    Arsenic (As) is generally known for its toxicity. The toxicity and mobility of As in the environment are dependent on the chemical forms or species in which it exists. Arsenic (III) and (V) are the most often determined species in environmental water, soil and sediment, while organic As species are common constituents of biological tissue and fluids. It is well known that inorganic As, such as arsenite (As(III)) and arsenate (As(V)) are more toxic than their organic counterparts. This study is conducted to investigate the separation of each As inorganic species using solid phase extraction (SPE) technique. The technique utilizes SPE column for selective retention of As species, followed by elution and measurement of eluted fractions by inductively coupled plasma mass spectrometry (ICP-MS) for total As. Several type of SPE columns namely strongly anion exchange (SAX), strongly cation exchange (SCX), weakly anion exchange (WAX) and weakly cation exchange (WCX) were tested using three different types of media including deionized water, succinic acid and acetic acid containing inorganic As species. The SPE technique is suitable for on-site separation and preservation of As species from water. (author)

  1. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion

  2. Inter-species comparative analysis of components of soluble sugar concentration in fleshy fruits

    Directory of Open Access Journals (Sweden)

    Zhanwu eDai

    2016-05-01

    Full Text Available The soluble sugar concentration of fleshy fruit is a key determinant of fleshy fruit quality. It affects directly the sweetness of fresh fruits and indirectly the properties of processed products (e.g. alcohol content in wine. Despite considerable divergence among species, soluble sugar accumulation in a fruit results from the complex interplay of three main processes, namely sugar import, sugar metabolism, and water dilution. Therefore, inter-species comparison would help to identify common and/or species-specific modes of regulation in sugar accumulation. For this purpose, a process-based mathematical framework was used to compare soluble sugar accumulation in three fruits: grape, tomato and peach. Representative datasets covering the time course of sugar accumulation during fruit development were collected. They encompassed 104 combinations of species (3, genotypes (32, and growing conditions (19 years and 16 nutrient and environmental treatments. At maturity, grape showed the highest soluble sugar concentrations (16.5-26.3 g /100 g FW, followed by peach (2.2 to 20 g /100 g FW and tomato (1.4 to 5 g /100 g FW. Main processes determining soluble sugar concentration were decomposed into sugar importation, metabolism and water dilution with the process-based analysis. Different regulation modes of soluble sugar concentration were then identified, showing either import-based, dilution-based, or import and dilution dual-based. Firstly, the higher soluble sugar concentration in grape than in tomato is a result of higher sugar importation. Secondly, the higher soluble sugar concentration in grape than in peach is due to a lower water dilution. The third mode of regulation is more complicated than the first two, with differences both in sugar importation and water dilution (grape vs cherry tomato; cherry tomato vs peach; peach vs tomato. On the other hand, carbon utilization for synthesis of non-soluble sugar compounds (namely metabolism was

  3. Mass transport of soluble species through backfill into surrounding rock

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Park, Hun Hwee

    1992-01-01

    Some soluble species may not be solubility-limited or congruent-released with the matrix species. For example, during the operation of the nuclear reactor, the fission products can be accumulated in the fuel-cladding gap, void, and grain boundaries of the fuel rods. In the waste package for spent-fuel placed in a geologic repository, the high solubility species of these fission products accumulated in the 'gap', e.g. cesium or iodine are expected to dissolve rapidly when ground water penetrates fuel rods. The time and space dependent mass transport for high solubility nuclides in the gap is analyzed, and its numerical illustrations are demonstrated. The approximate solution that is valid for all times is developed, and validated by comparison with an asymptotic solution and the solution obtained by the numerical inversion of Laplace transform covering the entire time span. (Author)

  4. Transport of soluble species in backfill and rock

    International Nuclear Information System (INIS)

    Chambre, P.L.; Lee, W.W.L.; Light, W.B.; Pigford, T.H.

    1992-03-01

    In this report we study the release and transport of soluble species from spent nuclear fuel. By soluble species we mean a fraction of certain fission product species. Our previously developed methods for calculating release rates of solubility-limited species need to be revised for these soluble species. Here we provide methods of calculating release rates of soluble species directly into rock and into backfill and then into rock. Section 2 gives a brief discussion of the physics of fission products dissolution from U0 2 spent fuel. Section 3 presents the mathematics for calculating release rates of soluble species into backfill and then into rock. The calculation of release rates directly into rock is a special case. Section 4 presents numerical illustrations of the analytic results

  5. A study of lipid- and water-soluble arsenic species in liver of Northeast Arctic cod (Gadus morhua) containing high levels of total arsenic

    DEFF Research Database (Denmark)

    Sele, Veronika; Sloth, Jens Jørgen; Julshamn, Kale

    2015-01-01

    In the present study liver samples (n = 26) of Northeast Arctic cod (Gadus morhua), ranging in total arsenic concentrations from 2.1 to 240 mg/kg liver wet weight (ww), were analysed for their content of total arsenic and arsenic species in the lipid-soluble and water-soluble fractions. The arsen...

  6. Solubility study of Tc(Ⅳ) in a granitic water

    International Nuclear Information System (INIS)

    Liu Dejun; Yao Jun; Wang Bo

    2008-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 -nH 2 O. Hence, the mobility of Tc(Ⅳ) in reducing groundwater may be limited by the solubility of TcO 2 ·nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 ·nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium (Ⅳ) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(Ⅳ) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(Ⅳ) were studied. The concentration of total technetium and Tc(Ⅳ) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(Ⅳ) in simulated groundwater and redistilled water is about (1.49-1.86)x10 -9 mol·L -1 d -1 under aerobic conditions, while no Tc(Ⅳ) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(Ⅳ) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  7. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    Science.gov (United States)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  8. Methylation of inorganic arsenic in different mammalian species and population groups.

    Science.gov (United States)

    Vahter, M

    1999-01-01

    Thousands of people in different parts of the world are exposed to arsenic via drinking water or contaminated soil or food. The high general toxic of arsenic has been known for centuries, and research during the last decades has shown that arsenic is a potent human carcinogen. However, most experimental cancer studies have failed to demonstrate carcinogenicity in experimental animals, indicating marked variation in sensitivity towards arsenic toxicity between species. It has also been suggested that there is a variation in susceptibility among human individuals. One reason for such variability in toxic response may be variation in metabolism. Inorganic arsenic is methylated in humans as well as animals and micro-organisms, but there are considerable differences between species and individuals. In many, but not all, mammalian species, inorganic arsenic is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are more rapidly excreted in urine than is the inorganic arsenic, especially the trivalent form (AsIII, arsenite) which is highly reactive with tissue components. Absorbed arsenate (AsV) is reduced to trivalent arsenic (AsIII) before the methyl groups are attached. It has been estimated that as much as 50-70% of absorbed AsV is rapidly reduced to AsIII, a reaction which seems to be common for most species. In most experimental animal species, DMA is the main metabolite excreted in urine. Compared to human subjects, very little MMA is produced. However, the rate of methylation varies considerably between species, and several species, e.g. the marmoset monkey and the chimpanzee have been shown not to methylate inorganic arsenic at all. In addition, the marmoset monkey accumulates arsenic in the liver. The rat, on the other hand, has an efficient methylation of arsenic but the formed DMA is to a large extent accumulated in the red blood cells. As a result, the rat shows a low rate of excretion of arsenic. In both human subjects and rodents

  9. Solubility study of Tc(IV) in a granitic water

    International Nuclear Information System (INIS)

    Liu, D.J.; Yao, J.; Wang, B.; Bruggeman, C.; Maes, N.

    2007-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 .nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 .nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 .nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium(IV) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(IV) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49 ∝ 1.86) x 10 -9 mol L -1 d -1 under aerobic conditions, while no Tc(IV) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  10. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    Science.gov (United States)

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles

    Science.gov (United States)

    Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

    2013-04-01

    On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 μg/m3-12.6 μg/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 μg/m3 to 9.3 μg/m3 and 3.1 μg/m3 to 6.4 μg /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these

  12. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Science.gov (United States)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  13. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water

    Science.gov (United States)

    Colombo, Nicola; Salerno, Franco; Gruber, Stephan; Freppaz, Michele; Williams, Mark; Fratianni, Simona; Giardino, Marco

    2018-03-01

    Recent studies have shown that climate change is impacting the inorganic chemical characteristics of surface fresh water in permafrost areas and affecting aquatic ecosystems. Concentrations of major ions (e.g., Ca2 +, Mg2 +, SO42 -, NO3-) can increase following permafrost degradation with associated deepening of flow pathways and increased contributions of deep groundwater. In addition, thickening of the active layer and melting of near-surface ground ice can influence inorganic chemical fluxes from permafrost into surface water. Permafrost degradation has also the capability to modify trace element (e.g., Ni, Mn, Al, Hg, Pb) contents in surface water. Although several local and regional modifications of inorganic chemistry of surface fresh water have been attributed to permafrost degradation, a comprehensive review of the observed changes is lacking. The goal of this paper is to distil insight gained across differing permafrost settings through the identification of common patterns in previous studies, at global scale. In this review we focus on three typical permafrost configurations (pervasive permafrost degradation, thermokarst, and thawing rock glaciers) as examples and distinguish impacts on (i) major ions and (ii) trace elements. Consequences of warming climate have caused spatially-distributed progressive increases of major ion and trace element delivery to surface fresh water in both polar and mountain areas following pervasive permafrost degradation. Moreover, localised releases of major ions and trace elements to surface water due to the liberation of soluble materials sequestered in permafrost and ground ice have been found in ice-rich terrains both at high latitude (thermokarst features) and high elevation (rock glaciers). Further release of solutes and related transport to surface fresh water can be expected under warming climatic conditions. However, complex interactions among several factors able to influence the timing and magnitude of the impacts

  14. Determination of inorganic beryllium species in the particulate matter of emissions and working areas

    Energy Technology Data Exchange (ETDEWEB)

    Profumo, A.; Spini, G.; Cucca, L.; Pesavento, M. [Dipartimento di Chimica Gen., Pavia (Italy)

    2002-07-01

    A sequential extraction procedure for separating and determining Be(0), soluble Be(II) inorganic compounds, BeO and beryllium silicates in samples, such as particulate matter of emissions and working areas, has been developed. The proposed procedure has been tested on synthetic samples prepared with the inorganic beryllium compounds, in the presence of atmospherical particulate matter sampled in a laboratory, previously checked for the absence of beryllium. The speciation was then repeated on a sample of fly ash deriving from a solid waste incinerator and on a reference material (Coal Fly ash SRM 1633a, by NIST), followed by an evaluation of matrix spiking and recovery analyses. Performing multiple analyses of the spiked samples assessed the repeatability of the procedure. Quantitative determinations have been made by inductively coupled plasma optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ETAAS). The possible interferences of the most common ions have been investigated. The selective sequential extractions allow one to separate and to determine different inorganic beryllium species, to which a different toxicity and therefore, a different risk are related: it is the case for example of metallic beryllium and beryllium oxide.

  15. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Directory of Open Access Journals (Sweden)

    J. Chen

    2017-09-01

    Full Text Available The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation and fern (a pioneering species after disturbance by fire were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06 due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08, whereas the acacia burning particles have a mediate κ value (0.04. These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC, as demonstrated by a correlation analysis (R = 0.65. κ of water-soluble organic matter is also quantified, incorporating the 1-octanol–water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction: κ = 0.18, A1 (highly water-soluble fraction: κ = 0.30. This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89 with the fraction of m∕z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate

  16. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Phoebe Z. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Chen, Huan [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Podgorski, David C. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); McKenna, Amy M. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Tarr, Matthew A., E-mail: mtarr@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States)

    2014-09-15

    Graphical abstract: Sunlight oxygenates petroleum. - Highlights: • Oxidation seen in water-soluble oil fraction after exposure to simulated sunlight. • Oxygen addition occurred across a wide range of carbon number and DBE. • Oil compounds were susceptible to addition of multiple oxygens to each molecule. • Results provide understanding of fate of oil on water after exposure to sunlight. - Abstract: In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid–liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O{sub 5}), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O{sub 2}). Higher-order oxygen classes (O{sub 5}–O{sub 9}) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N{sub 1}) concurrent with an increased abundance of N{sub 1}O{sub x} classes after irradiation. The predominance of higher

  18. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    Science.gov (United States)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  19. Evaluation of DGT techniques for measuring inorganic uranium species in natural waters: Interferences, deployment time and speciation

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Geraldine S.C. [School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire, PO1 3QL (United Kingdom); Mills, Graham A. [School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael' s Building, White Swan Road, Portsmouth, Hampshire, PO1 2DT (United Kingdom); Teasdale, Peter R. [Environmental Futures Centre, Griffith University, Gold Coast Campus, Queensland 4222 (Australia); Burnett, Jonathan L.; Amos, Sean [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Fones, Gary R., E-mail: gary.fones@port.ac.uk [School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire, PO1 3QL (United Kingdom)

    2012-08-20

    Graphical abstract: In situ field deployment of DGT devices - manganese dioxide ( Black-Small-Square ) best suited for sea water monitoring (a) up to 7 days and Metsorb ( Black-Small-Square ) best suited for fresh water monitoring (b) of inorganic uranium species up to 7 days. Highlights: Black-Right-Pointing-Pointer The adsorbents Chelex-100, Metsorb and MnO{sub 2} were investigated for use with DGT. Black-Right-Pointing-Pointer All three adsorbents performed well in low ionic strength solutions. Black-Right-Pointing-Pointer MnO{sub 2} resin was found to be the most suitable for marine deployments. Black-Right-Pointing-Pointer DGT is able to measure isotopic ratios of U down to concentrations of 0.1 {mu}g L{sup -1}. Black-Right-Pointing-Pointer DGT underestimated U concentrations by at least 50% if the DBL was not taken into account. - Abstract: Three adsorbents (Chelex-100, manganese dioxide [MnO{sub 2}] and Metsorb), used as binding layers with the diffusive gradient in thin film (DGT) technique, were evaluated for the measurement of inorganic uranium species in synthetic and natural waters. Uranium (U) was found to be quantitatively accumulated in solution (10-100 {mu}g L{sup -1}) by all three adsorbents (uptake efficiencies of 80-99%) with elution efficiencies of 80% (Chelex-100), 84% (MnO{sub 2}) and 83% (Metsorb). Consistent uptake occurred over pH (5-9), with only MnO{sub 2} affected by pH < 5, and ionic strength (0.001-1 mol L{sup -1} NaNO{sub 3}) ranges typical of natural waters, including seawater. DGT validation experiments (5 days) gave linear mass uptake over time (R{sup 2} {>=} 0.97) for all three adsorbents in low ionic strength solution (0.01 M NaNO{sub 3}). Validation experiments in artificial sea water gave linear mass uptake for Metsorb (R{sup 2} {>=} 0.9954) up to 12 h and MnO{sub 2} (R{sup 2} {>=} 0.9259) up to 24 h. Chelex-100 demonstrated no linear mass uptake in artificial sea water after 8 h. Possible interferences were investigated with

  20. [Application of simultaneous determination of inorganic ionic species by advanced ion chromatography for water quality monitoring of river water and wastewater].

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Tanaka, Kazuhiko

    2012-04-01

    In this study, our recent work on advanced ion chromatographic methods for the simultaneous determination of inorganic ionic species such as common anions (SO4(2-), Cl(-) and NO3(-)) and cations (Na+, NH4+, K+, Mg2+, and Ca2+), nutrients (phosphate and silicate) and hydrogen ion/alkalinity are summarized first. Then, the applications using these methods for monitoring environmental water quality are also presented. For the determination of common anions and cations with nutrients, the separation was successfully performed by a polymethacrylate-based weakly acidic cation-exchange column of TSKgel Super IC-A/C (Tosoh, 150 mm x 6.0 mm i. d.) and a mixture solution of 100 mmol/L ascorbic acid and 4 mmol/L 18-crown-6 as acidic eluent with dual detection of conductivity and spectrophotometry. For the determination of hydrogen ion/alkalinity, the separation was conducted by TSKgel ODS-100Z column (Tosoh, 150 mm x 4.5 mm i. d.) modified with lithium dodecylsulfate and an eluent of 40 mmol/L LiCl/0.1 mmol/L lithium dodecylsulfate/0.05 mmol/L H2SO4 with conductivity detector. The differences of ion concentration between untreated and treated wastewater showed the variation of ionic species during biological treatment process in a sewage treatment plant. Occurrence and distribution of water-quality conditions were related to the bioavailability and human activity in watershed. From these results, our advanced ion chromatographic methods have contributed significantly for water quality monitoring of environmental waters.

  1. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sigrist, Mirna; Albertengo, Antonela; Beldomenico, Horacio; Tudino, Mabel

    2011-01-01

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH 3 generation using 3.5 mol L -1 HCl as carrier solution and 0.35% (m/v) NaBH 4 in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl - , SO 4 2- , NO 3 - , HPO 4 2- , HCO 3 - on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C 6 H 8 O 6 solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 μg L -1 and 0.6 μg L -1 for As(III) and inorganic total As, respectively, were obtained for a 500 μL sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h -1 . The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species separation was performed through the employ of a serial connection of membrane filters and

  2. On nitrogen solubility in water

    International Nuclear Information System (INIS)

    Kalajda, Yu.A.; Katkov, Yu.D.; Kuznetsov, V.A.; Lastovtsev, A.Yu.; Lastochkin, A.P.; Susoev, V.S.

    1980-01-01

    Presented are the results of experimental investigations on nitrogen solubility in water under 0-15 MPa pressure, at the temperature of 100-340 deg C and nitrogen concentration of 0-5000 n.ml. N 2 /kg H 2 O. Empiric equations are derived and a diagram of nitrogen solubility in water is developed on the basis of the experimental data, as well as critically evaluated published data. The investigation results can be used in analyzing water-gas regime of a primary heat carrier in stream-generating plants with water-water reactors

  3. Water-soluble dietary fibers and cardiovascular disease.

    Science.gov (United States)

    Theuwissen, Elke; Mensink, Ronald P

    2008-05-23

    One well-established way to reduce the risk of developing cardiovascular disease (CVD) is to lower serum LDL cholesterol levels by reducing saturated fat intake. However, the importance of other dietary approaches, such as increasing the intake of water-soluble dietary fibers is increasingly recognized. Well-controlled intervention studies have now shown that four major water-soluble fiber types-beta-glucan, psyllium, pectin and guar gum-effectively lower serum LDL cholesterol concentrations, without affecting HDL cholesterol or triacylglycerol concentrations. It is estimated that for each additional gram of water-soluble fiber in the diet serum total and LDL cholesterol concentrations decrease by -0.028 mmol/L and -0.029 mmol/L, respectively. Despite large differences in molecular structure, no major differences existed between the different types of water-soluble fiber, suggesting a common underlying mechanism. In this respect, it is most likely that water-soluble fibers lower the (re)absorption of in particular bile acids. As a result hepatic conversion of cholesterol into bile acids increases, which will ultimately lead to increased LDL uptake by the liver. Additionally, epidemiological studies suggest that a diet high in water-soluble fiber is inversely associated with the risk of CVD. These findings underlie current dietary recommendations to increase water-soluble fiber intake.

  4. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    OpenAIRE

    Park, Jung-Duck; Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability o...

  5. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand

    Science.gov (United States)

    Tsai, Ying I.; Sopajaree, Khajornsak; Chotruksa, Auranee; Wu, Hsin-Ching; Kuo, Su-Ching

    2013-10-01

    PM10 aerosol was collected between February and April 2010 at an urban site (CMU) and an industrial site (TOT) in Chiang Mai, Thailand, and characteristics and provenance of water-soluble inorganic species, carboxylates, anhydrosugars and sugar alcohols were investigated with particular reference to air quality, framed as episodic or non-episodic pollution. Sulfate, a product of secondary photochemical reactions, was the major inorganic salt in PM10, comprising 25.9% and 22.3% of inorganic species at CMU and TOT, respectively. Acetate was the most abundant monocarboxylate, followed by formate. Oxalate was the dominant dicarboxylate. A high acetate/formate mass ratio indicated that primary traffic-related and biomass-burning emissions contributed to Chiang Mai aerosols during episodic and non-episodic pollution. During episodic pollution carboxylate peaks indicated sourcing from photochemical reactions and/or directly from traffic-related and biomass burning processes and concentrations of specific biomarkers of biomass burning including water-soluble potassium, glutarate, oxalate and levoglucosan dramatically increased. Levoglucosan, the dominant anhydrosugar, was highly associated with water-soluble potassium (r = 0.75-0.79) and accounted for 93.4% and 93.7% of anhydrosugars at CMU and TOT, respectively, during episodic pollution. Moreover, levoglucosan during episodic pollution was 14.2-21.8 times non-episodic lows, showing clearly that emissions from biomass burning are the major cause of PM10 episodic pollution in Chiang Mai. Additionally, the average levoglucosan/mannosan mass ratio during episodic pollution was 14.1-14.9, higher than the 5.73-7.69 during non-episodic pollution, indicating that there was more hardwood burning during episodic pollution. Higher concentrations of glycerol and erythritol during episodic pollution further indicate that biomass burning activities released soil biota from forest and farmland soils.

  6. On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy.

    Science.gov (United States)

    Montero-Martínez, Guillermo; Rinaldi, Matteo; Gilardoni, Stefania; Giulianelli, Lara; Paglione, Marco; Decesari, Stefano; Fuzzi, Sandro; Facchini, Maria Cristina

    2014-07-01

    The study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water. The largest water soluble organic nitrogen concentrations in the PM1.2 fraction occurred during the diurnal period with mean values of 2.03 and 2.16 μg-N m(-3) (154 and 145 nmol-N m(-3)) at Bologna and San Pietro Capofiume (SPC), respectively. The mean PM10 WSON concentration during diurnal periods at SPC was 2.30 μg-N m(-3) (164 nmol-N m(-3)) while it was 1.34 and 0.82 μg-N m(-3) (95.7 and 58.5 nmol-N m(-3)) in the night and fog water samples, respectively. Aerosol mass distribution profiles obtained during fog changed significantly with respect to those estimated in periods without fog periods due to fog scavenging, which proved to be over 80% efficient. Linear correlations suggested secondary processes related to combustion and, to a lesser extent, biomass burning, as plausible sources of WSON. Regarding the inorganic nitrogen fraction, the results showed that ammonium was the largest soluble inorganic nitrogen component in the samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2008-12-01

    Full Text Available Size-segregated water-soluble inorganic ions, including particulate sulphate (SO42-, nitrate (NO3-, ammonium (NH4+, chloride (Cl-, and base cations (K+, Na+, Mg2+, Ca2+, were measured using a Micro-Orifice Uniform Deposit Impactor (MOUDI during fourteen short-term field campaigns at eight locations in both polluted and remote regions of eastern and central Canada. The size distributions of SO42- and NH4+ were unimodal, peaking at 0.3–0.6 µm in diameter, during most of the campaigns, although a bimodal distribution was found during one campaign and a trimodal distribution was found during another campaign made at a coastal site. SO42- peaked at slightly larger sizes in the cold seasons (0.5–0.6 µm compared to the hot seasons (0.3–0.4 µm due to the higher relative humidity in the cold seasons. The size distributions of NO3- were unimodal, peaking at 4.0–7.0 µm during the warm-season campaigns, and bimodal, with one peak at 0.3–0.6 µm and another at 4–7 µm during the cold-season campaigns. A unimodal size distribution, peaking at 4–6 µm, was found for Cl-, Na+, Mg2+, and Ca2+ during approximately half of the campaigns and a bimodal distribution, with one peak at 2 µm and the other at 6 µm, was found during the rest of the campaigns. For K+, a bimodal distribution, with one peak at 0.3 µm and the other at 4 µm, was observed during most of the campaigns. Seasonal contrasts in the size-distribution profiles suggest that emission sources and air mass origins were the major factors controlling the size distributions of the primary aerosols while meteorological conditions were more important for the secondary aerosols.

    The dependence of the particle acidity on

  8. Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol

    Science.gov (United States)

    Kaul, D. S.; Gupta, T.; Tripathi, S. N.

    2012-06-01

    An extensive field measurement during winter was carried out at a site located in the Indo-Gangetic Plain (IGP) which gets heavily influenced by the fog during winter almost every year. The chemical and microphysical properties of the aerosols during foggy and nonfoggy episodes and chemical composition of the fogwater are presented. Positive matrix factorization (PMF) as a tool for the source apportionment was employed to understand the sources of pollution. Four major sources viz. biomass burning, refractory, secondary and mineral dust were identified. Aerosols properties during foggy episodes were heavily influenced by almost all the sources and they caused considerable loading of almost all the organic and inorganic species during the period. The biomass generated aerosols were removed from the atmosphere by scavenging during foggy episodes. The wet removal of almost all the species by the fog droplets was observed. The K+, water soluble organic carbon (WSOC), water soluble inorganic carbon (WSIC) and NO3- were most heavily scavenged among the species and their concentrations consequently became lower than the nonfoggy episode concentrations. The production of secondary inorganic aerosol, mainly sulfate and ammonium, during foggy episodes was considerably higher than nitrate which was rather heavily scavenged and removed by the fog droplets. The fogwater analysis showed that dissolved inorganic species play a vital role in processing of organic carbon such as the formation of organo-sulfate and organo-nitrate inside the fog droplets. The formation of organo-sulfate and organo-nitrate in aerosol and the influence of acidity on the secondary organic aerosol (SOA) formation were rather found to be negligible. The study average inorganic component of the aerosol was considerably higher than the carbonaceous component during both foggy and nonfoggy episode. The secondary production of the aerosol changed the microphysical properties of aerosol which was reflected by

  9. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  10. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  11. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  12. Biosorptive removal of inorganic arsenic species and fluoride from aqueous medium by the stem of Tecomella undulate.

    Science.gov (United States)

    Brahman, Kapil Dev; Kazi, Tasneem Gul; Baig, Jameel Ahmed; Afridi, Hassan Imran; Arain, Sadaf Sadia; Saraj, Saima; Arain, Muhammad B; Arain, Salma Aslam

    2016-05-01

    Simultaneous removal of fluoride (F(-)), inorganic arsenic species, As(III) and As(V), from aqueous samples has been performed using an economic indigenous biosorbent (Stem of Tecomella undulata). The inorganic As species in water samples before and after biosorption were determined by cloud point and solid phase extraction methods, while F(-) was determined by ion chromatography. Batch experiments were carried out to evaluate the equilibrium adsorption isotherm studies for As(III), As(V) and F(-) in aqueous solutions. Several parameters of biosorption were optimized such as pH, biomass dosage, analytes concentration, time and temperature. The surface of biosorbent was characterized by SEM and FTIR. The FTIR study indicated the presence of carbonyl and amine functional groups which may have important role in the sorption/removal of these ions. Thermodynamic and kinetic study indicated that the biosorption of As(III), As(V) and F(-) were spontaneous, exothermic and followed by pseudo-second-order. Meanwhile, the interference study revealed that there was no significant effect of co-existing ions for the removal of inorganic As species and F(-) from aqueous samples (p > 0.05). It was observed that the indigenous biosorbent material simultaneously adsorbed As(III) (108 μg g(-1)), As(V) (159 μg g(-1)) and F(-) (6.16 mg g(-1)) from water at optimized conditions. The proposed biosorbent was effectively regenerated and efficiently used for several experiments, to remove the As(III), As(V) and F(-) from real water sample collected from endemic area of Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Investigation of Changes in Solubility Values of Some Non Impregnated Pine Species used in Water Cooling Towers

    Directory of Open Access Journals (Sweden)

    Murat ÖZALP

    2007-01-01

    Full Text Available Scotch pine (Pinus sylvestris L., Austrian black pine (Pinus nigra L. and Cyprus pine (Pinus brutia L. specimens were prepared and settled to water return system on water cooling tower. For every 3 months period’s specimens were tested solubility of hot and could water, 1% NaOH, alcohol-benzene and ethyl alcohol values were determined. For the control specimens significant color change, odour and surface softening was observed. For chemical analysis, all the solubility values were changed significantly.

  14. Capacity for absorption of water-soluble secondary metabolites greater in birds than in rodents.

    Science.gov (United States)

    Karasov, William H; Caviedes-Vidal, Enrique; Bakken, Bradley Hartman; Izhaki, Ido; Samuni-Blank, Michal; Arad, Zeev

    2012-01-01

    Plant secondary metabolites (SMs) are pervasive in animal foods and potentially influence feeding behavior, interspecies interactions, and the distribution and abundance of animals. Some of the major classes of naturally occurring SMs in plants include many water-soluble compounds in the molecular size range that could cross the intestinal epithelium via the paracellular space by diffusion or solvent drag. There are differences among species in paracellular permeability. Using Middle Eastern rodent and avian consumers of fruits containing SMs, we tested the hypothesis that avian species would have significantly higher paracellular permeability than rodent species. Permeability in intact animals was assessed using standard pharmacological methodology to measure absorption of two radiolabeled, inert, neutral water-soluble probes that do not interact with intestinal nutrient transporters, L-arabinose (M(r) = 150.1 Da) and lactulose (M(r) = 342.3 Da). We also measured absorption of labeled 3-O-methyl-D-glucose (3OMD-glucose; M(r) = 194.2 Da), which is a nonmetabolized analogue of D-glucose that is passively absorbed through the paracellular space but also transported across the enterocyte membranes. Most glucose was absorbed by all species, but arabinose fractional absorption (f) was nearly three times higher in birds (1.03±0.17, n = 15 in two species) compared to rodents (0.37±0.06, n = 10 in two species) (Pbirds of arabinose exceeded those of 3OMD-glucose. Our findings are in agreement with previous work showing that the paracellular pathway is more prominent in birds relative to nonflying mammals, and suggests that birds may be challenged by greater absorption of water-soluble, dietary SMs. The increased expression of the paracellular pathway in birds hints at a tradeoff: the free energy birds gain by absorbing water-soluble nutrients passively may be offset by the metabolic demands placed on them to eliminate concomitantly absorbed SMs.

  15. Inorganic arsenic removal in rice bran by percolating cooking water.

    Science.gov (United States)

    Signes-Pastor, Antonio J; Carey, Manus; Meharg, Andrew A

    2017-11-01

    Rice bran, a by-product of milling rice, is highly nutritious but contains very high levels of the non-threshold carcinogen inorganic arsenic (i-As), at concentrations around 1mg/kg. This i-As content needs to be reduced to make rice bran a useful food ingredient. Evaluated here is a novel approach to minimizing rice bran i-As content which is also suitable for its stabilization namely, cooking bran in percolating arsenic-free boiling water. Up to 96% of i-As removal was observed for a range of rice bran products, with i-As removal related to the volume of cooking water used. This process reduced the copper, potassium, and phosphorus content, but had little effect on other trace- and macro-nutrient elements in the rice bran. There was little change in organic composition, as assayed by NIR, except for a decrease in the soluble sugar and an increase, due to biomass loss, in dietary fiber. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  18. Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications.

    Science.gov (United States)

    Cao, Jie; Sun, Xunwen; Zhang, Xinxing; Lu, Canhui

    2016-11-01

    We report a facile and efficient approach for synthesis of well-dispersed and stable silver nanoparticles (Ag NPs) using water-soluble cellulose acetate (CA) as both reductant and stabilizer. Partially substituted CA with highly active hydroxyl groups and excellent water-solubility is able to reduce silver ions in homogeneous aqueous medium effectively. The synthesized Ag NPs were characterized by UV-vis spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscope analysis. The as-prepared Ag NPs were well-dispersed, showing a surface plasmon resonance peak at 426nm. The resulted Ag NPs@CA nanohybrids exhibit high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH 4 . Meanwhile, the nanohybrids are also effective in inhibiting the growth of bacterial. This environmentally friendly method promotes the use of renewable natural resources to prepare a variety of inorganic-organic materials for catalysis, antibacterial, sensors and other applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. OCTANOL/WATER PARTITION COEFFICIENTS AND WATER SOLUBILITIES OF PHTHALATE ESTERS

    Science.gov (United States)

    Measurements of the octanol/water partition coefficients (K-ow) and water solubilities of di-n-octyl phthalate (DnOP) and di-n-decyl phthalate (DnDP) by the slow-stirring method are reported. The water solubility was also measured for di-n-hexyl phthalate (DnHP). The log K-ow val...

  20. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Mirna, E-mail: msigrist@fiq.unl.edu.ar [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Albertengo, Antonela; Beldomenico, Horacio [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Tudino, Mabel [Laboratorio de Analisis de Trazas, Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria (1428), Buenos Aires (Argentina)

    2011-04-15

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH{sub 3} generation using 3.5 mol L{sup -1} HCl as carrier solution and 0.35% (m/v) NaBH{sub 4} in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl{sup -}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, HPO{sub 4}{sup 2-}, HCO{sub 3}{sup -} on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C{sub 6}H{sub 8}O{sub 6} solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 {mu}g L{sup -1} and 0.6 {mu}g L{sup -1} for As(III) and inorganic total As, respectively, were obtained for a 500 {mu}L sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h{sup -1}. The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species

  1. Synthesis, characterization and in vitro biological activities of new water-soluble copper(II), zinc(II), and nickel(II) complexes with sulfonato-substituted Schiff base ligand

    Czech Academy of Sciences Publication Activity Database

    Hosseini-Yazdi, S.A.; Mirzaahmadi, A.; Khandar, A.A.; Eigner, Václav; Dušek, Michal; Lotfipour, F.; Mahdavi, M.; Soltani, S.; Dehghan, G.

    2017-01-01

    Roč. 458, Mar (2017), s. 171-180 ISSN 0020-1693 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk(CZ) LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : water-soluble Schiff base * thiosemicarbazone * antimicrobial * antioxidant * cytotoxicity * crystal structure Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 2.002, year: 2016

  2. Speciative determination of total V and dissolved inorganic vanadium species in environmental waters by catalytic–kinetic spectrophotometric method

    Directory of Open Access Journals (Sweden)

    Ramazan Gürkan

    2017-02-01

    Full Text Available A kinetic determination of V(V as a catalyst was spectrophotometrically performed by using the indicator reaction of Gallamine blue (GB+ and bromate at pH 2.0. The reaction was followed by measuring absorbance change for a fixed-time of 3 min at 537 nm. The variables such as reagent concentration, pH, buffer concentration, ionic strength and temperature were optimized to improve the selectivity and sensitivity. Under the optimized conditions, the determination of V(V was performed in the range 1–100 μg L−1 with limits of detection and quantification of 0.31 and 0.94 μg L−1. The developed kinetic method is sufficiently sensitive, selective and simple. It was successfully applied to the speciative determination of total V and inorganic dissolved vanadium species, V(V and V(IV in environmental water samples. The oxidizing property of permanganate is used to differentiate between V(IV and V(V species. The V(IV content was found by subtracting the V(V content from those of total V. The recovery is above 95% for V(V spiked samples. Additionally, the accuracy was validated by analysis of a certified water sample, CRM TMDA-53.3, and the results were in good agreement with the certified value.

  3. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  4. Major inorganic elements in tap water samples in Peninsular Malaysia.

    Science.gov (United States)

    Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R

    2011-08-01

    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.

  5. Photosynthesis and Calcification by Emiliania huxleyi (Prymnesiophyceae) as a Function of Inorganic Carbon Species

    NARCIS (Netherlands)

    Buitenhuis, Erik T.; Baar, Hein J.W. de; Veldhuis, Marcel J.W.

    1999-01-01

    To test the possibility of inorganic carbon limitation of the marine unicellular alga Emiliania huxleyi (Lohmann) Hay and Mohler, its carbon acquisition was measured as a function of the different chemical species of inorganic carbon present in the medium. Because these different species are

  6. Water-soluble resorcin[4]arene based cavitands

    NARCIS (Netherlands)

    Grote gansey, M.H.B.; Grote Gansey, Marcel H.B.; Bakker, Frank K.G.; Feiters, Martinus C.; Geurts, Hubertus P.M.; Verboom, Willem; Reinhoudt, David

    1998-01-01

    Water-soluble resorcin[4]arene based cavitands were obtained in good yields by reaction of bromomethylcavitands with pyridine. Their solubility was determined by conductometry. The behaviour in water depends on the alkyl chain length; the methylcavitand does not aggregate, whereas the pentyl- and

  7. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Solubilities of boric acid in heavy water

    International Nuclear Information System (INIS)

    Nakai, Shigetsugu; Aoi, Hideki; Hayashi, Ken-ichi; Katoh, Taizo; Watanabe, Takashi.

    1988-01-01

    A gravimetric analysis using meta-boric acid (HBO 2 or DBO 2 ) as a weighing form has been developed for solubility measurement. The method gave satisfactory results in preliminary measurement of solubilities of boric acid in light water. By using this method, the solubilities of 10 B enriched D 3 BO 3 in heavy water were measured. The results are as follows; 2.67 (7deg C), 3.52 (15deg C), 5.70 (30deg C), 8.87 (50deg C) and 12.92 (70deg C) w/o, respectively. These values are about 10% lower than those in light water. Thermodynamical consideration based on the data shows that boric acid is the water structure breaker. (author)

  9. Effects of inorganic substances on water splitting in ion-exchange membranes; II. Optimal contents of inorganic substances in preparing bipolar membranes.

    Science.gov (United States)

    Kang, Moon-Sung; Choi, Yong-Jin; Moon, Seung-Hyeon

    2004-05-15

    An approach to enhancing the water-splitting performance of bipolar membranes (BPMs) is introducing an inorganic substance at the bipolar (BP) junction. In this study, the immobilization of inorganic matters (i.e., iron hydroxides and silicon compounds) at the BP junction and the optimum concentration have been investigated. To immobilize these inorganic matters, novel methods (i.e., electrodeposition of the iron hydroxide and processing of the sol-gel to introduce silicon groups at the BP junction) were suggested. At optimal concentrations, the immobilized inorganic matters significantly enhanced the water-splitting fluxes, indicating that they provide alternative paths for water dissociation, but on the other hand possibly reduce the polarization of water molecules between the sulfonic acid and quaternary ammonium groups at high contents. Consequently, the amount of inorganic substances introduced should be optimized to obtain the maximum water splitting in the BPM.

  10. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  11. Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters

    Energy Technology Data Exchange (ETDEWEB)

    Panther, Jared G.; Stillwell, Kathryn P.; Powell, Kipton J. [Chemistry Department, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Downard, Alison J. [Chemistry Department, University of Canterbury, Private Bag 4800, Christchurch (New Zealand)], E-mail: alison.downard@canterbury.ac.nz

    2008-08-01

    The diffusive gradients in thin films (DGT) technique, utilizing an iron-hydroxide adsorbent, has been investigated for the in situ accumulation of total dissolved inorganic As in natural waters. Diffusion coefficients of the inorganic As{sup V} and As{sup III} species in the polyacrylamide gel were measured using a diffusion cell and DGT devices and a variety of factors that may affect the adsorption of the As species to the iron-hydroxide adsorbent, or the diffusion of the individual As species, were investigated. Under conditions commonly encountered in environmental samples, solution pH and the presence of anions, cations, fulvic acid, Fe{sup III}-fulvic acid complexes and colloidal iron-hydroxide were demonstrated not to affect uptake of dissolved As. To evaluate DGT as a method for accumulation and pre-concentration of total dissolved inorganic As in natural waters, DGT was applied to two well waters and a river water that was spiked with As. For each sample, the concentration obtained with use of DGT followed by measurement by hydride generation atomic absorption spectrometry with a Pd modifier (HG-AAS) was compared with the concentration of As measured directly by HG-AAS. The results confirmed that DGT is a reliable method for pre-concentration of total dissolved As.

  12. Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters

    International Nuclear Information System (INIS)

    Panther, Jared G.; Stillwell, Kathryn P.; Powell, Kipton J.; Downard, Alison J.

    2008-01-01

    The diffusive gradients in thin films (DGT) technique, utilizing an iron-hydroxide adsorbent, has been investigated for the in situ accumulation of total dissolved inorganic As in natural waters. Diffusion coefficients of the inorganic As V and As III species in the polyacrylamide gel were measured using a diffusion cell and DGT devices and a variety of factors that may affect the adsorption of the As species to the iron-hydroxide adsorbent, or the diffusion of the individual As species, were investigated. Under conditions commonly encountered in environmental samples, solution pH and the presence of anions, cations, fulvic acid, Fe III -fulvic acid complexes and colloidal iron-hydroxide were demonstrated not to affect uptake of dissolved As. To evaluate DGT as a method for accumulation and pre-concentration of total dissolved inorganic As in natural waters, DGT was applied to two well waters and a river water that was spiked with As. For each sample, the concentration obtained with use of DGT followed by measurement by hydride generation atomic absorption spectrometry with a Pd modifier (HG-AAS) was compared with the concentration of As measured directly by HG-AAS. The results confirmed that DGT is a reliable method for pre-concentration of total dissolved As

  13. Solid dispersions, part II: new strategies in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.

    Science.gov (United States)

    Bikiaris, Dimitrios N

    2011-12-01

    The absorption of poorly water-soluble drugs, when presented in the crystalline state to the gastrointestinal tract, is typically dissolution rate-limited, and according to BCS these drugs belong mainly to class II. Both dissolution kinetics and solubility are particle size dependent. Nowadays, various techniques are available to the pharmaceutical industry for dissolution rate enhancement of such drugs. Among such techniques, nanosuspensions and drug formulation in solid dispersions are those with the highest interest. This review discusses strategies undertaken over the last 10 years, which have been applied for the dissolution enhancement of poorly water-soluble drugs; such processes include melt mixing, electrospinning, microwave irradiation and the use of inorganic nanoparticles. Many problems in this field still need to be solved, mainly the use of toxic solvents, and for this reason the use of innovative new procedures and materials will increase over the coming years. Melt mixing remains extremely promising for the preparation of SDs and will probably become the most used method in the future for the preparation of solid drug dispersions.

  14. Poster 34. Monitoring of soluble species in the NPTEC SCEPTRE loop

    International Nuclear Information System (INIS)

    Eley, C.D.; Thomas, D.M.; Libaert, D.F.; Cattell, R.A.; Garbett, K.; Woolsey, I.S.

    1992-01-01

    Soluble transition metal ion and other species were measured in the coolant of the SCEPTRE Loop under PWR primary circuit conditions typical of the hot functional test and normal load operation. Good consistency between lines was observed for stainless steel sample lines with relatively high linear flow rates, rapid cooling to near ambient temperature and PTFE lining downstream of the cooler. Phenomenological conditioning times of the order of 100 hours for soluble transition metal species were determined for this type of sampling system. The behaviour of soluble transition metal species in a static, aerated stainless steel tank containing boric acid solutions was also investigated. (author)

  15. Actinide solubility in deep groundwaters - estimates for upper limits based on chemical equilibrium calculations

    International Nuclear Information System (INIS)

    Schweingruber, M.

    1983-12-01

    A chemical equilibrium model is used to estimate maximum upper concentration limits for some actinides (Th, U, Np, Pu, Am) in groundwaters. Eh/pH diagrams for solubility isopleths, dominant dissolved species and limiting solids are constructed for fixed parameter sets including temperature, thermodynamic database, ionic strength and total concentrations of most important inorganic ligands (carbonate, fluoride, phosphate, sulphate, chloride). In order to assess conservative conditions, a reference water is defined with high ligand content and ionic strength, but without competing cations. In addition, actinide oxides and hydroxides are the only solid phases considered. Recommendations for 'safe' upper actinide solubility limits for deep groundwaters are derived from such diagrams, based on the predicted Eh/pH domain. The model results are validated as far as the scarce experimental data permit. (Auth.)

  16. Solubility and physical properties of sugars in pressurized water

    International Nuclear Information System (INIS)

    Saldaña, Marleny D.A.; Alvarez, Víctor H.; Haldar, Anupam

    2012-01-01

    Highlights: ► Sugar solubility in pressurized water and density at high pressures were measured. ► Glucose solubility was higher than that of lactose as predicted by their σ-profiles. ► Sugar aqueous solubility decreased with an increase in pressure from 15 to 120 bar. ► Aqueous glucose molecular packing shows high sensitivity to pressure. ► The COSMO-SAC model qualitatively predicted the sugar solubility data. - Abstract: In this study, the solubility, density, and refractive index of glucose and lactose in water as a function of temperature were measured. For solubility of sugars in pressurized water, experimental data were obtained at pressures of (15 to 120) bar and temperatures of (373 to 433) K using a dynamic flow high pressure system. Density data for aqueous sugar solutions were obtained at pressures of (1 to 300) bar and temperatures of (298 to 343) K. The refractive index of aqueous sugar solutions was obtained at 293 K and atmospheric pressure. Activity coefficient models, Van Laar and the Conductor-like Screening Model-Segment Activity Coefficient (COSMO-SAC), were used to fit and predict the experimental solubility data, respectively. The results obtained showed that the solubility of both sugars in pressurized water increase with an increase in temperature. However, with the increase of pressure from 15 bar to 120 bar, the solubility of both sugars in pressurized water decreased. The Van Laar model fit the experimental aqueous solubility data with deviations lower than 13 and 53% for glucose and lactose, respectively. The COSMO-SAC model predicted qualitatively the aqueous solubility of these sugars.

  17. Titanium dioxide solid phase for inorganic species adsorption and determination: the case of arsenic.

    Science.gov (United States)

    Vera, R; Fontàs, C; Anticó, E

    2017-04-01

    We have evaluated a new titanium dioxide (Adsorbsia As600) for the adsorption of both inorganic As (V) and As (III) species. In order to characterize the sorbent, batch experiments were undertaken to determine the capacities of As (III) and As (V) at pH 7.3, which were found to be 0.21 and 0.14 mmol g -1 , respectively. Elution of adsorbed species was only possible using basic solutions, and arsenic desorbed under batch conditions was 50 % when 60 mg of loaded titanium dioxide was treated with 0.5 M NaOH solution. Moreover, its use as a sorbent for solid-phase extraction and preconcentration of arsenic species from well waters has been investigated, without any previous pretreatment of the sample. Solid-phase extraction was implemented by packing several minicolumns with Adsorbsia As600. The method has been validated showing good accuracy and precision. Acceptable recoveries were obtained when spiked waters at 100-200 μg L -1 were measured. The presence of major anions commonly found in waters did not affect arsenic adsoption, and only silicate at 100 mg L -1 level severely competed with arsenic species to bind to the material. Finally, the measured concentrations in water samples containing arsenic from the Pyrinees (Catalonia, Spain) showed good agreement with the ICP-MS results.

  18. Electrospinning of calcium phosphate-poly(D,L-lactic acid nanofibers for sustained release of water-soluble drug and fast mineralization

    Directory of Open Access Journals (Sweden)

    Fu QW

    2016-10-01

    Full Text Available Qi-Wei Fu,1,* Yun-Peng Zi,1,* Wei Xu,1 Rong Zhou,1 Zhu-Yun Cai,1 Wei-Jie Zheng,1 Feng Chen,2 Qi-Rong Qian1 1Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(D,L-lactic acid (ACP-PLA nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63 cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due

  19. Distribution of inorganic arsenic species in groundwater from Central-West Part of Santa Fe Province, Argentina

    International Nuclear Information System (INIS)

    Sigrist, Mirna; Albertengo, Antonela; Brusa, Lucila; Beldoménico, Horacio; Tudino, Mabel

    2013-01-01

    Highlights: • Study on inorganic arsenic species in groundwater for drinking in Santa Fe Argentina. • This information is currently scarce or absent in the region. • An analytical methodology based on SPE-FI-HGAAS coupling was used for speciation. • Information is given for a more accurate interpretation of the toxicological impact. - Abstract: The distribution of inorganic arsenic species in groundwater used as drinking water supply by the peri-urban and rural population from central-western area of Santa Fe Province, Argentina, was studied. An analytical methodology based on an online system of atomic absorption spectrometry with hydride generation and flow injection (FI-HGAAS) was used for total inorganic arsenic determination. For speciation purposes, the distinction between As(V) and As(III) was performed through the on line coupling of FI-HGAAS to a solid phase system based on an anionic exchanger able to retain As(V) as oxyanion, allowing As(III) to be selectively determined. The concentration of As(V) was calculated as the difference between total arsenic and As(III) concentrations. Effects of matrix interference due to the nonselective behavior of the exchange resins were carefully laid. Results for 59 samples collected from 27 localities showed an almost exclusive predominance of pentavalent forms

  20. Solubility and degradation of paracetamol in subcritical water

    Directory of Open Access Journals (Sweden)

    Emire Zuhal

    2017-01-01

    Full Text Available In this study, solubility and degradation of paracetamol were examined using subcritical water. Effect of temperature and static time was investigated during solubility process in subcritical water at constant pressure (50 bar. Experimental results show that temperature and static time have crucial effect on the degradation and solubility rates. Maximum mole fraction for solubility of paracetamol was obtained at 403 K as (14.68 ± 0.74×103. Approximation model for solubility of paracetamol was proposed. O2 and H2O2 were used in degradation process of paracetamol. Maximum degradation rate was found as 68.66 ± 1.05 and 100 ± 0.00 % using O2 and H2O2, respectively.

  1. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    Science.gov (United States)

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  2. Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods

    Science.gov (United States)

    Boaz, Segal M.; Champagne, Cory D.; Fowler, Melinda A.; Houser, Dorian H.; Crocker, Daniel E.

    2011-01-01

    Despite the importance of water-soluble vitamins to metabolism, there is limited knowledge of their serum availability in fasting wildlife. We evaluated changes in water-soluble vitamins in northern elephant seals, a species with an exceptional ability to withstand nutrient deprivation. We used a metabolomics approach to measure vitamins and associated metabolites under extended natural fasts for up to seven weeks in free-ranging lactating or developing seals. Water-soluble vitamins were not detected with this metabolomics platform, but could be measured with standard assays. Concentrations of measured vitamins varied independently, but all were maintained at detectable levels over extended fasts, suggesting that defense of vitamin levels is a component of fasting adaptation in the seals. Metabolomics was not ideal for generating complete vitamin profiles in this species, but gave novel insights into vitamin metabolism by detecting key related metabolites. For example, niacin level reductions in lactating females were associated with significant reductions in precursors suggesting downregulation of the niacin synthetic pathway. The ability to detect individual vitamins using metabolomics may be impacted by the large number of novel compounds detected. Modifications to the analysis platforms and compound detection algorithms used in this study may be required for improving water-soluble vitamin detection in this and other novel wildlife systems. PMID:21983145

  3. Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation

    International Nuclear Information System (INIS)

    Moreno-Jiménez, Eduardo; Clemente, Rafael; Mestrot, Adrien; Meharg, Andrew A.

    2013-01-01

    Organic matter amendments are applied to contaminated soil to provide a better habitat for re-vegetation and remediation, and olive mill waste compost (OMWC) has been described as a promising material for this aim. We report here the results of an incubation experiment carried out in flooded conditions to study its influence in As and metal solubility in a trace elements contaminated soil. NPK fertilisation and especially organic amendment application resulted in increased As, Se and Cu concentrations in pore water. Independent of the amendment, dimethylarsenic acid (DMA) was the most abundant As species in solution. The application of OMWC increased pore water dissolved organic-carbon (DOC) concentrations, which may explain the observed mobilisation of As, Cu and Se; phosphate added in NPK could also be in part responsible of the mobilisation caused in As. Therefore, the application of soil amendments in mine soils may be particularly problematic in flooded systems. Highlights: ► Organic and inorganic amendments were added to a mine soil in flooding conditions. ► Olive mill waste compost (OMWC) provoked As, Se and Cu solubilisation. ► Dimethylarsenic acid (DMA) was the predominant As species in pore water. ► Selenium volatilisation from soils was intense. - The addition of organic amendment and/or inorganic fertiliser to a trace element contaminated soil in flooded conditions led to As, Cu and Se solubilisation.

  4. Determination of inorganic arsenic species in natural waters--benefits of separation and preconcentration on ion exchange and hybrid resins.

    Science.gov (United States)

    Ben Issa, Nureddin; Rajaković-Ognjanović, Vladana N; Jovanović, Branislava M; Rajaković, Ljubinka V

    2010-07-19

    A simple method for the separation and determination of inorganic arsenic (iAs) species in natural and drinking water was developed. Procedures for sample preparation, separation of As(III) and As(V) species and preconcentration of the total iAs on fixed bed columns were defined. Two resins, a strong base anion exchange (SBAE) resin and a hybrid (HY) resin were utilized. The inductively-coupled plasma-mass spectrometry method was applied as the analytical method for the determination of the arsenic concentration in water. The governing factors for the ion exchange/sorption of arsenic on resins in a batch and a fixed bed flow system were analyzed and compared. Acidity of the water, which plays an important role in the control of the ionic or molecular forms of arsenic species, was beneficial for the separation; by adjusting the pH values to less than 8.00, the SBAE resin separated As(V) from As(III) in water by retaining As(V) and allowing As(III) to pass through. The sorption activity of the hydrated iron oxide particles integrated into the HY resin was beneficial for bonding of all iAs species over a wide range of pH values from 5.00 to 11.00. The resin capacities were calculated according to the breakthrough points in a fixed bed flow system. At pH 7.50, the SBAE resin bound more than 370 microg g(-1) of As(V) while the HY resin bound more than 4150 microg g(-1) of As(III) and more than 3500 microg g(-1) of As(V). The high capacities and selectivity of the resins were considered as advantageous for the development and application of two procedures, one for the separation and determination of As(III) (with SBAE) and the other for the preconcentration and determination of the total arsenic (with HY resin). Methods were established through basic analytical procedures (with external standards, certified reference materials and the standard addition method) and by the parallel analysis of some samples using the atomic absorption spectrometry-hydride generation

  5. Seasonal variation of water-soluble inorganic species in the coarse and fine atmospheric aerosols at Dar es Salaam, Tanzania

    International Nuclear Information System (INIS)

    Mkoma, Stelyus L.; Wang Wan; Maenhaut, Willy

    2009-01-01

    The ionic composition of coarse, fine and total PM10 was investigated in aerosol samples collected from a kerbside in Dar es Salaam during the 2005 dry season and 2006 wet season. A 'Gent' PM10 stacked filter unit sampler with sequential Nuclepore polycarbonate filters, providing coarse (8 μm) and fine (0.4 μm) size fractions, was deployed. The mean concentrations and associated standard deviation of fine, coarse and PM10 were, respectively, 17 ± 4, 52 ± 27, and 69 ± 29 μg/m 3 during the 2005 dry season campaign and 13 ± 5, 34 ± 23 and 47 ± 25 μg/m 3 for the 2006 wet season campaign. The higher PM mass concentrations during the dry season campaign are essentially due to soil dust dispersal, much biomass burning and temperature inversions. Chloride, Na + and Mg 2+ were the dominant ions in coarse fraction, indicating a significant influence of sea-salt aerosols. In the fine fraction, SO 4 2- and NH 4 + and K + were the most important ions. The mean equivalent PM2 NO 3 - concentration in the 2005 dry season campaign was two times higher than in the 2006 wet season campaign, probably due to reaction of NaCl (sea-salt) with HNO 3 as a result of higher levels of NO x during the dry season and/or reduced volatilization of NH 4 NO 3 due to lower temperature in the dry season. The results from our water-soluble ions study strongly suggests that biomass burning and secondary aerosols make a significant contribution to fine particulate mass in Dar es Salaam atmosphere. Thus, burning of waste and biomass are thought to be the major causes for the atmospheric particulate pollution in Dar es Salaam during the dry season.

  6. Seasonal variation of water-soluble inorganic species in the coarse and fine atmospheric aerosols at Dar es Salaam, Tanzania

    Science.gov (United States)

    Mkoma, Stelyus L.; Wang, Wan; Maenhaut, Willy

    2009-09-01

    The ionic composition of coarse, fine and total PM10 was investigated in aerosol samples collected from a kerbside in Dar es Salaam during the 2005 dry season and 2006 wet season. A "Gent" PM10 stacked filter unit sampler with sequential Nuclepore polycarbonate filters, providing coarse (8 μm) and fine (0.4 μm) size fractions, was deployed. The mean concentrations and associated standard deviation of fine, coarse and PM10 were, respectively, 17 ± 4, 52 ± 27, and 69 ± 29 μg/m 3 during the 2005 dry season campaign and 13 ± 5, 34 ± 23 and 47 ± 25 μg/m 3 for the 2006 wet season campaign. The higher PM mass concentrations during the dry season campaign are essentially due to soil dust dispersal, much biomass burning and temperature inversions. Chloride, Na + and Mg 2+ were the dominant ions in coarse fraction, indicating a significant influence of sea-salt aerosols. In the fine fraction, SO42- and NH4+ and K + were the most important ions. The mean equivalent PM2 NO3- concentration in the 2005 dry season campaign was two times higher than in the 2006 wet season campaign, probably due to reaction of NaCl (sea-salt) with HNO 3 as a result of higher levels of NO x during the dry season and/or reduced volatilization of NH 4NO 3 due to lower temperature in the dry season. The results from our water-soluble ions study strongly suggests that biomass burning and secondary aerosols make a significant contribution to fine particulate mass in Dar es Salaam atmosphere. Thus, burning of waste and biomass are thought to be the major causes for the atmospheric particulate pollution in Dar es Salaam during the dry season.

  7. Lanthanide and actinide inorganic complexes in natural waters. TRLFS and ESI-MS studies

    Energy Technology Data Exchange (ETDEWEB)

    Vercouter, T.; Amekraz, B.; Moulin, C.; Vitorge, P

    2004-07-01

    Aqueous complexes of M(III) f-element ions with the inorganic ligands CO{sub 3}{sup 2-} and SO{sub 4}{sup 2-} have been investigated using the highly-sensitive speciation techniques TRLFS and ESI-MS. The Eu(CO{sub 3}){sub i}{sup 3-2i} (i=1-3) species have been characterized by TRLFS, and the stoichiometry of the limiting complex Eu(CO{sub 3}){sub 3}{sup 3-} have been confirmed by solubility measurements of NaEu(CO{sub 3}){sub 2}(s) at high ionic strength. Temperature effect on Cm(III) carbonate complexes is evidenced by the TRLFS technique. Investigation on sulphate complexation has been done at various ionic strengths by TRLFS on Eu(III) and by ESI-MS on La(III). New thermodynamic data are obtained by both techniques, which are consistent with literature data. (authors)

  8. Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods.

    Science.gov (United States)

    Boaz, Segal M; Champagne, Cory D; Fowler, Melinda A; Houser, Dorian H; Crocker, Daniel E

    2012-02-01

    Despite the importance of water-soluble vitamins to metabolism, there is limited knowledge of their serum availability in fasting wildlife. We evaluated changes in water-soluble vitamins in northern elephant seals, a species with an exceptional ability to withstand nutrient deprivation. We used a metabolomics approach to measure vitamins and associated metabolites under extended natural fasts for up to 7 weeks in free-ranging lactating or developing seals. Water-soluble vitamins were not detected with this metabolomics platform, but could be measured with standard assays. Concentrations of measured vitamins varied independently, but all were maintained at detectable levels over extended fasts, suggesting that defense of vitamin levels is a component of fasting adaptation in the seals. Metabolomics was not ideal for generating complete vitamin profiles in this species, but gave novel insights into vitamin metabolism by detecting key related metabolites. For example, niacin level reductions in lactating females were associated with significant reductions in precursors suggesting downregulation of the niacin synthetic pathway. The ability to detect individual vitamins using metabolomics may be impacted by the large number of novel compounds detected. Modifications to the analysis platforms and compound detection algorithms used in this study may be required for improving water-soluble vitamin detection in this and other novel wildlife systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Micronutrients as Impurities of Inorganic Fertilizers Marketed in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    A.S. Modaihsh

    2000-06-01

    Full Text Available Inorganic fertilizers with major nutrients are likely to be contaminated with some micronutrients. Fertilizers, utilized in Saudi Arabia, were analyzed for their total and water-soluble content of Fe, Zn, Mn and Cu. They represented three categories namely: phosphatic, solid multiple nutrient fertilizers (SMNF and water-soluble multiple nutrient fertilizers (WSMF. Total iron content in examined fertilizers was higher in phosphatic fertilizers and lower in WSMF. Nevertheless, only a very small portion of the total iron content is likely to be available to plants. It was estimated, on the basis of total content, that almost 2 g of iron would be applied to soil for each added kg of phosphatic fertilizer. The highest total content of Zn was recorded for phosphatic fertilizers. The data suggested that less than half kg of Zn would be accumulated in soil if 500 kg of phosphatic fertilizers were applied in one year. This value however, fell dramatically, to one fourth of the value, when only the available forms of Zn were considered. Fertilizer content of manganese and copper were lower than both Fe and Zn. Micronutrient impurities present in inorganic fertilizers might not have an immediate influence on plant nutrition due to their lower solubility.

  10. Study on REE bound water-soluble polysaccharides in plant

    International Nuclear Information System (INIS)

    Wang Yuqi; Guo Fanqing; Xu Lei; Chen Hongmin; Sun Jingxin; Cao Guoyin

    1999-01-01

    The binding of REE with water-soluble polysaccharides (PSs) in leaves of fern Dicranopteris Dichotoma (DD) has been studied by molecular activation analysis. The cold-water-soluble and hot-water-soluble PSs in leaves of DD were obtained by using biochemical separation techniques. The PSs of non-deproteinization and deproteinization, were separated on Sephadex G-200 gel permeation chromatography. The absorption curves of elution for the PSs were obtained by colorimetry, and the proteins were detected using Coomassic brilliant G-250. Eight REEs (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in these PSs were determined by instrumental neutron activation analysis. The results obtained show that the REEs are bound firmly with the water-soluble PSs in the plant. A measurement demonstrates that the PSs bound with REEs are mainly of smaller molecular weight (10,000 to 20,000 Dalton)

  11. Case study of water-soluble metal containing organic constituents of biomass burning aerosol

    Science.gov (United States)

    Alexandra L. Chang-Graham; Luisa T. M. Profeta; Timothy J. Johnson; Robert J. Yokelson; Alexander Laskin; Julia Laskin

    2011-01-01

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of...

  12. Solubility of carbohydrates in heavy water.

    Science.gov (United States)

    Cardoso, Marcus V C; Carvalho, Larissa V C; Sabadini, Edvaldo

    2012-05-15

    The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Water-Soluble Vitamin E-Tocopheryl Phosphate.

    Science.gov (United States)

    Zingg, Jean-Marc

    The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases. © 2018 Elsevier Inc. All rights reserved.

  14. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at m...

  15. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    Abstract A large part of the new drug candidates discovered by the pharmaceutical industry have poor solubility in aqueous media. The preferred route of drug administration is the oral route, but for these poorly water-soluble drug candidates the oral bioavailability can be low and variable. Often......, phospholipids) and exogenous surfactants used in pharmaceutical formulations on the oral absorption of poorly water-soluble drug substances. Three different models were used for this purpose. The first model was the in vitro Caco-2 cell model. Simulated intestinal fluids which did not decrease cellular...... products are important for the solubilization of poorly water-soluble drug substances and thus absorption. The second model used was the lipoprotein secreting Caco-2 cell model, which was used to simulate intestinal lymphatic transport in vitro. Various simulated intestinal fluids were composed...

  16. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  17. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    International Nuclear Information System (INIS)

    Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling

    2015-01-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  18. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  19. The solubility of inorganic compounds in water and steam with particular reference to silica and iron oxides and its deposits in power plant cycles

    International Nuclear Information System (INIS)

    Heitmann, H.G.

    1975-01-01

    The presence of silica in the water-steam cycle can be extremely detrimental to the operation of a high pressure power station. The solubility diagram of silica in water and steam obtained from numerous measurements is presented. The solubility and deposition of corrosion products, particularly iron oxyde, were investigated together with the effect on heat transfer in heated steam generator tubes. The remove corrosion products from feedwater, electromagnetic filters may be employed and their installation in the primary circuits of the PWR type reactors leads to a considerable reduction of the corrosion products and activity levels

  20. Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2014-08-01

    Full Text Available We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG, to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND. Mesoporous silica nanospheres (MSNs were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs, IND loaded AP-MSNs (IND-AP-MSNs were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.

  1. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    OpenAIRE

    Kristina Wedege; Emil Dražević; Denes Konya; Anders Bentien

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined ...

  2. Identification of Water Diffusivity of Inorganic Porous Materials Using Evolutionary Algorithms

    Czech Academy of Sciences Publication Activity Database

    Kočí, J.; Maděra, J.; Jerman, M.; Keppert, M.; Svora, Petr; Černý, R.

    2016-01-01

    Roč. 113, č. 1 (2016), s. 51-66 ISSN 0169-3913 Institutional support: RVO:61388980 Keywords : Evolutionary algorithms * Water transport * Inorganic porous materials * Inverse analysis Subject RIV: CA - Inorganic Chemistry Impact factor: 2.205, year: 2016

  3. Leaching behavior of water-soluble carbohydrates from almond hulls

    Science.gov (United States)

    Over 58% of the dry matter content of the hulls from the commercial almond (Prunus dulcis (Miller) D.A. Webb) is soluble in warm water (50-70°C) extraction. The water-soluble extractables include useful amounts of fermentable sugars (glucose, fructose, sucrose), sugar alcohols (inositol and sorbito...

  4. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    Science.gov (United States)

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  5. Water deficit modifies the carbon isotopic composition of lipids, soluble sugars and leaves of Copaifera langsdorffii Desf. (Fabaceae

    Directory of Open Access Journals (Sweden)

    Angelo Albano da Silva Bertholdi

    2017-11-01

    Full Text Available ABSTRACT Water deficit is most frequent in forest physiognomies subjected to climate change. As a consequence, several tree species alter tissue water potential, gas exchange and production of carbon compounds to overcome damage caused by water deficiency. The working hypothesis, that a reduction in gas exchange by plants experiencing water deficit will affect the composition of carbon compounds in soluble sugars, lipids and vegetative structures, was tested on Copaifera langsdorffii. Stomatal conductance, leaf water potential, and CO2 assimilation rate declined after a period of water deficit. After rehydration, leaf water potential and leaf gas exchange did not recover completely. Water deficit resulted in 13C enrichment in leaves, soluble sugars and root lipids. Furthermore, the amount of soluble sugars and root lipids decreased after water deficit. In rehydration, the carbon isotopic composition and amount of root lipids returned to levels similar to the control. Under water deficit, 13C-enriched in root lipids assists in the adjustment of cellular membrane turgidity and avoids damage to the process of water absorption by roots. These physiological adjustments permit a better understanding of the responses of Copaifera langsdorffi to water deficit.

  6. Speciation of inorganic antimony in polyethylene terephthalate (PET) bottled water using hydride generation atomic absorption spectrophotometry (HG-AAS)

    International Nuclear Information System (INIS)

    Markwo, Ali

    2015-07-01

    Antimony (Sb) is a regulated drinking water contaminant that has been found to leach from polyethylene terephthalate (PET) plastic containers into the waters stored in them. The common inorganic species of antimony in water are Sb(III) and Sb(V), with the former being more toxic and the latter being more soluble. In order to assess the extent to which waters stored in PET bottles are contaminated with inorganic Sb and to further examine the effect of typical storage conditions on migration rates, speciation analysis of inorganic Sb using hydride generation atomic absorption spectrophotometry (HG-AAS) was undertaken on selected PET plastic bottled waters marketed in the Greater Accra Region of Ghana. Six brands of PET plastic bottled waters were obtained at source on the day of packaging, and analyses undertaken on samples of the waters stored in the plastic containers at intervals of four weeks for twelve weeks, under three carefully chosen storage conditions distinctive of bottled water usage. Selected physicochemical properties of samples of the waters stored in the plastic containers and total Sb of samples of the plastic containers were also determined to discover the effect of some physical properties and certain major ions, and the influence of the different quality PET plastic types on Sb migration respectively. The study revealed amounts of total Sb in the PET plastic containers of the 6 brands ranging from 123.46 mg/kg to 146.45 mg/kg. The selected physicochemical properties of the waters stored in the PET plastic containers considered were pH (6.78 – 7.43), Ca2+ (1.61 – 12.39 mg/L), Mg2+ (1.00 – 4.96 mg/L), HCO3− (6.18 – 55.41 mg/L) and TDS (8.70 – 70.40 mg/L)). PET bottled waters of 5 out of the 6 brands contained Sb (initial total Sb ranging from 1.11 – 14.65 μg/L) before storage. Total Sb concentrations of the waters stored in the plastic containers were observed to increase with storage time under all the three storage conditions for

  7. Effect of surfactants on the fluorescence spectra of water-soluble ...

    Indian Academy of Sciences (India)

    TECS

    Effect of surfactants on the fluorescence spectra of water-soluble. MEHPPV ... polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhi- ..... in other words the variation of emission intensity.

  8. Some physicochemical aspects of water-soluble mineral flotation.

    Science.gov (United States)

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Calcium carbonate growth in the presence of water soluble cellulose ethers

    International Nuclear Information System (INIS)

    Zhang Fengju; Yang Xinguo; Tian Fei

    2009-01-01

    Calcium carbonate precipitation was performed in the presence of methyl cellulose (MC) and two kinds of hydroxyethyl cellulose (HEC FD-10000, HEC FD-30000). The results demonstrated that the final product morphology and structure of CaCO 3 crystals are highly sensitive to the concentration of the cellulose ethers aqueous solution. By precisely controlling their concentrations, all these three cellulose ethers solutions have the ability of protecting metastable vaterite from thermodynamically transforming into stable calcite. The intermediate products investigation showed to some extent the phase transformation of calcium carbonate in its growing process from metastable vaterite to calcite and indicated that the calcium carbonate crystal growth in HEC solutions occurs through dissolution and reprecipitation process. Calcium carbonate growth in both presence of HEC and ethanol or Mg 2+ was also examined. This work demonstrates the potential of water soluble cellulose ethers in controlling biominerals crystallization and growth. The results are revelatory for biomineralization and fabricating new organic-inorganic hybrids based on cellulose derivatives.

  10. Fluxes of inorganic and organic arsenic species in a Norway spruce forest floor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.-H. [Department of Soil Ecology, University of Bayreuth, D-95440 Bayreuth (Germany)], E-mail: jenhow.huang@uni-bayreuth.de; Matzner, Egbert [Department of Soil Ecology, University of Bayreuth, D-95440 Bayreuth (Germany)

    2007-09-15

    To identify the role of the forest floor in arsenic (As) biogeochemistry, concentrations and fluxes of inorganic and organic As in throughfall, litterfall and forest floor percolates at different layers were investigated. Nearly 40% of total As{sub total} input (5.3 g As ha{sup -1} yr{sup -1}) was retained in Oi layer, whereas As{sub total} fluxes from Oe and Oa layers exceeded the input by far (10.8 and 20 g As ha{sup -1} yr{sup -1}, respectively). Except dimethylarsinic acid (DMA), fluxes of organic As decreased with depth of forest floor so that <10% of total deposition (all <0.3 g As ha{sup -1} yr{sup -1}) reached the mineral soil. All forest floor layers are sinks for most organic As. Conversely, Oe and Oa layers are sources of As{sub total}, arsenite, arsenate and DMA. Significant correlations (r {>=} 0.43) between fluxes of As{sub total}, arsenite, arsenate or DMA and water indicate hydrological conditions and adsorption-desorption as factors influencing their release from the forest floor. The higher net release of arsenite from Oe and Oa and of DMA from Oa layer in the growing than dormant season also suggests microbial influences on the release of arsenite and DMA. - The forest floor layers are generally a source for inorganic arsenic species but a sink for most organic arsenic species under the present deposition rate.

  11. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended hildebrand solubility approach

    Directory of Open Access Journals (Sweden)

    Miller A Ruidiaz

    2011-09-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%. Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.

  12. Phase separation and soluble pollutant removal by means of alternationg current electrocoagulation

    International Nuclear Information System (INIS)

    Farrell, C.W.; Gardner-Clayson, T.W.

    1992-01-01

    Electro-Pure Systems (EPS) has undertaken a two-year laboratory program to investigate the technical and economic viability of alternation current electrocoagulation technology (ACE Technology) for Superfund site remediation. Alternating current electrocoagulation was originally developed as a treatment technology in the early 1980s to break stable aqueous suspensions of clays and coal fines in the mining industry. The technology offers a replacement for primary chemical coagulant addition to simplify effluent treatment, realize cost savings, and facilitate recovery of fine grained products that would otherwise have been lost. The traditional approach for treatment of such effluents entails addition of organic polymers or inorganic salts to promote flocculation of fine particulates and colloidi-sized oil droplets in aqueous suspensions. These flocculated materials are than separated by sedimentation or filtration. Unfortunately, chemical coagulant addition generates voluminous, gelatinous sludges which are difficult to dewater and slow to filter. As an alternative to chemical conditioning, alternation current electrocoagulation introduces into an aqueous medium highly, charged polymetric aluminum hydroxide species which will neutralize the electrostatic charges on suspended solids and oil droplets to facilitate their agglomeration (or coagulation). These species will also coprecipitate many soluble ions. ACE Technology prompts coagulation without adding any soluble species and produces a sludge with a lower contained water content and which will filter more rapidly through separation of the hazardous components from an aqueous waste the volume of potentially toxic pollutants requiring special handling and disposal can be minimized. Waste reduction goals may be accomplished by integrating this technology into a variety of operations which generate contaminated water

  13. Deposition and solubility of airborne metals to four plant species grown at varying distances from two heavily trafficked roads in London

    International Nuclear Information System (INIS)

    Peachey, C.J.; Sinnett, D.; Wilkinson, M.; Morgan, G.W.; Freer-Smith, P.H.; Hutchings, T.R.

    2009-01-01

    In urban areas, a highly variable mixture of pollutants is deposited as particulate matter. The concentration and bioavailability of individual pollutants within particles need to be characterised to ascertain the risks to ecological receptors. This study, carried out at two urban parks, measured the deposition and water-solubility of metals to four species common to UK urban areas. Foliar Cd, Cr, Cu, Fe, Ni, Pb and Zn concentrations were elevated in at least one species compared with those from a rural control site. Concentrations were, however, only affected by distance to road in nettle and, to a lesser extent, birch leaves. Greater concentrations of metal were observed in these species compared to cypress and maple possibly due to differences in plant morphology and leaf surfaces. Solubility appeared to be linked to the size fraction and, therefore, origin of the metal with those present predominantly in the coarse fraction exhibiting low solubility. - High density traffic resulted in elevated metal concentrations on vegetation, which were related to distance from road and plant species.

  14. Deposition and solubility of airborne metals to four plant species grown at varying distances from two heavily trafficked roads in London

    Energy Technology Data Exchange (ETDEWEB)

    Peachey, C.J. [Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Sinnett, D., E-mail: danielle.sinnett@forestry.gsi.gov.u [Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Wilkinson, M., E-mail: matthew.wilkinson@forestry.gsi.gov.u [Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Morgan, G.W., E-mail: geoff.morgan@forestry.gsi.gov.u [Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Freer-Smith, P.H., E-mail: peter.freer-smith@forestry.gsi.gov.u [Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Hutchings, T.R., E-mail: tony.hutchings@forestry.gsi.gov.u [Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom)

    2009-08-15

    In urban areas, a highly variable mixture of pollutants is deposited as particulate matter. The concentration and bioavailability of individual pollutants within particles need to be characterised to ascertain the risks to ecological receptors. This study, carried out at two urban parks, measured the deposition and water-solubility of metals to four species common to UK urban areas. Foliar Cd, Cr, Cu, Fe, Ni, Pb and Zn concentrations were elevated in at least one species compared with those from a rural control site. Concentrations were, however, only affected by distance to road in nettle and, to a lesser extent, birch leaves. Greater concentrations of metal were observed in these species compared to cypress and maple possibly due to differences in plant morphology and leaf surfaces. Solubility appeared to be linked to the size fraction and, therefore, origin of the metal with those present predominantly in the coarse fraction exhibiting low solubility. - High density traffic resulted in elevated metal concentrations on vegetation, which were related to distance from road and plant species.

  15. Chemicals in effluent waters from nuclear power stations: the distribution, fate, and effects of copper

    International Nuclear Information System (INIS)

    Harrison, F.L.

    1984-04-01

    This report provides a summary of research performed to determine the physicochemical forms and fate of copper in effluents from power stations adjacent to aquatic ecosystems with water that differs in salinity, pH, and concentrations of organic and inorganic constituents. In addition, research performed to evaluate responses of selected ecologically and economically important marine and freshwater organisms to increased concentrations of soluble copper is reviewed. The same parameters were measured and the same analytical techniques were used throughout the study. Copper concentration and speciation, in influent and effluent waters collected from eight power stations using copper alloys in their cooling systems, showed that the quantities of copper associated with particles, colloids, and organic and inorganic ligands differed with the site, season, and mode of operation of the station. Under normal operating conditions, the differences between influent and effluent waters were generally small, and most of the copper was in bound (complexed) species except when low pH water was circulated. However, copper was high in concentration and present in labile species during start-up of water circulation through some cooling systems and during changeover from open-cycle to closed-cycle operation. The toxic response to copper differed with the species and life stage of the organism and with the chemical form of copper in the water. Our primary emphasis was on acute effects and most of the testing was performed under controlled laboratory conditions. However, sublethal effects of copper on a population of bluegills living in a power station cooling lake containing water of low pH and on a population exposed to increased soluble copper in the laboratory were also assessed. 105 references, 15 figures, 11 tables

  16. Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator.

    Science.gov (United States)

    Richardson-Sanchez, Tomas; Tieu, William; Gotsbacher, Michael P; Telfer, Thomas J; Codd, Rachel

    2017-07-21

    The water solubility of a natural product-inspired octadentate hydroxamic acid chelator designed to coordinate Zr(iv)-89 has been improved by using a combined microbiological-chemical approach to engineer four ether oxygen atoms into the main-chain region of a methylene-containing analogue. First, an analogue of the trimeric hydroxamic acid desferrioxamine B (DFOB) that contained three main-chain ether oxygen atoms (DFOB-O 3 ) was generated from cultures of the native DFOB-producer Streptomyces pilosus supplemented with oxybis(ethanamine) (OBEA), which competed against the native 1,5-diaminopentane (DP) substrate during DFOB assembly. This precursor-directed biosynthesis (PDB) approach generated a suite of DFOB analogues containing one (DFOB-O 1 ), two (DFOB-O 2 ) or three (DFOB-O 3 ) ether oxygen atoms, with the latter produced as the major species. Log P measurements showed DFOB-O 3 was about 45 times more water soluble than DFOB. Second, a peptide coupling chain-extension reaction between DFOB-O 3 and the synthetic ether-containing endo-hydroxamic acid monomer 4-((2-(2-aminoethoxy)ethyl)(hydroxy)amino)-4-oxobutanoic acid (PBH-O 1 ) gave the water soluble tetrameric hydroxamic acid DFOB-O 3 -PBH-O 1 as an isostere of sparingly water soluble DFOB-PBH. The complex between DFOB-O 3 -PBH-O 1 and nat Zr(iv), examined as a surrogate measure of the radiolabelling procedure, analysed by LC-MS as the protonated adduct ([M + H] + , m/z obs = 855.2; m/z calc = 855.3), with supporting HRMS data. The use of a microbiological system to generate a water-soluble analogue of a natural product for downstream semi-synthetic chemistry is an attractive pathway for developing new drugs and imaging agents. The improved water solubility of DFOB-O 3 -PBH-O 1 could facilitate the synthesis and purification of downstream products, as part of the ongoing development of ligands optimised for Zr(iv)-89 immunological PET imaging.

  17. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  18. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    International Nuclear Information System (INIS)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-01-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in vitro.

  19. Removal of arsenic species from drinking water by Iranian natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Menhaje-Bena, R.; Kazemian, H.; Shahtaheri, S.J.; Ghazi-Khansari, M.

    2003-01-01

    The main objective of this study was to find a relatively inexpensive method for removal of arsenic species from drinking water. The uptake capability of Iron (II) modified natural clinoptilolites and relevant synthetic zeolites A and P was investigated toward inorganic arsenic species from drinking water. Results obtained from sorption experiments, using a batch (static) technique showed that, among the investigated zeolites, modified synthetic zeolite A was the most selective sorbent for removal of arsenate and arsenite from drinking water. Through this study the influencing of factories including temperature, concentration, pH, particle size and interferences was evaluated on removal of arsenic species. The synthetic zeolites and their modified forms were also characterized, using XRD, XRF and thermal analysis techniques. (authors)

  20. Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes

    Directory of Open Access Journals (Sweden)

    Shixiong Sheng

    2017-12-01

    Full Text Available This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7 to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH3-N, SO42− together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater.

  1. Water Soluble Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in South China: Spatiotemporal Variations and Source Apportionment

    Science.gov (United States)

    Yu, Xu; Yu, Qingqing; Zhu, Ming; Tang, Mingjin; Li, Sheng; Yang, Weiqiang; Zhang, Yanli; Deng, Wei; Li, Guanghui; Yu, Yuegang; Huang, Zhonghui; Song, Wei; Ding, Xiang; Hu, Qihou; Li, Jun; Bi, Xinhui; Wang, Xinming

    2017-12-01

    Organic nitrogen aerosols are complex mixtures and important compositions in ambient fine particulate matters (PM2.5), yet their sources and spatiotemporal patterns are not well understood particularly in regions influenced by intensive human activities. In this study, filter-based ambient PM2.5 samples at four stations (one urban, two rural, plus one urban roadside) and PM samples from combustion sources (vehicle exhaust, ship emission, and biomass burning) were collected in the coastal megacity Guangzhou, south China, for determining water soluble organic nitrogen (WSON) along with other organic and inorganic species. The annual average WSON concentrations, as well as the ratios of WSON to water soluble total nitrogen, were all significantly higher at rural sites than urban sites. Average WSON concentrations at the four sites during the wet season were quite near each other, ranging from 0.41 to 0.49 μg/m3; however, they became 2 times higher at the rural sites than at the urban sites during the dry season. Five major sources for WSON were identified through positive matrix factorization analysis. Vehicle emission (29.3%), biomass burning (22.8%), and secondary formation (20.2%) were three dominant sources of WSON at the urban station, while vehicle emission (45.4%) and dust (28.6%) were two dominant sources at the urban roadside station. At the two rural sites biomass burning (51.1% and 34.1%, respectively) and secondary formation (17.8% and 30.5%, respectively) were dominant sources of WSON. Ship emission contributed 8-12% of WSON at the four sites. Natural vegetation seemed to have very minor contribution to WSON.

  2. Investigation of the precipitation of Na2SO4 in supercritical water

    DEFF Research Database (Denmark)

    Voisin, T.; Erriguible, A.; Philippot, G.

    2017-01-01

    solubility in sub-and supercritical water is determined on a wide temperature range using a continuous set-up. Crystallite sizes formed after precipitation are measured with in situ synchrotron wide angle X-ray scattering (WAXS). Combining these experimental results, a numerical modeling of the precipitation......SuperCritical Water Oxidation process (SCWO) is a promising technology for treating toxic and/or complex chemical wastes with very good efficiency. Above its critical point (374 degrees C, 22.1 MPa), water exhibits particular properties and organic compounds can be easily dissolved and degraded...... with the addition of oxidizing agents. But these interesting properties imply a main drawback regarding inorganic compounds. Highly soluble at ambient temperature in water, these inorganics (such as salts) are no longer soluble in supercritical water and precipitate into solids, creating plugs in SCWO processes...

  3. Polymer-assisted synthesis of water-soluble PbSe quantum dots

    International Nuclear Information System (INIS)

    Melnig, V.; Apostu, M.-O.; Foca, N.

    2008-01-01

    Stable PbSe quantum dots were synthesised in water-based media using poly(amidehydroxyurethane) water-soluble polymer. The polymer acts like a precursor carrier, blocks the particles aggregation and assures their solubility. Atomic force microscopy data show that the particle radius is smaller than the Bohr radius of PbSe. Interactions studies, performed by Fourier transform IR spectroscopy, show that the quantum dots are capped with poly(amidehydroxyurethane). The proposed synthesis was realised in the absence of any organic solvent. As a result, the produced particles have good water solubility, stability and good arguments to be biologically compatible.

  4. Water-soluble light-emitting nanoparticles prepared by non-covalent bond self-assembly of a hydroxyl group functionalized oligo(p-phenyleneethynylene) with different water-soluble polymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Water-soluble light-emitting nanoparticles were prepared from hydroxyl group functionalized oligos(p-phenyleneethynylene) (OHOPEL) and water-soluble polymers(PEG,PAA,and PG) by non-covalent bond self-assembly.Their structure and optoelectronic properties were investigated through dynamic light scattering(DLS) ,UV and PL spectroscopy.The optical properties of OHOPEL-based water-soluble nanoparticles exhibited the same properties as that found in OHOPEL films,indicating the existence of interchain-aggregation of OHOPELs in the nanoparticles.OHOPEL-based nanoparticles prepared from conjugated oligomers show smaller size and lower dispersity than nanoparticles from conjugated polymers,which means that the structures of water-soluble nanoparticles are linked to the conjugated length.Furthermore,the OHOPEL/PG and OHOPEL/PAA systems produced smaller particles and lower polydispersity than the OHOPEL/PEG system,indicating that there may exist influence of the strength of non-covalent bonds on the size and degree of dispersity of the nanoparticles.

  5. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  6. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of water-soluble fenofibrate.

  7. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast......-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg–1 wet weight. For inorganic arsenic, the concentrations found were very low (...

  8. Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment

    International Nuclear Information System (INIS)

    Wu, Jeslin J; Siva Santosh Kumar Kondeti, Vighneswara; Bruggeman, Peter J; Kortshagen, Uwe R

    2016-01-01

    Silicon quantum dots (SiQDs), with their broad absorption, narrow and size-tunable emission, and potential biocompatibility are highly attractive materials in biological imaging applications. The inherent hydrophobicity and instability of hydrogen-terminated SiQDs are obstacles to their widespread implementation. In this work, we successfully produced highly luminescent, hydrophilic SiQDs with long-term stability in water using non-thermal plasma techniques. Hydrogen-terminated SiQDs were produced in a low-pressure plasma and subsequently treated in water using an atmospheric-pressure plasma jet for surface modification. Preliminary assessments of the chemical mechanism(s) involved in the creation of water-soluble SiQDs were performed using Fenton’s reaction and various plasma chemistries, suggesting both OH and O species play a key role in the oxidation of the SiQDs. (letter)

  9. Biological treatment of inorganic ion contamination including radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, R S [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1997-12-01

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III).

  10. Biological treatment of inorganic ion contamination including radionuclides

    International Nuclear Information System (INIS)

    Cherry, R.S.

    1997-01-01

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III)

  11. Selection of inorganic-based fertilizers in forward osmosis for water desalination

    Directory of Open Access Journals (Sweden)

    Tripti Mishra

    2015-06-01

    Full Text Available The current study aims at the selection of an appropriate draw solute for forward osmosis process. Separation and recovery of the draw solute are the major criteria for the selection of draw solute for forward osmosis process. Therefore in this investigation six inorganic fertilizers draws solute were selected. The selections of inorganic fertilizers as draw solute eliminate the need of removal and recovery of draw solute from the final product. The final product water of forward osmosis process has direct application in agricultural as nutrient rich water for irrigation. These inorganic fertilizers were tested based on their water extraction (water flux capacity. This experimental water flux was compared with the observed water flux. It was noted that the observed water flux is much higher than the attained experimental water flux. The difference of these two fluxes was used to calculate the performance ratio of each selected fertilizer. Highest performance ratio was shown by low molecular weight compound ammonium nitrate (22.73 and potassium chloride (21.03 at 1 M concentration, whereas diammonium phosphate (DAP which has highest molecular weight among all the selected fertilizer show the lowest performance ratio (10.02 at 2 M concentration. DOI: http://dx.doi.org/10.3126/ije.v4i2.12660 International Journal of Environment Vol.4(2 2015: 319-329

  12. Solubility of inorganic salts in pure ionic liquids

    International Nuclear Information System (INIS)

    Pereiro, A.B.; Araújo, J.M.M.; Oliveira, F.S.; Esperança, J.M.S.S.; Canongia Lopes, J.N.; Marrucho, I.M.; Rebelo, L.P.N.

    2012-01-01

    Highlights: ► We report the solubility of different conventional salts in several ionic liquids. ► The solubility was initially screened using a visual detection method. ► The most promising mixtures were quantitatively re-measured using an ATR–FTIR. - Abstract: The solubility of different conventional salts in several room-temperature ionic liquids – containing ammonium, phosphonium or imidazolium cations combined with acetate, sulfate, sulfonate, thiocyanate, chloride, tetracyano-borate, tris(pentafluoroethyl)trifluoro-phosphate, L-lactate, bis(trifluoromethylsulfonyl)imide or trifluoromethylsulfonate anions – were screened using a visual detection method. The most promising mixtures were then re-measured using an ATR–FTIR (Attenuated Total Reflection Fourier Transform Infra Red) spectroscopy technique in order to accurately and quantitatively determine the corresponding solubility at 298.15 K.

  13. Solubility of corrosion products in high temperature water

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Narasimhan, S.V.

    1995-01-01

    A short review of solubility of corrosion products at high temperature in either neutral or alkaline water as encountered in BWR, PHWR and PWR primary coolant reactor circuits is presented in this report. Based on the available literature, various experimental techniques involved in the study of the solubility, theory for fitting the solubility data to the thermodynamic model and discussion of the published results with a scope for future work have been brought out. (author). 17 refs., 7 figs

  14. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  15. Uranium solubility and speciation in ground water

    International Nuclear Information System (INIS)

    Ollila, K.

    1985-04-01

    The purpose of this study has been to assess the solubility and possible species of uranium in groundwater at the disposal conditions of spent fuel. The effects of radiolysis and bentonite are considered. The assessment is based on the theoretical calculations found in the literature. The Finnish experimental results are included. The conservative estimate for uranium solubility under the oxidizing conditions caused by alpha radiolysis is based on the oxidation of uranium to the U(VI) state and formation of carbonate complex. For the groundwater with the typical carbonate content of 275 mg/l and the high carbonate content of 485 mg/l due to bentonite, the solubility values of 360 mg u/l and 950 mg U/l, are obtained, respectively. The experimental results predict considerably lower values, 0.5-20 mg U/l. The solubility of uranium under the undisturbed reducing conditions may be calculated based on the hydrolysis, carbonate complexation and redox reactions. The results vary considerably depending on the thermodynamic data used. The wide ranges of the most important groundwater parameters are seen in the solubility values. The experimental results show the same trends. As a conservative value for the solubility in reducing groundwater 50-500 μg U/l is estimated. (author)

  16. Solubility studies of Np(V) in simulated underground water

    International Nuclear Information System (INIS)

    Zhang Yingjie; Ren Lilong; Jiao Haiyang; Yao Jun; Su Xiguang; Fan Xianhua

    2004-01-01

    The solubility of Np(V) in simulated underground water has been measured with the variation of pH, storage time (0-100 days). All experiments were performed in an Ar glove box which contained high purity Ar, with an oxygen content of less than 5ppm. Experimental results show that the solubility of Np(V) in simulated underground water decreased with increasing pH value of solution; the solubility of Np(V) in simulated underground water determined at different pH is : pH=6.96, [Np(V)]=(3.52±0.37) x 10 -4 mol/L; pH=8.04, [Np(V)]=(8.24±0.32) x 10 -5 mol/L; pH=9.01, [Np(V)]=(3.04±0.48) x 10'- 5 mol/L, respectively. (author)

  17. Pure Phase Solubility Limits: LANL

    International Nuclear Information System (INIS)

    C. Stockman

    2001-01-01

    , complex stability constants, and redox potentials for radionuclides in different oxidation states, form the underlying database to be used for those calculations. The potentially low solubilities of many radionuclides in natural waters constitute the first barrier for their migration from the repository into the environment. Evaluation of this effect requires a knowledge of the site-specific water chemistry and the expected spatial and temporal ranges of its variability. Quantitative determinations of radionuclide solubility in waters within the range of chemistry must be made. Speciation and molecular complexation must be ascertained to interpret and apply solubility results. The solubilities thus determined can be used to assess the effectiveness of solubility in limiting radionuclide migration. These solubilities can also be used to evaluate the effectiveness of other retardation processes expected to occur once dissolution of the source material and migration begin. Understanding the solubility behavior of radionuclides will assist in designing valuable sorption experiments that must be conducted below the solubility limit since only soluble species participate in surface reactions and sorption processes. The present strategy for radionuclide solubility tasks has been to provide a solubility model from bulk-experiments that attempt to bracket the estimate made for this Analysis and Modeling Report (AMR) of water conditions on site. The long-term goal must be to develop a thermodynamic database for solution speciation and solid-state determination as a prerequisite for transport calculations and interpretation of empirical solubility data. The model has to be self-consistent and tested against known solubility studies in order to predict radionuclide solubilities over the continuous distribution ranges of potential water compositions for performance assessment of the site. Solubility studies upper limits for radionuclide concentrations in natural waters. The

  18. Pure Phase Solubility Limits: LANL

    Energy Technology Data Exchange (ETDEWEB)

    C. Stockman

    2001-01-26

    products, complex stability constants, and redox potentials for radionuclides in different oxidation states, form the underlying database to be used for those calculations. The potentially low solubilities of many radionuclides in natural waters constitute the first barrier for their migration from the repository into the environment. Evaluation of this effect requires a knowledge of the site-specific water chemistry and the expected spatial and temporal ranges of its variability. Quantitative determinations of radionuclide solubility in waters within the range of chemistry must be made. Speciation and molecular complexation must be ascertained to interpret and apply solubility results. The solubilities thus determined can be used to assess the effectiveness of solubility in limiting radionuclide migration. These solubilities can also be used to evaluate the effectiveness of other retardation processes expected to occur once dissolution of the source material and migration begin. Understanding the solubility behavior of radionuclides will assist in designing valuable sorption experiments that must be conducted below the solubility limit since only soluble species participate in surface reactions and sorption processes. The present strategy for radionuclide solubility tasks has been to provide a solubility model from bulk-experiments that attempt to bracket the estimate made for this Analysis and Modeling Report (AMR) of water conditions on site. The long-term goal must be to develop a thermodynamic database for solution speciation and solid-state determination as a prerequisite for transport calculations and interpretation of empirical solubility data. The model has to be self-consistent and tested against known solubility studies in order to predict radionuclide solubilities over the continuous distribution ranges of potential water compositions for performance assessment of the site. Solubility studies upper limits for radionuclide concentrations in natural waters. The

  19. Water transport mechanisms across inorganic membranes in rad waste treatment by electro dialysis

    International Nuclear Information System (INIS)

    Andalaft, E.; Labayru, R.

    1992-01-01

    The work described in this paper deals with effects and mechanisms of water transport across an inorganic membrane, as related to some studied on the concentration of caesium, strontium, plutonium and other cations of interest to radioactive waste treatment. Several different water transport mechanisms are analysed and assessed as to their individual contribution towards the total transference of water during electro-dialysis using inorganic membranes. Water transfer assisted by proton jump mechanism, water of hydration transferred along with the ions, water related to thermo-osmotic effect, water transferred by concentration gradient and water transferred electrolytically under zeta potential surface charge drive are some of the different mechanism discussed. (author)

  20. Solubility effects in waste-glass/demineralized-water systems

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  1. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Science.gov (United States)

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    Science.gov (United States)

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  3. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  4. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.

    Science.gov (United States)

    Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2018-03-01

    Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  6. Antimicrobial potential of two traditional herbometallic drugs against certain pathogenic microbial species.

    Science.gov (United States)

    Wijenayake, A U; Abayasekara, C L; Pitawala, H M T G A; Bandara, B M R

    2016-09-15

    Mineral based preparations are widely used for centuries as antimicrobial agents. However, the efficacy and the mode of action of mineral based preparations are uncertain due to the insufficient antimicrobial studies. Arogyawardhana Vati (AV) and Manikya Rasa (MR) are such two Rasashastra herbo-minerallic drugs commonly in India and other countries in South Asia. Despite of their well known traditional use of skin diseases, reported antimicrobial and mineralogical studies are limited. Therefore, in this study antimicrobial activities of the drugs and their organic, inorganic fractions were evaluated against Pseudomonas aeruginosa, Escherischia coli, Staphylococcus aureus, Methecilline Resistance Staphylococcus aureus - MRSA and Candida albicans. Antimicrobial activity of the drugs, their inorganic residues and organic extracts were determined using four assay techniques viz agar well diffusion, modified well diffusion, Miles and Misra viable cell counting and broth turbidity measurements. Mineralogical constituents of the drugs were determined using X-ray diffraction, while total cation constituents and water soluble cation constituents were determined using inductively coupled plasma-mass spectrometer and the atomic absorption spectrophotometer respectively. Thermogravimetric analysis was used to determine the weight percentages of organic and inorganic fraction of the drugs. Particle sizes of the drugs were determined using the particle size analyzer. AV and MR drugs showed antibacterial activity against both gram positive and gram negative bacterial species when analyzed separately. Inorganic residues of the drugs and organic extracts showed activity at least against two or more bacterial species tested. All tested components were inactive against C. albicans. Common mineral constituents of drugs are cinnabar, biotite and Fe-rich phases. Drugs were rich in essential elements such as Na, K, Ca, Mg and Fe and toxic elements such as Zn, Cu and As. However, the

  7. Radiculography with water-soluble contraste medium

    International Nuclear Information System (INIS)

    Araujo Pinheiro, R.S. de

    1987-01-01

    The etiologic diagnosis of the lumbar pain is discussed. The radiculography with water-soluble contrast medium is used and 250 cases are studied. Some practical criteria of indication executation and interpretation of the examination are reported. (M.A.C.) [pt

  8. Preservation strategies for inorganic arsenic species in high iron, low-Ehgroundwater from West Bengal, India

    Energy Technology Data Exchange (ETDEWEB)

    Gault, Andrew G.; Polya, David A. [University of Manchester, Department of Earth Sciences and Williamson Research Centre for Molecular Environmental Science, Manchester (United Kingdom); Jana, Joydeb; Chakraborty, Sudipto; Mukherjee, Partha; Sarkar, Mitali; Nath, Bibash; Chatterjee, Debashis [University of Kalyani, Department of Chemistry, Kalyani, (India)

    2005-01-01

    Despite the importance of accurately determining inorganic arsenic speciation in natural waters to predicting bioavailability and environmental and health impacts, there remains considerable debate about the most appropriate species preservation strategies to adopt. In particular, the high-iron, low-Eh(redox potential) shallow groundwaters in West Bengal, Bangladesh and SE Asia, the use of which for drinking and irrigation purposes has led to massive international concerns for human health, are particularly prone to changes in arsenic speciation after sampling. The effectiveness of HCl and EDTA preservation strategies has been compared and used on variably arsenic-rich West Bengali groundwater samples, analysed by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Immediate filtration and acidification with HCl followed by refrigerated storage was found to be the most effective strategy for minimizing the oxidation of inorganic As(III) during storage. The use of a PRP-X100 (Hamilton) column with a 20 mmol L{sup -1} NH{sub 4}H{sub 2}PO{sub 4} as mobile phase enabled the separation of Cl{sup -} from As(III), monomethylarsonic acid, dimethylarsinic acid and As(V), thereby eliminating any isobaric interference between {sup 40}Ar{sup 35}Cl{sup +} and {sup 75}As{sup +}. The use of EDTA as a preservative, whose action is impaired by the high calcium concentrations typical of these types of groundwater, resulted in marked oxidation during storage. The use of HCl is therefore indicated for analytical methods in which chloride-rich matrices are not problematical. The groundwaters analysed by IC-ICP-MS were found to contain between 5 and 770 ng As mL{sup -1} exclusively as inorganic arsenic species. As(III)/total-As varied between 0 and 0.94. (orig.)

  9. Rapid Reduction in Breast Cancer Mortality With Inorganic Arsenic in Drinking Water

    Directory of Open Access Journals (Sweden)

    Allan H. Smith

    2014-11-01

    Interpretation: We found biologically plausible major reductions in breast cancer mortality during high exposure to inorganic arsenic in drinking water which could not be attributed to bias or confounding. We recommend clinical trial assessment of inorganic arsenic in the treatment of advanced breast cancer.

  10. Total and inorganic arsenic in fish samples from Norwegian waters.

    Science.gov (United States)

    Julshamn, Kaare; Nilsen, Bente M; Frantzen, Sylvia; Valdersnes, Stig; Maage, Amund; Nedreaas, Kjell; Sloth, Jens J

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Artic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography-ICP-MS following microwave-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg(-1) wet weight. For inorganic arsenic, the concentrations found were very low (fish used in the recent EFSA opinion on arsenic in food.

  11. Salicylate-spectrophotometric determination of inorganic monochloramine

    International Nuclear Information System (INIS)

    Tao Hui; Chen Zhonglin; Li Xing; Yang Yanling; Li Guibai

    2008-01-01

    On the basis of classical Berthelot reaction, a simple salicylate-spectrophotometric method was developed for quantitative determination of inorganic monochloramine in water samples. With the catalysis of disodium pentacyanonitrosylferrate(III), inorganic monochloramine reacts with salicylate in equimolar to produce indophenol compound which has an intense absorption at 703 nm. Parameters that influence method performance, such as pH, dosage of salicylate and nitroprussiate and reaction time, were modified to enhance the method performance. By using this method, inorganic monochloramine can be distinguished from organic chloramines and other inorganic chlorine species, such as free chlorine, dichloramine, and trichloramine. The molar absorptivities of the final products formed by these compounds are below ±3% of inorganic monochloramine, because of the α-N in them have only one exchangeable hydrogen atom, and cannot react with salicylate to produce the indophenol compound. The upper concentrations of typical ions that do not interfere with the inorganic monochloramine determination are also tested to be much higher than that mostly encountered in actual water treatment. Case study demonstrates that the results obtained from this method are lower than DPD-titrimetric method because the organic chloramines formed by chlorination of organic nitrogenous compounds give no response in the newly established method. And the result measured by salicylate-spectrophotometric method is coincident with theoretical calculation

  12. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol.

    Science.gov (United States)

    Zoghbi, Abdelmoumin; Geng, Tianjiao; Wang, Bo

    2017-11-01

    Carvedilol (CAR) is a non-selective α and β blocker categorized as class II drug with low water solubility. Several recent studies have investigated ways to overcome this problem. The aim of the present study was to combine two of these methods: the inclusion complex using hydroxypropyl-β-cyclodextrin (HPβCD) with solid dispersion using two carriers: Poloxamer 188 (PLX) and Polyvinylpyrrolidone K-30 (PVP) to enhance the solubility, bioavailability, and the stability of CAR. Kneading method was used to prepare CAR-HPβCD inclusion complex (KD). The action of different carriers separately and in combination on Carvedilol solubility was investigated in three series. CAR-carrier and KD-carrier solid dispersions were prepared by solvent evaporation method. In vitro dissolution test was conducted in three different media: double-distilled water (DDW), simulative gastric fluid (SGF), and PBS pH 6.8 (PBS). The interactions between CAR, HPβCD, and different carriers were explored by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (XRD), and differential scanning colorimetry (DSC). The results showed higher solubility of CAR in KD-PVP solid dispersions up to 70, 25, and 22 fold compared to pure CAR in DDW, SGF, and PBS, respectively. DSC and XRD analyses indicated an improved degree of transformation of CAR in KD-PVP solid dispersion from crystalline to amorphous state. This study provides a new successful combination of two polymers with the dual action of HPβCD and PLX/PVP on water solubility and bioavailability of CAR.

  13. Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures

    Directory of Open Access Journals (Sweden)

    Liliana S. Celaya

    2016-10-01

    Full Text Available In order to investigate the solubility of Stevioside and Rebaudioside A in different solvents (ethanol, water, ethanol:water 30:70 and ethanol:water 70:30, supersaturated solutions of pre-crystalized steviol glycosides were maintained at different temperatures (from 5 °C to 50 °C to reach equilibrium. Under these conditions significant differences were found in the extent of solubility. Rebaudioside A was poorly soluble in ethanol and water, and Stevioside was poorly soluble in water. Solvent mixtures more effectively promoted solubilisation, and a significant effect of temperature on solubility was observed. The two steviol glycosides showed higher solubilities and this behavior was promoted by the presence of the other sweetener. The polarity indices of the solvents were determined, and helped to explain the observed behavior. Several solute-solvent and solute-solute interactions can occur, along with the incidence of a strong affinity between solvents. The obtained results are in accordance with technological applications of ethanol, water and their binary mixtures for Stevioside and Rebaudioside A separations.

  14. Solubility study of Tc(IV) oxides

    International Nuclear Information System (INIS)

    Liu, D.J.; Fan, X.H.

    2005-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safer disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 ·nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 ·nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 ·nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium oxide was prepared by reduction of a technetate solution with Sn 2 + . The solubility of Tc(IV) oxide has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) oxide were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49-1.86) x 10 -9 mol/(L·d) under aerobic conditions, but Tc(IV) in simulated groundwater and redistilled water is not oxidized under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) oxide in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  15. Solubility of Tc(IV) oxides

    International Nuclear Information System (INIS)

    Liu, D.J.; Fan, X.H.

    2005-01-01

    Full text of publication follows: The deep geological disposal of the high level radioactive wastes is expected to be a safer disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 .nH 2 O. The solubility of Tc(IV) is used as a source term in performance assessment of radioactive waste repository. Technetium oxide was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(IV) oxide has been determined in simulated groundwater and re-distilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) oxide were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and re-distilled water is about (1.49∼1.86) x 10 -9 mol/(L.d) under aerobic conditions, but Tc(IV) in simulated groundwater and re-distilled water is not oxidized under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) oxide in simulated groundwater and re-distilled water is equal on the whole after centrifugation or ultrafiltration. The solubility of Tc(IV) oxide decreases with the increase of pH at pH 10 and is pH independent in the range 2 -8 to 10 -9 mol/L at 2 3 2- concentration. These data could be used to estimate the Tc(IV) solubility for cases where solubility limits transport of technetium in reducing environments of high-level waste repositories. (authors)

  16. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  17. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  18. Dry season aerosol iron solubility in tropical northern Australia

    Directory of Open Access Journals (Sweden)

    V. H. L. Winton

    2016-10-01

    Full Text Available Marine nitrogen fixation is co-limited by the supply of iron (Fe and phosphorus in large regions of the global ocean. The deposition of soluble aerosol Fe can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from the Savannah Fires in the Early Dry Season (SAFIRED campaign in northern Australia that reflects coincident dust and biomass burning sources of soluble aerosol Fe. The mean soluble and total aerosol Fe concentrations were 40 and 500 ng m−3 respectively. Our results show that while biomass burning species may not be a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust. We observed fractional Fe solubility up to 12 % in mixed aerosols. Thus, Fe in dust may be more soluble in the tropics compared to higher latitudes due to higher concentrations of biomass-burning-derived reactive organic species in the atmosphere. In addition, biomass-burning-derived particles can act as a surface for aerosol Fe to bind during atmospheric transport and subsequently be released to the ocean upon deposition. As the aerosol loading is dominated by biomass burning emissions over the tropical waters in the dry season, additions of biomass-burning-derived soluble Fe could have harmful consequences for initiating nitrogen-fixing toxic algal blooms. Future research is required to quantify biomass-burning-derived particle sources of soluble Fe over tropical waters.

  19. Review: kinetics of water-soluble contrast media in the central nervous system

    International Nuclear Information System (INIS)

    Sage, M.R.

    1983-01-01

    In neuroradiology, intraarterial, intravenous, and intrathecal injections of water-soluble contrast media are made. With the growing importance of water-soluble myelography, interventional angiography, and enhanced computed tomography (CT), it is essential to have a clear understanding of the response of the nervous system to such procedures. The blood, cerebrospinal fluid (CSF), and extracellular fluid of the parenchyma form the fluid compartments of the brain with three interfaces between, namely, the blood-brain interface, the CSF-brain interface, and the blood-CSF interface. One of more of these interfaces are exposed to water-soluble contrast media after intraarterial, intravenous, or intrathecal administration. The behavior of water-soluble contrast media at these interfaces is discussed on the basis of local experience and a review of the literature

  20. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    International Nuclear Information System (INIS)

    Liu Tiancai; Huang Zhenli; Wang Haiqiao; Wang Jianhao; Li Xiuqing; Zhao Yuandi; Luo Qingming

    2006-01-01

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K -1 . And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science

  1. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn; Luo Qingming [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2006-02-10

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of {approx}0.11 nm K{sup -1}. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.

  2. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2010-08-01

    Full Text Available Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008. This model allows the reliable computation of the liquid-liquid coexistence curve (binodal, corresponding tie-lines, the limit of stability/metastability (spinodal, and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six

  3. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Summary: A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on Clarias gariepinus fingerlings. 0, 2.5, 5.0, 7.5 and 10 mls of water soluble fractions (WSF) of the oil were added to 1000 litres of de-chlorinated tap water to form 0, 25, 50 , 75 and 100 parts per million ...

  4. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    International Nuclear Information System (INIS)

    Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.; Prochnow, David Adrian; Schulte, Louis D.; DeBurgomaster, Paul Christopher; Fife, Keith William; Rubin, Jim; Worl, Laura Ann

    2016-01-01

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3 O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3 , and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate

  5. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  6. Study on spraying water soluble resin to reduce pollution for Fukushima daiichi NPP accident

    International Nuclear Information System (INIS)

    Zhang Qiong; Guo Ruiping; Zhang Chunming; Han Fujuan; Hua Jie; Zhang Jiankui

    2012-01-01

    After Fukushima nuclear accident, Tokyo electric power company used the method of spraying water soluble resin synthesis at the scene of the accident, to restrain and control the spread of the radioactive dust, by forming consolidation layer in pollution area surface. This paper briefly introduced the accident, motivation of spraying water soluble resin, spraying range and implementation process. According to the relevant report on Fukushima nuclear accident, the effect of spraying water soluble resin for reducing pollution was analyzed. The mechanism of reducing pollution for water soluble resin and the application prospect were discussed. Spraying water soluble resin for fixing radioactive dust has reasonable reducing pollution effect. It is worth to use as reference and study in China. (authors)

  7. Carcinogenicity assessment of water-soluble nickel compounds.

    Science.gov (United States)

    Goodman, Julie E; Prueitt, Robyn L; Dodge, David G; Thakali, Sagar

    2009-01-01

    IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.

  8. Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Anshu Bhati

    2016-01-01

    Full Text Available Water-soluble graphitic hollow carbon nanorods (wsCNRs are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.

  9. Influence of organic matter on the solubility of ThO2 and geochemical modeling

    International Nuclear Information System (INIS)

    Liu Dejun; Luo Tian; Maes, N.; Bruggeman, C.

    2014-01-01

    Thorium (IV) is widely considered in laboratory experiments as a suitable chemical analogue for long-lived tetravalent actinides. Th (IV) is redox-insensitive, as an analogue for U (IV) to study the influence of natural organic matter on the solubility. The solubility of crystalline ThO 2 (cr) has been measured under geochemical conditions representative for the Boom Clay using Real Boom Clay Water containing organic matter to assess its influence on the ThO 2 (cr) solubility. For the purpose of comparison, Aldrich Humic Acid was also investigated. Solubility measurements of ThO 2 (cr) were approached from under-saturation in an anaerobic glove box with a controlled Ar0.4%CO 2 atmosphere. Th concentration is determined after 30000 MWCO, 300000 MWCO, and 0.45 μm filtration to distinguish solid (0.45 μm), larger colloids (300000 MWCO), and small dissolved species(30000 MWCO). X-ray diffraction was carried out to investigate the transformation of ThO 2 (cr) phase during the contact with Boom Clay Water. In Synthetic Boom Clay Water (without organic matter) the concentrations of Th (IV) are 5 × l0 -ll mol/L, 4 × lO -10 mol/L, and 8 × lO -8 mol/L after 30000 MWCO, 300000 MWCO, and 0. 45 μm filtration, respectively. It indicated the existence of inorganic colloids in solution. The increase of the total Th solution concentration with increasing organic matter concentration revealed a complexation-like interaction between Th and organic matter. All the experimental data could be modeled by Tipping humic ion-binding model VI using a combination of solubility calculations and complexation reactions between Th (IV) and organic matter functional groups. Similar to the investigation of Eu 3+ solubility, the affinity of organic matter for Th was higher for Aldrich humic acid compared to Boom Clay organic matter. However, Boom Clay organic matter with different size had the similar complexation affinity with Th (IV). (authors)

  10. Intestinal absorption of water-soluble vitamins in health and disease.

    Science.gov (United States)

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  11. Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results

    International Nuclear Information System (INIS)

    Freire, Mara G.; Carvalho, Pedro J.; Santos, Luis M.N.B.F.; Gomes, Ligia R.; Marrucho, Isabel M.; Coutinho, Joao A.P.

    2010-01-01

    This work aims at providing experimental and theoretical information about the water-perfluorocarbon molecular interactions. For that purpose, experimental solubility results for water in cyclic and aromatic perfluorocarbons (PFCs), over the temperature range between (288.15 and 318.15) K, and at atmospheric pressure, were obtained and are presented. From the experimental solubility dependence on temperature, the partial molar solution and solvation thermodynamic functions such as Gibbs free energy, enthalpy and entropy were determined and are discussed. The process of dissolution of water in PFCs is shown to be spontaneous for cyclic and aromatic compounds. It is demonstrated that the interactions between the non-aromatic PFCs and water are negligible while those between aromatic PFCs and water are favourable. The COSMO-RS predictive capability was explored for the description of the water solubility in PFCs and others substituted fluorocompounds. The COSMO-RS is shown to be a useful model to provide reasonable predictions of the solubility values, as well as to describe their temperature and structural modifications dependence. Moreover, the molar Gibbs free energy and molar enthalpy of solution of water are predicted remarkably well by COSMO-RS while the main deviations appear for the prediction of the molar entropy of solution.

  12. Nanonization strategies for poorly water-soluble drugs.

    Science.gov (United States)

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  13. Laser incising of wood: Impregnation of columns with water-soluble dye

    International Nuclear Information System (INIS)

    Hattori, N.; Ando, K.; Kitayama, S.; Nakamura, Y.

    1994-01-01

    To know whether or not laser incising is a useful pre-treatment technique in impregnating a chemical fluid into lumber, pin holes were made in columns of hinoki (Chamaecyparis obtusa Endl.), sugi (Cryptomeria japonica D. Don), karamatsu (Larix leptolepis Gordon) and douglas-fir (Pseudo-tsuga menziesii Franco) with 1.7 kW CO2 laser, and a water-soluble dye was impregnated into these columns with a local pressure impregnation device. Retentions, and lengths and widths of penetrations from each hole were measured quantitatively. Referring to the results of the preparatory experiment mentioned above, incising patterns for sugi and douglas-fir were designed, and the same water-soluble dye was impregnated into the laser-incised columns as well as into non-incised ones with the vacuum-pressure method to obtain penetrated layers with the target depths completely. As a result, a retention of 200 kg/m3 of dye could be achieved for a column of douglas-fir even if it is a species difficult to impregnate. The penetrated layer also could be formed completely at the depth of the laser incision. Therefore, it is concluded that laser incising can be used for the pre-treatment before impregnation of wood columns. (author)

  14. Hydrodistillation-adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials.

    Science.gov (United States)

    Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L

    2008-08-15

    Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.

  15. Technical note: An inorganic water chemistry dataset (1972–2011 ...

    African Journals Online (AJOL)

    A national dataset of inorganic chemical data of surface waters (rivers, lakes, and dams) in South Africa is presented and made freely available. The dataset comprises more than 500 000 complete water analyses from 1972 up to 2011, collected from more than 2 000 sample monitoring stations in South Africa. The dataset ...

  16. Characterization of Gasolines, Diesel Fuels and Their Water Soluble Fractions

    Science.gov (United States)

    1983-09-01

    Hutchinson, et al.,1979 ) with the marine algae, Chlorella vulgaris and Chlamydomonas angulosa, suggests that the toxicity of hydrocarbons is a...water-soluble petroleum components on the growth of Chlorella vulgaris Beijernck. Environ. Poll. 9: 157. Morrow, J.E., et al. 1975. Effects of some...P.B., and T.C. Hutchison. 1975. The effects of water-soluble petroleum components on the growth of Chlorella vulqaris Beijerinck. Environ. Poll. 9

  17. The solubilities of benzene polycarboxylic acids in water

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Manzurola, Emanuel; Abo Balal, Nazmia

    2006-01-01

    The solubilities in water of all benzene polycarboxylic acids are discussed, using data determined in this work (benzoic, terephthalic, trimellitic, trimesic, and pyromellitic acids) and available from the literature (benzoic, phthalic, isophthalic, terephthalic, hemimellitic, trimelitic, trimesic, mellophanic, prehnitic, pyromellitic, benzene-pentacarboxylic and mellitic acids). The apparent molar enthalpies of solution at the saturation point for these benzene polycarboxylic acids were determined from the temperature dependence of the solubilities

  18. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  19. Simultaneous determination of inorganic mercury and methylmercury compounds in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Logar, Martina; Horvat, Milena [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Akagi, Hirokatsu [National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008 (Japan); Pihlar, Boris [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Ljubljana (Slovenia)

    2002-11-01

    The purpose of the present work was to develop a simple, rapid, sensitive and accurate method for the simultaneous determination of inorganic mercury (Hg{sup 2+}) and monomethylmercury compounds (MeHg) in natural water samples at the pg L{sup -1} level. The method is based on the simultaneous extraction of MeHg and Hg{sup 2+}dithizonates into an organic solvent (toluene) after acidification of about 300 mL of a water sample, followed by back extraction into an aqueous solution of Na {sub 2}S, removal of H {sub 2}S by purging with N {sub 2}, subsequent ethylation with sodium tetraethylborate, room temperature precollection on Tenax, isothermal gas chromatographic separation (GC), pyrolysis and cold vapour atomic fluorescence spectrometric detection (CV AFS) of mercury. The limit of detection calculated on the basis of three times the standard deviation of the blank was about 0.006 ng L {sup -1} for MeHg and 0.06 ng L {sup -1} for Hg {sup 2+}when 300 mL of water was analysed. The repeatability of the results was about 5% for MeHg and 10% for Hg {sup 2+}. Recoveries were 90-110% for both species. (orig.)

  20. Improvement of humidity resistance of water soluble core by precipitation method

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2011-05-01

    Full Text Available Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels; however, the soluble core can absorb water easily from the air at room temperature. To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core, a precipitation method and a two-level-three-full factorial central composite design were used, respectively. The properties of the cores treated by the precipitation method were compared with that without any treatment. Through a systematical study by means of both an environmental scanning electron microscope (ESEM and an energy dispersive X-ray (EDX analyzer, the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration, 4% water concentration and 0 min ignition time. The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.

  1. Supplementation of inorganic phosphate enhancing the removal efficiency of tannery sludge-borne Cr through bioleaching.

    Science.gov (United States)

    Zheng, Guanyu; Zhou, Lixiang

    2011-10-15

    Four inorganic mineral nutrients including NH4+, K+, Mg2+ and soluble inorganic phosphate (Pi) were investigated to reveal the potential limiting nutrients for tannery sludge bioleaching process driven by Acidithiobacillus species, and the feasibility of supplementing the limiting nutrients to accelerate tannery sludge bioleaching was studied in the present study. It was found that the concentration of Pi was lower than 3.5 mg/L throughout the whole bioleaching process, which is the most probable restricting nutrient for tannery sludge bioleaching. Further experiments revealed that the deficiency of Pi could seriously influence the growth of Acidithiobacillus thiooxidans and lower its oxidization capacity for S0, and the limiting concentration of Pi for the growth of A. thiooxidans was 6 mg/L. The low concentration of soluble Pi in sludge matrix was resulted from the extremely strong sorbing/binding capacity of tannery sludge for phosphate. The supplementation of more than 1.6 g/L KH2PO4 into tannery sludge bioleaching system could effectively stimulate the growth of Acidithiobacillus species, enhance Cr removal rate and further shorten tannery sludge bioleaching period from 10 days to 7 days. Therefore, inorganic phosphate supplementation is an effective and feasible method to accelerate tannery sludge bioleaching process, and the optimum dosage of KH2PO4 was 1.6 g/L for tannery sludge with 5.1% of total solids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The effect of low-concentration inorganic materials on the behaviour of supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Imre, A.R., E-mail: imre@aeki.kfki.h [KFKI Atomic Energy Research Institute, POB 49, Budapest (Hungary); Hazi, G.; Horvath, A.; Maraczy, Cs. [KFKI Atomic Energy Research Institute, POB 49, Budapest (Hungary); Mazur, V.; Artemenko, S. [Odessa State Academy of Refrigeration, 1/3 Dvoryanslaya Str., 65026, Odessa (Ukraine)

    2011-01-15

    Research highlights: Small amount of inorganic materials (like corrosion products) can be dissolved in the supercritical water. Pseudo-critical temperature and other properties will be changed. Thermal and hydraulic behaviours of the SCW with small amount of contaminants differ in great extent from the behaviour of pure SCW. - Abstract: Supercritical water is a promising working fluid in the new Generation IV nuclear power plants. Due to the presence of the pseudo-critical line, the thermo-hydraulics (thermal and flow properties) and the physical chemistry of the supercritical water differ significantly from the pressurized hot water used in pressurized water reactors. In this study we would like to analyse the effect of small amount of inorganic material on the thermo-hydraulics of the supercritical water cooled nuclear reactors and other, non-nuclear supercritical water loops.

  3. Intestinal absorption of water-soluble vitamins in health and disease

    OpenAIRE

    Said, Hamid M.

    2011-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth an...

  4. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  5. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  6. Biochemical synthesis of water soluble conducting polymers

    International Nuclear Information System (INIS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-01-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  7. Use of arsenic-73 in research supports USEPA's regulatory decisions on inorganic arsenic in drinking water*

    Science.gov (United States)

    Inorganic arsenic is a natural contaminant of drinking water in the United States and throughout the world. Long term exposure to inorganic arsenic in drinking water at elevated levels (>100 ug/L) is associated with development of cancer in several organs, cardiovascular disease,...

  8. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-01-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  9. Organic and inorganic species in produced water: Implications for water reuse

    Science.gov (United States)

    Kharaka, Yousif K.; Rice, Cynthia A.

    2004-01-01

    Currently 20-30 billion barrels of formation water are co-produced annually in the USA with conventional oil and natural gas. The large database on the geochemistry of this produced water shows salinities that vary widely from ~5,000 to >350,000 mg/L TDS. Chloride, Na and Ca are generally the dominant ions, and concentrations of Fe, Mn, B, NH3 and dissolved organics, including, BTEX, phenols and poly aromatic hydrocarbons (PAHs) may be relatively high. Hazardous concentrations of NORMs, including Ra-226 and Rn-222 have been reported in produced water from several states.Coal-bed methane (CBM) wells currently produce close to a billion barrels of water and deliver ~8% of total natural gas. The salinity of this produced water generally is lower than that of water from petroleum wells; salinity commonly is 1,000-20,000 mg/L, but ranges to150,000 mg/L TDS. Most CBM wells produce Na-HCO3-Cl type water that is low in trace metals and has no reported NORMs. This water commonly has no oil and grease and has relatively low DOC, but its organic composition has not been characterized in detail. The water is disposed of by injection into saline aquifers, through evaporation and/or percolation in disposal pits, road spreading, and surface discharge. Water that has an acceptable salinity and sodium absorption ratio (SAR) is considered acceptable for surface discharge and for injection into freshwater aquifers.As an alternative to costly disposal, low salinity produced water is being considered for reclamation, especially in the arid western USA. The cost of reclaiming this water to meet irrigation, industrial and drinking water standards was evaluated in a 10 gpm pilot field study at Placerita oil field, California. This produced water had a low salinity of ~8,000 mg/L, but high concentration of Si and organics. Removal of B, Si, NH3 and especially organics from this water proved difficult, and the estimated treatment cost was high at $0.08-$0.39/bbl for water treated for

  10. A facile physical approach to make chitosan soluble in acid-free water.

    Science.gov (United States)

    Fu, Yinghao; Xiao, Congming

    2017-10-01

    We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Solubility of hydrogen in water in a broad temperature and pressure range

    International Nuclear Information System (INIS)

    Baranenko, V.I.; Kirov, V.S.

    1989-01-01

    In the coolant of water-water reactors, as a result of radiolytic decomposition of water and chemical additives (hydrazine and ammonia) and saturation of the make-up water of the first loop with free hydrogen in order to suppress radiolysis, 30-60 ml/kg of hydrogen is present in normal conditions. On being released from the water, it is free to accumulate in micropores of the metals, resulting in hydrogen embrittlement; gas accumulates in stagnant zones, with deterioration in heat transfer in the first loop and corresponding difficulty in the use of the reactor and the whole reactor loop. To determine the amount of free hydrogen and hydrogen dissolved in water in different elements of the first loop, it is necessary to know the limiting solubility of hydrogen in water at different temperatures and pressures, and also to have the corresponding theoretical dependences. The experimental data on the solubility of hydrogen in water are nonsystematic and do not cover the parameter ranges of modern nuclear power plants (P = 10-30 MPa, T = 260-370C). Therefore, the aim of the present work is to establish a well-founded method of calculating the limiting solubility of hydrogen in water and, on this basis, to compile tables of the limiting solubility of hydrogen in water at pressures 0.1-50 MPa and temperatures 0-370C

  12. Solubility of magnetite in high temperature water and an approach to generalized solubility computations

    International Nuclear Information System (INIS)

    Dinov, K.; Ishigure, K.; Matsuura, C.; Hiroishi, D.

    1993-01-01

    Magnetite solubility in pure water was measured at 423 K in a fully teflon-covered autoclave system. A fairly good agreement was found to exist between the experimental data and calculation results obtained from the thermodynamical model, based on the assumption of Fe 3 O 4 dissolution and Fe 2 O 3 deposition reactions. A generalized thermodynamical approach to the solubility computations under complex conditions on the basis of minimization of the total system Gibbs free energy was proposed. The forms of the chemical equilibria were obtained for various systems initially defined and successfully justified by the subsequent computations. A [Fe 3+ ] T -[Fe 2+ ] T phase diagram was introduced as a tool for systematic understanding of the magnetite dissolution phenomena in pure water and under oxidizing and reducing conditions. (orig.)

  13. T05 DETERMINATION OF REDUCED ARSENIC-THIO SPECIES IN WATERS BY ION CHROMATOGRAPHY-INDUCTIVELY-COUPLED PLASMA-MASS SSPECTROMETRY (IC-ICP-MS).

    Science.gov (United States)

    Elevated arsenic concentrations in ground water are a significant concern for human health, because they may lead to increased arsenic exposure via drinking water. As the inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) are known carcinogens, it is desirable to r...

  14. Impact of bleaching agents on water sorption and solubility of resin luting cements.

    Science.gov (United States)

    Torabi Ardakani, Mahshid; Atashkar, Berivan; Bagheri, Rafat; Burrow, Michael F

    2017-08-01

    The aim of the present study was to evaluate the effect of distilled water and home and office bleaching agents on the sorption and solubility of resin luting cements. A total of 18 disc-shaped specimens were prepared from each of four resin cements: G-CEM LinkAce, Panavia F, Rely X Unicem, and seT. Specimens were cured according to the manufacturers' instructions and randomly divided into three groups of six, where they were treated with either an office or home bleaching agent or immersed in distilled water (control). Water sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed using Pearson correlation coefficient, two-way analysis of variance (ANOVA) and Tukey's test. There was a significant, positive correlation between sorption and solubility. Two-way anova showed significant differences among all resin cements tested for either sorption or solubility. Water sorption and solubility of all cements were affected significantly by office bleaching, and even more by home bleaching agents. Sorption and solubility behavior of the studied cements were highly correlated and significantly affected by applying either office or home bleaching agents; seT showed the highest sorption and solubility, whereas Rely X Unicem revealed the lowest. © 2016 John Wiley & Sons Australia, Ltd.

  15. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  16. Accounting for genotype–by-environment interactions and non-additive genetic variation in genomic selection for water-soluble carbohydrate concentration in wheat

    Science.gov (United States)

    Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat un...

  17. Case study of water-soluble metal containing organic constituents of biomass burning aerosol.

    Science.gov (United States)

    Chang-Graham, Alexandra L; Profeta, Luisa T M; Johnson, Timothy J; Yokelson, Robert J; Laskin, Alexander; Laskin, Julia

    2011-02-15

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Further research into the sources, dispersion, and persistence of metal-containing aerosols, as well as their environmental effects, is needed.

  18. Radioisotope labeling technique for vapor density measurements of volatile inorganic species

    International Nuclear Information System (INIS)

    Peterson, E.J.; Caird, J.A.; Hessler, J.P.; Hoekstra, H.R.; Williams, C.W.

    1979-01-01

    A new method for complexed metal ion vapor density measurement involving labeling the metal ions of interest with a radioactive isotope is described. The isotope chosen in the present work is unstable and leads to emission of a characteristic γ ray. Thus the γ-counting rate was related to the number density of complexed metal ions in the vapor phase. This technique is applicable to the study of any volatile inorganic species, but in the present study has been used to measure vapor densities of complex species in the TbCl 3 -AlCl 3 system by using tracer 160 Tb. 4 figures, 2 tables

  19. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Science.gov (United States)

    2010-07-01

    ... in water is a significant parameter because: (A) The spatial and temporal movement (mobility) of a... Solubility in Water of Slightly Soluble, Low Volatility Organic Substances ER15DE00.054 1 = Leveling vessel...

  20. Application To Bilayer System With Water-Soluble Contrast Enhancing Material

    Science.gov (United States)

    Yabuta, Mitsuo; Ito, Naoki; Yamazaki, Hiroyuki; Nakayama, Toshimasa

    1987-09-01

    We have developed ,a water-soluble contrast enhancing material, TAD-436 ( Tokyo Ohka. Anti-Defocus Material ) which is consisted of a water-soluble diazonium salt as bleaching compounds and a water-soluble anion type polymer as binder polymers. Needless to say that water is used as solvent in TAD; therefore, it can be spincoated directly on a positive photoresist layer of a quinonediazide-novolak resin type without causing intermixing and furtheremore the bilayer can be developed without stripping TAD immediately after exposure. TAD shows a satisfactory bleaching characteristics on g-line, increases r-value of underlying photoresist and reduces the thickness loss of photoresist layer in unexposed area. Application to bilayer system with TAD will raise the resolution of underlying photoresist and when the focus depth is changed it will make the change in the resist profile small. As the result of it, the notches in the resist patterns on steps is reduced, making the difference in the linewidth between the top and the bottom of steps small.

  1. Cross-linking of wheat gluten using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Tropini, V.; Lens, J.P.; Mulder, W.J.; Silvestre, F.

    2000-01-01

    Wheat gluten was cross-linked using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC). To enhance cross-linking, N-hydroxysuccinimide (NHS) was added to the reaction mixture. The cross-linking efficiency was evaluated by the decrease in the amount of amino groups, the solubility

  2. Water insoluble and soluble lipids for gene delivery.

    Science.gov (United States)

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  3. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M; Sharma, Deepti; Singh, Darshan

    2014-01-01

    Atmospheric PM2.5 (particulate matter with aerodynamic diameter of ≤ 2.5 μm), collected from a source region [Patiala: 30.2 °N; 76.3 °E; 250 m above mean sea level] of emissions from post-harvest agricultural-waste (paddy-residue) burning in the Indo-Gangetic Plain (IGP), North India, has been studied for its chemical composition and impact on regional atmospheric radiative forcing. On average, organic aerosol mass accounts for 63% of PM2.5, whereas the contribution of elemental carbon (EC) is ∼3.5%. Sulphate, nitrate and ammonium contribute up to ∼85% of the total water-soluble inorganic species (WSIS), which constitutes ∼23% of PM2.5. The potassium-to-organic carbon ratio from paddy-residue burning emissions (KBB(+)/OC: 0.05 ± 0.01) is quite similar to that reported from Amazonian and Savanna forest-fires; whereas non-sea-salt-sulphate-to-OC ratio (nss-SO4(2-)/OC: 0.21) and nss-SO4(2-)/EC ratio of 2.6 are significantly higher (by factor of 5 to 8). The mass absorption efficiency of EC (3.8 ± 1.3 m(2) g(-1)) shows significant decrease with a parallel increase in the concentrations of organic aerosols and scattering species (sulphate and nitrate). A cross plot of OC/EC and nss-SO4(2-)/EC ratios show distinct differences for post-harvest burning emissions from paddy-residue as compared to those from fossil-fuel combustion sources in south-east Asia.

  4. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic

    International Nuclear Information System (INIS)

    Liu Xiaojuan; Zhao Quanli; Sun Guoxin; Williams, Paul; Lu Xiujun; Cai Jingzhu; Liu Wenju

    2013-01-01

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic. - Highlights: ► Arsenic speciation was extracted using 1% HNO 3 in microwave. ► Inorganic arsenic was the predominant species in all of CHMs samples. ► The highest concentration of inorganic arsenic was found in the Chrysanthemum. - Inorganic arsenic was the predominant species in all of CHMs samples.

  5. Liquid Membranes as a Tool for Chemical Speciation of Metals in Natural Waters: Organic and Inorganic Complexes of Nickel

    Directory of Open Access Journals (Sweden)

    Cristina Vergel

    2018-04-01

    Full Text Available The different species of nickel present in natural waters exhibit different transport behaviour through bulk liquid membranes (BLMs. This fact has been used to design and optimise a separation/pre-concentration system applicable to separate labile and non-labile nickel fractions. A hydrazone derivative—1,2-cyclohexanedione bis-benzoyl-hydrazone (1,2-CHBBH dissolved in toluene/dimethyl formamide (2% DMF—was used as a chemical carrier of nickel species, from an aqueous source solution (sample to a receiving acidic solution. Both chemical and hydrodynamic conditions controlling the transport system were studied and optimised. Under optimum conditions, variations in the transport of nickel ions as a function of organic (humic acids and inorganic (chloride ions ligands were studied. Relationships between the permeability coefficient (P or recovery efficiency (%R and the concentrations of ligands and nickel species were analysed using Winhumic V software. A negative correlation between P and the concentration of organic nickel complexes was found, suggesting that only labile nickel species are transported through the liquid membrane, with non-labile complexes remaining in the water sample; allowing for their separation and subsequent quantification in natural waters.

  6. Liquid Membranes as a Tool for Chemical Speciation of Metals in Natural Waters: Organic and Inorganic Complexes of Nickel.

    Science.gov (United States)

    Vergel, Cristina; Mendiguchía, Carolina; Moreno, Carlos

    2018-04-15

    The different species of nickel present in natural waters exhibit different transport behaviour through bulk liquid membranes (BLMs). This fact has been used to design and optimise a separation/pre-concentration system applicable to separate labile and non-labile nickel fractions. A hydrazone derivative-1,2-cyclohexanedione bis-benzoyl-hydrazone (1,2-CHBBH) dissolved in toluene/dimethyl formamide (2% DMF)-was used as a chemical carrier of nickel species, from an aqueous source solution (sample) to a receiving acidic solution. Both chemical and hydrodynamic conditions controlling the transport system were studied and optimised. Under optimum conditions, variations in the transport of nickel ions as a function of organic (humic acids) and inorganic (chloride ions) ligands were studied. Relationships between the permeability coefficient ( P ) or recovery efficiency (%R) and the concentrations of ligands and nickel species were analysed using Winhumic V software. A negative correlation between P and the concentration of organic nickel complexes was found, suggesting that only labile nickel species are transported through the liquid membrane, with non-labile complexes remaining in the water sample; allowing for their separation and subsequent quantification in natural waters.

  7. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    International Nuclear Information System (INIS)

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  8. Water-soluble vitamins.

    Science.gov (United States)

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were based on, for example, LC. Koontz et al. showed results of total folate concentrations measured by microbiological assay in a variety of foods. Samples were submitted in a routine manner to experienced laboratories that regularly perform folate analysis fee-for-service basis in the United States. Each laboratory reported the use of a microbiological method similar to the AOAC Official Method for the determination of folic acid. Striking was, the use of 3 different pH extraction conditions by 4 laboratories. Only one laboratory reported using a tri-enzyme extraction. Results were evaluated. Results for folic acid fortified foods had considerably lower between-laboratory variation, 9-11%, versus >45% for other foods. Mean total folate ranged from 14 to 279 microg/100 g for a mixed vegetable reference material, from 5 to 70 microg/100 g for strawberries, and from 28 to 81 microg/100 g for wholemeal flour. One should realize a large variation in results, which might be caused by slight modifications in the microbiological analysis of total folate in foods or the analysis in various (unfortified) food matrixes. Furthermore, optimal

  9. pH-potentiometric determination of solubility of barely soluble organic extracting agents in water and aqueous solutions of neutral salts

    International Nuclear Information System (INIS)

    Pavlovskaya, E.M.; Charykov, A.K.; Tikhomirov, V.I.

    1977-01-01

    A pH-potentiometric method has been used to estimate the solubility of chloroform, benzene and nitrobenzene in water. The desalting effect is studied of alkali metal chlorides on chloroform solubility to establish the following phenomenological series of alkali metal cations by their desalting action: Li + + + + + . The non-conformity of chloroform solubility values in water-isoactive solutions of different salts is indicative of the high specificity of desalting processes with respect to the chemical nature of the desalting cation. Salt effects also essentially depend on the chemical nature of the desalted substance, particularly on its acid-base properties

  10. Water-Soluble Coenzyme Q10 Inhibits Nuclear Translocation of Apoptosis Inducing Factor and Cell Death Caused by Mitochondrial Complex I Inhibition

    Directory of Open Access Journals (Sweden)

    Haining Li

    2014-07-01

    Full Text Available The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10 on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS production by dihydroethidine (DHE and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM. Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death.

  11. Reducing dissolved inorganic nitrogen in surface runoff water from sugarcane production systems.

    Science.gov (United States)

    Webster, A J; Bartley, R; Armour, J D; Brodie, J E; Thorburn, P J

    2012-01-01

    Nitrogen (N) lost from farms, especially as the highly bioavailable dissolved inorganic form, may be damaging Australia's Great Barrier Reef (GBR). As sugarcane is the dominant cropping system in GBR catchments, its N management practises are coming under increasing scrutiny. This study measured dissolved inorganic N lost in surface runoff water and sugarcane productivity over 3 years. The experiment compared the conventional fertiliser N application rate to sugarcane (average 180kg N/ha/year) and a rate based on replacing N exported in the previous crop (average 94kg N/ha/year). Dissolved inorganic N losses in surface water were 72%, 48% and 66% lower in the three monitored years in the reduced N fertiliser treatment. There was no significant difference in sugarcane yield between the two fertiliser N treatments, nor any treatment difference in soil mineral N - both of these results are indicators of the sustainability of the lower fertiliser N applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates.

    Science.gov (United States)

    Kato, Yoshinori; Onishi, Hiraku; Machida, Yoshiharu

    2004-02-01

    N-succinyl-chitosan (Suc-Chi) has favourable properties as a drug carrier such as biocompatibility, low toxicity and long-term retention in the body. It was long retained in the systemic circulation after intravenous administration, and the plasma half-lives of Suc-Chi (MW: 3.4 x 10(5); succinylation degree: 0.81 mol/sugar unit; deacetylation degree: 1.0 mol/sugar unit) were ca. 100.3h in normal mice and 43 h in Sarcoma 180-bearing mice. The biodistribution of Suc-Chi into other tissues was trace apart from the prostate and lymph nodes. The maximum tolerable dose for the intraperitoneal injection of Suc-Chi to mice was greater than 2 g/kg. The water-insoluble and water-soluble conjugates could be prepared using a water-soluble carbodiimide and mitomycin C (MMC) or using an activated ester of glutaric MMC. In vitro release characteristics of these conjugates showed similar patterns, i.e. a pH-dependent manner, except that water-insoluble conjugates showed a slightly slower release of MMC than water-soluble ones. The conjugates of MMC with Suc-Chi showed good antitumour activities against various tumours such as murine leukaemias (L1210 and P388), B16 melanoma, Sarcoma 180 solid tumour, a murine liver metastatic tumour (M5076) and a murine hepatic cell carcinoma (MH134). This review summarizes the utilization of Suc-Chi as a drug carrier for macromolecular conjugates of MMC and the therapeutic efficacy of the conjugates against various tumours.

  13. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK

    Science.gov (United States)

    Middleton, D. R. S.; Watts, M. J.; Hamilton, E. M.; Ander, E. L.; Close, R. M.; Exley, K. S.; Crabbe, H.; Leonardi, G. S.; Fletcher, T.; Polya, D. A.

    2016-05-01

    Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As determination by inductively coupled plasma mass spectrometry (ICP-MS) and urinary As speciation by high performance liquid chromatography ICP-MS (HPLC-ICP-MS). Arsenic concentrations exceeding 10 μg/L were found in the PWS of 10% of the volunteers. Unadjusted total urinary As concentrations were poorly correlated (Spearman’s ρ = 0.36 (P < 0.001)) with PWS As largely due to the use of spot urine samples and the dominance of arsenobetaine (AB) from seafood sources. However, the osmolality adjusted sum, U-AsIMM, of urinary inorganic As species, arsenite (AsIII) and arsenate (AsV), and their metabolites, methylarsonate (MA) and dimethylarsinate (DMA), was found to strongly correlate (Spearman’s ρ: 0.62 (P < 0.001)) with PWS As, indicating private water supplies as the dominant source of inorganic As exposure in the study population of PWS users.

  14. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  15. Effect of fasting on the urinary excretion of water-soluble vitamins in humans and rats.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Yoshida, Erina; Takahashi, Kei; Shibata, Katsumi

    2010-01-01

    Recent studies showed that the urinary excretion of the water-soluble vitamins can be useful as a nutritional index. To determine how fasting affects urinary excretion of water-soluble vitamins, a human study and an animal experiment were conducted. In the human study, the 24-h urinary excretion of water-soluble vitamins in 12 healthy Japanese adults fasting for a day was measured. One-day fasting drastically decreased urinary thiamin content to 30%, and increased urinary riboflavin content by 3-fold. Other water-soluble vitamin contents did not show significant change by fasting. To further investigate the alterations of water-soluble vitamin status by starvation, rats were starved for 3 d, and water-soluble vitamin contents in the liver, blood and urine were measured during starvation. Urinary excretion of thiamin, riboflavin, vitamin B(6) metabolite 4-pyridoxic acid, nicotinamide metabolites and folate decreased during starvation, but that of vitamin B(12), pantothenic acid and biotin did not. As for blood vitamin levels, only blood vitamin B(1), plasma PLP and plasma folate levels decreased with starvation. All water-soluble vitamin contents in the liver decreased during starvation, whereas vitamin concentrations in the liver did not decrease. Starvation decreased only concentrations of vitamin B(12) and folate in the skeletal muscle. These results suggest that water-soluble vitamins were released from the liver, and supplied to the peripheral tissues to maintain vitamin nutrition. Our human study also suggested that the effect of fasting should be taken into consideration for subjects showing low urinary thiamin and high urinary riboflavin.

  16. Rapid determination of water- and fat-soluble vitamins with microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Yin, Changna; Cao, Yuhua; Ding, Shaodong; Wang, Yun

    2008-06-06

    A rapid, reliable and reproducible method based on microemulsion electrokinetic chromatography (MEEKC) for simultaneous determination of 13 kinds of water- and fat-soluble vitamins has been developed in this work. A novel microemulsion system consisting of 1.2% (w/w) sodium lauryl sulphate (SDS), 21% (v/v) 1-butanol, 18% (v/v) acetonitrile, 0.8% (w/w) n-hexane, 20mM borax buffer (pH 8.7) was applied to improve selectivity and efficiency, as well as shorten analysis time. The composition of microemulsion used as the MEEKC running buffer was investigated thoroughly to obtain stable separation medium, as well as the optimum determination conditions. Acetonitrile as the organic solvent modifier, pH of the running buffer and 1-butanol as the co-surfactant played the most important roles for the separation of the fat-soluble vitamins, water-soluble vitamins and stabilization of system, respectively. The 13 water- and fat-soluble vitamins were baseline separated within 30 min. The system was applied to determine water- and fat-soluble vitamins in commercial multivitamin pharmaceutical formulation, good accuracy and precision were obtained with recoveries between 97% and 105%, relative standard derivations (RSDs) less than 1.8% except vitamin C, and acceptable quantitative results corresponding to label claim.

  17. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan

    Directory of Open Access Journals (Sweden)

    Y. Takahashi

    2011-11-01

    Full Text Available In the North Pacific, transport and deposition of mineral dust from Asia appear to be one of major sources of iron which can regulate growth of phytoplankton in the ocean. In this process, it is essential to identify chemical species of iron contained in Asian dust, because bioavailability of iron in the ocean is strongly influenced by the solubility of iron, which in turn is dependent on iron species in the dust. Here, we report that clay minerals (illite and chlorite in the dusts near the source collected at Aksu (western China can be transformed into ferrihydrite by atmospheric chemical processes during their long-range transport to eastern China (Qingdao and Japan (Tsukuba based on the speciation by X-ray absorption fine structure (XAFS and other methods such as X-ray diffraction and chemical extraction. As a result, Fe molar ratio in Aksu (illite : chlorite : ferrihydrite = 70 : 25 : 5 was changed to that in Tsukuba (illite : chlorite : ferrihydrite = 65 : 10 : 25. Moreover, leaching experiments were conducted to study the change of iron solubility. It was found that the iron solubility for the dust in Tsukuba (soluble iron fraction: 11.8 % and 1.10 % for synthetic rain water and seawater, respectively was larger than that in Aksu (4.1 % and 0.28 %, respectively, showing that iron in the dust after the transport becomes more soluble possibly due to the formation of ferrihydrite in the atmosphere. Our findings suggested that secondary formation of ferrihydrite during the transport should be considered as one of important processes in evaluating the supply of soluble iron to seawater.

  18. Solubilization of poorly water-soluble drugs using solid dispersions.

    Science.gov (United States)

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  19. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    Science.gov (United States)

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  20. Respiratory carcinogenicity assessment of soluble nickel compounds.

    OpenAIRE

    Oller, Adriana R

    2002-01-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear...

  1. Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene-α-methyl benzyl alcohol–water system

    International Nuclear Information System (INIS)

    Barega, Esayas W.; Zondervan, Edwin; Haan, André B. de

    2013-01-01

    Highlights: • Properties were measured for MBA (methyl benzyl alcohol)-EB (ethyl benzene)-water. • MBA concentration was found to influence all the properties strongly. • The water solubility, density, and viscosity increased at high MBA concentration. • The interfacial tension decreased sharply at high MBA concentration. • MBA dictates the phase separation and mass transfer of the ternary system. -- Abstract: Density, viscosity, interfacial tension, and water solubility were measured for the (α-methyl benzyl alcohol (MBA) + Ethyl benzene (EB)) system at different concentrations of MBA in contact with water and sodium hydroxide solution (0.01 mol · kg −1 ) as aqueous phases. The properties were measured to identify the component which plays a governing role in changing the physical properties relevant to mass transfer and phase separation of the ternary system. The concentration of MBA was found to be the major factor influencing all the properties. The water solubility, the density, and the viscosity increased notably at higher concentrations of MBA; while, the interfacial tension decreased strongly. The use of 0.01 mol · kg −1 NaOH as an aqueous phase resulted in a decrease of the interfacial tension and a minor decrease in the water solubility. The density data were correlated using a quadratic mixing rule to describe the influence of concentration at any temperature. The viscosity data are correlated using the Nissan and Grunberg and Katti-Chaudhri equations. The Szyzkowski’s equation was used to correlate the interfacial tension data. The water solubility data were described using an exponential relationship. All the correlations described the experimental physical property data adequately

  2. Aggregation and Photophysical Properties of Water-Soluble Sapphyrins

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Lang, Kamil; Zelinger, Zdeněk; Král, V.

    2004-01-01

    Roč. 395, - (2004), s. 82-86 ISSN 0009-2614 R&D Projects: GA AV ČR KSK4040110 Keywords : water-soluble * sapphyrins * photophysical Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2004

  3. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  4. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Göl, Cem [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Çakır, Volkan [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Kantekin, Halit [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2015-03-15

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies.

  5. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    International Nuclear Information System (INIS)

    Çakır, Dilek; Göl, Cem; Çakır, Volkan; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya; Kantekin, Halit

    2015-01-01

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, 1 H NMR, 13 C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies

  6. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds--a critical review.

    Science.gov (United States)

    Heeb, Michèle B; Criquet, Justine; Zimmermann-Steffens, Saskia G; von Gunten, Urs

    2014-01-01

    Bromide (Br(-)) is present in all water sources at concentrations ranging from ≈ 10 to >1000 μg L(-1) in fresh waters and about 67 mg L(-1) in seawater. During oxidative water treatment bromide is oxidized to hypobromous acid/hypobromite (HOBr/OBr(-)) and other bromine species. A systematic and critical literature review has been conducted on the reactivity of HOBr/OBr(-) and other bromine species with inorganic and organic compounds, including micropollutants. The speciation of bromine in the absence and presence of chloride and chlorine has been calculated and it could be shown that HOBr/OBr(-) are the dominant species in fresh waters. In ocean waters, other bromine species such as Br2, BrCl, and Br2O gain importance and may have to be considered under certain conditions. HOBr reacts fast with many inorganic compounds such as ammonia, iodide, sulfite, nitrite, cyanide and thiocyanide with apparent second-order rate constants in the order of 10(4)-10(9)M(-1)s(-1) at pH 7. No rate constants for the reactions with Fe(II) and As(III) are available. Mn(II) oxidation by bromine is controlled by a Mn(III,IV) oxide-catalyzed process involving Br2O and BrCl. Bromine shows a very high reactivity toward phenolic groups (apparent second-order rate constants kapp ≈ 10(3)-10(5)M(-1)s(-1) at pH 7), amines and sulfamides (kapp ≈ 10(5)-10(6)M(-1)s(-1) at pH 7) and S-containing compounds (kapp ≈ 10(5)-10(7)M(-1)s(-1) at pH 7). For phenolic moieties, it is possible to derive second-order rate constants with a Hammett-σ-based QSAR approach with [Formula in text]. A negative slope is typical for electrophilic substitution reactions. In general, kapp of bromine reactions at pH 7 are up to three orders of magnitude greater than for chlorine. In the case of amines, these rate constants are even higher than for ozone. Model calculations show that depending on the bromide concentration and the pH, the high reactivity of bromine may outweigh the reactions of chlorine during

  7. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    Energy Technology Data Exchange (ETDEWEB)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica]. E-mail: capedriali@hotmail.com; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica

    2008-07-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  8. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    International Nuclear Information System (INIS)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw

    2008-01-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  9. SYNTHESIS AND PHYSICAL-CHEMICAL PROPERTIES OF WATER-SOLUBLE 3-BENZYLXANTHINE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    K. V. Аleksandrova

    2015-04-01

    Full Text Available Introduction Nowadays, research of novel biological active compounds with low toxicity, are carried out among different classes of organic compounds of natural and synthetic genesis. One of the main ways of these studies is search of water-soluble compounds – convenient objects for pharmacological researches. In recent years researchers paid attention to xanthine derivatives, because of their high variativity of possible chemical modification and ability to form different salts with wide spectrum of biological action. Thus, among water-soluble xanthine derivatives were found compounds with pronounced antioxidant, diuretic and analeptic properties. Primary methods of obtaining water-soluble xanthine derivatives are direct interaction of bases with xanthine molecule or insertion basic or acidic residues in positions 7 or 8 of xanthine bicycle. According from the above, search of biologically active compounds among water-soluble substituted xanthines is prospective and actual. The aim of the study was development of synthetic ways of obtaining novel water-soluble derivatives of 3-benzyl-8-methylxanthine and studying their physical and chemical properties. Material and methods Melting points of obtained compounds were determined by capillary method on PTP (M device. ІR-spectra of synthesized compounds were recorded on the Bruker Alpha device (company «Bruker» – Germany on 4000-400 sm-1 with using console ATR (direct insertion of compound. 1Н NMR-spectra were recorded on the Varian Mercury VX-200 device (company «Varian» – USA solvent – (DMSO-d6, internal standart – ТМС. Elemental analysis was made on Elementar Vario L cube device. Chromatoraphic studies were made on the plates Sorbfil-AFV-UV (company «Sobrpolimer» –Russia. Systhems for chromatography: «acetone-propanol-2» in ratio 2:3, «propanol-2-benzene» in ratio 10:1 and exersized in UV-light in wave 200-300 nm. Results and discussion We developed methodic of synthesis

  10. Solubility of Aragonite in Subduction Water-Rich Fluids

    Science.gov (United States)

    Daniel, I.; Facq, S.; Petitgirard, S.; Cardon, H.; Sverjensky, D. A.

    2017-12-01

    Carbonate dissolution in subduction zone fluids is critical to the carbon budget in subduction zones. Depending on the solubility of carbonate minerals in aqueous fluids, the subducting lithosphere may be either strongly depleted and the mantle metasomatized if the solubility is high, as recently suggested by natural samples or transport carbon deeper into the Earth's mantle if the solubility is low enough [1, 2]. Dissolution of carbonate minerals strongly depends on pressure and temperature as well as on the chemistry of the fluid, leading to a highly variable speciation of aqueous carbon. Thanks to recent advances in theoretical aqueous geochemistry [3, 4], combined experimental and theoretical efforts now allow the investigation of speciation and solubility of carbonate minerals in aqueous fluids at PT conditions higher than previously feasible [4, 5]. In this study, we present new in situ X-ray fluorescence measurements of aragonite dissolution up to 5 GPa and 500°C and the subsequent thermodynamic model of aragonite solubility in aqueous fluids thanks to the Deep Earth Water model. The amount of dissolved aragonite in the fluid was calculated from challenging and unprecedented measurements of the Ca fluorescence K-lines at low-energy. Experiments were performed at the ESRF, beamline ID27 using a dedicated design of an externally-heated diamond anvil cell and an incident high-flux and highly focused monochromatic X-Ray beam at 20 keV. The results show a spectacularly high solubility of aragonite at HP-HT in water, further enhanced in presence of NaCl and silica in the solution. [1] Frezzotti, M. L. et al. (2011) doi:10.1038/ngeo1246. [2] Ague, J. J. and Nicolescu, S. (2014) doi:10.1038/ngeo2143. [3] Pan, D. et al. (2013) doi: 10.1073/pnas.1221581110. [4] Sverjensky, D. A et al. (2014) doi: 10.1016/j.gca.2013.12.019. [5] Facq, S. et al. (2014) doi: 10.1016/j.gca.2014.01.030.

  11. [Distribution and risk assessment of mercury species in soil of the water-level-fluctuating zone in the Three Gorges Reservoir].

    Science.gov (United States)

    Zhang, Cheng; Chen, Hong; Wang, Ding-Yong; Sun, Rong-Guo; Zhang, Jin-Yang

    2014-03-01

    To investigate pollution level and ecological risk of mercury in soils of the water-level-fluctuating zone in the Three Gorges Reservoir Region, 192 surface soil samples from 14 counties (districts) in Chongqing were obtained. Concentrations of THg and Hg species, bioavailable Hg were analyzed and discussed. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index (E(r)) were applied to assess the pollution status and potential ecological risk of THg and Hg species, respectively. The results showed that significant differences in the concentration of THg were found in soils of water-level-fluctuating zone in the Three Gorges Reservoir. The THg concentration ranged from 22.4 to 393.5 microg x kg(-1), with an average of (84.2 +/- 54.3) microg x kg(-1). 76.6% of the samples' THg content was higher than the soil background value in the Three Gorges Reservoir Region. The percentage of five mercury species (water-soluble Hg, HCl-soluble Hg, KOH-soluble Hg, H2O2-soluble Hg, residue Hg) in soils were 4.1%, 15.5%, 18.3%, 10.9%, 51.3%, respectively. The average concentrations of bioavailable mercury varied between 19.7-36.6 microg x kg(-1), and the percentage of bioavailable Hg was 22.1%-51.6% of THg. According to the geoaccumulation index, the soils were lightly polluted by Hg. Håkanson single potential ecological risk index evaluation showed that Hg species had a low potential ecological risk, moreover, soils of water-level-fluctuating zone in the Three Gorges Reservoir were at low ecological risk levels as evaluated by bioavailable Hg. While, the assessment results based on THg of soils was much higher than that based on the Hg species. Two methods of evaluation showed that the I(geo) and E(r) values calculated based on the Hg species better reflected the actual pollution levels of soils and its hazard to aquatic organisms.

  12. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  13. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    EL-Sonbaty, S.M.; Swailam, H.M.; Noaman, E.

    2012-01-01

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H 2 O 2 . Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  14. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  15. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    Science.gov (United States)

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement. Copyright © 2015. Published by Elsevier Ltd.

  16. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    Science.gov (United States)

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.

  17. Renal excretion of water-soluble contrast media after enema in the neonatal period.

    Science.gov (United States)

    Kim, Hee Sun; Je, Bo-Kyung; Cha, Sang Hoon; Choi, Byung Min; Lee, Ki Yeol; Lee, Seung Hwa

    2014-08-01

    When abdominal distention occurs or bowel obstruction is suspected in the neonatal period, a water-soluble contrast enema is helpful for diagnostic and therapeutic purposes. The water-soluble contrast medium is evacuated through the anus as well as excreted via the kidneys in some babies. This study was designed to evaluate the incidence of renal excretion after enemas using water-soluble contrast media and presume the causes. Contrast enemas using diluted water-soluble contrast media were performed in 23 patients under 2 months of age. After the enema, patients were followed with simple abdominal radiographs to assess the improvement in bowel distention, and we could also detect the presence of renal excretion of contrast media on the radiographs. Reviewing the medical records and imaging studies, including enemas and consecutive abdominal radiographs, we evaluated the incidence of renal excretion of water-soluble contrast media and counted the stay duration of contrast media in urinary tract, bladder, and colon. Among 23 patients, 12 patients (52%) experienced the renal excretion of water-soluble contrast media. In these patients, stay-in-bladder durations of contrast media were 1-3 days and stay-in-colon durations of contrast media were 1-10 days, while stay-in-colon durations of contrast media were 1-3 days in the patients not showing renal excretion of contrast media. The Mann-Whitney test for stay-in-colon durations demonstrated the later evacuation of contrast media in the patients with renal excretion of contrast media (p = 0.07). The review of the medical records showed that 19 patients were finally diagnosed as intestinal diseases, including Hirschsprung's disease, meconium ileum, meconium plug syndrome, and small bowel atresia or stenosis. Fisher's exact test between the presence of urinary excretion and intestinal diseases indicated a statistically significant difference (p = 0.04). The intestinal diseases causing bowel obstruction may increase the

  18. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2016-01-01

    Full Text Available Abid Mehmood Yousaf,1,2 Omer Mustapha,1 Dong Wuk Kim,1 Dong Shik Kim,1 Kyeong Soo Kim,1 Sung Giu Jin,1 Chul Soon Yong,3 Yu Seok Youn,4 Yu-Kyoung Oh,5 Jong Oh Kim,3 Han-Gon Choi1 1College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, South Korea; 2Faculty of Pharmacy, University of Central Punjab, Johar, Lahore, Pakistan; 3College of Pharmacy, Yeungnam University, Gyongsan, North Gyeongsang, 4School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 5College of Pharmacy, Seoul National University, Seoul, South Korea Purpose: The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate.Methods: Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion.Results: All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1

  19. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  20. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  1. Water solubility of synthetic pyrope at high temperature and pressure up to 12GPa

    Science.gov (United States)

    Huang, S.; Chen, J.

    2012-12-01

    Water can be incorporated into normally anhydrous minerals as OH- defects and transported into the mantle. Its existence in the mantle may affect property of minerals, such as elasticity, electrical conductivity and rheological properties. As the secondary mineral in the mantle, garnet has not been extensively studied for its water solubility and there is discrepancies among the existing experiments on the water solubility in the garnet change at pressures and temperatures. Geiger et al., 1991 investigated water content in synthetic pyrope and concluded 0.02wt% to 0.07wt% OH- substitution. Lu et al., 1997 found 198ppm water in the Dora Miara pyrope at 100Kbar and 1000°C. Withers et al., 1998 claimed that water solubility in pyrope reached 1000ppm at 5GPa and then decreased as pressure increasing; above 7GPa, no water was detected. Mookherjee et al., 2009 also explored pyrope-rich garnet, which contains water up to 0.1%wt at 5-9GPa and temperatures 1373K-1473K. Here we report a study of water solubility of synthetic single crystal pyrope at pressures 4-12GPa and temperature 1000°C. Single crystals of pyrope were synthesized using multi-anvil press and water contents in these samples were measured using FTIR. We have observed OH- peak at 3650 cm-1 along this pressure range, although Withers, 1998 reported water contents decrease to undetectable level above 7GPa. Water solubility in pyrope will be reported as a function of pressure up to 12 GPa at 1000°C.

  2. MIR and FIR Analysis of Inorganic Species in a Single Data Acquisition

    Science.gov (United States)

    Wang, Peng; Shilov, Sergey

    2017-06-01

    The extension of the mid IR towards the far IR spectral range below 400 \\wn is of great interest for molecular vibrational analysis for inorganic and organometallic chemistry, for geological, pharmaceutical, and physical applications, polymorph screening and crystallinity analysis as well as for matrix isolation spectroscopy. In these cases, the additional far infrared region offers insight to low energy vibrations which are observable only there. This includes inorganic species, lattice vibrations or intermolecular vibrations in the ordered solid state. The spectral range of a FTIR spectrometer is defined by the major optical components such as the source, beamsplitter, and detector. The globar source covers a broad spectral range from 8000 to 20 \\wn. However a bottle neck exists with respect to the beamsplitter and detector. To extend the spectral range further into the far IR and THz spectral ranges, one or more additional far IR beam splitters and detectors have been previously required. Two new optic components have been incorporated in a spectrometer to achieve coverage of both the mid and far infrared in a single scan: a wide range MIR-FIR beam splitter and the wide range DLaTGS detector that utilizes a diamond window. The use of a standard SiC IR source with these components yields a spectral range of 6000 down to 50 \\wn in one step for all types of transmittance, reflectance and ATR measurements. Utilizing the external water cooled mercury arc high power lamp the spectral range can be ultimately extended down to 10 \\wn. Examples of application will include emission in MIR-THz range, identification of pigments, additives in polymers, and polymorphism studies.

  3. Process for the production of furfural from pentoses and/or water soluble pentosans

    NARCIS (Netherlands)

    De Jong, W.; Marcotullio, G.

    2012-01-01

    The invention is directed to a process for the production of furfural from pentoses and/or water soluble pentosans, said process comprising converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution

  4. Controlling the photochemical reaction of an azastilbene derivative in water using a water-soluble pillar[6]arene.

    Science.gov (United States)

    Xia, Danyu; Wang, Pi; Shi, Bingbing

    2017-09-20

    Photochemistry plays an important role in our lives. It has also been a common tool in the laboratory to construct complicated systems from small molecules. Supramolecular chemistry provides an opportunity to solve some of the problems in controlling photochemical reactions via non-covalent interactions. By using confining media and weak interactions between the medium and the reactant molecule, the excited state behavior of molecules has been successfully manipulated. Pillararenes, a new class of macrocyclic hosts, have rarely been used in the field of photochemical investigations, such as the controlling of photo-induced reactions. Herein, we explore a synthetic macrocyclic host, a water-soluble pillar[6]arene, as a controlling tool to manipulate the photo-induced reactions (hydration) in water. A host-guest system in water based on a water-soluble pillar[6]arene and an azastilbene derivative, (E)-4,4'-dimethyl-4,4'-diazoniastilbene diiodide, has been constructed. Then this water-soluble pillar[6]arene was successfully employed to control the photohydration of the azastilbene derivative in water as a "protective agent".

  5. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Ratna Chaturvedi

    Full Text Available The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.

  6. Temperature and sodium chloride effects on the solubility of anthracene in water

    International Nuclear Information System (INIS)

    Arias-Gonzalez, Israel; Reza, Joel; Trejo, Arturo

    2010-01-01

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg -1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10 -8 to 143 . 10 -8 ) mol . kg -1 . Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol -1 . The standard molar Gibbs free energies, Δ tr G o , enthalpies, Δ tr H o , and entropies, Δ tr S o , for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated Δ tr G o values were positive [(20 to 1230) J . mol -1 ]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  7. Selective Photooxidation Reactions using Water-Soluble Anthraquinone Photocatalysts

    NARCIS (Netherlands)

    Zhang, W.; Gacs, Jenő; Arends, I.W.C.E.; Hollmann, F.

    2017-01-01

    The aerobic organocatalytic oxidation of alcohols was achieved by using water-soluble sodium anthraquinone sulfonate. Under visible-light activation, this catalyst mediated the aerobic oxidation of alcohols to aldehydes and ketones. The photo-oxyfunctionalization of alkanes was also possible

  8. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Directory of Open Access Journals (Sweden)

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  9. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  10. Comparison of water sorption and solubility of Acropars and Meliodent heat cure acrylic resins

    Directory of Open Access Journals (Sweden)

    Golbidi F

    2006-06-01

    Full Text Available Background and Aim: Water sorption and solubility are important properties of acrylic resins. Denture base acrylic resins have low solubility. This solubility results from the leaching out of unreacted monomer and water soluble additives into the oral fluids. The solubility of denture bases can cause oral soft tissue reactions. In addition, water absorbed into this material acts as a plasticizer and decreases the mechanical properties such as hardness, transverse strength, fatigue limit and also can change the color and dimensional stability. The aim of this study was to compare the water sorption and solubility of Acropars and Meliodent heat cure acrylic resins. Materials and Methods: This experimental study was performed on the basis of ADA specification No.12 and ISO No.1567 and standards NO: 2571 of Institute of Standards & Industrial Research of Iran. Six disc form samples of each acrylic resin were prepared, with the dimension of 50×0.5 mm. After desiccating, the samples were kept in an oven for 24 hours and weighed. Then they were immersed in water, kept in oven for 7 days and weighed again. After this phase, the samples were carried to a dessicator, for 24 hours and kept in an oven for drying and were weighed for the third time. Data were analyzed with Mann Whitney and one sample t-test. P<0.05 was considered as the limit of significance. Results: Water sorption mean values were 30.5±0.1 µg/mm3 or 0.76±0.01 mg/cm2 for Meliodent samples and 30.7±0.87 µg/mm3 or 0.77±0.009 mg/cm2 for Acropars samples. No significant difference was observed in water sorption of these two materials (P=0.9. Meliodent acrylic resin showed lower solubility (1.7±0.097 µg/mm3 or 0.042±0.001 mg/cm2 than Acropars acrylic resin (2.5±0.13 µg/mm3 or 0.062±0.001 mg/cm2 (P=0.002. Conclusion: Acropars heat cure acrylic resin matched well with the requirements of the international standards for water sorption, but its solubility was not favorable. This problem

  11. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    International Nuclear Information System (INIS)

    Lintott, D.R.; Goudey, J.S.; Wilson, J.; Swanson, S.; Drury, C.

    1997-01-01

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs

  12. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    Energy Technology Data Exchange (ETDEWEB)

    Lintott, D.R.; Goudey, J.S. [HydroQual Consultants, Inc., Calgary, AB (Canada); Wilson, J.; Swanson, S. [Golder Associates, Calgary, AB (Canada); Drury, C. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    1997-12-31

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs.

  13. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Csapó J.

    2017-10-01

    Full Text Available Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from its bindings, the difficulty of free vitamin absorption, gastrointestinal problems, medication, and often alcoholism. Among water-soluble vitamins, B12 is the only one with a sufficient storage level in the body, capable of preventing deficiency symptoms for a long period of time in cases of vitamin-deficient nutrition. Each type of vitamin is dealt with separately in discussing the beneficial outcomes of their overconsumption regarding health, while the authors of the article also present cases with contradictory results. Daily requirements are set forth for every water-soluble vitamin and information is provided on the types of nutrients that help us to the water-soluble vitamins essential for the organism.

  14. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks.

    Science.gov (United States)

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola

    2018-02-01

    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  15. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions.

    Science.gov (United States)

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water soluble vitamins on growth of microorganisms in PPN solutions. AMINOFLUID ® (AF), BFLUID ® (BF), PARESAFE ® (PS) and PAREPLUS ® (PP) PPN solutions were used. Water soluble vitamins contained in PP were also used. Causative microorganisms of CRBSI were used. Staphylococcus epidermidis decreased after 24 hours or 48 hours in all solutions. On the other hand, Escherichia coli , Serratia marcescens , Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans increased, especially in PP. When each water soluble vitamin was added to BF and PS, growth of S. aureus was greater in solutions that contained nicotinamide than in solutions that contained other vitamins. As for C. albicans , they grew in all test solutions. C. albicans grew especially well in solutions that contained biotin. When commercial amino acids and glucose solutions with electrolytes are administered, in particular those containing multivitamins or water soluble vitamins, efforts to control infection must be taken to prevent proliferation of microorganisms.

  16. Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, Sarah E., E-mail: rothenberg.sarah@gmail.com [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Feng Xinbin, E-mail: fengxinbin@vip.skleg.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Dong Bin, E-mail: dongbin@whu.edu.cn [State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 (China); Shang Lihai, E-mail: shanglihai@vip.gyig.ac.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Yin Runsheng, E-mail: yinrunsheng2002@163.com [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Yuan Xiaobo, E-mail: xiantao_131@163.com [College of Resources and the Environment, Southwest University, Chongqing 400716 (China)

    2011-05-15

    In China, total Hg (Hg{sub T}) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of Hg{sub T} (water-saving: 3.3 {+-} 1.6 ng/g; flooded: 110 {+-} 9.2 ng/g) and MeHg (water-saving 1.3 {+-} 0.56 ng/g; flooded: 12 {+-} 2.4 ng/g) were positively correlated with root-soil Hg{sub T} and MeHg contents (Hg{sub T}: r{sup 2} = 0.97, MeHg: r{sup 2} = 0.87, p < 0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of Hg{sub T} and other trace elements were significantly higher in unmilled brown rice (p < 0.05), while MeHg content was similar (p > 0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II). - Highlights: > First time that Hg{sub T} and MeHg were characterized in both brown and white rice. > MeHg translocation into the endosperm was more efficient than inorganic Hg(II). > In this respect, MeHg behaved like dimethylarsinic acid and organic Se species. > In white rice, Hg{sub T} and MeHg were positively correlated with soil Hg{sub T} and MeHg. > Uptake rates of Hg{sub T} and MeHg were independent of irrigation methods and Hg content. - Methylmercury was more efficiently translocated to the endosperm than inorganic mercury.

  17. Solubility of uranovanadates of the series A2+(VUO6)2 · nH2O (A2+ = Mg, Ca, Sr, Ba, Co, Ni, Cu, Pb) in water or aqueous solutions

    International Nuclear Information System (INIS)

    Chernorukov, N.G.; Sulejmanov, E.V.; Nipruk, O.V.; Lizunova, G.M.

    2001-01-01

    Solubility of uranovanadates of the series A 2+ (VUO 6 ) 2 · nH 2 O (A 2+ - Mg, Ca, Sr, Ba, Co, Ni, Cu, Pb) in water and aqueous solutions of inorganic acids at 25 deg C and different pH values was determined experimentally. The data obtained permitted calculation the Gibbs standard functions of formation and consideration of their state under conditions that were not studied experimentally, in the presence of carbon dioxide, in particular [ru

  18. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers.

    Science.gov (United States)

    Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder

    2007-01-01

    Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.

  19. Water Soluble Polymers for Pharmaceutical Applications

    OpenAIRE

    Veeran Gowda Kadajji; Guru V. Betageri

    2011-01-01

    Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1) synthetic and (2) natural. Drug polymer conjugates, block copolymers, hydrogel...

  20. Femtosecond study of laser dyes soluble in water: coumarins

    International Nuclear Information System (INIS)

    Cassara, Laurence

    1996-01-01

    Coumarins build up one of the great families of laser dyes, and this research thesis addresses the study of four water-soluble coumarins (ATC, DMATC, DATC, and CHOS) which are analogue to conventional coumarins (C120, C311, C1, and C102). These molecules are made water-soluble by substitution of the methyl group in position 4 by a polyether group. Mechanisms of deactivation are studied by means of time-resolved fluorescence and transient adsorption methods which allow the reaction dynamics of coumarins after light excitation to be studied. Several time scales, from femto- to nano-second, have been reached and allowed various processes to be studied: relaxation, solvation dynamics, solute orientation diffusion, process of deactivation of radiative and non-radiative relaxation in various solvents [fr

  1. Solubility and thermodynamic behavior of vanillin in propane-1,2-diol+water cosolvent mixtures at different temperatures.

    Science.gov (United States)

    Shakeel, Faiyaz; Haq, Nazrul; Siddiqui, Nasir A; Alanazi, Fars K; Alsarra, Ibrahim A

    2015-12-01

    The solubilities of bioactive compound vanillin were measured in various propane-1,2-diol+water cosolvent mixtures at T=(298-318)K and p=0.1 MPa. The experimental solubility of crystalline vanillin was determined and correlated with calculated solubility. The results showed good correlation of experimental solubilities of crystalline vanillin with calculated ones. The mole fraction solubility of crystalline vanillin was recorded highest in pure propane-1,2-diol (7.06×10(-2) at 298 K) and lowest in pure water (1.25×10(-3) at 298 K) over the entire temperature range investigated. Thermodynamic behavior of vanillin in various propane-1,2-diol+water cosolvent mixtures was evaluated by Van't Hoff and Krug analysis. The results showed an endothermic, spontaneous and an entropy-driven dissolution of crystalline vanillin in all propane-1,2-diol+water cosolvent mixtures. Based on solubility data of this work, vanillin has been considered as soluble in water and freely soluble in propane-1,2-diol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Synthesis and Characterization of Water-soluble Conjugates of Cabazitaxel Hemiesters-Dextran.

    Science.gov (United States)

    Parhizkar, Elahehnaz; Ahmadi, Fatemeh; Daneshamouz, Saeid; Mohammadi-Samani, Soliman; Sakhteman, Amirhossein; Parhizkar, Golnaz

    2017-11-24

    Cabazitaxel (CTX) is a second- generation taxane derivative, a class of potent anticancer drugs with very low water solubility. CTX is used in patients with resistant prostate cancer unresponsive to the first generation taxane, docetaxel. Currently marketed formulations of CTX contain high concentrations of surfactant and ethanol, which cause severe hypersensitivity reactions in patients. In order to increase its solubility, two hemiester analogs; CTX-succinate and CTX-glutarate were synthesized and characterized. To improve the solubility of hemiesters even more, dextran as a biocompatible polymer was also conjugated to hemiester analogs. MTT assay was performed on MCF-7 cell line to evaluate the cytotoxicity effect of hemiesters and conjugates. Based on the results, hemiester analogs increased water solubility of the drug up to about 3 and 8 fold. Conjugation to dextran enhanced the CTX solubility to more than 1500 fold. These conjugates released the conjugated CTX in less than 24 hours in a pH dependent manner and showed proper hemocompatibility characteristics. The hemiesters had approximately similar cytotoxicity in comparison with CTX and the dextran conjugates showed higher cytotoxicity effect on MCF-7 cell line. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Characteristics and Source Analysis of Water-Soluble Inorganic Ions in PM10 in a Typical Mining City, Central China

    Directory of Open Access Journals (Sweden)

    Hongxia Liu

    2017-04-01

    Full Text Available A total of 61 PM10 samples in Huangshi (HS, Central China, were collected every sixth day from April 2012 to March 2013 and were analyzed for water-soluble inorganic ions (WSIIs by ion chromatography. The sum of three major ions (SO42−, NO3−, and NH4+ accounted for 75.8% of the total WSIIs on average. The results of a non-parametric test (Kruskal-Wallis show that, except for Na+ (p > 0.05, the other ions present a distinctly seasonal variation with a statistically significant difference (p < 0.05. The minimum concentrations of all ions were found in summer, while the maximum values presented in autumn (for Ca2+ and winter (for Cl−, NO3−, SO42−, K+, NH4+, Mg2+. Based on the highest ratio of Cl−/Na+ (3.02 and the highest concentration of K (4.37 μg·m−3, Ba (0.37 μg·m−3, and Sr (0.07 μg·m−3 in February 2013, it can be concluded that firework powders have aggravated the haze weather during the Spring Festival of 2013. The micro-equivalent concentrations of cations and anions were calculated and the comparisons between the calculated and measured NH4+ concentrations were conducted. The results illustrate that aerosol particles in HS are acidic and there may exist some other cationic ions not detected in this study. An obvious positive correlation and good linear regression among WSIIs suggest that the chemical forms in HS aerosols show a great variety of combinations, such as NH4NO3, NH4HSO4, (NH42SO4, NH4Cl, KCl, KNO3, NaCl, NaNO3, Ca(NO32, CaSO4, MgCl2, Mg(NO32, and MgSO4. The WSIIs have large positive correlation and linear regression with the elements, suggesting that WSIIs in mining cities are strongly influenced by element constituents. Principal component analysis implies that WSIIs in PM10 are probably from three sources. NH4+, Mg2+, NO3−, K and K+, Cl− and Cl, SO42−, and S accounted for 46.9% of the total variances, suggesting likely anthropogenic sources, especially coal combustion, vehicular exhaust, and

  4. Separation and determination of arsenic species in water by selective exchange and hybrid resins

    Energy Technology Data Exchange (ETDEWEB)

    Issa, Nureddin Ben [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade (Serbia); Rajakovic-Ognjanovic, Vladana N. [Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, Belgrade (Serbia); Marinkovic, Aleksandar D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade (Serbia); Rajakovic, Ljubinka V., E-mail: ljubinka@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade (Serbia)

    2011-11-07

    Highlights: {yields} A simple and efficient method for separation and determination of arsenic species. {yields} A new hybrid resin HY-AgCl is effective for iAs and oAs analytical separation. {yields} SBAE resin was convenient for the separation of As(III) from As(V) and oAs species. {yields} HY-Fe resin was convenient for the separation of DMAs(V). - Abstract: A simple and efficient method for separation and determination of inorganic arsenic (iAs) and organic arsenic (oAs) in drinking, natural and wastewater was developed. If arsenic is present in water prevailing forms are inorganic acids of As(III) and As(V). oAs can be found in traces as monomethylarsenic acid, MMA(V), and dimethylarsenic acid, DMAs(V). Three types of resins: a strong base anion exchange (SBAE) and two hybrid (HY) resins: HY-Fe and HY-AgCl, based on the activity of hydrated iron oxides and a silver chloride were investigated. It was found that the sorption processes (ion exchange, adsorption and chemisorptions) of arsenic species on SBAE (ion exchange) and HY resins depend on pH values of water. The quantitative separation of molecular and ionic forms of iAs and oAs was achieved by SBAE and pH adjustment, the molecular form of As(III) that exists in the water at pH <8.0 was not bonded with SBAE, which was convenient for direct determination of As(III) concentration in the effluent. HY-Fe resin retained all arsenic species except DMAs(V), which makes possible direct measurements of this specie in the effluent. HY-AgCl resin retained all iAs which was convenient for direct determination of oAs species concentration in the effluent. The selective bonding of arsenic species on three types of resins makes possible the development of the procedure for measuring and calculation of all arsenic species in water. In order to determine capacity of resins the preliminary investigations were performed in batch system and fixed bed flow system. Resin capacities were calculated according to breakthrough

  5. Lipid-based formulations for oral administration of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-01-01

    Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving....../dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect...

  6. Growth limitation of three Arctic sea-ice algae species: effects of salinitty, pH and inorganic carbon availability

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Hansen, Per Juel; Rysgaard, Søren

    2011-01-01

    The effect of salinity, pH, and dissolved inorganic carbon (TCO(2)) on growth and survival of three Arctic sea ice algal species, two diatoms (Fragilariopsis nana and Fragilariopsis sp.), and one species of chlorophyte (Chlamydomonas sp.) was assessed in controlled laboratory experiments. Our res...

  7. Laboratory Studies of Water Uptake by Biomass Burning Smoke: Role of Fuel Inorganic Content, Combustion Phase and Aging

    Science.gov (United States)

    Dubey, M. K.; Bixler, S. L.; Romonosky, D.; Lam, J.; Carrico, C.; Aiken, A. C.

    2017-12-01

    Biomass burning aerosol emissions have substantially increased with observed warming and drying in the southwestern US. While wildfires are projected to intensify missing knowledge on the aerosols hampers assessments. Observations demonstrate that enhanced light absorption by coated black carbon and brown carbon can offset the cooling effects of organic aerosols in wildfires. However, if mixing processes that enhance this absorption reduce the aerosol lifetime it would lower their atmospheric burden. In order to elucidate mechanisms regulating this tradeoff we performed laboratory studies of smoke from biomass burning. We focus on aerosol optical properties and their hygroscopic response. Fresh emissions from burning 30 fuels under flaming and smoldering conditions were investigated. We measured aerosol absorption, scattering and extinction at multiple wavelengths, water uptake at 85% relative humidity (fRH85%) with a humidity controlled dual nephelometer, and black carbon mass with a SP2. Trace gases and the ionic content of the fuel and smoke were also measured We find that whereas the optical properties of smoke were strongly dictated by the flaming versus smoldering nature of the burn, the observed hygroscopicity was intimately linked to the chemical composition of the fuel. The mean hygroscopicity ranged from nearly hydrophobic (fRH85% = 1) to very hydrophilic (fRH85% = 2.1) values typical of pure deliquescent salts. The k values varied from 0.004 to 0.18 and correlated well with inorganic content. Inorganic fuel content was the key driver of hygroscopicity with combustion phase playing a secondary but important role ( 20%). Flaming combustion promoted hygroscopicity by generating refractory black carbon and ions. Smoldering combustion suppressed hygroscopicity by producing hydrogenated organic species. Wildfire smoke was hydrophobic since the evergreen species with low inorganic content dominated in these fires. We also quantify the mass absorption cross

  8. One-step synthesis and antibacterial property of water-soluble silver nanoparticles by CGJ bio-template

    International Nuclear Information System (INIS)

    Zhu Zichun; Wu Qingsheng; Chen Ping; Yang Xiaohong

    2011-01-01

    In this article, a new synthetic method of nanoparticles with fresh Chinese gooseberry juice (CGJ) as bio-template was developed. One-step synthesis of highly water-soluble silver nanoparticles at room temperature without using any harmful reducing agents and special capping agent was fulfilled with this method. In the process, the products were obtained by adding AgNO 3 to CGJ, which was used as reducing agent, capping agent, and the bio-template. The products of silver nanoparticles with diameter of 10–30 nm have strong water solubility and excellent antibiotic function. With the same concentration 0.047 μg mL −1 , the antibacterial effect of water-soluble silver particles by fresh CGJ was 53%, whereas only 27% for silver nanoparticles synthesized using the template method of fresh onion inner squama coat (OISC). The excellent water solubility of the products would enable them have better applications in the bio-medical field. The synthetic method would also have potential application in preparing other highly water-soluble particles, because of its simple apparatus, high yield, mild conditions, and facile operation.

  9. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  10. Temperature and sodium chloride effects on the solubility of anthracene in water

    Energy Technology Data Exchange (ETDEWEB)

    Arias-Gonzalez, Israel [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Reza, Joel, E-mail: jreza@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico)

    2010-11-15

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg{sup -1} = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10{sup -8} to 143 . 10{sup -8}) mol . kg{sup -1}. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol{sup -1}. The standard molar Gibbs free energies, {Delta}{sub tr}G{sup o}, enthalpies, {Delta}{sub tr}H{sup o}, and entropies, {Delta}{sub tr}S{sup o}, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated {Delta}{sub tr}G{sup o} values were positive [(20 to 1230) J . mol{sup -1}]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  11. Magnetite solubility studies under simulated PWR primary-side conditions, using lithiated, hydrogenated water

    International Nuclear Information System (INIS)

    Hewett, John; Morrison, Jonathan; Cooper, Christopher; Ponton, Clive; Connolly, Brian; Dickinson, Shirley; Henshaw, Jim

    2014-01-01

    As software for modelling dissolution, precipitation, and transport of metallic species and subsequent CRUD deposition within nuclear plant becomes more advanced, there is an increasing need for accurate and reliable thermodynamic data. The solubility behaviour of magnetite is an example of such data, and is central to any treatment of CRUD solubility due to the prevalence of magnetite and nickel ferrites in CRUD. Several workers have shown the most consistent solubility data comes from once-through flowing systems. However, despite a strong consensus between the results in acidic to mildly alkaline solutions, there is disagreement between the results at approximately pH 25C 9 and higher. A programme of experimental work is on-going at the University of Birmingham, focusing on solubility of metal oxides (e.g., magnetite) in conditions relevant to PWR primary coolant. One objective of this programme is to calculate thermodynamic constants from the data obtained. Magnetite solubility from 200 to 300°C, in lithiated, hydrogenated water of pH 25C 9–11 is being studied using a once-through rig constructed of 316L stainless steel. The feedwater is pumped at 100 bar pressure through a heated bed of magnetite granules, and the output solution is collected and analysed for iron and several other metals by ICP-MS. This paper presents results from preliminary tests without magnetite granules, in which the corroding surface of the rig itself was used as the sole source of soluble iron and of dissolved hydrogen. Levels of iron were generally within an order of magnitude of literature solubility values. Comparison of results at different flow rates and temperatures, in conjunction with conclusions drawn from the published literature, suggests that this is likely due to the presence of particulate matter in a greatly under-saturated solution, compensating for the low surface area of oxide in contact with the solution. (author)

  12. Effects in the solubility of CaCO3: experimental study and model description.

    OpenAIRE

    Coto, Baudilio; Martos, M. Carmen; Peña, José L.; Rodríguez, Rosalía; Pastor, Gabriel

    2012-01-01

    Combustibles fósiles Crude oil is usually co-produced with reservoir water, with increasing content in the production fluid along field life. Changes in temperature, pressure, and/or chemical composition may cause significant precipitation of inorganic salts (¿scales¿) during production. Therefore, the knowledge of the influence that different variables may have on salt solubility is critical to anticipate or identify potential flow assurance problems related to scales. The pre...

  13. Teratogenicity and metabolism of water-soluble forms of vitamin A in the pregnant rat

    International Nuclear Information System (INIS)

    Gunning, D.B.; Barua, A.B.; Olson, J.A.

    1990-01-01

    Retinoyl β-glucuronide, unlike retinoic acid, has been shown to be non-teratogenic when administered orally, even in large doses, to pregnant rats. The degree to which water-solubility is associated with low teratogenicity is not known. Other water-soluble forms of vitamin A have now been synthesized in our laboratory and are being evaluated for teratogenicity. New water-soluble forms of vitamin A were administered orally to pregnant Sprague-Dawley rats in a single dose of 0.35 mmole/kg bw on day 8 of gestation. On day 19, the dams were sacrificed and the litters were examined. Control animals received either vehicle only or an equivalent dose of all-trans retinoic acid. Maternal and fetal tissues were taken and analyzed by HPLC for vitamin A metabolites. In another experiment, a large single oral dose of the radiolabelled water-soluble compound was administered on day 10. At either 30 minutes or 1 hour after the dose, dams were sacrificed and the embryos analyzed both for radioactivity and for specific metabolites. In contrast to retinoyl β-glucuronide, retinoyl β-glucose is highly teratogenic under identical conditions. Thus, water-solubility does not seem to be the determining factor in the teratogenicity of retinoic acid conjugates

  14. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials - BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) - we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL -1 and 10 µg·mL -1 , respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1 , SOD2 , SOD3 , MEK1 , and PMK1 , might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL -1 , BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.

  15. Short Communication Relationships between the water solubility of ...

    African Journals Online (AJOL)

    132. Short Communication. Relationships between the water solubility of roughage dry matter and certain chemical characteristics. J.W. Cilliers- and H.J. Cilliers. North West Agricultural Development lnstitute, Private. Bag X804, Potchefstroom, 2520 Republic of South Africa. Received 17 May 1995; accepted 8 August 1995.

  16. Water-Soluble Dinitrosyl Iron Complex (DNIC): a Nitric Oxide Vehicle Triggering Cancer Cell Death via Apoptosis.

    Science.gov (United States)

    Wu, Shou-Cheng; Lu, Chung-Yen; Chen, Yi-Lin; Lo, Feng-Chun; Wang, Ting-Yin; Chen, Yu-Jen; Yuan, Shyng-Shiou; Liaw, Wen-Feng; Wang, Yun-Ming

    2016-09-19

    Nitric oxide (NO) is an important cellular signaling molecule that modulates various physiological activities. Angiogenesis-promoting activities of NO-donor drugs have been explored in both experimental and clinical studies. In this study, a structurally well characterized and water-soluble neutral {Fe(NO)2}(9) DNIC [(S(CH2)2OH)(S(CH2)2NH3)Fe(NO)2] (DNIC 2) was synthesized to serve as a NO-donor species. The antitumor activity of DNIC 2 was determined by MTT assay, confocal imaging, and Annexin-V/PI staining. The IC50 values of DNIC 2 were 18.8, 42.9, and 38.6 μM for PC-3, SKBR-3, and CRL5866 tumor cells, respectively. Moreover, DNIC 2 promoted apoptotic cell death via activation of apoptosis-associated proteins and inhibition of survival associated proteins. In particular, DNIC 2 treatment suppressed PC-3 tumor growth by 2.34- and 19.3-fold at 7 and 21 days, in comparison with the control group. These results indicate that water-soluble DNIC 2 may serve as a promising drug for cancer therapy.

  17. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  18. [Development and application of a multi-species water quality model for water distribution systems with EPANET-MSX].

    Science.gov (United States)

    Sun, Fu; Chen, Ji-ning; Zeng, Si-yu

    2008-12-01

    A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall. The fifteen simulated variables included the seven common variables both in the biofilm and in the bulk liquid, i.e. soluble organic matter, particular organic matter, ammonia nitrogen, residual chlorine, heterotrophic bacteria, autotrophic bacteria and inert solids, as well as biofilm thickness on the pipe wall. The model was validated against the data from a series of pilot experiments, and the simulation accuracy for residual chlorine and turbidity were 0.1 mg/L and 0.3 NTU respectively. A case study showed that the model could reasonably reflect the dynamic variation of residual chlorine and turbidity in the studied water distribution system, while Monte Carlo simulation, taking into account both the variability of finished water from the waterworks and the uncertainties of model parameters, could be performed to assess the violation risk of water quality in the water distribution system.

  19. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

    Science.gov (United States)

    Lukyanov, Anatoly N; Torchilin, Vladimir P

    2004-05-07

    Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

  20. Water-soluble, triflate-based, pyrrolidinium ionic liquids

    International Nuclear Information System (INIS)

    Moreno, M.; Montanino, M.; Carewska, M.; Appetecchi, G.B.; Jeremias, S.; Passerini, S.

    2013-01-01

    Highlights: • Water-soluble, pyrrolidinium triflate ILs as solvents for extraction processes. • Electrolyte components for high safety, electrochemical devices. • Effect of the oxygen atom in the alkyl main side chain of pyrrolidinium cation. -- Abstract: The physicochemical and electrochemical properties of the water-soluble, N-methoxyethyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 1(2O1) OSO 2 CF 3 ) ionic liquid (IL) were investigated and compared with those of commercial N-butyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 14 OSO 2 CF 3 ). The results have shown that the transport properties are well correlated with the rheological and thermal behavior. The incorporation of an oxygen atom in the pyrrolidinium cation aliphatic side chain resulted in enhanced flexibility of the ether side chain, this supporting for the higher ionic conductivity, self-diffusion coefficient and density of PYR 1(2O1) OSO 2 CF 3 with respect to PYR 14 OSO 2 CF 3 , whereas no relevant effect on the crystallization of the ionic liquid was found. Finally, the presence of the ether side chain material in the pyrrolidinium cation led to a reduction in electrochemical stability, particularly on the cathodic verse

  1. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water.

    Science.gov (United States)

    Baglieri, Andrea; Sidella, Sarah; Barone, Valeria; Fragalà, Ferdinando; Silkina, Alla; Nègre, Michèle; Gennari, Mara

    2016-09-01

    This work evaluates the possibility of cultivating Scenedesmus quadricauda and Chlorella vulgaris microalgae in wastewater from the hydroponic cultivation of tomatoes with the aim of purifying the water. S. quadricauda and C. vulgaris were also used in purification tests carried out on water contaminated by the following active ingredients: metalaxyl, pyrimethanil, fenhexamid, iprodione, and triclopyr. Fifty-six days after the inoculum was placed, a reduction was found in the concentration of nitric nitrogen, ammonia nitrogen, and soluble and total phosphorus. The decrease was 99, 83, 94, and 94 %, respectively, for C. vulgaris and 99, 5, 88, and 89 %, respectively, for S. quadricauda. When the microalgae were present, all the agrochemicals tested were removed more quickly from the water than from the sterile control (BG11). The increase in the rate of degradation was in the order metalaxyl > fenhexamid > iprodione > triclopyr > pyrimethanil. It was demonstrated that there was a real degradation of fenhexamid, metalaxyl, triclopyr, and iprodione, while in the case of pyrimethanil, the active ingredient removed from the substrate was absorbed onto the cells of the microalgae. It was also found that the agrochemicals used in the tests had no significant effect on the growth of the two microalgae. The experiment highlighted the possibility of using cultivations of C. vulgaris and S. quadricauda as purification systems for agricultural wastewater which contains eutrophic inorganic compounds such as nitrates and phosphates and also different types of pesticides.

  2. Development of a simple, sensitive and inexpensive ion-pairing cloud point extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV-Vis spectrophotometry.

    Science.gov (United States)

    Gürkan, Ramazan; Kır, Ufuk; Altunay, Nail

    2015-08-01

    The determination of inorganic arsenic species in water, beverages and foods become crucial in recent years, because arsenic species are considered carcinogenic and found at high concentrations in the samples. This communication describes a new cloud-point extraction (CPE) method for the determination of low quantity of arsenic species in the samples, purchased from the local market by UV-Visible Spectrophotometer (UV-Vis). The method is based on selective ternary complex of As(V) with acridine orange (AOH(+)) being a versatile fluorescence cationic dye in presence of tartaric acid and polyethylene glycol tert-octylphenyl ether (Triton X-114) at pH 5.0. Under the optimized conditions, a preconcentration factor of 65 and detection limit (3S blank/m) of 1.14 μg L(-1) was obtained from the calibration curve constructed in the range of 4-450 μg L(-1) with a correlation coefficient of 0.9932 for As(V). The method is validated by the analysis of certified reference materials (CRMs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Urinary excretion levels of water-soluble vitamins in pregnant and lactating women in Japan.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu; Sasaki, Satoshi; Sano, Mitsue; Suzuki, Kahoru; Hiratsuka, Chiaki; Aoki, Asami; Nagai, Chiharu

    2013-01-01

    Recent studies have shown that the urinary excretion levels of water-soluble vitamins can be used as biomarkers for the nutritional status of these vitamins. To determine changes in the urinary excretion levels of water-soluble vitamins during pregnant and lactating stages, we surveyed and compared levels of nine water-soluble vitamins in control (non-pregnant and non-lactating women), pregnant and lactating women. Control women (n=37), women in the 2nd (16-27 wk, n=24) and 3rd trimester of pregnancy (over 28 wk, n=32), and early- (0-5 mo, n=54) and late-stage lactating (6-11 mo, n=49) women took part in the survey. The mean age of subjects was ~30 y, and mean height was ~160 cm. A single 24-h urine sample was collected 1 d after the completion of a validated, self-administered comprehensive diet history questionnaire to measure water-soluble vitamins or metabolites. The average intake of each water-soluble vitamin was ≍ the estimated average requirement value and adequate intake for the Japanese Dietary Reference Intakes in all life stages, except for vitamin B6 and folate intakes during pregnancy. No change was observed in the urinary excretion levels of vitamin B2, vitamin B6, vitamin B12, biotin or vitamin C among stages. Urine nicotinamide and folate levels were higher in pregnant women than in control women. Urine excretion level of vitamin B1 decreased during lactation and that of pantothenic acid decreased during pregnancy and lactation. These results provide valuable information for setting the Dietary Reference Intakes of water-soluble vitamins for pregnant and lactating women.

  4. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shan, E-mail: ls_tuzi@163.com; Wang, Mei, E-mail: wmei02@163.com; Zhong, Yizhou, E-mail: yizhz@21cn.com; Zhang, Zehua, E-mail: kazuki.0101@aliyun.com; Yang, Bingyi, E-mail: e_yby@163.com

    2015-09-01

    A new cloud point extraction technique was established and used for the determination of trace inorganic arsenic species in water samples combined with hydride generation atomic fluorescence spectrometry (HGAFS). As(III) and As(V) were complexed with ammonium pyrrolidinedithiocarbamate and molybdate, respectively. The complexes were quantitatively extracted with the non-ionic surfactant (Triton X-114) by centrifugation. After addition of antifoam, the surfactant-rich phase containing As(III) was diluted with 5% HCl for HGAFS determination. For As(V) determination, 50% HCl was added to the surfactant-rich phase, and the mixture was placed in an ultrasonic bath at 70 °C for 30 min. As(V) was reduced to As(III) with thiourea–ascorbic acid solution, followed by HGAFS. Under the optimum conditions, limits of detection of 0.009 and 0.012 μg/L were obtained for As(III) and As(V), respectively. Concentration factors of 9.3 and 7.9, respectively, were obtained for a 50 mL sample. The precisions were 2.1% for As(III) and 2.3% for As(V). The proposed method was successfully used for the determination of trace As(III) and As(V) in water samples, with satisfactory recoveries. - Highlights: • Cloud point extraction was firstly established to determine trace inorganic arsenic(As) species combining with HGAFS. • Separate As(III) and As(V) determinations improve the accuracy. • Ultrasonic release of complexed As(V) enables complete As(V) reduction to As(III). • Direct HGAFS analysis can be performed.

  5. Solubilities of Actinide Oxides in the KURT Groundwater

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Baik, Min Hoon; Choi, Jong Won

    2009-12-01

    For the estimation of solubilities of actinides in a deep underground condition, The solubilities of UO 2 , ThO 2 , NpO 2 and Am(OH) 3 in the KURT ground water have been measured under various redox conditions, and their solubilities and aqueous species in the same conditions as the experimental solutions were also calculated by using a geochemical code. Then these results were compared with each other as well as with literature results. For the calculation of solubility of a radionuclide, the thermodynamic data of the radionuclide complex from OECD/NEA, Nagra/PSI, KAERI, JAEA, SKB and recent literatures were collected and compared. Additionally, the methods for the correction of ionic strength and temperature of the solution were described in this report. The analysis techniques and recent research for measurement of species of actinides were also introduced. The concentrations of U, Th and Np dissolved were less than 10 -7 mol/L under Eh≤-0.2 of reducing condition from experiment and calculation, and the solubility of PuO 2 (cr) was estimated as lower than that of UO 2 (cr) by 1 ∼ 2 orders. However if amount of carbonate ion in the ground water increased, the concentration of tetra-valance actinides at pH 8 ∼ 11 would be greatly increased. The 1x10 -6 mol/L of americium might be a little conservative value in KURT groundwater. While carbonate or hydroxo-carbonatec complexes were presumed to be the dominant aqueous species in -0.2 ∼ -0.3 V of Eh and weakly alkaline solution, hydroxo complexes are dominant in strong reducing and high pH solution

  6. Bioremediation prospects of fungi isolated from water soluble ...

    African Journals Online (AJOL)

    The fungi associated with water soluble fraction (WSF) of crude oil from two different locations were investigated. The samples were collected from Ezibin oil well (Sample A), Okwagbe village in Ughelli South Local Government Area of Delta State and from NPDC laboratory (Sample B) in Benin City, Oredo Local ...

  7. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  8. Novel micellar systems for the formulation of poorly water soluble drugs : biocompatibility aspects and pharmaceutical applications

    OpenAIRE

    Dumontet Mondon, Karine

    2010-01-01

    Amongst the large number of novel drugs, 95% are lipophilic and poorly water soluble. Particularly, this renders their aqueous formulation very difficult. In this regard this thesis focused on polymeric micelles based on novel MPEG-hexPLA copolymers forming a hydrophilic shell and a very hydrophobic core that favors the incorporation of poorly water soluble drugs. Although the drug hydrophobicity and water solubility are the main parameters in respect to their incorporation efficiency, struct...

  9. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    Science.gov (United States)

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  10. Universal water-dilutable inhibited protective lubricants

    International Nuclear Information System (INIS)

    Mamtseva, M.V.; Kardash, N.V.; Latynina, M.B.

    1993-01-01

    In the interest of environmental protection, improvement of working conditions, and reduced fire hazard in production operations, water-based protective lubricants are now available in a wide assortment, and the production volume has increased greatly. The term water-dilutable inhibited protective lubricants (WDIPL) means water-soluble, water-emulsifiable, or water-dispersible products with the dual function of reducing friction and wear and protecting metal surfaces against corrosion for specified periods of time. According to the standard Unified System of Protection Against Corrosion and Aging (COST 9.103-78), WDIPLs are classed as products for the temporary corrosion protection of metals and end-items. In the general class of WDIPLs one can identify water-dilutable combination corrosion inhibitors, film-forming inhibited petroleum compositions (FIPC-d), detergent-preservative fluids, operational-preservative lubricating-cooling process compounds (ICPC), and, finally, universal multifunctional products. Combined corrosion inhibitors may consist of water-soluble organic and inorganic compounds; water/oil and oil-soluble surfactants - corrosion inhibitors of the chemisorption type or donor and/or acceptor types; shielding inhibitors of the adsorption type; and fast-acting water-displacing components. 23 refs

  11. Method of cross-linking polyvinyl alcohol and other water soluble resins

    Science.gov (United States)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  12. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species

    Science.gov (United States)

    Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A.; Croteau, Philip; Canagaratna, Manjula R.; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose L.

    2017-08-01

    Aerosol mass spectrometers (AMSs) and Aerosol Chemical Speciation Monitors (ACSMs) commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV) that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE) to correct for the loss of particles due to bounce. A new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in the laboratory. Four standard species, NH4NO3, NaNO3, (NH4)2SO4 and NH4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature (Tv ˜ 200-800 °C) on the detected fragments, CE and size distributions are investigated. A Tv of 500-550 °C for the CV is recommended. In the CV, CE was identical (around unity) for more volatile species (e.g. NH4NO3) and comparable to or higher than the SV for less-volatile species (e.g. (NH4)2SO4), demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO3 and SO4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO2(g) from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH4NO3 and comparable to the SV for NaNO3. . We observe an extremely consistent fragmentation for ammonium compared to very large changes for the

  13. Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic

    International Nuclear Information System (INIS)

    Buat-Menard, Patrick; Morelli, Jacques; Chesselet, Roger

    1974-01-01

    Samples of water-soluble atmospheric particulate matter collected from R/V ''Jean Charcot'' (May to October 1971) and R/V ''James Gilliss'' (October 1972) over Tropical and Equatorial Atlantic were analyzed for Na, Mg, K and Ca by atomic absorption and for Cl and S as SO 4 by colorimetry. Data shows a strong geographical dependence of K and Ca enrichment relative to their elemental ratio to Na in sea-water. Ca enrichment is related to presence of identified soluble calcium minerals in continental dust originating from African deserts (Sahara-Kalahari). This dust does not influence amounts of K in the water-soluble phase. When observed, strong K enrichment appears tightly associated with high concentrations of surface-active organic material in the microlayer derived from high biological activity (Gulf of Guinea). Observed in same samples, SO 4 enrichment could also be controlled by the same source. This SO 4 enrichment balances the observed Cl loss in aerosols accordingly with gaseous HCl formation processes in marine atmosphere [fr

  14. Chemical Composition of Water Soluble Inorganic Species in Precipitation at Shihwa Basin, Korea

    Directory of Open Access Journals (Sweden)

    Seung-Myung Park

    2015-05-01

    Full Text Available Weekly rain samples were collected in coastal areas of the Shihwa Basin (Korea from June 2000 to November 2007. The study region includes industrial, rural, and agricultural areas. Wet precipitation was analyzed for conductivity, pH, Cl−, NO3−, SO42−, Na+, K+, Mg2+, NH4+, and Ca2+. The major components of precipitation in the Shihwa Basin were NH4+, volume-weighted mean (VWM of 44.6 µeq∙L−1, representing 43% of all cations, and SO42−, with the highest concentration among the anions (55% at all stations. The pH ranged from 3.4 to 7.7 with a VMM of 4.84. H+ was weakly but positively correlated with SO42− (r = 0.39, p < 0.001 and NO3− (r = 0.38, p < 0.001. About 66% of the acidity was neutralized by NH4+ and Ca2+. The Cl−/Na+ ratio of the precipitation was 37% higher than seawater Cl−/Na+. The high SO42−/NO3− ratio of 2.3 is attributed to the influence of the surrounding industrial sources. Results from positive matrix factorization showed that the precipitation chemistry in Shihwa Basin was influenced by secondary nitrate and sulfate (41% ± 1.1%, followed by sea salt and Asian dust, contributing 23% ± 3.9% and 17% ± 0.2%, respectively. In this study, the annual trends of SO42− and NO3− (p < 0.05 increased, different from the trends in some locations, due to the influence of the expanding power generating facilities located in the upwind area. The increasing trends of SO42− and NO3− in the study region have important implications for reducing air pollution in accordance with national energy policy.

  15. Welcome to Inorganics: A New Open Access, Inclusive Forum for Inorganic Chemistry

    Directory of Open Access Journals (Sweden)

    Duncan H. Gregory

    2013-06-01

    Full Text Available One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a demanding one, accommodating sub-disciplines with very different perspectives and frames of reference. One could argue that it is the unequivocal breadth of inorganic chemistry that empowers inorganic chemists to work at the interfaces, not just between the traditional Inorganic-Organic-Physical boundaries of the discipline, but in the regions where chemistry borders the other physical and life sciences, engineering and socio-economics. [...

  16. Blood pressure hyperreactivity: an early cardiovascular risk in normotensive men exposed to low-to-moderate inorganic arsenic in drinking water.

    Science.gov (United States)

    Kunrath, Julie; Gurzau, Eugen; Gurzau, Anca; Goessler, Walter; Gelmann, Elyssa R; Thach, Thu-Trang; McCarty, Kathleen M; Yeckel, Catherine W

    2013-02-01

    Essential hypertension is associated with chronic exposure to high levels of inorganic arsenic in drinking water. However, early signs of risk for developing hypertension remain unclear in people exposed to chronic low-to-moderate inorganic arsenic. We evaluated cardiovascular stress reactivity and recovery in healthy, normotensive, middle-aged men living in an arsenic-endemic region of Romania. Unexposed (n = 16) and exposed (n = 19) participants were sampled from communities based on WHO limits for inorganic arsenic in drinking water (Water sources and urine samples were collected and analyzed for inorganic arsenic and its metabolites. Functional evaluation of blood pressure included clinical, anticipatory, cold pressor test, and recovery measurements. Blood pressure hyperreactivity was defined as a combined stress-induced change in SBP (> 20 mmHg) and DBP (>15 mmHg). Drinking water inorganic arsenic averaged 40.2 ± 30.4 and 1.0 ± 0.2 μg/l for the exposed and unexposed groups, respectively (P pressure hyperreactivity to both anticipatory stress (47.4 vs. 12.5%; P = 0.035) and cold stress (73.7 vs. 37.5%; P = 0.044). Moreover, the exposed group exhibited attenuated blood pressure recovery from stress and a greater probability of persistent hypertensive responses (47.4 vs. 12.5%; P = 0.035). Inorganic arsenic exposure increased stress-induced blood pressure hyperreactivity and poor blood pressure recovery, including persistent hypertensive responses in otherwise healthy, clinically normotensive men. Drinking water containing even low-to-moderate inorganic arsenic may act as a sympathetic nervous system trigger for hypertension risk.

  17. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. SOLUBILITY AND BIOAVAILABILITY ENHANCEMENT STRATEGIES FOR EFFECTIVE DELIVERY OF POORLY WATER SOLUBLE DRUGS BY NANO FORMULATIONS AND SOLID DISPERSIONS

    OpenAIRE

    Rayapolu Ranga Goud*, Gunnala Krishnaveni, Girija Prasad Patro

    2018-01-01

    For the ancient few years, there has been a substantial research done on diverse methodologies for poorly water soluble and lipophilic drugs. More in modern times voluminous molecules cannot be distributed due to low solubility. Now a day frequently, particulate vesicle systems such as nanoparticles, liposomes, microspheres, niosomes, pronisomes, ethosomes, and proliposomes have been used as drug carriers. Drug delivery designates the technique and methodology to conveying medications or drug...

  19. Synthesis and evaluation of water-soluble poly(vinyl alcohol)-paclitaxel conjugate as a macromolecular prodrug

    International Nuclear Information System (INIS)

    Kakinoki, Atsufumi; Kaneo, Yoshiharu; Tanaka, Tetsuro; Hosokawa, Yoshitsugu

    2008-01-01

    Paclitaxel (PTX) is an antitumor agent for the treatment of various human cancers. Cremophor EL and ethanol are used to formulate PTX in commercial injection solutions, because of its poor solubility in water. However, these agents cause severe allergic reaction upon intravenous administration. The aim of this study is to synthesize water-soluble macromolecular prodrugs of PTX for enhancing the therapeutic efficacy. Poly (vinyl alcohol) (PVA, 80 kDa), water-soluble synthetic polymer, was used as a drug carrier which is safe and stable in the body. The 2'-hydroxyl group of PTX was reacted with succinic anhydride and then carboxylic group of the succinyl spacer was coupled to PVA via ethylene diamine spacer, resulting the water-soluble prodrug of poly (vinyl alcohol)-paclitaxel conjugate (PVA-SPTX). The solubility of PTX was greatly enhanced by the conjugation to PVA. The release of PTX from the conjugate was accelerated at the neutral to basic conditions in in vitro release experiment. [ 125 I]-labeled PVA-SPTX was retained in the blood circulation for several days and was gradually distributed into the tumorous tissue after intravenous injection to the tumor-bearing mice. PVA-SPTX inhibited the growth of sarcoma 180 cells subcutaneously inoculated in mice. It was suggested that the water-solubility of PTX was markedly enhanced by the conjugation to PVA, and PVA-SPTX effectively delivered PTX to the tumorous tissue due to the enhanced permeability and retention (EPR) effect. (author)

  20. Quantitative analysis of soluble elements in environmental waters by PIXE

    International Nuclear Information System (INIS)

    Niizeki, T.; Kawasaki, K.; Adachi, M.; Tsuji, M.; Hattori, T.

    1999-01-01

    We have started PIXE research for environmental science at Van de Graaff accelerator facility in Tokyo Institute of Technology. Quantitative measurements of soluble fractions in river waters have been carried out using the preconcentrate method developed in Tohoku University. We reveal that this PIXE target preparation can be also applied to waste water samples. (author)

  1. Linear correlation of interfacial tension at water-solvent interface, solubility of water in organic solvents, and SE* scale parameters

    International Nuclear Information System (INIS)

    Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water

  2. Abalone water-soluble matrix for self-healing biomineralization of tooth defects.

    Science.gov (United States)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53wt% the abalone water-soluble protein (AWSPro) and 2.04wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effect of water soluble carrier on dissolution profiles of diclofenac sodium.

    Science.gov (United States)

    Cwiertnia, Barbara

    2013-01-01

    Pharmaceutical aviailability of diclofenac sodium from solid dispersions of PEG 6000 have been studied in comparison to those of the corresponding physical mixtures and pure diclofenac sodium. The diclofenac sodium is poorly water soluble drug. The properties of diclofenac sodium-PEG 6000 solid dispersions have been determined by the methods of differential scanning calorimetry (DSC), X-ray diffraction and scanning electron microscopy (SEM). The effect of PEG 6000 on the solubility of selected diclofenac sodium dispersions has been studied. The solubility of diclofenac sodium from its solid dispersion has been found to increase in the presence of PEG 6000.

  4. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  5. Relationship Between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males.

    Science.gov (United States)

    Shibata, Katsumi; Hirose, Junko; Fukuwatari, Tsutomu

    2014-01-01

    Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs) for Japanese was given for the second week, three times the DRIs for the third week, and six times the DRIs for the fourth week. Twenty-four-hour urine samples were collected each week. Urinary excretion levels for seven of the nine water-soluble vitamin levels, excluding vitamin B12 and folate, increased linearly and sharply in a dose-dependent manner. These results suggest that measuring urinary water-soluble vitamins can be good nutritional markers for assessing vitamin intakes in humans.

  6. Relationship between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males

    Directory of Open Access Journals (Sweden)

    Katsumi Shibata

    2014-01-01

    Full Text Available Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs for Japanese was given for the second week, three times the DRIs for the third week, and six times the DRIs for the fourth week. Twenty-four-hour urine samples were collected each week. Urinary excretion levels for seven of the nine water-soluble vitamin levels, excluding vitamin B 12 and folate, increased linearly and sharply in a dose-dependent manner. These results suggest that measuring urinary water-soluble vitamins can be good nutritional markers for assessing vitamin intakes in humans.

  7. Estimating Inorganic Arsenic Exposure from U.S. Rice and Total Water Intakes

    OpenAIRE

    Mantha, Madhavi; Yeary, Edward; Trent, John; Creed, Patricia A.; Kubachka, Kevin; Hanley, Traci; Shockey, Nohora; Heitkemper, Douglas; Caruso, Joseph; Xue, Jianping; Rice, Glenn; Wymer, Larry; Creed, John T.

    2017-01-01

    Background: Among nonoccupationally exposed U.S. residents, drinking water and diet are considered primary exposure pathways for inorganic arsenic (iAs). In drinking water, iAs is the primary form of arsenic (As), while dietary As speciation techniques are used to differentiate iAs from less toxic arsenicals in food matrices. Objectives: Our goal was to estimate the distribution of iAs exposure rates from drinking water intakes and rice consumption in the U.S. population and ethnic- and age-b...

  8. Carbonaceous components, levoglucosan and inorganic ions in tropical aerosols from Tanzania, East Africa: implication for biomass burning contribution to organic aerosols

    Science.gov (United States)

    Mkoma, S. L.; Kawamura, K.; Fu, P.

    2012-11-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania in 2011 during wet and dry seasons and they were analysed for carbonaceous components, levoglucosan and water-soluble inorganic ions. The mean mass concentrations of PM2.5 and PM10 were 28.2±6.4 μg m-3 and 47±8.2 μg m-3 in wet season, and 39.1±9.8 μg m-3 and 61.4±19.2 μg m-3 in dry season, respectively. Total carbon (TC) accounted for 16-19% of the PM2.5 mass and 13-15% of the PM10 mass. On average, 85.9 to 88.7% of TC in PM2.5 and 87.2 to 90.1% in PM10 was organic carbon (OC), of which 67-72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. Water-soluble potassium (K+) and sulphate (SO42-) in PM2.5 and, sodium (Na+) and SO42- in PM10 were the dominant ionic species. We found, that concentrations of biomass burning tracers (levoglucosan and mannosan) well correlated with non-sea-salt-K+, WSOC and OC in the aerosols from Tanzania, East Africa. Mean contributions of levoglucosan to OC ranged between 3.9-4.2% for PM2.5 and 3.5-3.8% for PM10. This study demonstrates that emissions from biomass- and biofuel-burning activities followed by atmospheric photochemical processes mainly control the air quality in Tanzania.

  9. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  10. Synthesis of water soluble photo-initiators of thioxanthone derivatives

    International Nuclear Information System (INIS)

    Qi Guozhen; Wang Jindi; Lin Yiqing

    1999-01-01

    Eight new photo-initiators of water-soluble thioxanthone derivatives were prepared. These compounds were identified by IR, NMR, MS and elemental analysis etc. The UV absorption wavelength, molar absorption coefficient and fluorescent quantum yield were determined. Furthermore, the relationship between structure and properties was discussed

  11. Synthesis of water soluble photo-initiators of thioxanthone derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Guozhen, Qi; Jindi, Wang; Yiqing, Lin [Inst. of Fine Chemicals ECUST, Shanghai (China)

    1999-07-01

    Eight new photo-initiators of water-soluble thioxanthone derivatives were prepared. These compounds were identified by IR, NMR, MS and elemental analysis etc. The UV absorption wavelength, molar absorption coefficient and fluorescent quantum yield were determined. Furthermore, the relationship between structure and properties was discussed.

  12. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM,

  13. Solubility of root-canal sealers in water and artificial saliva.

    Science.gov (United States)

    Schäfer, E; Zandbiglari, T

    2003-10-01

    To compare the weight loss of eight different root-canal sealers in water and in artificial saliva with different pH values. For standardized samples (n = 12 per group), ring moulds were filled with epoxy resin (AH 26, AH Plus)-, silicone (RSA RoekoSeal)-, calcium hydroxide (Apexit, Sealapex)-, zinc oxide-eugenol (Aptal-Harz)-, glass-ionomer (Ketac Endo)- and polyketone (Diaket)-based sealers. These samples were immersed in double-distilled water or artificial saliva with different pH values (7.0, 5.7 and 4.5) for 30 s, 1 min, 2 min, 5 min, 10 min, 20 min, 1 h, 2 h, 10 h, 24 h, 48 h, 72 h, 14 days and 28 days. Mean loss of weight was determined and analysed statistically using a one-way anova and Student-Newman-Keuls test for all pairwise comparisons. Most sealers were of low solubility, although Sealapex, Aptal-Harz and Ketac Endo showed a marked weight loss in all liquids. Even after 28 days of storage in water, AH 26, AH Plus, RSA RoekoSeal, and Diaket showed less than 3% weight loss. At exposure times greater than 14 days, Sealapex showed the significantly greatest weight loss of all sealers tested (P < 0.05). Aptal-Harz and Ketac Endo were significantly more soluble in saliva (pH 4.5) than in water (P < 0.05). Under the conditions of the present study, AH Plus showed the least weight loss of all sealers tested, independent of the solubility medium used. Sealapex, Aptal-Harz and Ketac Endo had a marked weight loss in all liquids.

  14. Synthesis and properties of amino acid functionalized water-soluble perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongshan; Li, Xuemei; Wei, Xiaofeng; Jiang, Tianyi; Wu, Junsen; Ren, Huixue [Shandong Jianzhu University, Jinan (China)

    2015-07-15

    We prepared amino acid functionalized water-soluble perylene diimides: N,N'-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N'-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N'-bi(Lglutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N'-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by {sup 1}H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H{sup +} led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1-2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

  15. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Tu Cong; Ma, Lena Q.; Zhang Weihua; Cai Yong; Harris, Willie G

    2003-07-01

    Arsenic was predominantly present as inorganic arsenite in the fronds of the hyperaccumulator Chinese brake. - Arsenic speciation is important not only for understanding the mechanisms of arsenic accumulation and detoxification by hyperaccumulators, but also for designing disposal options of arsenic-rich biomass. The primary objective of this research was to understand the speciation and leachability of arsenic in the fronds of Chinese brake (Pteris vittata L.), an arsenic hyperaccumulator, with an emphasis on the implications for arsenic-rich biomass disposal. Chinese brake was grown for 18 weeks in a soil spiked with 50 mg As kg{sup -1} as arsenate (AsO{sub 4}{sup 3-}), arsenite (AsO{sub 3}{sup 3-}), dimethylarsinic acid (DMA), or methylarsonic acid (MMA). Plant samples were extracted with methanol/water (1:1) and arsenic speciation was performed using high performance liquid chromatography coupled with atomic fluorescence spectrometry. The impacts of air-drying on arsenic species and leachability in the fronds were examined in the laboratory. After 18 weeks, water-soluble arsenic in soil was mainly present as arsenate with little detectable organic species or arsenite regardless of arsenic species added to the soil. However, arsenic in the fronds was primarily present as inorganic arsenite with an average of 94%. Arsenite re-oxidation occurred in the old fronds and the excised dried tissues. Arsenic species in the fronds were slightly influenced by arsenic forms added to the soil. Air-drying of the fronds resulted in leaching of substantial amounts of arsenic. These findings can be of significance when looking at disposal options of arsenic-rich biomass from the point of view of secondary contamination.

  16. Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    Noubigh, Adel; Jeribi, Chokri; Mgaidi, Arbi; Abderrabba, Manef

    2012-01-01

    Graphical abstract: Solubility of gallic acid vs the mole fraction of ethanol (0.0 to 1) on a solute-free basis in ethanol + water at different temperatures/K. □, 293.15; Δ, 298.15; ◊, 303.15; line calculated by equation. Highlights: ► Solubilities of gallic acid in binary mixtures were determined over the temperatures range (293.15 to 318.15) K. ► The gallic acid solubility in mixed solvents presents a maximum-solubility effect. ► Two empirical equations were proposed to correlate the solubility Data. ► The thermodynamic properties were determined. - Abstract: The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (Δ sol G°), molar enthalpy of dissolution (Δ sol H°), and molar entropy of dissolution (Δ sol S°) were calculated.

  17. Tainting by short-term exposure of Atlantic salmon to water soluble petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Ackman, R.G.; Heras, H.

    1992-01-01

    Experiments were conducted to examine the extent of tainting of salmon by exposure to the soluble fraction of petroleum hydrocarbons. The experiments were conducted on Atlantic salmon in tanks containing seawater artificially contaminated at three different concentrations with the soluble fraction of a North Sea crude. The salmon flesh was analyzed by gas chromatography and taste tests were conducted on cooked salmon samples to determine the extent of tainting. Salmon in control tanks with uncontaminated seawater had muscle accumulations of total hydrocarbons of ca 1 ppM. The muscle accumulations of total hydrocarbons in the salmon were 13.5 ppM, 25.6 ppM, and 31.3 ppM for water soluble fraction concentrations of 0.45, 0.87, and 1.54 ppM respectively. The threshold for taint was clearly inferred to be less than 0.45 ppM of water soluble fraction. 18 refs., 2 figs

  18. Solubilisation of inorganic phosphates by inoculant strains from tropical legumes

    Directory of Open Access Journals (Sweden)

    Leandro Marciano Marra

    2011-10-01

    Full Text Available Microbial solubilisation of low soluble inorganic phosphates is an important process contributing for the phosphorus available to plants in tropical soils. This study evaluates the ability of inoculant strains for tropical legumes to solubilise inorganic phosphates of low solubility that are found in tropical soils. Seven strains of Leguminosae nodulating bacteria (LNB were compared with one another and with a non-nodulating positive control, Burkholderia cepacia (LMG 1222T. Four of the strains are used as inoculants for cowpeas (Vigna unguiculata (Bradyrhizobium sp. UFLA 03-84; Bradyrhizobium elkani INPA 03-11B and Bradyrhizobium japonicum BR3267 or for common beans (Phaseolus vulgaris (Rhizobium tropici CIAT 899T. Rhizobium etli UFLA 02-100 and Rhizobium leguminosarum 316C10a are also efficient nodulators of beans and Cupriavidus taiwanensis LMG 19424T nodulates on Mimosa pudica. Two experiments, with solid and liquid media, were performed to determine whether the strains were able to solubilise CaHPO4, Al(H2PO43 or FePO4.2H2O. On solid GELP medium none of the strains dissolved FePO4.2H2O, but LMG 1222, UFLA 03-84 and CIAT 899 solubilised CaHPO4 particularly well. These strains, along with LMG 19424 and BR 3267, were also able to increase the solubility of Al(H2PO43. In liquid GELP medium, LMG 1222 solubilised all phosphate sources, but no legume nodulating strain could increase the solubility of Al(H2PO43. The strains CIAT 899 and UFLA 02-100 were the only legume nodulating bacteria able to solubilise the other phosphate sources in liquid media, dissolving both CaHPO4 and FePO4.2H2O. There was a negative correlation between the pH of the culture medium and the concentration of soluble phosphate when the phosphorus source was CaHPO4 or FePO4.2H2O. The contribution of these strains to increasing the phosphorus nutrition of legumes and non-legume plant species should be investigated further by in vivo experiments.

  19. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  20. [HYGIENIC ASSESSMENT OF WATER-SOLUBLE VITAMINS CONTENT IN THE FOOD RATION OF ADOLESCENTS].

    Science.gov (United States)

    Kozubenko, O V; Turchaninov, D V; Boyarskaya, L A; Glagoleva, O N; Pogodin, I S; Luksha, E A

    2015-01-01

    Adequate, balanced nutrition is a precondition for the formation of health of the younger generation. The study of the dietary intake and peculiarities of the chemical composition offood is needed to substantiate measures aimed at the correction of the ration of adolescents. Hygienic evaluation of the content of water soluble vitamins in foods and the ration of teenage population of the Omsk region. TASKS OF THE STUDY: 1. To determine levels of water-soluble vitamins content in foods forming the basis of the ration of the population the Omsk region. 2. On the base of a study of the actual nutrition of adolescents to determine the levels of water-soluble vitamins consumption. 3. To give a hygienic assessment of adolescent nutrition in the Omsk region in terms of provision with water-soluble vitamins, and to identify priority directions of the alimentary correction of the revealed disorders. The analysis of 389 food samples for the content of water-soluble vitamins (B1, B2, B6, PP C, folic acid) was performed with the use of reversed-phase HPLC high pressure on the Shimadzu LC-20 Prominence detector. The hygienic assessment of the actual nutrition of adolescents aged 13-17 years (sample survey; n = 250; 2012-2014) in the Omsk region was performed by the method of the analysis of food consumption frequency. There were noted significantly lower concentrations of vitamin B1 and B2 in the studied samples of cereals, bread and vegetables in comparison with reference data. Consumption levels of vitamins B1, B2, PP folic acid in the diet of adolescents in the Omsk region are lower than recommended values. In the structure of nutrition there is not enough milk dairy products--in 82.4 ± 2.4%, fish and sea products in 90.8 ± 1.8% of adolescents. The actual nutrition of the adolescent population of the Omsk region is irrational, unbalanced in quantitative and qualitative terms, and does not provide the necessary level of consumption of most important water-soluble vitamins

  1. Can the Short-Term Toxicity of Water-Soluble Jet Fuel Hydrocarbons Produce Long-Lasting Effects in Lake Plankton Communities?

    Science.gov (United States)

    1983-09-01

    Hutchinson. 1975. The effects of water soluble petroleum components on the growth ot Chlorella vulgaris Beijerinck. Environ. Pollut. 9:157-1/4. Karydis, M. and...Richard Starr Algal collection or Ankistrodesmus sp. or Chlorella sp. from the Carolina Biological collection. The cultures were unialgal but not... Chlorella were grown in BBM medium. After five days ot growth, half ot the flasks (3) for each species were spiked with 0.1 ml of toluene. The , .. flasks

  2. Analyzing water soluble soil organics as Trifluoroacetyl derivatives by liquid state proton nuclear magnetic resonance

    Science.gov (United States)

    Felipe Garza Sanchez; Zakiya Holmes Leggett; Sabapathy Sankar

    2005-01-01

    In forested ecosystems, water soluble organics play an important role in soil processes including carbon and nutrient turnover, microbial activity and pedogenesis. The quantity and quality (i.e., chemistry) of these materials is sensitive to land management practices. Monitoring alterations in the chemistry of water soluble organics resulting from land management...

  3. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.

    Science.gov (United States)

    Luo, Zhuanxi; Wang, Zhenhong; Yan, Yameng; Li, Jinli; Yan, Changzhou; Xing, Baoshan

    2018-07-01

    The effect of titanium dioxide nanoparticles (nano-TiO 2 ) on the bioaccumulation and biotransformation of arsenic (As) remains largely unknown. In this study, we exposed two freshwater algae (Microcystis aeruginosa and Scenedesmus obliquus) to inorganic As (arsenite and arsenate) with the aim of increasing our understanding on As bioaccumulation and methylation in the presence of nano-TiO 2 . Direct evidence from transmission electron microscope (TEM) images show that nano-TiO 2 (anatase) entered exposed algae. Thus, nano-TiO 2 as carriers boosted As accumulation and methylation in these two algae species, which varied between inorganic As speciation and algae species. Specifically, nano-TiO 2 could markedly enhance arsenate (As(V)) accumulation in M. aeruginosa and arsenite (As(III)) accumulation in S. obliquus. Similarly, we found evidence of higher As methylation activity in the M. aeruginosa of As(III) 2 mg L -1 nano-TiO 2 treatment. Although this was also true for the S. obliquus (As(V)) treatment, this species exhibited higher As methylation compared to M. aeruginosa, being more sensitive to As associated with nano-TiO 2 compared to M. aeruginosa. Due to changes in pH levels inside these exposed algae, As dissociation from nano-TiO 2 inside algal cells enhanced As methylation. Accordingly, the potential influence of nanoparticles on the bioaccumulation and biotransformation of their co-contaminants deserves more attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Formulation of a Novel Nano emulsion System for Enhanced Solubility of a Sparingly Water Soluble Antibiotic, Clarithromycin

    International Nuclear Information System (INIS)

    Vatsraj, S.; Pathak, H.; Chauhan, K.

    2014-01-01

    The sparingly water soluble property of majority of medicinally significant drugs acts as a potential barrier towards its utilization for therapeutic purpose. The present study was thus aimed at development of a novel oil-in-water (o/w) nano emulsion (NE) system having ability to function as carrier for poorly soluble drugs with clarithromycin as a model antibiotic. The therapeutically effective concentration of clarithromycin, 5 mg/mL, was achieved using polysorbate 80 combined with olive oil as lipophilic counterion. A three-level three-factorial central composite experimental design was utilized to conduct the experiments. The effects of selected variables, polysorbate 80 and olive oil content and concentration of polyvinyl alcohol, were investigated. The particle size of clarithromycin for the optimized formulation was observed to be 30 nm. The morphology of the nano emulsion was explored using transmission electron microscopy (TEM). The emulsions prepared with the optimized formula demonstrated good physical stability during storage at room temperature. Antibacterial activity was conducted with the optimized nano emulsion NESH 01 and compared with free clarithromycin. Zone of inhibition was larger for NESH 01 as compared to that with free clarithromycin. This implies that the solubility and hence the bioavailability of clarithromycin has increased in the formulated nano emulsion system.

  5. Solubility of solid ferrocene in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Roth, Michal

    2010-01-01

    Roč. 55, č. 8 (2010), s. 2866-2869 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized hot water * ferrocene * solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.089, year: 2010

  6. Water-soluble chelating polymers for removal of actinides from wastewater

    International Nuclear Information System (INIS)

    Jarvinen, G.D.

    1997-01-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent

  7. Water-soluble chelating polymers for removal of actinides from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.D. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent.

  8. Relationship Between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males

    OpenAIRE

    Shibata, Katsumi; Hirose, Junko; Fukuwatari, Tsutomu

    2014-01-01

    Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs) ...

  9. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum

    Directory of Open Access Journals (Sweden)

    Maryam Khaksari

    2017-04-01

    Full Text Available Two separate liquid chromatography (LC-mass spectrometry (MS methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B1, B2, B3 (nicotinamide, B5, B6 (pyridoxine, B7, B9 and B12 while the fat-soluble vitamin method detected vitamins A, D3, 25(OHD3, E and K1. These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD and limits of quantification (LOQ are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  10. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum.

    Science.gov (United States)

    Khaksari, Maryam; Mazzoleni, Lynn R; Ruan, Chunhai; Kennedy, Robert T; Minerick, Adrienne R

    2017-04-01

    Two separate liquid chromatography (LC)-mass spectrometry (MS) methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B 1 , B 2 , B 3 (nicotinamide), B 5 , B 6 (pyridoxine), B 7 , B 9 and B 12 while the fat-soluble vitamin method detected vitamins A, D 3 , 25(OH)D 3, E and K 1 . These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD) and limits of quantification (LOQ) are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  11. Respiratory carcinogenicity assessment of soluble nickel compounds.

    Science.gov (United States)

    Oller, Adriana R

    2002-10-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided.

  12. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS through laboratory studies of inorganic species

    Directory of Open Access Journals (Sweden)

    W. Hu

    2017-08-01

    Full Text Available Aerosol mass spectrometers (AMSs and Aerosol Chemical Speciation Monitors (ACSMs commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE to correct for the loss of particles due to bounce. A new capture vapourizer (CV has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in the laboratory. Four standard species, NH4NO3, NaNO3, (NH42SO4 and NH4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature (Tv ∼ 200–800 °C on the detected fragments, CE and size distributions are investigated. A Tv of 500–550 °C for the CV is recommended. In the CV, CE was identical (around unity for more volatile species (e.g. NH4NO3 and comparable to or higher than the SV for less-volatile species (e.g. (NH42SO4, demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO3 and SO4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO2(g from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH4NO3 and comparable to the SV for NaNO3. . We observe an extremely consistent fragmentation for ammonium compared to very

  13. Possibility of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers

    International Nuclear Information System (INIS)

    Khaynakov, S.A.; Likov, E.P.; Bortun, A.I.; Belyukov, V.N.

    1986-01-01

    Present work is devoted to possibilities of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers. Thus, the comparative study of sorption of chromium ions on anion exchanger A B-17 and on inorganic ion exchangers on the basis of hydrated titanium and zirconium dioxides in static and dynamic conditions is conducted. The influence of chromium ions concentration, solutions acidity (ph=1÷12) and presence of base electrolyte on sorption is studied. The state of chromium ions sorbed by inorganic ion exchangers is studied by means of infrared spectroscopy and spectroscopy. It is defined that inorganic sorbents could be used for chromium extraction from different solutions.

  14. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    International Nuclear Information System (INIS)

    Noubigh, Adel; Abderrabba, Manef; Provost, Elise

    2007-01-01

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (Δ sol H 0 ) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (Δ tr G 0 ) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (Δ tr H 0 ) and entropies (Δ tr S 0 ) of transfer have also been calculated. The decrease in solubility is correlated to the positive Δ tr G 0 value which is mainly of enthalpic origin

  15. Phycoremediation potential of brown macroalgae species Saccharina latissimi and Laminaria digitata towards inorganic arsenic in a multitrophic pilot-scale experiment

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Cunha, Sara; Fernandes, José

    2017-01-01

    on the chemical species, where inorganic arsenic is considered to be the most toxic form of arsenic.The aim of the present study was to evaluate the phycoremediation capacity of the two brown seaweed species Sugar kelp (Saccharina latissima) and Oarweed (Laminaria digitata) in a controlled multitrophic...

  16. Transpiration directly regulates the emissions of water-soluble short-chained OVOCs.

    Science.gov (United States)

    Rissanen, K; Hölttä, T; Bäck, J

    2018-04-20

    Most plant-based emissions of volatile organic compounds (VOCs) are considered mainly temperature dependent. However, certain oxygenated VOCs (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in xylem sap. Yet, further understanding on the role of transport has been lacking until present. We used shoot-scale long-term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of three water soluble OVOC: methanol, acetone and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the three OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in xylem sap from their sources in roots and stem to leaves and to ambient air. This article is protected by copyright. All rights reserved.

  17. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer.

    Science.gov (United States)

    Baker, Matthew B; Albertazzi, Lorenzo; Voets, Ilja K; Leenders, Christianus M A; Palmans, Anja R A; Pavan, Giovanni M; Meijer, E W

    2015-02-20

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  18. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    Science.gov (United States)

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M. A.; Palmans, Anja R. A.; Pavan, Giovanni M.; Meijer, E. W.

    2015-02-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  19. Effect of supplementation of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives.

    Science.gov (United States)

    Talikoti, Prashanth; Bobby, Zachariah; Hamide, Abdoul

    2015-01-01

    The objective of the study was to evaluate the effect of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Sixty prehypertensives were recruited and randomized into 2 groups of 30 each. One group received water-soluble vitamins and the other placebo for 4 months. Further increase in blood pressure was not observed in the vitamin group which increased significantly in the placebo group at the end of 4 months. Malonedialdehyde and protein carbonylation were reduced during the course of treatment with vitamins whereas in the placebo group there was an increase in the level of malondialdehyde. In conclusion, supplementation of water-soluble vitamins in prehypertension reduces oxidative stress and its progression to hypertension.

  20. pKa Determination of water-soluble calix[4]arenes

    NARCIS (Netherlands)

    Shinkai, Seiji; Araki, Koji; Grootenhuis, P.D.J.; Reinhoudt, David

    1991-01-01

    Neutral, water-soluble 5,11,17,23-tetrakis[bis-(2-hydroxyethyl)aminosulphonyl]calix[4]arene-25,26,27,28-tetraol and 5,11,17,23-tetranitrocalix[4]arene-25,26,27,28-tetraol have been synthesized and the pKa values of the OH groups determined in an aqueous system.

  1. High performance preconcentration of inorganic Se species by dispersive micro-solid phase extraction with a nanosilica-ionic liquid hybrid material

    Science.gov (United States)

    Llaver, Mauricio; Coronado, Eduardo A.; Wuilloud, Rodolfo G.

    2017-12-01

    A highly sensitive and efficient dispersive micro-solid phase extraction (D-μ-SPE) method was developed for inorganic Se speciation analysis. A novel ionic liquid (IL)-nanomaterial hybrid consisting of 1-dodecyl-3-methylimidazolium bromide-functionalized nanosilica was used for the efficient retention of Se(IV) complexed with ammonium pyrrolidine dithiocarbamate, followed by elution with an ethyl acetate/Triton X-114 mixture and determination by electrothermal atomic absorption spectroscopy. The Se(VI) species was selectively determined by difference between total inorganic Se and Se(IV) after pre-reduction. The IL-nanomaterial hybrid was characterized by Fourier transform infrared spectroscopy and transmission electronic microscopy. Likewise, Se(IV) sorption capacity of the retention material and maximum amount of IL loaded on its surface were determined. Several factors concerning the functionalization, extraction and elution steps were optimized, yielding a 100% extraction efficiency for Se(IV) under optimal conditions. A limit of detection of 1.1 ng L- 1, a relative standard deviation of 5.7% and a 110-fold enhancement factor were obtained. The D-μ-SPE method was successfully applied to several water samples from different origins and compositions, including rain, tap, underground, river and sea.

  2. Effect of water deficit stress on proline contents, soluble sugars ...

    African Journals Online (AJOL)

    Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower ... Journal Home > Vol 11, No 1 (2012) > ... The objective of the present work was to determine the mechanisms of tolerance of four ...

  3. IMPROVEMENT OF SOLUBILITY OF BADLY WATER SOLUBLE DRUG (IBUPROFEN) BY USING SURFACTANTS AND CARRIERS

    OpenAIRE

    Md. Zakaria Faruki*, Rishikesh, Elizabeth Razzaque, Mohiuddin Ahmed Bhuiyan

    2013-01-01

    ABSTRACT: Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of badly water-soluble drugs, their profitable use has been very limited, primarily because of manufacturing difficulties and stability problems. In this study solid solutions of drugs were generally produced by fusion method. The drug along with the excipients (surfactants and carriers) was heated first and then hardened by cooling to room te...

  4. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu; Phuoc, Duong; Nunes, Suzana Pereira

    2017-01-01

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  5. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu

    2017-02-13

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  6. Gelation of galactomannan containing water-bearing explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, W.M.

    1969-05-20

    The rate of gelling in aqueous compositions consisting of a galactomannan cross-linked by chromium ions provided by a soluble chromate is accelerated by the addition of a soluble-reducing agent to a hydrosol (colloidal solution) comprising the hydrate galactomannan prior to addition of the cross-linking agent. The accelerated cross-linking system is particularly suitable for use in blasting compositions comprising water, inorganic oxidizing salt, and one or more fuels and/or sensitizers. Accelerating the rate of cross-linking finds special utility in the on-site formulation and mixing of these compositions, particularly in equipment such as water gel trucks or slurry trucks. (7 claims)

  7. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    Science.gov (United States)

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  8. On-line technique for preparingand measuring stable carbon isotopeof total dissolved inorganic carbonin water samples ( d13CTDIC

    Directory of Open Access Journals (Sweden)

    S. Inguaggiato

    2005-06-01

    Full Text Available A fast and completely automated procedure is proposed for the preparation and determination of d13C of total inorganic carbon dissolved in water ( d13CTDIC. This method is based on the acidification of water samples transforming the whole dissolved inorganic carbon species into CO2. Water samples are directly injected by syringe into 5.9 ml vials with screw caps which have a pierciable rubber septum. An Analytical Precision «Carbonate Prep System» was used both to flush pure helium into the vials and to automatically dispense a fixed amount of H3PO4. Full-equilibrium conditions between produced CO2 and water are reached at a temperature of 70°C (± 0.1°C in less than 24 h. Carbon isotope ratios (13C/ 12C were measured on an AP 2003 continuous flow mass spectrometer, connected on-line with the injection system. The precision and reproducibility of the proposed method was tested both on aqueous standard solutions prepared using Na2CO3 with d13C=-10.78 per mil versus PDB (1 s= 0.08, n = 11, and at five different concentrations (2, 3, 4, 5 and 20 mmol/l and on more than thirty natural samples. Mean d13CTDIC on standard solution samples is ?10.89 < per mil versus PDB (1 s= 0.18, n = 50, thus revealing both a good analytical precision and reproducibility. A comparison between average d13CTDIC values on a quadruplicate set of natural samples and those obtained following the chemical and physical stripping method highlights a good agreement between the two analytical methods.

  9. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  10. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jé rô me; Bricout, Hervé ; Tilloy, Sé bastien; Fihri, Aziz; Len, Christophe; Hapiot, Fré dé ric; Monflier, É ric

    2012-01-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  11. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  12. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper; Tran, Tam H.

    2016-01-01

    70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product......In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than...... is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation...

  13. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    NARCIS (Netherlands)

    Baker, M.B.; Albertazzi, L.; Voets, Ilja K.; Leenders, C.M.A.; Palmans, A.R.A.; Pavan, G.M.; Meijer, E. W.

    2015-01-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers:

  14. What aspect of dietary modification in broilers controls litter water-soluble phosphorus: dietary phosphorus, phytase, or calcium?

    Science.gov (United States)

    Leytem, A B; Plumstead, P W; Maguire, R O; Kwanyuen, P; Brake, J

    2007-01-01

    Environmental concerns about phosphorus (P) losses from animal agriculture have led to interest in dietary strategies to reduce the concentration and solubility of P in manures and litters. To address the effects of dietary available phosphorus (AvP), calcium (Ca), and phytase on P excretion in broilers, 18 dietary treatments were applied in a randomized complete block design to each of four replicate pens of 28 broilers from 18 to 42 d of age. Treatments consisted of three levels of AvP (3.5, 3.0, and 2.5 g kg(-1)) combined with three levels of Ca (8.0, 6.9, and 5.7 g kg(-1)) and two levels of phytase (0 and 600 phytase units [FTU]). Phytase was added at the expense of 1.0 g kg(-1) P from dicalcium phosphate. Fresh litter was collected from pens when the broilers were 41 d of age and analyzed for total P, soluble P, and phytate P as well as P composition by (31)P nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the inclusion of phytase at the expense of inorganic P or reductions in AvP decreased litter total P by 28 to 43%. Litter water-soluble P (WSP) decreased by up to 73% with an increasing dietary Ca/AvP ratio, irrespective of phytase addition. The ratio of WSP/total P in litter decreased as the dietary Ca/AvP ratio increased and was greater in the phytase-amended diets. This study indicated that while feeding reduced AvP diets with phytase decreased litter total P, the ratio of Ca/AvP in the diet was primarily responsible for effects on WSP. This is important from an environmental perspective as the amount of WSP in litter could be related to potential for off-site P losses following land application of litter.

  15. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar

    International Nuclear Information System (INIS)

    Beesley, Luke; Marmiroli, Marta

    2011-01-01

    Water-soluble inorganic pollutants may constitute an environmental toxicity problem if their movement through soils and potential transfer to plants or groundwater is not arrested. The capability of biochar to immobilise and retain arsenic (As), cadmium (Cd) and zinc (Zn) from a multi-element contaminated sediment-derived soil was explored by a column leaching experiment and scanning electron microanalysis (SEM/EDX). Sorption of Cd and Zn to biochar's surfaces assisted a 300 and 45-fold reduction in their leachate concentrations, respectively. Retention of both metals was not affected by considerable leaching of water-soluble carbon from biochar, and could not be reversed following subsequent leaching of the sorbant biochar with water at pH 5.5. Weakly water-soluble As was also retained on biochar's surface but leachate concentrations did not duly decline. It is concluded that biochar can rapidly reduce the mobility of selected contaminants in this polluted soil system, with especially encouraging results for Cd. - Research highlights: → The capability of biochar to immobilise and retain arsenic (As), cadmium (Cd) and zinc (Zn) from a multi-element contaminated sediment-derived soil was explored by a column leaching experiment and scanning electron microanalysis (SEM/EDX). We highlight the following results from this study: → Large surface area and surface sorption of Cd and Zn to biochar reduces the concentrations of these metals in leachates from a contaminated soil 300 and 45-fold respectively. → Metal retention was not reversible by continued leaching of the sorbant biochar. → Biochar increased leachate pH and water-soluble carbon but this did not appear to be detrimental to its effects and may aid retention of Cd. → Although some arsenic was sorbed to biochar, leachate concentrations were not duly reduced. → Developments in micro-analyses techniques will allow more detailed exploration of the encouraging results seen here with regards to interior

  16. Evaluation of ammonium nitrate phosphate (Suphala) having different water soluble phosphorus levels on black soils

    International Nuclear Information System (INIS)

    Deo Dutt; Mutatkar, V.K.; Chapke, V.G.

    1974-01-01

    Efficiency of the laboratory prepared 32 P tagged ammonium nitrate phosphate (Suphala) varying in water soluble P was studied both on calcareous and non-calcareous soils of Maharashtra for bajra and wheat crops under greenhouse conditions. The results revealed a significant increase in dry matter production and uptake of total and fertilizer P with Suphala containing 30-32% water-soluble phosphorus. (author)

  17. Spatial and temporal variability of water soluble carbon for a cropped field

    International Nuclear Information System (INIS)

    Liss, H.J.; Rolston, D.E.

    1983-01-01

    The water soluble carbon from soil extracts was taken from a two-hundred point grid established on a 1.2 ha field. The sampling was in the fall after the harvest of a sorghum crop. The concentrations ranged from 23.8 ppm to 274.2 ppm. Over 90 per cent of the concentrations were grouped around the mean of 40.3 ppm. The higher values caused the distribution to be greatly skewed such that neither normal nor log normal distributions characterized the data very well. The moisture content from the same samples followed normal distribution. Changes in the mean, the variance and the distribution of water soluble carbon were followed on 0.4 ha of the 1.2 ha in a grid of sixty points during a crop of wheat and a subsequent crop of sorghum. The mean increased in the spring, decreased in the summer and increased again in the fall. The spring and summer concentrations are well characterized by log normal distributions. The spatial dependence of water soluble carbon was examined on a fifty-five point transect across the field spaced every 1.37 m. The variogram indicated little or no dependence at this spacing. (author)

  18. Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds.

    Science.gov (United States)

    Bari, Sara E; Amorebieta, Valentín T; Gutiérrez, María M; Olabe, José A; Doctorovich, Fabio

    2010-01-01

    The reactions of hydroxylamine (HA) with several water-soluble iron(III) porphyrinate compounds, namely iron(III) meso-tetrakis-(N-ethylpyridinium-2yl)-porphyrinate ([Fe(III)(TEPyP)](5+)), iron(III) meso-tetrakis-(4-sulphonatophenyl)-porphyrinate ([Fe(III)(TPPS)](3-)), and microperoxidase 11 ([Fe(III)(MP11)]) were studied for different [Fe(III)(Porph)]/[HA] ratios, under anaerobic conditions at neutral pH. Efficient catalytic processes leading to the disproportionation of HA by these iron(III) porphyrinates were evidenced for the first time. As a common feature, only N(2) and N(2)O were found as gaseous, nitrogen-containing oxidation products, while NH(3) was the unique reduced species detected. Different N(2)/N(2)O ratios obtained with these three porphyrinates strongly suggest distinctive mechanistic scenarios: while [Fe(III)(TEPyP)](5+) and [Fe(III)(MP11)] formed unknown steady-state porphyrinic intermediates in the presence of HA, [Fe(III)(TPPS)](3-) led to the well characterized soluble intermediate, [Fe(II)(TPPS)NO](4-). Free-radical formation was only evidenced for [Fe(III)(TEPyP)](5+), as a consequence of a metal centered reduction. We discuss the catalytic pathways of HA disproportionation on the basis of the distribution of gaseous products, free radicals formation, the nature of porphyrinic intermediates, the Fe(II)/Fe(III) redox potential, the coordinating capabilities of each complex, and the kinetic analysis. The absence of NO(2)(-) revealed either that no HAO-like activity was operative under our reaction conditions, or that NO(2)(-), if formed, was consumed in the reaction milieu.

  19. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Meisser Redeuil, Karine; Longet, Karin; Bénet, Sylvie; Munari, Caroline; Campos-Giménez, Esther

    2015-11-27

    This manuscript reports a validated analytical approach for the quantification of 21 water soluble vitamins and their main circulating forms in human plasma. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with stable isotope labelled internal standards. Separation was achieved by reversed-phase liquid chromatography and detection performed by tandem mass spectrometry in positive electrospray ionization mode. Instrumental lower limits of detection and quantification reached water soluble vitamins in human plasma single donor samples. The present report provides a sensitive and reliable approach for the quantification of water soluble vitamins and main circulating forms in human plasma. In the future, the application of this analytical approach will give more confidence to provide a comprehensive assessment of water soluble vitamins nutritional status and bioavailability studies in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  1. Ion-exclusion/cation-exchange chromatography with dual detection of the conductivity and spectrophotometry for the simultaneous determination of common inorganic anionic species and cations in river and wastewater.

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Hasebe, Kiyoshi; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2011-01-01

    Simultaneous determinations of common inorganic anionic species (SO(4)(2-), Cl(-), NO(3)(-), phosphate and silicate) and cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) were conducted using an ion-chromatography system with dual detection of conductivity and spectrophotometry in tandem. The separation of ionic species on a weakly acidic cation-exchange resin was accomplished using a mixture of 100 mM ascorbic acid and 4 mM 18-crown-6 as an acidic eluent (pH 2.6), after which the ions were detected using a conductivity detector. Subsequently, phosphate and silicate were analyzed based on derivatization with molybdate and spectrophotometry at 700 nm. The detection limits at S/N = 3 ranged from 0.11 to 2.9 µM for analyte ionic species. This method was applied to practical river water and wastewater with acceptable criteria for the anion-cation balance and comparisons of the measured and calculated electrical conductivity, demonstrating the usefulness of the present method for water quality monitoring.

  2. Improved intestinal absorption of a poorly water-soluble oral drug using mannitol microparticles containing a nanosolid drug dispersion.

    Science.gov (United States)

    Nishino, Yukiko; Kubota, Aya; Kanazawa, Takanori; Takashima, Yuuki; Ozeki, Tetsuya; Okada, Hiroaki

    2012-11-01

    A nozzle for a spray dryer that can prepare microparticles of water-soluble carriers containing various nanoparticles in a single step was previously developed in our laboratory. To enhance the solubility and intestinal absorption of poorly water-soluble drugs, we used probucol (PBL) as a poorly water-soluble drug, mannitol (MAN) as a water-soluble carrier for the microparticles, and EUDRAGIT (EUD) as a polymer vehicle for the solid dispersion. PBL-EUD-acetone-methanol and aqueous MAN solutions were simultaneously supplied through different liquid passages of the spray nozzle and dried together. PBL-EUD solid dispersion was nanoprecipitated in the MAN solution using an antisolvent mechanism and rapidly dried by surrounding it with MAN. PBL in the dispersion vehicle was amorphous and had higher physical stability according to powder X-ray diffraction and differential scanning calorimetry analysis. The bioavailability of PBL in PBL-EUD S-100-MAN microparticles after oral administration in rats was markedly higher (14- and 6.2-fold, respectively) than that of the original PBL powder and PBL-MAN microparticles. These results demonstrate that the composite microparticles containing a nanosized solid dispersion of a poorly water-soluble drug prepared using the spray nozzle developed by us should be useful to increase the solubility and bioavailability of drugs after oral administration. Copyright © 2012 Wiley Periodicals, Inc.

  3. Ethiopian Journal of Environmental Studies and Management - Vol ...

    African Journals Online (AJOL)

    Seasonal Variation of Atmospheric Composition of Water-Soluble Inorganic Species at Rural Background Site in Tanzania, East Africa · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. S.L Mkoma, W Wang, W Maenhaut, C.T Tungaraza.

  4. Arsenic species in raw and cooked rice: Implications for human health in rural Bengal

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Dipti, E-mail: dipti@kth.se [KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Engineering, Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm (Sweden); Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal (India); Biswas, Ashis [KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Engineering, Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm (Sweden); Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal (India); Šlejkovec, Zdenka [Environmental Sciences Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana (Slovenia); Chatterjee, Debashis [Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal (India); Nriagu, Jerome [Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029 (United States); Jacks, Gunnar; Bhattacharya, Prosun [KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Engineering, Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm (Sweden)

    2014-11-01

    This study compares the concentrations of total and different species of arsenic (As) in 29 pairs of raw and cooked rice samples collected from households in an area of West Bengal affected by endemic arsenicism. The aim is to investigate the effects of indigenous cooking practice of the rural villagers on As accumulation and speciation in cooked rice. It is found that inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). Cooking of rice with water low in As (< 10 μg L{sup −1}) significantly decreases the total and inorganic As content in cooked rice compared to raw rice. Arsenic concentration is mainly decreased during boiling of rice grains with excess water. Washing of rice grains with low As water has negligible effect on grain As concentration. The study suggests that rice cooking with low As water by the villagers is a beneficial risk reduction strategy. Despite reductions in As content in cooked rice because of cooking with low As water, the consumption of cooked rice represents a significant health threat (in terms of chronic As toxicity) to the study population. - Highlights: • Pairs of raw and cooked rice samples are collected from households. • Total and different species of As in raw and cooked rice samples are compared. • Cooking with As safe water reduces total and inorganic As contents in cooked rice. • Inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). • Risks of As exposure from cooked rice consumption exceed the safety standards.

  5. Arsenic species in raw and cooked rice: Implications for human health in rural Bengal

    International Nuclear Information System (INIS)

    Halder, Dipti; Biswas, Ashis; Šlejkovec, Zdenka; Chatterjee, Debashis; Nriagu, Jerome; Jacks, Gunnar; Bhattacharya, Prosun

    2014-01-01

    This study compares the concentrations of total and different species of arsenic (As) in 29 pairs of raw and cooked rice samples collected from households in an area of West Bengal affected by endemic arsenicism. The aim is to investigate the effects of indigenous cooking practice of the rural villagers on As accumulation and speciation in cooked rice. It is found that inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). Cooking of rice with water low in As (< 10 μg L −1 ) significantly decreases the total and inorganic As content in cooked rice compared to raw rice. Arsenic concentration is mainly decreased during boiling of rice grains with excess water. Washing of rice grains with low As water has negligible effect on grain As concentration. The study suggests that rice cooking with low As water by the villagers is a beneficial risk reduction strategy. Despite reductions in As content in cooked rice because of cooking with low As water, the consumption of cooked rice represents a significant health threat (in terms of chronic As toxicity) to the study population. - Highlights: • Pairs of raw and cooked rice samples are collected from households. • Total and different species of As in raw and cooked rice samples are compared. • Cooking with As safe water reduces total and inorganic As contents in cooked rice. • Inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). • Risks of As exposure from cooked rice consumption exceed the safety standards

  6. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  7. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2011-01-01

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  8. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    OpenAIRE

    Csapó J.; Albert Cs.; Prokisch J.

    2017-01-01

    Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from ...

  9. The aqueous solubility and speciation analysis for uranium, neptunium and selenium by the geochemical code(EQ3/6)

    International Nuclear Information System (INIS)

    Takeda, Seiji; Shima, Shigeki; Kimura, Hideo; Matsuzuru, Hideo

    1995-11-01

    The geochemical condition of a geologic disposal system of HLW controls the solubility and physicochemical forms of dominant aqueous species for elements, which are one of essential information required for safety assessment. Based on the measured compositions of groundwater, the compositions of groundwater in the disposal system were calculated. The solubility and speciation analyses for the polyvalent elements, uranium, neptunium, and selenium, were performed by the geochemical code EQ3/6. The results obtained were compared with the data appeared in the literatures on the solubilities and speciations. The geochemical behaviors of the elements with respect to the solubility and speciation could quantitatively be elucidated for the compositions of the interstitial waters in an engineered barrier and ground water in a natural barrier. In the pH range of neutral to alkali, the solubilities of U and Np tend to increase with an increase of the carbonate concentration in groundwater. This carbonate concentration dependence of the solubility was also estimated. In the engineered barrier the predominant aqueous species were specified, and in the natural barrier the change of aqueous species was also predicted while the chemical compositions changed from the reducing to oxidizing conditions. The dominant aqueous species for the elements, which migrate in and through the disposal system, were determined by the speciation analysis. (author)

  10. Spectrofluorimetric determination of some water-soluble vitamins.

    Science.gov (United States)

    Mohamed, Abdel-Maaboud I; Mohamed, Horria A; Abdel-Latif, Niveen M; Mohamed, Marwa R

    2011-01-01

    Two simple and sensitive spectrofluorimetric methods were developed for determination of three water-soluble vitamins (B1, B2, and B6) in mixtures in the presence of cyanocobalamin. The first one was for thiamine determination, which depends on the oxidation of thiamine HCl to thiochrome by iodine in an alkaline medium. The method was applied accurately to determine thiamine in binary, ternary, and quaternary mixtures with pyridoxine HCl, riboflavin, and cyanocobalamin without interference. In the second method, riboflavin and pyridoxine HCl were determined fluorimetrically in acetate buffer, pH 6. The three water-soluble vitamins (B1, B2, and B6) were determined spectrofluorimetrically in binary, ternary, and quaternary mixtures in the presence of cyanocobalamin. All variables were studied in order to optimize the reaction conditions. Linear relationship was obeyed for all studied vitamins by the proposed methods at their corresponding lambda(exc) or lambda(em). The linear calibration curves were obtained from 10 to 500 ng/mL; the correlation ranged from 0.9991 to 0.9999. The suggested procedures were applied to the analysis of the investigated vitamins in their laboratory-prepared mixtures and pharmaceutical dosage forms from different manufacturers. The RSD range was 0.46-1.02%, which indicates good precision. No interference was observed from common pharmaceutical additives. Good recoveries (97.6 +/- 0.7-101.2 +/- 0.8%) were obtained. Statistical comparison of the results with reported methods shows excellent agreement and indicates no significant difference in accuracy and precision.

  11. Water-soluble resist for environmentally friendly lithography

    Science.gov (United States)

    Lin, Qinghuang; Simpson, Logan L.; Steinhaeusler, Thomas; Wilder, Michelle; Willson, C. Grant; Havard, Jennifer M.; Frechet, Jean M. J.

    1996-05-01

    This paper describes an 'environmentally friendly,' water castable, water developable photoresist system. The chemically amplified negative-tone resist system consists of three water-soluble components: a polymer, poly(methyl acrylamidoglycolate methyl ether), [poly(MAGME)]; a photoacid generator, dimethyl dihydroxyphenylsulfonium triflate and a crosslinker, butanediol. Poly(MAGME) was synthesized by solution free radical polymerization. In the three-component resist system, the acid generated by photolysis of the photoacid generator catalyzes the crosslinking of poly(MAGME) in the exposed regions during post-exposure baking, thus rendering the exposed regions insoluble in water. Negative tone relief images are obtained by developing with pure water. The resist is able to resolve 1 micrometer line/space features (1:1 aspect ratio) with an exposure dose of 100 mJ/cm2 at 248 nm. The resist can be used to generate etched copper relief images on printed circuit boards using aqueous sodium persulfate as the etchant. The crosslinking mechanism has been investigated by model compound studies using 13C NMR. These studies have revealed that the acid catalyzed reaction of the poly(MAGME) with butanediol proceeds via both transesterification and transacetalization (transaminalization) reactions at low temperatures, and also via transamidation at high temperatures.

  12. Solubilities of oxygenated aromatic solids in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2009-01-01

    Roč. 54, č. 5 (2009), s. 1457-1461 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : oxygenated aromatics * solubility * pressurized hot water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.695, year: 2009

  13. Follow-up barium study after a negative water-soluble contrast examination for suspected esophageal leak: is it necessary?

    Science.gov (United States)

    Sanchez, Thomas R; Holz, Grant S; Corwin, Michael T; Wood, Robert J; Wootton-Gorges, Sandra L

    2015-10-01

    The purpose of this study was to determine the value of follow-up barium esophogram in diagnosing esophageal injury or leak if the initial water-soluble contrast examination of the esophagus is normal. An institutional review board (IRB)-approved retrospective review of all pediatric patients less than 18 years old referred to the radiology department for evaluation of esophageal injury or leak was performed for a 9-year period from 2005 to 2014. The majority of patients had unexplained pneumomediastinum, chest trauma (gunshot or puncture wound), or foreign body ingestion as the reason for the referral. Forty-nine patients (age range 10 days to 17 years) underwent an initial water-soluble esophogram immediately followed by a barium esophogram. Forty-six studies were negative on both water-soluble contrast and barium studies. Two studies were both positive on the initial water-soluble contrast and subsequent barium studies. A single study showed the esophageal leak only in the water-soluble study, with the follow-up barium exam being normal. The result of this study indicates that a single-contrast water-soluble esophogram alone is sensitive in the diagnosis of esophageal injury or leak. It has a 100 % sensitivity and negative predictive value. A follow-up barium esophogram only increases the study time and radiation dose to the patient.

  14. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    Science.gov (United States)

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hydrological characterisation of stalagmite dripwaters at Grotte de Villars, Dordogne, by the analysis of inorganic species and luminescent organic matter

    Directory of Open Access Journals (Sweden)

    A. Baker

    2000-01-01

    Full Text Available Five stalagmite drip-waters in the Grotte de Villars, Dordogne, have been monitored from early 1997 to early 1998, for variations in discharge, major inorganic species and dissolved luminescent organic matter. When compared to surface precipitation, each drip-water has a subtly different response, both in terms of discharge variability and lag time between surface precipitation and drip rate response. Calculated water excess is shown to be important in determining drip-water discharge; during periods of soil moisture deficit, drip-waters either show no response to surface precipitation, or in the case of one sample station, respond only to high intensity and/or high quantity precipitation events. All drip-waters have a large storage component to their flow. Four sample stations have a similar hydrochemical and luminescence response, although the precise timing and magnitude of the responses may vary between drip sources that are Drip-water conductivity reflects Ca-HCO3 variations and falls during late summer to autumn, which is inferred to result from increased calcite precipitation above the cave with enhanced degassing related to progressive drying of the aquifer. Drip-water magnesium (following removal of the marine aerosol component is just above detection limits and does not show strong seasonal variations. Variations in solution Pco2 occur, with a particularly strong increase in early 1997. The various chemical trends are observed at a number of different sites despite a pronounced variation between them in terms of total Ca-HCO3 mineralisation and Pco2. One sampling station of the five investigated had a different response to surface precipitation; drip discharge was more variable, with evidence of non-linear responses, and luminescence intensity exhibited a dilution response to drip rate. For this site, flow switching occurred at times of high rainfall, with a rapid discharge response less than 24 hours after rainfall. Luminescence

  16. Proposed aesthetic/physical and inorganic drinking-water criteria for the Republic of South Africa

    CSIR Research Space (South Africa)

    Kempster, PL

    1985-01-01

    Full Text Available Using existing criteria from other countries, in conjunction with data on element toxicities and normal dietary intakes, drinking-water criteria for 56 aesthetic/physical and inorganic chemical determinants were proposed for South Africa....

  17. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    Science.gov (United States)

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  18. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  19. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators’ preferences than organic acids and inorganic ions

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  20. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Directory of Open Access Journals (Sweden)

    Kira Tiedge

    Full Text Available Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold. As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context

  1. A New Approach on Estimation of Solubility and n-Octanol/ Water Partition Coefficient for Organohalogen Compounds

    Directory of Open Access Journals (Sweden)

    Chenzhong Cao

    2008-06-01

    Full Text Available The aqueous solubility (logW and n-octanol/water partition coefficient (logPOW are important properties for pharmacology, toxicology and medicinal chemistry. Based on an understanding of the dissolution process, the frontier orbital interaction model was suggested in the present paper to describe the solvent-solute interactions of organohalogen compounds and a general three-parameter model was proposed to predict the aqueous solubility and n-octanol/water partition coefficient for the organohalogen compounds containing nonhydrogen-binding interactions. The model has satisfactory prediction accuracy. Furthermore, every item in the model has a very explicit meaning, which should be helpful to understand the structure-solubility relationship and may be provide a new view on estimation of solubility.

  2. Spray Freeze-drying - The Process of Choice for Low Water Soluble Drugs?

    International Nuclear Information System (INIS)

    Leuenberger, H.

    2002-01-01

    Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins

  3. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  4. Redox Species of Redox Flow Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2015-11-01

    Full Text Available Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  5. Twenty-four-hour urinary water-soluble vitamin levels correlate with their intakes in free-living Japanese schoolchildren.

    Science.gov (United States)

    Tsuji, Tomiko; Fukuwatari, Tsutomu; Sasaki, Satoshi; Shibata, Katsumi

    2011-02-01

    To examine the association between 24 h urinary water-soluble vitamin levels and their intakes in free-living Japanese schoolchildren. All foods consumed for four consecutive days were recorded accurately by a weighed food record. A single 24 h urine sample was collected on the fourth day, and the urinary levels of water-soluble vitamins were measured. An elementary school in Inazawa City, Japan. A total of 114 healthy, free-living, Japanese elementary-school children aged 10-12 years. The urinary level of each water-soluble vitamin was correlated positively to its mean intake in the past 2-4 d (vitamin B1: r = 0·42, P vitamin B2: r = 0·43, P vitamin B6: r = 0·49, P vitamin C: r = 0·39, P vitamin B12 (r = 0·10, P = NS). Estimated mean intakes of water-soluble vitamins calculated using urinary levels and recovery rates were 97-102 % of their 3 d mean intake, except for vitamin B12 (79 %). The results show that urinary levels of water-soluble vitamins, except for vitamin B12, reflected their recent intakes in free-living Japanese schoolchildren and could be used as a potential biomarker to estimate mean vitamin intake.

  6. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    Science.gov (United States)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  7. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    International Nuclear Information System (INIS)

    Jaapar, Syaripah Zaimah Syed; Iwai, Yoshio; Morad, Noor Azian

    2013-01-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  8. Determination of water-soluble and fat-soluble vitamins in tears and blood serum of infants and parents by liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Khaksari, Maryam; Mazzoleni, Lynn R; Ruan, Chunhai; Kennedy, Robert T; Minerick, Adrienne R

    2017-02-01

    Tears serve as a viable diagnostic fluid with advantages including less invasive sample to collect and less complex to prepare for analysis. Several water-soluble and fat-soluble vitamins were detected and quantified in human tears and compared with blood serum levels. Samples from 15 family pairs, each pair consisting of a four-month-old infant and one parent were analyzed; vitamin concentrations were compared between tears and blood serum for individual subjects, between infants and parents, and against self-reported dietary intakes. Water-soluble vitamins B 1 , B 2 , B 3 (nicotinamide), B 5 , B 9 and fat-soluble vitamin E (α-tocopherol) were routinely detected in tears and blood serum while fat-soluble vitamin A (retinol) was detected only in blood serum. Water-soluble vitamin concentrations measured in tears and blood serum of single subjects were comparable, while higher concentrations were measured in infants compared to their parents. Fat-soluble vitamin E concentrations were lower in tears than blood serum with no significant difference between infants and parents. Serum vitamin A concentrations were higher in parents than infants. Population trends were compiled and quantified using a cross correlation factor. Strong positive correlations were found between tear and blood serum concentrations of vitamin E from infants and parents and vitamin B 3 concentrations from parents, while slight positive correlations were detected for infants B 3 and parents B 1 and B 2 concentrations. Correlations between infants and parents were found for the concentrations of B 1 , B 2 , B 3 , and E in tears, and the concentrations of B 2, A, and E in blood serum. Stronger vitamin concentration correlations were found between infants and parents for the breast-fed infants, while no significant difference was observed between breast-fed and bottle-fed infants. This work is the first to demonstrate simultaneous vitamin A, B, and E detection and to quantify correlations between

  9. Water sorption and solubility of bulk-fill composites polymerized with a third generation LED LCU

    Directory of Open Access Journals (Sweden)

    Tuğba MİSİLLİ

    2017-10-01

    Full Text Available Abstract The aim of this study was to compare the degree of water sorption and solubility in bulk-fills after curing with a polywave light source. A total of 120 disc-shaped specimens (8 mm diameter; 4 mm depth were prepared from three regular bulk-fill materials (X-tra Fil, Tetric N-Ceram Bulk Fill, SonicFill, and a control material (Filtek Z250, cured in 3 different modes (standard: 1000 mW/cm2-20 s; high power: 1400 mW/cm2-12 s; xtra power: 3200 mW/cm2-6 s using a third generation light-emitting diode light curing unit. Water sorption and solubility levels of the specimens were measured according to the ISO 4049:2009 specification after storing in distilled water for 30 days. Data were analyzed using two-way ANOVA and Tukey’s post-hoc test (p < 0.05. The Z250 sample exposed to high power presented a higher sorption compared to the X-tra Fil and SonicFill samples. In xtra power mode, the values of Z250 and SonicFill were similar to each other and higher compared to those of X-tra Fil. Only SonicFill exhibited significantly different sorption values depending on the curing mode, the highest of which was achieved when using the xtra power mode. The highest solubility values were obtained for SonicFill. No statistically significant differences were found among other groups. No significant correlation was detected between water sorption and solubility. The traditional composite group exhibited a higher water sorption values than the bulk-fills. The reduction in polymerization time significantly increased the sorption of SonicFill. SonicFill showed the highest water solubility value among the composites tested.

  10. Plant growth inhibition by soluble salts in sewage sludge-amended mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C.S.; Anderson, R.C. [Illinois State University, Normal, IL (United States). Dept. of Biological Sciences

    1995-07-01

    The growth response of prairie switchgrass {ital Panicum virgatum}L was compared in strip mine spoil amended with various levels of anaerobically digested waste-activated sewage sludge (0, 56, 111, 222, or 333 dry Mg ha{sup -1}) and commercial fertilizer, pure sludge, and glasshouse soil. Plants were grown in a growth chamber and substrates were maintained at field capacity during the study. Soluble salt concentrations of the substrates increased linearly as a function of sludge amendment and were within the range known to inhibit the growth of many plant species at the high levels of sludge application. There was, however, a linear response of biomass production to increasing levels of sludge amendment. Maintaining substrates at field capacity apparently prevented the high concentration of soluble salts from inhibiting plant growth. The increased biomass yield associated with sludge application was likely due to the increased availability of inorganic nutrients associated with sludge amendment. 22 refs., 2 figs., 2 tabs.

  11. Solubility investigation of ether and ester essential oils in water using spectrometry and GC/MS

    Directory of Open Access Journals (Sweden)

    B. Khodabandeloo

    2017-11-01

    Full Text Available Background and objectives: Essential oils (volatiles are aromatic oily liquids prepared from different parts of plants and demonstrate various therapeutic and cosmetic properties. The dissolution of essential oils are not desirable in water, therefore the aim of this research was evaluation and selection the best co-solvents for increasing their solubility and bio availability. Methods:The solubility of six  plants essential oils were investigated in presence of propylene glycol (PG, polyethylene glycol 300 (PEG, glycerin and ethanol as solvent and tween 80 or lecithin as co-solvent by observation and spectrophotometric assay. Chemical composition of the essential oils and supersaturated 50% ethanol (SSE and 50% PG or PEG (SSP solutions were analyzed by GC/MS, too. Results: Ester (Lavandula dentata, Heracleum persicum and, Elettaria cardamomum essential oils showed the best solubility in ethanol and PG, respectively. Ether (Foeniculum vulgare, Pimpinella anisum and Petroselinum crispum essential oils had the best solubility in ethanol and PEG, respectively. In ester class, mixture of ethanol/water was the best solvent according to solubility and total amounts of major compounds of the essential oils. In ether class, all samples had better solubility in mixtures of ethanol/water than PEG, but the amounts of total phenols or ethers in SSP of some samples were higher than SSE. Therefore selecting the best solvent for these class need more experiments. Conclusion: Selecting the solvent for essential oils changes their chemical composition; therefore the best solvent was different for various purposes.

  12. Studies of arsenic species in water and sediment from Obuasi Gold Mines using high performance liquid chromatography - neutron activation analysis

    International Nuclear Information System (INIS)

    Tulasi, D.

    2011-01-01

    In this study, the total As content and the levels of As(III) and As(IV) in water and sediments from the Kwabrafo stream a major water body draining the Obuasi gold mining community in southwestern Ghana, have been investigated to ascertain the extent of total As contamination and the As species distribution in the water and sediments. Total As content was determined by INAA without any chemical treatment. Solid phase extraction with phosphate buffer was used to extract As species from the sediments. Reverse phase ion-pair HPLC-(UV)-INAA was used for the As speciation. IAEA-SL-1 (Lake sediment) was used to check the validity of the INAA method. The measured values (27.83±0.59 mg/kg) are in good agreement with the IAEA recommended value (27.60 mg/kg) and also with the 95% confidence interval (24.7-30.5 mg/kg). The accuracy of the measurement in terms of relative deviation from the IAEA recommended values was ±0.83%. This confirms the validity of the INAA method and the reliability of the results obtained in this work. Phosphate buffer extraction of soluble As species from sediment was validated by the extraction of As species from the sediment spiked with mixed As(III) and As(V) standards. After extraction, the sum of the total As concentrations measured in the supernatant and residue (1057 mg/kg was comparable to the total As in the spiked sediment (1140 mg/kg), that is a mass balance of 92.7%. the high mass balance confirms the reliability of phosphate buffer as an extractant for the extraction of soluble As species from sediment. Internally prepared mixed As(III) and As(V) standards were used to determine their respective retention times for HPLC separation. In addition, the internally prepared As (III) and As(V) were used to validate the HPLC-INAA analytical method. There was good agreement between the values obtained for As(III) [9.60±1.23 mg/L) and As(V) [9.62±1.28 mg/L] and the standard concentration of 10 mg/L for each As species. Mass balance was

  13. Deposition of inorganic particulate aerosols to vegetation - a new method of estimating

    International Nuclear Information System (INIS)

    Kwiecien, M.

    1997-01-01

    A new, direct method was developed for quantifying inorganic particulate aerosols trapped by the forest canopy, and for determining the resulting input of elements to a forest ecosystem. The method is based on direct measurements of only six parameters. Using this method, it is possible to determine the load of aerosols trapped by the forest canopy and deposited to leaves, as well as the load of aerosols falling to the forest floor by impaction on plants. It is also possible to estimate the aerosol input of soluble and insoluble elements to an ecosystem. With this new method it was found that the load of aerosols trapped by the canopy of a mixed forest locate din the Rybnik Coal Basin averaged 189.0 kg x ha -1 x growing season or 39.3% of the total inorganic particles reaching the ecosystem. The trapped aerosols provided 13.4 kg x ha -1 of soluble nitrogen and 0.91 kg x ha -1 of insoluble nitrogen over the growing season. At the same time, the input of soluble nitrogen from the atmosphere with rainfall to an open area averaged 13.9 kg x ha -1 , and the input of insoluble nitrogen with inorganic dusts averaged 1.4. kg x ha -1

  14. The spectrographic analysis of inorganic impurities in heavy water

    International Nuclear Information System (INIS)

    Artaud, J.; Normand, J.; Vie, R.

    1961-01-01

    Inorganic impurities in heavy water are determined by two spectrographic methods. First is described the copper-spark method which is sensitive and directly applicable, and is particular useful because of the absence of a support. Secondly the graphite impregnation method is given; this is used when the first method is not applicable (determination of copper) and for the alkali metals. For the usual elements, the sensitivity of the copper spark method is of the order of 0,1 μg/ml whereas for the graphite impregnation method the sensitivity is only 0,3 μg/ml. (author) [fr

  15. Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes.

    Science.gov (United States)

    Ali, Md Ashraf; Kataoka, Noriko; Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru

    2017-01-01

    Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.

  16. Extraction vitamins of group B water-soluble polymers

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available General lows of extraction of B vitamins in aquatic environments of the solution of polymers (poly-N-vinylpyrrolidone, poly-N-vinilkaprolaktam has been studied. The influence of polymer concentration and structure on the distribution coefficients and degree of extraction of vitamins has been established. As a result, the direct search of a stable two-phase systems based on water-soluble polymers has been developed effective systems for the extraction of vitamin B from aqueous salt solutions.

  17. Water-Soluble N-Heterocyclic Carbene-Protected Gold Nanoparticles: Size-Controlled Synthesis, Stability, and Optical Properties

    OpenAIRE

    Salorinne, Kirsi; Man, Renee W.Y.; Li, Chien-Hung; Taki, Masayasu; Nambo, Masakazu; Crudden, Cathleen M.

    2017-01-01

    NHC-Au(I) complexes were used to prepare stable, water-soluble, NHC-protected gold nanoparticles. The water-soluble, charged nature of the nanoparticles permitted analysis by polyacrylamide gel electrophoresis (PAGE), which showed that the nanoparticles were highly monodisperse, with tunable core diameters between 2.0 and 3.3 nm depending on the synthesis conditions. Temporal, thermal, and chemical stability of the nanoparticles were determined to be high. Treatment with thiols caused etching...

  18. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    OpenAIRE

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in...

  19. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    Science.gov (United States)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  20. Consideration on thermodynamic data for predicting solubility and chemical species of elements in groundwater. Part 2: Np, Pu

    International Nuclear Information System (INIS)

    Yamaguchi, Tetsuji

    2000-11-01

    The solubility determines the release of a radionuclide from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Complexations of the radionuclide by ligands in groundwater affect the interaction between radionuclides and geologic media, thus affect their migration behavior. It is essential to estimate the solubility and to predict the chemical species for the radionuclide based on thermodynamic data. The thermodynamic data of aqueous species and compounds were reviewed and compiled for Np and Pu. Thermodynamic data were reviewed with emphasis on the hydrolysis and carbonate complexation that can dominate the speciation in groundwater. Thermodynamic data for other species were selected based on existing databases. Thermodynamic data for other important elements are under investigation, thus shown in an appendix for temporary use. (author)

  1. Distribution of Coral Reef and Seagrass Ecosystems’s Inorganic Carbon in the Waters of Beras Basah Bontang, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Irwan Ramadhan Ritonga

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Inorganic carbon is closely related to the calcification process (CaCO3, which is the main constituent of coral reefs or microorganisms that exist in the oceans such as foraminifera and cocolitoporit. Inorganic carbon is also closely linked to the chemical processes that occur when carbon dioxide gas (CO2 dissolved in water. The research of inorganic carbon in the waters of Beras Basah was carried out in January, February and March 2012. The purpose of this study was to understand the distribution and concentration of total inorganic carbon (CT in coral reef and seagrass ecosystems as well as the correlation of Beras Basah. The results showed that the concentration of total inorganic carbon (CT in January average 1166.503 μmol/kgSW, February average 1115.599 μmol/kgSW, and then in March the average 987.443 μmol/kgSW. Distribution patterns of total inorganic carbon (CT is vectoral, where in January, the concentration of total inorganic carbon (CT was highest in the Southeast region, was in February in the South and Southeast, while in March shifted to North region of Beras Basah Island. The concentration difference is thought to be influenced by pH and the seasons, tides, biochemical processes, and biological activity. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Doi: 10.12777/ijse.5.1.1-5 [How to cite this article: Ritonga, I.R., Supriharyono, and Henderarto, B. (2013. Distribution of Coral Reef and Seagrass Ecosystems’s Inorganic Carbon in the Waters of Beras Basah Bontang, East Kalimantan. International Journal of Science and Engineering, 5(1,1-6. Doi: 10.12777/ijse.5.1.1-5]  Enhancement of quercetin water solubility with steviol glucosides and the studies of biological properties

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2015-12-01

    Full Text Available Background: Quercetin, a flavonol contained in various vegetables and fruits, has various biological activities including anticancer, antiviral, anti-diabetic, and anti-oxidative. However, it has low oral bioavailability due to insolubility in water. Thus, the bioavailability of quercetin administered to human beings in a capsule form, was reported to be less than 1%, with only a small percentage of ingested quercetin getting absorbed in the blood. This leads to certain difficulties in creating highly effective medicines Methods: Quercetin-rubusoside and quercetin-rebaudioside were prepared. The antioxidant activities of quercetin and Q-rubusoside were evaluated by DPPH radical scavenging method. Inhibition activities of quercetin and Quercetin-rubusoside were determined by measuring the remaining activity of 3CLpro with 200 μM inhibitor. The inhibition activity of quercetin, rubusoside and quercetin-rubusoside were determined by measuring the activity of human maltase which remains at 100 μM rubusoside or quercetin-rubusoside. The mushroom tyrosinase inhibition was assayed with the reaction mixture contained 3.3 mM L-DOPA in 50 mM potassium phosphate buffer (pH 6.8, and 10 U mushroom tyrosinase/ml with or without quercetin or quercetin-rubusoside. Results: With 10% rubusoside treatment, quercetin showed solubility of 7.7 mg/ml in water, and its solubility increased as the concentration of rubusoside increased; the quercetin solubility in water increased to 0.83 mg/mlas rubusoside concentration increased to 1 mg/ml. Quercetin solubilized in rubusoside solution showed DPPH radical-scavenging activity and mushroom tyrosinase inhibition activity, similar to that of quercetin solubilized in dimethyl-sulfoxide. Quercetin-rubusoside also showed 1.2 and 1.9 folds higher inhibition activity against 3CLpro of SARS and human intestinal maltase, respectively, than those of quercetin in DMSO. Conclusions: Quercetin can be solubilized in water with

  2. Water-soluble carbon nanotube compositions for drug delivery and medicinal applications

    Science.gov (United States)

    Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dmitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jr., Jodie L.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.; Milas, Zvonimir L.; Mason, Kathy A.; Milas, Luka

    2014-07-22

    Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.

  3. Impact of fog processing on water soluble organic aerosols.

    Science.gov (United States)

    Tripathi, S. N.; Chakraborty, A.; Gupta, T.

    2017-12-01

    Fog is a natural meteorological phenomenon that occurs all around the world, and contains a substantial quantity of liquid water. Fog is generally seen as a natural cleansing agent but can also form secondary organic aerosols (SOA) via aqueous processing of ambient organics. Few field studies have reported elevated O/C ratio and SOA mass during or after fog events. However, mechanism behind aqueous SOA formation and its contribution to total organic aerosols (OA) still remains unclear. In this study we have tried to explore the impact of fog/aqueous processing on the characteristics of water soluble organic aerosols (WSOC), which to our knowledge has not been studied before. To assess this, both online (using HR-ToF-AMS) and offline (using a medium volume PM2.5 sampler and quartz filter) aerosol sampling were carried out at Kanpur, India from 15 December 2014 - 10 February 2015. Further, offline analysis of the aqueous extracts of the collected filters were carried out by AMS to characterize the water soluble OA (WSOA). Several (17) fog events occurred during the campaign and high concentrations of OA (151 ± 68 µg/m3) and WSOA (47 ± 19 µg/m3) were observed. WSOA/OA ratios were similar during fog (0.36 ± 0.14) and nofog (0.34 ± 0.15) periods. WSOA concentrations were also similar (slightly higher) during foggy (49 ± 18 µg/m3) and non-foggy periods (46 ± 20 µg/m3), in spite of fog scavenging. However, WSOA was more oxidized during foggy period (average O/C = 0.81) than non foggy periods (average O/C = 0.70). Like WSOA, OA was also more oxidized during foggy periods (average O/C = 0.64) than non foggy periods (average O/C = 0.53). During fog, WSOA to WIOA (water insoluble OA) ratios were higher (0.65 ± 0.16) compared to non foggy periods (0.56 ± 0.15). These observations clearly showed that WSOA become more dominant and processed during fog events, possibly due to the presence of fog droplets. This study highlights that fog processing of soluble organics

  4. Survey on synthesis and reaction of environmentally benign water-soluble metal complex catalysts; Kankyo chowagata suiyosei sakutai shokubai no gosei hanno no chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the research trend survey results on the synthesis and reaction of water-soluble metal complexes which are regarded as environmentally benign catalysts. For the synthesis and catalysis of water-soluble complexes, synthetic methods of water-soluble phosphines, such as sulfonated TPPMS and TPPTS, are described in detail. Synthesis and reactivity of hydroxymethylphosphines are introduced, and the application of electrospray mass spectroscopy is elucidated as a tool for the analysis of them. Changes of the application of transition metal complexes with water-soluble phosphines to catalysis are described. Dual catalysts which have both functions of phase transfer catalysts and homogeneous catalysts are introduced. Concept of counter phase transfer catalysts is also introduced, and some catalytic reactions are described. In addition, this report introduces catalysis of water-soluble polymer-supported metal complexes, immobilization of metal colloids with water-soluble ligands and their analysis, and water-soluble complexes as hybrid catalysts. 144 refs., 94 figs., 10 tabs.

  5. Formulation of poorly water-soluble Gemfibrozil applying power ultrasound.

    Science.gov (United States)

    Ambrus, R; Naghipour Amirzadi, N; Aigner, Z; Szabó-Révész, P

    2012-03-01

    The dissolution properties of a drug and its release from the dosage form have a basic impact on its bioavailability. Solubility problems are a major challenge for the pharmaceutical industry as concerns the development of new pharmaceutical products. Formulation problems may possibly be overcome by modification of particle size and morphology. The application of power ultrasound is a novel possibility in drug formulation. This article reports on solvent diffusion and melt emulsification, as new methods supplemented with drying in the field of sonocrystallization of poorly water-soluble Gemfibrozil. During thermoanalytical characterization, a modified structure was detected. The specific surface area of the drug was increased following particle size reduction and the poor wettability properties could also be improved. The dissolution rate was therefore significantly increased. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. On linear correlation between interfacial tension of water-solvent interface solubility of water in organic solvents and parameters of diluent effect scale

    International Nuclear Information System (INIS)

    Mezhov, Eh.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    Presence of linear correlation between water solubility in nonmiscible with it organic solvents, interfacial tension of water-solvent interface, on the one hand, and solvent effect scale parameters and these solvents π* - on the other hand, is established. It allows, using certain tabular parameters of solvent effect or each solvent π*, to predict values of interfacial tension and water solubility for corresponding systems. It is shown, that solvent effect scale allows to predict values more accurately, than other known solvent scales, as it in contrast to other scales characterizes solvents, which are in equilibrium with water

  7. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation

    Science.gov (United States)

    Wang, Sujuan; Peng, Xixi; Cui, Liangliang; Li, Tongtong; Yu, Bei; Ma, Gang; Ba, Xinwu

    2018-02-01

    The potential application of curcumin was heavily limited in biomedicine because of its poor solubility in pure water. To circumvent the detracting feature, two novel water-soluble amino acid modified curcumin derivatives (MLC and DLC) have been synthesized through the condensation reaction between curcumin and Nα-Fmoc-Nε-Boc-L-lysine. Benefiting from the enhanced solubility of 3.32 × 10- 2 g/mL for MLC and 4.66 × 10- 2 g/mL for DLC, the inhibition effects of the as-prepared derivatives on the amyloid fibrillation of lysozyme (HEWL) were investigated detaily in water solution. The obtained results showed that the amyloid fibrillation of HEWL was inhibited to a great extent when the concentrations of MLC and DLC reach to 20.139 mM and 49.622 mM, respectively. The fluorescence quenching upon the addition of curcumin to HEWL provide a support for static and dynamic recombination quenching process. The binding driving force was assigned to classical hydrophobic interaction between curcumin derivatives and HEWL. In addition, UV-Vis absorption and circular dichroism (CD) spectra confirmed the change of the conformation of HEWL.

  8. Bioavailability assessment of the lipophilic benfotiamine as compared to a water-soluble thiamin derivative.

    Science.gov (United States)

    Bitsch, R; Wolf, M; Möller, J; Heuzeroth, L; Grüneklee, D

    1991-01-01

    The bioequivalence of thiamin in 2 therapeutically used preparations was tested in 10 healthy young men. Thiamin was orally administered either as lipophilic benfotiamine or as water-soluble thiamin mononitrate. Biokinetic data, measured as area under the curve and maximal concentration in plasma and hemolysate after ingestion, demonstrated a significantly improved bioavailability from the lipophilic derivative despite an ingested dose of only 40% as compared with the water-soluble salt. A superior cellular efficacy of benfotiamine was also concluded from the short-term stimulation of the thiamin-dependent transketolase activity in erythrocytes.

  9. Synthesis of water-soluble scaffolds for peptide cyclization, labeling, and ligation

    NARCIS (Netherlands)

    Smeenk, L.E.J.; Dailly, N.; Hiemstra, H.; van Maarseveen, J.H.; Timmerman, P.

    2012-01-01

    The synthesis and applications of water-soluble scaffolds that conformationally constrain side chain unprotected linear peptides containing two cysteines are described. These scaffolds contain a functionality with orthogonal reactivity to be used for labeling and ligation. This is illustrated by the

  10. Urinary water-soluble vitamins and their metabolite contents as nutritional markers for evaluating vitamin intakes in young Japanese women.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Shibata, Katsumi

    2008-06-01

    Little information is available to estimate water-soluble vitamin intakes from urinary vitamins and their metabolite contents as possible nutritional markers. Determination of the relationships between the oral dose and urinary excretion of water-soluble vitamins in human subjects contributes to finding valid nutrition markers of water-soluble vitamin intakes. Six female Japanese college students were given a standard Japanese diet in the first week, the same diet with a synthesized water-soluble vitamin mixture as a diet with approximately onefold vitamin mixture based on Dietary Reference Intakes (DRIs) for Japanese in the second week, with a threefold vitamin mixture in the third week, and a sixfold mixture in the fourth week. Water-soluble vitamins and their metabolites were measured in the 24-h urine collected each week. All urinary vitamins and their metabolite levels except vitamin B(12) increased linearly in a dose-dependent manner, and highly correlated with vitamin intake (r=0.959 for vitamin B(1), r=0.927 for vitamin B(2), r=0.965 for vitamin B(6), r=0.957 for niacin, r=0.934 for pantothenic acid, r=0.907 for folic acid, r=0.962 for biotin, and r=0.952 for vitamin C). These results suggest that measuring urinary water-soluble vitamins and their metabolite levels can be used as good nutritional markers for assessing vitamin intakes.

  11. Study to evaluate the impact of heat treatment on water soluble vitamins in milk.

    Science.gov (United States)

    Asadullah; Khair-un-nisa; Tarar, Omer Mukhtar; Ali, Syed Abdul; Jamil, Khalid; Begum, Askari

    2010-11-01

    To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin 81 content in fresh milk decreased from 0.037 mg/100 g to 0.027 mg/100 g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100 g, vitamin B3 0.062 to 0.044 mg/100 g, vitamin B6 0.025 to 0.019 mg/100 g and folic acid 3.38 to 2.40 microg/100 g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk (JPMA 60:909; 2010).

  12. Study to evaluate the impact of heat treatment on water soluble vitamins in milk

    International Nuclear Information System (INIS)

    Khair-un-Nisa, A.; Tarar, O.M.; Ali, S.A.; Jamil, K.; Begum, A.

    2010-01-01

    Objectives: To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Methods: Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Results: Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin B1 content in fresh milk decreased from 0.037 mg/100g to 0.027 mg/100g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100g, vitamin B3 0.062 to 0.044 mg/100g, vitamin B6 0.025 to 0.019 mg/100g and folic acid 3.38 to 2.40 < g/100g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conclusion: Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk. (author)

  13. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  14. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  15. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting

    Science.gov (United States)

    Chen, Yingzhi; Li, Aoxiang; Yue, Xiaoqi; Wang, Lu-Ning; Huang, Zheng-Hong; Kang, Feiyu; Volinsky, Alex A.

    2016-07-01

    Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration.Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi

  16. Effect of decreasing acidity on the extractability of inorganic soil phosphorus

    Directory of Open Access Journals (Sweden)

    Helinä Hartikainen

    1981-01-01

    Full Text Available The extractability of P by the water and anion exchange resin methods and reactions of soil inorganic P were investigated with seven acid mineral soil samples incubated with KOH solutions of various concentrations. The results were compared with the analytical data obtained from three soil samples incubated in a prolonged liming experiment. The resin extraction method proved more effective than the water extraction method. The amounts of P desorbed by both methods seemed to increase exponentially as the pH in the soil suspensions rose. The factors involved were discussed. On the basis of fractionation analyses P reacting to changes in the pH and participating in desorption processes was supposed to originate from secondary NH4F and NaOH soluble reserves. In general, as the acidity decreased NH4F-P increased at the expense of NaOH-P. In heavily limed gyttja soil also H2SO4-P increased. This was possibly induced by the precipitation of mobilized P as a Ca compound. The significance of pH in the extractability of soil P seemed somewhat to lessen as the amount of secondary P increased. The results were in accordance with the conception that liming improves the availability of inorganic P to plants and reduces the need for P fertilization. However, increasing of the soil pH involves the risk that P is more easily desorbed to the recipient water by the eroded soil material carried into the watercourse. Therefore, intensive liming is not recommendable close to the shoreline. Further, it should be taken into account that liming of lakes may also result in eutrophication as desorption of sedimentary inorganic P is enhanced.

  17. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  18. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  19. Kinetics of radiolysis of irradiated ligno celluloses into soluble products in water and rumen liquid

    International Nuclear Information System (INIS)

    Tukenmez, I.; Bakioglu, A.T.; Ersen, M.S.

    1997-01-01

    In order to increase the low bio hydrolysis of ligno celluloses in biotechnological and biological processes where these materials are used as raw materials and ruminant feed, the substrates were pretreated with irradiation to induce radiolytic depolymerisation and then kinetics of their radiolysis into soluble products in water and rumen liquid were analyzed. Wheat straw used as a representative lignocellulose substrate was irradiated at 0-2.5 MGy doses at 20''o''C with an optimum equilibrium humidity of 6.6% in Cs-137 gamma irradiator with a dose rate of 1.8 kGy/h, and soluablefractions in water and in situ rumen liquid were determined gravimetrically. Based on these data, a reaction mechanism was proposed for the radiolysis of ligno celluloses into soluble fractions. From the corresponding reaction rate equations with this mechanism a dose dependent kinetics was derived for the radiolysis of ligno celluloses into water/rumen liquid-soluble products. Defined by this kinetics, the threshold doses for the radiolysis of the substrate into water/rumen liquid-soluble products were respectively found 80.6 kGy and 186.0 kGy, and fractional radiolytic decomposition yields 0.193 MGy''-1''.It was emphasized that developed kinetic models may be used for the process design of irradiation pretreatments to improve the bio hydrolysis of ligno celluloses.(2figs. and 17 refs.)

  1. Aqueous solubility, dispersibility and toxicity of biodiesels

    International Nuclear Information System (INIS)

    Hollebone, B.P.; Fieldhouse, B.; Lumley, T.C.; Landriault, M.; Doe, K.; Jackman, P.

    2007-01-01

    The renewed interest in the use of biological fuels can be attributed to that fact that feedstocks for fatty-acid ester biodiesels are renewable and can be reclaimed from waste. Although there are significant benefits to using biodiesels, their increased use leaves potential for accidental release to the environment. Therefore, their environmental behaviours and impacts must be evaluated along with the risk associated with their use. Biodiesel fuels may be made from soy oil, canola oil, reclaimed restaurant grease, fish oil and animal fat. The toxicological fate of biofuel depends on the variability of its chemical composition. This study provided an initial assessment of the aqueous fate and effects of biodiesel from a broad range of commonly available feedstocks and their blends with petroleum diesels. The study focused primarily on the fate and impact of these fuels in fresh-water. The use of chemical dispersion as a countermeasure for saltwater was also investigated. The exposure of aquatic ecosystems to biodiesels and petroleum diesel occurs via the transfer of material from the non-aqueous phase liquid (NAPL) into the aqueous phase, as both soluble and dispersed components. The aqueous solubilities of the fuels were determined from the equilibrium water-accommodated fraction concentrations. The acute toxicities of many biodiesels were reported for 3 test species used by Environment Canada for toxicological evaluation, namely rainbow trout, the water flea and a luminescent bacterium. This study also evaluated the natural potential for dispersion of the fuels in the water column in both low and high-energy wave conditions. Chemical dispersion as a potential countermeasure for biodiesel spills was also evaluated using solubility testing, acute toxicity testing, and dispersibility testing. It was shown that biodiesels have much different fates and impacts from petroleum diesels. The compounds partitioning into the water column are also very different for each

  2. Release rates of soluble species at Yucca Mountain

    International Nuclear Information System (INIS)

    Lee, W.W.-L.; Pigford, T.H.

    1989-02-01

    Experimental leaching of spent fuel shows that some fission product species are preferentially released upon contact with water. We analyze the conservative case of bare spent fuel in contact with saturated tuff using diffusional mass transfer analysis. For the parameter values used, the USNRC release rate limit is not exceeded, except for 99 Tc. The presence of a container and the distribution of water contact over time will assist in meeting this criterion. 6 figs., 2 tabs

  3. Physical and ionic characteristics in water soluble fraction (WSF) of ...

    African Journals Online (AJOL)

    The values of ionic and physical characteristics at 25, 50 and 100% water soluble fraction (WSF) of Olomoro well-head crude oil before and after exposure to Azolla africana were investigated. The WSF values before and after exposure to the plants showed that more ions were available after the introduction of the test plant.

  4. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Science.gov (United States)

    2010-07-01

    ... b, using a linear regression equation of C vs. R in the following form: Equation 4: ER15DE00.062... address in paragraph (e) of this section. (b) Introduction—(1) Purpose. (i) The water solubility of a... peak area to volume injected and, from the regression equation of the calibration line, determine the...

  5. A water-soluble, mucoadhesive quaternary ammonium chitosan-methyl-β-cyclodextrin conjugate forming inclusion complexes with dexamethasone.

    Science.gov (United States)

    Piras, Anna Maria; Zambito, Ylenia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Terreni, Eleonora; Fabiano, Angela; Balzano, Federica; Uccello-Barretta, Gloria; Chetoni, Patrizia

    2018-03-30

    The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-β-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.

  6. Determination and correlation of solubility and solution thermodynamics of oxiracetam in three (alcohol + water) binary solvents

    International Nuclear Information System (INIS)

    Li, Kangli; Du, Shichao; Wu, Songgu; Cai, Dongchen; Wang, Jinxu; Zhang, Dejiang; Zhao, Kaifei; Yang, Peng; Yu, Bo; Guo, Baisong; Li, Daixi; Gong, Junbo

    2016-01-01

    Highlights: • The solubility of racemic oxiracetam in three binary solvents were determined. • The experimental solubility of racemic oxiracetam were correlated by four models. • The dissolution thermodynamic properties of racemic oxiracetam were calculated. - Abstract: In this paper, we proposed a static analysis method to experimentally determine the (solid + liquid) equilibrium of racemic oxiracetam in (methanol + water), (ethanol + water) and (isopropanol + water) binary solvents with alcohol mole fraction ranging from 0.30 to 0.90 at atmosphere pressure (p = 0.1 MPa). For the experiments, the temperatures range from (283.15 to 308.15) K. The results showed that the solubility of oxiracetam increased with the increasing temperature, while decreased with the increasing organic solvent fraction in all three tested binary solvent systems. The modified Apelblat model, the CNIBS/Redlich–Kister model, the combined version of Jouyban–Acree model and the NRTL model were employed to correlate the measured solubility values, respectively. Additionally, some of the thermodynamic properties which can help to evaluate its dissolution behavior were obtained based on the NRTL model.

  7. Water-soluble ions in atmospheric aerosols measured in Xi'an, China: Seasonal variations and sources

    Science.gov (United States)

    Zhang, T.; Cao, J. J.; Tie, X. X.; Shen, Z. X.; Liu, S. X.; Ding, H.; Han, Y. M.; Wang, G. H.; Ho, K. F.; Qiang, J.; Li, W. T.

    2011-10-01

    Daily PM 2.5 and water-soluble inorganic ions (Na +, NH 4+, K +, Mg 2+, Ca 2+, Cl -, NO 3- and SO 42-) were collected in Xi'an (34.23°N, 108.88°E), China from March 2006 to March 2007. PM 2.5 was collected using battery-powered mini-volume samplers. And the ions were determined by ion chromatography from the measured aerosol mass. The annual average mass concentration of PM 2.5 was found to be 194.1 ± 78.6 μg m - 3 , which exceeded substantially the international guidelines for health concerns. The seasonal average mass concentration of PM 2.5 was highest in winter (266.8 μg m - 3 ) and lowest in summer (138.6 μg m - 3 ). The three highest abundant ions were SO 42-, NO 3-, and NH 4+, with average concentrations of 35.6 ± 19.5 μg m - 3 , 16.4 ± 10.1 μg m - 3 , and 11.4 ± 6.8 μg m - 3 , which were accounted for 18.7%, 8.0%, and 5.7% of the PM 2.5 mass, respectively. The major ions were in the species of (NH 4) 2SO 4, NH 4HSO 4 and NH 4NO 3, and their concentrations were highest in winter, due to high coal combustion. The concentrations of Ca 2+ were higher in spring than other seasons, due to the higher mineral dust concentrations. Ca 2+ was strongly correlated with CO 32-, which was calculated as the difference in the measured cations minus anions. Ion balance calculations indicate that the PM 2.5 was acidic, and this result is consistent with the measurement of pH values. Sulfur oxidation ratio was higher in summer and autumn, which implies that the formation of secondary sulfate-rich particles is favored by warm and relatively moist weather. Nitrogen oxidation ratio was highest in autumn.

  8. Synthesis of new water-soluble metal-binding polymers: Combinatorial chemistry approach. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Smith, B.F.

    1997-01-01

    'The first objective of this research is to develop rapid discovery and optimization approaches to new water-soluble chelating polymers. A byproduct of the development approach will be the new, selective, and efficient metal-binding agents. The second objective is to evaluate the concept of using water and organic soluble polymers as new solid supports for combinatorial synthesis. The technology under development, Polymer Filtration (PF), is a technique to selectively remove or recover hazardous and valuable metal ions and radionuclides from various dilute aqueous streams. Not only can this technology be used to remediate contaminated soils and solid surfaces and treat aqueous wastes, it can also be incorporated into facilities as a pollution prevention and waste minimization technology. Polymer Filtration uses water-soluble metal-binding polymers to sequester metal ions in dilute solution. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using commercial ultrafiltration technology. Water, small organic molecules, and unbound metals pass freely through the ultrafiltration membrane while concentrating the metal-binding polymer. The polymers can then be reused by changing the solution conditions to release the metal ions. The metal-ions are recovered in concentrated form for recycle or disposal using a diafiltration process. The water-soluble polymer can be recycled for further aqueous-stream processing. To advance Polymer Filtration technology to the selectivity levels required for DOE needs. fixture directions in Polymer Filtration must include rapid development, testing, and characterization of new metal-binding polymers. The development of new chelating molecules can be equated to the process of new drugs or new materials discovery. Thus, the authors want to build upon and adapt the combinatorial chemistry approaches developed for rapid molecule generation for the drug industry to the rapid

  9. Synthesis of phthalocyanines-ALA conjugates: water-soluble compounds with low aggregation.

    Science.gov (United States)

    de Oliveira, Kleber T; de Assis, Francisco F; Ribeiro, Anderson O; Neri, Claudio R; Fernandes, Adjaci U; Baptista, Mauricio S; Lopes, Norberto P; Serra, Osvaldo A; Iamamoto, Yassuko

    2009-10-16

    Syntheses of two water-soluble phthalocyanines (Pc) containing 5-aminolevulinic acid (ALA) linked to the core structure are described. These compounds were prepared by using original functionalizations, and they present remarkable structural and photophysical features, indicating that they could be applied to photodynamic therapy (PDT).

  10. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  11. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  12. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2014-11-01

    Full Text Available A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

  13. Synthesis of new water-soluble metal-binding polymers: Combinatorial chemistry approach. 1998 annual progress report

    International Nuclear Information System (INIS)

    Kurth, M.J.; Miller, R.B.; Sawan, S.; Smith, B.F.

    1998-01-01

    '(1) Develop rapid discovery and optimization approaches to new water-soluble chelating polymers for use in Polymer Filtration (PF) systems, and (2) evaluate the concept of using water and organic soluble polymers as new solid supports for combinatorial synthesis. Polymer Filtration (PF), which uses water-soluble metal-binding polymers to sequester metal ions in dilute solution with ultrafiltration (UF) to separate the polymers, is a new technology to selectively remove or recover hazardous and valuable metal ions. Future directions in PF must include rapid development, testing, and characterization of new metal-binding polymers. Thus, the authors are building upon and adapting the combinatorial chemistry approach developed for rapid molecule generation for the drug industry to the rapid development of new chelating polymers. The authors have focused on four areas including the development of: (1) synthetic procedures, (2) small ultrafiltration equipment compatible with organic- and aqueous-based combinatorial synthesis, (3) rapid assay techniques, and (4) polymer characterization techniques.'

  14. Effects of acute and chronic exposition on larvae of pejerrey Odontesthes Argentinensis to water soluble fraction (WSF) of crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Gusmao, Emeline P.; Rodrigues, Ricardo V.; Moreira, Caue B.; Seyffert, Bianca; Ignacio, Gabriela; Fillmann, Gilberto; Sampaio, Luis A.; Miranda-Filho, Kleber C. [Fundacao Universidade do Rio Grande (FURG), RS (Brazil)

    2008-07-01

    Petroleum is considered one of the greatest marine water pollutants, but there have been few studies on the impact of oil on biota. The water-soluble fraction (WSF) of a crude oil contains a mixture of polycyclic aromatic hydrocarbons (PAHs), phenols and heterocyclic compounds. Marine 'pejerrey' Odontesthes argentinensis (Teleostei: Atherinopsidae) is a important commercial species in Brazilian southern region and has great potential for mariculture. The aim of this study was to investigate the lethal and sub-lethal effects of the WSF crude oil exposition on the early life stages of O. argentinensis using acute (96 hours) and chronic (21 days) toxicity tests. Water-soluble fraction of heavy crude oil was prepared using a ratio of one part crude oil to nine parts filtered seawater and mixing for 24 h. Newly hatched larvae and 17 days old larvae were used for the tests, respectively. According to the results, median lethal concentration (LC50) was estimated in 55.0% of the WSF and safe level was estimated in 5.5% of WSF. These data can be used as a tool in environmental conservation studies. Heavy crude oil WSF presented total PAHs of 197.83 ng/mL and total BTEX of 106.1 {mu}g/L. (author)

  15. Improved Bilayer Resist System Using Contrast-Enhanced Lithography With Water-Soluble Photopolymer

    Science.gov (United States)

    Sasago, Masaru; Endo, Masayuki; Hirai, Yoshihiko; Ogawa, Kazufurni; Ishihara, Takeshi

    1986-07-01

    A new water-soluble contract enhanced material, WSP (Water-soluble Photopolymer), has been developed. The WSP is composed of a mainpolymer and a photobleachable reagents. The mainpolymer is a water-soluble polymer mixed with pullulan (refined through biotechnological process) and polyvinyl-pyrolidone (PVP). The photo-bleachable reagent is of a diazonium compound gorup. The introduction of the mainpolymer and photobleach-able reagent mixture has improved filmity, gas transparency, photobleaching characteristics and solubility in alkaline which are essential to the device fabrication. Submicron photoresist patterns are successfully fabricated by a simple sequence of photolithography process. The WSP layer has been applied to the bilayer resist system--deep-UV portable conformable masking (PCM)--that is not affected by VLSI's topography, and is able to fabricate highly accurate pattern. The aqueous developable layer, PMGI, with high organic solvent resistance is used in the bottom layer. Therefore, no interfacial mixing with conventional positive resist top layer is observed. Furthermore, deep-UV exposure method has been used for the KrF excimer laser optical system in order to increase high throughput. From the experiments, it has been confirmed that good resist transfer profile can be realized by the use of WSP, and that the submicron resist patterns with high aspect-ratio can be developed on the nonplaner wafer with steps of up to 41m by the combination of the WSP with the PCM system. By this technology, has been improved the weak point: variation in the line width due to the thickness of contrast-enhanced layer when the CEL technology is applied, and dependency of both the finished resist profile and the line-width accuracy on the thickness of the top layer resist when the PCM system is adopted.

  16. Inorganic chemical quality of European tap-water: 1. Distribution of parameters and regulatory compliance

    International Nuclear Information System (INIS)

    Banks, David; Birke, Manfred; Flem, Belinda; Reimann, Clemens

    2015-01-01

    Highlights: • A pan-European survey comprises >60 inorganic parameters in 579 tap water samples. • Compliance with standards for inorganic parameters is good (>99% in EU states). • Around 1% non-compliance is observed for arsenic and 0.2% for uranium. • No sample of water contained nitrate in excess of 45 mg/L. • A weak co-variation in Cu and Pb could indicate derivation from plumbing. - Abstract: 579 tap water samples were collected at the European scale and analysed in a single laboratory for more than 60 parameters. This dataset is evaluated here in terms of the statistical distribution of the analysed parameters and compliance with EU and international drinking water regulations. For most parameters a 99% (or better) degree of compliance was achieved. Among the parameters with the higher rates of non-compliance are: arsenic (1% non-compliance in EU member states, 1.6% when samples from non-EU states are also considered) and sodium (0.6%/1.0%). The decision by the WHO to raise its provisional guideline from 15 μg/L (WHO, 2004) to 30 μg/L (WHO, 2011) has reduced non-compliance for uranium from 1.0% to 0.2%. Despite the fact that tap water (i.e. presumed treated water) was collected, many observations can still be interpreted in terms of hydrogeochemical processes. The dataset demonstrates the potential value of very cost-effective, low-density sampling approaches at a continental (European) scale

  17. Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane-water.

    Science.gov (United States)

    Bustamante, P; Romero, S; Pena, A; Escalera, B; Reillo, A

    1998-12-01

    In earlier work, a nonlinear enthalpy-entropy compensation was observed for the solubility of phenacetin in dioxane-water mixtures. This effect had not been earlier reported for the solubility of drugs in solvent mixtures. To gain insight into the compensation effect, the behavior of the apparent thermodynamic magnitudes for the solubility of paracetamol, acetanilide, and nalidixic acid is studied in this work. The solubility of these drugs was measured at several temperatures in dioxane-water mixtures. DSC analysis was performed on the original powders and on the solid phases after equilibration with the solvent mixture. The thermal properties of the solid phases did not show significant changes. The three drugs display a solubility maximum against the cosolvent ratio. The solubility peaks of acetanilide and nalidixic acid shift to a more polar region at the higher temperatures. Nonlinear van't Hoff plots were observed for nalidixic acid whereas acetanilide and paracetamol show linear behavior at the temperature range studied. The apparent enthalpies of solution are endothermic going through a maximum at 50% dioxane. Two different mechanisms, entropy and enthalpy, are suggested to be the driving forces that increase the solubility of the three drugs. Solubility is entropy controlled at the water-rich region (0-50% dioxane) and enthalpy controlled at the dioxane-rich region (50-100% dioxane). The enthalpy-entropy compensation analysis also suggests that two different mechanisms, dependent on cosolvent ratio, are involved in the solubility enhancement of the three drugs. The plots of deltaH versus deltaG are nonlinear, and the slope changes from positive to negative above 50% dioxane. The compensation effect for the thermodynamic magnitudes of transfer from water to the aqueous mixtures can be described by a common empirical nonlinear relationship, with the exception of paracetamol, which follows a separate linear relationship at dioxane ratios above 50%. The

  18. Estudo da especiação de arsênio inorgânico e determinação de arsênio total no monitoramento ambiental da qualidade de águas subterrâneas Determination of total as and inorganic arsenic species for the environmental quality monitoring of groundwaters

    Directory of Open Access Journals (Sweden)

    Ricardo Perobelli Borba

    2009-01-01

    Full Text Available This work reports an alternative, fast and robust method, for the determination of total As, As(III and As(V by HG-AAS without the use of prereductants. The method is based on the different rates of arsine formation of the inorganic As species and the effect of As(III in the signal obtained for total As. Groundwater and mineral spiked waters were used to sample preservation evaluation. The method was validated by the determination of As in SRM 1640 and used in the determination of total As and its inorganic species in groundwater samples collected from mines in the Iron Quadrangle - MG.

  19. Effect of changes in water salinity on ammonium, calcium, dissolved inorganic carbon and influence on water/sediment dynamics

    Science.gov (United States)

    López, P.

    2003-04-01

    The effect of a sudden increase in salinity from 10 to 37 in porewater concentration and the benthic fluxes of ammonium, calcium and dissolved inorganic carbon were studied in sediments of a small coastal lagoon, the Albufera d'Es Grau (Minorca Island, Spain). The temporal effects of the changes in salinity were examined over 17 days using a single diffusion-reaction model and a mass-balance approach. After the salinity change, NH 4+-flux to the water and Ca-flux toward sediments increased (NH 4+-flux: 5000-3000 μmol m -2 d -1 in seawater and 600/250 μmol m -2 d -1 in brackish water; Ca-flux: -40/-76 meq m -2 d -1 at S=37 and -13/-10 meq m -2 d -1 at S=10); however, later NH 4+-flux decreased in seawater, reaching values lower than in brackish water. In contrast, Ca-flux presented similar values in both conditions. The fluxes of dissolved inorganic carbon, which were constant at S=10 (55/45 mmol m -2 d -1), increased during the experiment at S=37 (from ˜30 mmol m -2 d -1 immediately after salinity increase to ˜60 mmol m -2 d -1 after 17 days). In brackish conditions, NH 4+ and Ca 2+ fluxes were consistent with a single diffusion-reaction model that assumes a zero-order reaction for NH 4+ production and a first-order reaction for Ca 2+ production. In seawater, this model explained the Ca-flux observed, but did not account for the high initial flux of NH 4+. The mass balance for 17 days indicated a higher retention of NH 4+ in porewater in the littoral station in seawater conditions (9.5 mmol m -2 at S=37 and 1.6 mmol m -2 at S=10) and a significant reduction in the water consumption at both sites (5 mmol m -2 at S=37; 35/23 mmol m -2 at S=10). In contrast, accumulation of dissolved inorganic carbon in porewater was lower in seawater incubations (-10/-1 meq m -2 at S=37; 50/90 meq m -2 at S=10) and was linked to a higher efflux of CO 2 to the atmosphere, because of calcium carbonate precipitation in water (675/500 meq m -2). These results indicate that increased

  20. Aryl-derivatized, water-soluble functionalized carbon nanotubes for biomedical applications

    International Nuclear Information System (INIS)

    Karousis, N.; Ali-Boucetta, H.; Kostarelos, K.; Tagmatarchis, N.

    2008-01-01

    The functionalization of very-thin multi-walled carbon nanotubes (VT-MWNTs) with an aniline derivative, via the protocol of in situ generated aryl diazonium salts results, upon acidic deprotection of the terminal BOC group, on the formation of the water-soluble positively charged ammonium functionalized VT-MWNTs-NH 3 + material. The new materials have been structurally and morphologically characterized by infra-red (ATR-IR) spectroscopy and transmission electron microscopy (TEM). The quantitative calculation of the grafted aryl units onto the skeleton of VT-MWNTs has been estimated by thermogravimetric analysis (TGA), while the quantitative Kaiser test showed the amine group loaded onto VT-MWNTs-NH 3 + material. The aqueous solubility of this material has allowed the performance of some initial toxicological in vitro investigations

  1. Synthesis of water-soluble poly [acrylic acid-co-vinyl butyl ether] and its applications in cement admixtures

    International Nuclear Information System (INIS)

    Negim, S.M.; Mun, G.A.; Nurkeeva, Z.S.; Danveesh, H.H.M.

    2005-01-01

    Three composition ratios of poly[acrylic acid (AA)-co-vinyl butyl ether)] were prepared in alcoholic solution using azo-bis-isobutyro-nitrile as initiator (ABIN). The water-soluble copolymers were characterized through FT-IR, 1 H NMR, Mass spectra, ESEM as well as viscosity. The effect of water-soluble copolymers and their sodium salts on the physico-mechanical properties of Ordaniary Portland Cement (O.P.C) pastes was investigated. The results showed that the addition of aqueous solutions from the prepared copolymers and their sodium salts to the cement improve most of the specific characteristics of (O.P.C). As the concentration of the water-soluble copolymer increases, the setting time increases. The combined water content enhances the addition of copolymer to the mixing water. The compressive strength was she increased at all any hydration. The results of the solution of the prepared sodium salt copolymers are better than its copolymers. (author)

  2. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy.

    Science.gov (United States)

    Duan, Jialong; Hu, Tianyu; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-14

    Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr 3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hazard assessment of inorganics to three endangered fish in the Green River, Utah

    Science.gov (United States)

    Hamilton, S.J.

    1995-01-01

    Acute toxicity tests were conducted with three life stages of Colorado squawfish (Ptychocheilus lucius), razorback sucker (Xyrauchen texanus), and bonytail (Gila elegans) in a reconstituted water quality simulating the middle part of the Green River of Utah. Tests were conducted with boron, lithium, selenate, selenite, uranium, vanadium, and zinc. The overall rank order of toxicity to all species and life stages combined from most to least toxic was vanadium = zinc > selenite > lithium = uranium > selenate > boron. There was no difference between the three species in their sensitivity to the seven inorganics based on a rank-order evaluation at the species level. Colorado squawfish were 2-5 times more sensitive to selenate and selenite at the swimup life stage than older stages, whereas razorback suckers displayed equal sensitivity among life stages. Bonytail exhibited equal sensitivity to selenite, but were five times more sensitive to selenate at the swimup life stage than the older stages. Comparison of 96-hr LC50 values with a limited number of environmental water concentrations in Ashley Creek, Utah, which receives irrigation drainwater, revealed moderate hazard ratios for boron, selenate, selenite, and zinc, low hazard ratios for uranium and vanadium, but unknown ratios for lithium. These inorganic contaminants in drainwaters may adversely affect endangered fish in the Green River.

  4. Water-soluble derivatives of 25-OCH3-PPD and their anti-proliferative activities.

    Science.gov (United States)

    Zhou, Wu-Xi; Sun, Yuan-Yuan; Yuan, Wei-Hui; Zhao, Yu-Qing

    2017-05-01

    (20R)-25-Methoxyl-dammarane-3β,12β,20-triol (25-OCH 3 -PPD, AD-1) is a dammarane-type sapogenin showing anti-tumor potential. In the search for new anti-tumor agents with higher potency than our previously identified compound 25-OCH 3 -PPD, 11 novel sulfamic acid and diacid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 25-OCH 3 -PPD, compounds 1, 4, and 5 exhibited higher cytotoxic activity on almost all cell lines, together with lower toxicity in the normal cell. In particular, compound 1 exhibited the best anti-tumor activity in the in vitro assays. The water solubility of 25-OCH 3 -PPD and its derivatives was tested and the results showed that the solubility of 25-OCH 3 -PPD sulfamic acid and diacid derivatives were better than that of 25-OCH 3 -PPD in water, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Role of Water Movement and Spatial Scaling for Measurement of Dissolved Inorganic Nitrogen Fluxes in Intertidal Sediments

    Science.gov (United States)

    Asmus, R. M.; Jensen, M. H.; Jensen, K. M.; Kristensen, E.; Asmus, H.; Wille, A.

    1998-02-01

    Fluxes of dissolved inorganic nitrogen (ammonium and nitrate) across the sediment-water interface were determined at intertidal locations in Königshafen, northern Wadden Sea, North Sea. Three different incubation techniques were compared: closed sediment cores (small scale), closed bell jars (medium scale) and an open flow system (Sylt flume, large scale). Water movement in the two closed systems was maintained below the resuspension limit by spinning magnets (cores, incubated in the laboratory) or by transfer of wave action through flexible plastic foil (bell jars,in situ), whereas in the flume system (in situ) water movement was unidirectional, driven by currents and waves. Data sets from several years of core measurements (1992-94), bell jar measurements (1980) and flume campaigns (1990-93) served as the basis for a comparison of dissolved inorganic nitrogen fluxes. Fluxes of ammonium and nitrate were within the same order of magnitude in closed cores and bell jars, while flume rates of ammonium were considerably higher. The high flume rates were caused by advective flushing due to tidal water movement and wave action. The release of ammonium increased significantly with current velocity between 1 and 13 cm s-1. Fluxes of ammonium were higher in sediments withArenicola marinacompared to those without this bioturbating species. The influence of benthic microalgae was evident only in the small and medium scale core and bell jar systems as reduced ammonium release during light exposure. Nitrate was consumed by sediments in both closed systems at a rate proportional to the nitrate concentration in the overlying water. Nitrate fluxes in the large scale Sylt flume were low with an average of only 7% of the ammonium fluxes, probably due to low concentrations in tidal waters during measurements (summer). Both closed, small scale or open, large scale techniques can be applied successfully for benthic flux studies, but the actual choice depends on the purpose of the

  6. Studies on water soluble polysaccharides from Pithecellobium dulce (Roxb.) Benth. seeds.

    Science.gov (United States)

    Bagchi, S; Kumar, K Jayaram

    2016-03-15

    In this existing experimental work, water soluble PDP polysaccharides were secluded from Pithecellobium dulce (Roxb.) Benth. seeds. The physicochemical properties were analyzed in terms of swelling power, solubility, pH and water holding capacity. Micromeretic studies proved the polysaccharide may be used a potential pharmaceutical adjuvant. The polysaccharide was characterized by FT-IR, SEM, TGA and NMR techniques. Methylation analysis confirmed that the polysaccharide is composed of Arabinose (Araf) units. The chemical shifts of anomeric proton region were found in the region of 4.4-5.5ppm. Thermogravimetric analysis showed that PDP polysaccharide was thermally stable. The in vitro antioxidant capacities of the polysaccharide were investigated in terms of scavenging of hydroxyl radicals, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals, hydrogen peroxide (H2O2) and reducing power assay. The polysaccharide fractions showed activity in a concentration dependent manner which was comparable to the standard, ascorbic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Steel corrosion products solubility under conditions simulating various water chemistry parameters in power plants

    International Nuclear Information System (INIS)

    Slobodov, A.A.; Kritskij, V.G.; Zarembo, V.I.; Puchkov, L.V.

    1988-01-01

    To simulate construction material corrosion product mass transfer model in power plant circuits calculation of iron oxide and hydroxide solubility, depending on water chemistry parameters: temperature, pH-value, content of dissolved in water hydrogen and oxygen, is carried out

  8. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    2013-01-01

    Water-soluble polysaccharide material, extracted from the stipes of the fruit bodies of Coprinus comatus by hot water, was fractionated by sequential weak anion-exchange and size-exclusion chromatography. The relevant fractions were subjected to structural analysis, including (D/L)

  9. Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters

    Directory of Open Access Journals (Sweden)

    Masoud Behrouz

    2015-07-01

    Full Text Available Solubility of hydrocarbons in water is important due to ecological concerns and new restrictions on the existence of organic pollutants in water streams. Also, the creation of a thermodynamic model has required an advanced study of the phase equilibrium between water (as a basis for the widest spread muds and amines and gas hydrocarbon phases in wide temperature and pressure ranges. Therefore, it is of great interest to develop semi-empirical correlations, charts, or thermodynamic models for estimating the solubility of hydrocarbons in liquid water. In this work, a thermodynamic model based on Mathias modification of Sova-Redlich-Kwong (SRK equation of state is suggested using classical mixing rules with new binary interaction parameters which were used for two-component systems of hydrocarbons and water. Finally, the model results and their deviations in comparison with the experimental data are presented; these deviations were equal to 5.27, 6.06, and 4.1% for methane, ethane, and propane respectively.

  10. Solubility studies of Np(IV)

    International Nuclear Information System (INIS)

    Zhang Yingjie; Yao Jun; Jiao Haiyang; Ren Lihong; Zhou Duo; Fan Xianhua

    2001-01-01

    The solubility of Np(IV) in simulated underground water and redistilled water has been measured with the variations of pH(6-12) and storage time (0-100 d) in the presence of reductant (Na 2 S 2 O 4 , metallic Fe). All experiments are performed in a low oxygen concentration glove box containing high purity Ar(99.99%), with an oxygen content of less than 5 x 10 -6 mol/mol. Experimental results show that the variation of pH in solution has little effect on the solubility of Np(IV) in the two kinds of water; the measured solubility of Np(IV) is affected by the composition of solution; with Na 2 S 2 O 4 as a reductant, the solubility of Np(IV) in simulated underground water is (9.23 +- 0.48) x 10 -10 mol/L, and that in redistilled water is (8.31 +- 0.35) x 10 -10 mol/L; with metallic Fe as a reductant, the solubility of Np(IV) in simulated underground water is (1.85 +- 0.56) x 10 -9 mol/L, and that in redistilled water is (1.48 +- 0.66) x 10 -9 mol/L

  11. Validation of a screening method for the simultaneous identification of fat-soluble and water-soluble vitamins (A, E, B1, B2 and B6) in an aqueous micellar medium of hexadecyltrimethylammonium chloride.

    Science.gov (United States)

    León-Ruiz, V; Vera, S; San Andrés, M P

    2005-04-01

    Simultaneous determination of the fat-soluble vitamins A and E and the water-soluble vitamins B1, B2 and B6 has been carried using a screening method from fluorescence contour graphs. These graphs show different colour zones in relation to the fluorescence intensity measured for the pair of excitation/emission wavelengths. The identification of the corresponding excitation/emission wavelength zones allows the detection of different vitamins in an aqueous medium regardless of the fat or water solubility of each vitamin, owing to the presence of a surfactant which forms micelles in water at the used concentration (over the critical micelle concentration). The micelles dissolve very water insoluble compounds, such as fat-soluble vitamins, inside the aggregates. This approach avoids the use of organic solvents in determining these vitamins and offers the possibility of analysing fat- and water-soluble vitamins simultaneously. The method has been validated in terms of detection limit, cut-off limit, sensitivity, number of false positives, number of false negatives and uncertainty range. The detection limit is about microg L(-1). The screening method was applied to different samples such as pharmaceuticals, juices and isotonic drinks.

  12. Solubility of methane in water and in a medium for the cultivation of methanotrophs bacteria

    International Nuclear Information System (INIS)

    Serra, Maria Celeste C.; Pessoa, F.L.P.; Palavra, A.M.F.

    2006-01-01

    Solubility of methane in water and in an aqueous growth medium for the cultivation of methanotrophs bacteria was determined over the temperature range 293.15 to 323.15 K and at atmospheric pressure. The measurements were carried out in a Ben-Naim/Baer type apparatus with a precision of about ±0.3%. The experimental results were determined using accurate thermodynamic relations. The mole fractions of the dissolved gas at the gas partial pressure of 101.325 kPa, the Henry coefficients at the water vapour pressure and the Ostwald coefficients at infinite dilution were obtained. A comparison between the solubility of methane in water and those observed in fermentation medium over the temperature range of 298.15 to 308.15 K has shown that this gas is about ±2.3% more soluble in water. The temperature dependence of the mole fractions of methane was also determined using the Clarke-Glew-Weiss equation and the thermodynamic quantities, Gibbs energy, enthalpy and entropy changes, associated with the dissolution process were calculated. Furthermore, the experimental Henry coefficients for methane in water are compared with those calculated by the scaled particle theory. The estimated Henry coefficients are about ±4% lower than the experimental ones

  13. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Bohr, Adam; Boetker, Johan P; Rades, Thomas

    2014-01-01

    Solid dispersions have been widely studied as an attractive formulation strategy for the increasingly prevalent poorly water-soluble drug compounds, including herbal medicines, often leading to improvements in drug dissolution rate and bioavailability. However, several challenges are encountered...

  14. Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs.

    Science.gov (United States)

    Rouxhet, L; Dinguizli, M; Latere Dwan'isa, J P; Ould-Ouali, L; Twaddle, P; Nathan, A; Brewster, M E; Rosenblatt, J; Ariën, A; Préat, V

    2009-12-01

    To develop self-assembling polymers forming polymeric micelles and increasing the solubility of poorly soluble drugs, amphiphilic polymers containing a hydrophilic PEG moiety and a hydrophobic moiety derived from monoglycerides and polyethers were designed. The biodegradable copolymers were obtained via a polycondensation reaction of polyethylene glycol (PEG), monooleylglyceride (MOG) and succinic anhydride (SA). Polymers with molecular weight below 10,000 g/mol containing a minimum of 40 mol% PEG and a maximum of 10 mol% MOG self-assembled spontaneously in aqueous media upon gentle mixing. They formed particles with a diameter of 10 nm although some aggregation was evident. The critical micellar concentration varied between 3x10(-4) and 4x10(-3) g/ml, depending on the polymer. The cloud point (> or = 66 degrees C) and flocculation point (> or = 0.89 M) increased with the PEG chain length. At a 1% concentration, the polymers increased the solubility of poorly water-soluble drug candidates up to 500-fold. Drug solubility increased as a function of the polymer concentration. HPMC capsules filled with these polymers disintegrated and released model drugs rapidly. Polymer with long PEG chains had a lower cytotoxicity (MTT test) on Caco-2 cells. All of these data suggest that the object polymers, in particular PEG1000/MOG/SA (45/5/50) might be potential candidates for improving the oral biopharmaceutical performance of poorly soluble drugs.

  15. Prediction of the solubility of selected pharmaceuticals in water and alcohols with a group contribution method

    International Nuclear Information System (INIS)

    Pelczarska, Aleksandra; Ramjugernath, Deresh; Rarey, Jurgen; Domańska, Urszula

    2013-01-01

    Highlights: ► The prediction of solubility of pharmaceuticals in water and alcohols was presented. ► Improved group contribution method UNIFAC was proposed for 42 binary mixtures. ► Infinite activity coefficients were used in a model. ► A semi-predictive model with one experimental point was proposed. ► This model qualitatively describes the temperature dependency of Pharms. -- Abstract: An improved group contribution approach using activity coefficients at infinite dilution, which has been proposed by our group, was used for the prediction of the solubility of selected pharmaceuticals in water and alcohols [B. Moller, Activity of complex multifunctional organic compounds in common solvents, PhD Thesis, Chemical Engineering, University of KwaZulu-Natal, 2009]. The solubility of 16 different pharmaceuticals in water, ethanol and octan-1-ol was predicted over a fairly wide range of temperature with this group contribution model. The predicted values, along with values computed with the Schroeder-van Laar equation, are compared to experimental results published by us previously for 42 binary mixtures. The predicted solubility values were lower than those from the experiments for most of the mixtures. In order to improve the prediction method, a semi-predictive calculation using one experimental solubility value was implemented. This one point prediction has given acceptable results when comparison is made to experimental values

  16. Process for radiation cocrosslinking water soluble polymers and products thereof

    International Nuclear Information System (INIS)

    Assarsson, P.G.; King, P.A.

    1976-01-01

    Poly(ethylene oxide) and at least one other water soluble polymer are conveniently cocrosslinked by exposing aqueous systems of the polymers to high energy irradiation. The resulting products are insoluble hydrophilic gels which can contain or when dried absorb large quantities of aqueous fluids and hence are useful as absorbing media for disposable absorbent articles, agricultural applications and the like

  17. Solubility and preferential solvation of some n-alkyl-parabens in methanol + water mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Cárdenas, Zaira J.; Jiménez, Daniel M.; Delgado, Daniel R.; Almanza, Ovidio A.; Jouyban, Abolghasem; Martínez, Fleming; Acree, William E.

    2017-01-01

    Highlights: • Parabens equilibrium solubility was determined in methanol + water binary mixtures at 298.15 K. • Solubility values were correlated with the Jouyban-Acree model. • Preferential solvation parameters were derived by using the IKBI method. • δx 1,3 values are negative in water-rich mixtures but positive in the other mixtures. - Abstract: Methyl, ethyl and propyl parabens equilibrium solubility was determined in (methanol + water) binary mixtures at 298.15 K. The mole fraction solubility of these compounds increased in 503 (from 2.40 × 10 −4 to 0.121), 1377 (from 9.86 × 10 −5 to 0.136) and 4597 (from 3.73 × 10 −5 to 0.171) times when passing from neat water to neat methanol, for methyl, ethyl and propyl parabens, respectively. All these solubility values were correlated with the Jouyban-Acree model. Preferential solvation parameters by methanol (δx 1,3 ) of these parabens were derived from their thermodynamic solution properties using the inverse Kirkwood-Buff integrals (IKBI) method. For all compounds δx 1,3 values are negative in water-rich mixtures but positive in mixtures with methanol mole fraction greater than 0.32. It is conjecturable that in the former case the hydrophobic hydration around non-polar groups of parabens plays a relevant role in the solvation. Besides, the preferential solvation of these solutes by methanol in mixtures of similar co-solvent compositions and in methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol.

  18. Studeis on the immobilization of water soluble phosphatic fertilizer in some soils with 32P

    International Nuclear Information System (INIS)

    Zhang Yumei; Li Rensheng; Xu Xinyu

    1985-01-01

    Using superphosphate lablled with 32 P, we studied immobilization of water-soluble phosphatic fertilizer on 12 typies of soil. The experimental result showed that major factors to govern immobilization of water-soluble phosphatic fertilizer are: quickly availible Fe that showed positive correlation with the immobilization when it was 4.64-65.72 ppm; and pH that showed negative correlation with the immobilization when it was between 5.35 and 8.88. CaCO 3 and organic matter showed a great effect on the immobilization though there wasn't obvious correlation among them

  19. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Wang N

    2017-08-01

    Full Text Available Ning Wang,1 Hui Wang,2 Chengchun Tang,3 Shijun Lei,1 Wanqing Shen,1 Cong Wang,1 Guobin Wang,4 Zheng Wang,1,4 Lin Wang1,5 1Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, 2Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 3Boron Nitride Research Center, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 4Department of Gastrointestinal Surgery, 5Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China Abstract: Boron nitride (BN nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials – BN nanospheres (BNNSs and highly water-soluble BN nanomaterial (named BN-800-2 – we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL-1 and 10 µg·mL-1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL-1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material. Keywords: boron nitride nanomaterials, Caenorhabditis elegans, nanotoxicology

  20. Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

    Directory of Open Access Journals (Sweden)

    Zhu Xian-Bo

    2016-01-01

    Full Text Available We assessed the effects of cold storage on nine water-soluble vitamins in 7 cultivars of Actinidia chinensis (kiwifruit using high-performance liquid chromatography. Samples were collected at three time points during cold storage: one day, 30 days, and when edible. We found that vitamin C in most cultivars was raised with cold storage, but there was no consistent increased or decreased trend for other water-soluble vitamins across cultivars in storage. After one day of cold storage, vitamins B1 and B2 were the most prevalent vitamins in Control (wild fruit, while vitamins B5 and B6 were most prevalent in the Hongyang and Qihong cultivars. However, B12 was the most prevalent vitamin in the Qihong cultivar after 30 days of cold storage. Vitamins B3, B7, B9, and C were detected at the edible time point in Huayou, Hongyang, Jinnong-2, and Control fruit. Vitamin contents varied significantly among cultivars of kiwifruit following different durations of cold storage. Out of the three durations tested, a period of 30 days in cold storage was the most suitable for the absorption of water-soluble vitamins by A. chinensis.

  1. Urgent need to reevaluate the latest World Health Organization guidelines for toxic inorganic substances in drinking water.

    Science.gov (United States)

    Frisbie, Seth H; Mitchell, Erika J; Sarkar, Bibudhendra

    2015-08-13

    The World Health Organization (WHO) has established guidelines for drinking-water quality that cover biological and chemical hazards from both natural and anthropogenic sources. In the most recent edition of Guidelines for Drinking-water Quality (2011), the WHO withdrew, suspended, did not establish, or raised guidelines for the inorganic toxic substances manganese, molybdenum, nitrite, aluminum, boron, nickel, uranium, mercury, and selenium. In this paper, we review these changes to the WHO drinking-water guidelines, examining in detail the material presented in the WHO background documents for each of these toxic substances. In some cases, these WHO background documents use literature reviews that do not take into account scientific research published within the last 10 or more years. In addition, there are instances in which standard WHO practices for deriving guidelines are not used; for example, rounding and other mathematical errors are made. According to published meeting reports from the WHO Chemical Aspects Working Group, the WHO has a timetable for revising some of its guidelines for drinking-water quality, but for many of these toxic substances the planned changes are minimal or will be delayed for as long as 5 years. Given the limited nature of the planned WHO revisions to the inorganic toxic substances and the extended timetable for these revisions, we suggest that governments, researchers, and other stakeholders might establish independent recommendations for inorganic toxic substances and possibly other chemicals to proactively protect public health, or at the very least, revert to previous editions of the Guidelines for Drinking-water Quality, which were more protective of public health.

  2. An unusual feature of uranium ore from Domiasiat, Meghalaya: presence of water soluble uranium

    International Nuclear Information System (INIS)

    Singh, A.K.; Padmanabhan, N.P.H.; Sivaramakrishnan, K.; Krishna Rao, N.

    1993-01-01

    An unusual feature of the recently discovered sandstone-type uranium deposit in Domiasiat is the presence of appreciable amount of water soluble uranium. With normal tap water at its natural pH (7.5-7.8), upto 35% of the uranium in the ore was found to be soluble during agitation in the different samples. Presence of other ions in appreciable quantities particularly SO 4 -2 Cl - and Fe +3 appear to influence the dissolution. Percolation experiments give terminal solubilization of upto 58%, but the instantaneous uranium concentration in the percolating water attains its maximum within the first few minutes of contact. A detailed study on the chemistry of uranium dissolution may throw light on the physico-chemical controls of localization of uranium in the deposit. (author). 7 refs., 3 tabs., 4 tabs

  3. Simultaneous separation of water- and fat-soluble vitamins in isocratic pressure-assisted capillary electrochromatography using a methacrylate-based monolithic column.

    Science.gov (United States)

    Yamada, Hiroki; Kitagawa, Shinya; Ohtani, Hajime

    2013-06-01

    A method of simultaneous separation of water- and fat-soluble vitamins using pressure-assisted CEC with a methacrylate-based capillary monolithic column was developed. In the proposed method, water-soluble vitamins were mainly separated electrophoretically, while fat soluble-ones were separated chromatographically by the interaction with a methacrylate-based monolith. A mixture of six water-soluble and four fat-soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The elevation effect on water-soluble polysaccharides and DPPH free radical scavenging activity of Ganoderma lucidum K

    Science.gov (United States)

    Darsih, C.; Apriyana, W.; Nur Hayati, S.; Taufika Rosyida, V.; Hernawan; Dewi Poeloengasih, C.

    2017-02-01

    Water soluble polysaccharide is one of the important phytochemical in Ganoderma lucidum K. Phytochemicals in the plants, microorganisms, and plants were affected by internal and external factors. The objective of the research was to evaluate the effect of elevation on the water-soluble polysaccharides and its DPPH radical scavenging activity. We found that the water-polysaccharides in mushroom from Godean (elevation Ganoderma lucidum K from Godean (IC50 11.5 ± 0.29 mg/mL) higher than Kaliurang (IC50 14.4 ± 0.27%).

  5. Solubility and thermodynamic function of a new anticancer drug ibrutinib in 2-(2-ethoxyethoxy)ethanol + water mixtures at different temperatures

    International Nuclear Information System (INIS)

    Shakeel, Faiyaz; Salem-Bekhit, Mounir M.; Iqbal, Muzaffar; Haq, Nazrul

    2015-01-01

    Ibrutinib is a recently approved anticancer drug recommended for the treatment of mantle cell lymphoma and chronic lymphocytic leukemia. It has been reported as practically insoluble in water and hence it is available in the market at higher doses. Poor solubility of ibrutinib limits its development to oral solid dosage forms only. In this work, the solubilities of ibrutinib were measured in various 2-(2-ethoxyethoxy)ethanol (Carbitol) + water mixtures at T = (298.15 to 323.15) and p = 0.1 MPa. The solubility of ibrutinib was measured using an isothermal method. The thermodynamics function of ibrutinib was also studied. The measured solubilities of ibrutinib were correlated and fitted with Van’t Hoff, the modified Apelblat and Yalkowsky models. The results of curve fitting of all three models showed good correlation of experimental solubilities of ibrutinib with calculated ones. The mole fraction solubility of ibrutinib was observed highest in pure 2-(2-ethoxyethoxy)ethanol (2.67 · 10 −2 at T = 298.15 K) and lowest in pure water (1.43 · 10 −7 at T = 298.15 K) at T = (298.15 to 323.15) K. Thermodynamics data of ibrutinib showed an endothermic, spontaneous and an entropy-driven dissolution behavior of ibrutinib in all 2-(2-ethoxyethoxy)ethanol + water mixtures. Based on these results, ibrutinib has been considered as practically insoluble in water and freely soluble in 2-(2-ethoxyethoxy)ethanol. Therefore, 2-(2-ethoxyethoxy)ethanol could be used as a physiologically compatible cosolvent for solubilization and stabilization of ibrutinib in an aqueous media. The solubility data of this work could be extremely useful in preformulation studies and formulation development of ibrutinib

  6. Solubility of corrosion products of plain steel in oxygen-containing water solutions at high parameters

    International Nuclear Information System (INIS)

    Martynova, O.I.; Samojlov, Yu.F.; Petrova, T.I.; Kharitonova, N.L.

    1983-01-01

    Technique for calculation of solubility of iron corrosion products in oxygen-containing aqueous solutions in the 298-573 K temperature range is presented. Solubility of corrosion products of plain steel in deeply-desalinizated water in the presence of oxygen for the such range of the temperatures is experimentally determined. Rather good convergence between calculated and experimental data is noted

  7. Pressurized capillary electrochromatographic analysis of water-soluble vitamins by combining with on-line concentration technique.

    Science.gov (United States)

    Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da

    2007-06-22

    A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.

  8. Liquid chromatography with isotope-dilution mass spectrometry for determination of water-soluble vitamins in foods.

    Science.gov (United States)

    Phillips, Melissa M

    2015-04-01

    Vitamins are essential for improving and maintaining human health, and the main source of vitamins is the diet. Measurement of the quantities of water-soluble vitamins in common food materials is important to understand the impact of vitamin intake on human health, and also to provide necessary information for regulators to determine adequate intakes. Liquid chromatography (LC) and mass spectrometry (MS) based methods for water-soluble vitamin analysis are abundant in the literature, but most focus on only fortified foods or dietary supplements or allow determination of only a single vitamin. In this work, a method based on LC/MS and LC/MS/MS has been developed to allow simultaneous quantitation of eight water-soluble vitamins, including multiple forms of vitamins B3 and B6, in a variety of fortified and unfortified food-matrix Standard Reference Materials (SRMs). Optimization of extraction of unbound vitamin forms and confirmation using data from external laboratories ensured accuracy in the assigned values, and addition of stable isotope labeled internal standards for each of the vitamins allowed for increased precision.

  9. Natural products phytotoxicity A bioassay suitable for small quantities of slightly water-soluble compounds.

    Science.gov (United States)

    Dornbos, D L; Spencer, G F

    1990-02-01

    A large variety of secondary metabolites that can inhibit germination and/or seedling growth are produced by plants in low quantities. The objective of this study was to develop a bioassay capable of reliably assessing reductions in germination percentage and seedling length of small-seeded plant species caused by exposure to minute quantities of these compounds. The germination and growth of alfalfa (Medicago saliva), annual ryegrass (Lolium multiflorum), and velvetleaf (Abutilon theophrasti) were evaluated against six known phytotoxins from five chemical classes; cinmethylin (a herbicidal cineole derivative) was selected as a comparison standard. Each phytotoxin, dissolved in a suitable organic solvent, was placed on water-agar in small tissue culture wells. After the solvent evaporated, imbibed seeds were placed on the agar; after three days, germination percentages and seedling lengths were measured. Compared to a commonly used filter paper procedure, this modified agar bioassay required smaller quantities of compound per seed for comparable bioassay results. This bioassay also readily permitted the measurement of seedling length, a more sensitive indicator of phytotoxicity than germination. Seedling length decreased sigmoidally as the toxin concentration increased logarithmically. Phytotoxicity was a function of both compound and plant species. Cinmethylin, a grass herbicide, reduced the length of annual ryegrass seedlings by 90-100%, whereas that of alfalfa and velvetleaf was inhibited slightly. The agar bioassay facilitated the rapid and reliable testing of slightly water-soluble compounds, requiring only minute quantities of each compound to give reproducible results.

  10. On the solubility of plutonium in water

    International Nuclear Information System (INIS)

    Naegele, G.

    1977-12-01

    In a theoretical study, the chemical equilibrium state of saturated Pu solutions in water was determined and the effect of the addition of EDTA on the solubility of Pu estimated. Concentrations of Plutonium in true solution in the range of grams/litre seem to be achievable, at least in principle. The amount of EDTA necessary is not larger than the total amount of Pu. It is however questionable, specially after taking into account all possible effects of reaction kinetics, whether such high concentrations can be achieved at all under normal environmental conditions. Only experiments under real world conditions can give an answer to this question. (orig./HK) 891 HK 892 AP [de

  11. Lumbar myelography using water-soluble contrast media

    International Nuclear Information System (INIS)

    Langlotz, M.

    1981-01-01

    With the new water-soluble contrast media developed in the last 10 years, lumbar myelography has become a simple and low-risk diagnostic method of great value which is hardly ever omitted before surgery is undertaken. The book attempts a synopsis of radiology and clinical examinations. In its first part, the pathological, clinical, and radiological aspects of diseases of the lumbosacral spinal duct are reviewed. The second part contains more than 300 myelographic pictures in original size. Each of the myelograms is supplemented by the case history of the patient (anamnesis, neurological examination, therapy and course). Interpretation is facilitated by drawings at the beginning of each chapter which show the major pathological and radiological changes. (orig./MG) [de

  12. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    Science.gov (United States)

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  13. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula

    Science.gov (United States)

    Pereira, P.; beda, X.; Martin, D.; Mataix-Solera, J.; Guerrero, C.

    2011-01-01

    Wildfire is the major disturbance in Mediterranean forests. Prescribed fire can be an alternative to reduce the amount of fuel and hence decrease the wildfire risk. However the effects of prescribed fire must be studied, especially on ash properties, because ash is an important nutrient source for ecosystem recovery. The aim of this study is to determine the effects of a low severity prescribed fire on water-soluble elements in ash including pH, electrical conductivity (EC), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), aluminum (Al), manganese (Mn), iron (Fe), zinc (Zn), silica (SiO2) and total sulphur (TS). A prescribed fire was conducted in a cork oak (Quercus suber) (Q.S) forest located in the northeast part of the Iberian Peninsula. Samples were collected from a flat plot of 40??70m mainly composed of Q.S and Quercus robur (Q.R) trees. In order to understand the effects of the prescribed fire on the soluble elements in ash, we conducted our data analysis on three data groups: all samples, only Q.S samples and only Q.R samples. All three sample groups exhibited a significant increase in pH, EC (p<0.001), water-soluble Ca, Mg, Na, SiO2 and TS and a decrease in water-soluble Mn, Fe and Zn. Differences were identified between oak species for water-soluble K, Al and Fe. In Q.S samples we registered a significant increase in the first two elements p<0.001 and p<0.01, respectively, and a non-significant impact in the third, at p<0.05. In Q.R data we identified a non-significant impact on water-soluble K and Al and a significant decrease in water-soluble Fe (p<0.05). These differences are probably due to vegetation characteristics and burn severity. The fire induced a higher variability in the ash soluble elements, especially in Q.S samples, that at some points burned with higher severity. The increase of pH, EC, Ca, Mg, Na and K will improve soil fertility, mainly in the study area where soils are acidic. The application of this low severity prescribed

  14. Solubility of mixed monomers of tetrafluoroethylene and propylene in water and latex

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro

    1978-03-01

    For kinetical analysis of the emulsion copolymerization of tetrafluoroethylene with propylene and selection of the optimum reaction conditions, the monomer concentrations and composition of the polymer particle were measured and the relations with reaction conditions were determined. Solubilities of tetrafluoroethylene and propylene in water increase with pressure. solubility of propylene is larger than that of tetrafluoroethylene. Solubility of the mixed monomers in water and latex increases with pressure and propylene concentration and decreases with temperature. Propylene concentration in the dissolved monomers is dependent on its concentration in the gas phase and independent of pressure and temperature. The monomer concentrations and the composition were estimated from measurements. Under propylene concentration in the gas phase of 0 to 40 wt % at 30 Kg/cm 2 G and 40 0 C, the monomer concentration and propylene fraction of the polymer particle are 17 -- 27% and 0 -- 62% respectively. The amount of propylene in the particle increases with its fraction in the gas phase, but the amount of tetrafluoroethylene is independent of its fraction in the gas phase. Monomer composition of the polymer particle is dependent on monomer composition of the gas phase and independent of temperature and pressure. The concentration in the polymer particle is 17% at propylene concentration 10 mole % in the gas phase. (auth.)

  15. Assessment of acute toxicity of water soluble fraction of diesel on ...

    African Journals Online (AJOL)

    Acute toxicity of water soluble fraction (WSF) of diesel fuel was assessed by evaluating its effects on growth of two marine microalgae, Isochrysis and Chaetoceros. Pure cultures of each of the two microalgae were exposed to concentrations of 0% (controls), 5%, 10%, 15% and 20% of diesel WSF (in triplicates) and allowed ...

  16. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    International Nuclear Information System (INIS)

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-01-01

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO 3 with NaBH 4 in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility

  17. Iron-complexed adsorptive membrane for As(V) species in water

    International Nuclear Information System (INIS)

    Shinde, Rakesh N.; Das, Sadananda; Acharya, R.; Rajurkar, N.S.; Pandey, Ashok K.

    2012-01-01

    Highlights: ► Functionalized membrane was prepared by graft polymerization in host membrane. ► Fe 3+ ions fixed in membrane made it selective for As(V) ions. ► As(V) preconcentrated selectively in membrane samples was quantified by INAA. ► As(V) in ground water sample was easily quantified in 2–3 ppb using membrane. ► Total inorganic arsenic could be quantified by oxidation of As(III) to As(V). - Abstract: Selective preconcentration of a target analyte in the solid phase is an effective route not only to enhance detection limit of the conventional analytical method but also for elimination of interfering matrix. An adsorptive membrane was developed for selective preconcentration and quantification of ultra-trace (ppb) amounts of As(V) present in a variety of aqueous samples. The precursor membrane was prepared by UV-initiator induced graft polymerization of sulphate and phosphate bearing monomers (1:1 mol proportion) in pores of the host microporous poly(propylene) membrane. Fe 3+ ions were loaded in the precursor membrane to make it selective for As(V) ions. The presence of phosphate functional groups prevent leaching of Fe 3+ ions from the membrane when it comes in contact with solution like seawater having high ionic strength. The optimized membrane was characterized in terms of its physical structure, chemical structure and experimental conditions affecting As(V) uptake in the membrane. The possibility of quantifying total preconcentration of As content was also explored by converting As(III) to As(V). To quantify As(V), the membrane samples were subjected to instrumental neutron activation analysis (INAA). The studies carried in the present work showed that quantification of inorganic arsenic species in natural water samples is easily possible in 2–3 ppb concentration range.

  18. Stable isotope-guided analysis of biomagnification profiles of arsenic species in a tropical mangrove ecosystem

    International Nuclear Information System (INIS)

    Tu, Nguyen Phuc Cam; Agusa, Tetsuro; Ha, Nguyen Ngoc; Tuyen, Bui Cach; Tanabe, Shinsuke; Takeuchi, Ichiro

    2011-01-01

    We performed stable carbon and nitrogen-guided analyses of biomagnification profiles of arsenic (As) species, including total As, lipid-soluble As, eight water-soluble As compounds (arsenobetaine (AB), arsenocholine (AC), tetramethylarsonium ion (TETRA), trimethylarsine oxide (TMAO), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenate (As[V]), and arsenite (As[III])), and non-extracted As in a tropical mangrove ecosystem in the Ba Ria Vung Tau, South Vietnam. Arsenobetaine was the predominant As species (65-96% of water-soluble As). Simple linear regression slopes of log-transformed concentrations of total As, As fractions or individual As compounds on stable nitrogen isotopic ratio (δ 15 N) values are regarded as indices of biomagnification. In this ecosystem, lipid-soluble As (slope, 0.130) and AB (slope, 0.108) were significantly biomagnified through the food web; total As and other water-soluble As compounds were not. To our knowledge, this is one of the first reports on biomagnification profiles of As compounds from a tropical mangrove ecosystem.

  19. The optical and electrical properties of graphene oxide with water-soluble conjugated polymer composites by radiation.

    Science.gov (United States)

    Jungo, Seung Tae; Oh, Seung-Hwan; Kim, Hyun Bin; Jeun, Joon-Pyo; Lee, Bum-Jae; Kang, Phil-Hyun

    2013-11-01

    In order to overcome the difficulty of dispersion and low conductivity in composite containing graphene, graphene oxide (GO) has been used instead of neat graphene. And the GO treated by radiation, could give improved conductivity of the GO-containing polymer composite. In this study, fluorene based water-soluble conjugated polymer (WPF-6-oxy-F) was introduced in GO solution to investigate the change of optical and electrical properties through radiation process. UV-Vis absorption of irradiated WPF-6-oxy-F-GO composite was red shifted and I(D)/I(G) ratio of Raman spectra decreased. XPS analysis showed that C-N bonds was formed after the irradiation and confirmed the increased bonds between the GO and the water-soluble conjugated polymer matrix. From the AFM and XPS analysis, it was found that the water-soluble conjugated polymer matrix was stacked between the modified GO in the morphology of irradiated WPF-6-oxy-F-GO composite was increased after gamma ray irradiation up to 10(-2) S/cm.

  20. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    Energy Technology Data Exchange (ETDEWEB)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  1. Relation of zinc levels and water soluble phosphorus in suphala [fertilizer] on uptake of phosphorus and zinc

    International Nuclear Information System (INIS)

    Mutatkar, V.K.; Chapke, V.G.

    1975-01-01

    Under pot culture, four levels of Zn 0, 2, 4 and 6 ppm, were studied in relation to 30, 50 and 100 % water soluble levels of phosphorus in suphala for the dry matter production and uptake of P and Zn by maize on acidic soil of Goa and black cotton soil of Maharashtra. 32 P and 65 Zn tracers were used for this investigation. The results revealed that application of Zn has increased the dry matter and uptake of phosphorus upto 4 ppm of Zn application and it has decreased at 6 ppm Zn level. This inhibition of P uptake was observed at all water soluble levels of P and in both the soils studied. Zn uptake by maize in both the soils under study was increased with increasing level of Zn, irrespective of water soluble level of P in suphala. (author)

  2. Phytotoxicity of water-soluble substances from alfalfa and barley soil extracts on four crop species.

    Science.gov (United States)

    Read, J J; Jensen, E H

    1989-02-01

    Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.

  3. Broiler litter and inorganic nitrogen fertilizers influence on earliness and yield on strawberry and cabbage

    International Nuclear Information System (INIS)

    Chehab, Abed Elghani

    1996-01-01

    Author.Comparison of broiler litter (BL) rates to inorganic nitrogen fertilizers was studied during 1994-1995 as to its effect on earliness and yield of strawberry and cabbage grown on a calcareous soil. Strawberry (Frag aria x ananassa Duch.cv.Oso Grande) was grown using BL at rates which supplied 100 (BL1) or 200 (BL2) Kg N/ha, ammonium nitrate or nitrogen+trace elements applied at 150 Kg N/ha in six equally split applications throughout the growing season. Crop yield was higher (P 0.05) under the litter treated plots especially the BL2 rate. Leaf Fe was comparable among treatments (P>0.05) and no Fe chlorosis symptoms were observed, even though the soil is calcareous. Residual soil nitrate-nitrogen was comparable (P>0.05) among all the treatments with the ammonium nitrate and the BL2 having the highest values, indicating that BL at 200 Kg N/ha apparently released an amount of N equivalent to that from the 150 Kg N/ha of ammonium nitrate. Available soil P (water soluble), although comparable among treatments (P>0.05), was higher under the BL treated plots especially at the 200 Kg N/ha rate reflecting the P content of the manure. It is recommended to apply BL at a rate of 200 Kg N/ha to fertilize strawberry over the use of inorganic N fertilizers at similar rates. O-S-Cross cabbage (Brassica oleracea var. Capitata) was tested using the same rates of BL described previously, ammonium nitrate or nitrogen+trace elements at 125 Kg N/ha split as 25 Kg N/ha early in the season, 50 Kg N/ha just before heading, and 50 Kg N/ha at heading. Total yield and marketable yield were higher under the inorganic treated plots than under BL (P 2 . The higher yields under the inorganic N fertilizer treated plots were also reflected in leaf nitrate-nitrogen. Leaf blade P was comparable (P>0.05) among all treatments indicating a high soil P level at the beginning of all treatments before heading (P>0.05) and at heading, where as at first harvest it was higher (P<0.05) under the nitrogen

  4. Ecotoxicity of water-soluble PM1, PM2.5 and PM10 aerosols at Gosan Climate Observatory (GCO) in Jeju, Korea

    Science.gov (United States)

    Kim, J. A.; Lee, M.; Yoon, H. O.; Bae, M. S.

    2017-12-01

    The water-soluble components of aerosols are rapidly permeated to various biosurfaces through the deposition process due to their high solubility and have profound effects on ecosystem functioning as well as human health. In this context, the ecotoxicity of atmospheric aerosol was assessed, particularly for water-soluble components. For measurements of ecotoxicity of water soluble components, ambient aerosols of PM1, PM2.5, and PM10 were collected on filters at Gosan Climate Observatory (GCO), Jeju, Korea in May, August, October 2010, March and July 2011. The ecotoxicity was estimated using Vibrio fischeri based on bioluminescence inhibition bioassay. In this study, EC10 (10% effective concentration) value was used as an ecotoxicity indicator. The EC10 value was generally in good relation with major water-soluble constituents such as SO42-, NH4+, and water-soluble organic carbon (WSOC). The characteristics of ecotoxicity was different in PM1, PM2.5, and PM10 aerosols. The EC10 of PM10 was correlated well with SO42- (r=-0.53) and Mg2+(r=-0.52). The ecotoxicity was relatively high in smaller particles with either high NO3-/SO42- ratio or WSOC concentration. The high ecotoxicity was found in outflows mostly from nearby lands especially under stagnant condition.

  5. Analysis of americium, plutonium and technetium solubility in groundwater

    International Nuclear Information System (INIS)

    Takeda, Seiji

    1999-08-01

    Safety assessments for geologic disposal of radioactive waste generally use solubilities of radioactive elements as the parameter restricting the dissolution of the elements from a waste matrix. This study evaluated americium, plutonium and technetium solubilities under a variety of geochemical conditions using the geochemical model EQ3/6. Thermodynamic data of elements used in the analysis were provided in the JAERI-data base. Chemical properties of both natural groundwater and interstitial water in buffer materials (bentonite and concrete) were investigated to determine the variations in Eh, pH and ligand concentrations (CO 3 2- , F - , PO 4 3- , SO 4 2- , NO 3 - and NH 4 + ). These properties can play an important role in the complexation of radioactive elements. Effect of the groundwater chemical properties on the solubility and formation of chemical species for americium, plutonium and technetium was predicted based on the solubility analyses under a variety of geochemical conditions. The solubility and speciation of the radioactive elements were estimated, taking into account the possible range of chemical compositions determined from the groundwater investigation. (author)

  6. Analytical procedures for water-soluble vitamins in foods and dietary supplements: a review.

    Science.gov (United States)

    Blake, Christopher J

    2007-09-01

    Water-soluble vitamins include the B-group vitamins and vitamin C. In order to correctly monitor water-soluble vitamin content in fortified foods for compliance monitoring as well as to establish accurate data banks, an accurate and precise analytical method is a prerequisite. For many years microbiological assays have been used for analysis of B vitamins. However they are no longer considered to be the gold standard in vitamins analysis as many studies have shown up their deficiencies. This review describes the current status of analytical methods, including microbiological assays and spectrophotometric, biosensor and chromatographic techniques. In particular it describes the current status of the official methods and highlights some new developments in chromatographic procedures and detection methods. An overview is made of multivitamin extractions and analyses for foods and supplements.

  7. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  8. Water-soluble contrast media compared with barium in enteric follow-through

    International Nuclear Information System (INIS)

    Laerum, F.; Stordahl, A.; Aase, S.

    1988-01-01

    The local effects and radiographic efficacy of 4 water-soluble contrast media, barium and saline were evaluated in 86 anaesthetized rats with the distal ileum ligated. The rats were observed for 8 hours after instillation of 3 ml of the test substance via orogastric tube. Radiographs were taken after 1, 4 and 8 hours of observation. After 8 hours the intestines were weighed and biopsied for light microscopy, and blood and urine were sampled for testing. Sodium diatrizoate caused increased fluid influx to the bowel lumen and, like barium, provided poorer radiographic images as compared with iohexol, ioxaglate or iodixanol. Barium showed slower progression through the small bowel than the other agents, while sodium diatrizoate was the most rapidly progressing contrast medium and caused the greatest distension. Correlation to osmolality was obvious. No significant morphologic effects on the small bowel mucosa were seen in any of the groups. Low-osmolar, water-soluble contrast media may have prospects for clinical use in patients with suspected small bowel obstruction. (orig.)

  9. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012–200 ng mL{sup −1}, with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0–2.5% and 2.7–3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. - Graphical abstract: An electrochemically controlled in-tube solid phase microextraction followed by hydride generation atomic absorption spectrometry was developed for extraction and determination ultra-trace amounts of Se in aqueous solutions. - Highlights: • A nanostructured composite coating consisting of PPy doped with EGDMA was prepared. • The coating was

  10. The effect of water solubles on Kelvin effects of the Maritime Polluted ...

    African Journals Online (AJOL)

    In this work microphysical properties of Maritime Polluted aerosols wereextracted from Optical Properties of Aerosols and Clouds (OPAC) after varying the concentrations of water soluble at five different levels. The analytical expressions for the changes in the equilibrium relative humidity (RH), effective radii, effective ...

  11. Water-soluble heterobifunctional fluorescent linkers

    Czech Academy of Sciences Publication Activity Database

    Bartoň, Jan; Cígler, Petr

    2017-01-01

    Roč. 15, č. 1 (2017), s. 4 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] Institutional support: RVO:61388963 Keywords : fluorescent probes * heterobifunctional linkers Subject RIV: CA - Inorganic Chemistry

  12. Determination and modeling of the solubility of (limonin in methanol or acetone + water) binary solvent mixtures at T = 283.2 K to 318.2 K

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Zheng, Bing; Liao, Dan-Dan; Yu, Jia-Xin; Cao, Ya-Hui; Zhang, Xue-Hong; Zhu, Jian-Hang

    2016-01-01

    Highlights: • The solubilities of limonin were measured in the binary solvent mixtures methanol + water and acetone + water. • The solubility data were correlated by nine models. • The solubility of limonin had a maximum point at 0.9 mol fraction of acetone in acetone + water mixtures. - Abstract: The solubility of limonin in the binary solvent mixtures (methanol + water) and (acetone + water) with various initial mole fractions of methanol or acetone was measured by high-performance liquid chromatography (HPLC) at different temperatures ranging from 283.2 K to 318.2 K. The solubility of limonin increased with increasing initial mole fraction of methanol in (methanol + water) mixtures, whereas it had a maximum point at 0.9 mol fraction of acetone in (acetone + water) mixtures. The solubility of limonin increased with increasing temperature in the two binary solvent mixtures. The solubility of limonin was correlated with temperature by the van’t Hoff model and the modified Apelblat model, and the fitting results showed that the modified Apelblat model had better correlation. The CNIBS/Redlich–Kister model and the simplified CNIBS/Redlich–Kister model were used to correlate the solubility data with the initial solvent composition, the results show that the CNIBS/Redlich–Kister model reveals better agreement with the experimental values. Furthermore, to illustrate the effects of both temperature and initial solvent composition on the changes in the solubility of limonin, the solubility values were fitted by the Jouyban–Acree, van’t Hoff–Jouyban–Acree, modified Apelblat–Jouyban–Acree, Ma and Sun models. Among the five models, the Jouyban–Acree model give the best correlation results for (methanol + water) binary solvent mixtures, while the experimental solubility in the (acetone + water) system was most accurately correlated by the van’t Hoff–Jouyban–Acree model.

  13. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    International Nuclear Information System (INIS)

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables

  14. Characterization and blood coagulation evaluation of the water-soluble chitooligosaccharides prepared by a facile fractionation method.

    Science.gov (United States)

    Lin, Chia-Wen; Lin, Jui-Che

    2003-01-01

    Water-soluble chitooligosaccharides have been reported to have specific biological activities. In this study, the chitosan samples with different degree of acetylation were used separately to prepare chitooligosaccharide (COS) and highly deacetylated chitooligosaccharide (HDCOS) through the nitrous acid depolymerization. Rather than using the conventional fractionation schemes commonly employed, such as dialysis and ultrafiltration which require a large amount of deionized water as well as a fair long dwell time, an unique fractionation scheme is explored to recover and desalt these nitrous-acid depolymerized chitosan with different molecular weights. This fractionation scheme is based on the differential solubility variation of depolymerized products within the aqueous solutions that contain various ratios of methanol. It was noted that chitosan with different molecular weight can be successfully recovered and fractionated with methanol added sequentially up to a volume of four times of original depolmerized product. In addition, chemical characterization of the fractionated water-soluble COS and HDCOS by 1H NMR spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicated that the chitosan depolymerization reaction is greatly influenced by the degree of acetylation of the parental chitosan reactant. Moreover, the modified whole blood clotting time assay and the platelet coagulation test suggested that the 1:2 fractionated water-soluble COS and HDCOS obtained are much less procoagulant than their parental chitosan compound and can be of use in biomedical applications in which blood coagulation is not desired.

  15. Distribution of various water soluble radioactive metalloporphyrins in tumor bearing mice

    International Nuclear Information System (INIS)

    Hambright, P.; Fawwaz, R.; Valk, P.; McRae, J.; Bearden, A.J.

    1975-01-01

    The distribution of a variety of water soluble 109 Pd and 64 Cu porphyrins were studied in mice bearing three types of tumors. While the metalloporphyrins are found to have an affinity for neoplastic tissue, substantial extra-tumor concentrations are also noted. Although this limits their value as specific tumor imaging agents, their use in localized therapy is discussed

  16. Determination of organic and inorganic mercury species in Sungai Kinta, Perak by reversed-phase high performance liquid chromatography (HPLC) on-line coupled with ICP-MS

    International Nuclear Information System (INIS)

    Norshidah Baharuddin; Norashikin Saim; Rozita Osman; Sharifuddin Mohd Zain

    2012-01-01

    This paper describes a simple method for mercury speciation in river water samples of Sungai Kinta, Perak. Separation and measurement were done by high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry (HPLC/ ICP-MS). Separation of mercury species was accomplished within 6 minutes on an AQ C18 4.6 mm i.d x 150 mm, 5 μm reversed phase column with 0.1 % (w/ v) L-cysteine as mobile phase. Under the optimum instrumental conditions, recoveries of 101-104 % for MeHg + and 96 - 104 % for Hg 2+ were obtained with experimental detection limits of 1ngL -1 for inorganic mercury and 1.5 μgL -1 for organic mercury. (author)

  17. Carbonaceous and inorganic aerosols over a sub-urban site in peninsular India: Temporal variability and source characteristics

    Science.gov (United States)

    Aswini, A. R.; Hegde, Prashant; Nair, Prabha R.

    2018-01-01

    PM10 aerosol samples collected from a sub-urban site in Coimbatore during pre-monsoon, monsoon, post-monsoon and winter from 2014 to 2016 showed a large variability from 7.6 to 89 μg m- 3 with an annual average of 41 ± 21 μg m- 3 (N = 69). High abundance of PM10 and other components were recorded during winter and lowest during monsoon period. Total carbonaceous aerosols and water soluble ionic species contributed to 31% and 45% of PM10 mass respectively. SO42 - was the most abundant species (average 9.8 ± 4.8 μg m- 3) and constituted for 24% of total mass. Organic Carbon (OC) was the next most abundant species ranging from 1 to 16 μg m- 3 with an average of 7 ± 3.6 μg m- 3 accounting for 17% of PM10 mass concentration. POC (primary organic carbon) and SOC (secondary organic carbon) accounted for 56% and 44% of OC respectively. A major portion of OC ( 60%) was found to be water soluble. The correlation between OC and EC (elemental carbon) was found to be higher for night-time compared to daytime suggesting their origin from common sources during night-time. K+ was found to be strongly correlated with OC during night-time. WSOC showed good correlation with POC and K+ which was high especially during night-time. WSON (water soluble organic nitrogen) accounted for 34% of water soluble total nitrogen (WSTN). HCO3- exhibited significant positive correlation with Ca2 + during daytime indicating their crustal origin. The observations suggest that the region is influenced by biomass burning sources, however during day-time, secondary production and terrestrial sources (due to high temperature and wind) significantly influence the atmospheric aerosols over this region.

  18. Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction.

    Science.gov (United States)

    Sérandour, Julien; Reynaud, Stéphane; Willison, John; Patouraux, Joëlle; Gaude, Thierry; Ravanel, Patrick; Lempérière, Guy; Raveton, Muriel

    2008-10-08

    Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine) were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, insect relationships in aquatic eco-systems.

  19. Consideration on thermodynamic data for predicting solubility and chemical species of elements in groundwater. Part 1: Tc, U, Am

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Tetsuji; Takeda, Seiji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-01-01

    The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Complexations of radionuclides by ligands in groundwater affect the interaction between radionuclides and geologic media, thus affect their migration behavior. Thermodynamic data for Tc, Am and U were reviewed and compiled to be used for predicting the solubility and chemical species in groundwater. Thermodynamic data were reviewed with emphasis on the hydrolysis and carbonate complexation that can dominate the speciation in typical groundwater. Thermodynamic data for other species were selected based on existing database. Thermodynamic data for other important elements are under investigation, thus shown in an appendix for temporary use. (author)

  20. Kerogen-mineral reactions at raised temperatures in the presence of water

    Energy Technology Data Exchange (ETDEWEB)

    Eglinton, T I; Rowland, S J; Curtis, C D; Douglas, A G

    1986-01-01

    Kerogen has been artificially matured under hydrous pyrolysis conditions in the presence of various minerals in order to investigate the influence of the latter on the organic products. In addition to three clay minerals (montmorillonite, illite, kaolinite), calcium carbonate and limonite were also employed as inorganic substrates. Kerogen (Type II) isolated from the Kimmeridge Blackstone band was heated in the presence of water and a 20-fold excess of mineral phase at two different temperatures (280 and 330/sup 0/C) for 72 hr. Control experiments were also carried out using kerogen and water only and kerogen under anhydrous conditions. This preliminary study describes the bulk composition of the pyrolysates with detailed analyses of the aliphatic hydrocarbon distributions being provided by gas chromatography and combined gas chromatography-mass spectrometry. In the 280/sup 0/C experiments, considerably more organic-soluble pyrolysate (15% by weight of original kerogen) was produced when calcium carbonate was the inorganic phase. At 330/sup 0/C, all samples generated much greater amounts of organic-soluble products with calcium carbonate again producing a large yield (approx. 40% wt/wt). Biomarker epimerization reactions have also proceeded further in the 330/sup 0/C pyrolysate formed in the presence of calcium carbonate than with other inorganic phases. Implications of these and other observations are discussed.