WorldWideScience

Sample records for water-rock interaction modelling

  1. Combined stable isotope trajectories for water-rock interaction

    International Nuclear Information System (INIS)

    Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1981-01-01

    The 'mixed' model of water-rock interaction (1980 Workshop) is explained in detail. Based on the magnitude of the oxygen isotope shifts of their recharge water, different geothermal systems can be placed in an evolutionary series, from incipient (large shift of water) to mature (small shift of water). Isotopes of different chemical elements may be combined, to yield a stringent test of whether or not a given change in rock composition may be ascribed to interaction with water (L-shaped trajectories). For the acidic eruptives of the Taupo Volcanic Zone, available strontium and oxygen isotope data practically rule out an origin by partial melting of greywacke basement

  2. Proceedings of the Fourteenth International Symposium on Water-Rock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, Roland [Institute for Earth Sciences - ISTerre, CNRS UMR 5275 Grenoble (France); Pitsch, Helmut [IRSN, DSDP, SPIIC, BP17, 92262 Fontenay-aux-Roses Cedex (France)

    2013-07-01

    The 14. edition of the International Symposium on Water-Rock Interaction was held from 9-14 June 2013 in the Palais des Papes in the historic city of Avignon, located in southeastern France. As is the tradition with WRI symposia, earth scientists and guests from around the world convened over a week's time to exchange the latest ideas, advances, and data covering some of the most important aspects of rock-water interactions. The research that was presented in both oral and poster format covered studies derived from experimental and laboratory work, modeling and theoretical approaches, and field measurements. The presentations at the symposium showed the immense range of conditions associated with natural, experimental, and theoretical rock-water systems, encompassing a wide range of pH, as well as temperature and pressure conditions ranging from ambient to beyond the critical point of water. In addition, as can be evidenced from the presentations, many water-rock systems are increasingly being described in terms of control by both abiotic and biogeochemical processes. Advances in fundamental WRI research are also making significant contributions to better understanding current environmental problems, which are quite often highlighted in today's media headlines. Reflecting the importance of these environmental and societal challenges, an important number of presentations in this symposium described the current state of the knowledge concerning acid mine drainage, geological CO{sub 2} sequestration, shale gas extraction, aquifer salinization and diminishing potable water resources, and nuclear waste storage. Some 260 manuscripts were submitted to WRI-14 by scientists from 37 countries. Each manuscript was peer reviewed for scientific content by two reviewers. In the end, 230 manuscripts were accepted for either oral or poster presentation at the symposium. Each one of these papers can be found in this special symposium volume. The WRI-14 symposium has been

  3. Proceedings of the Fourteenth International Symposium on Water-Rock Interaction

    International Nuclear Information System (INIS)

    Hellmann, Roland; Pitsch, Helmut

    2013-01-01

    The 14. edition of the International Symposium on Water-Rock Interaction was held from 9-14 June 2013 in the Palais des Papes in the historic city of Avignon, located in southeastern France. As is the tradition with WRI symposia, earth scientists and guests from around the world convened over a week's time to exchange the latest ideas, advances, and data covering some of the most important aspects of rock-water interactions. The research that was presented in both oral and poster format covered studies derived from experimental and laboratory work, modeling and theoretical approaches, and field measurements. The presentations at the symposium showed the immense range of conditions associated with natural, experimental, and theoretical rock-water systems, encompassing a wide range of pH, as well as temperature and pressure conditions ranging from ambient to beyond the critical point of water. In addition, as can be evidenced from the presentations, many water-rock systems are increasingly being described in terms of control by both abiotic and biogeochemical processes. Advances in fundamental WRI research are also making significant contributions to better understanding current environmental problems, which are quite often highlighted in today's media headlines. Reflecting the importance of these environmental and societal challenges, an important number of presentations in this symposium described the current state of the knowledge concerning acid mine drainage, geological CO 2 sequestration, shale gas extraction, aquifer salinization and diminishing potable water resources, and nuclear waste storage. Some 260 manuscripts were submitted to WRI-14 by scientists from 37 countries. Each manuscript was peer reviewed for scientific content by two reviewers. In the end, 230 manuscripts were accepted for either oral or poster presentation at the symposium. Each one of these papers can be found in this special symposium volume. The WRI-14 symposium has been

  4. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  5. Water-rock interaction during diagenesis and thermal recovery, Cold Lake, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, H.J.

    1988-12-01

    Fluid and rocks interact at high temperatures during diagenesis and steam assisted thermal recovery of bitumen from the Clearwater Formation at Cold Lake, Alberta. A study was carried out to assess the effects of natural diagenesis in rocks of the formation, and using these data, to relate the chemical and isotopic compositions of fluids produced during thermal recovery to water-rock interactions occurring in the reservoir. X-ray diffraction (XRD) studies on core from Leming and Marguerite Lake document a variety of diagenetic clays including mixed layer minerals smectite-illite and chlorite-smectite, chlorite, illite, berthierine and kaolinite. A method for internally generating factors to convert clay mineral XRD peak heights to relative weight percents was used. Semi-quantitative results show that smectite-illite is ubiquitous and the most abundant clay present. Details are provided of the diagenetic sequence illustrating water-rock interaction over a prolonged period. Three types of water were found to be produced from the wells: injected water, formation water associated with bitumen, and bottom water from the underlying McMurray Formation. Produced water compositions were used to estimate in-situ temperatures of fluids produced from reservoirs. It is concluded that equilibrium closed-system models can be applied to natural diagenesis and artificial diagenesis induced during thermal recovery. 132 refs., 52 figs., 5 tabs.

  6. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    Science.gov (United States)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  7. Processes of water rock interaction in the Turonian aquifer of Oum Er-Rabia Basin, Morocco

    Science.gov (United States)

    Ettazarini, Said

    2005-12-01

    Possible water rock interaction processes, in the Moroccan basin of Oum Er-Rabia, were discussed by a geochemical study of groundwater from the Turonian limestone aquifer, the most important water resource in the region. Different types of water according to the classification of Piper were defined. Waters have shown an evolution from dominant CHO3 Ca Mg type through mixed to SO4 Cl Ca Mg type. The use of geochemical diagrams and chemical speciation modeling method has shown that water rock interaction is mainly controlled by carbonate and anhydrite dissolution, ion exchange and reverse ion exchange processes. Water rock equilibrium conditions are favorable for the precipitation of calcite, dolomite, kaolinite and magnesian smectite.

  8. Water-rock interaction in a high-FeO olivine rock in nature

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Lindberg, A.; Tullborg, E.L.

    1992-12-01

    The long-term behaviour in nature of high-FeO olivine rock in contact with surface water has been studied at the Lovasjaervi instrusion, SE-Finland. The rock has been proposed as a high-capasity, higly reactive redox-buffer backfill in a repository for spent fuel. Favourable groundwater chemistry is a major parameter relevant to safety of such a repository. Reducing conditions favour the retardation of long-lived, redox-sensitive radionuclides. Weathering influences have been studied at the natural outcrop of the rock mass. The interaction of oxidizing surface waters with rock at greater depths has been studied by using fissure filling minerals. Investigation of weathered rock from the outcrop indicates that the olivine rock is highly reactive on a geological time scale and its redox capasity is available although the instrusion as a whole is surprisingly well preserved. The fissure fillings studied allow the conclusion that oxygen seems to be efficiently removed from intruding surface water. Oxidation seem to have caused visible effects only along very conducting fractures and near the contact zones of the surrounding granitic rock. Stable isotope data of fissure filling calcites indicate that the influence of surface waters can be traced clearly down to a depth of about 50 m, but also at greater depths re-equilibration has occurred. Groundwater data from the site were not available. (orig.)

  9. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral

  10. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    International Nuclear Information System (INIS)

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-01-01

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite

  11. Chemical modeling of irreversible reactions in nuclear waste-water-rock systems

    International Nuclear Information System (INIS)

    Wolery, T.J.

    1981-02-01

    Chemical models of aqueous geochemical systems are usually built on the concept of thermodynamic equilibrium. Though many elementary reactions in a geochemical system may be close to equilibrium, others may not be. Chemical models of aqueous fluids should take into account that many aqueous redox reactions are among the latter. The behavior of redox reactions may critically affect migration of certain radionuclides, especially the actinides. In addition, the progress of reaction in geochemical systems requires thermodynamic driving forces associated with elementary reactions not at equilibrium, which are termed irreversible reactions. Both static chemical models of fluids and dynamic models of reacting systems have been applied to a wide spectrum of problems in water-rock interactions. Potential applications in nuclear waste disposal range from problems in geochemical aspects of site evaluation to those of waste-water-rock interactions. However, much further work in the laboratory and the field will be required to develop and verify such applications of chemical modeling

  12. Ground water chemistry and water-rock interaction at Olkiluoto

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Front, K.

    1992-02-01

    Bedrock investigations for the final repository for low- and intermediate level wastes (VLJ repository) generated at the Olkiluoto (TVO-I and TVO-II) nuclear power plant, stareted in 1980. Since 1988 the area has been investigated for the final disposal of spent nuclear fuel. In the report the geochemistry at the nuclear waste investigation site, Olkiluoto, is evaluated. The hydrogeological data are collected from boreholes drilled down to 1000-m depth into Proterozoic crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data, and the structure and hydrology of the bedrock, using correlation diagrams and thermodynamic calculations (PHREEQE). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed. The groundwater types are characterized by water-rock interaction but they also show features of other origins. The fresh and brackish waters are contaminated by varying amounts of young meteoric water and brackish seawater. The saline water contains residues of possibly ancient hydrothermal waters, imprints of which are occasionally seen in the rock itself. Different mixing phenomenas are indicated by the isotope contents (O-l8/H-2, H-3) and the Ca/Cl, Na/Cl, HCO 3 /Cl, SO 4 /Cl, Br/Cl, SI(calcite)/SI(dolomite) ratios. The interaction between bedrock and groundwater is reflected by the behaviour of pH, Eh, Ca, Mg, Na, K, Fe, HCO 3 and S0 4 . Dissolution and precipitation of calcite and pyrite, and aluminosilicate hydrolysis play the major role in defining the groundwater composition of the above components

  13. Water-rock interaction and chemistry of groundwaters from the Canadian Shield

    International Nuclear Information System (INIS)

    Frape, S.K.; Fritz, P.; McNutt, R.H.

    1984-01-01

    The chemical and isotopic compositions of groundwaters in the crystalline rocks of the Canadian Shield reflect different degrees of rock-water interactions. The chemistry of the shallow, geochemically immature ground waters and especially of the major cations is controlled by local rock compositions, whereby dissolution reactions dominate. Conservative constituents, such as chloride and bromide, however, are not entirely a result of such reactions but appear to be readily added from leachable salts during the initial stages of the geochemical evolution of these waters. Their concentration changes little as major cations increase, until concentrations of Total Dissolved Solids (TDS) reach 3000 to 5000 mg l -1 . The isotopic composition of these shallow waters reflects local, present day precipitations. In contrast to the shallow groundwaters, the isotopic and chemical compositions of the deep, saline waters and brines are determined by extensive, low-temperature rock-water interactions. This is documented in major ion chemistries, 18 O contents and strontium isotopic compositions. These data indicate that the deep brines have been contained in hydrologically isolated pockets. The almost total loss of primary compositions make discussions on the origin of these brines very speculative. However, all brines from across the Canadian Shield have a very similar chemical composition, which probably reflects a common geochemical history. (author)

  14. Combining water-rock interaction experiments with reaction path and reactive transport modelling to predict reservoir rock evolution in an enhanced geothermal system

    Science.gov (United States)

    Kuesters, Tim; Mueller, Thomas; Renner, Joerg

    2016-04-01

    Reliably predicting the evolution of mechanical and chemical properties of reservoir rocks is crucial for efficient exploitation of enhanced geothermal systems (EGS). For example, dissolution and precipitation of individual rock forming minerals often result in significant volume changes, affecting the hydraulic rock properties and chemical composition of fluid and solid phases. Reactive transport models are typically used to evaluate and predict the effect of the internal feedback of these processes. However, a quantitative evaluation of chemo-mechanical interaction in polycrystalline environments is elusive due to poorly constrained kinetic data of complex mineral reactions. In addition, experimentally derived reaction rates are generally faster than reaction rates determined from natural systems, likely a consequence of the experimental design: a) determining the rate of a single process only, e.g. the dissolution of a mineral, and b) using powdered sample materials and thus providing an unrealistically high reaction surface and at the same time eliminating the restrictions on element transport faced in-situ for fairly dense rocks. In reality, multiple reactions are coupled during the alteration of a polymineralic rocks in the presence of a fluid and the rate determining process of the overall reactions is often difficult to identify. We present results of bulk rock-water interaction experiments quantifying alteration reactions between pure water and a granodiorite sample. The rock sample was chosen for its homogenous texture, small and uniform grain size (˜0.5 mm in diameter), and absence of pre-existing alteration features. The primary minerals are plagioclase (plg - 58 vol.%), quartz (qtz - 21 vol.%), K-feldspar (Kfs - 17 vol.%), biotite (bio - 3 vol.%) and white mica (wm - 1 vol.%). Three sets of batch experiments were conducted at 200 ° C to evaluate the effect of reactive surface area and different fluid path ways using (I) powders of the bulk rock with

  15. Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies

    Science.gov (United States)

    Nader, Fadi; Bachaud, Pierre; Michel, Anthony

    2015-04-01

    Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This

  16. Silicon Isotope Fractionation During Acid Water-Igneous Rock Interaction

    Science.gov (United States)

    van den Boorn, S. H.; van Bergen, M. J.; Vroon, P. Z.

    2007-12-01

    Silica enrichment by metasomatic/hydrothermal alteration is a widespread phenomenon in crustal environments where acid fluids interact with silicate rocks. High-sulfidation epithermal ore deposits and acid-leached residues at hot-spring settings are among the best known examples. Acid alteration acting on basalts has also been invoked to explain the relatively high silica contents of the surface of Mars. We have analyzed basaltic-andesitic lavas from the Kawah Ijen volcanic complex (East Java, Indonesia) that were altered by interaction with highly acid (pH~1) sulfate-chloride water of its crater lake and seepage stream. Quantitative removal of major elements during this interaction has led to relative increase in SiO2 contents. Our silicon isotope data, obtained by HR-MC-ICPMS and reported relative to the NIST RM8546 (=NBS28) standard, show a systematic increase in &δ&&30Si from -0.2‰ (±0.3, 2sd) for unaltered andesites and basalts to +1.5‰ (±0.3, 2sd) for the most altered/silicified rocks. These results demonstrate that silicification induced by pervasive acid alteration is accompanied by significant Si isotope fractionation, so that alterered products become isotopically heavier than the precursor rocks. Despite the observed enrichment in SiO2, the rocks have experienced an overall net loss of silicon upon alteration, if Nb is considered as perfectly immobile. The observed &δ&&30Si values of the alteration products appeared to correlate well with the inferred amounts of silicon loss. These findings would suggest that &28Si is preferentially leached during water-rock interaction, implying that dissolved silica in the ambient lake and stream water is isotopically light. However, layered opaline lake sediments, that are believed to represent precipitates from the silica-saturated water show a conspicuous &30Si-enrichment (+1.2 ± 0.2‰). Because anorganic precipitation is known to discriminate against the heavy isotope (e.g. Basile- Doelsch et al., 2006

  17. Fluid-rock interaction: A reactive transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.; Maher, K.

    2009-04-01

    Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be

  18. Modelling of Gas Flow in the Underground Coal Gasification Process and its Interactions with the Rock Environment

    Directory of Open Access Journals (Sweden)

    Tomasz Janoszek

    2013-01-01

    Full Text Available The main goal of this study was the analysis of gas flow in the underground coal gasification process and interactions with the surrounding rock mass. The article is a discussion of the assumptions for the geometric model and for the numerical method for its solution as well as assumptions for modelling the geochemical model of the interaction between gas-rock-water, in terms of equilibrium calculations, chemical and gas flow modelling in porous mediums. Ansys-Fluent software was used to describe the underground coal gasification process (UCG. The numerical solution was compared with experimental data. The PHREEQC program was used to describe the chemical reaction between the gaseous products of the UCG process and the rock strata in the presence of reservoir waters.

  19. Interactions between wall rocks around magma and hot water. Magma shuhen no hekigan/nessui sogo sayo

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.

    1992-12-01

    This paper describes interactions between wall rocks around magma and hot water. The paper discusses effects of hydrothermal environments on dynamic properties of rock minerals with respect to hydrolytic weakening (decrease in dynamic strength of a mineral under presence of water) and reaction enhanced deformation (deformation accelerated by chemical change occurring in a mineral itself). It also explains chemical reactivity of minerals under hydrothermal enviroments with respect to four types of chemical changes in minerals, factors governing mineral dissolution rates, and importance of equilibrium and non-equilibrium in main components in reactions between minerals and waters. These statements quote mainly results of indoor experiments. The paper indicates the following matters as problems to be discussed on interactions between wall rocks around intrusive rocks and hot waters: Deviation from chemical equilibrium in reactions between rocks and waters; change in permeability as a result of reactions between rocks and waters; and possibilities of hydrolytic weakening in rocks around intrusive rock bodies. 52 refs., 6 figs.

  20. Geochemical modelling of CO2-water-rock interactions for carbon storage : data requirements and outputs

    International Nuclear Information System (INIS)

    Kirste, D.

    2008-01-01

    A geochemical model was used to predict the short-term and long-term behaviour of carbon dioxide (CO 2 ), formation water, and reservoir mineralogy at a carbon sequestration site. Data requirements for the geochemical model included detailed mineral petrography; formation water chemistry; thermodynamic and kinetic data for mineral phases; and rock and reservoir physical characteristics. The model was used to determine the types of outputs expected for potential CO 2 storage sites and natural analogues. Reaction path modelling was conducted to determine the total reactivity or CO 2 storage capability of the rock by applying static equilibrium and kinetic simulations. Potential product phases were identified using the modelling technique, which also enabled the identification of the chemical evolution of the system. Results of the modelling study demonstrated that changes in porosity and permeability over time should be considered during the site selection process.

  1. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  2. Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Y., E-mail: yann.lucas@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Schmitt, A.D., E-mail: anne-desiree.schmitt@univ-fcomte.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)] [Universite de Franche-Comte et CNRS-UMR 6249, Chrono-Environnement, 16, Route de Gray, 25030 Besancon Cedex (France); Chabaux, F., E-mail: francois.chabaux@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Clement, A.; Fritz, B. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Elsass, Ph. [BRGM, GEODERIS, 1, rue Claude Chappe, 57070 Metz (France); Durand, S. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)

    2010-11-15

    Research highlights: {yields} Major and trace elements along with strontium and uranium isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect a conservative mixing. {yields} A coupled hydrogeochemical model demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process. {yields} The model requires only a small amount of montmorillonite. {yields} It is necessary to consider the pollution history to explain the important chloride, sodium and calcium concentration modifications. {yields} The model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer. - Abstract: In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves

  3. Behavior of uranium under conditions of interaction of rocks and ores with subsurface water

    Science.gov (United States)

    Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.

    2007-10-01

    The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water

  4. Geochemical modeling of water-gas-rock interactions. Application to mineral diagenesis in geologic reservoirs; Modelisation geochimique des interactions eau-gaz-roche. Application a la diagenese minerale dans les reservoirs geologiques

    Energy Technology Data Exchange (ETDEWEB)

    Bildstein, O

    1998-03-13

    The Ph.D. report describes a conceptual and numerical model for simulating gas-water-rock interaction during mineral diagenesis of sediments. The main specific features of this model are the following: applicable to open systems, half-implicit resolution numerical method, feedback on the texture evolution (grain model), existence of a gas phase, oxido-reduction phenomena. (author) 217 refs.

  5. Uranium mobility in mine areas: evaluation of the water-rock interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zuddas, P. [UFR Sciences de la Terre. PEPS. Universite Claude Bernard. Lyon (France); Rocha Scislewski, A.; Faivre, D.; Lopez, O. [Institut de Physique du Globe de Paris (France)

    2005-07-01

    Full text of publication follows: Toxicity and natural radioactivity of uranium are among the main environmental concerns for exploitation and processing of uranium ore. Weathering processes and potential contamination paths of these areas have to be identified to preserve the water resources. In this work, leaching experiments were carried out in flow-through reactors. Approximately 750 g of crushed rock of selected grain size between 0.35 and 0.80 mm were introduced into a Pyrex column. Distilled and deionized water, saturated with 5% CO{sub 2}/95% air mixture, was introduced through a glass inlet fitted at the base of the column. Input solution pH was constantly equal to 4.2 while the low flow rate was obtained from a peristaltic pump. The output solution was sampled periodically for about 1 year. Three different rock samples were used: an untreated granite rock with high levels of uranium minerals, a rock with low uranium content and a rock rejected after the lixiviation process for uranium industrial extraction. For untreated rocks pH and silica decrease by 1-2 orders of magnitude while sodium decreases by 2-3 orders of magnitude. This indicates the strong albitite dissolution. Total dissolved uranium has a rather constant level indicating the constant dissolution rate of the uranium mineral assemblage. Thermodynamic modelling of the interacting output solutions indicates that 80% of the dissolved uranium content is under the form of two main carbonate complexes (i.e. UO{sub 2}(CO{sub 3}){sub 2}{sup 2-} and UO{sub 2}(CO{sub 3}){sub 3}{sup 4-}), while solutions are saturated on chalcedony, kaolinite and calcium clay minerals. Solutions are under saturated with respect to uraninite and low-temperature albite. In experiments where material was treated with sulphuric acid in the plant, pH is constantly equal to 4 indicating the lack of rock buffering properties. Na, Ca, and SO{sub 4} decrease by several orders of magnitude (from some initial mmol/kg) reaching

  6. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are one of the major driving forces for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise

  7. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia

    2008-08-01

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are one of the major driving forces for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise in

  8. Study of the water-rock interactions of spring waters in the Northern Apennines

    International Nuclear Information System (INIS)

    Venturelli, G.; Toscani, L.

    2000-01-01

    Forty three spring waters have been investigated in the Apennine area of Reggio Emilia province (Parco Regionale del Gigante, Italy). On the basis of the Langelier-Ludwig diagram, the (Na+K+Cl) vs (Ca+Mg) plot and the Cl content, the waters have been divided in five main groups. The chemical composition of the waters suggests that calcite is practically the only source of Ca and alkalinity for group D and E reflect ion exchange and calcite and minor silicate dissolution during a strong water-rock interaction at depth [it

  9. Modelling of water-gas-rock geo-chemical interactions. Application to mineral diagenesis in geological reservoirs

    International Nuclear Information System (INIS)

    Bildstein, Olivier

    1998-01-01

    Mineral diagenesis in tanks results from interactions between minerals, water, and possibly gases, over geological periods of time. The associated phenomena may have a crucial importance for reservoir characterization because of their impact on petrophysical properties. The objective of this research thesis is thus to develop a model which integrates geochemical functions necessary to simulate diagenetic reactions, and which is numerically efficient enough to perform the coupling with a transport model. After a recall of thermodynamic and kinetic backgrounds, the author discusses how the nature of available analytic and experimental data influenced choices made for the formalization of physical-chemical phenomena and for behaviour laws to be considered. Numerical and computational aspects are presented in the second part. The model is validated by using simple examples. The different possible steps during the kinetic competition between two mineral are highlighted, as well the competition between mineral reaction kinetics and water flow rate across the rock. Redox reactions are also considered. In the third part, the author reports the application of new model functions, and highlights the contribution of the modelling to the understanding of some complex geochemical phenomena and to the prediction of reservoir quality. The model is applied to several diagenetic transformations: cementation of dolomitic limestone by anhydride, illite precipitation, and thermal reduction of sulphates [fr

  10. Geochemical modelling of water-rock interactions at the Osamu Utsumi mine and Morro do Ferro analogue study sites, Pocos de Caldas, Brazil

    International Nuclear Information System (INIS)

    Nordstrom, D.K.; Puigdomenech, I.; McNutt, R.H.

    1990-01-01

    Geochemical processes involving water-rock interactions have been modelled using groundwater composition, mineralogical data, ion plots and computations of speciation, non-thermodynamic mass balance and thermodynamic mass transfer for two natural analogue sites near Pocos de Caldas, Brazil: the Osamu Utsumi mine and Morro do Ferro. The main rock type is an alkaline igneous complex composed of volcanic and sub-volcanic phonolites that have been hydrothermally altered and highly weathered. This altered rock mass grades from a laterite at the surface to a saprolite and finally to unweathered, hydrothermally altered bedrock at depth. The mine site contains high concentrations of uranium and Morro do Ferro contains high concentrations of thorium and rare-earths. The reaction models can reproduce the water chemistry and mineral occurences and they were validated by predicting the masses of minerals precipitated and the pH of the final water. The model computations can also reproduce the pH and iron concentrations of the water samples during CO 2 degassing and iron(II) oxidation from exposure to air. The results from the geochemical reaction models reveal that the dominant processes are production of CO 2 in the soil zone through aerobic decay of organic matter, dissolution of fluorite, calcite, K-feldspar, albite and manganese oxides, oxidation of pyrite and sphalerite and precipitation of ferric oxides, silica and kaolinite. Recharge waters are undersaturated with respect to barite and discharging waters and deeper groundwaters are saturated to supersaturated with respect to barite, demonstrating a strong equilibrium solubility control. Strontium isotope data demonstrate that sources other than calcium-bearing minerals are required to account for the dissolved strontium in the ground. These may include K-feldspar, smectite-chlorite mixed-layer clays and goyazite. (author) 24 figs., 4 tabs., 18 refs

  11. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    Science.gov (United States)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the

  12. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia

    2009-01-01

    The overall objectives of hydrogeochemical description for Laxemar are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are the major driving force for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Laxemar site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry

  13. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))

    2009-01-15

    The overall objectives of hydrogeochemical description for Laxemar are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are the major driving force for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Laxemar site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry

  14. A microfluidic approach to water-rock interactions using thin rock sections: Pb and U sorption onto thin shale and granite sections

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Youn Soo [Institute of Mine Reclamation Technology, Mine Reclamation Corp., 2 Segye-ro, Wonju-si, Gangwon-do, 26464 (Korea, Republic of); Jo, Ho Young, E-mail: hyjo@korea.ac.kr [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841 (Korea, Republic of); Ryu, Ji-Hun; Kim, Geon-Young [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon, 34057 (Korea, Republic of)

    2017-02-15

    Highlights: • Microfluidic tests was used to investigate water-rock (mineral) interactions. • Pb and U sorption onto thin shale and granite sections was evaluated. • Pb removal by thin shale section is related primarily to Fe-containing minerals. • A slightly larger amount of U was removed onto the thin granite section with Fe-containing minerals. - Abstract: The feasibility of using microfluidic tests to investigate water-rock (mineral) interactions in fractures regarding sorption onto thin rock sections (i.e., shale and granite) of lead (Pb) and uranium (U) was evaluated using a synthetic PbCl{sub 2} solution and uranium-containing natural groundwater as fluids. Effluent composition and element distribution on the thin rock sections before and after microfluidic testing were analyzed. Most Pb removal (9.8 mg/cm{sup 2}) occurred within 3.5 h (140 PVF), which was 74% of the total Pb removal (13.2 mg/cm{sup 2}) at the end of testing (14.5 h, 560 PVF). Element composition on the thin shale sections determined by μ-XRF analysis indicated that Pb removal was related primarily to Fe-containing minerals (e.g., pyrite). Two thin granite sections (biotite rich, Bt-R and biotite poor, Bt-P) exhibited no marked difference in uranium removal capacity, but a slightly higher amount of uranium was removed onto the thin Bt-R section (266 μg/cm{sup 2}) than the thin Bt-P section (240 μg/cm{sup 2}) within 120 h (4800 PVF). However, uranium could not be detected by micro X-ray fluorescence (μ-XRF) analysis, likely due to the detection limit. These results suggest that microfluidic testing on thin rock sections enables quantitative evaluation of rock (mineral)-water interactions at the micro-fracture or pore scale.

  15. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  16. Rock-water interaction involving uranium and thorium isotopes in the fractures of El Berrocal granite, Spain

    International Nuclear Information System (INIS)

    Ivanovich, M.; Cahmbers, N.; Hernandez-Benitez, A.

    1996-01-01

    In the framework of a number of R and D programmes, low permeability rocks in which the groundwater flow is governed by fractures are being considered as potentially suitable candidates for the long-term storage of radioactive waste at depth [1]. Such rocks are often one of the main sources of the radionuclides deriving from the natural radioactive decay chains headed by U and Th. This characteristic makes this type of rock very useful in providing geochemical analogues for the behaviour of transuranic radionuclides present in the nuclear waste [2,3]. The main aim of the work reported here is to study in detail the distribution of naturally occurring radionuclides in several types of fracture infill material from the El Berrocal granitic pluton. The pluton in situated at the southern edge of the Spanish Central System and contains a uranium-mineralized quartz vein (UQV) that has been mined for uranium in the past [4]. Groundwaters as well as natural colloids have been sampled from some of the boreholes with the ultimate intention to model rock/water interaction processes which may take place in the water-bearing fractures in the batholith. The second aim of this work has been to date some of the calcite-rich fracture infills derived from the drill cores at depth, especially at water-bearing horizons. (Author)

  17. Quantifying Water-Rock Interactions during Hydraulic Fracturing from the Analysis of Flowback Water

    Science.gov (United States)

    Osselin, F.; Nightingale, M.; Kloppmann, W.; Gaucher, E.; Clarkson, C.; Mayer, B.

    2017-12-01

    Hydraulic fracturing technologies have facilitated the rapid development of shale gas and other unconventional resources throughout the world. In order to get sufficient access to the trapped hydrocarbon, it is necessary to fracture the bedrock and increase its permeability. Fracturing fluids are usually composed of tens of thousand of cubic meters of low salinity water with numerous additives, such as viscosity agent or breakers. The objective of this study was to investigate and quantify the water-rock interactions during hydraulic fracturing. This study was based on repeated sampling of flowback water from a hydraulically fractured well in Alberta, Canada. The flowback water was sampled 24 times during the first week and one last time after one, and analyzed for major ions and trace elements, as well as stable isotopes of sulfate and water among others. Results showed that salinity rapidly increases up to 100 000 mg/L at the end of the first week. We demonstrate that conservative species such as Na and Cl follow a clear two end-members mixing line, while some species including sulfate had much higher concentrations (8 times higher than the expected value from the mixing line). This indicates that the rapid increase of salinity in flowback water is caused by both mixing with formation water initially present in the shale formation, and from water-rock interactions triggered by the fracturing fluid and in some cases by the additives. Stable isotope data suggest that additional sulfate is mobilized as a consequence of pyrite oxidation, releasing sulfate, iron and potentially other heavy metals into the flowback water. This release of excess sulfate can be detrimental because it has the potential to promote scaling of sulfate minerals. Moreover, pyrite oxidation is a highly acidifying reaction and this may decrease the effectiveness of other additives, and promote carbonate minerals dissolution enhancing further scaling. We propose that a better control of the

  18. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif

    International Nuclear Information System (INIS)

    Buil gutierrez, B.; Garcia Sanz, S.; Lago San Jose, M.; Arranz Yague, E.; Auque Sanz, L.

    2002-01-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  19. Computer programs for the numerical modelling of water flow in rock masses

    International Nuclear Information System (INIS)

    Croney, P.; Richards, L.R.

    1985-08-01

    Water flow in rock joints provides a very important possible route for the migration of radio-nuclides from radio-active waste within a repository back to the biosphere. Two computer programs DAPHNE and FPM have been developed to model two dimensional fluid flow in jointed rock masses. They have been developed to run on microcomputer systems suitable for field locations. The fluid flows in a number of jointed rock systems have been examined and certain controlling functions identified. A methodology has been developed for assessing the anisotropic permeability of jointed rock. A number of examples of unconfined flow into surface and underground openings have been analysed and ground water lowering, pore water pressures and flow quantities predicted. (author)

  20. Origins of high pH mineral waters from ultramafic rocks, Central Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Jose M. [Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa (Portugal)], E-mail: jose.marques@ist.ult.pt; Carreira, Paula M. [Instituto Tecnologico e Nuclear, Estrada Nacional No 10, 2686-953 Sacavem (Portugal); Carvalho, Maria Rosario [Departamento de Geologia, Faculdade de Ciencias, Universidade de Lisboa, Ed. C6, 3oP, Campo Grande, 1749-016 Lisboa (Portugal); Matias, Maria J. [Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa (Portugal); Goff, Fraser E. [Earth and Planetary Sciences Department MSCO3-2040, University of New Mexico, Albuquerque, New Mexico 87131-000 (United States); Basto, Maria J.; Graca, Rui C.; Aires-Barros, Luis [Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa (Portugal); Rocha, Luis [Junta de Freguesia, Av. da Libertacao, 45-D, 7460-002, Cabeco de Vide (Portugal)

    2008-12-15

    This paper reviews the geochemical, isotopic ({sup 2}H, {sup 18}O, {sup 13}C, {sup 3}H and {sup 14}C) and numerical modelling approaches to evaluate possible geological sources of the high pH (11.5)/Na-Cl/Ca-OH mineral waters from the Cabeco de Vide region (Central-Portugal). Water-rock interaction studies have greatly contributed to a conceptual hydrogeological circulation model of the Cabeco de Vide mineral waters, which was corroborated by numerical modelling approaches. The local shallow groundwaters belong to the Mg-HCO{sub 3} type, and are derived by interaction with the local serpentinized rocks. At depth, these type waters evolve into the high pH/Na-Cl/Ca-OH mineral waters of Cabeco de Vide spas, issuing from the intrusive contact between mafic/ultramafic rocks and an older carbonate sequence. The Cabeco de Vide mineral waters are supersaturated with respect to serpentine indicating that they may cause serpentinization. Magnesium silicate phases (brucite and serpentine) seem to control Mg concentrations in Cabeco de Vide mineral waters. Similar {delta}{sup 2}H and {delta}{sup 18}O suggest a common meteoric origin and that the Mg-HCO{sub 3} type waters have evolved towards Cabeco de Vide mineral waters. The reaction path simulations show that the progressive evolution of the Ca-HCO{sub 3} to Mg-HCO{sub 3} waters can be attributed to the interaction of meteoric waters with serpentinites. The sequential dissolution at CO{sub 2} (g) closed system conditions leads to the precipitation of calcite, magnesite, amorphous silica, chrysotile and brucite, indicating that the waters would be responsible for the serpentinization of fresh ultramafic rocks (dunites) present at depth. The apparent age of Cabeco de Vide mineral waters was determined as 2790 {+-} 40 a BP, on the basis of {sup 14}C and {sup 13}C values, which is in agreement with the {sup 3}H concentrations being below the detection limit.

  1. Charaterising water-rock interaction in a mixed carbonate-evaporite karstified aquifer system, Qatar

    Science.gov (United States)

    Thirathititham, R.; Whitaker, F.

    2017-12-01

    Qatar is an arid country, most of the rainfall (80 mm/yr) occurring during intense storms. Surface runoff is endorheic and recharge is facilitated by karst features developed over an extended (c.30 Ma) period of exposure of the carbonate bedrock. In December 2016, we sampled a rare intense rainfall event (41 mm over 3 days), after which waters ponded within low-relief terminal depressions prior to infiltration. We compare the chemistry of these recharge waters with that of ground waters from 76 wells distributed across Qatar to understand the nature and spatial distribution of water-rock interaction. Using Cl- as a conservative tracer for seawater mixing, we calculate concentrations of rock-derived Ca2+, Mg2+ and SO42-. During surface detention, rain chemistry is modified by evaporation and interaction with clays and the surface bedrock over days to weeks. However, groundwater chemistry is dominated by subsurface interaction between recharge waters and the karstified Tertiary aquifers. These include the largely dolomitic Paleocene to Lower Eocene Umm er Radhuma (UER) and overlying Lower Eocene Rus, with the Middle Eocene Abarug limestone forming a locally important aquifer in the south west. Away from coastal areas which show clear evidence of salinisation, TDS of groundwaters in the interior of the peninsula increases from north to south. All groundwaters are significantly enriched in SO42-, but this enrichment is marked greater in the south. This likely reflects the presence of a unit of middle Rus gypsum that in the south of the country confines the Lower Rus and UER aquifers, whilst in the north either gypsum was not deposited or has been dissolved. Waters in the Abarug limestone show limited sulfate enrichment and a 1:1 molar ratio of rock-derived SO42-: Ca2+, but across much of the country both SO42- enrichment and SO42-: Ca2+ molar ratio are significantly higher, the latter reaching 2:1 and suggesting an additional sink for Ca2+. The dolomite aquifer waters

  2. Water-rock-tailings interactions and sources of sulfur and metals in the subtropical mining region of Taxco, Guerrero (southern Mexico): A multi-isotopic approach

    International Nuclear Information System (INIS)

    Talavera Mendoza, Oscar; Ruiz, Joaquin; Díaz Villaseñor, Elvia; Ramírez Guzmán, Alejandro; Cortés, Alejandra; Salgado Souto, Sergio Adrián; Dótor Almazán, Azucena; Rivera Bustos, Reymundo

    2016-01-01

    Multi-isotope (H, O, S, Sr, Pb) systems coupled with conventional (major and trace element) hydrogeochemical analysis were applied to determine the origin of water, to model water-rock-tailings interactions and for source apportionment of sulfur and associated toxic metals in the mining region of Taxco, Guerrero in southern Mexico. Oxygen and H isotopes indicate that meteoric water in the zone is rainwater undergoing varying degrees of isotopic fractionation by atmospheric evaporation whereas Sr isotopes trace the interaction of pristine water from volcanics of the regional recharge zone and subsequently flowing through sandstone and shale to spring points. Leachates form from two distinctive sources (spring water and surface water) having differential interactions with bedrocks prior to entering the tailings. Compared to pristine water, leachates are enriched in sulfate, metals (e.g. Fe, Mn, Pb and Zn) and metalloids (e.g. As). The sulfur isotopic composition of ore-sulfides, leachates, secondary precipitates, regional surface water and hypogenic sulfates is described in terms of a two-component mixing model with shale of Mexcala and limestone of Morelos formations representing the light and heavy end-members, respectively, whereas Sr isotopic composition is bracketed combining three lithogenic (Mexcala/Morelos, Tilzapotla and Taxco Schist) sources. Finally, leachates have a mixture of lead from ore-sulfides and Taxco Schist Formation (Family I) or from ore-sulfides alone (Family II). The application of multiple environmental isotopic techniques is an outstanding tool for elucidating complex interactions of water with bedrocks and tailings and for determining the source of sulfur and toxic metal from mining and other metal polluted environments. - Highlights: • We applied multi-isotope techniques to model water-bedrocks-tailings interaction. • Spring water records fractionation by evaporation and interaction with local rocks. • The sulfur cycle is modeled in

  3. Experimental Investigation of Mechanical Properties of Black Shales after CO₂-Water-Rock Interaction.

    Science.gov (United States)

    Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin

    2016-08-06

    The effects of CO₂-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO₂ in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO₂. According to the experimental results, the values of UCS, Young's modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO₂. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young's modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young's modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO₂, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO₂). SC-CO₂ causes a greater reduction of shale's mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO₂. The EDS results show that CO₂-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation.

  4. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, Peter, E-mail: birkle@iie.org.mx [Instituto de Investigaciones Electricas (IIE), Gerencia de Geotermia, Av. Reforma 113, Cuernavaca, Morelos 62490 (Mexico); Garcia, Bernardo Martinez; Milland Padron, Carlos M. [PEMEX Exploracion y Produccion, Region Sur, Activo Integral Bellota-Jujo, Diseno de Explotacion, Cardenas, Tabasco (Mexico)

    2009-04-15

    The origin and evolution of formation water from Upper Jurassic to Upper Cretaceous mudstone-packstone-dolomite host rocks at the Jujo-Tecominoacan oil reservoir, located onshore in SE-Mexico at a depth from 5200 to 6200 m.b.s.l., have been investigated, using detailed water geochemistry from 12 producer wells and six closed wells, and related host rock mineralogy. Saline waters of Cl-Na type with total dissolved solids from 10 to 23 g/L are chemically distinct from hypersaline Cl-Ca-Na and Cl-Na-Ca type waters with TDS between 181 and 385 g/L. Bromine/Cl and Br/Na ratios suggest the subaerial evaporation of seawater beyond halite precipitation to explain the extreme hypersaline components, while less saline samples were formed by mixing of high salinity end members with surface-derived, low salinity water components. The dissolution of evaporites from adjacent salt domes has little impact on present formation water composition. Geochemical simulations with Harvie-M{phi}ller-Weare and PHRQPITZ thermodynamic data sets suggest secondary fluid enrichment in Ca, HCO{sub 3} and Sr by water-rock interaction. The volumetric mass balance between Ca enrichment and Mg depletion confirms dolomitization as the major alteration process. Potassium/Cl ratios below evaporation trajectory are attributed to minor precipitation of K feldspar and illitization without evidence for albitization at the Jujo-Tecominoacan reservoir. The abundance of secondary dolomite, illite and pyrite in drilling cores from reservoir host rock reconfirms the observed water-rock exchange processes. Sulfate concentrations are controlled by anhydrite solubility as indicated by positive SI-values, although anhydrite deposition is limited throughout the lithological reservoir column. The chemical variety of produced water at the Jujo-Tecominoacan oil field is related to a sequence of primary and secondary processes, including infiltration of evaporated seawater and original meteoric fluids, the subsequent

  5. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction

    International Nuclear Information System (INIS)

    Birkle, Peter; Garcia, Bernardo Martinez; Milland Padron, Carlos M.

    2009-01-01

    The origin and evolution of formation water from Upper Jurassic to Upper Cretaceous mudstone-packstone-dolomite host rocks at the Jujo-Tecominoacan oil reservoir, located onshore in SE-Mexico at a depth from 5200 to 6200 m.b.s.l., have been investigated, using detailed water geochemistry from 12 producer wells and six closed wells, and related host rock mineralogy. Saline waters of Cl-Na type with total dissolved solids from 10 to 23 g/L are chemically distinct from hypersaline Cl-Ca-Na and Cl-Na-Ca type waters with TDS between 181 and 385 g/L. Bromine/Cl and Br/Na ratios suggest the subaerial evaporation of seawater beyond halite precipitation to explain the extreme hypersaline components, while less saline samples were formed by mixing of high salinity end members with surface-derived, low salinity water components. The dissolution of evaporites from adjacent salt domes has little impact on present formation water composition. Geochemical simulations with Harvie-Mφller-Weare and PHRQPITZ thermodynamic data sets suggest secondary fluid enrichment in Ca, HCO 3 and Sr by water-rock interaction. The volumetric mass balance between Ca enrichment and Mg depletion confirms dolomitization as the major alteration process. Potassium/Cl ratios below evaporation trajectory are attributed to minor precipitation of K feldspar and illitization without evidence for albitization at the Jujo-Tecominoacan reservoir. The abundance of secondary dolomite, illite and pyrite in drilling cores from reservoir host rock reconfirms the observed water-rock exchange processes. Sulfate concentrations are controlled by anhydrite solubility as indicated by positive SI-values, although anhydrite deposition is limited throughout the lithological reservoir column. The chemical variety of produced water at the Jujo-Tecominoacan oil field is related to a sequence of primary and secondary processes, including infiltration of evaporated seawater and original meteoric fluids, the subsequent mixing of

  6. Water-Rock Interactions in the Peridotite Aquifer of the Oman-UAE Ophiolite: Strontium Isotopic Ratio and Geochemical Evolution of Groundwater

    Science.gov (United States)

    Bompard, Nicolas; Matter, Juerg; Teagle, Damon

    2016-04-01

    The peridotite aquifer in Wadi Tayin, Sultanate of Oman, is a perfect example of natural carbonation of ultramafic rocks. In situ mineral carbonation is considered the most safest and permanent option of CO2 Capture and Sequestration (CCS). However, the process itself is yet to be characterised and a better understanding of the mechanisms involved in natural mineral carbonation is needed before geo-engineering it. We used the 87Sr/86Sr system to follow the water-rock interactions along the groundwater flowpath in the peridotite aquifer and to determine the sources of divalent cations (Mg2+, Ca2+) required for mineral carbonation. The Sr-isotope data of groundwater show that the aquifer rocks are the main source for divalent cations (Mg2+, Ca2+ and Sr2+) and secondary carbonates are their main sink. The groundwater 87Sr/86Sr ratio evolves with its pH: from 87Sr/86Sr = 0.7087 (n=3) to 0.7082 (n=8) between pH 7 and 8, and from 0.7086 (n=6) at pH 9 to 0.07075 (n=9) at pH 11. This evolution seems to support a two-step model for the water-rock interactions in the peridotite aquifer. From pH 7 to 8, secondary Ca-carbonate precipitation buffers the pH rise resulting from peridotite serpentinisation. From pH 9 to 11, peridotite serpentinisation drives the pH to alkaline condition. The change from a Mg-rich to a Ca-rich groundwater at pH 9 seems to confirm the two-step model.

  7. Reactive transport modeling of the interaction between water and a cementitious grout in a fractured rock. Application to ONKALO (Finland)

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Josep M., E-mail: josep.soler@idaea.csic.es [IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona (Spain); Vuorio, Marja; Hautojaervi, Aimo [POSIVA OY, Olkiluoto, FI-27160 Eurajoki (Finland)

    2011-07-15

    Highlights: > It is planned to seal conductive fractures near a repository with cementitious grout. > Modeling includes simultaneous hydration and leaching of the grout. > Modeling results show a very limited formation of the high-pH plume. > Results are in qualitative agreement with borehole monitoring data. - Abstract: Grouting of water-conducting fractures with low-alkali cement is foreseen for the potential future repository for spent nuclear fuel in Finland (ONKALO). A possible consequence of the interaction between groundwater and grout is the formation of high-pH solutions which will be able to react with the host rock (gneisses) and alter its mineralogy and porosity. A reactive transport modeling study of this possible alteration has been conducted. First, the hydration of the low-alkali cementitious grout has been modeled, using results from the literature as a guide. The hydrated cement is characterized by the absence of portlandite and the presence of a C-S-H gel with a Ca/Si ratio about 0.8 after tens of years (Ca/Si is about 1.7 in Ordinary Portland Cement). Second, calculations have simulated the interaction between flowing water and grout and the formation of an alkalinity plume, which flows beyond the grouted section of the fracture. The calculations include the hydration and simultaneous leaching of the grout through diffusive exchange between the porewater in the grout and the flowing water in the fracture. The formation of an alkaline plume is extremely limited when the low-pH grout is used. Even when using a grout with a lower silica fume content, the extent and magnitude of the alkaline plume is quite minor. These results are in qualitative agreement with monitoring at ONKALO.

  8. Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction

    OpenAIRE

    Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin

    2016-01-01

    The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/supe...

  9. Sr isotopes in natural waters: Applications to source characterisation and water-rock interaction in contrasting landscapes

    International Nuclear Information System (INIS)

    Shand, P.; Darbyshire, D.P.F.; Love, A.J.; Edmunds, W.M.

    2009-01-01

    Strontium isotopes ( 87 Sr/ 86 Sr) are routinely measured in hydrochemical studies to determine sources and mixing relationships. They have proved particularly useful in determining weathering processes and quantifying end-member mixing processes. A number of routine case studies are presented which highlight that Sr isotopes represent a powerful tool in the geochemists toolbox helping to constrain weathering reactions, weathering rates, flow pathways and mixing scenarios. Differences in methodologies for determining the weathering component in natural environments, inherent differences in weathering rates of different minerals, and mineral heterogeneity often cause difficulties in defining the weathering component of different catchments or aquifer systems. Nevertheless, Sr isotopes are useful when combined with other hydrochemical data, to constrain models of water-rock interaction and mixing as well as geochemical processes such as ion-exchange. This paper presents a summary of recent work by the authors in constraining the sources of waters and weathering processes in surface catchments and aquifers, and indicates cases where Sr isotopes alone are insufficient to solve hydrological problems.

  10. Sr isotopes in natural waters: Applications to source characterisation and water-rock interaction in contrasting landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Shand, P., E-mail: paul.shand@csiro.au [CSIRO Land and Water/CRC LEME, Private Bag 2, Glen Osmond, SA 5064 (Australia); Darbyshire, D.P.F. [NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Love, A.J. [Department of Water, Land and Biodiversity Conservation, P.O. Box 2843, Adelaide 5001 (Australia); Edmunds, W.M. [School of Geography, Oxford University Centre for the Environment, South Parks Road, Oxford (United Kingdom)

    2009-04-15

    Strontium isotopes ({sup 87}Sr/{sup 86}Sr) are routinely measured in hydrochemical studies to determine sources and mixing relationships. They have proved particularly useful in determining weathering processes and quantifying end-member mixing processes. A number of routine case studies are presented which highlight that Sr isotopes represent a powerful tool in the geochemists toolbox helping to constrain weathering reactions, weathering rates, flow pathways and mixing scenarios. Differences in methodologies for determining the weathering component in natural environments, inherent differences in weathering rates of different minerals, and mineral heterogeneity often cause difficulties in defining the weathering component of different catchments or aquifer systems. Nevertheless, Sr isotopes are useful when combined with other hydrochemical data, to constrain models of water-rock interaction and mixing as well as geochemical processes such as ion-exchange. This paper presents a summary of recent work by the authors in constraining the sources of waters and weathering processes in surface catchments and aquifers, and indicates cases where Sr isotopes alone are insufficient to solve hydrological problems.

  11. Hydrothermal interaction of solid wafers of Topopah Spring Tuff with J-13 water and distilled water at 90, 150, and 2500C, using Dickson-type, gold-bag rocking autoclaves

    International Nuclear Information System (INIS)

    Knauss, K.G.; Beiriger, W.J.; Peifer, D.W.; Piwinskii, A.J.

    1985-09-01

    The Nevada Nuclear Waste Storage Investigations Project has conducted experiments to study the hydrothermal interaction of rock and water representative of a potential high-level waste repository at Yucca Mountain, Nevada. The results of these experiments help define the near-field repository environment during and shortly after the thermal period that results from the emplacement of nuclear waste. When considered in conjunction with results contained in companion reports, these results can be used to assess our ability to accelerate tests using the surface area/volume parameter and/or temperature. These rock-water interaction experiments were conducted with solid polished wafers cut from both drillcore and outcrop samples of Topopah tuff, using both a natural ground water and distilled water as the reacting fluid. Pre- and post-test characterization of the reacting materials was extensive. Post-test identification and chemical analysis of secondary phases resulting from the hydrothermal interactions were aided by using monoliths of tuff rather than crushed material. All experiments were run in Dickson-type, gold-bag rocking autoclaves that were periodically sampled at in situ conditions. A total of nine short-term (up to 66-day) experiments were run in this series; these experiments covered the range from 90 to 250 0 C and from 50 to 100 bar. The results obtained from the experiments have been used to evaluate the modeled results produced by calculations using the geochemical reaction process code EQ3/6. 31 refs., 37 figs., 7 tabs

  12. Gas-water-rock interactions induced by reservoir exploitation, CO2 sequestration, and other geological storage

    International Nuclear Information System (INIS)

    Lecourtier, J.

    2005-01-01

    Here is given a summary of the opening address of the IFP International Workshop: 'gas-water-rock interactions induced by reservoir exploitation, CO 2 sequestration, and other geological storage' (18-20 November 2003). 'This broad topic is of major interest to the exploitation of geological sites since gas-water-mineral interactions determine the physicochemical characteristics of these sites, the strategies to adopt to protect the environment, and finally, the operational costs. Modelling the phenomena is a prerequisite for the engineering of a geological storage, either for disposal efficiency or for risk assessment and environmental protection. During the various sessions, several papers focus on the great achievements that have been made in the last ten years in understanding and modelling the coupled reaction and transport processes occurring in geological systems, from borehole to reservoir scale. Remaining challenges such as the coupling of mechanical processes of deformation with chemical reactions, or the influence of microbiological environments on mineral reactions will also be discussed. A large part of the conference programme will address the problem of mitigating CO 2 emissions, one of the most important issues that our society must solve in the coming years. From both a technical and an economic point of view, CO 2 geological sequestration is the most realistic solution proposed by the experts today. The results of ongoing pilot operations conducted in Europe and in the United States are strongly encouraging, but geological storage will be developed on a large scale in the future only if it becomes possible to predict the long term behaviour of stored CO 2 underground. In order to reach this objective, numerous issues must be solved: - thermodynamics of CO 2 in brines; - mechanisms of CO 2 trapping inside the host rock; - geochemical modelling of CO 2 behaviour in various types of geological formations; - compatibility of CO 2 with oil-well cements

  13. Continuum model for water movement in an unsaturated fractured rock mass

    International Nuclear Information System (INIS)

    Peters, R.R.; Klavetter, E.A.

    1988-01-01

    The movement of fluids in a fractured, porous medium has been the subject of considerable study. This paper presents a continuum model that may be used to evaluate the isothermal movement of water in an unsaturated, fractured, porous medium under slowly changing conditions. This continuum model was developed for use in evaluating the unsaturated zone at the Yucca Mountain site as a potential repository for high-level nuclear waste. Thus its development has been influenced by the conditions thought to be present at Yucca Mountain. A macroscopic approach and a microscopic approach are used to develop a continuum model to evaluate water movement in a fractured rock mass. Both approaches assume that the pressure head in the fractures and the matrix are identical in a plane perpendicular to flow. Both approaches lead to a single-flow equation for a fractured rock mass. The two approaches are used to calculate unsaturated hydrologic properties, i.e., relative permeability and saturation as a function of pressure head, for several types of tuff underlying Yucca Mountain, using the best available hydrologic data for the matrix and the fractures. Rock mass properties calculated by both approaches are similar

  14. Water-rock interactions in discharge areas of Xiangshan Fossil hydrothermal system

    International Nuclear Information System (INIS)

    Zhou, Wenbin

    1992-01-01

    Xiangshan Fossil hydrothermal system is located within a volcanic basin of south-eastern China. The fact that most metal mineralizations were found in the discharge areas of the fossil hydrothermal system shows that the discharge areas were special geochemical fields. This paper discusses some important water-rock interactions in the discharge areas of Xiangshan fossil hydrothermal system. When the fluids circulating in the deep section of the hydrothermal system went upward to the discharge area, the physico-chemical conditions under which the fluids were saturated changed so considerably that the original physico-chemical equilibria were broken. Consequently, the fluids tended to move to new equilibrium by means of regulating their chemical compositions. Temperature and pressures of the fluids could be declined greatly in discharge area; the difference of temperature and pressure are determined to be 100--150 C and 1--2 x 10 7 Pa. As a result, a large amount of CO 2 in solution escaped from the fluids in the discharge area, and UO 2 (CO 3 ) n 2(1-n) , stable in CO 2 -rich solutions, could be decomposed into UUO 2 2+ , which could be easily reduced into pitchblende associated by calcite and hematite. The pH values for the fluids tended to increase with the CO 2 escaping, however, the interactions between the hydrothermal fluids and the wall rocks (dominantly aluminosilicate) served as the buffers for the pH, and regulated the pH value around neutral point. The buffer effect was of great importance to uranium mineralization. In addition, isotope exchangements between the fluids and rocks took place extensively

  15. Experiment and simulation study on the effects of cement minerals on the water-rock-CO2 interaction during CO2 geological storage

    Science.gov (United States)

    Liu, N.; Cheng, J.

    2016-12-01

    The CO2 geological storage is one of the most promising technology to mitigate CO2 emission. The fate of CO2 underground is dramatically affected by the CO2-water-rock interaction, which are mainly dependent on the initial aquifer mineralogy and brine components. The cement minerals are common materials in sandstone reservoir but few attention has been paid for its effects on CO2-water-rock interaction. Five batch reactions, in which 5% cement minerals were assigned to be quartz, calcite, dolomite, chlorite and Ca-montmorillonite, respectively, were conducted to understanding the cement minerals behaviors and its corresponding effects on the matrix minerals alterations during CO2 geological storage. Pure mineral powders were selected to mix and assemble the 'sandstone rock' with different cement components meanwhile keeping the matrix minerals same for each group as 70% quartz, 20% K-feldspar and 5% albite. These `rock' reacted with 750ml deionized water and CO2 under 180° and 18MPa for 15 days, during which the water chemistry evolution and minerals surface micromorphology changes has been monitored. The minerals saturation indexes calculation and phase diagram as well as the kinetic models were made by PHREEQC to uncover the minerals reaction paths. The experiment results indicated that the quartz got less eroded, on the contrary, K-feldspar and albite continuously dissolved to favor the gibbsite and kaolinite precipitations. The carbonates cement minerals quickly dissolved to reach equilibrium with the pH buffered and in turn suppressed the alkali feldspar dissolutions. No carbonates minerals precipitations occurred until the end of reactions for all groups. The simulation results were basically consistent with the experiment record but failed to simulate the non-stoichiometric reactions and the minerals kinetic rates seemed underestimated at the early stage of reactions. The cement minerals significantly dominated the reaction paths during CO2 geological

  16. Lithium isotope as a proxy for water/rock interaction between hydrothermal fluids and oceanic crust at Milos, Greece

    Science.gov (United States)

    Lou, U.-Lat; You, Chen-Feng; Wu, Shein-Fu; Chung, Chuan-Hsiung

    2014-05-01

    Hydrothermal activity at Milos in the Aegean island (Greece) is mainly located at rather shallow depth (about 5 m). It is interesting to compare these chemical compositions and the evolution processes of the hydrothermal fluids at deep sea hydrothermal vents in Mid-ocean Ridge (MOR). Lithium (Li) is a highly mobile element and its isotopic composition varies at different geological settings. Therefore, Li and its isotope could be used as an indicator for many geochemical processes. Since 6Li preferential retained in the mineral phase where 7Li is leached into fluid phase during basalt alteration, the Li isotopic fractionation between the rocks and the fluids reflect sensitively the degree of water-rock interaction. In this study, Bio-Rad AG-50W X8 cation exchange resin was used for purifying the hydrothermal fluids to separate Li from other matrix elements. The Li isotopic composition (δ7Li) was determined by Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) with precision better than 0.2‰ (2σ, n=20). The Li concentration in the hydrothermal fluids falls between 0.02 to 10.31 mM. The δ7Li values vary from +1.9 to +29.7‰, indicating significant seawater contamination have occurred. These hydrothermal fluids fit well with seawater and brine two end-member binary mixing model. During phase separation, lithium, boron, chlorine, iodine, bromine, sodium and potassium were enriched in the brine phase. On the other hand, aluminum, sulphur and iron were enriched in the vapor phase. There is no significant isotope fractionation between the two phases. The water/rock ratio (W/R) calculated is low (about 1.5 to 1.8) for the Milos fluids, restricted seawater recharge into the oceanic crust. Moreover, the oceanic crust in the region becomes less altered since the W/R is low. The δ7Li value of the hydrothermal fluids can be used as a sensitive tool for studying water-rock interaction.

  17. Characterization of calculation of in-situ retardation factors of contaminant transport using naturally-radionuclides and rock/water interaction occurring U-Series disequilibria timescales. 1997 annual progress report

    International Nuclear Information System (INIS)

    Goldstein, S.; Ku, T.L.; Luo, S.; Murrel, M.; Roback, R.

    1997-01-01

    'The research is directed toward a quantitative assessment of contaminant transport rates in fracture-rock systems using uranium-series radionuclides. Naturally occurring uranium-and thorium-series radioactive disequilibria will provide information on the rates of adsorption-desorption and transport of radioactive contaminants as well as on fluid transport and rock dissolution in a natural setting. This study will also provide an improved characterization of preferential flow and contaminant transport at the Idaho Environmental and Engineering Lab. (INEEL) site. To a lesser extent, the study will include rocks in the unsaturated zone. The authors will produce a realistic model of radionuclide migration under unsaturated and saturated field conditions at the INEEL site, taking into account the retardation processes involved in the rock/water interaction. The major tasks are to (1) determine the natural distribution of U, Th, Pa and Ra isotopes in rock minerals. sorbed phases on the rocks, and in fluids from both saturated and unsaturated zones at the site, and (2) study rock/water interaction processes using U/Th series disequilibrium and a statistical analysis-based model for the Geologic heterogeneity plays an important role in transporting contaminants in fractured rocks. Preferential flow paths in the fractured rocks act as a major pathway for transport of radioactive contaminants in groundwaters. The weathering/dissolution of rock by groundwater also influences contaminant mobility. Thus, it is important to understand the hydrogeologic features of the site and their impact on the migration of radioactive contaminants. In this regard, quantification of the rock weathering/dissolution rate and fluid residence time from the observed decay-series disequilibria will be valuable. By mapping the spatial distribution of the residence time of groundwater in fractured rocks, the subsurface preferential flow paths (with high rock permeability and short fluid residence

  18. Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction

    Directory of Open Access Journals (Sweden)

    Qiao Lyu

    2016-08-01

    Full Text Available The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS tests together with an acoustic emission (AE system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days in water dissoluted with gaseous/super-critical CO2. According to the experimental results, the values of UCS, Young’s modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO2. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young’s modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young’s modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO2, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO2. SC-CO2 causes a greater reduction of shale’s mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO2. The EDS results show that CO2-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation.

  19. Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction

    Science.gov (United States)

    Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin

    2016-01-01

    The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO2. According to the experimental results, the values of UCS, Young’s modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO2. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young’s modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young’s modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO2, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO2). SC-CO2 causes a greater reduction of shale’s mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO2. The EDS results show that CO2-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation. PMID:28773784

  20. Hydrothermal interaction of solid wafers of Topopah Spring Tuff with J-13 water and distilled water at 90, 150, and 250{sup 0}C, using Dickson-type, gold-bag rocking autoclaves

    Energy Technology Data Exchange (ETDEWEB)

    Knauss, K.G.; Beiriger, W.J.; Peifer, D.W.; Piwinskii, A.J.

    1985-09-01

    The Nevada Nuclear Waste Storage Investigations Project has conducted experiments to study the hydrothermal interaction of rock and water representative of a potential high-level waste repository at Yucca Mountain, Nevada. The results of these experiments help define the near-field repository environment during and shortly after the thermal period that results from the emplacement of nuclear waste. When considered in conjunction with results contained in companion reports, these results can be used to assess our ability to accelerate tests using the surface area/volume parameter and/or temperature. These rock-water interaction experiments were conducted with solid polished wafers cut from both drillcore and outcrop samples of Topopah tuff, using both a natural ground water and distilled water as the reacting fluid. Pre- and post-test characterization of the reacting materials was extensive. Post-test identification and chemical analysis of secondary phases resulting from the hydrothermal interactions were aided by using monoliths of tuff rather than crushed material. All experiments were run in Dickson-type, gold-bag rocking autoclaves that were periodically sampled at in situ conditions. A total of nine short-term (up to 66-day) experiments were run in this series; these experiments covered the range from 90 to 250{sup 0}C and from 50 to 100 bar. The results obtained from the experiments have been used to evaluate the modeled results produced by calculations using the geochemical reaction process code EQ3/6. 31 refs., 37 figs., 7 tabs.

  1. Waste-rock interactions in the immediate repository

    International Nuclear Information System (INIS)

    McCarthy, G.J.

    1977-01-01

    The high level wastes (HLW's) to be placed underground in rock formations will contain significant amounts of radioactive decay heat for the first hundred-or-so years of isolation. Several physical-chemical changes analogous to natural geochemical processes can occur during this ''thermal period.'' The waste canister can act as a heat source and cause changes in the mineralogy and properties of the surrounding rocks. Geochemically, this is ''contact metamorphism.'' In the event that the canister is corroded and breached, chemical reactions can occur between the HLW, the surrounding rock and possibly the remains of the canister. In a dry repository which has not been backfilled (and thus pressurized) these interactions could be slow at best and with rates decreasing rapidly as the HLW cools. However, significant interactions can occur in years, months or even days under hydrothermal conditions. These conditions could be created by the combination of HLW heat, overburden pressure and water mobilized from the rocks or derived from groundwater intrusion. At the end of the thermal period these interaction products would constitute the actual HLW form (or ''source term'') subject to the low temperature leaching and migration processes under investigation in other laboratories. It is quite possible that these interaction product waste forms will have superior properties compared to the original HLW. Experimental programs initiated at Penn State during the last year aim at determining the nature of any chemical or mineralogical changes in, or interactions between, HLW solids and host rocks under various repository ambients. The accompanying figures describe the simulated HLW forms and the experimental approach and techniques. Studies with basalts as the repository rock are supported by Rockwell Hanford Operations and with shales by the Office of Waste Isolation

  2. Electrokinetic mechanism of wettability alternation at oil-water-rock interface

    Science.gov (United States)

    Tian, Huanhuan; Wang, Moran

    2017-12-01

    Design of ions for injection water may change the wettability of oil-brine-rock (OBR) system, which has very important applications in enhanced oil recovery. Though ion-tuned wettability has been verified by various experiments, the mechanism is still not clear. In this review paper, we first present a comprehensive summarization of possible wettability alteration mechanisms, including fines migration or dissolution, multicomponent ion-exchange (MIE), electrical double layer (EDL) interaction between rock and oil, and repulsive hydration force. To clarify the key mechanism, we introduce a complete frame of theories to calculate attribution of EDL repulsion to wettability alteration by assuming constant binding forces (no MIE) and rigid smooth surface (no fines migration or dissolution). The frame consists of three parts: the classical Gouy-Chapman model coupled with interface charging mechanisms to describe EDL in oil-brine-rock systems, three methods with different boundary assumptions to evaluate EDL interaction energy, and the modified Young-Dupré equation to link EDL interaction energy with contact angle. The quantitative analysis for two typical oil-brine-rock systems provides two physical maps that show how the EDL interaction influences contact angle at different ionic composition. The result indicates that the contribution of EDL interaction to ion-tuned wettability for the studied system is not quite significant. The classical and advanced experimental work using microfabrication is reviewed briefly on the contribution of EDL repulsion to wettability alteration and compared with the theoretical results. It is indicated that the roughness of real rock surface may enhance EDL interaction. Finally we discuss some pending questions, perspectives and promising applications based on the mechanism.

  3. Geochemical modelling of grout-groundwater-rock interactions at the seal-rock interface

    International Nuclear Information System (INIS)

    Alcorn, S.; Christian-Frear, T.

    1992-02-01

    Theoretical investigations into the longevity of repository seals have dealt primarily with the development of a methodology to evaluate interactions between portland cement-based grout and groundwater. Evaluation of chemical thermodynamic equilibria among grout, groundwater, and granitic host rock phases using the geochemical codes EQ3NR/EQ6 suggests that a fracture filled with grout and saturated with groundwater will tend to fill and 'tighten' with time. These calculations predict that some grout and rock phases will dissolve, and that there will be precipitation of secondary phases which collectively have a larger overall volume than that of the material dissolved. Model assumptions include sealing of the fracture in a sluggish hydrologic regime (low gradient) characterized by a saline groundwater environment. The results of the calculations suggest that buffering of the fracture seals chemical system by the granitic rock may be important in determining the long-term fate of grout seals and the resulting phase assemblage in the fracture. The similarity of the predicted reaction product phases to those observed in naturally filled fractures suggests that with time equilibrium will be approached and grouted fractures subject to low hydrologic gradients will continue to seal. If grout injected into fractures materially reduces groundwater flux, the approach to chemical equilibrium will likely be accelerated. In light of this, even very thin or imperfectly grouted fractures would tighten in suitable hydrogeologic environments. In order to determine the period of time necessary to approach equilibrium, data on reaction rates are required. (au)

  4. Site investigation SFR. Water-rock interaction and mixing modelling in the SFR

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (University of Zaragoza (Spain))

    2011-10-15

    the major geochemical processes controlling the behaviour of variables such as pH and Eh and, in general, all the parameters controlled by microbial or water-rock interaction processes. Thus, an integration of the mineralogical and microbiological data has also been performed. The other aim is to characterise the mixing processes that have affected the groundwaters over time. Thus, a statistical analysis has been performed with M3 in order to obtain a more quantitative approach to the mixing processes in the system, as well as to provide a mathematical basis to take into account all the variability of the system and to evaluate the reliability of the categorised groundwater types which are based on expert judgement (Nilsson et al. 2010). Therefore, this report should be considered as a supporting document to the final hydrogeochemical site description version 1.0 (Nilsson et al. 2011). Most of the main geochemical characters and trends observed in the SFR groundwaters are similar to those observed at Forsmark, especially if only groundwaters with marine contributions are compared. This applies to the carbonate, sulphate, silica and fluoride systems. No clear pH trend with depth has been found in these waters which may reflect the lateral heterogeneity of the groundwater system. The high and variable HCO{sub 3}{sup -} values found in groundwaters with a marine signature seem to be the result of the biological activity during infiltration of marine waters through seabed sediments. Calcite equilibrium is the main pH controlling process, and its presence has been detected at all depths. Marine waters are the main source of sulphur, and neither heterogeneous reactions with sulphate minerals (undersaturated, in the case of gypsum or in equilibrium in the case of barite), nor sulphate reducing microbial activity have played an important role on the control of dissolved sulphate concentrations (conditioned, therefore, mainly by mixing). Dissolved silica and fluoride

  5. Site investigation SFR. Water-rock interaction and mixing modelling in the SFR

    International Nuclear Information System (INIS)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia

    2011-10-01

    the major geochemical processes controlling the behaviour of variables such as pH and Eh and, in general, all the parameters controlled by microbial or water-rock interaction processes. Thus, an integration of the mineralogical and microbiological data has also been performed. The other aim is to characterise the mixing processes that have affected the groundwaters over time. Thus, a statistical analysis has been performed with M3 in order to obtain a more quantitative approach to the mixing processes in the system, as well as to provide a mathematical basis to take into account all the variability of the system and to evaluate the reliability of the categorised groundwater types which are based on expert judgement (Nilsson et al. 2010). Therefore, this report should be considered as a supporting document to the final hydrogeochemical site description version 1.0 (Nilsson et al. 2011). Most of the main geochemical characters and trends observed in the SFR groundwaters are similar to those observed at Forsmark, especially if only groundwaters with marine contributions are compared. This applies to the carbonate, sulphate, silica and fluoride systems. No clear pH trend with depth has been found in these waters which may reflect the lateral heterogeneity of the groundwater system. The high and variable HCO 3 - values found in groundwaters with a marine signature seem to be the result of the biological activity during infiltration of marine waters through seabed sediments. Calcite equilibrium is the main pH controlling process, and its presence has been detected at all depths. Marine waters are the main source of sulphur, and neither heterogeneous reactions with sulphate minerals (undersaturated, in the case of gypsum or in equilibrium in the case of barite), nor sulphate reducing microbial activity have played an important role on the control of dissolved sulphate concentrations (conditioned, therefore, mainly by mixing). Dissolved silica and fluoride concentrations are

  6. Mid-crust fluid and water-rock interaction kinetic experiments and their geophysical significance: 1. Basalt and pyroxene in water at high temperatures up to 450°C

    Science.gov (United States)

    Zhang, R.; Zhang, X.; Hu, S.

    2013-12-01

    The water-basaltic rock interaction (or pyroxene-water ) kinetic experiments are carried out using flow through a packed bed reactor (PBR) and a mixed flow reactor(MFR) in the temperature range(T) from 20 to 450°C and at 23-34MPa. The experimental apparatus consisted of a titanium vessel, a liquid pump, a backpressure regulator, an electrical conductivity detector and a computer for data acquisition and monitoring. The basaltic rock and pyroxene were collected from natural volcanic area, Anhui Province, China. Rock or mineral sample was crushed and sieved to 20-40 mesh and cleaned. The surface area of representative basalt samples is 9.978 m2/g, for pyroxene it is 1.987 m2 /g (BET method). As using PBR system, rock samples (10. 2526g) were placed in the vessel. De-ionized and degassed (DDW) water was passed through the rock, or mineral grains at flow rates of 0.5-8 ml/min. As using MFR system mineral and rock sample of 5 grams was put in the vessel. Here, the measured release rates for each metal of the rock are the sum of release rates of the metal in various minerals of the rock. Steady-state kinetics is defined as conditions where dissolution rates are time independent. For water-basalt interaction, the dissolution rates (dis.r.) of Ca, Mg, Fe, Al, Na, K and Si vary with T from 25 to 435°C(or to 550°C). The dis.r. of Si, rSi increase with T from 25°C to 300°C, and then decrease from 300°C to 435°C (to 550°C). Maximum dis.r. for Si, rSi, Mx is reached at 300°C(or 300 to 400°C, using MFR). The maximum dis.r. for various metals occurred at different T, e.g. rAl, Mx and rNa, Mx are nearly at 350°C, rK, Mx is at 300°C, rCa, Mx is at 100°C and rMg, Mx is at 20°C. As T increase above 400°C, dis.r. of Ca, Mg and Fe decrease to very small. The experiments for pyroxene (diopside, hedenbergite)in water indicated that the dis.r. of Ca, Mg, Fe, Al, K and Si also vary with T. The rSi increase with T from 25 to 300°C, and then decrease with T from 300 to 400

  7. Relationships of stable isotopes, water-rock interaction and salinization in fractured aquifers, Petrolina region, Pernambuco State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Priscila Sousa, E-mail: priscila.silva@cprm.gov.br [Serviço Geológico do Brasil (CPRM), Manaus, AM (Brazil); Campos, José Eloi Guimarães; Cunha, Luciano Soares; Mancini, Luís Henrique, E-mail: eloi@unb.br, E-mail: lucianosc@unb.br, E-mail: lmancini@unb.br [Universidade de Brasília (UnB), Brasília, DF (Brazil)

    2018-01-15

    The Petrolina County, Pernambuco State, Brazil, presents specificities that make it unique from a hydrogeological point of view. Water resource scarcity is both a quantitative and qualitative issue. The climate is classified as semiarid, having low precipitation, along with high temperatures and evapotranspiration rates. Aquifer zones are related to low connected fractures resulting in a restricted water flow in the aquifer. The recharge is limited and the groundwater salinity is high. Stable isotope analyses of H and O were developed in groundwater samples (with different electrical conductivity) and surface water collected in a bypass channel flowing from the São Francisco River. The results were plotted in a δD ‰ versus δ{sup 18}O ‰ graph along with the curves of the global and local meteoric water line. Groundwater samples showed unexpected results showing a lighter sign pattern when compared to the meteoric waters. More negative δD and δ{sup 18}O values indicate an enrichment in light isotopes, which show that this process is not influenced by surface processes, where the enrichment occurs in heavy isotopes due to evaporation. The isotopic signature observed is interpreted either as resulting from the water-rock interaction, or as resulting from recharge from paleo rains. The waters are old and show restricted flow. So the water-rock contact time is extended. In the rock weathering processes, through the hydration of feldspars, there is preferential assimilation of heavy isotopes at the expense of the lighter ones that remain in the water. Analyses of the {sup 87}Sr/{sup 86}Sr ratio and isotopic groundwater dating assist in the interpretations. (author)

  8. The uranium behaviour during rock-water interaction in the granites from the Itu complex (Sao Paulo, Brazil): a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Helen S.B. da; Marques, Leila S.; Kawauchi, Roberto K., E-mail: leila@iag.usp.br, E-mail: keiji@iag.usp.br [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas. Universidade de Sao Paulo (USP), SP (Brazil)

    2011-07-01

    In order to elucidate the mechanisms involved in the process of uranium leaching due to the rock-water interaction in the granitic rocks from Itu Complex (Sao Paulo, Brazil), an experimental arrangement was developed and built. About 2.5kg of crushed rock fragments from Cabreuva and Indaiatuba Intrusions were maintained at room temperature within a glass flask filled with circulating water. The percolating water was removed periodically (from 10 to 30 days) for uranium analysis and then replaced by an equal volume of fresh water. Alpha spectrometry was used to determine the activity concentrations of {sup 234}U and {sup 238}U, and {sup 234}U/{sup 238}U activity ratios, of the waters as well as of the granites. The results for both samples showed that most of the uranium is leached in the first days after the contact between rock and water. The {sup 234}U/{sup 238}U activity ratios were significantly greater than unity, indicating radioactive disequilibrium between those isotopes, probably due to alpha recoil. Although the uranium activity concentrations in the water samples diminished with the increasing of time, it was not observed considerable variations of the {sup 234}U/{sup 238}U activity ratios. It was also noticed that, the amount of leached uranium as well as the {sup 234}U/{sup 238}U activity ratios are characteristics of each sample submitted to leaching, reflecting the differences of the granite facies mineralogy.(author)

  9. A proposal of constitutive creep model for soft rock to be applied to numerical analysis for mechanical interaction in the underground facilities

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji

    2005-01-01

    In the case that the underground facilities of high-level nuclear waste disposal are constructed in soft rock mass, it is predicted that time-dependent behavior of rock has an important role both on the stability of surrounding rock mass after excavation and on the super long-term stability of barrier system. Existing creep model that has been applied to excavation problems in electric power industry is not sufficient in order to evaluate long-term behavior of the facility constructed in soft rock mass. Therefore, it is necessary to develop an appropriate creep model for soft rock. In this research, we try to develop a prototype of numerical tool for evaluating the stability during and after the excavation and super long-term stability after back-filling. Firstly, a simple rheological model for time-dependent behavior of soft rock is proposed. It is the key feature of this model that two different types of rheological model can be selected in order to describe both failure and non-failure processes. Rock continues to deform until failure in the case where stress applied to the rock exceeds its residual strength, although deformation of the rock finally ceases in the other cases. The applicability of this model is investigated by comparing the calculated results with those in laboratory test results. The proposed model can describe the time-dependent and dilatancy behavior of mudstone of Tertiary period observed in the drained triaxial creep test. Next, we apply the proposed model to the problem of time-dependent behavior of rock mass around a deposition hole. Numerical simulation of excavation problem and long-term mechanical interaction between buffer material and surrounding rock mass is carried out using a hydrological - mechanical coupled FEM code that includes the proposed model. Several mechanical models can be selected in order to apply to the mechanical behavior of materials consisting of underground facility. The main results obtained from this simulation

  10. Incoherent SSI Analysis of Reactor Building using 2007 Hard-Rock Coherency Model

    International Nuclear Information System (INIS)

    Kang, Joo-Hyung; Lee, Sang-Hoon

    2008-01-01

    Many strong earthquake recordings show the response motions at building foundations to be less intense than the corresponding free-field motions. To account for these phenomena, the concept of spatial variation, or wave incoherence was introduced. Several approaches for its application to practical analysis and design as part of soil-structure interaction (SSI) effect have been developed. However, conventional wave incoherency models didn't reflect the characteristics of earthquake data from hard-rock site, and their application to the practical nuclear structures on the hard-rock sites was not justified sufficiently. This paper is focused on the response impact of hard-rock coherency model proposed in 2007 on the incoherent SSI analysis results of nuclear power plant (NPP) structure. A typical reactor building of pressurized water reactor (PWR) type NPP is modeled classified into surface and embedded foundations. The model is also assumed to be located on medium-hard rock and hard-rock sites. The SSI analysis results are obtained and compared in case of coherent and incoherent input motions. The structural responses considering rocking and torsion effects are also investigated

  11. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters.

    Science.gov (United States)

    Adcock, Christopher T; Hausrath, Elisabeth M

    2015-12-01

    Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.

  12. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    Science.gov (United States)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  13. Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.

  14. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    DEFF Research Database (Denmark)

    Katika, Konstantina

    experiments, the rock is subjected to high external stresses that resemble the reservoir stresses; 2) the fluid distribution within the pore space changes during the flow through experiments and wettability alterations may occur; 3) different ions, present in the salt water injected in the core, interact......Advanced waterflooding (injection of water with selective ions in reservoirs) is a method of enhanced oil recovery (EOR) that has attracted the interest of oil and gas companies that exploit the Danish oil and gas reservoirs. This method has been applied successfully in oil reservoirs...... and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected water that leads to increased oil recovery in reservoirs and to define changes in the petrophysical...

  15. ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT

    International Nuclear Information System (INIS)

    Clinton Lum

    2002-01-01

    The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS MandO 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS MandO 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4

  16. Multi-isotope tracing of CO2 leakage and water-rock interaction in a natural CCS analogue.

    Science.gov (United States)

    Kloppmann, Wolfram; Gemeni, Vasiliki; Lions, Julie; Koukouzas, Nikolaos; Humez, Pauline; Vasilatos, Charalampos; Millot, Romain; Pauwels, Hélène

    2015-04-01

    Natural analogues of CO2 accumulation and, potentially, leakage, provide a highly valuable opportunity to study (1) geochemical processes within a CO2-reservoir and the overlying aquifers or aquicludes, i.e. gas-water-rock interactions, (2) geology and tightness of reservoirs over geological timescales, (3) potential or real leakage pathways, (3) impact of leakage on shallow groundwater resources quality, and (4) direct and indirect geochemical indicators of gas leakage (Lions et al., 2014, Humez et al., 2014). The Florina Basin in NW Macedonia, Greece, contains a deep CO2-rich aquifer within a graben structure. The graben filling consists of highly heterogeneous Neogene clastic sediments constituted by components from the adjacent massifs including carbonates, schists, gneiss as well as some ultramafic volcanic rocks. Clay layers are observed that isolate hydraulically the deep, partly artesian aquifer. Organic matter, in form of lignite accumulations, is abundant in the Neogene series. The underlying bedrocks are metamorphic carbonates and silicate rocks. The origin of the CO2 accumulation is controversial (deep, partially mantle-derived D'Allessandro et al., 2008 or resulting from thermal decomposition of carbonates, Hatziyannis and Arvanitis, 2011). Groundwaters have been sampled from springs and borewells over 3 years at different depths. First results on major, minor and trace elements give evidence of water-rock interaction, mainly with carbonates but also with ultramafic components but do not indicate that CO2-seepage is the principal driver of those processes (Gemeni et al., submitted). Here we present isotope data on a selection of groundwaters (δ2H , δ18O, δ13CTDIC, 87Sr/86Sr, δ11B, δ7Li). Stable isotopes of water indicate paleo-recharge for some of the groundwaters, limited exchange with gaseous CO2 and, in one case, possibly thermal exchange processes with silicates. Sr isotope ratios vary between marine ratios and radiogenic values indicating

  17. Pore water colloid properties in argillaceous sedimentary rocks

    Energy Technology Data Exchange (ETDEWEB)

    Degueldre, Claude, E-mail: c.degueldre@lancaster.ac.uk [Engineering Department, University of Lancaster, LA1 4YW Lancaster (United Kingdom); ChiAM & Institute of Environment, University of Geneva, 1211 Genève 4, Swizerland (Switzerland); Earlier, NES, Paul Scherrer Institute, 5232 Villigen (Switzerland); Cloet, Veerle [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  18. Waste-rock interactions and bedrock reactions

    International Nuclear Information System (INIS)

    White, W.B.

    1977-01-01

    The experimental program is designed to discover possible reactions between shale repository rocks and radioactive wastes. The canister can be regarded in three ways: (a) As a source of heat that modifies the mineralogy and therefore the physical properties of the surrounding rock (dry heat). (b) As a source of heat that activates reactions between minerals in the surrounding rock and slowly percolating ground water. (c) As a source of reaction materials of different composition from the surrounding rock and which therefore may react to form completely new ''minerals'' in a contact aureole around the canister. The matrix of interactions contains two composition axes. The waste compositions are defined by the various prototype waste forms usually investigated: glass, calcine, ''spent fuel'' and the ceramic supercalcine. The temperatures and pressures at which these reactions take place must be investigated. Thus each node on the ''wiring diagram'' is itself a matrix of experiments in which the T and to some extent P are varied. Experiments at higher pressure and temperature allow reactions to take place on a laboratory time scale and thus identify what could happen. These reactions are then followed downward in temperature to determine both phase boundaries and kinetic cut-offs below which equilibrium cannot be achieved on a laboratory time scale

  19. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  20. Water-rock interaction in the magmatic-hydrothermal system of Nisyros Island (Greece)

    Science.gov (United States)

    Ambrosio, Michele; Doveri, Marco; Fagioli, Maria Teresa; Marini, Luigi; Principe, Claudia; Raco, Brunella

    2010-04-01

    In this work, we investigated the water-rock interaction processes taking place in the hydrothermal reservoir of Nisyros through both: (1) a review of the hydrothermal mineralogy encountered in the deep geothermal borehole Nisyros-2; and (2) a comparison of the analytically-derived redox potentials and acidities of fumarolic-related liquids, with those controlled by redox buffers and pH buffers, involving hydrothermal mineral phases. The propylitic zone met in the deep geothermal borehole Nisyros-2, from 950 to 1547 m (total depth), is characterised by abundant, well crystallised epidote, adularia, albite, quartz, pyrite, chlorite, and sericite-muscovite, accompanied by less abundant anhydrite, stilpnomelane, wairakite, garnet, tremolite and pyroxene. These hydrothermal minerals were produced in a comparatively wide temperature range, from 230 to 300 °C, approximately. Hydrothermal assemblages are well developed from 950 to 1360 m, whereas they are less developed below this depth, probably due to low permeability. Based on the RH values calculated for fumarolic gases and for the deep geothermal fluids of Nisyros-1 and Nisyros-2 wells, redox equilibrium with the (FeO)/(FeO 1.5) rock buffer appears to be closely attained throughout the hydrothermal reservoir of Nisyros. This conclusion may be easily reconciled with the nearly ubiquitous occurrence of anhydrite and pyrite, since RH values controlled by coexistence of anhydrite and pyrite can be achieved by gas separation. The pH of the liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters was computed, by means of the EQ3 code, based on the Cl- δD relationship which is constrained by the seawater-magmatic water mixing occurring at depth in the hydrothermal-magmatic system of Nisyros. The temperature dependence of analytically-derived pH values for the reservoir liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters suggests that some unspecified pH buffer fixes the

  1. What's in the mud?: Water-rock-microbe interactions in thermal mudpots and springs

    Science.gov (United States)

    Dahlquist, G. R.; Cox, A. D.

    2016-12-01

    bacterial and archaeal amplicons. Water, rock, and microbial communities interact to form diverse mudpots. The range of chemical conditions surveyed in YNP mudpots suggests varying underlying rock units, seasonal water variations, and sources of organic matter drastically affect geobiochemical characteristics.

  2. The origin of high silicon content in potentially medicinal groundwater of Gran Canaria (Canary Islands, Spain. Modelling of chemical water-rock interactions

    Directory of Open Access Journals (Sweden)

    Dobrzyński, Dariusz

    2012-11-01

    Full Text Available Groundwater of Gran Canaria (Canary Island, Spain have been appreciated and used as an element of health tourism since the 19th Century. This activity was abandoned in the second half of 20th Century when springs disappeared due to groundwater drawdown. The chemistry of groundwater from 19 intakes in volcanic rocks of the north part of Gran Canaria was studied by applying geochemical modelling for quantifying processes responsible for high Si concentrations.Studied groundwater has temperature of 16.3°C–25.5°C, pH of 4.40–7.40, and usually HCO3-(Cl-Mg-Ca-Na hydrochemical types. At near-neutral pH, fresh groundwater usually has 0.1-0.3 mM of Si. In studied groundwater Si concentrations are 0.42 to 1.82 mM, and show positive correlation with ionic strength and temperature. Volcanic bedrocks consist of, generally, easily reactive silicate minerals. Weathering is not supported by low rainfall; however, it shall be intensified by high influx of salts from marine aerosols and lithogenic carbon dioxide into groundwater. Geochemical modelling has found water-mineral reactions which reflect properly diversity of bedrock mineralogy. Based on those chemical reactions, contributions of particular silicate minerals to the pool of silicon dissolved in groundwater were calculated. Understanding the processes responsible for water chemistry might help in proper management and protection of groundwater.The Si-rich waters might be found in numerous places of Gran Canaria in all volcanic rocks. Silicic acid is the only form of silicon which is biologically available, and is regarded as a component which provides balneotherapeutic benefits. Many studies have showed beneficial and essential aspects of silicon in humans. Studied groundwater from Gran Canaria has an unexploited balneotherapeutic potential, and due to very high Si contents they seem to be ideal for testing the health benefits of such waters to humans. Hydrogeochemical methods, including

  3. Rock shape, restitution coefficients and rockfall trajectory modelling

    Science.gov (United States)

    Glover, James; Christen, Marc; Bühler, Yves; Bartelt, Perry

    2014-05-01

    Restitution coefficients are used in rockfall trajectory modelling to describe the ratio between incident and rebound velocities during ground impact. They are central to the problem of rockfall hazard analysis as they link rock mass characteristics to terrain properties. Using laboratory experiments as a guide, we first show that restitution coefficients exhibit a wide range of scatter, although the material properties of the rock and ground are constant. This leads us to the conclusion that restitution coefficients are poor descriptors of rock-ground interaction. The primary problem is that "apparent" restitution coefficients are applied at the rock's centre-of-mass and do not account for rock shape. An accurate description of the rock-ground interaction requires the contact forces to be applied at the rock surface with consideration of the momentary rock position and spin. This leads to a variety of rock motions including bouncing, sliding, skipping and rolling. Depending on the impact configuration a wide range of motions is possible. This explains the large scatter of apparent restitution coefficients. We present a rockfall model based on newly developed hard-contact algorithms which includes the effects of rock shape and therefore is able to reproduce the results of different impact configurations. We simulate the laboratory experiments to show that it is possible to reproduce run-out and dispersion of different rock shapes using parameters obtained from independent tests. Although this is a step forward in rockfall trajectory modelling, the problem of parametersing real terrain remains.

  4. Dynamic Mechanical Behavior of Dry and Water Saturated Igneous Rock with Acoustic Emission Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Guo

    2018-01-01

    Full Text Available The uniaxial cyclic loading tests have been conducted to study the mechanical behavior of dry and water saturated igneous rock with acoustic emission (AE monitoring. The igneous rock samples are dried, naturally immersed, and boiled to get specimens with different water contents for the testing. The mineral compositions and the microstructures of the dry and water saturated igneous rock are also presented. The dry specimens present higher strength, fewer strains, and rapid increase of AE count subjected to the cyclic loading, which reflects the hard and brittle behavior and strong burst proneness of igneous rock. The water saturated specimens have lower peak strength, more accumulated strains, and increase of AE count during the cyclic loading. The damage of the igneous rocks with different water contents has been identified by the Felicity Ratio Analysis. The cyclic loading and unloading increase the dislocation between the mineral aggregates and the water-rock interactions further break the adhesion of the clay minerals, which jointly promote the inner damage of the igneous rock. The results suggest that the groundwater can reduce the burst proneness of the igneous rock but increase the potential support failure of the surrounding rock in igneous invading area. In addition, the results inspire the fact that the water injection method is feasible for softening the igneous rock and for preventing the dynamic disasters within the roadways and working faces located in the igneous intrusion area.

  5. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian J. [University of Utah; Pan, Feng [University of Utah

    2014-09-24

    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperature and pressure conditions of EGS reservoirs.

  6. Three-dimensional simulation of a rock slide impact into water

    Science.gov (United States)

    Weaver, R.; Gisler, G.; Gittings, M.; Ranta, D.

    2007-12-01

    The steep-sided fjords of western Norway have experienced numerous rock slide events that sometimes produced devastating tsunamis. The 1934 slide in the Tafjord region, when some 3 million cubic meters of rock plunged into the water, resulted in waves tens of meters high that destroyed two villages and killed about 40 people. A similarly dangerous situation exists now in Sunnylvsfjord, where a major expanding crack in the fjord wall at Aknes threatens to release from 5 to 40 million cubic meters of rock into the water. Such an event would devastate a large region, including the Geiranger Fjord, a UN World Heritage Site that is extremely popular with tourists. The Norwegian Government's Aknes-Tafjord project is responsible for studying and monitoring the potential slide area and for providing adequate warning to protect lives and property. In order to better understand tsunami generation from such events, we have performed 3-dimensional fully compressible hydrodynamical simulations of the impact of a large number of boulders from a steep slope into a deep body of water. We use the Los Alamos/SAIC adaptive-mesh-refined SAGE code, previously used to model tsunamis from underwater explosions, asteroid impacts, and both subaqueous and subaerial landslide sources. We find the interaction of boulders and water to be extremely turbulent and dissipative. It differs markedly from simulations of large-block impacts in similar geometry. No more than about 15% of the potential energy of the boulders ends up in the water wave. The rest of the energy goes into heating the boulders (and presumably fragmenting them, though that physics is not included) into generating winds, heating air and water, and generating turbulence. In the near field, the waves produced by the impact can be quite high -- tens of meters -- and have the potential to devastate coastlines at substantial distances from the site along a narrow fjord system.

  7. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    Science.gov (United States)

    Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  8. Applications of a computer model to the analysis of rock-backfill interaction in pillar recovery operations

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, T. J.E. [Dames and Moore, London, England, United Kingdom; Shillabeer, J. H. [Dames and Moore, Toronto (Canada); Herget, G. [CANMET, Ottawa (Canada)

    1980-05-15

    This paper describes the application of a computer model to the analysis of backfill stability in pillar recovery operations with particular reference to two case studies. An explicit finite difference computer program was developed for the purpose of modelling the three-dimensional interaction of rock and backfill in underground excavations. Of particular interest was the mechanics of stress transfer from the rock mass to the pillars and then the backfill. The need, therefore, for a model to allow for the three-dimensional effects and the sequence of operations is evident. The paper gives a brief description of the computer program, descriptions of the mines, the sequences of operations and how they were modelled, and the results of the analyses in graphical form. For both case studies, failure of the backfill was predicted at certain stages. Subsequent reports from the mines indicate that such failures did not occur at the relevant stage. The paper discusses the validity of the model and concludes that the approach accurately represents the principles of rock mechanics in cut-and-fill mining and that further research should be directed towards determining the input parameters to an equal degree of sophistication.

  9. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    Science.gov (United States)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  10. Pore water colloid properties in argillaceous sedimentary rocks.

    Science.gov (United States)

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  11. Application of Confined Blasting in Water-Filled Deep Holes to Control Strong Rock Pressure in Hard Rock Mines

    Directory of Open Access Journals (Sweden)

    Jingxuan Yang

    2017-11-01

    Full Text Available In extra-thick coal seams, mining operations can lead to large-scale disturbances, complex overburden structures, and frequent and strong strata behavior in the stope, which are serious threats to mine safety. This study analyzed the overburden structure and strata behavior and proposed the technique of confined blasting in water-filled deep holes as a measure to prevent strong rock pressure. It found that there are two primary reasons for the high effectiveness of the proposed technique in presplitting hard coal and rock. First, the fracture water enables much more efficient transfer of dynamic load due to its incompressibility. Second, the subsequent expansion of water can further split the rock by compression. A mechanical model was used to reveal how the process of confined blasting in water-filled deep holes presplit roof. Moreover, practical implementation of this technique was found to improve the structure of hard, thick roof and prevent strong rock pressure, demonstrating its effectiveness in roof control.

  12. Experimental Investigations of Boron, Lithium, and Halogens During High-Temperature Water-Rock Interaction: Insights into the Yellowstone Hydrothermal System

    Science.gov (United States)

    Cullen, J. T.; Hurwitz, S.; Thordsen, J. J.; Barnes, J.

    2017-12-01

    B, Li, and halogens (Cl, F, Br) are used extensively in studies of thermal waters to infer fluid equilibrium conditions with the host reservoir lithology, and quantify the possible fraction of a magmatic component in thermal waters. Apart from fluorine, the limited number of minerals that incorporate these elements support the notion that they preferentially partition into an aqueous fluid during high temperature water-rock interaction. Although limited experimental work is largely consistent with these observations, a rigorous experimental investigation is required to quantify the mobility of these elements under conditions emulating a silicic hydrothermal system. Here we present the results from water-rhyolite interaction batch experiments conducted over a range of temperatures between 150 °C and 350 °C and 250 bar. Powdered obsidian from Yellowstone was reacted with MiliQ water and sampled intermittently throughout the duration of the 90 day experiment. The experimental data show that at temperatures ≤ 200 °C, B, Cl, Br, and Li are not readily leached from the rhyolite, whereas aqueous F- concentration increases by a factor of 3.5 when the temperature was increased from 150 °C to 200 °C. Between 200 °C and 250 °C, B concentration increased by more than an order of magnitude and Cl- concentration increased by a factor of 5. F- concentration increased by a factor of 3. Between 250 °C and 300 °C the opposite trend was observed, in which F- concentration decreased by 60%, Br- concentration increased by a factor of 5, and Cl- and B concentrations increased by more than an order of magnitude. The progressive decrease of aqueous F- at T ≥ 300 °C is likely controlled by precipitation into a fluorine bearing secondary mineral(s). Our experimental results demonstrate that leaching of B, Li, Cl, F, and Br from rhyolite is highly temperature-dependent between 150 °C and 350 °C. These results can provide context to infer the sources of solutes discharged at

  13. Water infiltration into exposed fractured rock surfaces

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  14. Evaluation of CO2-Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale Geochemical Simulations

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2017-01-01

    Full Text Available Recent studies suggest that using supercritical CO2 (scCO2 instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS” compared to those for water as a working fluid (H2O-EGS are needed. The primary objectives of this study are (1 constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2 comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.

  15. Transfer of radon-222 from rocks of the Pocos de Caldas plateau to the waters

    International Nuclear Information System (INIS)

    Bonotto, Daniel Marcos; Lima, Jorge Luis Nepomuceno de

    1997-01-01

    The analytical procedures developed at the Sector of Unstable Isotopes of the Laboratory of Geochemistry, which belongs to the Department of Petrology and Metallogeny located at the Institute of Geosciences and Exact Sciences - Universidade Estadual Paulista Julio de Mesquita Filho (UNESP) to measure the release of 222 Rn from rocks to the waters is described. The methodology established was used to evaluate the emanation coefficient of 222 Rn from experiments of water-rock interaction under controlled conditions in the laboratory, which is an important parameter necessary to interpret the radioactivity related to dissolved 222 Rn content in waters. Four typical rocks from Pocos de Caldas Plateau were sampled for the experiments: phonolite, nepheline syenite, pseudoleucite tinguaite and silicified sandstone. The 226 Ra content of these rocks was evaluated by gamma-ray spectrometry using a Nal(TI) scintillation detector, a method that has been currently utilized in nuclear geophysics or isotope geochemistry to measure the equivalent uranium (e U). The 226 Ra content in the studied rocks and the 222 Rn transferred to the waters due to its generation by its 226 Ra progenitor allowed an estimation of the emanation coefficient of 222 Rn. A preliminary investigation on the influence of the mass of the rock in contact with water, of the surface area of the rock in contact with water and of the 226 Ra content in rocks on the amount of 222 Rn released to the water was also performed. (Author)

  16. Overview of the waste/barrier/rock interactions program of the basalt waste isolation project

    International Nuclear Information System (INIS)

    Salter, P.F.; Burnell, J.R.; Lane, D.L.

    1986-01-01

    The waste package waste/barrier/rock interactions testing program of the Basalt Waste Isolation Project is designed to assess the interactions between nuclear waste forms, other waste package components, and the environment in order to evaluate long-term waste package isolation (radionuclide release) behavior. The program involves reacting fully radioactive waste forms with combinations of steel or copper container material and basalt/bentonite packing material in site-specific ground water under anticipated repository conditions to obtain the steady state radionuclide concentrations required to predictively model waste package radionuclide concentrations required to predictively model waste package radionuclide releases. Both static and flow-through autoclaves are being used in the test program to determine radionuclide concentrations as a function of time and groundwater flow rate, and to evaluate the solid phase and water chemistry changes that control those concentrations. This test program, when combined with project hydrologic and geochemical testing and modeling efforts, and natural analog studies, provides the information required to evaluate long-term radionuclide mobility within a waste package emplaced in a basalt repository

  17. Fluid and rock interaction in permeable volcanic rock

    International Nuclear Information System (INIS)

    Lindley, J.I.

    1985-01-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K 2 O as much as 130% of their original values at the expense of Na 2 O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta 18 O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta 18 of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals

  18. Rock-brine chemical interactions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

  19. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  20. Waste/Rock Interactions Technology Program: the status of radionuclide sorption-desorption studies performed by the WRIT program

    International Nuclear Information System (INIS)

    Serne, R.J.; Relyea, J.F.

    1982-04-01

    The most credible means for radionuclides disposed as solid wastes in deep-geologic repositories to reach the biosphere is through dissolution of the solid waste and subsequent radionuclide transport by circulating ground water. Thus safety assessment activities must consider the physicochemical interactions between radionculides present in ground water with package components, rocks and sediments since these processes can significantly delay or constrain the mass transport of radionuclides in comparison to ground-water movement. This paper focuses on interactions between dissolved radiouclides in ground water and rocks and sediments away from the near-field repository. The primary mechanism discussed is adsorption-desorption, which has been studied using two approaches. Empirical studies of adsorption-desorption rely on distribution coefficient measurements while mechanism studies strive to identify, differentiate and quantify the processes that control nuclide retardation

  1. Development of a Unified Rock Bolt Model in Discontinuous Deformation Analysis

    Science.gov (United States)

    He, L.; An, X. M.; Zhao, X. B.; Zhao, Z. Y.; Zhao, J.

    2018-03-01

    In this paper, a unified rock bolt model is proposed and incorporated into the two-dimensional discontinuous deformation analysis. In the model, the bolt shank is discretized into a finite number of (modified) Euler-Bernoulli beam elements with the degrees of freedom represented at the end nodes, while the face plate is treated as solid blocks. The rock mass and the bolt shank deform independently, but interact with each other through a few anchored points. The interactions between the rock mass and the face plate are handled via general contact algorithm. Different types of rock bolts (e.g., Expansion Shell, fully grouted rebar, Split Set, cone bolt, Roofex, Garford and D-bolt) can be realized by specifying the corresponding constitutive model for the tangential behavior of the anchored points. Four failure modes, namely tensile failure and shear failure of the bolt shank, debonding along the bolt/rock interface and loss of the face plate, are available in the analysis procedure. The performance of a typical conventional rock bolt (fully grouted rebar) and a typical energy-absorbing rock bolt (D-bolt) under the scenarios of suspending loosened blocks and rock dilation is investigated using the proposed model. The reliability of the proposed model is verified by comparing the simulation results with theoretical predictions and experimental observations. The proposed model could be used to reveal the mechanism of each type of rock bolt in realistic scenarios and to provide a numerical way for presenting the detailed profile about the behavior of bolts, in particular at intermediate loading stages.

  2. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  3. Diffusion of water, cesium and neptunium in pores of rocks

    International Nuclear Information System (INIS)

    Puukko, E.; Heikkinen, T.; Hakanen, M.

    1993-10-01

    Teollisuuden Voima Oy (TVO) is investigating the feasibility to dispose of spent nuclear fuel within Finland. The present plan calls for the repository to be located in crystalline rock at a depth of several hundred meters. The safety assessment of the repository includes calculations of migration of waste nuclides. The flow of waste elements in groundwater will be retarded through sorption interaction with minerals and through diffusion into rock. Diffusion is the only mechanism retarding the migration of non-sorbing species and, it is expected to be the dominating retardation mechanism of many of the sorbing elements. In the investigation the simultaneous diffusion of tritiated water (HTO), cesium and neptunium in rocks of TVO investigation sites at Kivetty, Olkiluoto and Romuvaara were studied. (11 refs., 33 figs., 9 tabs.)

  4. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    Science.gov (United States)

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  5. The Unsaturated Hydromechanical Coupling Model of Rock Slope Considering Rainfall Infiltration Using DDA

    Directory of Open Access Journals (Sweden)

    Xianshan Liu

    2017-01-01

    Full Text Available Water flow and hydromechanical coupling process in fractured rocks is more different from that in general porous media because of heterogeneous spatial fractures and possible fracture-dominated flow; a saturated-unsaturated hydromechanical coupling model using a discontinuous deformation analysis (DDA similar to FEM and DEM was employed to analyze water movement in saturated-unsaturated deformed rocks, in which the Van-Genuchten model differently treated the rock and fractures permeable properties to describe the constitutive relationships. The calibrating results for the dam foundation indicated the validation and feasibility of the proposed model and are also in good agreement with the calculations based on DEM still demonstrating its superiority. And then, the rainfall infiltration in a reservoir rock slope was detailedly investigated to describe the water pressure on the fault surface and inside the rocks, displacement, and stress distribution under hydromechanical coupling conditions and uncoupling conditions. It was observed that greater rainfall intensity and longer rainfall time resulted in lower stability of the rock slope, and larger difference was very obvious between the hydromechanical coupling condition and uncoupling condition, demonstrating that rainfall intensity, rainfall time, and hydromechanical coupling effect had great influence on the saturated-unsaturated water flow behavior and mechanical response of the fractured rock slopes.

  6. Theoretical Modeling of Rock Breakage by Hydraulic and Mechanical Tool

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2014-01-01

    Full Text Available Rock breakage by coupled mechanical and hydraulic action has been developed over the past several decades, but theoretical study on rock fragmentation by mechanical tool with water pressure assistance was still lacking. The theoretical model of rock breakage by mechanical tool was developed based on the rock fracture mechanics and the solution of Boussinesq’s problem, and it could explain the process of rock fragmentation as well as predicating the peak reacting force. The theoretical model of rock breakage by coupled mechanical and hydraulic action was developed according to the superposition principle of intensity factors at the crack tip, and the reacting force of mechanical tool assisted by hydraulic action could be reduced obviously if the crack with a critical length could be produced by mechanical or hydraulic impact. The experimental results indicated that the peak reacting force could be reduced about 15% assisted by medium water pressure, and quick reduction of reacting force after peak value decreased the specific energy consumption of rock fragmentation by mechanical tool. The crack formation by mechanical or hydraulic impact was the prerequisite to improvement of the ability of combined breakage.

  7. Coupled thermo-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole. Influence of hydraulic rock properties on the water saturation phase

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, J.

    1999-12-01

    The wetting process in deposition holes designed according to the KBS-3-concept has been simulated with finite element calculations of the thermo-hydro-mechanical processes in the buffer, backfill and surrounding rock. The buffer material has been modelled according to the preliminary material models developed for swelling clay. The properties of the rock have been varied in order to investigate the influence of the rock properties and the hydraulic conditions on the wetting processes. In the modelling of the test holes the permeability of the rock matrix, the water supply from the backfill, the water pressure in the surrounding rock, the permeability of the disturbed zone around the deposition hole, the water retention properties of the rock, and the transmissivity of two fractures intersecting the deposition hole have been varied. The calculations indicate that the wetting takes about 5 years if the water pressure in the rock is high and if the permeability of the rock is so high that the properties of the bentonite determine the wetting rate. However, it may take considerably more than 30 years if the rock is very tight and the water pressure in the rock is low. The calculations also show that the influence of the rock structure is rather large except for the influence of the transmissivity T of the fractures, which turned out to be insignificant for the values used in the calculations

  8. Transferability of polarizable models for ion-water electrostatic interaction

    International Nuclear Information System (INIS)

    Masia, Marco

    2009-01-01

    Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li + - water and Cl - -water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.

  9. The three-dimension model for the rock-breaking mechanism of disc cutter and analysis of rock-breaking forces

    Science.gov (United States)

    Zhang, Zhao-Huang; Sun, Fei

    2012-06-01

    To study the rock deformation with three-dimensional model under rolling forces of disc cutter, by carrying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the theory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the balance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are derived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock-breaking mechanism of disc cutters.

  10. Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids

    NARCIS (Netherlands)

    Grindrod, P.; Peletier, M.A.; Takase, H.

    1999-01-01

    We consider the interaction between a saturated clay buffer layer and a fractured crystalline rock engineered disturbed zone. Once saturated, the clay extrudes into the available rock fractures, behaving as a compressible non-Newtonian fluid. We discuss the modelling implications of published

  11. THM-coupled modeling of selected processes in argillaceous rock relevant to rock mechanics

    International Nuclear Information System (INIS)

    Czaikowski, Oliver

    2012-01-01

    Scientific investigations in European countries other than Germany concentrate not only on granite formations (Switzerland, Sweden) but also on argillaceous rock formations (France, Switzerland, Belgium) to assess their suitability as host and barrier rock for the final storage of radioactive waste. In Germany, rock salt has been under thorough study as a host rock over the past few decades. According to a study by the German Federal Institute for Geosciences and Natural Resources, however, not only salt deposits but also argillaceous rock deposits are available at relevant depths and of extensions in space which make final storage of high-level radioactive waste basically possible in Germany. Equally qualified findings about the suitability/unsuitability of non-saline rock formations require fundamental studies to be conducted nationally because of the comparatively low level of knowledge. The article presents basic analyses of coupled mechanical and hydraulic properties of argillaceous rock formations as host rock for a repository. The interaction of various processes is explained on the basis of knowledge derived from laboratory studies, and open problems are deduced. For modeling coupled processes, a simplified analytical computation method is proposed and compared with the results of numerical simulations, and the limits to its application are outlined. (orig.)

  12. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif; Estudio geoquimico de los procesos de interaccion agua-roca sobre sistemas goetermales de aguas alcalinas en granitoides

    Energy Technology Data Exchange (ETDEWEB)

    Buil gutierrez, B; Garcia Sanz, S; Lago San Jose, M; Arranz Uague, E; Auque Sanz, L [Universidad de Zaragoza (Spain)

    2002-07-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  13. Interaction between clay-based shaft seal components and crystalline host rock

    International Nuclear Information System (INIS)

    Priyanto, D.; Dixon, D.; Man, A.

    2010-01-01

    at the URL at the shaft seal location. In order to provide relevant boundary conditions to numerical modelling, the in situ stress and pore water pressure measurements at the URL are to be used to determine H-M boundary conditions of the shaft seal numerical simulation. In this numerical model, the FZ included in the modelling scenario will be located at 250 m depth and the repository will be located at a depth of 500 m. As a result of the considerable distance of the shaft seal from the repository horizon and the expectation that the hydro-mechanical (H-M) evolution will largely occur before any temperature perturbations occur at the shaft location, the assumption is made that the shaft seal is in an isothermal condition. The FZ is assumed to be 4-m-thick (i.e. similar to the URL conditions) and perfectly horizontal. These allow H-M simulation within a smaller domain, using a 2D-axisymmetric model. H-M properties of each shaft seal component (bentonite-sand (BS) and dense backfill (DBF), moderately fractured rock (MFR), and concrete seals (CS)) of the shaft seal are required in this numerical modelling. The BS is the same type used in the URL shaft seal. The BS is composed of 40% bentonite and 60% sand, compacted in situ with target dry density of 1.80 ± 0.05 Mg/m 3 and gravimetric water content of 12-14%. The DBF in the shaft seal model is a mixture of glacial lake clay, crushed host rock and bentonite clay, installed at high dry density by in situ compaction. An elastoplastic model for unsaturated clay is used to describe the mechanical behaviour of these clay-based seal components. Priyanto et al. (2009) discussed the calibration of the H-M constitutive model parameters based on the results of various laboratory test results of the BS in Canada. These parameters will be used to describe H-M behaviour of the clay-based sealing components (BS and DBF). Compared to the clay components (BS and DBF), the unfractured rock and concrete components are much stiffer and

  14. Ionic interactions in the water zone at oil well-sites

    Energy Technology Data Exchange (ETDEWEB)

    Kleven, R.

    1996-11-01

    The aim of this doctoral thesis has been to obtain a better understanding of ionic behaviour in a water zone of sedimentary rock exposed to sea-water based drilling fluid and completion fluid. Interaction processes addressed have been ion exchange on the surface of the reservoir rocks and precipitation of divalent cations with sulphate ions from the sea water. Clay minerals are focused on because of their ability to conduct electricity through ion-exchange reactions. The most important parameters that the distribution of ions around a borehole depends upon are suggested to be (1) the ability of the sedimentary rocks to sorb/desorb ions, (2) the effect of added solutions on the sorption/desorption processes, (3) the mobility of ions. The first of four enclosed papers studies ionic interaction, mainly on homo-ionic clay mineral - salt solution, in batch experiments under pH, ionic strength and temperature conditions likely to occur in the field. Paper II investigates the use of tritiated water as a reference tracer in miscible displacement processes in porous sandstone cores. Ionic interaction processes during drilling of oil wells with conventional KCl bentonite mud tagged with HTO were studied by means of measured ionic and HTO concentration of water sampled in the near well-bore region. A tracer method was developed and ``tracer diagrams`` illustrate sorption/desorption processes. The water analyses, sampling procedure, and tracer techniques are presented in the third paper. Paper IV compares the interpretation of laboratory data and field data. 173 refs., 47 figs., 22 tabs.

  15. Permeability of volcanic rocks to gas and water

    Science.gov (United States)

    Heap, M. J.; Reuschlé, T.; Farquharson, J. I.; Baud, P.

    2018-04-01

    The phase (gas or liquid) of the fluids within a porous volcanic system varies in both time and space. Laboratory experiments have shown that gas and water permeabilities can differ for the same rock sample, but experiments are biased towards rocks that contain minerals that are expected react with the pore fluid (such as the reaction between liquid water and clay). We present here the first study that systematically compares the gas and water permeability of volcanic rocks. Our data show that permeabilities to argon gas and deionised water can differ by a factor between two and five in two volcanic rocks (basalt and andesite) over a confining pressure range from 2 to 50 MPa. We suggest here that the microstructural elements that offer the shortest route through the sample-estimated to have an average radius 0.1-0.5 μm using the Klinkenberg slip factor-are accessible to gas, but restricted or inaccessible to water. We speculate that water adsorption on the surface of these thin microstructural elements, assumed here to be tortuous/rough microcracks, reduces their effective radius and/or prevents access. These data have important implications for fluid flow and therefore the distribution and build-up of pore pressure within volcanic systems.

  16. Soil-structure interaction Vol.3. Influence of ground water

    Energy Technology Data Exchange (ETDEWEB)

    Costantino, C J

    1986-04-01

    This study has been performed for the Nuclear Regulatory Commission (NRC) by the Structural Analysis Division of Brookhaven National Laboratory (BNL). The study was conducted during the fiscal year 1965 on the program entitled 'Benchmarking of Structural Engineering Problems' sponsored by NRC. The program considered three separate but complementary problems, each associated with the soil-structure interaction (551) phase of the seismic response analysis of nuclear plant facilities. The reports, all entitled Soil-Structure Interaction, are presented in three separate volumes, namely: Vol. 1 Influence of Layering by AJ Philippacopoulos, Vol. 2 Influence of Lift-Off by C.A. Miller, Vol. 3 Influence of Ground Water by C.J. Costantino. The two problems presented in Volumes 2 and 3 were conducted at the City University of New York (CUNY) under subcontract to BNL. This report, Volume 3 of the report, presents a summary of the first year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program was developed for the two-phased formulation of the combined soil-water problem. This formulation is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were generated for the two-dimensional plane problem of a rigid surface footing moving against a saturated linear soil. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translational response to increase over the frequency range of interest, as

  17. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  18. Forced vibration tests of a model foundation on rock ground

    International Nuclear Information System (INIS)

    Kisaki, N.; Siota, M.; Yamada, M.; Ikeda, A.; Tsuchiya, H.; Kitazawa, K.; Kuwabara, Y.; Ogiwara, Y.

    1983-01-01

    The response of very stiff structures, such as nuclear reactor buildings, to earthquake ground motion is significantly affected by radiation damping due to the soil-structure interaction. The radiation damping can be computed by vibration admittance theory or dynamical ground compliance theory. In order to apply the values derived from these theories to the practical problems, comparative studies between theoretical results and experimental results concerning the soil-structure interaction, especially if the ground is rock, are urgently needed. However, experimental results for rock are less easily obtained than theoretical ones. The purpose of this paper is to describe the harmonic excitation tests of a model foundation on rock and to describe the results of comparative studies. (orig./HP)

  19. A Model for Generation of Martian Surface Dust, Soil and Rock Coatings: Physical vs. Chemical Interactions, and Palagonitic Plus Hydrothermal Alteration

    Science.gov (United States)

    Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.

    1999-01-01

    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.

  20. A revised conceptual hydrogeologic model of a crystalline rock environment, Whiteshell research area, southeastern Manitoba, Canada

    International Nuclear Information System (INIS)

    Stevenson, D.R.; Brown, A.; Davison, C.C.; Gascoyne, M.; McGregor, R.G.; Ophori, D.U.; Scheier, N.W.; Stanchell, F.; Thorne, G.A.; Tomsons, D.K.

    1996-04-01

    A revised conceptual hydrogeologic model of regional groundwater flow in the crystalline rocks of the Whiteshell Research Area (WRA) has been developed by a team of AECL geoscientists. The revised model updates an earlier model developed in 1985, and has a much broader database. This database was compiled from Landsat and airborne radar images, geophysical surveys and surface mapping, and from analyses of fracture logs, hydraulic tests and water samples collected from a network of deep boreholes drilled across the WRA. The boundaries of the revised conceptual model were selected to coincide with the natural hydraulic boundaries assumed for the regional groundwater flow systems in the WRA. The upper and lower boundaries are the water table and a horizontal plane 4 km below ground surface. For modelling purposes the rocks below 4 km are considered to be impermeable. The rocks of the modelled region were divided on the basis of fracture characteristics into three categories: fractured zones (FZs); moderately fractured rock (MFR); and sparsely fractured rock (SFR). The FZs are regions of intensely fractured rock. Seventy-six FZs were selected to form the fault framework within the revised conceptual model. The physical rock/water properties of the FZs, MFR and SFR were selected by analysis of field data from hydraulic and tracer tests, laboratory test data and water quality data. These properties were used to define a mathematical groundwater flow model of the WRA using AECL's MOTIF finite element code (Ophori et al. 1995, 1996). (author). 29 refs., 4 tabs., 12 figs

  1. Rock–water interactions and pollution processes in the volcanic aquifer system of Guadalajara, Mexico, using inverse geochemical modeling

    International Nuclear Information System (INIS)

    Morán-Ramírez, J.; Ledesma-Ruiz, R.; Mahlknecht, J.; Ramos-Leal, J.A.

    2016-01-01

    In order to understand and mitigate the deterioration of water quality in the aquifer system underlying Guadalajara metropolitan area, an investigation was performed developing geochemical evolution models for assessment of groundwater chemical processes. The models helped not only to conceptualize the groundwater geochemistry, but also to evaluate the relative influence of anthropogenic inputs and natural sources of salinity to the groundwater. Mixing processes, ion exchange, water–rock–water interactions and nitrate pollution and denitrification were identified and confirmed using mass-balance models constraint by information on hydrogeology, groundwater chemistry, lithology and stability of geochemical phases. The water–rock interactions in the volcanic setting produced a dominant Na−HCO_3 water type, followed by Na−Mg−Ca−HCO_3 and Na−Ca−HCO_3. For geochemical evolution modeling, flow sections were selected representing recharge and non-recharge processes and a variety of mixing conditions. Recharge processes are dominated by dissolution of soil CO_2 gas, calcite, gypsum, albite and biotite, and Ca/Na exchange. Non-recharge processes show that the production of carbonic acid and Ca/Na exchange are decreasing, while other minerals such as halite and amorphous SiO_2 are precipitated. The origin of nitrate pollution in groundwater are fertilizers in rural plots and wastewater and waste disposal in the urban area. This investigation may help water authorities to adequately address and manage groundwater contamination. - Highlights: • The Inverse geochemical modeling was used to study to processes occurring in a volcanic aquifer. • Three flow sections were selected to apply inverse hydrogeochemical modeling. • Three main groundwater flows were identified: a local, intermediate and regional flow. • The models show that in the study area that groundwater is mixed with local recharge. • In the south, the aquifer has thermal influence.

  2. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    Science.gov (United States)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the

  3. An investigation of rock fall and pore water pressure using LIDAR in Highway 63 rock cuts.

    Science.gov (United States)

    2014-07-01

    The purpose of this research work is compare LIDAR scanning measurements of rock fall with the natural changes in groundwater level to determining the effect of water pressures (levels) on rock fall. To collect the information of rock cut volume chan...

  4. Chemistry and origin of deep ground water in crystalline rocks; Kemi och genes av djupa grundvatten i kristallint berg

    Energy Technology Data Exchange (ETDEWEB)

    Lagerblad, B [Swedish Cement and Concrete Research Inst., Stockholm (Sweden)

    1995-11-01

    This report discusses the interactions between water and crystalline rocks and its consequences for the chemical composition of the water. It also treats how flows of different types of water are modified by the rock, and the possible consequences for the ground water near a nuclear waste repository. The focus of the work is the changes in composition that ground water gets at deep levels in the rock. Data from Finnsjoen and Aespoe in Sweden show higher salinity in deep rock, which has been interpreted as a result of marine inflow of water during glaciation. Data from other, deeper boreholes in Finland, Canada, Russia, England and Sweden show that the increasing salinity is a rule and very high at great depths, higher than marine water can produce. Therefore, the deep waters from Finnsjoen and Aespoe are probably very old, and the high salinity a result from geological processes. Differing cation and isotopic composition than seawater also indicate geologic water. Differing theories on the origin of the ground water should be regarded in the safety analysis for a repository. 36 refs, 3 figs, 1 tab.

  5. Final report of experiments with rock blocks interacting hydraulically with smectitic pellet fills

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Sweco Infrastructure AB, Stockholm (Sweden); Ramqvist, Gunnar [El-Tekno AB, Figeholm (Sweden); Hedin, Mikael [AaF, Stockholm (Sweden)

    2010-11-15

    The report describes the outcome of the work within the the project 'SU5 08.20 Impact of water inflow in deposition tunnels'. Project decision SKBdoc id 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-014 and AP TD SU50820-09-031. A problem in backfilling of KBS-3V tunnels with smectitic pellets surrounding highly compacted clay blocks is that water entering the fill have a very substantial effect on the manner in which water moves into or through a pellet-filled region in the period immediately following pellet placement. Channels will be formed that lead much water to the sloping front of the fill in the course of placing it. This can soften the fill and turn it into mud where the water is discharged as demonstrated by large-scale tests. The nature of such channels was investigated in the present study that comprised experiments with rock blocks equipped with nozzles for injecting water into contacting pellet fills at constant flow rates. The purpose was to identify the basic mechanisms in the first phase of hydration of pellet fills and to find out if there is a threshold flow rate for 'piping'. The question if channelling at breakthrough takes place along the contact with the confinement, as indicated by preceding tests with steel and plexiglass instead of rock, was in focus. While the mechanisms of water entering a fill from separate local spots in contacting rock are well understood, prediction of the entire wetting process of a larger pellet volume requires consideration of the interactive function of several inflow spots, representing single or networks of rock fractures. Experiments with pellet fills on a larger scale with simultaneous inflow from a number of fractures would provide further information on the wetting process. Such a test is outlined in the report.

  6. Study of horizontal-vertical interactive Sway Rocking (SR) model for basemat uplift. Part 2: non-linear response analysis and validation

    International Nuclear Information System (INIS)

    Momma, T.; Shirahama, K.; Suzuki, K.; Ogihara, M.

    1995-01-01

    Non-linear earthquake response analyses of a BWR MARK-II type nuclear reactor building are conducted by using a Sway Rocking model (SR model) proposed in Part 1 considering the interaction between horizontal and vertical motion. The results are compared with those of accurate mathematical model using the Green Function method. Horizontal response of the SR model agrees very well with that of the Green Function model. The floor response spectra of induced vertical motions by both methods are also corresponding well in periodic characteristics as well as peak-levels. From these results, it is confirmed that the horizontal-vertical interactive SR model is applicable to non-linear response analyses considering basemat uplift. Based on the comparison of the induced vertical motions due to basemat uplift by both methods, an application limit of the horizontal-vertical interactive SR model is set up at the ground contact ratio of about 50%. (author). 4 refs., 8 figs., 1 tab

  7. Solute transport in fractured rock - applications to radionuclide waste repositories

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1990-12-01

    Flow and solute transport in fractured rocks has been intensively studied in the last decade. The increased interest is mainly due to the plans in many countries to site repositories for high level nuclear waste in deep geologic formations. All investigated crystalline rocks have been found to be fractured and most of the water flows in the fractures and fracture zones. The water transports dissolved species and radionuclides. It is thus of interest to be able to understand and to do predictive modelling of the flowrate of water, the flowpaths and the residence times of the water and of the nuclides. The dissolved species including the nuclides will interact with the surrounding rock in different ways and will in many cases be strongly retarded relative to the water velocity. Ionic species may be ion exchanged or sorbed in the mineral surfaces. Charges and neutral species may diffuse into the stagnant waters in the rock matrix and thus be withdrawn from the mobile water. These effects will be strongly dependent on how much rock surface is in contact with the flowing water. It has been found in a set of field experiments and by other observations that not all fractures conduct water. Furthermore it is found that conductive fractures only conduct the water in a small part of the fracture in what is called channels or preferential flowpaths. This report summarizes the present concepts of water flow and solute transport in fractured rocks. The data needs for predictive modelling are discussed and both field and laboratory measurement which have been used to obtain data are described. Several large scale field experiments which have been specially designed to study flow and tracer transport in crystalline rocks are described. In many of the field experients new techniques have been developed and used. (81 refs.) (author)

  8. Mass transfer between waste canister and water seeping in rock fractures. Revisiting the Q-equivalent model

    International Nuclear Information System (INIS)

    Neretnieks, Ivars; Liu Longcheng; Moreno, Luis

    2010-03-01

    Models are presented for solute transport between seeping water in fractured rock and a copper canister embedded in a clay buffer. The migration through an undamaged buffer is by molecular diffusion only as the clay has so low hydraulic conductivity that water flow can be neglected. In the fractures and in any damaged zone seeping water carries the solutes to or from the vicinity of the buffer in the deposition hole. During the time the water passes the deposition hole molecular diffusion aids in the mass transfer of solutes between the water/buffer interface and the water at some distance from the interface. The residence time of the water and the contact area between the water and the buffer determine the rate of mass transfer between water and buffer. Simple analytical solutions are presented for the mass transfer in the seeping water. For complex migration geometries simplifying assumptions are made that allow analytical solutions to be obtained. The influence of variable apertures on the mass transfer is discussed and is shown to be moderate. The impact of damage to the rock around the deposition hole by spalling and by the presence of a cemented and fractured buffer is also explored. These phenomena lead to an increase of mass transfer between water and buffer. The overall rate of mass transfer between the bulk of the water and the canister is proportional to the overall concentration difference and inversely proportional to the sum of the mass transfer resistances. For visualization purposes the concept of equivalent flowrate is introduced. This entity can be thought as of the flowrate of water that will be depleted of its solute during the water passage past the deposition hole. The equivalent flowrate is also used to assess the release rate of radionuclides from a damaged canister. Examples are presented to illustrate how various factors influence the rate of mass transfer

  9. An oil spill-food chain interaction model for coastal waters

    International Nuclear Information System (INIS)

    Yew Hoong Gin, K.; Huda, Md. K.; Tkalich, P.

    2001-01-01

    An oil spill-food chain interaction model, composed of a multiphase oil spill model (MOSM) and a food chain model, has been developed to assess the probable impacts of oil spills on several key marine organisms (phytoplankton, zooplankton, small fish, large fish and benthic invertebrates). The MOSM predicts oil slick thickness on the water surface; dissolved, emulsified and particulate oil concentrations in the water column; and dissolved and particulate oil concentrations in bed sediments. This model is used to predict the fate of oil spills and transport with respect to specific organic compounds, while the food chain model addresses the uptake of toxicant by marine organisms. The oil spill-food chain interaction model can be used to assess the environmental impacts of oil spills in marine ecosystems. The model is applied to the recent Evoikos-Orapin Global oil spill that occurred in the Singapore Strait. (author)

  10. Numerical Study on CO2-Brine-Rock Interaction of Enhanced Geothermal Systems with CO2 as Heat Transmission Fluid

    Directory of Open Access Journals (Sweden)

    Wan Yuyu

    2016-01-01

    Full Text Available Enhanced Geothermal Systems (EGS with CO2 instead of water as heat transmission fluid is an attractive concept for both geothermal resources development and CO2 geological sequestration. Previous studies show that CO2 has lots of favorable properties as heat transmission fluid and also can offer geologic storage of CO2 as an ancillary benefit. However, after CO2 injection into geological formations, chemical reaction between brine and rock can change chemical characteristics of saline and properties of rock such as porosity and permeability. Is this advantage or disadvantage for EGS operating? To answer this question, we have performed chemically reactive transport modeling to investigate fluid-rock interactions and CO2 mineral carbonation of Enhanced Geothermal Systems (EGS site at Desert Peak (Nevada operated with CO2. The simulation results show that (1 injection CO2 can create a core zone fulfilled with CO2 as main working domain for EGS, and (2 CO2 storage can induced self-enhancing alteration of EGS.

  11. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  12. Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia

    Science.gov (United States)

    Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska

    2017-04-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.

  13. Interaction between clay-based sealing components and crystalline host rock

    Science.gov (United States)

    Priyanto, D. G.; Dixon, D. A.; Man, A. G.

    The results of hydraulic-mechanical (H-M) numerical simulation of a shaft seal installed at a fracture zone (FZ) in a crystalline host rock using the finite element method are presented. The primary function of a shaft seal is to limit short-circuiting of the groundwater flow regime via the shaft in a deep geological repository. Two different stages of system evolution were considered in this numerical modelling. Stage 1 simulates the groundwater flow into an open shaft, prior to seal installation. Stage 2 simulates the groundwater flow into the shaft seal after seal installation. Four different cases were completed to: (i) evaluate H-M response due to the interaction between clay-based sealing material and crystalline host rock in the shaft seal structure; (ii) quantify the effect of the different times between the completion of the shaft excavation and the completion of shaft seal installation on the H-M response; and (iii) define the potential effects of different sealing material configurations. Shaft sealing materials include the bentonite-sand mixture (BSM), dense backfill (DBF), and concrete plug (CP). The BSM has greater swelling capacity and lower hydraulic conductivity ( K) than the DBF. The results of these analyses show that the decrease of the pore water pressure is concentrated along the fracture zone (FZ), which has the greatest K. As the time increases, the greatest decrease in pore water pressure is found around the FZ. Following FZ isolation and the subsequent filling of the shaft with water as it floods, the pore water pressure profile tends to recover back to the initial conditions prior to shaft excavation. The majority of the fluids that ultimately saturate the centre of the shaft seal flow radially inwards from the FZ. The time between the completion of the shaft excavation and the completion of shaft seal installation has a significant effect on the saturation time. A shorter time can reduce the saturation time. Since most of the inflow

  14. Information base for waste repository design. Volume 3. Waste/rock interactions

    International Nuclear Information System (INIS)

    Koplick, C.M.; Pentz, D.L.; Oston, S.G.; Talbot, R.

    1979-01-01

    This report describes the important effects resulting from interaction between radioactive waste and the rock in a nuclear waste repository. The state of the art in predicting waste/rock interactions is summarized. Where possible, independent numerical calculations have been performed. Recommendations are made pointing out areas which require additional research

  15. Radionuclide fixation mechanisms in rocks

    International Nuclear Information System (INIS)

    Nakashima, S.

    1991-01-01

    In the safety evaluation of the radioactive waste disposal in geological environment, the mass balance equation for radionuclide migration is given. The sorption of radionuclides by geological formations is conventionally represented by the retardation of the radionuclides as compared with water movement. In order to quantify the sorption of radionuclides by rocks and sediments, the distribution ratio is used. In order to study quantitatively the long term behavior of waste radionuclides in geological environment, besides the distribution ratio concept in short term, slower radionuclide retention reaction involving mineral transformation should be considered. The development of microspectroscopic method for long term reaction path modeling, the behavior of iron during granite and water interaction, the reduction precipitation of radionuclides, radionuclide migration pathways, and the representative scheme of radionuclide migration and fixation in rocks are discussed. (K.I.)

  16. Analysis on the Rock-Cutter Interaction Mechanism During the TBM Tunneling Process

    Science.gov (United States)

    Yang, Haiqing; Wang, He; Zhou, Xiaoping

    2016-03-01

    The accurate prediction of rock cutting forces of disc cutters is crucial for tunnel boring machine (TBM) design and construction. Disc cutter wear, which affects TBM penetration performance, has frequently been found at TBM sites. By considering the operating path and wear of the disc cutter, a new model is proposed for evaluating the cutting force and wear of the disc cutter in the tunneling process. The circular path adopted herein, which is the actual running path of the TBM disc cutter, shows that the lateral force of the disc cutter is asymmetric. The lateral forces on the sides of the disc cutter are clearly different. However, traditional solutions are obtained by assuming a linear path, where the later forces are viewed as equal. To simulate the interaction between the rock and disc cutter, a simple brittle damage model for rock mass is introduced here. Based on the explicit dynamic finite element method, the cutting force acting on the rock generated by a single disc cutter is simulated. It is shown that the lateral cutting force of the disc cutter strongly affects the wear extent of disc cutter. The wear mechanism is thus underestimated by the classical model, which was obtained by linear cutting tests. The simulation results are discussed and compared with other models, and these simulation results agree well with the results of present ones.

  17. Impact of bearing plates dimensions on interaction of mine workings support and rock mass

    Directory of Open Access Journals (Sweden)

    Marek Rotkegel

    2015-01-01

    Full Text Available The aim of the research presented in this article is to assess the impact of bearing plates dimensions on the interaction of steel arch support and rock mass. The analysis of the bearing plates was based on laboratory tests and numerical calculations using the FLAC3D program (a finite difference method and the strain-hardening/softening model based on prescribed variations of Mohr–Coulomb properties. The article presents the results of laboratory tests on selected bearing plates and the results of numerical analysis of the interaction between the bearing plates and rock mass with coal, clay stone and sandstone properties.

  18. A Neutron Radiology Application to Natural Absorption (Imbibition) of Water into Porous Rocks

    International Nuclear Information System (INIS)

    Middleton, M.F.; de Beer, Frikkie

    2005-01-01

    Full text: Dynamic neutron radiology provides a method of evaluating the concentration of water in porous media. A study of water imbibition (absorption of a wetting liquid into a porous medium with a non-wetting fluid, air), which is imaged by dynamic neutron radiology , provides an excellent method of determining the fluid diffusivity parameter, D. This parameter enables one to model water-air regimes in surface hydrological systems and aquifers; analogies can also be made for deeper petroleum systems. A methodology of pixel-by-pixel analysis for the estimation of water concentration, as a function of time under natural absorption conditions, is proposed which provides a good mapping of D within a rock sample. The proposed method entails the discrete mapping of the differential equation for horizontal flow of a partial water concentration, c, in an air-filled rock/soil. (authors)

  19. What Happens Where the Water and the Rock Touch in Small Space Bodies

    Science.gov (United States)

    Byrne, P. K.; Regensburger, P. V.; Klimczak, C.; Bohnenstiehl, D. R.; Dombard, A. J.; Hauck, S. A., II

    2017-12-01

    There are several small space bodies that go around bigger worlds that might have a layer of water under a layer of ice. Lots of study has been done to understand the outside ice layer of these small space bodies, because the ice can tells us important things about the big water layer under it. Some of these small space bodies are very interesting because the right things for life—water, hot rock, and food—might be at the bottom of the water layer, where it touches the top of the next layer down, which is made of rock. But it is very hard to understand what this rock at the bottom of the water is like, because we can't see it. So, we are imagining what this rock is like by thinking about what the rock is like under the water layer on our own world. If hot rock comes out of the rock layer through cracks under the water, the cold of the water makes the hot rock go very cold very fast, and it makes funny rolls as it does so. This might happen on some small space bodies that are hot enough on the inside to make hot rock. We know that on our own world the rock layer under the water is wet to as far down as cracks can go, so it makes sense that this is true for small space bodies, too. We did some thinking about numbers and found out that the cracks can go a few ten hundred steps into the rock layer on small space bodies, but for bigger (well, not quite so small) space bodies, the cracks can go at least tens of ten hundred steps into the rock layer. This means that water goes into the rock layer this much, too. But get this: some small bodies are not really that small—one of them is bigger than the first world from the Sun! And on a few of these big (small) bodies, the layer of water is so heavy that the bottom of that water is pushed together from all sides and turns into a type of hot ice. This means that, for these big (small) worlds, the water can't get into the rock layer through cracks (since there is a layer of hot ice in the way), and so these bodies are

  20. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maryla; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-05-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper 300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest ( 0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  1. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maria; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-01-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper ~300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest (~0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  2. Rare earth elements, yttrium and H, O, C, Sr, Nd and Pb isotope studies in mineral waters and corresponding rocks from NW-Bohemia, Czech Republic

    International Nuclear Information System (INIS)

    Moeller, P.; Dulski, P.; Gerstenberger, H.; Morteani, G.; Fuganti, A.

    1998-01-01

    The sparkling waters from the area of Kyselka near Karlovy Vary at the western slope of the Doupovske hory, Bohemia (Czech Republic), and CO 2 -poor waters from two underground boreholes at Jachymov, Krusne hory, Bohemia, have been studied with the aim of characterizing the distribution of rare earth elements, yttrium, and H, O, C, Sr, Nd, Pb isotopes during the low-temperature alteration processes of the host rocks. Additionally, leaching experiments were performed at pH 3 on the granitic and basaltic host rocks from Kyselka and the granite of Jachymov. All REE patterns of the granite- and the basalt-derived waters from the Kyselka area are different from those of their source rocks and the leachates of the latter. This elucidates the inhomogeneous distribution of REE and Y among the solid phases in the altered magmatic rocks. The Eu and Ce anomalies in granite-derived waters are inherited, the Y anomaly is achieved by fluid migration. Yttrium is always preferentially leached by mineral waters, whereas Y/Ho ratios of rocks and their leachates are very similar. The REE abundances in waters from the wells in Jachymov are derived from rocks intensely leached and depleted in easily soluble REE-bearing minerals, whereas the granites and basalts from Kyselka still contain soluble, REE-bearing minerals. A comparison of REE/Ca patterns of the experimental leachates with those of the mineral waters elucidate the high retention of REE in rocks during water-rock interaction. In strongly altered rocks Sr isotope ratios of mineral waters and rocks differ widely, whereas the corresponding Nd isotope ratios are very similar. 207 Pb/ 208 Pb, 206 Pb/ 208 Pb and 206 Pb/ 207 Pb ratios in mineral waters are independent from U/Th ratios in the rocks. 206 Pb/ 208 Pb and 206 Pb/ 207 Pb are lower in mineral waters than in their source rocks and their leachates, which indicates that Pb is primarily derived from solid phases that do not contain significant contents of leachable U and Th

  3. Uranium in waters and aquifer rocks at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Zielinski, R.A.; Rosholt, J.N.

    1978-01-01

    Previous chemical, geological, and hydrological information describing the physical and chemical environment of the Nevada Test Site has been combined with new radiochemical and isotope data for water and rock samples in order to explain the behavior of uranium during alteration of thick sequences of rhyolitic volcanic rocks and associated volcanielastic sediments. A model is proposed in which uranium mobility is controlled by two competing processes. Uranium is liberated from the volcanic rocks through dissolution of the glassy constituents and is carried in solution as a uranyl carbonate complex. Uranium is subsequently removed from solution by adsorption on secondary oxides of iron, titanium, and manganese, as observed in fission-track maps of aquifer rocks. The model explains the poor correlation of dissolved uranium with depth within tuffaceous sequences in which percolation of ground water is predominantly downward. Good positive correlation of dissolved uranium with dissolved Na, total dissolved solids, and total carbonate supports the glass dissolution model, while inverse correlation of dissolved uranium with 234 U/ 238 U ratios of water implies uranium is being absorbed by a relatively insoluble, surficial phase. Alpha radioactivity of Test Site water is primarily caused by high 234 U contents, and beta activity is highly correlated with dissolved K ( 40 K). Smallamounts of dissolved radium, 216 Pb, and 210 Po are present but no evidence was found for alpha activity sources related to nuclear testing (Pu, 235 U). A filtered but unacidified carbonate solution of uranium was found to be stable (+-10 percent of original U concentration) for years when stored in acid-washed polyethylene bottles. 5 tables, 2 figs

  4. ONKALO rock mechanics model (RMM). Version 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, T.; Merjama, S.; Moenkkoenen, H. [WSP Finland, Helsinki (Finland)

    2014-07-15

    The Rock Mechanics Model of the ONKALO rock volume includes the most important rock mechanics features and parameters at the Olkiluoto site. The main objective of the model is to be a tool to predict rock properties, rock quality and hence provide an estimate for the rock stability of the potential repository at Olkiluoto. The model includes a database of rock mechanics raw data and a block model in which the rock mechanics parameters are estimated through block volumes based on spatial rock mechanics raw data. In this version 2.3, special emphasis was placed on refining the estimation of the block model. The model was divided into rock mechanics domains which were used as constraints during the block model estimation. During the modelling process, a display profile and toolbar were developed for the GEOVIA Surpac software to improve visualisation and access to the rock mechanics data for the Olkiluoto area. (orig.)

  5. Establishment of tunnel-boring machine disk cutter rock-breaking model from energy perspective

    Directory of Open Access Journals (Sweden)

    Liwei Song

    2015-12-01

    Full Text Available As the most important cutting tools during tunnel-boring machine tunneling construction process, V-type disk cutter’s rock-breaking mechanism has been researched by many scholars all over the world. Adopting finite element method, this article focused on the interaction between V-type disk cutters and the intact rock to carry out microscopic parameter analysis methods: first, the stress model of rock breaking was established through V-type disk cutter motion trajectory analysis; second, based on the incremental theorem of the elastic–plastic theory, the strain model of the relative changes of rock displacement during breaking process was created. According to the principle of admissible work by energy method of the elastic–plastic theory to analyze energy transfer rules in the process of breaking rock, rock-breaking force of the V-type disk cutter could be regarded as the external force in the rock system. Finally, by taking the rock system as the reference object, the total potential energy equivalent model of rock system was derived to obtain the forces of the three directions acting on V-type disk cutter during the rock-breaking process. This derived model, which has been proved to be effective and scientific through comparisons with some original force models and by comparative analysis with experimental data, also initiates a new research strategy taking the view of the micro elastic–plastic theory to study the rock-breaking mechanism.

  6. Digital Rock Simulation of Flow in Carbonate Samples

    Science.gov (United States)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three

  7. Numerical modeling of magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, Onno

    2001-01-01

    This report explains the numerical programs behind a comprehensive modeling effort of magma-repository interactions. Magma-repository interactions occur when a magma dike with high-volatile content magma ascends through surrounding rock and encounters a tunnel or drift filled with either a magmatic

  8. The water retention of a granite rock fragments in High Tatras stony soils

    OpenAIRE

    Novák, Viliam; Šurda, Peter

    2010-01-01

    The water retention capacity of coarse rock fragments is usually considered negligible. But the presence of rock fragments in a soil can play an important role in both water holding capacity and in hydraulic conductivity as well. This paper presents results of maximum water holding capacity measured in coarse rock fragments in the soil classified as cobbly sandy loam sampled at High Tatra mountains. It is shown, that those coarse rock (granite) fragments have the maximum retention capacity up...

  9. A New Equivalent Statistical Damage Constitutive Model on Rock Block Mixed Up with Fluid Inclusions

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2018-01-01

    Full Text Available So far, there are few studies concerning the effect of closed “fluid inclusions” on the macroscopic constitutive relation of deep rock. Fluid-matrix element (FME is defined based on rock element in statistical damage model. The properties of FME are related to the size of inclusions, fluid properties, and pore pressure. Using FME, the equivalent elastic modulus of rock block containing fluid inclusions is obtained with Eshelby inclusion theory and the double M-T homogenization method. The new statistical damage model of rock is established on the equivalent elastic modulus. Besides, the porosity and confining pressure are important influencing factors of the model. The model reflects the initial damage (void and fluid inclusion and the macroscopic deformation law of rock, which is an improvement of the traditional statistical damage model. Additionally, the model can not only be consistent with the rock damage experiment date and three-axis compression experiment date of rock containing pore water but also describe the locked-in stress experiment in rock-like material. It is a new fundamental study of the constitutive relation of locked-in stress in deep rock mass.

  10. Fissures in rock under water pressure, implications on stability : 3 unusual cases

    Energy Technology Data Exchange (ETDEWEB)

    Helwig, P.C. [Helwig Hydrotechnique Ltd., St. John' s, NL (Canada)

    2006-07-01

    The presence of water in rock joints has important implications on the stability of rock foundations. Appropriate analyses are needed to assess the stability of dam foundations, abutments and rock walls. This paper presented 3 case studies in which the freezing of seepage flows in rock joints and transient pressure in rock walls were investigated: (1) an assessment of the effects of freezing water in rock joints at the Paradise River arch dam in Newfoundland; (2) stability of rock walls in the unlined power tunnel of the Cat Arm hydroelectric development in Newfoundland due to transient pressures; and (3) assessing the influence of fluctuating water pressures in a stilling basin excavated in rock. After an investigation of the Paradise River canyon walls, a drainage system comprised of peripheral drain holes was drilled into the foundation and walls at regular intervals to intercept seepage flows and to relieve uplift water pressures. However, no special treatment was found for the potential freezing of water in the joints of the dam walls and foundation. The Cat Arm tunnel was used to study the depth at which significant transient pressures can be used to assess rock stability. Rock properties, typical fracture apertures and spacing were assumed and joint deformability was taken into account. An axisymmetric solution was obtained by considering the continuity and flow through an annular element of the rock wall. A finite difference method was used to solve the resulting nonlinear differential equation. In the final case study, blast-damaged rock was undermining the toe of a spillway. A cut-off wall was constructed as a series of drilled, cast-in-place concrete caisson piles. Criteria for the design included extending the cut-off wall to a depth beyond the effects of fluctuating surface pressures. Depth was assessed by considering the transient behaviour of water penetrating a sub-vertical joint subject exposed to fluctuating pressures. Results of the calculations

  11. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    Science.gov (United States)

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  12. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    Directory of Open Access Journals (Sweden)

    Thierry Bore

    2016-04-01

    Full Text Available Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  13. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    Science.gov (United States)

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-04-18

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  14. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    NARCIS (Netherlands)

    Tanvir Hassan, S.M.; Lubczynski, M.; Niswonger, R.G.; Su, Zhongbo

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic

  15. Proceedings of the 3. Canada-US rock mechanics symposium and 20. Canadian rock mechanics symposium : rock engineering 2009 : rock engineering in difficult conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This conference provided a forum for geologists, mining operators and engineers to discuss the application of rock mechanics in engineering designs. Members of the scientific and engineering communities discussed challenges and interdisciplinary elements involved in rock engineering. New geological models and methods of characterizing rock masses and ground conditions in underground engineering projects were discussed along with excavation and mining methods. Papers presented at the conference discussed the role of rock mechanics in forensic engineering. Geophysics, geomechanics, and risk-based approaches to rock engineering designs were reviewed. Issues related to high pressure and high flow water conditions were discussed, and new rock physics models designed to enhance hydrocarbon recovery were presented. The conference featured 84 presentations, of which 9 have been catalogued separately for inclusion in this database. tabs., figs.

  16. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    Science.gov (United States)

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  17. Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England

    Science.gov (United States)

    Robinson, Gilpin R.; Ayotte, Joseph D.

    2007-01-01

    The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to

  18. Modelling of reactive fluid transport in deformable porous rocks

    Science.gov (United States)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2009-04-01

    One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a

  19. Rock pushing and sampling under rocks on Mars

    Science.gov (United States)

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  20. A Microstructure-Based Model to Characterize Micromechanical Parameters Controlling Compressive and Tensile Failure in Crystallized Rock

    Science.gov (United States)

    Kazerani, T.; Zhao, J.

    2014-03-01

    A discrete element model is proposed to examine rock strength and failure. The model is implemented by UDEC which is developed for this purpose. The material is represented as a collection of irregular-sized deformable particles interacting at their cohesive boundaries. The interface between two adjacent particles is viewed as a flexible contact whose stress-displacement law is assumed to control the material fracture and fragmentation process. To reproduce rock anisotropy, an innovative orthotropic cohesive law is developed for contact which allows the interfacial shear and tensile behaviours to be different from each other. The model is applied to a crystallized igneous rock and the individual and interactional effects of the microstructural parameters on the material compressive and tensile failure response are examined. A new methodical calibration process is also established. It is shown that the model successfully reproduces the rock mechanical behaviour quantitatively and qualitatively. Ultimately, the model is used to understand how and under what circumstances micro-tensile and micro-shear cracking mechanisms control the material failure at different loading paths.

  1. Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides

    Science.gov (United States)

    Neveu, Marc; Desch, Steven J.; Castillo-Rogez, Julie C.

    2017-09-01

    The geophysical evolution of many icy moons and dwarf planets seems to have provided opportunities for interaction between liquid water and rock (silicate and organic solids). Here, we explore two ways by which water-rock interaction can feed back on geophysical evolution: the production or consumption of antifreeze compounds, which affect the persistence and abundance of cold liquid; and the potential leaching into the fluid of lithophile radionuclides, affecting the distribution of a long-term heat source. We compile, validate, and use a numerical model, implemented with the PHREEQC code, of the interaction of chondritic rock with pure water and with C, N, S-bearing cometary fluid, thought to be the materials initially accreted by icy worlds, and describe the resulting equilibrium fluid and rock assemblages at temperatures, pressures, and water-to-rock ratios of 0-200 ° C, 1-1000 bar, and 0.1-10 by mass, respectively. Our findings suggest that water-rock interaction can strongly alter the nature and amount of antifreezes, resulting in solutions rich in reduced nitrogen and carbon, and sometimes dissolved H2, with additional sodium, calcium, chlorine, and/or oxidized carbon. Such fluids can remain partially liquid down to 176 K if NH3 is present. The prominence of Cl in solution seems to hinge on its primordial supply in ices, which is unconstrained by the meteoritical record. Equilibrium assemblages, rich in serpentine and saponite clays, retain thorium and uranium radionuclides unless U-Cl or U-HCO3 complexing, which was not modeled, significantly enhances U solubility. However, the radionuclide 40 K can be leached at high water:rock ratio and/or low temperature at which K is exchanged with ammonium in minerals. We recommend the inclusion of these effects in future models of the geophysical evolution of ocean-bearing icy worlds. Our simulation products match observations of chloride salts on Europa and Enceladus; CI chondrites mineralogies; the observation of

  2. Simquake 3: Seismic interactions between building structures and rock-socketed foundations: Final report

    International Nuclear Information System (INIS)

    Howard, G.E.; Chitty, D.E.; Oleck, R.F.

    1988-04-01

    It has long been recognized that soil-structure interaction can significantly influence the earthquake response of massive structures such as nuclear power plant reactor buildings. The linear analysis methods that are widely used to model interaction phenomena can result in often unrecognized safety margins in design for earthquake excitation. Use of improved interaction models which capture nonlinear characteristics of interaction---such as energy dissipation and significant changes in stiffness---can provide realistic predictions of the earthquake loads imposed on nuclear power plant structures and equipment, supplying an improved basis for seismic design review. This report documents the results of a research effort investigating the soil-structure (or structure-media) interaction of reinforced concrete structures founded in backfilled rock sockets. The objectives of the research, which included field testing with semi-scale structural models, were: to examine the influence of the backfilled socket on structural dynamic response; and to develop an experimental data base for the benchmarking of computer simulation procedures

  3. Modeling the Rock Glacier Cycle

    Science.gov (United States)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock

  4. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    Science.gov (United States)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react

  5. Study on investigation and evaluation methods of deep seated sedimentary rocks. Chemical weathering, pore water squeezing and relationships of physical properties of sedimentary rocks

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Suzuki, Koichi

    2006-01-01

    Chemical weathering, porewater squeezing and physical properties for the sedimentary rocks were examined. Chemical weathering potential of rocks was described by the sulfur as a acceleration factor of weathering and carbonate contents as a neutralization factor of it. The carbonate contents in the rocks were measured accurately by the gas pressure measurement method. Pore water squeezing method was applied for the semi-hard sedimentary rocks (Opalinusclay). The chemical change of extracted pore water under high pressure conditions was estimated. Physical property of sedimentary rocks have relationship among the porosity and permeability and resistivity coefficient in the same rock types. It is possible to estimate the water permeability from the geophysical tests. (author)

  6. Reactivity of the Bacteria-Water Interface: Linking Nutrient Availability to Bacteria-Metal Interactions

    Science.gov (United States)

    Fowle, D. A.; Daughney, C. J.; Riley, J. L.

    2002-12-01

    Identifying and quantifying the controls on metal mobilities in geologic systems is critical in order to understand processes such as global element cycling, metal transport in near-surface water-rock systems, sedimentary diagenesis, and mineral formation. Bacteria are ubiquitous in near-surface water-rock systems, and numerous laboratory and field studies have demonstrated that bacteria can facilitate the formation and dissolution of minerals, and enhance or inhibit contaminant transport. However, despite the growing evidence that bacteria play a key role in many geologic processes in low temperature systems, our understanding of the influence of the local nutrient dynamics of the system of interest on bacteria-metal interactions is limited. Here we present data demonstrating the effectiveness of coupling laboratory experiments with geochemical modeling to isolate the effect of nutrient availability on bacterially mediated proton and metal adsorption reactions. Experimental studies of metal-bacteria interactions were conducted in batch reactors as a function of pH, and solid-solute interactions after growth in a variety of defined and undefined media. Media nutrient composition (C,N,P) was quantified before and after harvesting the cells. Surface complexation models (SCM) for the adsorption reactions were developed by combining sorption data with the results of acid-base titrations, and in some cases zeta potential titrations of the bacterial surface. Our results indicate a clear change in both buffering potential and metal binding capacity of the cell walls of Bacillus subtilis as a function of initial media conditions. Combining current studies with our past studies on the effects of growth phase and others work on temperature dependence on metal adsorption we hope to develop a holistic surface complexation model for quantifying bacterial effects on metal mass transfer in many geologic systems.

  7. Developing two-phase flow modelling concepts for rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keto, V. (Fortum Nuclear Services Oy, Espoo (Finland))

    2010-01-15

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)

  8. Developing two-phase flow modelling concepts for rock fractures

    International Nuclear Information System (INIS)

    Keto, V.

    2010-01-01

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)

  9. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... such as heat production from coal oxidation may be equally important....... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...

  10. ONKALO rock mechanics model (RMM) - Version 2.0

    International Nuclear Information System (INIS)

    Moenkkoenen, H.; Hakala, M.; Paananen, M.; Laine, E.

    2012-02-01

    The Rock Mechanics Model of the ONKALO rock volume is a description of the significant features and parameters related to rock mechanics. The main objective is to develop a tool to predict the rock properties, quality and hence the potential for stress failure which can then be used for continuing design of the ONKALO and the repository. This is the second implementation of the Rock Mechanics Model and it includes sub-models of the intact rock strength, in situ stress, thermal properties, rock mass quality and properties of the brittle deformation zones. Because of the varying quantities of available data for the different parameters, the types of presentations also vary: some data sets can be presented in the style of a 3D block model but, in other cases, a single distribution represents the whole rock volume hosting the ONKALO. (orig.)

  11. Carbon-nitrogen-water interactions: is model parsimony fruitful?

    Science.gov (United States)

    Puertes, Cristina; González-Sanchis, María; Lidón, Antonio; Bautista, Inmaculada; Lull, Cristina; Francés, Félix

    2017-04-01

    It is well known that carbon and nitrogen cycles are highly intertwined and both should be explained through the water balance. In fact, in water-controlled ecosystems nutrient deficit is related to this water scarcity. For this reason, the present study compares the capability of three models in reproducing the interaction between the carbon and nitrogen cycles and the water cycle. The models are BIOME-BGCMuSo, LEACHM and a simple carbon-nitrogen model coupled to the hydrological model TETIS. Biome-BGCMuSo and LEACHM are two widely used models that reproduce the carbon and nitrogen cycles adequately. However, their main limitation is that these models are quite complex and can be too detailed for watershed studies. On the contrary, the TETIS nutrient sub-model is a conceptual model with a vertical tank distribution over the active soil depth, dividing it in two layers. Only the input of the added litter and the losses due to soil respiration, denitrification, leaching and plant uptake are considered as external fluxes. Other fluxes have been neglected. The three models have been implemented in an experimental plot of a semi-arid catchment (La Hunde, East of Spain), mostly covered by holm oak (Quercus ilex). Plant transpiration, soil moisture and runoff have been monitored daily during nearly two years (26/10/2012 to 30/09/2014). For the same period, soil samples were collected every two months and taken to the lab in order to obtain the concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate. In addition, between field trips soil samples were placed in PVC tubes with resin traps and were left incubating (in situ buried cores). Thus, mineralization and nitrification accumulated fluxes for two months, were obtained. The ammonium and nitrate leaching accumulated for two months were measured using ion-exchange resin cores. Soil respiration was also measured every field trip. Finally, water samples deriving from runoff, were collected

  12. Effects of water infusions on mechanical properties of carboniferous rocks

    Energy Technology Data Exchange (ETDEWEB)

    Vavro, M; Chlebik, J

    1977-01-01

    Method of water infusion is used in the Ostrava-Karvina coal region in Czechoslovakia, where the roof of the extracted coal seam consists of thick rock layers (sandstone, Namurian B series) characterized by high resistance to compression, high coefficient of linear elasticity and high capacity of accumulating energy. When the resistance boundary is crossed and the rocks are disturbed this energy is suddenly released and transferred to the surrounding rock masses, coal seam and support system. On the basis of laboratory experiments the physico-mechanical and energy properties of carboniferous rocks together with calculation of their energy coefficient and other parameters are described and calculated. The results of research and theoretical solutions are presented. Practical use of water infusions to influence mechanical properties of sandstone in the roof of coal seams is described with the example of the Dukla coal mine. (5 refs.) (In Polish)

  13. Geochemistry of sediment moisture in the Badain Jaran desert: Implications of recent environmental changes and water-rock interaction

    International Nuclear Information System (INIS)

    Jin, Li; Edmunds, W. Mike; Lu, Zunli; Ma, Jinzhu

    2015-01-01

    Unsaturated zone pore water has the potential to record history of recharge, palaeoenvironment, pollution movement and water-rock interaction as it percolates through and moves towards the water table. In this study, two 6-m cores from the Badain Jaran desert (NW China) were collected to explore this potential using directly extracted moisture. Pore waters in these unsaturated zone sediments (1–5% moisture by wet weight) were directly extracted using immiscible liquid displacement and then analysed for major anions, cations and trace elements. Results show enrichment in pore water chemistry in the top 1–2 m where strong temperature and moisture fluxes occur. The enrichment in cations relative to chloride is primarily due to silicate mineral dissolution during infiltration. High nitrate and low iron concentrations indicate the overall oxidizing environment, which allows the mobility of oxyanions, such as uranium, arsenic and chromium. The trace elements show enrichment in the upper zone of fluctuation where chemical gradients are strong, but with lesser reaction lower in the profile. The calculated groundwater recharge rates using the chloride mass balance are negligible in this arid region between 1.5 and 3.0 mm/year. The modern rainfall infiltration signature contrasts with that of the underlying groundwater body, which has a distant, regional recharge signature. This reconnaissance study demonstrates the potential for a new geochemical approach to studying geochemical processes in the unsaturated sediments in semi-arid environments due to both natural and human influences. The use of directly extracted water, rather than extraction by dilution (elutriation), facilitates an improved understanding of hydrological and geochemical processes in the unsaturated zone and into the capillary fringe at the water table, because it avoids potential chemical changes induced during elutriation. - Highlights: • A new geochemical approach for the unsaturated zone study

  14. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  15. Modeling acid mine drainage in waste rock dumps

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, R. [INRS, Quebec (Canada)

    1995-03-01

    Acid mine drainage (AMD) results from the oxidation of sulfides present in mine wastes. The acidity generated by these reactions creates conditions under which metals can be leached and represent a threat for surface and ground waters. Even though leachate collection and neutralization are used to treat the problem, the industry is looking for methods to predict and prevent the generation of AMD at new sites and control methods for sites already producing AMD. Waste rock dumps are generally very large accumulations of barren rocks extracted from open pits to access ore bodies. These rocks contain sulfides, most commonly pyrite, and often generate AMD at rates much higher than in mine tailings which are fine grained by-products of milling operations. Numerous coupled physical processes are involved in AMD production in waste rocks. Sulfide oxidation reactions are strongly exothermic and temperatures beyond 70{degrees}C have been measured in some dumps. That heat is transfered by conduction and fluid advection. Dumps have thick partly saturated zones through which gases flow under thermal gradients and water infiltrates. Oxygen is required by the oxidation reactions and is supplied by diffusion and advection. The reaction products are carried in solution in very concentrated leachates. Numerical modeling of AMD aims to (1) provide a better understanding of the physical processes involved in AMD, (2) allow the integration of available waste rock characterization data, (3) indicate new data or studies which are required to fill the gaps in our quantitative understanding of AMD processes, and (4) supply a tool for the prediction of AMD production, taking into account the impact of control methods. These objectives can only be met through sustained research efforts. This study is part of a wider research effort which as been on-going at La Mine Doyon since 1991.

  16. Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter

    Science.gov (United States)

    Labra, Carlos; Rojek, Jerzy; Oñate, Eugenio

    2017-03-01

    This paper presents advanced computer simulation of rock cutting process typical for excavation works in civil engineering. Theoretical formulation of the hybrid discrete/finite element model has been presented. The discrete and finite element methods have been used in different subdomains of a rock sample according to expected material behaviour, the part which is fractured and damaged during cutting is discretized with the discrete elements while the other part is treated as a continuous body and it is modelled using the finite element method. In this way, an optimum model is created, enabling a proper representation of the physical phenomena during cutting and efficient numerical computation. The model has been applied to simulation of the laboratory test of rock cutting with a single TBM (tunnel boring machine) disc cutter. The micromechanical parameters have been determined using the dimensionless relationships between micro- and macroscopic parameters. A number of numerical simulations of the LCM test in the unrelieved and relieved cutting modes have been performed. Numerical results have been compared with available data from in-situ measurements in a real TBM as well as with the theoretical predictions showing quite a good agreement. The numerical model has provided a new insight into the cutting mechanism enabling us to investigate the stress and pressure distribution at the tool-rock interaction. Sensitivity analysis of rock cutting performed for different parameters including disc geometry, cutting velocity, disc penetration and spacing has shown that the presented numerical model is a suitable tool for the design and optimization of rock cutting process.

  17. A Model of Anisotropic Property of Seepage and Stress for Jointed Rock Mass

    Directory of Open Access Journals (Sweden)

    Pei-tao Wang

    2013-01-01

    Full Text Available Joints often have important effects on seepage and elastic properties of jointed rock mass and therefore on the rock slope stability. In the present paper, a model for discrete jointed network is established using contact-free measurement technique and geometrical statistic method. A coupled mathematical model for characterizing anisotropic permeability tensor and stress tensor was presented and finally introduced to a finite element model. A case study of roadway stability at the Heishan Metal Mine in Hebei Province, China, was performed to investigate the influence of joints orientation on the anisotropic properties of seepage and elasticity of the surrounding rock mass around roadways in underground mining. In this work, the influence of the principal direction of the mechanical properties of the rock mass on associated stress field, seepage field, and damage zone of the surrounding rock mass was numerically studied. The numerical simulations indicate that flow velocity, water pressure, and stress field are greatly dependent on the principal direction of joint planes. It is found that the principal direction of joints is the most important factor controlling the failure mode of the surrounding rock mass around roadways.

  18. Overview of OWI waste/rock interaction studies

    International Nuclear Information System (INIS)

    Jenks, G.H.

    1977-01-01

    A review is presented of office of waste isolation (OWI) programs which fall within the waste/rock categories. Discussions are included on salt repository design, thermal powers and radiation intensities, maximum temperatures and gamma doses, salt temperatures around high level waste cannisters, projects concerned with radiation and thermal effects, projects concerned with long term interactions, and waste isolation safety assessment tasks

  19. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    Science.gov (United States)

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  20. Reliable yields of public water-supply wells in the fractured-rock aquifers of central Maryland, USA

    Science.gov (United States)

    Hammond, Patrick A.

    2018-02-01

    Most studies of fractured-rock aquifers are about analytical models used for evaluating aquifer tests or numerical methods for describing groundwater flow, but there have been few investigations on how to estimate the reliable long-term drought yields of individual hard-rock wells. During the drought period of 1998 to 2002, many municipal water suppliers in the Piedmont/Blue Ridge areas of central Maryland (USA) had to institute water restrictions due to declining well yields. Previous estimates of the yields of those wells were commonly based on extrapolating drawdowns, measured during short-term single-well hydraulic pumping tests, to the first primary water-bearing fracture in a well. The extrapolations were often made from pseudo-equilibrium phases, frequently resulting in substantially over-estimated well yields. The methods developed in the present study to predict yields consist of extrapolating drawdown data from infinite acting radial flow periods or by fitting type curves of other conceptual models to the data, using diagnostic plots, inverse analysis and derivative analysis. Available drawdowns were determined by the positions of transition zones in crystalline rocks or thin-bedded consolidated sandstone/limestone layers (reservoir rocks). Aquifer dewatering effects were detected by type-curve matching of step-test data or by breaks in the drawdown curves constructed from hydraulic tests. Operational data were then used to confirm the predicted yields and compared to regional groundwater levels to determine seasonal variations in well yields. Such well yield estimates are needed by hydrogeologists and water engineers for the engineering design of water systems, but should be verified by the collection of long-term monitoring data.

  1. Numerical Investigation into the Impact of CO2-Water-Rock Interactions on CO2 Injectivity at the Shenhua CCS Demonstration Project, China

    Directory of Open Access Journals (Sweden)

    Guodong Yang

    2017-01-01

    Full Text Available A 100,000 t/year demonstration project for carbon dioxide (CO2 capture and storage in the deep saline formations of the Ordos Basin, China, has been successfully completed. Field observations suggested that the injectivity increased nearly tenfold after CO2 injection commenced without substantial pressure build-up. In order to evaluate whether this unique phenomenon could be attributed to geochemical changes, reactive transport modeling was conducted to investigate CO2-water-rock interactions and changes in porosity and permeability induced by CO2 injection. The results indicated that using porosity-permeability relationships that include tortuosity, grain size, and percolation porosity, other than typical Kozeny-Carman porosity-permeability relationship, it is possible to explain the considerable injectivity increase as a consequence of mineral dissolution. These models might be justified in terms of selective dissolution along flow paths and by dissolution or migration of plugging fines. In terms of geochemical changes, dolomite dissolution is the largest source of porosity increase. Formation physical properties such as temperature, pressure, and brine salinity were found to have modest effects on mineral dissolution and precipitation. Results from this study could have practical implications for a successful CO2 injection and enhanced oil/gas/geothermal production in low-permeability formations, potentially providing a new basis for screening of storage sites and reservoirs.

  2. Modeling Wettability Variation during Long-Term Water Flooding

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2015-01-01

    Full Text Available Surface property of rock affects oil recovery during water flooding. Oil-wet polar substances adsorbed on the surface of the rock will gradually be desorbed during water flooding, and original reservoir wettability will change towards water-wet, and the change will reduce the residual oil saturation and improve the oil displacement efficiency. However there is a lack of an accurate description of wettability alternation model during long-term water flooding and it will lead to difficulties in history match and unreliable forecasts using reservoir simulators. This paper summarizes the mechanism of wettability variation and characterizes the adsorption of polar substance during long-term water flooding from injecting water or aquifer and relates the residual oil saturation and relative permeability to the polar substance adsorbed on clay and pore volumes of flooding water. A mathematical model is presented to simulate the long-term water flooding and the model is validated with experimental results. The simulation results of long-term water flooding are also discussed.

  3. Detachment of particulate iron sulfide during shale-water interaction

    Science.gov (United States)

    Emmanuel, S.; Kreisserman, Y.

    2017-12-01

    Hydraulic fracturing, a commonly used technique to extract oil and gas from shales, is controversial in part because of the threat it poses to water resources. The technique involves the injection into the subsurface of large amounts of fluid, which can become contaminated by fluid-rock interaction. The dissolution of pyrite is thought to be a primary pathway for the contamination of fracturing fluids with toxic elements, such as arsenic and lead. In this study, we use direct observations with atomic force microscopy to show that the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment of embedded pyrite grains. To simulate the way fluid interacts with a fractured shale surface, we also reacted rock samples in a flow-through cell, and used environmental scanning electron microscopy to compare the surfaces before and after interaction with water. Crucially, our results show that the flux of particulate iron sulfide into the fluid may be orders of magnitude higher than the flux of pyrite from chemical dissolution. This result suggests that mechanical detachment of pyrite grains could be the dominant mode by which arsenic and other inorganic elements are mobilized in the subsurface. Thus, during hydraulic fracturing operations and in groundwater systems containing pyrite, the transport of many toxic species may be controlled by the transport of colloidal iron sulfide particles.

  4. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  5. The Effect of Boiling on Seismic Properties of Water-Saturated Fractured Rock

    Science.gov (United States)

    Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Deuber, Claudia; Maurer, Hansruedi; Greenhalgh, Stewart

    2017-11-01

    Seismic campaigns for exploring geothermal systems aim at detecting permeable formations in the subsurface and evaluating the energy state of the pore fluids. High-enthalpy geothermal resources are known to contain fluids ranging from liquid water up to liquid-vapor mixtures in regions where boiling occurs and, ultimately, to vapor-dominated fluids, for instance, if hot parts of the reservoir get depressurized during production. In this study, we implement the properties of single- and two-phase fluids into a numerical poroelastic model to compute frequency-dependent seismic velocities and attenuation factors of a fractured rock as a function of fluid state. Fluid properties are computed while considering that thermodynamic interaction between the fluid phases takes place. This leads to frequency-dependent fluid properties and fluid internal attenuation. As shown in a first example, if the fluid contains very small amounts of vapor, fluid internal attenuation is of similar magnitude as attenuation in fractured rock due to other mechanisms. In a second example, seismic properties of a fractured geothermal reservoir with spatially varying fluid properties are calculated. Using the resulting seismic properties as an input model, the seismic response of the reservoir is then computed while the hydrothermal structure is assumed to vary over time. The resulting seismograms demonstrate that anomalies in the seismic response due to fluid state variability are small compared to variations caused by geological background heterogeneity. However, the hydrothermal structure in the reservoir can be delineated from amplitude anomalies when the variations due to geology can be ruled out such as in time-lapse experiments.

  6. Geochemical Analyses of Rock, Sediment, and Water from the Region In and Around the Tuba City Landfill, Tuba City, Arizona

    Science.gov (United States)

    Johnson, Raymond H.; Wirt, Laurie

    2009-01-01

    The Tuba City Landfill (TCL) started as an unregulated waste disposal site in the 1940s and was administratively closed in 1997. Since the TCL closure, radionuclides have been detected in the shallow ground water. In 2006, the Bureau of Indian Affairs (BIA) contracted with the U.S. Geological Survey (USGS) to better understand the source of radionuclides in the ground water at the TCL compared to the surrounding region. This report summarizes those data and presents interpretations that focus on the geochemistry in the rocks and water from the Tuba City region. The TCL is sited on Navajo Sandstone above the contact with the Kayenta Formation. These formations are not rich in uranium but generally are below average crustal abundance values for uranium. Uranium ores in the area were mined nearby in the Chinle Formation and processed at the Rare Metals mill (RMM). Regional samples of rock, sediment, leachates, and water were collected in and around the TCL site and analyzed for major and minor elements, 18O, 2H, 3H, 13C, 14C,34S, 87Sr, and 234U/238U, as appropriate. Results of whole rock and sediment samples, along with leachates, suggest the Chinle Formation is a major source of uranium and other trace elements in the area. Regional water samples indicate that some of the wells within the TCL site have geochemical signatures that are different from the regional springs and surface water. The geochemistry from these TCL wells is most similar to leachates from the Chinle Formation rocks and sediments. Isotope samples do not uniquely identify TCL-derived waters, but they do provide a useful indicator for shallow compared to deep ground-water flow paths and general rock/water interaction times. Information in this report provides a comparison between the geochemistry within the TCL and in the region as a whole.

  7. Rock properties influencing impedance spectra (IS) studied by lab measurements on porous model systems

    Energy Technology Data Exchange (ETDEWEB)

    Volkmann, J.; Klitzsch, N.; Mohnke, O. [RWTH Aachen Univ. (Germany). Applied Geophysics and Geothermal Energy; Schleifer, N. [Wintershall Holding GmbH, Barnstorf (Germany)

    2013-08-01

    The wetting condition of reservoir rocks is a crucial parameter for the estimation of reservoir characteristics like permeability and saturation with residual oil or water. Since standard methods are often costly, at least in terms of time, we aim at assessing wettability of reservoir rocks using impedance spectroscopy (IS), a frequency dependent measurement of complex electric resistivity. This approach is promising, because IS is sensitive to the electrochemical properties of the inner surface of rocks which, on the other hand, are decisively influencing wettability. Unfortunately, there is large number of rock parameters - besides wettability - influencing the impedance spectra often not exactly known for natural rock samples. Therefore, we study model systems to improve the understanding of the underlying mechanisms and to quantify the influencing parameters. The model systems consist of sintered porous silica beads of different sizes leading to samples with different pore sizes. The main advantage of these samples compared to natural rocks is their well-defined and uniform mineralogical composition and thus their uniform electrochemical surface property. In order to distinguish pore geometry and fluid electrochemistry effects on the IS properties we measured the IS response of the fully water saturated model systems in a wide frequency range - from 1 mHz to 35 MHz - to capture different often overlapping polarization processes. With these measurements we study the influence of pore or grain size, fluid conductivity, and wettability (contact angle) on the impedance spectra. The influence of wettability was studied by modifying the originally hydrophilic inner surface into a hydrophobic state. The wettability change was verified by contact angle measurements. As results, we find pore size dependent relaxation times and salinity dependent chargeabilities for the hydrophilic samples in the low frequency range (< 10 kHz), whereas for the hydrophobic samples

  8. Strains and stresses in the rock around and unlined hot water cavern

    Science.gov (United States)

    Rehbinder, Göran

    1984-07-01

    Hot water stored in an unlined rock cavern is an efficient energy storage. A research program has been carried out with a test plant at the city of Avesta, Sweden. The plant consists of a rock cavern, the volume of which is 15000 m3, which serves as an energy buffer in the district heating system of the city. The water is heated from a garbage incinerator located close to the cavern. During the first test period the temperature of the stored water has varied between 40°C and 95°C. The heating of the rock causes strains and stresses in the rock. The measurements show that the state in the rock does mainly respond to the average temperature and not to the fluctuations. The maximum thermal stress is 9 MPa occurring at the wall of the cavern. The heave of the ground is less than 5 mm. The development of stress and strain will continue after the first test period since thermal equilibrium was not reached during this period.

  9. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a

  10. Study on water migration of tunnel surrounding rock in nuclear waste repository based on coupling theory

    International Nuclear Information System (INIS)

    Jiang Zhongming; Zhang Xinmin

    2008-01-01

    Excavation of tunnel changes not only the stresses and deformation of tunnel surrounding rock, but also disturbs the underground water environment in tunnel surrounding rock Water migration happens due to variation of pore water pressure and redistribution. Based on the mechanics of porous media, saturated and unsaturated hydro-mechanical coupling analysis method is employed to study the variation of the stresses, deformation and pore pressure of the surrounding rock. Case study indicates that the excavation of tunnel will induce redistribution of stress and pore water pressure. Redistribution of pore water pressure will seriously affect on evaluation of surrounding rock stability and diffusion of nucleon in the pore water. (authors)

  11. Change in cap rock porosity triggered by pressure and temperature dependent CO2–water–rock interactions in CO2 storage systems

    Directory of Open Access Journals (Sweden)

    Christina Hemme

    2017-03-01

    Full Text Available Carbon capture and storage in deep geological formations is a method to reduce greenhouse gas emissions. Supercritical CO2 is injected into a reservoir and dissolves in the brine. Under the impact of pressure and temperature (P–T the aqueous species of the CO2-acidified brine diffuse through the cap rock where they trigger CO2–water–rock interactions. These geochemical reactions result in mineral dissolution and precipitation along the CO2 migration path and are responsible for a change in porosity and therefore for the sealing capacity of the cap rock. This study focuses on the diffusive mass transport of CO2 along a gradient of decreasing P–T conditions. The process is retraced with a one-dimensional hydrogeochemical reactive mass transport model. The semi-generic hydrogeochemical model is based on chemical equilibrium thermodynamics. Based on a broad variety of scenarios, including different initial mineralogical, chemical and physical parameters, the hydrogeochemical parameters that are most sensitive for safe long-term CO2 storage are identified. The results demonstrate that P–T conditions have the strongest effect on the change in porosity and the effect of both is stronger at high P–T conditions because the solubility of the mineral phases involved depends on P–T conditions. Furthermore, modeling results indicate that the change in porosity depends strongly on the initial mineralogical composition of the reservoir and cap rock as well as on the brine compositions. Nevertheless, a wide range of conditions for safe CO2 storage is identified.

  12. The results of the investigations on rock mechanics in HDB-9-11 boreholes and update of the rock mechanical model around the Horonobe URL construction area

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya

    2008-09-01

    Horonobe URL (Underground Research Laboratory) Project is conducted at Horonobe-cho, Teshio-gun, Hokkaido. This research report shows the result of the rock mechanical investigations which have been carried out from 2004 to 2005 as a part of the project. The objectives of the rock mechanical investigation are as follows: To obtain the data which were necessary for construction design of URL. To confirm the distribution of rock mechanical properties in and around URL construction area. The results of the investigations are summarized as follows: 1) Variation and values of depth direction of physical and mechanical properties in the laboratory construction area corresponded approximately to the results obtained from the rock mechanical investigations of HDB-1-8. 2) The major redesign had been not had about physical and mechanical properties in the laboratory construction area being able to divide into three zones and length of its own zone in updating rock mechanical model. 3) From the results of initial stress measured by hydraulic fracturing, the results that the direction of the maximum principle stress is E-W was no different from results obtained from the investigations of HDB-1-8, but the magnitude correlation among maximum, minimum principle stress and overburden pressure measured around G.L.-927 m showed different trends compared with the results of HDB-1-8. 4) Diatomaceous mudstone was yielded under isotropic compression. Cam-clay model as constitutive law of diatomaceous mudstone should be used for tunnel excavation analysis. 5) Uniaxial compression strength of rock saturated under saline water is larger than that of saturated under freshwater. Poisson's ratio of rock saturated under saline water is smaller than that of saturated under saline water. 6) The effective confining pressure increases with the equivalent opening width and permeability decreases. 7) The value of principle stress obtained from DSCA method is larger than that obtained from hydraulic

  13. Evolution Procedure of Multiple Rock Cracks under Seepage Pressure

    Directory of Open Access Journals (Sweden)

    Taoying Liu

    2013-01-01

    Full Text Available In practical geotechnical engineering, most of rock masses with multiple cracks exist in water environment. Under such circumstance, these adjacent cracks could interact with each other. Moreover, the seepage pressure, produced by the high water pressure, can change cracks’ status and have an impact on the stress state of fragile rocks. According to the theory of fracture mechanics, this paper discusses the law of crack initiation and the evolution law of stress intensity factor at the tip of a wing crack caused by compression-shear stress and seepage pressure. Subsequently, considering the interaction of the wing cracks and the additional stress caused by rock bridge damage, this paper proposes the intensity factor evolution equation under the combined action of compression-shear stress and seepage pressure. In addition, this paper analyzes the propagation of cracks under different seepage pressure which reveals that the existence of seepage pressure facilitates the wing crack’s growth. The result indicates that the high seepage pressure converts wing crack growth from stable form to unstable form. Meanwhile, based on the criterion and mechanism for crack initiation and propagation, this paper puts forward the mechanical model for different fracture transfixion failure modes of the crag bridge under the combined action of seepage pressure and compression-shear stress. At the last part, this paper, through investigating the flexibility tensor of the rock mass’s initial damage and its damage evolution in terms of jointed rock mass's damage mechanics, deduces the damage evolution equation for the rock mass with multiple cracks under the combined action of compression-shear stress and seepage pressure. The achievement of this investigation provides a reliable theoretical principle for quantitative research of the fractured rock mass failure under seepage pressure.

  14. Water Distribution and Removal Model

    International Nuclear Information System (INIS)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-01-01

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD and R) Model; (2) EBS Physical and Chemical Environment (P and CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD and R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment

  15. Water Distribution and Removal Model

    Energy Technology Data Exchange (ETDEWEB)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-08-26

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes

  16. WATER DRAINAGE MODEL

    International Nuclear Information System (INIS)

    Case, J.B.

    2000-01-01

    The drainage of water from the emplacement drift is essential for the performance of the EBS. The unsaturated flow properties of the surrounding rock matrix and fractures determine how well the water will be naturally drained. To enhance natural drainage, it may be necessary to introduce engineered drainage features (e.g. drilled holes in the drifts), that will ensure communication of the flow into the fracture system. The purpose of the Water Drainage Model is to quantify and evaluate the capability of the drift to remove water naturally, using the selected conceptual repository design as a basis (CRWMS M andO, 1999d). The analysis will provide input to the Water Distribution and Removal Model of the EBS. The model is intended to be used to provide postclosure analysis of temperatures and drainage from the EBS. It has been determined that drainage from the EBS is a factor important to the postclosure safety case

  17. MANAGEMENT AND TREATMENT OF WATER FROM HARD-ROCK MINES {ENGINEERING ISSUE}

    Science.gov (United States)

    This Engineering Issue document on treatment of mining waters is a practical guide to understanding and selecting technologies for the environmental management of waste materials and effluents at hard-rock mines. For the purposes of this discussion, hard-rock mining primarily ref...

  18. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    Science.gov (United States)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  19. Time scale of hydrothermal water-rock reactions in Yellowstone National Park based on radium isotopes and radon

    International Nuclear Information System (INIS)

    Clark, J.F.; Turekian, K.K.

    1990-01-01

    We have measured 224 Ra (3.4 d), 228 Ra (5.7 yr), and 226 Ra (1620 yr) and chloride in hot spring waters from the Norris-Mammoth Corridor, Yellowstone National Park. Two characteristic cold-water components mix with the primary hydrothermal water: one for the travertine-depositing water related to the Mammoth Hot Springs and the other for the sinter-depositing Norris Geyser Basin springs. The Mammoth Hot Springs water is a mixture of the primary hydrothermal fluid with meteoric waters flowing through the Madison Limestone, as shown by the systematic decrease of the ( 228 Ra/ 226 Ra) activity ratio proceeding northward. The Norris Geyser Basin springs are mixtures of primary hydrothermal water with different amounts of cold meteoric water with no modification of the primary hydrothermal ( 228 Ra/ 226 Ra) activity ratio. Using a solution and recoil model for radium isotope supply to the primary hydrothermal water, a mean water-rock reaction time prior to expansion at 350degC and supply to the surface is 540 years assuming that 250 g of water are involved in the release of the radium from one gram of rock. The maximum reaction time allowed by our model is 1150 years. (orig.)

  20. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Directory of Open Access Journals (Sweden)

    Renae K Hovey

    Full Text Available BACKGROUND: The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. METHODS AND FINDINGS: Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand and dominant biota (kelp, sessile invertebrates and macroalgae within a 40 km(2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2 of 64 and an 80% correct classification. CONCLUSIONS: Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical

  1. Modelling Deep Water Habitats to Develop a Spatially Explicit, Fine Scale Understanding of the Distribution of the Western Rock Lobster, Panulirus cygnus

    Science.gov (United States)

    Hovey, Renae K.; Van Niel, Kimberly P.; Bellchambers, Lynda M.; Pember, Matthew B.

    2012-01-01

    Background The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Methods and Findings Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D2 of 64 and an 80% correct classification. Conclusions Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats. PMID

  2. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Science.gov (United States)

    Hovey, Renae K; Van Niel, Kimberly P; Bellchambers, Lynda M; Pember, Matthew B

    2012-01-01

    The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km(2) area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2) of 64 and an 80% correct classification. Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats.

  3. Uranium mineralization by ground water in sedimentary rocks, Japan

    International Nuclear Information System (INIS)

    Doi, K.; Hirono, S.; Sakamaki, Y.

    1975-01-01

    To solve the mechanism of uranium concentration in stratabound uranium deposits occurring in the basal part of Neogene sediments overlying granite basement, attention was paid to uranium leaching from weathered granite by circulating carbonated fissure waters, to effective adsorbents for fixing uranium from uraniferous ground waters, to structural features controlling the ground-water circulation, and other relevant factors. The evidence for uranium transportation by hydothermal solutions, including hot spring waters, is hard to observe. Conclusions are summarized as follows: Uranium in the deposits is supplied from surrounding source rocks, mostly from granite. Uranium is transported by circulating ground-water solutions. The uranium dissolved in ground water is fixed in minerals in various ways, the most important being adsorption by carbonaceous matter. Ore-grade uranium concentrated from very dilute solutions occurs by multiple repetition of a leaching-and-fixation cycle between minerals or adsorbents and circulating uraniferous ground water. Important factors for uranium mineralization are sufficient uranium, supplied mostly from granite, the existence of effective adsorbents such as carbonaceous matter in the host rocks, and favorable geological, geochemical, and geophysical environments. The last seem to require not only physical and chemical conditions but also correct flow and volume of ground water. (U.S.)

  4. Unified pipe network method for simulation of water flow in fractured porous rock

    Science.gov (United States)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  5. Application of Monte Carlo Methods to Perform Uncertainty and Sensitivity Analysis on Inverse Water-Rock Reactions with NETPATH

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, David [Desert Research Inst. (DRI), Reno, NV (United States); Hershey, Ronald L. [Desert Research Inst. (DRI), Reno, NV (United States)

    2016-06-01

    Methods were developed to quantify uncertainty and sensitivity for NETPATH inverse water-rock reaction models and to calculate dissolved inorganic carbon, carbon-14 groundwater travel times. The NETPATH models calculate upgradient groundwater mixing fractions that produce the downgradient target water chemistry along with amounts of mineral phases that are either precipitated or dissolved. Carbon-14 groundwater travel times are calculated based on the upgradient source-water fractions, carbonate mineral phase changes, and isotopic fractionation. Custom scripts and statistical code were developed for this study to facilitate modifying input parameters, running the NETPATH simulations, extracting relevant output, postprocessing the results, and producing graphs and summaries. The scripts read userspecified values for each constituent’s coefficient of variation, distribution, sensitivity parameter, maximum dissolution or precipitation amounts, and number of Monte Carlo simulations. Monte Carlo methods for analysis of parametric uncertainty assign a distribution to each uncertain variable, sample from those distributions, and evaluate the ensemble output. The uncertainty in input affected the variability of outputs, namely source-water mixing, phase dissolution and precipitation amounts, and carbon-14 travel time. Although NETPATH may provide models that satisfy the constraints, it is up to the geochemist to determine whether the results are geochemically reasonable. Two example water-rock reaction models from previous geochemical reports were considered in this study. Sensitivity analysis was also conducted to evaluate the change in output caused by a small change in input, one constituent at a time. Results were standardized to allow for sensitivity comparisons across all inputs, which results in a representative value for each scenario. The approach yielded insight into the uncertainty in water-rock reactions and travel times. For example, there was little

  6. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and

  7. Research of leaching of disseminated copper-nickel ores in their interaction with mine waters

    Directory of Open Access Journals (Sweden)

    Svetlov A. V.

    2017-03-01

    Full Text Available A great amount of mine waste creates serious problems for economy and ecology in mining regions. Keeping of dumps and tailings storages requires huge capital costs and material inputs. Removal of overburden volumes cause ecological disequilibrium, ingress of chemical agents and heavy metals in ground and surface water have an adverse influence on eco-systems and human health. These hazards are particularly high under extreme climatic conditions, when mines create vast desert lands around themselves. Foreign researchers use the terms "acid mine drainage" (AМD and "acid rock drainage" (ARD when speaking on mine water oxidation and contamination of the environment with heavy metals. AMD is induced by underground mine drainage, natural sulfide-bearing rock exposures, etc. The processes occurring in the interaction the mine water with fine dust particles, as well as water filtering through the thick sulfide rocks have been studied. It has been shown that the reduction in potential environmental hazard of mine water of JSC "Kola MMC" is achieved through precipitation of heavy metals by iron hydroxide and magnesium hydrosilicate. Preliminary assessment of the feasibility of hydrometallurgical processing of disseminated copper-nickel ores has been made

  8. Oxygen influx and geochemistry of percolate water from reactive mine waste rock underlying a sloping channelled soil cover

    Energy Technology Data Exchange (ETDEWEB)

    Song Qing, E-mail: qsong3@uwo.ca [Geotechnical Research Center, Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9 (Canada); Yanful, Ernest K., E-mail: eyanful@eng.uwo.ca [Geotechnical Research Center, Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9 (Canada)

    2011-05-15

    Research Highlights: > A channelled cover with preferential flow can still mitigate ARD to some extent. > Oxygen ingress was more sensitive to the location of the channel than to K{sub s}. > The channel in the barrier layer was a major passage for O{sub 2} ingress. > Actual flushing was an important factor when estimating O{sub 2} decay coefficient. - Abstract: An ideal engineered soil cover can mitigate acid rock drainage (ARD) by limiting water and gaseous O{sub 2} ingress into an underlying waste rock pile. However, the barrier layer in the soil cover almost invariably tends to develop cracks or fractures after placement. These cracks may change water flow and O{sub 2} transport in the soil cover and decrease performance in the long run. The present study employed a 10-cm-wide sand-filled channel installed in a soil barrier layer (silty clay) to model the aggregate of cracks or fractures that may be present in the cover. The soil cover had a slope of 20%. Oxygen transport through the soil cover and oxidation of the underlying waste rock were investigated and compared to a controlled column test with bare waste rock (without soil cover). Moreover, gaseous O{sub 2} transport in the soil cover with channel and its sensitivity to channel location as well as the influence of the saturated hydraulic conductivity of the channel material were modeled using the commercial software VADOSE/W. The results indicted that the waste rock underlying the soil cover with channel had a lower oxidation rate than the waste rock without cover because of reduced O{sub 2} ingress and water flushing in the soil cover with channel, which meant a partial soil cover might still be effective to some extent in reducing ARD generation. Gaseous O{sub 2} ingress into the covered waste rock was more sensitive to the channel location than to the saturated hydraulic conductivity of the material filling the channel. Aqueous equilibrium speciation modeling and scanning electron microscopy with energy

  9. Rock burst governance of working face under igneous rock

    Science.gov (United States)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  10. Storm Water General Permit 3 for Rock and Asphalt

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — General permit #3 for storm water discharges associated with industrial activity for Asphalt Plants, Concrete Batch Plants, Rock Crushing Plants and Construction...

  11. Chemistry of fluids from a natural analogue for a geological CO{sub 2} storage site (Montmiral, France): Lessons for CO{sub 2}-water-rock interaction assessment and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, Helene [BRGM - Water Division, 3, av Claude Guillemin, 45060 Orleans Cedex (France)], E-mail: h.pauwels@brgm.fr; Gaus, Irina; Le Nindre, Yves Michel [BRGM - Water Division, 3, av Claude Guillemin, 45060 Orleans Cedex (France); Pearce, Jonathan [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG125GG (United Kingdom); Czernichowski-Lauriol, Isabelle [BRGM - Water Division, 3, av Claude Guillemin, 45060 Orleans Cedex (France)

    2007-12-15

    Chemical and isotope studies of natural CO{sub 2} accumulations aid in assessing the chemical effects of CO{sub 2} on rock and thus provide a potential for understanding the long-term geochemical processes involved in CO{sub 2} geological storage. Several natural CO{sub 2} accumulations were discovered during gas and oil exploration in France's carbogaseous peri-Alpine province (south-eastern France) in the 1960s. One of these, the Montmiral accumulation at a depth of more than 2400 m, is currently being exploited. The chemical composition of the water collected at the wellhead has changed in time and the final salinity exceeds 75 g/L. These changes in time can be explained by assuming that the fraction of the reservoir brine in the recovered brine-CO{sub 2}-H{sub 2}O mixture varies, resulting in variable proportions of H{sub 2}O and brine in the sampled water. The proportions can be estimated in selected samples due to the availability of gas and water flowrate data. These data enabled the reconstruction of the chemical and isotope composition of the brine. The proportions of H{sub 2}O and brine can also be estimated from isotope ({delta}{sup 2}H, {delta}{sup 18}O) composition of collected water and {delta}{sup 18}O of the sulfates or CO{sub 2}. The reconstituted brine has a salinity of more than 85 g/L and, according to its Br{sup -} content and isotope ({delta}{sup 2}H, {delta}{sup 18}O, {delta}{sup 34}S) composition, originates from an evaporated Triassic seawater that underwent dilution by meteoric water. The reconstitution of the brine's chemical composition enabled an evaluation of the CO{sub 2}-water-rock interactions based on: (1) mineral saturation indices; and (2) comparison with initial evaporated Triassic seawater. Dissolution of K- and SO{sub 4}-containing minerals such as K-feldspar and anhydrite, and precipitation of Ca and Mg containing minerals that are able to trap CO{sub 2} (carbonates) are highlighted. The changes in concentration of

  12. Modeling Bacteria-Water Interactions in Soil: EPS Dynamics Under Evaporative Conditions

    Science.gov (United States)

    Furrer, J.; Hinestroza, H. F.; Guo, Y. S.; Gage, D. J.; Cho, Y. K.; Shor, L. M.

    2017-12-01

    The soil habitat represents a major linkage between the water and carbon cycles: the ability of soils to sequester or release carbon is determined primarily by soil moisture. Water retention and distribution in soils controls the abundance and activity of soil microbes. Microbes in turn impact water retention by creating biofilms, composed of extracellular polymeric substances (EPS). We model the effects of bacterial EPS on water retention at the pore scale. We use the lattice Boltzmann method (LBM), a well-established fluid dynamics modeling platform, and modify it to include the effects of water uptake and release by the swelling/shrinking EPS phase. The LB model is implemented in 2-D, with a non-ideal gas equation of state that allows condensation and evaporation of fluid in pore spaces. Soil particles are modeled according to experimentally determined particle size distributions and include realistic pore geometries, in contrast to many soil models which use spherical soil particles for simplicity. Model results are compared with evaporation experiments in soil micromodels and other simpler experimental systems, and model parameters are tuned to match experimental results. Drying behavior and solid-gel contact angle of EPS produced by the soil bacteria Sinorhizobium meliloti has been characterized and compared to the behavior of deionized water under the same conditions. The difference in behavior between the fluids is used to parameterize the model. The model shows excellent qualitative agreement for soil micromodels with both aggregated and non-aggregated particle arrangements under no-EPS conditions, and reproduces realistic drying behavior for EPS. This work represents a multi-disciplinary approach to understanding microbe-soil interactions at the pore scale.

  13. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  14. THM-coupled modeling of selected processes in argillaceous rock relevant to rock mechanics; THM-Gekoppelte Modellierung ausgewaehlter gesteinsmechanisch relevanter Prozesse im Tongestein

    Energy Technology Data Exchange (ETDEWEB)

    Czaikowski, Oliver [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Braunschweig (Germany). Repository Safety Research Div.

    2012-08-15

    Scientific investigations in European countries other than Germany concentrate not only on granite formations (Switzerland, Sweden) but also on argillaceous rock formations (France, Switzerland, Belgium) to assess their suitability as host and barrier rock for the final storage of radioactive waste. In Germany, rock salt has been under thorough study as a host rock over the past few decades. According to a study by the German Federal Institute for Geosciences and Natural Resources, however, not only salt deposits but also argillaceous rock deposits are available at relevant depths and of extensions in space which make final storage of high-level radioactive waste basically possible in Germany. Equally qualified findings about the suitability/unsuitability of non-saline rock formations require fundamental studies to be conducted nationally because of the comparatively low level of knowledge. The article presents basic analyses of coupled mechanical and hydraulic properties of argillaceous rock formations as host rock for a repository. The interaction of various processes is explained on the basis of knowledge derived from laboratory studies, and open problems are deduced. For modeling coupled processes, a simplified analytical computation method is proposed and compared with the results of numerical simulations, and the limits to its application are outlined. (orig.)

  15. Environmental isotope-aided studies on river water and groundwater interaction in the region of Seoul and Taegu

    International Nuclear Information System (INIS)

    Jong Sung Ahn

    1988-01-01

    Environmental isotope-aided studies on river water and groundwater interaction in the Han River Basin in areas especially occupied by crystalline rocks and limestone have been undertaken. The result indicates that the groundwater in the Seoul area is recharged by the Han River whereas in non-urban areas it is replenished by the infiltration of precipitation, the crystalline rock aquifers are recharged by downward percolation of shallow groundwater stored in overlying alluvium. Older groundwater having a very low concentration of tritium, ranging from 0 to 2 TU, was observed at the lower Han River basin near Bupyeong. It may indicate that the water sampled was recharged at a much earlier time than the other groundwater sampled, maybe, as early as the pre-thermonuclear period. The same interaction study conducted in the Karst area has shown that there is clearly no systematic differences of tritium level between surface water and groundwater and that the residence time of groundwater in limestone is very short, probably not longer than a few months. The areas recharged by the water from the overlying alluvium into the sedimentary rock aquifer were restricted only along the Kumho River channel and its tributaries in a clastic sedimentary rock area. Bedrock groundwater whose tritium level and stable isotope composition were less than 14 TU and -6.8 respectively was observed in the central part of Taegu city. (author). 15 refs, 21 figs, 8 tabs

  16. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  17. Pore Type Classification on Carbonate Reservoir in Offshore Sarawak using Rock Physics Model and Rock Digital Images

    International Nuclear Information System (INIS)

    Lubis, L A; Harith, Z Z T

    2014-01-01

    It has been recognized that carbonate reservoirs are one of the biggest sources of hydrocarbon. Clearly, the evaluation of these reservoirs is important and critical. For rigorous reservoir characterization and performance prediction from geophysical measurements, the exact interpretation of geophysical response of different carbonate pore types is crucial. Yet, the characterization of carbonate reservoir rocks is difficult due to their complex pore systems. The significant diagenesis process and complex depositional environment makes pore systems in carbonates far more complicated than in clastics. Therefore, it is difficult to establish rock physics model for carbonate rock type. In this paper, we evaluate the possible rock physics model of 20 core plugs of a Miocene carbonate platform in Central Luconia, Sarawak. The published laboratory data of this area were used as an input to create the carbonate rock physics models. The elastic properties were analyzed to examine the validity of an existing analytical carbonate rock physics model. We integrate the Xu-Payne Differential Effective Medium (DEM) Model and the elastic modulus which was simulated from a digital carbonate rock image using Finite Element Modeling. The results of this integration matched well for the separation of carbonate pore types and sonic P-wave velocity obtained from laboratory measurement. Thus, the results of this study show that the integration of rock digital image and theoretical rock physics might improve the elastic properties prediction and useful for more advance geophysical techniques (e.g. Seismic Inversion) of carbonate reservoir in Sarawak

  18. Radionuclide transfer onto ground surface in surface water flow. 2. Undisturbed tuff rock

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu

    1994-09-01

    Radionuclide migration with ground surface water flow is considered to be one of path ways in the scenario for environmental migration of the radionuclide leaked from LLRW depository. To study the radionuclide migration demonstratively, a ground surface radionuclide migration test was carried out by simulating radioactive solution flowing on the sloped tuff rock surface. Tuff rock sample of 240 cm in length taken from the Shimokita district was used to test the transfer of 60 Co, 85 Sr and 137 Cs onto the sample surface from the flowing radioactive solution under restricted infiltration condition at flow rates of 25, 80, 160ml/min and duration of 56h. The concentration change of the radionuclides in effluent was nearly constant as a function of elapsed time during the experimental period, but decreased with lower flow rates. Among the three radionuclides, 137 Cs was greatly decreased its concentration to 30% of the inflow. Adsorbed distribution of the radionuclides concentration on the ground surface decreased gradually with the distance from the inlet, and showed greater gradient at lower flow rate. Analyzing the result by the migration model, where a vertical advection distribution and two-dimensional diffusion in surface water are adopted with a first order adsorption reaction, value of migration parameters was obtained relating to the radionuclide adsorption and the surface water flow, and the measured distribution could be well simulated by adopting the value to the model. By comparing the values with the case of loamy soil layer, all values of the migration parameters showed not so great difference between two samples for 60 Co and 85 Sr. For 137 Cs, reflecting a few larger value of adsorption to the tuff rock, larger ability to reduce the concentration of flowing radioactive solution could be indicated than that to the loamy soil surface by estimation for long flowed distance. (author)

  19. Modelling of excavation depth and fractures in rock caused by tool indentation

    International Nuclear Information System (INIS)

    Kou Shaoquan; Tan Xiangchun; Lindqvist, P.A.

    1997-10-01

    The hydraulic regime after excavation in the near-field rock around deposition holes and deposition tunnels in a spent nuclear fuel repository is of concern for prediction of the saturation process of bentonite buffer and tunnel backfill. The hydraulic condition of main interest in this context is a result of the fracture network that is caused by the excavation. Modelling of the excavation disturbed zone in hard rocks caused by mechanical excavation has been carried out in the Division of Mining Engineering since 1993. This report contains an overview of the work conducted. The mechanical excavation is reasonably simplified as an indentation process of the interaction between rigid indenters and rocks. A large number of experiments have been carried out in the laboratory, and the results used for identifying crushed zones and fracture systems in rock under indentation are presented based on these experiments. The indentation causes crushing and damage of the rock and results in a crushed zone and a cracked zone. The indenter penetrates the rock with a certain depth when the force is over a threshold value relevant to the rock and tool. Outside the cracked zone there are basically three systems of cracks: median cracks, radial cracks, and side cracks. Fully developed radial cracks on each side of the indented area can connect with each other and join with median crack. This forms the so-called radial/median crack system. The influence of the mechanical properties of the rock is discussed based on our conceptual model, and the main factors governing the indentation event are summarised. The cracked zone is dealt with by an analytical fracture model. The side crack is simulated by applying the boundary element method coupled with fracture mechanics. Functional relationships are established relating either the indentation depth or the length of radial/median cracks to the various quantities characterising the physical event, namely the shape and the size of the

  20. Modelling of excavation depth and fractures in rock caused by tool indentation

    Energy Technology Data Exchange (ETDEWEB)

    Kou Shaoquan; Tan Xiangchun; Lindqvist, P.A. [Luleaa Univ. of Technology (Sweden)

    1997-10-01

    The hydraulic regime after excavation in the near-field rock around deposition holes and deposition tunnels in a spent nuclear fuel repository is of concern for prediction of the saturation process of bentonite buffer and tunnel backfill. The hydraulic condition of main interest in this context is a result of the fracture network that is caused by the excavation. Modelling of the excavation disturbed zone in hard rocks caused by mechanical excavation has been carried out in the Division of Mining Engineering since 1993. This report contains an overview of the work conducted. The mechanical excavation is reasonably simplified as an indentation process of the interaction between rigid indenters and rocks. A large number of experiments have been carried out in the laboratory, and the results used for identifying crushed zones and fracture systems in rock under indentation are presented based on these experiments. The indentation causes crushing and damage of the rock and results in a crushed zone and a cracked zone. The indenter penetrates the rock with a certain depth when the force is over a threshold value relevant to the rock and tool. Outside the cracked zone there are basically three systems of cracks: median cracks, radial cracks, and side cracks. Fully developed radial cracks on each side of the indented area can connect with each other and join with median crack. This forms the so-called radial/median crack system. The influence of the mechanical properties of the rock is discussed based on our conceptual model, and the main factors governing the indentation event are summarised. The cracked zone is dealt with by an analytical fracture model. The side crack is simulated by applying the boundary element method coupled with fracture mechanics. Functional relationships are established relating either the indentation depth or the length of radial/median cracks to the various quantities characterising the physical event, namely the shape and the size of the

  1. From dry to saturated thermal conductivity: mixing-model correction charts and new conversion equations for sedimentary rocks

    Science.gov (United States)

    Fuchs, Sven; Schütz, Felina; Förster, Andrea; Förster, Hans-Jürgen

    2013-04-01

    The thermal conductivity (TC) of a rock is, in collaboration with the temperature gradient, the basic parameter to determine the heat flow from the Earth interior. Moreover, it forms the input into models targeted on temperature prognoses for geothermal reservoirs at those depths not yet reached by boreholes. Thus, rock TC is paramount in geothermal exploration and site selection. Most commonly, TC of a rock is determined in the laboratory on samples that are either dry or water-saturated. Because sample saturation is time-consuming, it is desirable, especially if large numbers of samples need to be assessed, to develop an approach that quickly and reliably converts dry-measured bulk TC into the respective saturated value without applying the saturation procedure. Different petrophysical models can be deployed to calculate the matrix TC of a rock from the bulk TC and vice versa, if the effective porosity is known (e.g., from well logging data) and the TC of the saturation fluid (e.g., gas, oil, water) is considered. We have studied for a large suite of different sedimentary rocks the performance of two-component (rock matrix, porosity) models that are widely used in geothermics (arithmetic mean, geometric mean, harmonic mean, Hashin and Shtrikman mean, and effective medium theory mean). The data set consisted of 1147 TC data from three different sedimentary basins (North German Basin, Molasse Basin, Mesozoic platform sediments of the northern Sinai Microplate in Israel). Four lithotypes (sandstone, mudstone, limestone, dolomite) were studied exhibiting bulk TC in the range between 1.0 and 6.5 W/(mK). The quality of fit between measured (laboratory) and calculated bulk TC values was studied separately for the influence of lithotype, saturation fluid (water and isooctane), and rock anisotropy (parallel and perpendicular to bedding). The geometric mean model displays the best correspondence between calculated and measured bulk TC, however, the relation is not

  2. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Seneca Rocks Discovery Center, Seneca Rocks, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, Kosol [National Renewable Energy Lab. (NREL), Golden, CO (United States); Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kandt, Alicen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-22

    As part of ongoing efforts by the U.S. Forest Service to reduce energy use and incorporate renewable energy technologies into its facilities, the Department of Energy's National Renewable Energy Laboratory performed an energy efficiency and renewable energy site assessment of the Seneca Rocks Discovery Center in Seneca Rocks, West Virginia. This report documents the findings of this assessment, and provides site-specific information for the implementation of energy and water conservation measures, and renewable energy measures.

  3. ROCK-CAD - computer aided geological modelling system

    International Nuclear Information System (INIS)

    Saksa, P.

    1995-12-01

    The study discusses surface and solid modelling methods, their use and interfacing with geodata. Application software named ROCK-CAD suitable for geological bedrock modelling has been developed with support from Teollisuuden Voima Oy (TVO). It has been utilized in the Finnish site characterization programme for spent nuclear fuel waste disposal during the 1980s and 1990s. The system is based on the solid modelling technique. It comprises also rich functionality for the particular geological modelling scheme. The ROCK-CAD system provides, among other things, varying graphical vertical and horizontal intersections and perspective illustrations. The specially developed features are the application of the boundary representation modelling method, parametric object generation language and the discipline approach. The ROCK-CAD system has been utilized in modelling spatial distribution of rock types and fracturing structures in TVO's site characterization. The Olkiluoto site at Eurajoki serves as an example case. The study comprises the description of the modelling process, models and illustration examples. The utilization of bedrock models in site characterization, in tentative repository siting as well as in groundwater flow simulation is depicted. The application software has improved the assessment of the sites studied, given a new basis for the documentation of interpretation and modelling work, substituted hand-drawing and enabled digital transfer to numerical analysis. Finally, aspects of presentation graphics in geological modelling are considered. (84 refs., 30 figs., 11 tabs.)

  4. Analysis of water and nitrogen use efficiency for maize (Zea mays L.) grown on soft rock and sand compound soil.

    Science.gov (United States)

    Wang, Huanyuan; Han, Jichang; Tong, Wei; Cheng, Jie; Zhang, Haiou

    2017-06-01

    Maize was grown on compound soils constituted from mixtures of soft rock and sand at different ratios, and water use efficiency (WUE), nitrogen use efficiency (NUE) and fertilizer nitrogen use efficiency (FNUE) were quantified. The data were used to assist in designing strategies for optimizing water and nitrogen management practices for maize on the substrates used. Maize was sown in composite soil prepared at three ratios of soft rock and sand (1:1, 1:2 and 1:5 v/v) in Mu Us Sandy Land, Yuyang district, Yulin city, China. Yields, amount of drainage, nitrogen (N) leaching, WUE and NUE were calculated. Then a water and nitrogen management model (WNMM) was calibrated and validated. No significant difference in evapotranspiration of maize was found among compound soils with soft rock/sand ratios of 1:1, 1:2 and 1:5, while water drainage increased significantly with increasing soft rock/sand ratio. WUE increased to 1.30 kg m -3 in compound soil with 1:2 soft rock/sand ratio. Nitrogen leaching and ammonia volatilization were the main reason for nitrogen loss, and N reduction mainly relied on crop uptake. NUE and FNUE could reach 33.1 and 24.9 kg kg -1 N respectively. Water drainage and nitrogen leaching occurred mostly during heavy rainfall or irrigation. Through a scenario analysis of different rainfall types, water and fertilizer management systems were formulated each year. This study shows that soft rock plays a key role in improving the WUE, NUE and FNUE of maize. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Water level fluctuations due to earth tides in a well pumping from slightly fractured crystalline rock

    International Nuclear Information System (INIS)

    Marine, I.W.

    1975-01-01

    J At the Savannah River plant of the Atomic Energy Commission near Aiken, South Carolina, there are three distinct groundwater systems: the coastal plain sediments, the crystalline metamorphic rocks, and a buried Triassic basin. The coastal plain sediments include several Cretaceous and Tertiary granular aquifers and aquicludes, the total thickness being about 305 m. Below these sediments, water occurs in small fractures in crystalline metamorphic rock (hornblende schist and gneiss with lesser amounts of quartzite). Water level fluctuations due to earth tides are recorded in the crystalline metamorphic rock system and in the coastal plain sediments. No water level fluctuations due to earth tides have been observed in wells in the Triassic rock because of the very low permeability. The water level fluctuations due to earth tides in the crystalline rock are about 10 cm, and those in the sediments are about 1.8 cm. The use of water level fluctuations due to earth tides to calculate porosity appears to present practical difficulties both in the crystalline metamorphic rock system and in the coastal plain sediments. In a 1-yr pumping test on a well in the crystalline metamorphic rock the flow was controlled to within 0.1 percent of the total discharge, which was 0.94 1/s. The water level fluctuations due to earth tides in the pumping well were 10 cm, the same as when this well was not being pumped. (U.S.)

  6. Water-level fluctuations due to Earth tides in a well pumping from slightly fractured crystalline rock

    International Nuclear Information System (INIS)

    Marine, I.W.

    1975-01-01

    At the Savannah River plant of the Atomic Energy Commission near Aiken, South Carolina, there are three distinct groundwater systems: the coastal plain sediments, the crystalline metamorphic rocks, and a buried Triassic basin. The coastal plain sediments include several Cretaceous and Tertiary granular aquifers and aquicludes, the total thickness being about 305 m. Below these sediments, water occurs in small fractures in crystalline metamorphic rock (hornblende schist and gneiss with lesser amounts of quartzite). Water level fluctuations due to earth tides are recorded in the crystalline metamorphic rock system and in the coastal plain sediments. No water level fluctuations due to earth tides have been observed in wells in the Triassic rock because of the very low permeability. The water level fluctuations due to earth tides in the crystalline rock are about 10 cm, and those in the sediments are about 1.8 cm. The use of water level fluctuations due to earth tides to calculate porosity appears to present practical difficulties both in the crystalline metamorphic rock system and in the coastal plain sediments. In a 1-yr pumping test on a well in the crystalline metamorphic rock the flow was controlled to within 0.1 per cent of the total discharge, which was 0.94 l/s. The water level fluctuations due to earth tides in the pumping well were 10 cm, the same as when this well was not being pumped. (U.S.)

  7. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Javier B., E-mail: jgomez@unizar.es; Gimeno, María J., E-mail: mjgimeno@unizar.es; Auqué, Luis F., E-mail: lauque@unizar.es; Acero, Patricia, E-mail: patriace@unizar.es

    2014-01-01

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water–rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. - Highlights: • Laxemar (Sweden) groundwater is the combined result

  8. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden

    International Nuclear Information System (INIS)

    Gómez, Javier B.; Gimeno, María J.; Auqué, Luis F.; Acero, Patricia

    2014-01-01

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water–rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. - Highlights: • Laxemar (Sweden) groundwater is the combined result

  9. SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Emren, A.T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1999-02-01

    In this report a model is described, which has been able to give agreement between observed and modelled values for more than ten element concentrations (including pH and pE values). The model makes use of a number of steady state waters which are mixed naturally after which the mixtures react with minerals in the fractures. The end member waters are supposed to have been present in the fracture system during a time interval which is long enough for the rock groundwater system to have reached a steady state. Some elements, e.g. chlorine, is modelled as conservative (inert with respect to the rock). Most element concentrations cannot be explained from mixing alone. Rather reactions with the fracture walls have to be taken into account. The situation is complicated by the fact that a system comprised of groundwater and a number of fracture minerals may violate Gibb`s phase rule. In such a system, no global equilibrium state exists, and thus the water can never reach equilibrium with respect to all the fracture minerals. The end member waters eventually formed can be expected to be in a steady state condition rather than equilibrium with respect to the fracture minerals. It should be noted that such a steady state is not an equilibrium state. Rather, the water chemistry has to fluctuate as a result of spatial variability in the local mineral set. In most cases when an end member water is sampled, a large number of local waters are mixed causing the fluctuations to cancel out. The CRACKER is a program which has been developed to handle this complicated chemical situation. It couples chemistry and transport, using elaborate chemical modelling in combination with a simplified transport model. The program simulates chemical reactions of groundwater flowing through a plane fracture. The simulation results show that although the end member waters are far from equilibrium with respect to most of the minerals, they are in a steady state with respect to the rock. The chemistry

  10. SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Emren, A.T.

    1999-02-01

    In this report a model is described, which has been able to give agreement between observed and modelled values for more than ten element concentrations (including pH and pE values). The model makes use of a number of steady state waters which are mixed naturally after which the mixtures react with minerals in the fractures. The end member waters are supposed to have been present in the fracture system during a time interval which is long enough for the rock groundwater system to have reached a steady state. Some elements, e.g. chlorine, is modelled as conservative (inert with respect to the rock). Most element concentrations cannot be explained from mixing alone. Rather reactions with the fracture walls have to be taken into account. The situation is complicated by the fact that a system comprised of groundwater and a number of fracture minerals may violate Gibb's phase rule. In such a system, no global equilibrium state exists, and thus the water can never reach equilibrium with respect to all the fracture minerals. The end member waters eventually formed can be expected to be in a steady state condition rather than equilibrium with respect to the fracture minerals. It should be noted that such a steady state is not an equilibrium state. Rather, the water chemistry has to fluctuate as a result of spatial variability in the local mineral set. In most cases when an end member water is sampled, a large number of local waters are mixed causing the fluctuations to cancel out. The CRACKER is a program which has been developed to handle this complicated chemical situation. It couples chemistry and transport, using elaborate chemical modelling in combination with a simplified transport model. The program simulates chemical reactions of groundwater flowing through a plane fracture. The simulation results show that although the end member waters are far from equilibrium with respect to most of the minerals, they are in a steady state with respect to the rock. The chemistry

  11. Water-rock interaction under peri-glacial conditions: example of the secondary carbonates of the Broegger Peninsula (Spitzbergen)

    International Nuclear Information System (INIS)

    Marlin, C.; Dever, L.

    1998-01-01

    Measurements of the isotopic and chemical contents of soil water and carbonates at different field sites in Spitzbergen were undertaken to study the precipitation conditions of soil secondary calcites under the current peri-glacial climate. A main experimental site ('cote 80') has been established located on a fluvio-glacial terrasse at 80 m.a.s.l. near Ny Alesund (79 deg N, 12 deg. E). The active layer is at around 1.2 m depth on a continuous permafrost. The soil temperatures measured every 5 cm from the surface to the permafrost show that the freezing fronts move both the surface and permafrost, converging at around 0.6 m depth where the system is closed. During the beginning of the freezing period, the solute content increases in the residual water according to the distribution coefficient between water and ice. Calcite precipitation occurs in a second stage as indicated by the simultaneous decrease of the calcite saturation index and increase of the concentration of non-interactive elements. Chemical and isotopic ( 18 O, 2 H, 13 C et 14 C) analyses have been made on the different samples with a mineralogical description of the carbonate coatings obtained by SEM and microprobe analyses. The isotopic values result from a mixing between recent calcites and 'old' calcites. The recent calcites are probably in isotopic equilibrium with the present day solutions. The 'old calcites' have precipitated under colder conditions than today. The low radiocarbon activities (10.2 to 24.8 pcm) of the 'cote 80' site indicate that the 'old calcites' have precipitated during the last interglacial period or an inter-stadial period of the Pleistocene. The good relationship between the carbon- 14 activity and the carbon- 13 content indicates that the beginning of the pedogenesis is not identical at all sites and is dependent on the timing of deglaciation and vulnerability of rocks to frost-weathering. (authors)

  12. Rock bream iridovirus (RBIV) replication in rock bream (Oplegnathus fasciatus) exposed for different time periods to susceptible water temperatures.

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Vinay, Tharabenahalli-Nagaraju; Lee, Jehee; Jung, Sung-Ju

    2017-11-01

    Rock bream iridovirus (RBIV) is a member of the Megalocytivirus genus that causes severe mortality to rock bream. Water temperature is known to affect the immune system and susceptibility of fish to RBIV infection. In this study, we evaluated the time dependent virus replication pattern and time required to completely eliminate virus from the rock bream body against RBIV infection at different water temperature conditions. The rock bream was exposed to the virus and held at 7 (group A1), 4 (group A2) and 2 days (group A3) at 23 °C before the water temperature was reduced to 17 °C. A total of 28% mortality was observed 24-35 days post infection (dpi) in only the 7 day exposure group at 23 °C. In all 23 °C exposure groups, virus replication peaked at 20 to 22 dpi (10 6 -10 7 /μl). In recovery stages (30-100 dpi), the virus copy number was gradually reduced, from 10 6 to 10 1 with faster decreases in the shorter exposure period group at 23 °C. When the water temperature was increased in surviving fish from 17 to 26 °C at 70 dpi, they did not show any mortality or signs of disease and had low virus copy numbers (below 10 2 /μl). Thus, fish need at least 50 days from peaked RBIV levels (approximately 20-25 dpi) to inhibit the virus. This indicates that maintaining the fish at low water temperature (17 °C) for 70 days is sufficient to eradicate RBIV from fish body. Thus, RBIV could be eliminated slowly from the fish body and the virus may be completely eliminated under the threshold of causing mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Reaction of Topopah Spring tuff with J-13 water: a geochemical modeling approach using the EQ3/6 reaction path code

    International Nuclear Information System (INIS)

    Delany, J.M.

    1985-01-01

    EQ3/6 geochemical modeling code package was used to investigate the interaction of the Topopah Spring Tuff and J-13 water at high temperatures. EQ3/6 input parameters were obtained from the results of laboratory experiments using USW G-1 core and J-13 water. Laboratory experiments were run at 150 and 250 0 C for 66 days using both wafer-size and crushed tuff. EQ3/6 modeling reproduced results of the 150 0 C experiments except for a small increase in the concentration of potassium that occurs in the first few days of the experiments. At 250 0 C, the EQ3/6 modeling reproduced the major water/rock reactions except for a small increase in potassium, similar to that noted above, and an overall increase in aluminum. The increase in potassium concentration cannot be explained at this time, but the increase in A1 concentration is believed to be caused by the lack of thermodynamic data in the EQ3/6 data base for dachiardite, a zeolite observed as a run product at 250 0 C. The ability to reproduce the majority of the experimental rock/water interactions at 150 0 C validates the use of EQ3/6 as a geochemical modeling tool that can be used to theoretically investigate physical/chemical environments in support of the Waste Package Task of NNWSI

  14. Estimation of hydrologic properties of an unsaturated, fractured rock mass

    International Nuclear Information System (INIS)

    Klavetter, E.A.; Peters, R.R.

    1986-07-01

    In this document, two distinctly different approaches are used to develop continuum models to evaluate water movement in a fractured rock mass. Both models provide methods for estimating rock-mass hydrologic properties. Comparisons made over a range of different tuff properties show good qualitative and quantitative agreement between estimates of rock-mass hydrologic properties made by the two models. This document presents a general discussion of: (1) the hydrology of Yucca Mountain, and the conceptual hydrological model currently being used for the Yucca Mountain site, (2) the development of two models that may be used to estimate the hydrologic properties of a fractured, porous rock mass, and (3) a comparison of the hydrologic properties estimated by these two models. Although the models were developed in response to hydrologic characterization requirements at Yucca Mountain, they can be applied to water movement in any fractured rock mass that satisfies the given assumptions

  15. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    J. Vacek

    2008-01-01

    Full Text Available Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the potential to release this energy. Such materials may be brittle, or the rock burst may arise at the interfacial zones of two parts of the rock, which have principally different material properties (e.g. in the Poíbram uranium mines.The solution is based on experimental and mathematical modelling. These two methods have to allow the problem to be studied on the basis of three presumptions:· the solution must be time dependent,· the solution must allow the creation of cracks in the rock mass,· the solution must allow an extrusion of rock into an open space (bump effect. 

  16. Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model

    Science.gov (United States)

    Raziperchikolaee, Samin

    The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.

  17. Dynamical Models of Interactions between Herds Forage and Water Resources in Sahelian Region

    Directory of Open Access Journals (Sweden)

    Jean Jules Tewa

    2014-01-01

    Full Text Available Optimal foraging is one of the capital topics nowadays in Sahelian region. The vast majority of feed consumed by ruminants in Sahelian region is still formed by natural pastures. Pastoral constraints are the high variability of available forage and drinking water in space and especially in time (highly seasonal, interannual variability and the scarcity of water resources. The mobility is the main functional and opportunistic adaptation to these constraints. Our goal in this paper is to formalize two dynamical models for interactions between a herd of domesticate animals, forage resources, and water resources inside a given Sahelian area, in order to confirm, explain, and predict by mathematical models some observations about pastoralism in Sahelian region. These models in some contexts can be similar to predator-prey models as forage and water resources can be considered as preys and herd’s animals as predators. These models exhibit very rich dynamics, since it predicts abrupt changes in consumer behaviour and disponibility of forage or water resources. The dynamics exhibits a possible coexistence between herd, resources, and water with alternative peaks in their trajectories.

  18. Computational Modelling of Fracture Propagation in Rocks Using a Coupled Elastic-Plasticity-Damage Model

    Directory of Open Access Journals (Sweden)

    Isa Kolo

    2016-01-01

    Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.

  19. A diffuse radar scattering model from Martian surface rocks

    Science.gov (United States)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  20. Development and applications of the channel network model for simulations of flow and solute transport in fractured rock

    International Nuclear Information System (INIS)

    Gylling, B.

    1997-01-01

    The Channel Network model and its computer implementation, the code CHAN3D, for simulations of fluid flow and transport of solutes have been developed. The tool may be used for performance and safety assessments of deep lying repositories in fractured rocks for nuclear and other hazardous wastes, e.g. chemical wastes. It may also be used to simulate and interpret field experiments of flow and transport in large or small scale. Fluid flow and solute transport in fractured media are of interest in the performance assessment of a repository for hazardous waste, located at depth in crystalline rock, with potential release of solutes. Fluid flow in fractured rock is found to be very unevenly distributed due to the heterogeneity of the medium. The water will seek the easiest path, channels, under a prevailing pressure gradient. Solutes in the flowing water may be transported through preferential paths and migrate from the water in the fractures into the stagnant water in the rock matrix. There, sorbing solutes may be sorbed on the micro surfaces within the matrix. The diffusion into the matrix and the sorption process may significantly retard the transport of species and increase the time available for radionuclide decay. Channelling and matrix diffusion contribute to the dispersion of solutes in the water. Important for performance assessment is that channeling may cause a portion of the solutes to arrive much faster than the rest of the solutes. Simulations of field experiments at the Aespoe Hard Rock Laboratory using the Channel Network model have been performed. The application of the model to the site and the simulation results of the pumping and tracer tests are presented. The results show that the model is capable of describing the hydraulic gradient and of predicting flow rates and tracer transport obtained in the experiments. The data requirements for the Channel Network model have been investigated to determine which data are the most important for predictions

  1. Water-rock interactions and the pH stability of groundwater from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ebinger, M.H.

    1992-01-01

    Titrations of acidic solutions in waters from the tuff and carbonate aquifers at Yucca Mountain were simulated using the geochemical codes PHREEQE and EQ3/6. The simulations tested pH stability of the waters in the presence of different minerals and in their absence. Two acidic solutions, 10 -4 HCl and 10 -4 M UO 2 (NO 3 ) 2 , were titrated in to the water. Little pH and/or compositional change resulted in the groundwater when the HCl solution was titrated, but significant pH and CO 2 fugacity changes were observed when UO 2 (NO 3 ) 2 was titrated. Water interactions with alkali feldspar, quartz or cristobalite, and Ca-smectite buffered the pH and compositional changes in the carbonate water and decreased the magnitude of pH and compositional changes when small volumes of UO 2 (NO 3 ) 2 added to the tuffaceous waters

  2. Carbonate rock depositional models: A microfacies approach

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, A.V.

    1988-01-01

    Carbonate rocks contain more than 50% by weight carbonate minerals such as calcite, dolomite, and siderite. Understanding how these rocks form can lead to more efficient methods of petroleum exploration. Micofacies analysis techniques can be used as a method of predicting models of sedimentation for carbonate rocks. Micofacies in carbonate rocks can be seen clearly only in thin sections under a microscope. This section analysis of carbonate rocks is a tool that can be used to understand depositional environments, diagenetic evolution of carbonate rocks, and the formation of porosity and permeability in carbonate rocks. The use of micofacies analysis techniques is applied to understanding the origin and formation of carbonate ramps, carbonate platforms, and carbonate slopes and basins. This book will be of interest to students and professionals concerned with the disciplines of sedimentary petrology, sedimentology, petroleum geology, and palentology.

  3. Ground Water movement in crystalline rock aquifers

    International Nuclear Information System (INIS)

    Serejo, A.N.C.; Freire, C.; Siqueira, H.B. de; Frischkorn, H.; Torquato, J.R.F.; Santiago, M.M.F.; Barbosa, P.C.

    1984-01-01

    Ground water movement studies were performed in crystalline rock aquifers from the upper Acarau River hydrographic basin, state of Ceara, Brazil. The studies included carbon-14, 18 O/ 16 O and tritium measurements as well as chemical analysis. A total of 35 wells were surveyed during drought seasons. Carbon-14 values displayed little variation which implied that the water use was adequate despite of the slower recharge conditions. Fairly constant isotopic 18 O/ 16 O ratio values in the wells and their similarity with rainwater values indicated that the recharge is done exclusively by pluvial waters. A decreasing tendency within the tritium concentration values were interpreted as a periodic rainwater renewal for these aquifers. The chemical analysis demonstrated that there is in fact no correlation between salinity and the time the water remains in the aquifer itself. (D.J.M.) [pt

  4. Rock Equity Holdings, LLC - Clean Water Act Public Notice

    Science.gov (United States)

    The EPA is providing notice of an Administrative Penalty Assessment in the form of an Expedited Storm Water Settlement Agreement against Rock Equity Holdings, LLC, for alleged violations at The Cove at Kettlestone/98th Street Reconstruction located at 3015

  5. Solute transport in crystalline rocks at Aspö--I: geological basis and model calibration.

    Science.gov (United States)

    Mazurek, Martin; Jakob, Andreas; Bossart, Paul

    2003-03-01

    Water-conducting faults and fractures were studied in the granite-hosted Aspö Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough

  6. Physical modeling of rock

    International Nuclear Information System (INIS)

    Cheney, J.A.

    1981-01-01

    The problems of statisfying similarity between a physical model and the prototype in rock wherein fissures and cracks place a role in physical behavior is explored. The need for models of large physical dimensions is explained but also testing of models of the same prototype over a wide range of scales is needed to ascertain the influence of lack of similitude of particular parameters between prototype and model. A large capacity centrifuge would be useful in that respect

  7. Passive detection of Pb in water using rock phosphate agarose beads.

    Science.gov (United States)

    Edenborn, Harry M; Howard, Bret H; Sams, James I; Vesper, Dorothy J; Edenborn, Sherie L

    2017-08-15

    In this study, passive detectors for Pb were prepared by immobilizing powdered rock phosphate in agarose beads. Rock phosphate has been used to treat Pb-contaminated waters and soil by fixing the metal as an insoluble pyromorphite mineral. Under lab conditions, Pb was rapidly adsorbed from aqueous solution by the beads over time, consistent with the acidic dissolution of rock phosphate, the precipitation of pyromorphite within the pore space of the agarose gel matrix, and surface exchange reactions. Net accumulation of Pb occurred when beads were exposed to simulated periodic releases of Pb over time. Under field conditions, beads in mesh bags were effective at detecting dissolved Pb being transported as surface runoff from a site highly contaminated with Pb. Rates of Pb accumulation in beads under field conditions appeared to be correlated with the frequency of storm events and total rainfall. The rock phosphate agarose bead approach could be an inexpensive way to carry out source-tracking of Pb pollution, to verify the successful remediation of sites with Pb-contaminated soil, and to routinely monitor public water systems for potential Pb contamination. Published by Elsevier B.V.

  8. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    International Nuclear Information System (INIS)

    Dutrow, Barbara

    2008-01-01

    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and

  9. Numerical analysis for long-term stability of disposal facility considering thermal and hydraulic effect. Uncoupled analysis for long-term deformation of rock and buffer material and for transport of heat and water

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsumi; Hasegawa, Takuma

    2004-01-01

    For the early realization of HLW geological repository and for its rational and economical design and safety assessment, it is important to evaluate the stability of repository facilities in deep underground, where high temperature, earth pressure and underground water flow affect the stability. This report discusses the numerical approaches that are useful for attaining these objectives. One of the efficient approaches is to develop models capable of simulating coupled thermo-hydro-mechanical (T-H-M) processes. Several T-H-M coupled simulation codes have been proposed and the international cooperative research project DECOVALEX has been held from 1991 in order to develop and validate the T-H-M coupled simulations. But mechanical models adopted in these simulation codes are too simple to be applied to the evaluation of long-term interaction of materials that show nonlinear mechanical behavior (especially in the case that surrounding rock is soft sedimentary rock). Before simulating the long-term and coupled phenomena, uncoupled simulations for four phenomena (creep behavior of surrounding rock mass, consolidation and deformation behavior of buffer material, transport of water, and transport of heat) are conducted using various parameters and boundary condition sets. From the results of those simulations, following conclusions are obtained: (1) swelling property of buffer material is important to evaluate mechanical behavior of barrier materials, (2) hydraulic properties of natural barrier can be more important than that of buffer material because suction effect of buffer material is so strong that transport of water in the buffer material is fast, (3) change of thermal properties and filling of gaps caused by water saturation of buffer material have a strong effect on the temperature field. On the next stage, we will develop a T-H-M coupled simulation code to evaluate the mechanical interaction between barrier materials based on the above study. (author)

  10. Three-dimensional model of the thermo-hydrodynamic neutron interaction in the core of water reactors (stationary states)

    International Nuclear Information System (INIS)

    Mastrangelo, Victor.

    1977-01-01

    A thermo-hydrodynamic neutron interaction model for permanent working conditions is developed in the case of closed circuits (boiling water reactors) and open circuits (pressurized water reactors). Two numerical convergence acceleration methods are then worked out for the resolution of linear problems by successive iterations. A physical study is devoted to the convergence of the thermo-hydrodynamic neutron interaction process. The model developed is applied to the calculation of the power distribution for the core of a 980 MWe BWR-6 type boiling water power station and to the study of normal and accidental working configurations of the pressurized water core of a 900 MWe PWR-CP1 unit [fr

  11. Testing and modeling of cyclically loaded rock anchors

    Directory of Open Access Journals (Sweden)

    Joar Tistel

    2017-12-01

    Full Text Available The Norwegian Public Roads Administration (NPRA is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond τbu and the slip s1 at τbu. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level (τmax cy/τbu, the cyclic load ratio (R = τmin cy/τmax cy, and the number of load cycles (N. The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.

  12. Hydrofracturing water boreholes in hard rock aquifers in Scotland

    CSIR Research Space (South Africa)

    Cobbing, J

    2007-01-01

    Full Text Available rural areas of the UK, low-productivity aquifers are an important resource for small public water supplies. Where a borehole in low-productivity crystalline rocks proves too low yielding for its designed purpose, hydrofracturing is a cost-effective means...

  13. Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces

    Directory of Open Access Journals (Sweden)

    John W. Dockrey

    2014-03-01

    Full Text Available Microbial populations and microbe-mineral interactions were examined in waste rock characterized by neutral rock drainage (NRD. Samples of three primary sulfide-bearing waste rock types (i.e., marble-hornfels, intrusive, exoskarn were collected from field-scale experiments at the Antamina Cu–Zn–Mo mine, Peru. Microbial communities within all samples were dominated by neutrophilic thiosulfate oxidizing bacteria. However, acidophilic iron and sulfur oxidizers were present within intrusive waste rock characterized by bulk circumneutral pH drainage. The extensive development of microbially colonized porous Fe(III (oxyhydroxide and Fe(III (oxyhydroxysulfate precipitates was observed at sulfide-mineral surfaces during examination by field emission-scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM-EDS. Linear combination fitting of bulk extended X-ray absorption fine structure (EXAFS spectra for these precipitates indicated they were composed of schwertmannite [Fe8O8(OH6–4.5(SO41–1.75], lepidocrocite [γ-FeO(OH] and K-jarosite [KFe3(OH6(SO42]. The presence of schwertmannite and K-jarosite is indicative of the development of localized acidic microenvironments at sulfide-mineral surfaces. Extensive bacterial colonization of this porous layer and pitting of underlying sulfide-mineral surfaces suggests that acidic microenvironments can play an important role in sulfide-mineral oxidation under bulk circumneutral pH conditions. These findings have important implications for water quality management in NRD settings.

  14. Use of stratigraphic models as soft information to constrain stochastic modeling of rock properties: Development of the GSLIB-Lynx integration module

    International Nuclear Information System (INIS)

    Cromer, M.V.; Rautman, C.A.

    1995-10-01

    Rock properties in volcanic units at Yucca Mountain are controlled largely by relatively deterministic geologic processes related to the emplacement, cooling, and alteration history of the tuffaceous lithologic sequence. Differences in the lithologic character of the rocks have been used to subdivide the rock sequence into stratigraphic units, and the deterministic nature of the processes responsible for the character of the different units can be used to infer the rock material properties likely to exist in unsampled regions. This report proposes a quantitative, theoretically justified method of integrating interpretive geometric models, showing the three-dimensional distribution of different stratigraphic units, with numerical stochastic simulation techniques drawn from geostatistics. This integration of soft, constraining geologic information with hard, quantitative measurements of various material properties can produce geologically reasonable, spatially correlated models of rock properties that are free from stochastic artifacts for use in subsequent physical-process modeling, such as the numerical representation of ground-water flow and radionuclide transport. Prototype modeling conducted using the GSLIB-Lynx Integration Module computer program, known as GLINTMOD, has successfully demonstrated the proposed integration technique. The method involves the selection of stratigraphic-unit-specific material-property expected values that are then used to constrain the probability function from which a material property of interest at an unsampled location is simulated

  15. Incorporating water-release and lateral protein interactions in modeling equilibrium adsorption for ion-exchange chromatography.

    Science.gov (United States)

    Thrash, Marvin E; Pinto, Neville G

    2006-09-08

    The equilibrium adsorption of two albumin proteins on a commercial ion exchanger has been studied using a colloidal model. The model accounts for electrostatic and van der Waals forces between proteins and the ion exchanger surface, the energy of interaction between adsorbed proteins, and the contribution of entropy from water-release accompanying protein adsorption. Protein-surface interactions were calculated using methods previously reported in the literature. Lateral interactions between adsorbed proteins were experimentally measured with microcalorimetry. Water-release was estimated by applying the preferential interaction approach to chromatographic retention data. The adsorption of ovalbumin and bovine serum albumin on an anion exchanger at solution pH>pI of protein was measured. The experimental isotherms have been modeled from the linear region to saturation, and the influence of three modulating alkali chlorides on capacity has been evaluated. The heat of adsorption is endothermic for all cases studied, despite the fact that the net charge on the protein is opposite that of the adsorbing surface. Strong repulsive forces between adsorbed proteins underlie the endothermic heat of adsorption, and these forces intensify with protein loading. It was found that the driving force for adsorption is the entropy increase due to the release of water from the protein and adsorbent surfaces. It is shown that the colloidal model predicts protein adsorption capacity in both the linear and non-linear isotherm regions, and can account for the effects of modulating salt.

  16. Effect of Interaction and Rocking Motion on The Earthquake Response of Buildings

    Directory of Open Access Journals (Sweden)

    Gholamreza Havaei

    2015-03-01

    Full Text Available Usually structures are designed under codes based on the assumption that the soil stiffness is infinite, so the foundation rests firmly on the soil. In many cases, the overturning moment due to the lateral forces may exceed the resisting moment due to the gravity forces. Thus, this may cause a foundation uplift because in reality the soil stiffness is not infinite and the structure stands up under gravity forces. The phenomenon of foundation uplifting and its impact on the soil are known as the rocking motion.This study investigates the influence of the rocking motion and interaction by the yielding base plates on the nonlinear behavior of steel structures under dynamic analysis. More specifically, Three- five and seven -storied structuresare designed with ordinary ductility, then the structuresare analyzed in rigid and deformable base plate cases with using the ABAQUS software.The results show that the rocking motion and Interaction decrease the response of buildings such as the base shear, the axial force of columns and the strain energy but also increase the natural period.

  17. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    Science.gov (United States)

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  18. Modeling UTLS water vapor: Transport/Chemistry interactions

    International Nuclear Information System (INIS)

    Gulstad, Line

    2005-01-01

    This thesis was initially meant to be a study on the impact on chemistry and climate from UTLS water vapor. However, the complexity of the UTLS water vapor and its recent changes turned out to be a challenge by it self. In the light of this, the overall motivation for the thesis became to study the processes controlling UTLS water vapor and its changes. Water vapor is the most important greenhouse gas, involved in important climate feedback loops. Thus, a good understanding of the chemical and dynamical behavior of water vapor in the atmosphere is crucial for understanding the climate changes in the last century. Additionally, parts of the work was motivated by the development of a coupled climate chemistry model based on the CAM3 model coupled with the Chemical Transport Model Oslo CTM2. The future work will be concentrated on the UTLS water vapor impact on chemistry and climate. We are currently studying long term trends in UTLS water vapor, focusing on identification of the different processes involved in the determination of such trends. The study is based on natural as well as anthropogenic climate forcings. The ongoing work on the development of a coupled climate chemistry model will continue within our group, in collaboration with Prof. Wei-Chyung Wang at the State University of New York, Albany. Valuable contacts with observational groups are established during the work on this thesis. These collaborations will be continued focusing on continuous model validation, as well as identification of trends and new features in UTLS water vapor, and other tracers in this region. (Author)

  19. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  20. Elasticity of water-saturated rocks as a function of temperature and pressure.

    Science.gov (United States)

    Takeuchi, S.; Simmons, G.

    1973-01-01

    Compressional and shear wave velocities of water-saturated rocks were measured as a function of both pressure and temperature near the melting point of ice to confining pressure of 2 kb. The pore pressure was kept at about 1 bar before the water froze. The presence of a liquid phase (rather than ice) in microcracks of about 0.3% porosity affected the compressional wave velocity by about 5% and the shear wave velocity by about 10%. The calculated effective bulk modulus of the rocks changes rapidly over a narrow range of temperature near the melting point of ice, but the effective shear modulus changes gradually over a wider range of temperature. This phenomenon, termed elastic anomaly, is attributed to the existence of liquid on the boundary between rock and ice due to local stresses and anomalous melting of ice under pressure.

  1. Basic processes and mechanisms of the water-rock system evolution

    OpenAIRE

    Shvartsev, Stepan Lvovich

    2007-01-01

    A new conception of progressive evolution and self-organizing presence in dead matter is developed; inner mechanisms and processes, realizing this development, are revealed. It is proven that the water-rock system satisfy these requirements

  2. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...

  3. Analytic solution of pseudocolloid migration in fractured rock

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Lee, W.W.L.; Chambre, P.L.

    1989-06-01

    A form of colloid migration that can enhance or retard the migration of a dissolved contaminant in ground water is the sorption of the contaminant on the moving colloidal particulate to form pseudocolloids. In this paper we develop analytical solutions for the interactive migration of radioactive species dissolved in ground water and sorbed as pseudocolloids. The solute and pseudocolloids are assumed to undergo advection and dispersion in a one-dimensional flow field in planar fractures in porous rock. Interaction between pseudocolloid and dissolved species is described by equilibrium sorption. Sorbed species on the pseudocolloids undergo radioactive decay, and pseudocolloids can sorb on fracture surfaces and sediments. Filtration is neglected. The solute can decay and sorb on pseudocolloids, on the fracture surfaces, and on sediments and can diffuse into the porous rock matrix. 1 fig

  4. Reaction of Topopah Spring tuff with J-13 water: a geochemical modeling approach using the EQ3/6 reaction path code

    Energy Technology Data Exchange (ETDEWEB)

    Delany, J.M.

    1985-11-25

    EQ3/6 geochemical modeling code package was used to investigate the interaction of the Topopah Spring Tuff and J-13 water at high temperatures. EQ3/6 input parameters were obtained from the results of laboratory experiments using USW G-1 core and J-13 water. Laboratory experiments were run at 150 and 250{sup 0}C for 66 days using both wafer-size and crushed tuff. EQ3/6 modeling reproduced results of the 150{sup 0}C experiments except for a small increase in the concentration of potassium that occurs in the first few days of the experiments. At 250{sup 0}C, the EQ3/6 modeling reproduced the major water/rock reactions except for a small increase in potassium, similar to that noted above, and an overall increase in aluminum. The increase in potassium concentration cannot be explained at this time, but the increase in A1 concentration is believed to be caused by the lack of thermodynamic data in the EQ3/6 data base for dachiardite, a zeolite observed as a run product at 250{sup 0}C. The ability to reproduce the majority of the experimental rock/water interactions at 150{sup 0}C validates the use of EQ3/6 as a geochemical modeling tool that can be used to theoretically investigate physical/chemical environments in support of the Waste Package Task of NNWSI.

  5. Zealotry promotes coexistence in the rock-paper-scissors model of cyclic dominance

    Science.gov (United States)

    Verma, Gunjan; Chan, Kevin; Swami, Ananthram

    2015-11-01

    Cyclic dominance models, such as the classic rock-paper-scissors (RPS) game, have found real-world applications in biology, ecology, and sociology. A key quantity of interest in such models is the coexistence time, i.e., the time until at least one population type goes extinct. Much recent research has considered conditions that lengthen coexistence times in an RPS model. A general finding is that coexistence is promoted by localized spatial interactions (low mobility), while extinction is fostered by global interactions (high mobility). That is, there exists a mobility threshold which separates a regime of long coexistence from a regime of rapid collapse of coexistence. The key finding of our paper is that if zealots (i.e., nodes able to defeat others while themselves being immune to defeat) of even a single type exist, then system coexistence time can be significantly prolonged, even in the presence of global interactions. This work thus highlights a crucial determinant of system survival time in cyclic dominance models.

  6. Predicting flow through low-permeability, partially saturated, fractured rock: A review of modeling and experimental efforts at Yucca Mountain

    International Nuclear Information System (INIS)

    Eaton, R.R.; Bixler, N.E.; Glass, R.J.

    1989-01-01

    Current interest in storing high-level nuclear waste in underground repositories has resulted in an increased effort to understand the physics of water flow through low-permeability rock. The US Department of Energy is investigating a prospective repository site located in volcanic ash (tuff) hundreds of meters above the water table at Yucca Mountain, Nevada. Consequently, mathematical models and experimental procedures are being developed to provide a better understanding of the hydrology of this low-permeability, partially saturated, fractured rock. Modeling water flow in the vadose zone in soils and in relatively permeable rocks such as sandstone has received considerable attention for many years. The treatment of flow (including nonisothermal conditions) through materials such as the Yucca Mountain tuffs, however, has not received the same level of attention, primarily because it is outside the domain of agricultural and petroleum technology. This paper reviews the status of modeling and experimentation currently being used to understand and predict water flow at the proposed repository site. Several areas of research needs emphasized by the review are outlined. The extremely nonlinear hydraulic properties of these tuffs in combination with their heterogeneous nature makes it a challenging and unique problem from a computational and experimental view point. 101 refs., 14 figs., 1 tab

  7. Modeling of nuclear waste disposal by rock melting

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-04-01

    Today, the favored option for disposal of high-level nuclear wastes is their burial in mined caverns. As an alternative, the concept of deep disposal by rock melting (DRM) also has received some attention. DRM entails the injection of waste, in a cavity or borehole, 2 to 3 kilometers down in the earth crust. Granitic rocks are the prime candidate medium. The high thermal loading initially will melt the rock surrounding the waste. Following resolidification, a rock/waste matrix is formed, which should provide isolation for many years. The complex thermal, mechanical, and hydraulic aspects of DRM can be studied best by means of numerical models. The models must accommodate the coupling of the physical processes involved, and the temperature dependency of the granite properties, some of which are subject to abrupt discontinuities, during α-β phase transition and melting. This paper outlines a strategy for such complex modeling

  8. Interpretation of field experiments on the flow of water and tracers through crystalline rock

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Lever, D.A.; Robinson, P.C.; Bourke, P.J.

    1983-01-01

    This paper reviews recent work at Harwell on the interpretation of field experiments on the flow of water and tracers through crystalline rock. First a model for the radial transport of tracers through an isolated fracture is outlined and used to analyse a recent Swedish experiment at Finnsjoen. Secondly, the theoretical and experimental approach that is being used to quantify flow and dispersion through networks of fractures is described

  9. The Vaigat Rock Avalanche Laboratory, west-central Greenland

    Science.gov (United States)

    Dunning, S.; Rosser, N. J.; Szczucinski, W.; Norman, E. C.; Benjamin, J.; Strzelecki, M.; Long, A. J.; Drewniak, M.

    2013-12-01

    Rock avalanches have unusually high mobility and pose both an immediate hazard, but also produce far-field impacts associated with dam breach, glacier collapse and where they run-out into water, tsunami. Such secondary hazards can often pose higher risks than the original landslide. The prediction of future threats posed by potential rock avalanches is heavily reliant upon understanding of the physics derived from an interpretation of deposits left by previous events, yet drawing comparisons between multiple events is normally challenging as interactions with complex mountainous terrain makes deposits from each event unique. As such numerical models and the interpretation of the underlying physics which govern landslide mobility is commonly case-specific and poorly suited to extrapolation beyond the single events the model is tuned to. Here we present a high-resolution LiDAR and hyperspectral dataset captured across a unique cluster of large rock avalanche source areas and deposits in the Vaigat straight, west central Greenland. Vaigat offers the unprecedented opportunity to model a sample of > 15 rock avalanches of various age sourced from an 80 km coastal escarpment. At Vaigat many of the key variables (topography, geology, post-glacial history) are held constant across all landslides providing the chance to investigate the variations in dynamics and emplacement style related to variable landslide volume, drop-heights, and thinning/spreading over relatively simple, unrestricted run-out zones both onto land and into water. Our data suggest that this region represents excellent preservation of landslide deposits, and hence is well suited to calibrate numerical models of run out dynamics. We use this data to aid the interpretation of deposit morphology, structure lithology and run-out characteristics in more complex settings. Uniquely, we are also able to calibrate our models using a far-field dataset of well-preserved tsunami run-up deposits, resulting from the 21

  10. A model of pyritic oxidation in waste rock dumps

    International Nuclear Information System (INIS)

    Davis, G.B.; Ritchie, A.I.M.

    1983-01-01

    The oxidation of pyrite can lead to high acid levels and high concentrations of trace metals in the water that runs off and percolates through pyritic material. This is the situation at the abandoned uranium mine at Rum Jungle in the Northern Territory of Australia, where pyritic oxidation in the waste rock dumps resulting from open cut mining of the uranium orebody has led to pollution of the nearby East Branch of the Finniss River, with trace metals such as copper, manganese and zinc. Mathematical equations are formulated which describe a model of pyritic oxidation within a waste rock dump, where it is assumed that oxygen transport is the rate limiting step in the oxidation process and that oxygen is transported by gaseous diffusion through the pore space of the dump, followed by diffusion into oxidation sites within the particles that comprise the dump. The equations have been solved numerically assuming values for such parameters as porosity, sulphur density and oxygen diffusion coefficients which are applicable to the waste rock dumps at Rum Jungle. An approximate solution to the equations is also presented. Calculations of the heat source distribution and the total SO 4 production rate are presented for both single size particles and for a range of particle sizes in the dump. The usefulness of the approximate solution, and of calculations based on single size particles in the dump in assessing the effectiveness of strategies to reduce pollution from such waste rock dumps are discussed

  11. State of the art of numerical modeling of thermohydrologic flow in fractured rock mass

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.; Sterbentz, R.A.

    1983-01-01

    The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground-water hydrology, petroleum engineering, and other geologic fields. The general review is followed by separate summaries of the main characteristics of the governing equations, numerical solutions, computer codes, validations, and applications for each model

  12. The analysis of creep characteristics of the surrounding rock of the carbonaceous rock tunnel based on Singh-Mitchell model

    Science.gov (United States)

    Luo, Junhui; Mi, Decai; Ye, Qiongyao; Deng, Shengqiang; Zeng, Fuquan; Zeng, Yongjun

    2018-01-01

    Carbonaceous rock has the characteristics of easy disintegration, softening, swelling and environmental sensitivity, which belongs to soft surrounding rock, and the deformation during excavation and long-term stability of the surrounding rock of carbonaceous rock tunnel are common problems in the construction of carbonaceous rock tunnel. According to the above, the Monitor and measure the displacement, temperature and osmotic pressure of the surrounding carbonaceous rock of the tunnel of Guangxi Hebai highway. Then it based on the obtaining data to study the creep mechanism of surrounding rock using Singh-Mitchell model and predict the deformation of surrounding rock before the tunnel is operation. The results show that the Singh-Mitchell creep model can effectively analyse and predict the deformation development law of surrounding rock of tunnel without considering temperature and osmotic pressure, it can provide reference for the construction of carbonaceous rock tunnel and the measures to prevent and reinforce it..

  13. Modeling and management of pit lake water chemistry 1: Theory

    International Nuclear Information System (INIS)

    Castendyk, D.N.; Eary, L.E.; Balistrieri, L.S.

    2015-01-01

    Highlights: • Review of pit lake literature in the context of pit lake predictions. • Review of approaches used to predict pit wall-rock runoff and leachate. • Review of approaches used to generate a pit lake water balance. • Review of approaches used to generate a hydrodynamic prediction. • Review of approaches used to generate a geochemical prediction of a future pit lake. - Abstract: Pit lakes are permanent hydrologic/landscape features that can result from open pit mining for metals, coal, uranium, diamonds, oil sands, and aggregates. Risks associated with pit lakes include local and regional impacts to water quality and related impacts to aquatic and terrestrial ecosystems. Stakeholders rely on predictive models of water chemistry to prepare for and manage these risks. This paper is the first of a two part series on the modeling and management of pit lakes. Herein, we review approaches that have been used to quantify wall-rock runoff geochemistry, wall-rock leachate geochemistry, pit lake water balance, pit lake limnology (i.e. extent of vertical mixing), and pit lake water quality, and conclude with guidance on the application of models within the mine life cycle. The purpose of this paper is to better prepare stakeholders, including future modelers, mine managers, consultants, permitting agencies, land management agencies, regulators, research scientists, academics, and other interested parties, for the challenges of predicting and managing future pit lakes in un-mined areas

  14. Influence of infiltrated water on the change of formation water and oil permeability of crude oil bearing rocks

    Energy Technology Data Exchange (ETDEWEB)

    Cubric, S

    1970-09-01

    A brief desription is given of the causes of permeability reduction of oil-bearing rocks, due to well damage during the drilling and well completion or when working over wells. The physical properties of 2-phase flow (crude oil-water) and the possibility of increasing the existing permeability of the formation, because of the water infiltrated from the well into the crude oil layer, are described in detail. Field examples show that there are such cases, and that the artificially increased existing permeability of water-bearing rocks can be reduced and even brought to normal, if the adjacent formation zone layer is treated with surfactants (e.g., Hyflo dissolved in crude oil).

  15. Site investigations: Strategy for rock mechanics site descriptive model

    International Nuclear Information System (INIS)

    Andersson, Johan; Christiansson, Rolf; Hudson, John

    2002-05-01

    As a part of the planning work for the Site Investigations, SKB has developed a Rock Mechanics Site Descriptive Modelling Strategy. Similar strategies are being developed for other disciplines. The objective of the strategy is that it should guide the practical implementation of evaluating site specific data during the Site Investigations. It is also understood that further development may be needed. This methodology enables the crystalline rock mass to be characterised in terms of the quality at different sites, for considering rock engineering constructability, and for providing the input to numerical models and performance assessment calculations. The model describes the initial stresses and the distribution of deformation and strength properties of the intact rock, of fractures and fracture zones, and of the rock mass. The rock mass mechanical properties are estimated by empirical relations and by numerical simulations. The methodology is based on estimation of mechanical properties using both empirical and heroretical/numerical approaches; and estimation of in situ rock stress using judgement and numerical modelling, including the influence of fracture zones. These approaches are initially used separately, and then combined to produce the required characterisation estimates. The methodology was evaluated with a Test Case at the Aespoe Hard Rock Laboratory in Sweden. The quality control aspects are an important feature of the methodology: these include Protocols to ensure the structure and coherence of the procedures used, regular meetings to enhance communication, feedback from internal and external reviewing, plus the recording of an audit trail of the development steps and decisions made. The strategy will be reviewed and, if required, updated as appropriate

  16. Site investigations: Strategy for rock mechanics site descriptive model

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hudson, John [Rock Engineering Consultants, Welwyn Garden City (United Kingdom)

    2002-05-01

    As a part of the planning work for the Site Investigations, SKB has developed a Rock Mechanics Site Descriptive Modelling Strategy. Similar strategies are being developed for other disciplines. The objective of the strategy is that it should guide the practical implementation of evaluating site specific data during the Site Investigations. It is also understood that further development may be needed. This methodology enables the crystalline rock mass to be characterised in terms of the quality at different sites, for considering rock engineering constructability, and for providing the input to numerical models and performance assessment calculations. The model describes the initial stresses and the distribution of deformation and strength properties of the intact rock, of fractures and fracture zones, and of the rock mass. The rock mass mechanical properties are estimated by empirical relations and by numerical simulations. The methodology is based on estimation of mechanical properties using both empirical and heroretical/numerical approaches; and estimation of in situ rock stress using judgement and numerical modelling, including the influence of fracture zones. These approaches are initially used separately, and then combined to produce the required characterisation estimates. The methodology was evaluated with a Test Case at the Aespoe Hard Rock Laboratory in Sweden. The quality control aspects are an important feature of the methodology: these include Protocols to ensure the structure and coherence of the procedures used, regular meetings to enhance communication, feedback from internal and external reviewing, plus the recording of an audit trail of the development steps and decisions made. The strategy will be reviewed and, if required, updated as appropriate.

  17. SUITABILITY ANALYSIS OF WASTE ROCK APPLICATION IN HYDRIC RECLAMATION IN THE NATURAL WATER-BEARING SUBSIDENCE TROUGHS IN KARVINSKO, CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Eva Pertile

    2008-12-01

    Full Text Available The paper deals with a suitability analysis of waste rock application in hydric reclamation on the basis of studying its impact on water quality in the natural water-bearing subsidence troughs. The evaluation was carried out in sixteen localities where waste rock had been used in the past for the purposes of bank system improvement. Within the evaluation of waste rock impact on the hydrochemical character of water in the subsidence troughs the values of geochemical background were identified. In order to compare the impact of waste rock on the quality of water, changes in the hydrochemical parameters were monitored in the localities without waste rock banking, with partial (maximum ½ circumference and complete waste rock banking.

  18. Modelling of tracer profiles in pore water of argillaceous rocks in the Benken borehole

    International Nuclear Information System (INIS)

    Gimmi, T.; Waber, H. N.

    2004-12-01

    Isotope tracers offer unique possibilities for analysing flow and transport processes over large scales of time and space. This is especially relevant for low-permeability media like clay stones, where transport is typically very slow and, consequently, difficult to investigate. Such lithologies are currently being investigated in several countries as potential host rocks for the disposal of radioactive or other hazardous waste. In the deep borehole at Benken (north-eastern Switzerland), a sequence of aquifers and argillaceous aquitards was investigated. Water samples were obtained from four formations (Malm, Keuper, Muschelkalk, and Buntsandstein). The Malm and the Keuper aquifer delimit a sequence of clay stones and marls at depth from about 400 to 700 m with hydraulic conductivities generally below 10 -13 m s -1 . Profiles of δ 18 O, δ 2 H, chloride, and δ 37 Cl in pore fluids of these formations were obtained. The chemical, isotopic, and noble gas composition of the ground water samples indicated that no cross-formation flow occurred, but that - with the exception of the Malm - the waters evolved geochemically within the formation from which they were sampled. Infiltration conditions could also be inferred from the data. The pore water profiles in the low-permeability zone show clear trends that hint at diffusion-dominated transport processes. To evaluate possible mechanisms and time scales of evolution of the profiles, a series of advective-dispersive model calculations was performed. Varying initial conditions as well as the type and concentration values of boundary conditions revealed the following: (i), molecular diffusion to the underlying aquifer can explain the general features of the isotope profiles, (ii), no signatures of advective flow could be detected, (iii), the evolution time is in the order of 0.5 to 1 Ma (relying on laboratory diffusion coefficients) with a possible range of about 0.2 to 2 Ma, which is geologically plausible, and, (iv

  19. AN ACTIVE FRACTURE MODEL FOR UNSATURATED FLOW AND TRANSPORT

    International Nuclear Information System (INIS)

    HUI-HAI LIU, GUDMUNDUR S. BODVARSSON AND CHRISTINE DOUGHTY

    1999-01-01

    Fracture/matrix (F/M) interaction is a key factor affecting flow and transport in unsaturated fractured rocks. In classic continuum approaches (Warren and Root, 1963), it is assumed that flow occurs through all the connected fractures and is uniformly distributed over the entire fracture area, which generally gives a relatively large F/M interaction. However, fractures seem to have limited interaction with the surrounding matrix at Yucca Mountain, Nevada, as suggested by geochemical nonequilibrium between the perched water (resulting mainly from fracture flow) and pore water in the rock matrix. Because of the importance of the F/M interaction and related issues, there is a critical need to develop new approaches to accurately consider the interaction reduction inferred from field data at the Yucca Mountain site. Motivated by this consideration, they have developed an active fracture model based on the hypothesis that not all connected fractures actively conduct water in unsaturated fractured rocks

  20. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  1. Simulation of CO2–water–rock interactions on geologic CO2 sequestration under geological conditions of China

    International Nuclear Information System (INIS)

    Wang, Tianye; Wang, Huaiyuan; Zhang, Fengjun; Xu, Tianfu

    2013-01-01

    Highlights: • We determined the feasibilities of geologic CO 2 sequestration in China. • We determined the formation of gibbsite suggested CO 2 can be captured by rocks. • We suggested the mechanisms of CO 2 –water–rock interactions. • We found the corrosion and dissolution of the rock increased as temperature rose. -- Abstract: The main purpose of this study focused on the feasibility of geologic CO 2 sequestration within the actual geological conditions of the first Carbon Capture and Storage (CCS) project in China. This study investigated CO 2 –water–rock interactions under simulated hydrothermal conditions via physicochemical analyses and scanning electron microscopy (SEM). Mass loss measurement and SEM showed that corrosion of feldspars, silica, and clay minerals increased with increasing temperature. Corrosion of sandstone samples in the CO 2 -containing fluid showed a positive correlation with temperature. During reaction at 70 °C, 85 °C, and 100 °C, gibbsite (an intermediate mineral product) formed on the sample surface. This demonstrated mineral capture of CO 2 and supported the feasibility of geologic CO 2 sequestration. Chemical analyses suggested a dissolution–reprecipitation mechanism underlying the CO 2 –water–rock interactions. The results of this study suggested that mineral dissolution, new mineral precipitation, and carbonic acid formation-dissociation are closely interrelated in CO 2 –water–rock interactions

  2. Field evidence for control of quarrying by rock bridges in jointed bedrock

    Science.gov (United States)

    Hooyer, T. S.; Cohen, D. O.; Iverson, N. R.

    2011-12-01

    Quarrying is generally thought to be the most important mechanism by which glaciers erode bedrock. In quarrying models it is assumed that slow, subcritical, growth of pre-existing cracks rate-limits the process and occurs where there are large stress differences in the bed, such as near rock bumps where ice separates from the bed to form water-filled cavities. Owing to the direction of principal stresses in rocks associated with sliding and resultant cavity formation, models predict that quarrying will occur along cracks oriented perpendicular to the ice flow direction or parallel to zones of ice-bed contact. Preglacial cracks in rocks will tend to propagate mainly downward, and in sedimentary or some metamorphic rocks will merge with bedding planes, thereby helping to isolate rock blocks for dislodgement. In contrast to these model assumptions, new measurements of quarried surface orientations in the deglaciated forefield of nine glaciers in Switzerland and Canada indicate a strong correlation between orientations of pre-existing joints and quarried bedrock surfaces, independent of ice flow direction or ice-water contact lines. The strong correlation persists across all rock types, and rocks devoid of major joints lack quarried surfaces. We propose a new conceptual model of quarrying that idealizes the bedrock as a series of blocks separated by discontinuous preglacial joints containing intact rock bridges. Bridges concentrate stress differences caused by normal and shear forces acting at the rock surface. Failure of bridges is caused by slow subcritical crack growth enhanced by water pressure fluctuations. To lend credibility to this new model, we show field evidence of failed rock bridges in quarried surfaces and of rib marks on plumose structures that we interpret as arrest fracture fronts due to transient subglacial water-pressure fluctuations.

  3. Improvements of Spiers model for compaction creep of crushed rock salt

    International Nuclear Information System (INIS)

    Poley, A.D.

    1996-10-01

    This report describes a number of improvements to the existing model for the process of compaction creep of rock salt developed by Spiers and co-workers. The process of compaction creep determines the behaviour of the seals of crushed rock salt, the last engineered barriers of a repository in rock salt for (radioactive) wastes. In Chapter 2 the derivation of the original model of Spiers and co-workers is followed except for some simplifying approximations. A comparison of the model results is made with experimental data and a number of model adjustments are suggested. In Chapter 3 one of these suggested model adjustments is explored, and an alternative model is developed. The results obtained with this model compare favourably with the experimental data without the use of adjustable shape functions as for the original model. Preliminary investigations of the impact of the new model on estimated releases to the geosphere of radionuclides form a repository in rock salt revealed striking differences: with the new model the compaction of the rock salt seals was so rapid that no releases could occur. The striking differences between the results - in terms of releases form a rock salt repository to the geosphere after groundwater intrusion - obtained using the two models clearly indicate the need for further experimental research into the end-compaction behaviour of rock salt backfill. (orig.)

  4. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  5. Sedimentary basin geochemistry and fluid/rock interactions workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and other Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.

  6. 'Escher' Rock

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks [figure removed for brevity, see original site] Figure 1 This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters. The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water. Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend. These data were taken by the rover's alpha particle X-ray spectrometer.

  7. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    Science.gov (United States)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  8. Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria.

    Science.gov (United States)

    Belkhiri, Lazhar; Mouni, Lotfi; Tiri, Ammar

    2012-02-01

    Hydrochemical, multivariate statistical, and inverse geochemical modeling techniques were used to investigate the hydrochemical evolution within the Ain Azel aquifer, Algeria. Cluster analysis based on major ion contents defined 3 main chemical water types, reflecting different hydrochemical processes. The first group water, group 1, has low salinity (mean EC = 735 μS/cm). The second group waters are classified as Cl-HCO(3)-alkaline earth type. The third group is made up of water samples, the cation composition of which is dominated by Ca and Mg with anion composition varying from dominantly Cl to dominantly HCO(3) plus SO(4). The varifactors obtained from R-mode FA indicate that the parameters responsible for groundwater quality variations are mainly related to the presence and dissolution of some carbonate, silicate, and evaporite minerals in the aquifer. Inverse geochemical modeling along groundwater flow paths indicates the dominant processes are the consumption of CO(2), the dissolution of dolomite, gypsum, and halite, along with the precipitation of calcite, Ca-montmorillonite, illite, kaolinite, and quartz. © Springer Science+Business Media B.V. 2011

  9. Material constitutive model for jointed rock mass behavior

    International Nuclear Information System (INIS)

    Thomas, R.K.

    1980-11-01

    A material constitutive model is presented for jointed rock masses which exhibit preferred planes of weakness. This model is intended for use in finite element computations. The immediate application is the thermomechanical modelling of a nuclear waste repository in hard rock, but the model seems appropriate for a variety of other static and dynamic geotechnical problems as well. Starting with the finite element representations of a two-dimensional elastic body, joint planes are introduced in an explicit manner by direct modification of the material stiffness matrix. A novel feature of this approach is that joint set orientations, lengths and spacings are readily assigned through the sampling of a population distribution statistically determined from field measurement data. The result is that the fracture characteristics of the formations have the same statistical distribution in the model as is observed in the field. As a demonstration of the jointed rock mass model, numerical results are presented for the example problem of stress concentration at an underground opening

  10. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    Science.gov (United States)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system

  11. Validation of a New Elastoplastic Constitutive Model Dedicated to the Cyclic Behaviour of Brittle Rock Materials

    Science.gov (United States)

    Cerfontaine, B.; Charlier, R.; Collin, F.; Taiebat, M.

    2017-10-01

    Old mines or caverns may be used as reservoirs for fuel/gas storage or in the context of large-scale energy storage. In the first case, oil or gas is stored on annual basis. In the second case pressure due to water or compressed air varies on a daily basis or even faster. In both cases a cyclic loading on the cavern's/mine's walls must be considered for the design. The complexity of rockwork geometries or coupling with water flow requires finite element modelling and then a suitable constitutive law for the rock behaviour modelling. This paper presents and validates the formulation of a new constitutive law able to represent the inherently cyclic behaviour of rocks at low confinement. The main features of the behaviour evidenced by experiments in the literature depict a progressive degradation and strain of the material with the number of cycles. A constitutive law based on a boundary surface concept is developed. It represents the brittle failure of the material as well as its progressive degradation. Kinematic hardening of the yield surface allows the modelling of cycles. Isotropic softening on the cohesion variable leads to the progressive degradation of the rock strength. A limit surface is introduced and has a lower opening than the bounding surface. This surface describes the peak strength of the material and allows the modelling of a brittle behaviour. In addition a fatigue limit is introduced such that no cohesion degradation occurs if the stress state lies inside this surface. The model is validated against three different rock materials and types of experiments. Parameters of the constitutive laws are calibrated against uniaxial tests on Lorano marble, triaxial test on a sandstone and damage-controlled test on Lac du Bonnet granite. The model is shown to reproduce correctly experimental results, especially the evolution of strain with number of cycles.

  12. Use of Isotopic Techniques for the Assessment of Hydrological Interaction Surface Water and Groundwater. Rio Man - Cienaga Colombia

    International Nuclear Information System (INIS)

    Palacio B, P.; Betancur V, T.; Dapena, C.

    2011-01-01

    This job integrates the first results from the studies ''Conceptual Hydrological Model for the middle and lower parts of the Man River basin using hydrological, hydrochemical and isotopic techniques'' (Palacio, 2011) and ''Hydrochemical and Isotopic techniques for the assessment of hydrological processes in the the wetlands of Bajo Cauca Antioquia'' (University of Antioquia and International Atomic Energy Agency (IAEA). The Man river basin covers an area of 688 km 2 ; with temperatures ranging from 25 to 30 o C; The average annual rainfall is 2.800 mm. The geology of the area is composed mainly of clastic sedimentary rocks of continental origin. A hydrological model of interaction between surface water and groundwater for the lower middle of the Man River basin was obtained by the use of hydrological analysis techniques. This model was refined, adjusted and validated using isotope techniques based mainly on the analysis of spatial and temporal variance of stable isotopes found in rain water, surface bodies of water such as streams and wetlands, and in an unconfined aquifer.

  13. micro-mechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, L.

    2012-01-01

    The hydro-mechanical behavior of argillaceous rocks, which are possible host rocks for underground radioactive nuclear waste storage, is investigated by means of micro-mechanical experimental investigations and modellings. Strain fields at the micrometric scale of the composite structure of this rock, are measured by the combination of environmental scanning electron microscopy, in situ testing and digital image correlation technique. The evolution of argillaceous rocks under pure hydric loading is first investigated. The strain field is strongly heterogeneous and manifests anisotropy. The observed nonlinear deformation at high relative humidity (RH) is related not only to damage, but also to the nonlinear swelling of the clay mineral itself, controlled by different local mechanisms depending on RH. Irreversible deformations are observed during hydric cycles, as well as a network of microcracks located in the bulk of the clay matrix and/or at the inclusion-matrix interface. Second, the local deformation field of the material under combined hydric and mechanical loadings is quantified. Three types of deformation bands are evidenced under mechanical loading, either normal to stress direction (compaction), parallel (microcracking) or inclined (shear). Moreover, they are strongly controlled by the water content of the material: shear bands are in particular prone to appear at high RH states. In view of understanding the mechanical interactions a local scale, the material is modeled as a composite made of non-swelling elastic inclusions embedded in an elastic swelling clay matrix. The internal stress field induced by swelling strain incompatibilities between inclusions and matrix, as well as the overall deformation, is numerically computed at equilibrium but also during the transient stage associated with a moisture gradient. An analytical micro-mechanical model based on Eshelby's solution is proposed. In addition, 2D finite element computations are performed. Results

  14. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  15. Supplement to the UMTRA project water sampling and analysis plan, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1995-09-01

    The water sampling and analysis plan (WSAP) provides the regulatory and technical basis for ground water and surface water sampling at the Uranium Mill Tailings Remedial Action (UMTRA) Project Union Carbide (UC) and North Continent (NC) processing sites and the Burro Canyon disposal site near Slick Rock, Colorado. The initial WSAP was finalized in August 1994 and will be completely revised in accordance with the WSAP guidance document (DOE, 1995) in late 1996. This version supplements the initial WSAP, reflects only minor changes in sampling that occurred in 1995, covers sampling scheduled for early 1996, and provides a preliminary projection of the next 5 years of sampling and monitoring activities. Once surface remedial action is completed at the former processing sites, additional and more detailed hydrogeologic characterization may be needed to develop the Ground Water Program conceptual ground water model and proposed compliance strategy. In addition, background ground water quality needs to be clearly defined to ensure that the baseline risk assessment accurately estimated risks from the contaminants of potential concern in contaminated ground water at the UC and NC sites

  16. Rock burst prevention at steep seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, G D

    1988-09-01

    At steep shield longwalls one method of preventing rock bursts is to avoid sharp angles during working. Stress in coal and rock body that appears when steep seams are worked where rock bursts occur at corners of set-up entries is discussed. The dynamic interaction between gas and rock pressure is assessed. Maintains that in order to avoid rock bursts at these places it is necessary to turn the protruding coal wall by 20-30 degrees towards the coal body to divert the action of shift forces. At the same time the face should also be inclined (by 10-15 degrees) to move the zones of increased stress away from the corner into the coal and rock body. Stress at workings with round cross-sections is 3-4 times lower than at square cross-sections. Recommendations are given that concern shearer loader operation (semi-spherical shape of the face), borehole drilling and water injection. Initial distance of 10-15 m between boreholes is suggested. 3 refs.

  17. Sugarcane bagasse derivative-based superabsorbent containing phosphate rock with water-fertilizer integration.

    Science.gov (United States)

    Zhong, Kang; Zheng, Xi-Liang; Mao, Xiao-Yun; Lin, Zuan-Tao; Jiang, Gang-Biao

    2012-10-01

    To improve the water-fertilizer utilization ratio and mitigate the environmental contamination, an eco-friendly superabsorbent polymer (SPA), modified sugarcane bagasse/poly (acrylic acid) embedding phosphate rock (MSB/PAA/PHR), was prepared. Ammonia, phosphate rock (PHR) and KOH were admixed in the presence of acrylic acid to provide nitrogen (N), phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent polymer (SAP) were investigated. The maximum swelling capacity in distilled water and 0.9 wt.% (weight percent) NaCl solution reached 414 gg(-1) and 55 gg(-1) (water/prepared SAP), respectively. The available NPK contents of the combination system were 15.13 mgg(-1), 6.93 mgg(-1) and 52.05 mgg(-1), respectively. Moreover, the release behaviors of NPK in the MSB/PAA/PHR were also studied. The results showed that the MSB/PAA/PHR has outstanding sustained-release plant nutrients property. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A nested observation and model approach to non linear groundwater surface water interactions.

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.

    2009-04-01

    Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential

  19. The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Sterbentz, R.A.; Tsang, C.F.

    1982-01-01

    The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground water hydrology, petroleum engineering, and other geologic fields. The general review is followed by individual summaries of each model and the main characteristics of its governing equations, numerical solutions, computer codes, validations, and applications

  20. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  1. The effects of water rock interaction and the human activities on the occurrence of hexavalent chromium in waters. The case study of the Psachna basin, Central Euboea, Greece.

    Science.gov (United States)

    Vasileiou, Eleni; Perraki, Maria; Stamatis, George; Gartzos, Efthimios

    2014-05-01

    High concentrations of heavy metals, particularly of the toxic hexavalent chromium, are recorded in surface and ground waters in many areas, and constitute one of the most severe environmental problems nowadays. The natural genesis of chromium is associated with the geological environment (peridotites and serpentintites). Chromium is structured in many minerals, mainly in spinel (e.g. chromite), in silicate minerals such as phyllosilicate serpentine minerals, chlorite, talc and chain-silicate minerals of pyroxene and amphibole group. Chromium is found in two forms in soils, waters and rocks, the hexavalent and the trivalent one. The relation between Cr(III) and Cr(VI) strongly depends on pH and oxidative properties of the area; however, in most cases, Cr(III) is the dominating variant. The natural oxidation of trivalent to hexavalent chromium can be achieved by manganese oxides, H2O2, O2 gas and oxy-hydroxides of trivalent iron. Anthropogenic factors may also cause the process of chromium's oxidation. In the Psachna basin, Central Euboea, Greece, high concentrations of hexavalent chromium were recently measured in spring- and drill- waters. In this work, we study the effect of the geological environment and of the anthropogenic activities on the water quality with emphasis on chromium. A detailed geochemical, petrological and mineralogical study of rocks and soils was carried out by means of optical microscopy, XRF, XRD and SEM/EDS. Ground and surface water samples were physically characterized and hydrochemically studied by means of ICP and AAF. Combined result evaluation indicates a natural source for the trivalent chromium in waters, attributed to the alteration of Cr-bearing minerals of the ultramafic rocks. However the oxidation of trivalent to hexavalent chromium results from anthropogenic activities, mainly from intensive agricultural activities and the extensive use of fertilizers and pesticides causing nitrate pollution in groundwater. It has been shown

  2. Study on Relationship between Dielectric Constant and Water Content of Rock-Soil Mixture by Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Daosheng Ling

    2016-01-01

    Full Text Available It is important to test water content of rock-soil mixtures efficiently and accurately to ensure both the quality control of compaction and assessment of the geotechnical engineering properties. To overcome time and energy wastage and probe insertion problems when using the traditional calibration method, a TDR coaxial test tube calibration arrangement using an upward infiltration method was designed. This arrangement was then used to study the influence of dry density, pore fluid conductivity, and soil/rock ratio on the relationship between water content and the dielectric constant of rock-soil mixtures. The results show that the empirical calibration equation forms for rock-soil mixtures can be the same as for soil materials. The effect of dry density on the calibration equation has the most significance and the influence of pore fluid conductivity can be ignored. The impact of variation of the soil/rock ratio can be neutralized by considering the effect of dry density in the calibration equation for the same kind of soil and rock. The empirical equations proposed by Zhao et al. show a good accuracy for rock-soil mixtures, indicating that the TDR method can be used to test gravimetric water content conveniently and efficiently without calibration in the field.

  3. Kinematic Interaction and Rocking Effects on the Seismic Response of Viaducts on Pile Foundations

    International Nuclear Information System (INIS)

    Dezi, F.; Carbonari, S.; Leoni, G.

    2008-01-01

    This paper is aimed at providing a contribution for a more accurate and effective design of bridges founded on piles. A numerical model is employed herein to determine the stresses and displacements in the piles taking into account soil-foundation-structure interaction. A 3D finite element approach is developed for piles and superstructure whereas the soil is assumed to be a Winkler-type medium. The method is applied to single piers representative for a class of bridges. Varying the soil layers characteristics and the pile spacing (from 3 to 5 diameters), bending and axial stresses along piles as well as the pier base shear are computed. A comparison with respect to a fixed-base model is provided. Special issues such as the contribution of the soil profile, of the local amplification and of the rocking at the foundation level are discussed. Soil-structure interaction is found to be essential for effective design of bridges especially for squat piers and soft soil

  4. Data Validation Package September 2016 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Traub, David [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States); Nguyen, Jason [US Department of Energy, Washington, DC (United States)

    2017-01-04

    The Slick Rock, Colorado, Processing Sites are referred to as the Slick Rock West Processing Site (SRK05) and the Slick Rock East Processing Site (SRK06). This annual event involved sampling both sites for a total of 16 monitoring wells and 6 surface water locations as required by the 2006 Draft Final Ground Water Compliance Action Plan for the Slick Rock, Colorado, Processing Sites (GCAP). A domestic well was also sampled at a property adjacent to the Slick Rock East site at the request of the landowner.

  5. In situ determination of the dynamic properties of thinly-layered rock to evaluate rock-structure interaction at a nuclear power plant site

    International Nuclear Information System (INIS)

    Johnson, William J.; Rizzo, Paul C.

    1988-01-01

    The presence of layers of weak sedimentary rock in a column of otherwise competent rock can significantly affect the seismic response of nuclear power plant structures due to rock-structure interaction effects. The determination of the dynamic properties of thinly-layered rock is, however, difficult. When borings are placed close enough to allow for a characterization of refracted waves, other potential problems such as the identification of clear P- and S-wave arrivals, extremely short duration of records, near-field waves, instrumental stability, and overall record resolution become magnified. Other problems such as cultural noise and signal amplitude can become critical when high resolution is required. Conventional storage oscilloscopes and seismographs are inadequate under these conditions, but modern digital recording systems with the application of stringent calibration and recording procedures can yield successful results. A case history of a high-precision cross-hole survey to a depth of 150 meters in thinly-bedded sedimentary rock at a nuclear power plant site is presented in order to illustrate the systems and procedures necessary to obtain successful results under adverse conditions. (author)

  6. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  7. Semantic modeling of plastic deformation of polycrystalline rock

    Science.gov (United States)

    Babaie, Hassan A.; Davarpanah, Armita

    2018-02-01

    We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.

  8. Fluid and rock interactions in silicate and aluminosilicate systems at elevated pressure and temperature

    Science.gov (United States)

    Davis, Mary Kathleen

    Understanding fluid chemistry in the subduction zone environment is key to unraveling the details of element transport from the slab to the surface. Solubilities of cations, such as silicon, in water strongly affect both the physical and chemical properties of supercritical metamorphic fluids. Modeling the thermodynamics of fluid-rock interactions requires therefore a profound understanding of cation dissolution and aqueous speciation. In situ Raman experiments of the silica-water, alumina-water, and alumina water systems were performed in an externally heated Bassett-type diamond-anvil cell at the Department of Geological Sciences, University of Michigan. Natural quartz samples and synthetic ruby samples were used in the experiments. Samples were loaded in the sample chamber with a water pressure medium. All experiments used rhenium gaskets of uniform thickness with a 500 mum drill hole for the sample chamber. Temperature was measured using K-type thermocouples encompassing both the upper and lower diamond anvils. Pressures are obtained on the basis of the Raman shift of the 464 cm-1 quartz mode where possible or the Raman shift of the tips of the diamond anvils according to a method developed in this work. This work characterizes the state of stress in the diamond anvil cell, which is used as the basis for the pressure calibration using only the diamond anvils. Raman measurements of silicate fluid confirm the presence of H4 SiO4 and H6Si2O7 in solution and expand the pressure range for in-situ structural observations in the silica-water system. Additionally, we identify the presence of another silica species present at mantle conditions, which occurs at long time scales in the diamond cell. This study provides the first in situ data in the alumina-water and alumina-silica-water systems at pressures and temperatures relevant to the slab environment. Al(OH) 3 appears to be the dominant form of alumina present under these conditions and in the alumina-silica-water

  9. Impact of chemical oxidation and water acidification on the mineralogical and physico-chemical properties of the Tournemire argillaceous formation

    International Nuclear Information System (INIS)

    Charpentier, D.

    2001-11-01

    The French Institute for Protection and Nuclear Safety (IPSN) has selected a site near Tournemire (France) for research programmes on deep geological waste disposal in clay-rich rock formation. A railway tunnel was built about 100 years ago through the thick indurated Toarcian argillite of the Tournemire Massif and two galleries were constructed five years ago. They are used to study the evolution of rock mineralogical composition, texture, water content and water-rock interactions in the excavated disturbed zone. Multi-scale and multi-technique investigations were carried out on the evolution of physical and mineralogical rock properties. Experiments and numerical modelling were used to predict changes due to water-rock interactions and subsequent rock mineralogy and water chemistry modifications. The argillite consists of detrital clay-rich layers and carbonate layers. Pyrites are always present in significant amounts (2 to 2.5 %). The rock presents very low porosity and very low water content (around 3 %). Leaching experiments show that the interstitial water is Na and SO 4 -rich and Cl-poor. The tunnel and galleries digging induces fracture formation. In the altered samples, the clay particles show a better orientation in the stratification plan, which increases the porosity. The oxidation effect yields to mineralogical transformation on the surfaces of the argillite: oxidation of pyrite, dissolution of calcite, dissolution of illite layers in interstratified I/S and formation of gypsum, Fe-oxi/hydroxides, celestite and jarosite. During cycles of hydration/dehydration, condensation water interacts with the argillite and quickly becomes Ca and SO 4 -rich. The local dissolution of clay particles leads to an increase of the chloride and potassium water content. These phenomena are important for the consideration of the underground work stability, especially the evolution of the water-rock equilibria during the re-hydration of the excavated disturbed zones. (author)

  10. Permeability of fissured rock - an experimental study with special regard to the water injection test

    International Nuclear Information System (INIS)

    Schneider, H.J.

    1987-01-01

    The permeability to water of fissured rock is one of the most important design parameters for many underground projects, such as, e.g. the final deposition of radioactive waste. Because the conventional water injection test according to LUGEON for the calculation of permeability to water is associated with a high degree of uncertainty, new test equipment was developed. This equipment works on the principle of the water injection tracer test and multi-level measurements, enabling detailed measurement of the flow process at injection site and in the rock. The tests were carried out in Bunter sandstone and granite. The LUGEON test concept was varied in short-term and long-term tests at identical geological boundary conditions, and with test control at constant pressure on the one hand and at constant injection volume on the other. The test results show that non-steady-state flow occurs with short injection times, whereby the range is limited to the local rock at injection site. An increasing in injection time can lead to an increase in range by a number of factors as well as to steady-state flow conditions. The permeability of the rock types investigated is inhomgeneous and anistropic as a result of the fissured structure. (orig./HP) With 114 figs., 4 tabs [de

  11. 3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties

    Science.gov (United States)

    Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao

    2018-02-01

    Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.

  12. Introduction to numerical modeling of thermohydrologic flow in fractured rock masses

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1980-01-01

    More attention is being given to the possibility of nuclear waste isolation in hard rock formations. The waste will generate heat which raises the temperature of the surrounding fractured rock masses and induces buoyancy flow and pressure change in the fluid. These effects introduce the potential hazard of radionuclides being carried to the biosphere, and affect the structure of a repository by stress changes in the rock formation. The thermohydrological and thermomechanical responses are determined by the fractures as well as the intact rock blocks. The capability of modeling fractured rock masses is essential to site characterization and repository evaluation. The fractures can be modeled either as a discrete system, taking into account the detailed fracture distributions, or as a continuum representing the spatial average of the fractures. A numerical model is characterized by the governing equations, the numerical methods, the computer codes, the validations, and the applications. These elements of the thermohydrological models are discussed. Along with the general review, some of the considerations in modeling fractures are also discussed. Some remarks on the research needs in modeling fractured rock mass conclude the paper

  13. Liquid nitrogen - water interaction experiments for fusion reactor accident scenarios

    International Nuclear Information System (INIS)

    Duckworth, R.; Murphy, J.; Pfotenhauer, J.; Corradini, M.

    2001-01-01

    With the implementation of superconducting magnets in fusion reactors, the possibility exists for the interaction between water and cryogenic systems. The interaction between liquid nitrogen and water was investigated experimentally and numerically. The rate of pressurization and peak pressure were found to be driven thermodynamically by the expansion of the water and the boil-off of the liquid nitrogen and did not have a vapor explosion nature. Since the peak pressure was small in comparison to previous work with stratified geometries, the role of the geometry of the interacting fluids has been shown to be significant. Comparisons of the peak pressure and the rate of pressurization with respect to the ratio of the liquid nitrogen mass to water mass reveal no functional dependence as was observed in the liquid helium-water experiments. A simple thermodynamic model provides a fairly good description of the pressure rise data. From the data, the model will allow one to extract the interaction area of the water. As with previous liquid helium-water interaction experiments, more extensive investigation of the mass ratio and interaction geometry is needed to define boundaries between explosive and non-explosive conditions. (authors)

  14. Numerical simulation of the time-dependent deformation behaviour of clay-stone rock mass at the Tournemire site with 2D and 3D models

    International Nuclear Information System (INIS)

    Rutenberg, M.; Lux, K.H.

    2010-01-01

    Document available in extended abstract form only. Modern repository research foregrounds physico-chemical processes (mechanical, hydraulic, thermal, chemical) and their interactions taking place in the near field and the far field of the geological system being explored. With regard to load bearing behaviour and preservation of barrier integrity, and with the general objective of complete confinement of the waste in the isolating rock zone, the focus is especially on geomechanical processes induced by excavation - including the influences on and by hydraulic, thermal, and chemical processes - as well as on thermal processes induced by heat generation of the deposited radioactive waste and their effects on mechanical and hydraulic processes. In order to improve assessments of the mechanical stability and, in case of a water saturated rock formation, of the hydraulic effects on the host rock of the repository, suitable physical models for numerical simulations of rock and rock mass behaviour have to be found and to be validated. Because of their radionuclide retention capacity, their low water permeability, and their resistance to water, clay-stone rock masses form a reasonable alternative to e.g. salt rock masses as a host rock for deep geological repositories. In past decades, various working groups at an international level have elaborated a broad experimental and theoretical understanding of the geomechanical and geo-hydraulic behaviour of clay-stones and applied this know-how to geologic repository components, e.g. in the context of engineering studies, or in the back-analysis of field tests. In this context, measurement results revealed a continuing convergence of drift walls lasting for a few years after completion of excavation. Possible reasons for this time-dependent deformation behaviour of the clay-stone rock mass might be: - viscous properties of the material from a phenomenological point of view, meaning a constant stress state leading to increasing

  15. CrowdWater - Can people observe what models need?

    Science.gov (United States)

    van Meerveld, I. H. J.; Seibert, J.; Vis, M.; Etter, S.; Strobl, B.

    2017-12-01

    CrowdWater (www.crowdwater.ch) is a citizen science project that explores the usefulness of crowd-sourced data for hydrological model calibration and prediction. Hydrological models are usually calibrated based on observed streamflow data but it is likely easier for people to estimate relative stream water levels, such as the water level above or below a rock, than streamflow. Relative stream water levels may, therefore, be a more suitable variable for citizen science projects than streamflow. In order to test this assumption, we held surveys near seven different sized rivers in Switzerland and asked more than 450 volunteers to estimate the water level class based on a picture with a virtual staff gauge. The results show that people can generally estimate the relative water level well, although there were also a few outliers. We also asked the volunteers to estimate streamflow based on the stick method. The median estimated streamflow was close to the observed streamflow but the spread in the streamflow estimates was large and there were very large outliers, suggesting that crowd-based streamflow data is highly uncertain. In order to determine the potential value of water level class data for model calibration, we converted streamflow time series for 100 catchments in the US to stream level class time series and used these to calibrate the HBV model. The model was then validated using the streamflow data. The results of this modeling exercise show that stream level class data are useful for constraining a simple runoff model. Time series of only two stream level classes, e.g. above or below a rock in the stream, were already informative, especially when the class boundary was chosen towards the highest stream levels. There was hardly any improvement in model performance when more than five water level classes were used. This suggests that if crowd-sourced stream level observations are available for otherwise ungauged catchments, these data can be used to constrain

  16. A Modeling Study of Flow Diversion and Focusing in unsaturated Fractured Rocks

    International Nuclear Information System (INIS)

    Pan, Lehua; Wu, Yu-Shu; Zhang, Keni

    2002-01-01

    This study presents a systematic approach to analyze the flow diversion and flow focusing caused by the natural flow-barrier system in the unsaturated zone (UZ) of Yucca Mountain, Nevada, under ambient steady-state flow conditions. An existing analytical solution for analyzing capillary barrier in porous media has been extended to apply to the fractured porous rock. The new analytical solutions are used to identify the critical layers and to provide the guidance for generation of a proper three-dimensional (3-D), site-scale numerical grid. A large-scale 3-D numerical model (with more than a million grid blocks) has been developed with site-specific data to analyze the major flow patterns in the mountain. Our analyses show that large-scale lateral flow could take place in the UZ under ambient conditions, as a result of capillary barriers formed at the contacts of heterogeneous rock layers. This lateral flow runs generally toward the east (in the southern part) or southeast (in the northern part), which is consistent with the dip of the layer contacts. About 90 percent of the total lateral flow is found to be conducted by only a few critical rock layers. Faults that penetrate these rock layers act as vertical capillary barriers that stop the lateral flow. The combined effect of horizontal and vertical capillary barriers resulted in reduced percolation flow through repository horizon in general but focused downward flow along those penetrating faults. The model results were found to be consistent with the field water saturation. The findings of this study are consistent with a previously published two-dimensional (2-D) analysis and recent published modeling results using field-observed Cl-data

  17. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock

  18. Iron speciation and mineral characterization of upper Jurassic reservoir rocks in the Minhe Basin, NW China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiangxian; Zheng, Guodong, E-mail: gdzhbj@mail.iggcas.ac.cn; Xu, Wang [Chinese Academy of Sciences, Key Laboratory of Petroleum Resources, Gansu Province / Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics (China); Liang, Minliang [Chinese Academy of Geological Sciences, Institute of Geomechanics, Key Lab of Shale Oil and Gas Geological Survey (China); Fan, Qiaohui; Wu, Yingzhong; Ye, Conglin [Chinese Academy of Sciences, Key Laboratory of Petroleum Resources, Gansu Province / Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics (China); Shozugawa, Katsumi; Matsuo, Motoyuki [The University of Tokyo, Graduate School of Arts and Sciences (Japan)

    2016-12-15

    Six samples from a natural outcrop of reservoir rocks with oil seepage and two control samples from surrounding area in the Minhe Basin, northwestern China were selectively collected and analyzed for mineralogical composition as well as iron speciation using X-ray powder diffraction (XRD) and Mössbauer spectroscopy, respectively. Iron species revealed that: (1) the oil-bearing reservoir rocks were changed by water-rock-oil interactions; (2) even in the same site, there was a different performance between sandstone and mudstone during the oil and gas infusion to the reservoirs; and (3) this was evidence indicating the selective channels of hydrocarbon migration. In addition, these studies showed that the iron speciation by Mössbauer spectroscopy could be useful for the study of oil and gas reservoirs, especially the processes of the water-rock interactions within petroleum reservoirs.

  19. Influence of Rock Mineralogy on Subsurface Water in Ado-Ekiti ...

    African Journals Online (AJOL)

    Nekky Umera

    Physical test were carried out on hardness, colour, odour, conductivity, pH, and turbidity. Chemical test for sodium (Na+) and potassium (K2+) was also done using experimental scientific set standard. The analysis of the sodium, potassium ions, and the conductivity of the water indicate that dissolved mineral from rocks.

  20. Rock Mechanics Forsmark. Site descriptive modelling Forsmark stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune; Fredriksson, Anders (Golder Associates AB (SE)); Roeshoff, Kennert; Karlsson, Johan (Berg Bygg Konsult AB (SE)); Hakami, Hossein (Itasca Geomekanik AB (SE)); Christiansson, Rolf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, Forsmark and Laxemar/Simpevarp, with the objective of siting a geological repository for spent nuclear fuel. The characterisation of a site is an integrated work carried out by several disciplines including geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry and surface systems. This report presents the rock mechanics model of the Forsmark site up to stage 2.2. The scope of work has included compilation and analysis of primary data of intact rock and fractures, estimation of the rock mass mechanical properties and estimation of the in situ state of stress at the Forsmark site. The laboratory results on intact rock and fractures in the target volume demonstrate a good quality rock mass that is strong, stiff and relatively homogeneous. The homogeneity is also supported by the lithological and the hydrogeological models. The properties of the rock mass have been initially estimated by two separate modelling approaches, one empirical and one theoretical. An overall final estimate of the rock mass properties were achieved by integrating the results from the two models via a process termed 'Harmonization'. Both the tensile tests, carried out perpendicular and parallel to the foliation, and the theoretical analyses of the rock mass properties in directions parallel and perpendicular to the major principal stress, result in parameter values almost independent of direction. This indicates that the rock mass in the target volume is isotropic. The rock mass quality in the target volume appears to be of high and uniform quality. Those portions with reduced rock mass quality that do exist are mainly related to sections with increased fracture frequency. Such sections are associated with deformation zones according to the geological description. The results of adjacent rock domains and fracture domains of the target

  1. Experimental Study on Water Sensitivity Difference Based on Oiliness of Porous Medium Rock

    Directory of Open Access Journals (Sweden)

    Jie Li

    2017-01-01

    Full Text Available This study presents the differences of water sensitivity experiment of porous medium rock between conventional dry core samples and oil-bearing core. The comparison was made to analyze the impact of single-phase fluid and multiphase fluid on the actual sensitivity of rock. The nuclear magnetic resonance (NMR test was carried out to reveal the distribution of oil in porous medium and the microscopic influence mechanism of oil phase. The study shows that the initial oil in place could isolate the clay from water, and then the expansion and the migration of the clay were prevented to reduce the decrease of degree of damage.

  2. U-series in Fe(III)-U(VI) rich fracture infill-materials from the oxidised cap of the U-ore deposit of Mina Fe (Salamanca, Spain): Implications for water/rock interaction processes affecting and analogue site (Matrix II project)

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Grespo, M. T.; Quejido, A. J.

    2002-01-01

    In the frame of the ENRESA natural analogue programme. The U-ore deposit of Mina Fe being studied as a natural analogue of radioactive spent fuel behaviour. In this context the knowledge of the role played by fracture minerals as scavengers of certain analogue elements. Mainly U, and the establishment of the time scale of the rock-water interaction processes controlling the uptakes or losses of U in the system are two relevant objectives

  3. A simplified model of aerosol scrubbing by a water pool overlying core debris interacting with concrete

    International Nuclear Information System (INIS)

    Powers, D.A.; Sprung, J.L.

    1993-11-01

    A classic model of aerosol scrubbing from bubbles rising through water is applied to the decontamination of gases produced during core debris interactions with concrete. The model, originally developed by Fuchs, describes aerosol capture by diffusion, sedimentation, and inertial impaction. This original model for spherical bubbles is modified to account for ellipsoidal distortion of the bubbles. Eighteen uncertain variables are identified in the application of the model to the decontamination of aerosols produced during core debris interactions with concrete by a water pool of specified depth and subcooling. These uncertain variables include properties of the aerosols, the bubbles, the water and the ambient pressure. Results are analyzed using a nonparametric, order statistical analysis that allows quantitative differentiation of stochastic and phenomenological uncertainty. The sampled values of the decontamination factors are used to construct estimated probability density functions for the decontamination factor at confidence levels of 50%, 90% and 95%. The decontamination factors for pools 30, 50, 100, 200, 300, and 500 cm deep and subcooling levels of 0, 2, 5, 10, 20, 30, 50, and 70 degrees C are correlated by simple polynomial regression. These polynomial equations can be used to estimate decontamination factors at prescribed confidence levels

  4. Calculation of the water permeability in large scale at a rock cavern in Blekinge, Sweden

    International Nuclear Information System (INIS)

    Lindblom, U.; Granero, J.J.

    1979-08-01

    A contract for KBS, Hagconsult has interpreted water leakage date for rock chambers near the harbor of Karlshamn in Southern Sweden. The storage plant consists of four separate rock chambers, each with a ca cross sectional area of 600 m 2 and a volume of 400.000 m 3 . The bedrock consists of gray, fine-grained gneiss, named ''Blekinge kustgnejs''. Through a simple potential flow analysis, utilizing homogeneous and isotropic rock conditions, the gross hydraulic conductivity of the rock mass was estimated at 1 x 10 -8 m/s. (author)

  5. The influence of stony soil properties on water dynamics modeled by the HYDRUS model

    Directory of Open Access Journals (Sweden)

    Hlaváčiková Hana

    2018-06-01

    Full Text Available Stony soils are composed of two fractions (rock fragments and fine soil with different hydrophysical characteristics. Although stony soils are abundant in many catchments, their properties are still not well understood. This manuscript presents an application of the simple methodology for deriving water retention properties of stony soils, taking into account a correction for the soil stoniness. Variations in the water retention of the fine soil fraction and its impact on both the soil water storage and the bottom boundary fluxes are studied as well. The deterministic water flow model HYDRUS-1D is used in the study. The results indicate that the presence of rock fragments in a moderate-to-high stony soil can decrease the soil water storage by 23% or more and affect the soil water dynamics. Simulated bottom fluxes increased or decreased faster, and their maxima during the wet period were larger in the stony soil compared to the non-stony one.

  6. A science plan for a comprehensive assessment of water supply in the region underlain by fractured rock in Maryland

    Science.gov (United States)

    Fleming, Brandon J.; Hammond, Patrick A.; Stranko, Scott A.; Duigon, Mark T.; Kasraei, Saeid

    2012-01-01

    by groundwater and surface-water withdrawals; (4) assess the role of streamflow and water withdrawals on the ecological integrity of streams; and (5) improve understanding of the distribution of water-quality conditions in fractured rock aquifers. To accomplish these goals, accurate data collection, review, and analysis are needed, including the study of "Research Watersheds" that can provide detailed information about the potential effects that climate change and water withdrawals may have on groundwater, streamflow, and aquatic life. The assessment planning started in 2009 and is being conducted with close interagency coordination. A Fractured Rock Aquifer Information System is currently (2012) undergoing initial development. Other major tasks that will be performed include the development of work plans for each science goal, the estimation of daily streamflow at ungaged streams, and the design and implementation of Research Watersheds. Finally, scenarios will be modeled to evaluate current water allocation permitting methodologies, investigate effects on nearby water withdrawal users caused by groundwater and surface-water withdrawals, and assess the potential impacts of climate change on water resources. Desktop and Web-based tools will be developed in order to meet the diverse research needs of the assessment. These tools, including the Fractured Rock Aquifer Information System will be continuously improved during the assessment to store relevant groundwater and surface-water data in spatially referenced databases, estimate streamflows, locate higher-yielding wells, estimate the impacts of withdrawals on nearby users, and assess the cumulative impacts of withdrawals on the aquatic resource. Tools will be developed to serve the needs of many audiences, including water resource managers, water suppliers, planners, policymakers, and other scientific investigators.

  7. Interactive Gaussian Graphical Models for Discovering Depth Trends in ChemCam Data

    Science.gov (United States)

    Oyen, D. A.; Komurlu, C.; Lanza, N. L.

    2018-04-01

    Interactive Gaussian graphical models discover surface compositional features on rocks in ChemCam targets. Our approach visualizes shot-to-shot relationships among LIBS observations, and identifies the wavelengths involved in the trend.

  8. [Effect of Different Purple Parent Rock on Removal Rates of Nitrogen, Phosphorus and Organics in Landscape Water].

    Science.gov (United States)

    Huang, Xue-jiao; Liu, Xiao-chen; Li, Zhen-lun; Shi, Wen-hao; Yang, Shan

    2015-05-01

    In order to understand the impacts of physicochemical properties of purple parent rock on the removal rates of nitrogen, phosphorus and organics in landscape water systems, four types of purple parent rocks including Peng-lai-zhen Formation (S1) , Sha-xi-miao Formation (S2) , Fei-xian-guan Formation (S3) and Sui-ning Formation (S4) , which distribute widely in Chongqing, were selected and autoclaved, and added to unsterile landscape water collected from Chong-de Lake in Southwest University, and the landscape water only was used as control. And several indicators such as total nitrogen and phosphorus and so on of every disposal were investigated periodically. The results indicated that: (1) The highest removal rates of total nitrogen, total phosphorus and Ammonia nitrogen were observed in Sl, which were 45.1%, 62.3% and 90%, respectively; the highest removal rate of COD was 94.5% in S4; the ammonia nitrogen content in the purple parent rocks was not obviously changed before and after the experiments, which indicated that the adsorption of ammonia nitrogen on purple parent rock surface was not the main reason for the decrease of ammonia nitrogen in water. (2) Arsenate had inhibitory effect on the sulfate-reducing bacteria, while copper and magnesium had promoting effect on gram-negative bacteria. (3) The microbial diversity was positively correlated to total nitrogen in water. (4) Based on the PCA analyses of microbial community structure and environmental factors, the mineral elements released from parent rock affected the structure and composition of microbial community in the test water, and then influenced the removal rates of nitrogen, phosphorus and organics in water systems.

  9. Modelling small scale infiltration experiments into bore cores of crystalline rock and break-through curves

    International Nuclear Information System (INIS)

    Hadermann, J.; Jakob, A.

    1987-04-01

    Uranium infiltration experiments for small samples of crystalline rock have been used to model radionuclide transport. The theory, taking into account advection and dispersion in water conducting zones, matrix diffusion out of these, and sorption, contains four independent parameters. It turns out, that the physical variables extracted from those of the best-fit parameters are consistent with values from literature and independent measurements. Moreover, the model results seem to differentiate between various geometries for the water conducting zones. Alpha-autoradiographies corroborate this result. A sensitivity analysis allows for a judgement on parameter dependences. Finally some proposals for further experiments are made. (author)

  10. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

    Science.gov (United States)

    Bourg, Ian C; Ajo-Franklin, Jonathan B

    2017-09-19

    The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X clay ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field

  11. Water flow in single rock joints

    International Nuclear Information System (INIS)

    Hakami, Eva

    1989-05-01

    To study the hydromechanical properties of single rock joints a technique to make transparent replicas of natural joint surfaces has been developed. Five different joint samples were replicated and studied. The aperture distribution of the joints were obtained through a measurement method provided by the transparent replicas. The principle behind the method is that a water drop with a known volume, which is placed inside a joint, will cover a certain area of the surface depending on the average size of aperture at the actual point. Flow tests were performed on the same joint replicas. The tortuousity of the flow and the velocity along single stream lines were measured using colour injections into the water flow through the joints. The equivalent hydraulic apertures determined from the flow tests where shown to be smaller than the average mechanical apertures. The velocity of the flow varies strongly between different paths over the joint depending on the spatial distribution of the apertures. The degree of matedness between the joint surfaces is an important factor influencing the channeling character of the joints. (author) (38 refs.)

  12. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: Model description

    International Nuclear Information System (INIS)

    Nikolov, Ned; Zeller, Karl F.

    2003-01-01

    A new biophysical model (FORFLUX) is presented to link ozone deposition with carbon and water cycles in terrestrial ecosystems. - A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO 2 - transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3 model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO 2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems

  13. Combining Interactive Infrastructure Modeling and Evolutionary Algorithm Optimization for Sustainable Water Resources Design

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2013-12-01

    Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.

  14. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  15. Interaction and transport of actinides in natural clay rock with consideration of humic substances and clay organic compounds

    International Nuclear Information System (INIS)

    Marquardt, C.M.

    2012-01-01

    The present report summarizes the progress and the results obtained within the BMWi financed Joint Research Project Interaction and Transport of Actinides in Natural Clay Rock with Consideration of Humic Substances and Clay Organic Compounds. The basic approach of the work was to obtain a fundamental process understanding on the molecular level of complexation and sorption reactions as well as diffusion processes. The experimental findings are supported by quantum mechanical modeling.

  16. Automatic pattern identification of rock moisture based on the Staff-RF model

    Science.gov (United States)

    Zheng, Wei; Tao, Kai; Jiang, Wei

    2018-04-01

    Studies on the moisture and damage state of rocks generally focus on the qualitative description and mechanical information of rocks. This method is not applicable to the real-time safety monitoring of rock mass. In this study, a musical staff computing model is used to quantify the acoustic emission signals of rocks with different moisture patterns. Then, the random forest (RF) method is adopted to form the staff-RF model for the real-time pattern identification of rock moisture. The entire process requires only the computing information of the AE signal and does not require the mechanical conditions of rocks.

  17. The research of breaking rock with liquid-solid two-phase jet flow

    Science.gov (United States)

    Cheng, X. Z.; Ren, F. S.; Fang, T. C.

    2018-03-01

    Abstracts. Particle impact drilling is an efficient way of breaking rock, which is mainly used in deep drilling and ultra-deep drilling. The differential equation was established based on the theory of Hertz and Newton’s second law, through the analysis of particle impact rock, the depth of particles into the rock was obtained. The mathematical model was established based on the effect of water impact crack. The research results show when water jet speed is more than 40 m/s, rock stability coefficient is more than 1.0, the rock fracture appear. Through the experimental research of particle impact drilling facilities, analysis of cuttings and the crack size which was analyzed through Scanning electron microscope consistent with the theoretical calculation, the validity of the model was verified.

  18. GSFLOW model simulations used to evaluate the impact of irrigated agriculture on surface water - groundwater interaction

    Data.gov (United States)

    Department of the Interior — Watershed-scale coupled surface water (SW) – groundwater (GW) flow modeling was used to examine changes in streamflow and SW – GW interaction resulting from...

  19. Geotechnical site assessment for underground radioactive waste disposal in rock

    International Nuclear Information System (INIS)

    Hudson, J.A.

    1986-05-01

    This report contains a state-of-the-art review of the geotechnical assessment of Land 3 and Land 4 repository sites (at 100 - 300 m depth in rock) for intermediate level radioactive waste disposal. The principles established are also valid for the disposal of low and high level waste in rock. The text summarizes the results of 21 DoE research contract reports, firstly 'in series' by providing a technical review of each report and then 'in parallel' by considering the current state of knowledge in the context of the subjects in an interaction matrix framework. 1214 references are cited. It is concluded that four further research projects are required for site assessment procedures to be developed or confirmed. These are coupled modelling, mechanical properties, water flow and establishment of 2 phase site assessment procedures. (author)

  20. Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments

    Institute of Scientific and Technical Information of China (English)

    Yihui Pang; Guofa Wang; Ziwei Ding

    2014-01-01

    In order to study the mechanism of confined water inrush from coal seam floor, the main influences on permeability in the process of triaxial seepage experiments were analyzed with methods such as laboratory experiments, theoretical analysis and mechanical model calculation. The crack extension rule and the ultimate destruction form of the rock specimens were obtained. The mechanism of water inrush was explained reasonably from mechanical point of view. The practical criterion of water inrush was put forward. The results show that the rock permeability ‘‘mutation’’ phe-nomenon reflects the differences of stress state and cracks extension rate when the rock internal crack begins to extend in large-scale. The rock ultimate destruction form is related to the rock lithology and the angle between crack and principal stress. The necessary condition of floor water inrush is that the mining pressure leads to the extension and transfixion of the crack. The sufficient condition of floor water inrush is that the confined water’s expansionary stress in normal direction and shear stress in tangential direction must be larger than the internal stress in the crack. With the two conditions satisfied at the same time, the floor water inrush accident will occur.

  1. Aerodynamic control of NASP-type vehicles through vortex manipulation. Volume 3: Wing rock experiments

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  2. Estimates of water and solute release from a coal waste rock dump in the Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Villeneuve, S A; Barbour, S L; Hendry, M J; Carey, S K

    2017-12-01

    Long term (1999 to 2014) flow and water quality data from a rock drain located at the base of a coal waste rock dump constructed in the Elk Valley, British Columbia was used to characterize the release of three solutes (NO 3 - , Cl - and SO 4 2- ) from the dump and obtain whole dump estimates of net percolation (NP). The concentrations of dump derived solutes in the rock drain water were diluted by snowmelt waters from the adjacent natural watershed during the spring freshet and reached a maximum concentration during the winter baseflow period. Historical peak baseflow concentrations of conservative ions (NO 3 - and Cl - ) increased until 2006/07 after which they decreased. This decrease was attributed to completion of the flushing of the first pore volume of water stored within the dump. The baseflow SO 4 2- concentrations increased proportionally with NO 3 - and Cl - to 2007, but then continued to slowly increase as NO 3 - and Cl - concentrations decreased. This was attributed to ongoing production of SO 4 2- due to oxidation of sulfide minerals within the dump. Based on partitioning of the annual volume of water discharged from the rock drain to waste rock effluent (NP) and water entering the rock drain laterally from the natural watershed, the mean NP values were estimated to be 446±50mm/a (area normalized net percolation/year) for the dump and 172±71mm/a for the natural watershed. The difference was attributed to greater rates of recharge in the dump from summer precipitation compared to the natural watershed where rainfall interception and enhanced evapotranspiration will increase water losses. These estimates included water moving through subsurface pathways. However, given the limitations in quantifying these flows the estimated NP rates for both the natural watershed and the waste rock dump are considered to be low, and could be much higher (e.g. ~450mm/a and ~800mm/a). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantifying Groundwater Availability in Fractured Rock Aquifers of Northern Ugandan Refugee Settlements

    Science.gov (United States)

    Frederiks, R.; Lowry, C.; Mutiibwa, R.; Moisy, S.; Thapa, L.; Oriba, J.

    2017-12-01

    In the past two years, Uganda has witnessed an influx of nearly one million refugees who have settled in the sparsely populated northwestern region of the country. This rapid population growth has created high demand for clean water resources. Water supply has been unable to keep pace with demand because the fractured rock aquifers underlying the region often produce low yielding wells. To facilitate management of groundwater resources, it is necessary to quantify the spatial distribution of groundwater. In fractured rock aquifers, there is significant spatial variability in water storage because fractures must be both connected and abundant for water to be extracted in usable quantities. Two conceptual models were evaluated to determine the groundwater storage mechanism in the fractured crystalline bedrock aquifers of northwestern Uganda where by permeability is controlled by faulting, which opens up fractures in the bedrock, or weathering, which occurs when water dissolves components of rock. In order to test these two conceptual models, geologic well logs and available hydrologic data were collected and evaluated using geostatistical and numerical groundwater models. The geostatistical analysis focused on identifying spatially distributed patterns of high and low water yield. The conceptual models were evaluated numerically using four inverse groundwater MODFLOW models based on head and estimated flux targets. The models were based on: (1) the mapped bedrock units using an equivalent porous media approach (2) bedrock units with the addition of known fault zones (3) bedrock units with predicted units of deep weathering based on surface slopes, and (4) bedrock units with discrete faults and simulated weathered zones. Predicting permeable zones is vital for water well drilling in much of East Africa and South America where there is an abundance of both fractured rock and tectonic activity. Given that the population of these developing regions is growing, the demand

  4. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  5. Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue

    Science.gov (United States)

    Charlet, Laurent; Alt-Epping, Peter; Wersin, Paul; Gilbert, Benjamin

    2017-08-01

    Clay rocks are low permeability sedimentary formations that provide records of Earth history, influence the quality of water resources, and that are increasingly used for the extraction or storage of energy resources and the sequestration of waste materials. Informed use of clay rock formations to achieve low-carbon or carbon-free energy goals requires the ability to predict the rates of diffusive transport processes for chemically diverse dissolved and gaseous species over periods up to thousands of years. We survey the composition, properties and uses of clay rock and summarize fundamental science challenges in developing confident conceptual and quantitative gas and solute transport models.

  6. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Cherkouk, A.; Liebe, M.; Luetke, L.; Moll, H.; Stumpf, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2015-07-01

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  7. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    International Nuclear Information System (INIS)

    Cherkouk, A.; Liebe, M.; Luetke, L.; Moll, H.; Stumpf, T.

    2015-01-01

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  8. NEESROCK: A Physical and Numerical Modeling Investigation of Seismically Induced Rock-Slope Failure

    Science.gov (United States)

    Applegate, K. N.; Wartman, J.; Keefer, D. K.; Maclaughlin, M.; Adams, S.; Arnold, L.; Gibson, M.; Smith, S.

    2013-12-01

    Worldwide, seismically induced rock-slope failures have been responsible for approximately 30% of the most significant landslide catastrophes of the past century. They are among the most common, dangerous, and still today, least understood of all seismic hazards. Seismically Induced Rock-Slope Failure: Mechanisms and Prediction (NEESROCK) is a major research initiative that fully integrates physical modeling (geotechnical centrifuge) and advanced numerical simulations (discrete element modeling) to investigate the fundamental mechanisms governing the stability of rock slopes during earthquakes. The research is part of the National Science Foundation-supported Network for Earthquake Engineering Simulation Research (NEES) program. With its focus on fractures and rock materials, the project represents a significant departure from the traditional use of the geotechnical centrifuge for studying soil, and pushes the boundaries of physical modeling in new directions. In addition to advancing the fundamental understanding of the rock-slope failure process under seismic conditions, the project is developing improved rock-slope failure assessment guidelines, analysis procedures, and predictive tools. Here, we provide an overview of the project, present experimental and numerical modeling results, discuss special considerations for the use of synthetic rock materials in physical modeling, and address the suitability of discrete element modeling for simulating the dynamic rock-slope failure process.

  9. Effect of Water on Coal Strength

    African Journals Online (AJOL)

    Bheema

    1. INTRODUCTION. The knowledge of the mechanisms of the interaction of water with rock and its effects on rock properties is of paramount importance in geotechnical engineering. The presence of water at site of large projects such as dams, canals, caverns, highways and underground reservoirs are always a significant ...

  10. RADIOACTIVITY OF ROCKS, SOILS AND NATURAL WATERS OF DAGESTAN AND DUE TO THEIR EFFECTIVE DOSE

    Directory of Open Access Journals (Sweden)

    A. S. Abdulaeva

    2012-01-01

    Full Text Available The results of long-term radioecological studies in the mountainous areas of Dagestan. The data of the study of territorial exposure dose, determination of natural radioactive nuclides in rocks, soils and natural waters of Dagestan. The parameters of the correlation between alpha-and beta-activity of rocks, soil, and radon in water and indoor air. This paper discusses issues related to the formation of radiation dose from natural sources of ionizing radiation in the biosphere and as a result of this review - doses to man.

  11. Measurements of thermal properties of rocks

    International Nuclear Information System (INIS)

    Kumada, Toshiaki

    2001-02-01

    The report concerns the measurement of thermal conductivity and specific heat of supplied sedimental rock B and Funyu rock. The method of measurement of these properties was done with the method which was developed at 1997 and improved much in its accuracy by the present author et al. The porosity of sedimental rock B is 0.55, which is deduced from the density of rock (the porosity deduced from the difference between dry and water filled conditions is 0.42) and the shape and size of pores in rock are much different. Its thermal conductivity is 0.238 W/mK in dry and 1.152 W/mK in water filled conditions respectively, while the thermal conductivity of bentonite is 0.238 W/mK in dry and 1.152 W/mK in water saturated conditions. The difference of thermal conductivity between dry and water saturated conditions is little difference in sedimental rock B and bentonite at same porosity. The porosity of Funyu rock is 0.26 and the shape and size of pores in the rock are uniform. Its thermal conductivity is 0.914 W/mK in dry and 1.405 W/mK in water saturated conditions, while the thermal conductivity of bentonite is 0.606 W/mK in dry and 1.591 W/mK in water saturated conditions respectively. The correlation estimating thermal conductivity of rocks was derived based on Fricke correlation by presuming rocks as a suspension. (author)

  12. New concept of tunnel boring machine: high performance using water jet and diamond wire as rock cutting technology

    Directory of Open Access Journals (Sweden)

    Rafael Pacheco dos Santos

    Full Text Available Abstract Tunnel boring machines are important tools in underground infrastructure projects. Although being well established equipment, these machinesare based on designsof more than 60 years ago and are characterized by big dimensions, enormous weight and high power consumption. Commercial aspects should be noted too. The model adopted by the TBM industry requires constant replacement of cutter discs and specific labor skills, usually offered by the same manufacturingcompany. In some cases the cost of replacement parts and technical assistance can be higher than the acquisition cost of an entire machine. These aspects are no longer compatible with the concept of sustainability that is an important aspect of currentsociety. While the technical characteristics require a large quantity of steel and several inputs, the adoptedmodel is not competitive. One alternative is looking for new technologies that break the old paradigms and allow the development of high performance concepts with lower social and environmental impact. This studydealswith this opportunity by proposing a high performance tunnel boring machine that makes use of high power water jet and diamond wire to compose a double shield cutter head. It works in two stages. In the fristone, an annular cut is executed by hydrodemolition,and in the second one, the diamond wire station slices the rock core. Only with the action of diamond wire is the rock core separated from the rock mass and the removal process is finished. A smart water jet nozzle movement system is described and non circular tunnels can be executed. The new technologies involved requirea different type of backup system, lighter and smaller. The non-existence of mechanical contact between the equipment and the rock mass at theexcavation front allows low power consumption. The advanced rate and primary excavation cost analyses can also be encountered herein. It shows that it is possible to reach an advanced rate of 174 m/day in

  13. A new generic plant growth model framework (PMF): Simulating distributed dynamic interaction of biomass production and its interaction with water and nutrients fluxes

    Science.gov (United States)

    Multsch, Sebastian; Kraft, Philipp; Frede, Hans-Georg; Breuer, Lutz

    2010-05-01

    Today, crop models have a widespread application in natural sciences, because plant growth interacts and modifies the environment. Transport processes involve water and nutrient uptake from the saturated and unsaturated zone in the pedosphere. Turnover processes include the conversion of dead root biomass into organic matter. Transpiration and the interception of radiation influence the energy exchange between atmosphere and biosphere. But many more feedback mechanisms might be of interest, including erosion, soil compaction or trace gas exchanges. Most of the existing crop models have a closed structure and do not provide interfaces or code design elements for easy data transfer or process exchange with other models during runtime. Changes in the model structure, the inclusion of alternative process descriptions or the implementation of additional functionalities requires a lot of coding. The same is true if models are being upscaled from field to landscape or catchment scale. We therefore conclude that future integrated model developments would benefit from a model structure that has the following requirements: replaceability, expandability and independency. In addition to these requirements we also propose the interactivity of models, which means that models that are being coupled are highly interacting and depending on each other, i.e. the model should be open for influences from other independent models and react on influences directly. Hence, a model which consists of building blocks seems to be reasonable. The aim of the study is the presentation of the new crop model type, the plant growth model framework, PMF. The software concept refers to an object-oriented approach, which is developed with the Unified Modeling Language (UML). The model is implemented with Python, a high level object-oriented programming language. The integration of the models with a setup code enables the data transfer on the computer memory level and direct exchange of information

  14. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  15. Reactive solute transport in an asymmetrical fracture-rock matrix system

    Science.gov (United States)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  16. Wood–water interactions

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2011-01-01

    Predicting the performance of wood for decades ahead is important when using the material for structural purposes. The performance is closely related to the hierarchical material structure of wood and the dependent interaction with water in the structure. Accurately predicting wood performance...... therefore requires an understanding of material structure from molecular to macroscopic level as well as of the impact of water molecules. The objective of this work is to investigate the performance of wood in terms of mechanical response of the material and effect of water. To understand the latter, one...... must first know in which parts of the wood structure, water is located. If parts of the water in wood are held in capillaries in the wood structure, these water molecules interact with the material differently than those held within wood cell walls. In this study, the occurrence of capillary water...

  17. Energetics of the protein-DNA-water interaction

    Directory of Open Access Journals (Sweden)

    Marabotti Anna

    2007-01-01

    Full Text Available Abstract Background To understand the energetics of the interaction between protein and DNA we analyzed 39 crystallographically characterized complexes with the HINT (Hydropathic INTeractions computational model. HINT is an empirical free energy force field based on solvent partitioning of small molecules between water and 1-octanol. Our previous studies on protein-ligand complexes demonstrated that free energy predictions were significantly improved by taking into account the energetic contribution of water molecules that form at least one hydrogen bond with each interacting species. Results An initial correlation between the calculated HINT scores and the experimentally determined binding free energies in the protein-DNA system exhibited a relatively poor r2 of 0.21 and standard error of ± 1.71 kcal mol-1. However, the inclusion of 261 waters that bridge protein and DNA improved the HINT score-free energy correlation to an r2 of 0.56 and standard error of ± 1.28 kcal mol-1. Analysis of the water role and energy contributions indicate that 46% of the bridging waters act as linkers between amino acids and nucleotide bases at the protein-DNA interface, while the remaining 54% are largely involved in screening unfavorable electrostatic contacts. Conclusion This study quantifies the key energetic role of bridging waters in protein-DNA associations. In addition, the relevant role of hydrophobic interactions and entropy in driving protein-DNA association is indicated by analyses of interaction character showing that, together, the favorable polar and unfavorable polar/hydrophobic-polar interactions (i.e., desolvation mostly cancel.

  18. Qualitative and quantitative changes in detrital reservoir rocks caused by CO2-brine-rock interactions during first injection phases (Utrillas sandstones, northern Spain)

    Science.gov (United States)

    Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.

    2016-01-01

    The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of lower-upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of CO2-rich brine during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin).Experimental CO2-rich brine was exposed to sandstone in a reactor chamber under realistic conditions of deep saline formations (P ≈ 7.8 MPa, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO2-rich brine exposure. Optical microscopy (OpM) and scanning electron microscopy (SEM) aided by optical image analysis (OIA) were used to compare the rock samples and get qualitative and quantitative information about mineralogy, texture and pore network distribution. Complementary chemical analyses were performed to refine the mineralogical information and to obtain whole rock geochemical data. Brine composition was also analyzed before and after the experiment.The petrographic study of contiguous sandstone samples (more external area of sample blocks) before and after CO2-rich brine injection indicates an evolution of the pore network (porosity increase ≈ 2 %). It is probable that these measured pore changes could be due to intergranular quartz matrix detachment and partial removal from the rock sample, considering them as the early features produced by the CO2-rich brine. Nevertheless, the whole rock and brine chemical analyses after interaction with CO2-rich brine do not present important changes in the mineralogical and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early stages to rock-block scale. These results

  19. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  20. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    International Nuclear Information System (INIS)

    Wanner, H.

    1986-04-01

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. With the objective of deriving a more realistic description of radionuclide release from the near-field, an investigation has been initiated to quantitatively specify the chemistry of the near-field. In the Swiss case, the main components of the near-field are the glass waste-matrix, a thick steel canister horizontally emplaced in a drift, and a backfill of highly compacted sodium bentonite. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. Solubility limits and speciation of important actinides and the fission product technetium in the bentonite pore water are then calculated. The model is based on available experimental data on the interaction of sodium bentonite and groundwater and represents means of extrapolation from laboratory data to repository conditions. The basic reactions between sodium bentonite and groundwater are described by an ion-exchange model for sodium, potassium, magnesium, and calcium. The model assumes equilibrium with calcite as long as sufficient carbonates remain in the bentonite, as well as quartz saturation. It is calculated that the pore water of compacted sodium bentonite saturated with Swiss Reference Groundwater will have a pH value of 9.7 and a free carbonate activity of 8x10 -4 M. The long-term situation is modelled by the assumption that the near-field of a deep repository behaves like a mixing tank. In this way, an attempt is made to account for the continuous water exchange between the near-field and the host rock. It is found that sodium bentonite will be slowly converted to calcium bentonite. This conversion is roughly estimated to be completed after 2 million years

  1. Stress Analysis and Model Test of Rock Breaking by Arc Blade Wedged Hob

    Directory of Open Access Journals (Sweden)

    Ying-chao Liu

    2016-07-01

    Full Text Available Based on rock compression-shear damage theory, the mechanical characteristics of an arc blade wedged hob were analyzed to study the rock fragmentation mechanism of hob during excavation, and rock fragmentation forecasting model of the arc blade wedged hob was improved. A spoke type cutter model which is similar to the tunnel boring machine (TBM cutter head was designed to study the rock fragmentation efficiency in different cutter spacing by adjusting the bearing sleeve size to obtain different distances between the hobs. The results show that the hob-breaking rock force mainly comes from three directions. The vertical force along the direction of the tunnel excavation, which is associated with uniaxial compressive strength of rock mass, plays a key role in the process of rock fragmentation. Field project data shows that the prediction model’s results of rock fragmentation in this paper are closer to the measured results than the results of the traditional linear cutting model. The optimal cutter spacing exists among different cutter spacings to get higher rock fragmentation rate and lower energy consumption during rock fragmentation. It is of great reference significance to design the arc blade wedged hob and enhance the efficiency of rock fragmentation in rock strata.

  2. Rocks Can Wow? Yes, Rocks Can Wow!

    Science.gov (United States)

    Hardman, Sally; Luke, Sue

    2016-01-01

    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  3. Range sections as rock models for intensity rock scene segmentation

    CSIR Research Space (South Africa)

    Mkwelo, S

    2007-11-01

    Full Text Available This paper presents another approach to segmenting a scene of rocks on a conveyor belt for the purposes of measuring rock size. Rock size estimation instruments are used to monitor, optimize and control milling and crushing in the mining industry...

  4. A thermo-elastic model for soft rocks considering structure

    International Nuclear Information System (INIS)

    He, Z.; Zhang, S.; Teng, J.; Xiong, Y.

    2017-01-01

    In the fields of nuclear waste geological deposit, geothermal energy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the super-loading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the super-loading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase. (authors)

  5. A thermo-elastoplastic model for soft rocks considering structure

    Science.gov (United States)

    He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin

    2017-11-01

    In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.

  6. Water flow characteristics of rock fractures

    International Nuclear Information System (INIS)

    Joensson, Lennart

    1990-03-01

    This report has been worked out within the project 'Groundwater flow and dispersion processes in fractured rock' supported by the National Board for Spent Nuclear Fuel (SKN) in Sweden, dnr 96/85. This project is attached to the safety problems involved in the final disposal of spent nuclear fuel. The purpose of the report is to give a survey of the knowledge of fracture characteristics and to discuss this knowledge in relation to the modelling of flow and dispersion of radioactive substances in the fractures

  7. In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock

    Directory of Open Access Journals (Sweden)

    Mateusz Janiszewski

    2018-04-01

    Full Text Available Accurate and fast numerical modelling of the borehole heat exchanger (BHE is required for simulation of long-term thermal energy storage in rocks using boreholes. The goal of this study was to conduct an in situ experiment to validate the proposed numerical modelling approach. In the experiment, hot water was circulated for 21 days through a single U-tube BHE installed in an underground research tunnel located at a shallow depth in crystalline rock. The results of the simulations using the proposed model were validated against the measurements. The numerical model simulated the BHE’s behaviour accurately and compared well with two other modelling approaches from the literature. The model is capable of replicating the complex geometrical arrangement of the BHE and is considered to be more appropriate for simulations of BHE systems with complex geometries. The results of the sensitivity analysis of the proposed model have shown that low thermal conductivity, high density, and high heat capacity of rock are essential for maximising the storage efficiency of a borehole thermal energy storage system. Other characteristics of BHEs, such as a high thermal conductivity of the grout, a large radius of the pipe, and a large distance between the pipes, are also preferred for maximising efficiency.

  8. Single well injection withdrawal tests (SWIW) in fractured rock. Some aspects on interpretation

    International Nuclear Information System (INIS)

    Neretnieks, Ivars

    2007-08-01

    Single-Well-Injection-Withdrawal, SWIW, tests are used to try to extract information on fracture apertures, sorption and diffusion properties and dispersion information in individual fractures. It is done by injecting a given amount of traced water into an isolated fracture. After a waiting period water is withdrawn from the fracture and the tracer concentration is measured. The concentration time curve is fitted to a model and the parameter values quantifying the different interaction mechanisms are determined. A number of different mechanisms influence the recovery of the tracer. One or more of the following mechanisms are considered. They include: dispersion due to velocity differences, sorption on fracture surface and on infill, diffusion in rock fragments in the fracture, diffusion between 'streamlines', diffusion into rock matrix and other stagnant water volumes, sorption kinetics and slow drift of the plume caused by the natural gradient. Many of the interaction mechanisms can influence the recovery curve in a similar way. For example, diffusion into rock matrix water and into stagnant water in the fracture adjacent to the flowing channels cannot be distinguished if only one tracer is used. Tracers with different properties can in principle be used but they will encounter different parts of the fracture, the sorbing tracer will move out less from the injection point than a nonsorbing tracer will. Diffusion and sorption in small particles in the flowpath can influence the recovery curve in a similar way as rock matrix diffusion does. Dispersion caused by diffusion between 'streamlines', Taylor dispersion, can give very different results in channels of different shapes. Such dispersion effects can be difficult to distinguish from matrix diffusion effects. Dispersion coefficients obtained in a SWIW test may have little relation to dispersion of a tracer moving from A to B. This is partly due to the different mechanisms and partly due to different time scales

  9. Single well injection withdrawal tests (SWIW) in fractured rock. Some aspects on interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Neretnieks, Ivars [Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)

    2007-08-15

    Single-Well-Injection-Withdrawal, SWIW, tests are used to try to extract information on fracture apertures, sorption and diffusion properties and dispersion information in individual fractures. It is done by injecting a given amount of traced water into an isolated fracture. After a waiting period water is withdrawn from the fracture and the tracer concentration is measured. The concentration time curve is fitted to a model and the parameter values quantifying the different interaction mechanisms are determined. A number of different mechanisms influence the recovery of the tracer. One or more of the following mechanisms are considered. They include: dispersion due to velocity differences, sorption on fracture surface and on infill, diffusion in rock fragments in the fracture, diffusion between 'streamlines', diffusion into rock matrix and other stagnant water volumes, sorption kinetics and slow drift of the plume caused by the natural gradient. Many of the interaction mechanisms can influence the recovery curve in a similar way. For example, diffusion into rock matrix water and into stagnant water in the fracture adjacent to the flowing channels cannot be distinguished if only one tracer is used. Tracers with different properties can in principle be used but they will encounter different parts of the fracture, the sorbing tracer will move out less from the injection point than a nonsorbing tracer will. Diffusion and sorption in small particles in the flowpath can influence the recovery curve in a similar way as rock matrix diffusion does. Dispersion caused by diffusion between 'streamlines', Taylor dispersion, can give very different results in channels of different shapes. Such dispersion effects can be difficult to distinguish from matrix diffusion effects. Dispersion coefficients obtained in a SWIW test may have little relation to dispersion of a tracer moving from A to B. This is partly due to the different mechanisms and partly due to

  10. Hydrogeology of rocks of low permeability: region studies

    International Nuclear Information System (INIS)

    Llamas, M.R.

    1985-01-01

    Hydrogeological regional studies on low permeability rocks are rather scarce in comparison to similar studies on normal permeability rocks. Economic and technological difficulties to develop ground water from these terrains may be the main cause of this scarcity. Several facts may indicate that these studies will increase in the near future. First, the need to supply water to the people living in underdeveloped arid zones over extensive areas of low permeability rocks. Second, the relevant role that some low permeability large groundwater basins may play in conjunctive ground and surface-water use. And last but not least the feasibility of some low permeability rock areas as sites for nuclear waste repositories. Some specific difficulties in these regional studies may be: a) intrinsic difficulties in obtaining representative water samples and measuring hydraulic heads; b) scarcity of observation and/or pumping wells; c) important hydraulic head and chemical properties variations in a vertical direction; d) old groundwater ages; this may require paleohydrological considerations to understand certain apparent anomalies. In most of these regional studies hydrogeochemical methods and modelling (flow and mass transport) may be very valuable tools. 77 references, 7 figures

  11. Depth optimization for the Korean HLW repository System within a discontinuous and saturated granitic rock mass

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Bae, Dae Seok; Choi, Jong Won

    2005-12-01

    The present study is to evaluate the material properties of the compacted bentonite, backfill material, canister cast iron insert, and the rock mass for the Korean HLW repository system. These material properties are either measured, or taken from other countries, through the evaluation of the thermal, hydraulic, and mechanical interaction behavior of a repository. After the evaluation of the material properties, the most appropriate and economical depth as well as the layout of a single layer repository is to be recommended. Material properties used for the granitic rock mass, rock joints, PWR spent fuel, disposal canister, compacted bentonite, backfill material, and ground water are the data collected domestically, and foreign data are used for some of the data not available domestically. The repository model includes a saturated granitic rock mass with joints, PWR spent fuel in a disposal canister surrounded by compacted bentonite inside a deposition hole, and backfill material in the rest of the space within a repository cavern

  12. DEM investigation of weathered rocks using a novel bond contact model

    Directory of Open Access Journals (Sweden)

    Zhenming Shi

    2015-06-01

    Full Text Available The distinct element method (DEM incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by parametric simulations. In addition, weathering has a significant impact on both stress–strain relationship and failure pattern of rocks.

  13. The global rock art database: developing a rock art reference model for the RADB system using the CIDOC CRM and Australian heritage examples

    Science.gov (United States)

    Haubt, R. A.

    2015-08-01

    The Rock Art Database (RADB) is a virtual organisation that aims to build a global rock art community. It brings together rock art enthusiasts and professionals from around the world in one centralized location through the deployed publicly available RADB Management System. This online platform allows users to share, manage and discuss rock art information and offers a new look at rock art data through the use of new technologies in rich media formats. Full access to the growing platform is currently only available for a selected group of users but it already links over 200 rock art projects around the globe. This paper forms a part of the larger Rock Art Database (RADB) project. It discusses the design stage of the RADB System and the development of a conceptual RADB Reference Model (RARM) that is used to inform the design of the Rock Art Database Management System. It examines the success and failure of international and national systems and uses the Australian heritage sector and Australian rock art as a test model to develop a method for the RADB System design. The system aims to help improve rock art management by introducing the CIDOC CRM in conjunction with a rock art specific domain model. It seeks to improve data compatibility and data sharing to help with the integration of a variety of resources to create the global Rock Art Database Management System.

  14. Physical modeling of river spanning rock structures: Evaluating interstitial flow, local hydraulics, downstream scour development, and structure stability

    Science.gov (United States)

    Collins, K.L.; Thornton, C.I.; Mefford, B.; Holmquist-Johnson, C. L.

    2009-01-01

    Rock weir and ramp structures uniquely serve a necessary role in river management: to meet water deliveries in an ecologically sound manner. Uses include functioning as low head diversion dams, permitting fish passage, creating habitat diversity, and stabilizing stream banks and profiles. Existing information on design and performance of in-stream rock structures does not provide the guidance necessary to implement repeatable and sustainable construction and retrofit techniques. As widespread use of rock structures increases, the need for reliable design methods with a broad range of applicability at individual sites grows as well. Rigorous laboratory testing programs were implemented at the U.S. Bureau of Reclamation (Reclamation) and at Colorado State University (CSU) as part of a multifaceted research project focused on expanding the current knowledge base and developing design methods to improve the success rate of river spanning rock structures in meeting project goals. Physical modeling at Reclamation is being used to measure, predict, and reduce interstitial flow through rock ramps. CSU is using physical testing to quantify and predict scour development downstream of rock weirs and its impact on the stability of rock structures. ?? 2009 ASCE.

  15. Numerical simulation of rock cutting using 2D AUTODYN

    International Nuclear Information System (INIS)

    Woldemichael, D E; Rani, A M Abdul; Lemma, T A; Altaf, K

    2015-01-01

    In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force. (paper)

  16. Rock deformation equations and application to the study on slantingly installed disc cutter

    Science.gov (United States)

    Zhang, Zhao-Huang; Meng, Liang; Sun, Fei

    2014-08-01

    At present the mechanical model of the interaction between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line with the actual rock-breaking movement of the disc cutter and impedes to some extent the research on the rock-breaking mechanism, wear mechanism and design theory. Therefore, our study focuses on the interaction between the slantingly installed disc cutter and rock, developing a model in accordance with the actual rock-breaking movement. Displacement equations are established through an analysis of the velocity vector at the rock-breaking point of the disc cutter blade; the functional relationship between the displacement parameters at the rock-breaking point and its rectangular coordinates is established through an analysis of micro-displacement vectors at the rock-breaking point, thus leading to the geometric equations of rock deformation caused by the slantingly installed disc cutter. Considering the basically linear relationship between the cutting force of disc cutters and the rock deformation before and after the leap break of rock, we express the constitutive relations of rock deformation as generalized Hooke's law and analyze the effect of the slanting installation angle of disc cutters on the rock-breaking force. This will, as we hope, make groundbreaking contributions to the development of the design theory and installation practice of TBM.

  17. Thermal Inertia of Rocks and Rock Populations

    Science.gov (United States)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  18. Interaction between rock, bentonite buffer and canister. FEM calculations of some mechanical effects on the canister in different disposal concepts

    International Nuclear Information System (INIS)

    Boergesson, L.

    1992-07-01

    An important task of the buffer of highly compacted bentonite is to offer a mechanical protection to the canister. This role has been investigated by a number of finite element calculations using the complex elasto plastic material models for the bentonite that have been developed on the basis of laboratory tests and adapted to the code ABAQUS. The following main functions and scenarios have been investigated for some different canister types and repository concepts: - The effect of the water and swelling pressure, - The effect of a rock shear perpendicular to the canister axis, - The effect of creep in the copper after a rock shear displacement, - The thermomechanical effects when an initially saturated buffer is used

  19. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    KAUST Repository

    Ajami, Hoori

    2014-03-01

    Integrated land surface-groundwater models are valuable tools in simulating the terrestrial hydrologic cycle as a continuous system and exploring the extent of land surface-subsurface interactions from catchment to regional scales. However, the fidelity of model simulations is impacted not only by the vegetation and subsurface parameterizations, but also by the antecedent condition of model state variables, such as the initial soil moisture, depth to groundwater, and ground temperature. In land surface modeling, a given model is often run repeatedly over a single year of forcing data until it reaches an equilibrium state: the point at which there is minimal artificial drift in the model state or prognostic variables (most often the soil moisture). For more complex coupled and integrated systems, where there is an increased computational cost of simulation and the number of variables sensitive to initialization is greater than in traditional uncoupled land surface modeling schemes, the challenge is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km2 subcatchment of the Ringkobing Fjord catchment in Denmark. Various measures of spin-up performance were computed for model state variables such as the soil moisture and groundwater storage, as well as for diagnostic variables such as the latent and sensible heat fluxes. The impacts of initial conditions on surface water-groundwater interactions were then explored. Our analysis illustrates that the determination of an equilibrium state depends strongly on the variable and performance measure used. Choosing an improper initialization of the model can generate simulations that lead to a misinterpretation of land surface-subsurface feedback processes and result in large biases in simulated discharge. Estimated spin

  20. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  1. A statistical model for porous structure of rocks

    Institute of Scientific and Technical Information of China (English)

    JU Yang; YANG YongMing; SONG ZhenDuo; XU WenJing

    2008-01-01

    The geometric features and the distribution properties of pores in rocks were In-vestigated by means of CT scanning tests of sandstones. The centroidal coordl-nares of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob-ability density functions upon which the random distribution of pore position, dis-tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex-amine the stress distribution, the pattern of element failure and the inoaculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.

  2. A statistical model for porous structure of rocks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The geometric features and the distribution properties of pores in rocks were in- vestigated by means of CT scanning tests of sandstones. The centroidal coordi- nates of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob- ability density functions upon which the random distribution of pore position, dis- tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex- amine the stress distribution, the pattern of element failure and the inosculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.

  3. A dissolution-diffusion sliding model for soft rock grains with hydro-mechanical effect

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2018-06-01

    Full Text Available The deformation and failure of soft rock affected by hydro-mechanical (HM effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect. Keywords: Soft rock, Hydro-mechanical (HM effect, Mineral dissolution-diffusion, Grain sliding model

  4. Effect of attractive interactions on the water-like anomalies of a core-softened model potential.

    Science.gov (United States)

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.

  5. District element modelling of the rock mass response to glaciation at Finnsjoen, central Sweden

    International Nuclear Information System (INIS)

    Rosengren, L.; Stephansson, O.

    1990-12-01

    Six rock mechanics models of a cross section of the Finnsjoen test site have been simulated by means of distinct element analysis and the computer code UDEC. The rock mass response to glaciation, deglaciation, isostatic movements and water pressure from an ice lake have been simulated. Four of the models use a boundary condition with boundary elements at the bottom and sides of the model. This gives a state of stress inside the model which agrees well with the analytical solution where the horizontal and vertical stresses are almost similar. Roller boundaries were applied to two models. This boundary condition cause zero lateral displacement at the model boundaries and the horizontal stress are always less than the vertical stress. Isostatic movements were simulated in one model. Two different geometries of fracture Zone 2 were simulated. Results from modelling the two different geometries show minor changes in stresses, displacements and failure of fracture zones. Under normal pore pressure conditions in the rock mass the weight of the ice load increases the vertical stresses in the models differ depending on the boundary condition. An ice thickness of 3 km and 1 km and an ice wedge of 1 km thickness covering half the top surface of the model have been simulated. For each loading sequence of the six models a complete set of data about normal stress, stress profiles along selected sections, displacements and failure of fracture zones are presented. Based on the results of this study a protection zone of about 100 m width from the outer boundary of stress discontinuity to the repository location is suggested. This value is based on the result that the stress disturbance diminishes at this distance from the outer boundary of the discontinuity. (25 refs.) (authors)

  6. Rock engineering in Finland

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Contains a large collection of short articles concerned with tunnels and underground caverns and their construction and use. The articles are grouped under the following headings: use of the subsurface space; water supply; waste water services; energy management (includes articles on power stations, district heating and oil storage and an article on coal storage); multipurpose tunnels; waste disposal; transport; shelters; sporting and recreational amenities located in rock caverns; storage facilities; industrial, laboratory, and service facilities; rock foundations; tourism and culture; utilization of rock masses; research on the disposal of nuclear waste; training and research in the field of rock engineering; site investigation techniques; design of structures in rock; construction; the environment and occupational safety; modern equipment technology; underground space in Helsinki.

  7. Heat-energy storage through semi-opened circulation into low-permeability hard-rock aquifers

    Science.gov (United States)

    Pettenati, Marie; Bour, Olivier; Ausseur, Jean-Yves; de Dreuzy, Jean-Raynald; de la Bernardie, Jérôme; Chatton, Eliot; Lesueur, Hervé; Bethencourt, Lorine; Mougin, Bruno; Aquilina, Luc; Koch, Florian; Dewandel, Benoit; Boisson, Alexandre; Mosser, Jean-François; Pauwels, Hélène

    2016-04-01

    In low-permeability environments, the solutions of heat storage are still limited to the capacities of geothermal borehole heat exchangers. The ANR Stock-en-Socle project explores the possibilities of periodic storage of sensitive heat1 in low-permeability environments that would offer much better performance than that of borehole heat exchangers, especially in terms of unit capacity. This project examines the storage possibilities of using semi-open water circulation in typically a Standing Column Well (SCW), using the strong heterogeneity of hard-rock aquifers in targeting the least favorable areas for water resources. To solve the main scientific issues, which include evaluating the minimum level of permeability required around a well as well as its evolution through time (increase and decrease) due to water-rock interaction processes, the study is based on an experimental program of fieldwork and modelling for studying the thermal, hydraulic and geochemical processes involved. This includes tracer and water-circulation tests by injecting hot water in different wells located in distinct hard-rock settings (i.e. granite and schist) in Brittany, Ploemeur (H+ observatory network) and Naizin. A numerical modelling approach allows studying the effects of permeability structures on the storage and heat-recovery capacities, whereas the modelling of reactive transfers will provide an understanding of how permeability evolves under the influence of dissolution and precipitation. Based on the obtained results, technical solutions will be studied for constructing a well of the SCW type in a low-permeability environment. This work will be completed by a technical and economic feasibility study leading to an investment and operations model. This study aims to describe the suitability of SCW storage for shallow geothermal energy. In order to reach these objectives, Stock-en-Socle is constructed around a public/private partnership between two public research organizations, G

  8. Study of rock-drilling fluid interactions that contribute for the borehole instability; Estudo das interacoes rocha-fluido de perfuracao que contribuem para a instabilidade dos pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Cleysson C.; Nascimento, Regina S.V. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Sa, Carlos H. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In this work it was developed a new three points flexural mechanical test submersed for the simultaneous evaluation of the mechanical and chemical nature processes involved in the rock/drilling fluid interactions, which contribute for the borehole instability. The utilized fluids were air, mineral oil, distilled water and water solutions of non hydrolized polyacrylamide, poly(diallyldimethylammonium chloride) with different molecular weights, and the copolymer with acrylamide. Cuttings rolling tests were utilized to help in the understanding of the mechanisms involved in the shale's inhibition process. The results suggest that shale/polymer interactions are responsible for the shale's mechanical resistance, since the quantity of water and total carbon content of the shales were the same, after the test, independently of the inhibitor used. The results also suggest that the shale instability depends on the amount of adsorbed water, since independently of the inhibitor utilized, the quantity of adsorbed water was the same as that obtained with the shale/water system. (author)

  9. Isotope shifting capacity of rock

    International Nuclear Information System (INIS)

    Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1980-01-01

    Any oxygen isotope shifted rock volume exactly defines a past throughput of water. An expression is derived that relates the throughput of an open system to the isotope shift of reservoir rock and present-day output. The small isotope shift of Ngawha reservoir rock and the small, high delta oxygen-18 output are best accounted for by a magmatic water source

  10. A physico-chemical characterisation technique for determining the pore-water chemistry in argillaceous rocks

    International Nuclear Information System (INIS)

    Baeyens, B.; Bradbury, M.H.

    1991-09-01

    A prerequisite for carrying out credible sorption studies is the definition of an aqueous phase composition which is in equilibrium with the solid phase. Experimental methods and data analysis procedures are described which enable an equilibrium water composition to be produced for argillaceous rocks which is not dependent on liquid to solid (L:S) ratios. Since a Valanginian marl formation is under consideration by Nagra as a potential rock for the disposal of low and short-lived medium level radioactive waste in Switzerland, samples of this material were chosen for this investigation. Aqueous phase and nickel ethylenediamine extraction experiments were carried out at different L:S ratios under controlled atmosphere conditions (P CO 2 =10 -2 bar, O 2 ≤ 5 ppm ). The results from these tests and petrographical examinations were combined to define the system in terms of the physico-chemical characteristics of the clay mineral component (CEC and cation occupancies) and the identities of highly soluble and solubility limited phases in the marl. The geochemical code PHREEQE was used in conjunction with the Gapon equations to calculate the pore water composition. This work clearly showed that pore water chemistries obtained from aqueous extracts alone may lead to an arbitrary water chemistry in argillaceous rock systems, particularly with respect to ionic composition and ionic strength, which may have important consequences for radionuclide speciation and sorption studies. (author) 11 figs., 12 tabs., 25 refs

  11. Bolt-Grout Interactions in Elastoplastic Rock Mass Using Coupled FEM-FDM Techniques

    Directory of Open Access Journals (Sweden)

    Debasis Deb

    2010-01-01

    Full Text Available Numerical procedure based on finite element method (FEM and finite difference method (FDM for the analysis of bolt-grout interactions are introduced in this paper. The finite element procedure incorporates elasto-plastic concepts with Hoek and Brown yield criterion and has been applied for rock mass. Bolt-grout interactions are evaluated based on finite difference method and are embedded in the elasto-plastic procedures of FEM. The experimental validation of the proposed FEM-FDM procedures and numerical examples of a bolted tunnel are provided to demonstrate the efficacy of the proposed method for practical applications.

  12. Hexagonal boron nitride and water interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080 (United States)

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  13. Effluents from a waste rock deposit of a former uranium mine in Saxony/Germany - Mass flow balance of water and dissolved solids

    International Nuclear Information System (INIS)

    Biehler, D.

    2002-01-01

    Soon after uranium mining had ceased in eastern Germany in 1990, work for remediation of several mining sites began. The Wismut GmbH, owner of the Mine of Dresden-Gittersee's waste rock dump, introduced the concept of reducing the impact to the environment via water and air paths by implementing a multi-layer soil cover. The deposit consists mainly of waste rock (clastic sediments of Doehlener Becken, deep metamorphic rocks) but also of low-grade ore (U-rich coal) and tailing materials. At the time when remediation started, the effluents completely infiltrated the underground. Because of previous surface exfiltration activities, they were already known to be very rich in dissolved solids, especially in sulphate and uranium. As demanded by the state authorities, the owner funded a vast hydrogeological study of the site. In testing the efficiency of surface sealing, the study indicated a mass flow balance of water and dissolved solids for the current situation, and predicted emissions into the water path which would occur after realisation of the proposed soil cover. The field investigation program consisted of: measurements of flow, of concentrations of dissolved solids (esp. U and Ra-226) and of contents of environmental isotopes in precipitation, surface runoff, seepage water and groundwater in the current condition of the dump; the study of waste rock material (geochemistry, mineralogy); waste rock material elution tests; underground investigation by drilling boreholes up to 270 m in depth. The resulting data allowed for: a hydrogeological conceptual model of the site; a consistent mass flow balance for the current condition of the dump; a prediction of concentrations in groundwater resulting after the realisation of a soil cover. The predictions show that the concentrations of dissolved solids in the contaminated groundwater would be significantly decreased. Furthermore it would be possible to reach the standards for drinking water with respect to uranium

  14. Modeling stress wave propagation in rocks by distinct lattice spring model

    Directory of Open Access Journals (Sweden)

    Gaofeng Zhao

    2014-08-01

    Full Text Available In this paper, the ability of the distinct lattice spring model (DLSM for modeling stress wave propagation in rocks was fully investigated. The influence of particle size on simulation of different types of stress waves (e.g. one-dimensional (1D P-wave, 1D S-wave and two-dimensional (2D cylindrical wave was studied through comparing results predicted by the DLSM with different mesh ratios (lr and those obtained from the corresponding analytical solutions. Suggested values of lr were obtained for modeling these stress waves accurately. Moreover, the weak material layer method and virtual joint plane method were used to model P-wave and S-wave propagating through a single discontinuity. The results were compared with the classical analytical solutions, indicating that the virtual joint plane method can give better results and is recommended. Finally, some remarks of the DLSM on modeling of stress wave propagation in rocks were provided.

  15. VNIR spectral modeling of Mars analogue rocks: first results

    Science.gov (United States)

    Pompilio, L.; Roush, T.; Pedrazzi, G.; Sgavetti, M.

    Knowledge regarding the surface composition of Mars and other bodies of the inner solar system is fundamental to understanding of their origin, evolution, and internal structures. Technological improvements of remote sensors and associated implications for planetary studies have encouraged increased laboratory and field spectroscopy research to model the spectral behavior of terrestrial analogues for planetary surfaces. This approach has proven useful during Martian surface and orbital missions, and petrologic studies of Martian SNC meteorites. Thermal emission data were used to suggest two lithologies occurring on Mars surface: basalt with abundant plagioclase and clinopyroxene and andesite, dominated by plagioclase and volcanic glass [1,2]. Weathered basalt has been suggested as an alternative to the andesite interpretation [3,4]. Orbital VNIR spectral imaging data also suggest the crust is dominantly basaltic, chiefly feldspar and pyroxene [5,6]. A few outcrops of ancient crust have higher concentrations of olivine and low-Ca pyroxene, and have been interpreted as cumulates [6]. Based upon these orbital observations future lander/rover missions can be expected to encounter particulate soils, rocks, and rock outcrops. Approaches to qualitative and quantitative analysis of remotely-acquired spectra have been successfully used to infer the presence and abundance of minerals and to discover compositionally associated spectral trends [7-9]. Both empirical [10] and mathematical [e.g. 11-13] methods have been applied, typically with full compositional knowledge, to chiefly particulate samples and as a result cannot be considered as objective techniques for predicting the compositional information, especially for understanding the spectral behavior of rocks. Extending the compositional modeling efforts to include more rocks and developing objective criteria in the modeling are the next required steps. This is the focus of the present investigation. We present results of

  16. Competition on the rocks: community growth and tessellation.

    Directory of Open Access Journals (Sweden)

    Espen Jettestuen

    Full Text Available Crustose lichen communities on rocks exhibit fascinating spatial mosaics resembling political maps of nations or municipalities. Although the establishment and development of biological populations are important themes in ecology, our understanding of the formation of such patterns on the rocks is still in its infancy. Here, we present a novel model of the concurrent growth, establishment and interaction of lichens. We introduce an inverse technique based on Monte Carlo simulations to test our model on field samples of lichen communities. We derive an expression for the time needed for a community to cover a surface and predict the historical spatial dynamics of field samples. Lichens are frequently used for dating the time of exposure of rocks in glacial deposits, lake retreats or rock falls. We suggest our method as a way to improve the dating.

  17. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of the theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Staub, Isabelle; Fredriksson, Anders; Outters, Nils [Golder Associates AB, Uppsala (Sweden)

    2002-05-01

    In the purpose of studying the possibilities of a Deep Repository for spent fuel, the Swedish Nuclear and Fuel Management Company (SKB) is currently planning for Site Investigations. Data collected from these Site Investigations are interpreted and analysed to achieve the full Site Description, which is built up of models from all the disciplines that are considered of importance for the Site Description. One of these models is the Rock Mechanical Descriptive Model,which would be developed for any site in hard crystalline rock, and is a combination and evaluation of the characterisation of rock mass by means of empirical relationships and a theoretical approach based on numerical modelling. The present report describes the theoretical approach. The characterisation of the mechanical properties of the rock mass, viewed as a unit consisting of intact rock and fractures, is achieved by numerical simulations with following input parameters: initial stresses, fracture geometry, distribution of rock mechanical properties, such as deformation and strength parameters, for the intact rock and for the fractures. The numerical modelling was performed with the two-dimensional code UDEC, and the rock block models were generated from 2D trace sections extracted from the 3D Discrete Fracture Network (DFN) model. Assumptions and uncertainties related to the set-up of the model are considered. The numerical model was set-up to simulate a plain strain-loading test. Different boundary conditions were applied on the model for simulating stress conditions (I) in the undisturbed rock mass, and (II) at the proximity of a tunnel. In order to assess the reliability of the model sensitivity analyses have been conducted on some rock block models for defining the dependency of mechanical properties to in situ stresses, the influence of boundary conditions, rock material and joint constitutive models used to simulate the behaviour of intact rock and fractures, domain size and anisotropy. To

  18. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of the theoretical approach

    International Nuclear Information System (INIS)

    Staub, Isabelle; Fredriksson, Anders; Outters, Nils

    2002-05-01

    In the purpose of studying the possibilities of a Deep Repository for spent fuel, the Swedish Nuclear and Fuel Management Company (SKB) is currently planning for Site Investigations. Data collected from these Site Investigations are interpreted and analysed to achieve the full Site Description, which is built up of models from all the disciplines that are considered of importance for the Site Description. One of these models is the Rock Mechanical Descriptive Model,which would be developed for any site in hard crystalline rock, and is a combination and evaluation of the characterisation of rock mass by means of empirical relationships and a theoretical approach based on numerical modelling. The present report describes the theoretical approach. The characterisation of the mechanical properties of the rock mass, viewed as a unit consisting of intact rock and fractures, is achieved by numerical simulations with following input parameters: initial stresses, fracture geometry, distribution of rock mechanical properties, such as deformation and strength parameters, for the intact rock and for the fractures. The numerical modelling was performed with the two-dimensional code UDEC, and the rock block models were generated from 2D trace sections extracted from the 3D Discrete Fracture Network (DFN) model. Assumptions and uncertainties related to the set-up of the model are considered. The numerical model was set-up to simulate a plain strain-loading test. Different boundary conditions were applied on the model for simulating stress conditions (I) in the undisturbed rock mass, and (II) at the proximity of a tunnel. In order to assess the reliability of the model sensitivity analyses have been conducted on some rock block models for defining the dependency of mechanical properties to in situ stresses, the influence of boundary conditions, rock material and joint constitutive models used to simulate the behaviour of intact rock and fractures, domain size and anisotropy. To

  19. Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity

    OpenAIRE

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community is consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks ...

  20. Pemodelan Penyebaran Batuan Potensial Pembentuk Asam Pada Kawasan Penambangan Batubara Tambang Terbuka Di Muara Lawa, Kabupaten Kutai Barat, Kalimantan Timur (Modeling Distribution of Rock Potential Acid Forming in Open Pit Coal Mining Areas)

    OpenAIRE

    Devy, Shalaho Dina; Hendrayana, Heru; Putra, Dony Prakasa Eka; Sugiharto, Eko

    2016-01-01

    The impact of open pit coal mining is the emergence of Acid Mine Water (AMD) around the mining environment that affect the quality of the mine water, aquatic biota, water and soil quality. Therefore, early information to anticipate these impacts is the identification potential acid rock and distribution model as a guide for the mining plan. Geological and geochemical study of rocks is important in knowing the distribution of rock Potential Acid Formning (PAF) and Non Acid Forming (NAF). Minin...

  1. Research and development on groundwater dating. Part 6. Extraction of pore water from low permeability rocks

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Oyama, Takahiro; Higashihara, Tomohiro; Hasegawa, Takuma; Kitsukawa, Takashi

    2007-01-01

    The squeezing method is one of the most promising methods to obtain the pore water from rock cores. However, in previous studies, ion composition of squeezed water was found to have dependency on squeezing pressure. In this study, squeezing method was applied to both natural and artificial standard samples and concentration of Cl ion in squeezed water and basal spacing of smectite included in samples were investigated as a function of squeezing pressure. Furthermore, bentonite sample was prepared by suspending the bentonite powder in NaCl solution and supplied for squeezing. The relation between concentration of Cl ion in squeezed water and the amount of inter-layer water squeezed from smectite was discussed quantitatively, for this bentonite sample. The concentration of Cl ion in squeezed water was found to decrease with increase of squeezing pressure. The inter-layer water from smectite is assumed to be one of the most effective cause of the decrease of Cl ion with increase of squeezing pressure, because of following 3 reasons; 1) Basal spacing of smectite included in rocks decreased with increase of squeezing pressure, 2) The decrease of Cl ion strongly depended on the amount of smectite included in rocks and no decrease was observed in glass filter sample in which no smectite is included, 3) The agreement between concentration of Cl estimated from obtained pore water and that calculated with basal spacing and amount of pore water was obtained in bentonite sample. These results indicated squeezing pressure should be limited so that basal spacing of smectite do not change during squeezing to estimate the concentration of Cl in pore water precisely. (author)

  2. Hydraulic interaction of engineered and natural barriers. Task 8b-8d and 8f of SKB

    Energy Technology Data Exchange (ETDEWEB)

    Kroehn, Klaus-Peter

    2017-04-15

    The Task Force on Groundwater Flow and Transport of Solutes (TF GWFTS) and the Task Force on Engineered Barrier Systems (TF EBS) both established by the Svensk Kaernbraenslehantering AB (SKB) have defined the so-called Task 8 to investigate the hydraulic interaction of the granitic host rock at the Hard Rock Laboratory at Aespoeand the bentonite clay buffer in a deep geological repository. Task 8 a-d ran parallel to the related BRIE-project (Bentonite Rock Interaction Experiment) at the AespoeHard Rock Laboratory (HRL). The BRIE-project was concerned with an in-situ test where two boreholes were drilled from a tunnel floor and filled with compacted bentonite. Task 8 encompassed obviously characterizing the groundwater flow field as well as simulating bentonite re-saturation. Described here is an approach to solve the problem by decoupling both aspects. Groundwater flow was simplified to a steady-state single-phase flow model including discretely described large fractures. Modelling was performed with the code d{sup 3}f. Outflow data from the rock was then assigned to the inflow boundary of the alternative re-saturation model realized in the experimental code VIPER. With increasing knowledge about the site the upcoming data and the accompanying flow modelling indicated an inherent problem with predictions for the site and borehole characterization. Specific (deterministic) answers were sought from a flow domain that contains a relevant water-bearing fracture network which is only known in terms of geostatistics. While the overall flow regime could be represented in the final model the results were therefore not detailed below the scale of the boreholes. Early data from the flow model had indicated that water uptake of the bentonite at the bentonite-matrix contact would occur under restricted access to water. This had not been considered in laboratory tests up to then and also not in VIPER. A new appropriate boundary condition was developed and implemented. The time

  3. Electromagnetic emission graded warning model and its applications against coal rock dynamic collapses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, E.Y.; He, X.Q.; Wei, J.P.; Nie, B.S.; Song, D.Z. [China University of Mining & Technology, Xuzhou (China)

    2011-06-15

    Dynamic collapses of deeply mined coal rocks are severe threats to miners. In order to predict the collapses more accurately using electromagnetic emission (EME), we established a loaded coal rock EME electromechanical coupling model based on statistical damage mechanics. By using it, we numerically simulated both the accumulative pulse and strain ratios. We further improved the model with the Weibull pattern parameter, which has important effects on simulated results and can be applied to judge coal's homogeneity, and determined the pattern parameter and its value domain. Based on the revised model and the characteristics of coal rock deformation and fracture, we setup EME graded warning criteria against coal rock dynamic collapses by determining static critical coefficient and dynamic trend coefficient. We have applied this model to predict and deal with coal and gas outburst and rock burst occurring at Xie I and Taoshan Mines, respectively. All these verifications show that the model has many advantages and provides more sensitive and accurate warning for dynamic collapses.

  4. Do rock fragments participate to plant water and mineral nutrition?

    Science.gov (United States)

    Korboulewsky, Nathalie; Tétégan, Marion; Besnault, Adeline; Cousin, Isabelle

    2010-05-01

    Rock fragments modify soil properties, and can be a potential reservoir of water. Besides, recent studies showed that this coarse soil fraction is chemically active, release nutrients, and could therefore be involved in biogeochemical nutrient cycles. However, these studies carried out on rock fragments, crushed pebbles or mineral particles do not answer the question whether the coarse soil fraction has significant nutritive functions. Only a couple of studies were conducted on plants, one on grass and the other on coniferous seedlings. This present work attempted to assess if pebbles may act as water and nutrient sources for poplar saplings, a deciduous species. Remoulded soils were set up in 5 L-pots with three percentages of pebbles: 0, 20, and 40% in volume. We used, as substrate either fine earth or sand (quartz), and as rock fragments either calcareous or inert pebbles (quartz). Additional modalities were settled with sand mixed with 20 and 40% pebbles enriched with nutrients. Both fine earth and calcareous pebbles were collected from the Ap horizon of a calcareous lacustrine limestone silty soil located in the central region of France. After cleaning, all pebbles were mixed to reach a bulk density in pots of 1.1 g/cm3 for the fine earth and 1.5 g/cm3 for the sand. Ten replicates were settled per modality, and one cutting of Populus robusta was planted in each. The experiment was conducted under controlled conditions. All pots were saturated at the beginning of the experiment, then irrigated by capillarity and controlled to maintain a moderate water stress. Growth and evapotranspiration were followed regularly, while water stress status was measured by stomatal conductivity every day during two drying periods of 10 days. After three months, plants were collected, separated in below- and above-ground parts for biomass and cation analysis (Ca, Mg, K). Results showed that pebbles can participate to plant nutrition, but no reduction of water stress was observed

  5. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in many countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. One of the key questions about radionuclide diffusion and retention is to know the chemistry and chemical reactions and sorption processes that will occur in the rock and their effects on radionuclide mobility. In this context, the knowledge of the pore water chemistry is essential for performance assessment purposes. This information allows to establish a reliable model for the main water-rock interactions, which control the physico-chemical parameters and the chemistry of the major elements of the system. An important issue in order to model the pore water chemistry in clayey media is to determine the respective volume accessible to cations and anions, i.e, the amount of water actually available for chemical reactions/solute transport. This amount is usually referred as accessible porosity or geochemical porosity. By using the anion inventories, i.e. the anion content obtained from aqueous leaching, and assuming that all Cl - , Br - and SO4 2- leached in the aqueous extracts originates from pore water, the concentration of a conservative ion can be converted into the real pore water concentration if the accessible porosity is known. In this work, the accessible porosity or geochemical porosity has been determined in core samples belonging to four different formations: Boom Clay from Hades URL (Belgium, BE), Opalinus Clay from Mont Terri (Switzerland, CH), and Callovo-Oxfordian argillite from Bure URL (France, FR). The geochemical or chloride porosity was defined as the ratio between the pore water volume containing Cl-bearing pore water and the total volume of a sample

  6. Development of the interactive model between Component Cooling Water System and Containment Cooling System using GOTHIC

    International Nuclear Information System (INIS)

    Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong

    2006-01-01

    In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits

  7. Phosphate rock costs, prices and resources interaction.

    Science.gov (United States)

    Mew, M C

    2016-01-15

    This article gives the author's views and opinions as someone who has spent his working life analyzing the international phosphate sector as an independent consultant. His career spanned two price hike events in the mid-1970's and in 2008, both of which sparked considerable popular and academic interest concerning adequacy of phosphate rock resources, the impact of rising mining costs and the ability of mankind to feed future populations. An analysis of phosphate rock production costs derived from two major industry studies performed in 1983 and 2013 shows that in nominal terms, global average cash production costs increased by 27% to $38 per tonne fob mine in the 30 year period. In real terms, the global average cost of production has fallen. Despite the lack of upward pressure from increasing costs, phosphate rock market prices have shown two major spikes in the 30 years to 2013, with periods of less volatility in between. These price spike events can be seen to be related to the escalating investment cost required by new mine capacity, and as such can be expected to be repeated in future. As such, phosphate rock price volatility is likely to have more impact on food prices than rising phosphate rock production costs. However, as mining costs rise, recycling of P will also become increasingly driven by economics rather than legislation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Continuous Long-Term Modeling of Shallow Groundwater-Surface Water Interaction: Implications for a Wet Prairie Restoration

    Science.gov (United States)

    Wijayarathne, D. B.; Gomezdelcampo, E.

    2017-12-01

    The existence of wet prairies is wholly dependent on the groundwater and surface water interaction. Any process that alters this interaction has a significant impact on the eco-hydrology of wet prairies. The Oak Openings Region (OOR) in Northwest Ohio supports globally rare wet prairie habitats and the precious few remaining have been drained by ditches, altering their natural flow and making them an unusually variable and artificial system. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model from the US Army Engineer Research and Development Center was used to assess the long-term impacts of land-use change on wet prairie restoration. This study is the first spatially explicit, continuous, long-term modeling approach for understanding the response of the shallow groundwater system of the OOR to human intervention, both positive and negative. The GSSHA model was calibrated using a 2-year weekly time series of water table elevations collected with an array of piezometers in the field. Basic statistical analysis indicates a good fit between observed and simulated water table elevations on a weekly level, though the model was run on an hourly time step and a pixel size of 10 m. Spatially-explicit results show that removal of a local ditch may not drastically change the amount of ponding in the area during spring storms, but large flooding over the entire area would occur if two other ditches are removed. This model is being used by The Nature Conservancy and Toledo Metroparks to develop different scenarios for prairie restoration that minimize its effect on local homeowners.

  9. Interaction of thermal and mechanical processes in steep permafrost rock walls: A conceptual approach

    Science.gov (United States)

    Draebing, D.; Krautblatter, M.; Dikau, R.

    2014-12-01

    Degradation of permafrost rock wall decreases stability and can initiate rock slope instability of all magnitudes. Rock instability is controlled by the balance of shear forces and shear resistances. The sensitivity of slope stability to warming results from a complex interplay of shear forces and resistances. Conductive, convective and advective heat transport processes act to warm, degrade and thaw permafrost in rock walls. On a seasonal scale, snow cover changes are a poorly understood key control of the timing and extent of thawing and permafrost degradation. We identified two potential critical time windows where shear forces might exceed shear resistances of the rock. In early summer combined hydrostatic and cryostatic pressure can cause a peak in shear force exceeding high frozen shear resistance and in autumn fast increasing shear forces can exceed slower increasing shear resistance. On a multiannual system scale, shear resistances change from predominantly rock-mechanically to ice-mechanically controlled. Progressive rock bridge failure results in an increase of sensitivity to warming. Climate change alters snow cover and duration and, hereby, thermal and mechanical processes in the rock wall. Amplified thawing of permafrost will result in higher rock slope instability and rock fall activity. We present a holistic conceptual approach connecting thermal and mechanical processes, validate parts of the model with geophysical and kinematic data and develop future scenarios to enhance understanding on system scale.

  10. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  11. An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile

    Science.gov (United States)

    Janke, Jason R.; Ng, Sam; Bellisario, Antonio

    2017-11-01

    An inventory of firn fields, glaciers, debris-covered glaciers, and rock glaciers was conducted in the Aconcagua River Basin of the semiarid Andes of central Chile. A total of 916 landforms were identified, of which rock glaciers were the most abundant (669) and occupied the most total area. Glaciers and debris-covered glaciers were less numerous, but were about five times larger in comparison. The total area occupied by glaciers and debris-covered glaciers was roughly equivalent to the total area of rock glaciers. Debris-covered glaciers and rock glaciers were subcategorized into six ice-content classes based on interpretation of surface morphology with high-resolution satellite imagery. Over 50% of rock glaciers fell within a transitional stage; 85% of debris-covered glaciers were either fully covered or buried. Most landforms occupied elevations between 3500 and 4500 m. Glaciers and firn occurred at higher elevations compared to rock glaciers and debris-covered glaciers. Rock glaciers had a greater frequency in the northern part of the study area where arid climate conditions exist. Firn and glaciers were oriented south, debris-covered glaciers west, and rock glaciers southwest. An analysis of water contribution of each landform in the upper Andes of the Aconcagua River Basin was conducted using formulas that associate the size of the landforms to estimates of water stored. Minimum and maximum water storage was calculated based on a range of debris to ice content ratios for debris-covered glaciers and rock glaciers. In the Aconcagua River Basin, rock glaciers accounted for 48 to 64% of the water stored within the landforms analyzed; glaciers accounted for 15 to 25%; debris-covered glaciers were estimated at 15 to 19%; firn fields contained only about 5 to 8% of the water stored. Expansion of agriculture, prolonged drought, and removal of ice-rich landforms for mining have put additional pressure on already scarce water resources. To develop long

  12. Thermal conductivity of sedimentary rocks as function of Biot’s coefficient

    DEFF Research Database (Denmark)

    Orlander, Tobias; Pasquinelli, Lisa; Asmussen, J.J.

    2017-01-01

    A theoretical model for prediction of effective thermal conductivity with application to sedimentary rocks is presented. Effective thermal conductivity of sedimentary rocks can be estimated from empirical relations or theoretically modelled. Empirical relations are limited to the empirical...... conductivity of solids is typically orders of magnitude larger than that of fluids, grain contacts constituting the solid connectivity governs the heat transfer of sedi-mentary rocks and hence should be the basis for modelling effective thermal con-ductivity. By introducing Biot’s coefficient, α, we propose (1...... – α) as a measure of the solid connectivity and show how effective thermal conductivity of water saturated and dry sandstones can be modelled....

  13. Uranium-Series Constraints on Subrepository Water Flow at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    L.A. Neymark; J.B. Paces; S.J. Chipera; D.T. Vaniman

    2006-01-01

    Mineral abundances and whole-rock chemical and uranium-series isotopic compositions were measured in unfractured and rubble core samples from borehole USWSD-9 in the same layers of variably zeolitized tuffs that underlie the proposed nuclear waste repository at Yucca Mountain, Nevada. Uranium concentrations and isotopic compositions also were measured in pore water from core samples from the same rock units and rock leachates representing loosely bound U adsorbed on mineral surfaces or contained in readily soluble secondary minerals. The chemical and isotopic data were used to evaluate differences in water-rock interaction between fractured and unfractured rock and between fracture surfaces and rock matrix. Samples of unfractured and rubble fragments (about 1 centimeter) core and material from fracture surfaces show similar amounts of uranium-series disequilibrium, recording a complex history of sorption and loss of uranium over the past 1 million years. The data indicate that fractures in zeolitized tuffs may not have had greater amounts of water-rock interaction than the rock matrix. The data also show that rock matrix from subrepository units is capable of scavenging uranium with elevated uranium-234/uranium-238 from percolating water and that retardation of radionuclides and dose reduction may be greater than currently credited to this aspect of the natural barrier. Uranium concentrations of pore water and the rock leachates are used to estimate long-term in situ uranium partition coefficient values greater than 7 milliliters per gram

  14. A study on the ground water flow and hydrogeochemical interaction in fractured rock masses

    International Nuclear Information System (INIS)

    Ahn, Jong Sung; Kim, Chun Soo; Yoon, Si Tae; Kim, Sun Joon; Chung, Chan Ho; Kim, Gye Nam

    1991-01-01

    A study site, the Precambrian gneiss complex in the vincinity of Chungyang has been investigated by geologic surface mapping, tunnel mapping and core drilling with chemical analysis and microscopic observation of rock samples and fracture filling materials. Four boreholes at depths between 50 and 200m were drilled. They are located in a potential fracture zone, which was selected based on the topographic characterisitcs and the fracture survey data. The hydraulic characteristics are described based on the results of constant pressure injection test and cross hole test. In the single hole test, the test sections varied between 1 and 5 m. The hydraulic conductivity of local fracture zones ranges from 1xlO -5 to lxlO -7 m/sec whereas that of the intact rock within the depth of 50 m is in the range of 7xlO -8 to 8xlO -9 m/sec. The field dispersivity values obtained from an injection phase range from 0.15 to 4.5 m at varying depths. The whole thickness dispersivity on the 18 m section obtained from a withdrawal phase is 0.4 m. The dispersion test in two well non-circulation mode was carried out along a single fracture set at depth between 11.5-14.5m. The longitudinal dispersivity obtained from the two well test is 8.14 m. The identified minerals of host rocks are quartz, K-feldspar,plagioclase, biotite, muscovite, sericite, chlorite, calcite, pyrite, zircon and opaque minerals. The primary minerals such as feldspar and biotite are highly altered into sericite and chlorite respectively. The fracture-filling materials from core samples identified by as calcite, kaolinite, smectite, chlorite, illitite, quartz, pyrite with fe- and Mn-oxides. (Author)

  15. Comprehensive Interpretation of the Laboratory Experiments Results to Construct Model of the Polish Shale Gas Rocks

    Science.gov (United States)

    Jarzyna, Jadwiga A.; Krakowska, Paulina I.; Puskarczyk, Edyta; Wawrzyniak-Guz, Kamila; Zych, Marcin

    2018-03-01

    More than 70 rock samples from so-called sweet spots, i.e. the Ordovician Sa Formation and Silurian Ja Member of Pa Formation from the Baltic Basin (North Poland) were examined in the laboratory to determine bulk and grain density, total and effective/dynamic porosity, absolute permeability, pore diameters size, total surface area, and natural radioactivity. Results of the pyrolysis, i.e., TOC (Total Organic Carbon) together with S1 and S2 - parameters used to determine the hydrocarbon generation potential of rocks, were also considered. Elemental composition from chemical analyses and mineral composition from XRD measurements were also included. SCAL analysis, NMR experiments, Pressure Decay Permeability measurements together with water immersion porosimetry and adsorption/ desorption of nitrogen vapors method were carried out along with the comprehensive interpretation of the outcomes. Simple and multiple linear statistical regressions were used to recognize mutual relationships between parameters. Observed correlations and in some cases big dispersion of data and discrepancies in the property values obtained from different methods were the basis for building shale gas rock model for well logging interpretation. The model was verified by the result of the Monte Carlo modelling of spectral neutron-gamma log response in comparison with GEM log results.

  16. Cr-isotope fractionation during oxidative weathering of ultramafic rocks and its impact on river waters

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie; Døssing, Lasse Nørbye; Mondal, Sisir K.

    We investigated Cr isotope fractionation during soil formation from Precambrian ultramafic rocks. A soil profile was logged in an active open-cast chromite mine (Sukinda Valley, India). In addition, mine and river waters, as well as seawater were collected to trace the Cr-isotope signal...... values as heavy as +1.33±0.05‰. Where the drainage water merges with the river water, a slightly positively fractionated δ53Cr value (0.03±0.019‰) reflects a mixed isotope signal. With increasing distance from the mine, river water δ53Cr again becomes increasingly positively fractionated, indicating...... into the sea. The aim of the study is to recognize Cr isotope fractionation processes within the mining-area and the impact of the mine runoff on the δ53Cr of the nearby river. The weathering profile shows a distinct upward trend to more negative δ53Cr values. While the well preserved rocks at the base closely...

  17. The modelling and measurement of super-conducting rock joints

    International Nuclear Information System (INIS)

    Barton, N.; Makurat, A.; Vik, G.; Loset, F.

    1985-01-01

    Rock joints exhibiting exceptionally high conductivity have been responsible for severe inflows (10-50 m 3 /min.) and flooding in recent Norwegian tunneling projects. These events may be explained by channeling of flow in partially outwashed mineral fillings, associated with deep weathering in ancient basement rocks. There is also evidence to suggest extensional strain with consistent relationships to regional faulting patterns (Selmer-Olsen 1981). Hydraulic fractures making connection with joint systems that are sheared as a result of increased fluid pressure, has been deduced as the mechanism explaining unusually large fluid losses in the geothermal project in Cornwall, England (Pine and Batchelor, 1984). Such mechanisms also introduce uncertainty into water flood and MHF stimulation treatment of fractured oil and gas reservoirs, particularly when principal stress and joint orientations are poorly understood due to coring and stress measurement problems in weak, overstressed reservoir rocks. The possibility of permanent disposal of nuclear waste in crystalline rock, has also focussed attention on highly conductive (''super-conducting'') joints in nuclear waste programmes in Canada, the USA and in Europe. The bi-modal distributions of joint spacing, continuity, apertures and conductivities resulting from the discovery of super-conducting joints has important implications for the location of planned repositories, due to their dramatic impact on potential transport times. In the laboratory a class of super-conducting joints can be created by shear displacement that causes dilation when shearing non-planar features. Recent biaxial shear testing of rock joints recovered in jointed core has identified a strong coupling of conductivity and shear displacement. The theoretical predictions of constitutive relationships for coupled flow in rock joints (Barton et al. 1985) have been broadly verified

  18. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    Science.gov (United States)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  19. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    International Nuclear Information System (INIS)

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-01-01

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load

  20. Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods

    Science.gov (United States)

    Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald

    2017-12-01

    An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.

  1. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  2. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  3. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  4. Discussion on the origin of sedimentary rock resistivity

    International Nuclear Information System (INIS)

    Dong Gangjian

    2012-01-01

    Conduction current way of sedimentary rock sedimentary rock is caused by the internal structure of sedimentary rock sedimentary rock pore resistance depends on the salinity of pore water and clay content and distribution. Resistivity of sedimentary rock sedimentary rock major factor in mineral composition, water resistance, oil resistance. and sedimentary structures. In practice, we should give full attention to the difference between lithology and physical properties. (author)

  5. Grinding into Soft, Powdery Rock

    Science.gov (United States)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars. Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements. In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  6. Towards modelling of water inflow into the mantle

    Science.gov (United States)

    Thielmann, M.; Eichheimer, P.; Golabek, G.

    2017-12-01

    The transport and storage of water in the mantle significantly affects various material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.) Geological and seismological observations suggest different inflow mechanisms of water via the subducting slab like slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017). Most of the previous numerical models do not take different dip angles of the subduction slab and subduction velocities into account, while nature provides two different types of subduction regimes i.e. shallow and deep subduction (Li et al., 2011). To which extent both parameters influence the inflow and outflow of water in the mantle still remains unclear. For the investigation of the inflow and outflow of fluids e.g. water in the mantle, we use high resolution 2D finite element simulations, which allow us to resolve subducted sediments and crustal layers. For this purpose the finite element code MVEP2 (Kaus, 2010), is tested against benchmark results (van Keken et al., 2008). In a first step we reproduced the analytical cornerflow model (Batchelor, 1967) used in the benchmark of van Keken et al.(2008) as well as the steady state temperature field. Further steps consist of successively increasing model complexity, such as the incorporation of hydrogen diffusion, water transport and dehydration reactions. ReferencesBatchelor, G. K. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, UK (1967) van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Li, Z. H., Xu, Z. Q., and T.V. Gerya. Flat versus

  7. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    Science.gov (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  8. Geochemical simulation of the evolution of granitic rocks and clay minerals submitted to a temperature increase in the vicinity of a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Fritz, B.; Kam, M.; Tardy, Y.

    1984-07-01

    The alteration of a granitic rock around a repository for spent nuclear fuel has been simulated considering the effect of an increase of temperature due to this kind of induced geothermal system. The results of the simulation have been interpreted in terms of mass transfer and volumic consequences. The alteration proceeds by dissolution of minerals (with an increase of the volumes of fissures and cracks) and precipitation of secondary miminerals as calcite and clay minerals particularly (with a decrease of the porosity). The increase of the temperature from 10 degrees C to about 100 degrees C will favour the alteration of the granitic rock around the repository by the solution filling the porosity. The rock is characterized by a very low fissure porosity and a consequent very low water velocity. This too, favours intense water rock interactions and production of secondary clays and the total possible mass transfer will decrease the porosity. A combination of these thermodynamic mass balance calculations with a kinetic approach of mineral dissolutions gives a first attempt to calibrate the modelling in the time scale: the decrease of porosity can be roughly estimated between 2 and 20% for 100,000 years. The particular problem of Na-bentonites behaviour in the proximate vicinity of the repository has been studied too. One must distinguish between two types of clay-water interactions: -within the rock around the repository, Na-bentonites should evolute with illitization in slighltly open system with low clay/water ratios, -within the repository itself, the clay reacts in a closed system for a long time with high clay/water ratios and a self-buffering effect should maintain the bentonite type. This chemical buffering effect is a positive point for the use of this clay as chemical barrier. (Author)

  9. Microbial Fluid-Rock Interactions in Chalk Samples and Salinity Factor in Divalent Ca2+ ions Release for Microbial Enhanced Oil Recovery Purposes

    DEFF Research Database (Denmark)

    Jimoh, Ismaila Adetunji; Rudyk, Svetlana Nikolayevna; Søgaard, Erik Gydesen

    2011-01-01

    In this study, laboratory experiments were performed on chalk samples from Danish sector of the North Sea to study microbial fluid-rock interactions with carbonate rock and to evaluate the dissolution of rock matrix (CaCO3). Result showed that the average concentration of Ca2+ ions after microbia...

  10. Study on the constitutive model for jointed rock mass.

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    Full Text Available A new elasto-plastic constitutive model for jointed rock mass, which can consider the persistence ratio in different visual angle and anisotropic increase of plastic strain, is proposed. The proposed the yield strength criterion, which is anisotropic, is not only related to friction angle and cohesion of jointed rock masses at the visual angle but also related to the intersection angle between the visual angle and the directions of the principal stresses. Some numerical examples are given to analyze and verify the proposed constitutive model. The results show the proposed constitutive model has high precision to calculate displacement, stress and plastic strain and can be applied in engineering analysis.

  11. Predictive modelling of noise level generated during sawing of rocks

    Indian Academy of Sciences (India)

    This paper presents an experimental and statistical study on noise level generated during of rock sawing by circular diamond sawblades. Influence of the operating variables and rock properties on the noise level are investigated and analysed. Statistical analyses are then employed and models are built for the prediction of ...

  12. Hydrogeochemical modelling of fluid–rock interactions triggered by seawater injection into oil reservoirs: Case study Miller field (UK North Sea)

    International Nuclear Information System (INIS)

    Fu, Yunjiao; Berk, Wolfgang van; Schulz, Hans-Martin

    2012-01-01

    A hydrogeochemical model is presented and applied to quantitatively elucidate interdependent reactions among minerals and formation water–seawater mixtures at elevated levels of CO 2 partial pressure. These hydrogeochemical reactions (including scale formation) occur within reservoir aquifers and wells and are driven by seawater injection. The model relies on chemical equilibrium thermodynamics and reproduces the compositional development of the produced water (formation water–seawater mixtures) of the Miller field, UK North Sea. This composition of the produced water deviates from its calculated composition, which could result solely from mixing of both the end members (formation water and seawater). This indicates the effect of hydrogeochemical reactions leading to the formation and/or the dissolution of mineral phases. A fairly good match between the modelled and measured chemical composition of produced water indicates that hydrogeochemical interactions achieve near-equilibrium conditions within the residence time of formation water–seawater mixtures at reservoir conditions. Hence the model enables identification of minerals (including scale minerals), to quantitatively reproduce and to predict their dissolution and/or formation. The modelling results indicate that admixing of seawater into formation water triggers the precipitation of Sr–Barite solid solution, CaSO 4 phases and dolomite. In contrast, calcite and microcrystalline quartz are dissolved along the seawater flow path from the injection well towards the production well. Depending on the fraction of seawater admixed, interdependent reactions induce profound modifications to the aquifer mineral phase assemblage. At low levels of seawater admixture, Ba–Sr sulfate solid solution is precipitated and coupled to concurrent dissolution of calcite and microcrystalline quartz. Massive dissolution of calcite and the formation of CaSO 4 phases and dolomite are triggered by intense seawater admixture

  13. Distinct element modelling of joint behavior in nearfield rock

    International Nuclear Information System (INIS)

    Hoekmark, H.; Israelsson, J.

    1991-09-01

    The investigation reported here concerns numerical simulations of the behaviour of the jointed rock mass in the nearest surroundings Of a portion of a KBS3 type tunnel, including one deposition hole. Results from three-dimensional models are presented and compared to results obtained from previous investigations of two-dimensional models. The three-dimensional models and the previous two-dimensional models relate to conditions prevailing in and around the BMT drift in Stripa mine. In particular are the importance of conditions, implicitly assumed in two-dimensional models, regarding joint orientation and joint persistence, investigated. The evaluation of the results is focused on effects on joint apertures. The implications regarding rock permeability is discussed for a couple of cases. It is found that the real three-dimensional geometry is of great importance, and that the two-dimensional models in some cases tend to overestimate the magnitudes of inelastic joint displacements and associated aperture changes considerably, i.e. the real three-dimensional situation implies locking effects, that generally stabilizes the block assembly. It is recommended that further three-dimensional simulations should be performed to determine relevant ranges of alteration of fracture apertures, caused by excavation and thermal processes, and that fracture geometries, that are typical to virgin granitic rock, should be defined and used as input for these simulations. (au)

  14. Petrophysics at the rock matrix scale: hydraulic properties and petrographic interpretation

    International Nuclear Information System (INIS)

    Montoto, M.

    2003-01-01

    The main objective of this publication is to review, summarize and make comprehensive the hydraulic properties of rocks, at the rock matrix or in tact rock scale. Also to describe how to petrographically interpret those properties. For this purpose, the procedures for the characterization and visualisation of the rock-forming components and in special the water path-ways at that scale are explained. Further more, to establish a methodological approach for an appropriate petrographic interpretation of all the mentioned properties is intended. This Technical Report is applied to the geological solution for the final disposal of high level radioactive wastes. In any case, most of the aspects covered here are of scientific and technical interest for any researcher interested in the behaviour of water in rocks and vice versa, also in the potential fluid- rock interactions. The document is divided into six Chapters, mainly theoretical and methodological, and six Appen - dixes, more focussed to practical tests and procedures for rock characterization. Two significant rock types in high level radioactive waste, HLW, granites and clays, have been used for illustrating most of the examples here included. Under a wide geological perspective, it must be stated that in any geological scenario two different systems or scales coexist; the rock massif (with fractures of about m to km) and the rock matrix (with internal discontinuities such as fissures and cracks to the order of Fm to dm). Their different behaviour is considered in Chapter 1 as well as the specific role played by the rock matrix in the long- and short-term period. General considerations about physical properties of rocks and comparative advantages and disadvantages of the main candidate rocks for radioactive repositories are also included. (Author)

  15. GEOCHEMICAL INVESTIGATIONS OF CO₂-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Yoksoulian, Lois; Berger, Peter; Freiburg, Jared; Butler, Shane; Leetaru, Hannes

    2014-09-30

    Increased output of greenhouse gases, particularly carbon dioxide (CO₂), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO₂ emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO₂. The Knox Group-Maquoketa Shale reservoir and seal system, located stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO₂ without the potential for the release of harmful contaminants liberated by the reaction between CO₂-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO₂ as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this

  16. A study about long-term deformation of soft rock. 2

    International Nuclear Information System (INIS)

    Inoue, Hiroyuki; Yoshino, Naoto; Miyanomae, Shunichi; Mizutani, Kazuhiko; Noda, Kenji

    2004-02-01

    In this study, the laboratory mechanical tests of sedimentary soft rock sampled at Horonobe area in Hokkaido prefecture were conducted in order to build the confidence of Okubo model for long term deformation of sedimentary rock. And the stability of rock around tunnel in building under the condition assumed the underground of Horonobe area was examined by numerical simulation using information of boring data obtained before 2002 year. As a result, authors could obtain many values of parameter in Okubo model under various conditions. These conditions have the difference of temperature and water saturation. In addition, the life time in creep predicted by Okubo model could be compared with the real one. And numerical simulations, assuming various conditions such as stiffness of buffer material and yielding of support, had been carried out to evaluate the long-term stability of rock surrounding buffer material. Results show the decreasing tendency of time dependency of rock. (author)

  17. GlacierRocks - Glacier-Headwall Interaction and its Influence on Rockfall Activity

    Science.gov (United States)

    Hartmeyer, Ingo; Keuschnig, Markus; Krautblatter, Michael; Helfricht, Kay; Leith, Kerry; Otto, Jan-Christoph

    2017-04-01

    Climate models predict continued climate warming and a decrease of Austrian glaciers to less than 20% of their present area by the end of this century. Rockfall from freshly exposed headwalls has been documented as an increasing risk factor with considerable significance for man and high-alpine infrastructure. Recent findings of a five-year terrestrial laserscanning campaign (2011-2016) monitoring glacial headwalls at the Kitzsteinhorn (3.203 m a.s.l.), Hohe Tauern Range, Austria, show the dramatic impact of glacier thinning on adjacent headwalls: 80 % of the detected rockfall volumes were triggered from areas located less than 20 m above the current glacier surface. Despite these implications, little is known about the thermal, mechanical and hydrological processes that operate at the glacier-headwall interface (randkluft). Systemic in-situ monitoring of stability-relevant parameters are lacking, leaving fundamental gaps in the understanding of rockfall preconditioning in glacial headwalls and the geomorphological evolution of glaciated catchments. In this contribution we introduce the recently approved research project 'GlacierRocks', which starts in 2017 and will run for at least three years. 'GlacierRocks' will establish the worldwide first research site for long-term monitoring of stability-relevant processes inside a randkluft system. Based on the acquired monitoring data 'GlacierRocks' is pursuing three overall aims at (1) gaining a better understanding of rockfall preconditioning in randklufts and related geomorphological shaping of headwalls, (2) analyzing poorly understood glacial thinning dynamics near headwalls, and (3) estimating present and future rockfall hazard potential in headwalls on a regional scale. The three system components (headwall, glacier, randkluft) will be investigated by combining geomorphological, glaciological and meteorological methods. 'GlacierRocks' will continuously monitor rock temperature, rock moisture, frost cracking

  18. Time-dependent evolution of rock slopes by a multi-modelling approach

    Science.gov (United States)

    Bozzano, F.; Della Seta, M.; Martino, S.

    2016-06-01

    This paper presents a multi-modelling approach that incorporates contributions from morpho-evolutionary modelling, detailed engineering-geological modelling and time-dependent stress-strain numerical modelling to analyse the rheological evolution of a river valley slope over approximately 102 kyr. The slope is located in a transient, tectonically active landscape in southwestern Tyrrhenian Calabria (Italy), where gravitational processes drive failures in rock slopes. Constraints on the valley profile development were provided by a morpho-evolutionary model based on the correlation of marine and river strath terraces. Rock mass classes were identified through geomechanical parameters that were derived from engineering-geological surveys and outputs of a multi-sensor slope monitoring system. The rock mass classes were associated to lithotechnical units to obtain a high-resolution engineering-geological model along a cross section of the valley. Time-dependent stress-strain numerical modelling reproduced the main morpho-evolutionary stages of the valley slopes. The findings demonstrate that a complex combination of eustatism, uplift and Mass Rock Creep (MRC) deformations can lead to first-time failures of rock slopes when unstable conditions are encountered up to the generation of stress-controlled shear zones. The multi-modelling approach enabled us to determine that such complex combinations may have been sufficient for the first-time failure of the S. Giovanni slope at approximately 140 ka (MIS 7), even without invoking any trigger. Conversely, further reactivations of the landslide must be related to triggers such as earthquakes, rainfall and anthropogenic activities. This failure involved a portion of the slope where a plasticity zone resulted from mass rock creep that evolved with a maximum strain rate of 40% per thousand years, after the formation of a river strath terrace. This study demonstrates that the multi-modelling approach presented herein is a useful

  19. Study on evaluation method for heterogeneous sedimentary rocks based on forward model

    International Nuclear Information System (INIS)

    Masui, Yasuhiro; Kawada, Koji; Katoh, Arata; Tsuji, Takashi; Suwabe, Mizue

    2004-02-01

    It is very important to estimate the facies distribution of heterogeneous sedimentary rocks for geological disposal of high level radioactive waste. The heterogeneousness of sedimentary rocks is due to variable distribution of grain size and mineral composition. The objective of this study is to establish the evaluation method for heterogeneous sedimentary rocks based on forward model. This study consisted of geological study for Horonobe area and the development of soft wear for sedimentary model. Geological study was composed of following items. 1. The sedimentary system for Koetoi and Wakkanai formations in Horonobe area was compiled based on papers. 2. The cores of HDB-1 were observed mainly from sedimentological view. 3. The facies and compaction property of argillaceous rocks were studied based on physical logs and core analysis data of wells. 4. The structure maps, isochrone maps, isopach maps and restored geological sections were made. The soft wear for sedimentary model to show sedimentary system on a basin scale was developed. This soft wear estimates the facies distribution and hydraulic conductivity of sedimentary rocks on three dimensions scale by numerical simulation. (author)

  20. Groundwater degassing in fractured rock: Modelling and data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, J.; Destouni, G. [Royal Inst. of Tech., Stockholm (Sweden). Water Resources Engineering

    1998-11-01

    Dissolved gas may be released from deep groundwater in the vicinity of open boreholes and drifts, where the water pressures are relatively low. Degassing of groundwater may influence observations of hydraulic conditions made in drifts, interpretation of experiments performed close to drifts, and buffer mass and backfill performance, particularly during emplacement and repository closure. Under certain conditions, considerable fracture inflow and transmissivity reductions have been observed during degassing experiments in the field and in the laboratory; such reductions affect the outcome and interpretation of both hydraulic and tracer tests. We develop models for the estimation of the resulting degree of fracture gas saturation and the associated transmissivity reduction due to groundwater degassing in fractured rock. Derived expressions for bubble trapping probability show that fracture aperture variability and correlation length influence the conditions for capillary bubble trapping and gas accumulation. The laboratory observations of bubble trapping in an Aespoe fracture replica are consistent with the prediction of a relatively high probability of bubble trapping in this fracture. The prediction was based on the measured aperture distribution of the Aespoe fracture and the applied hydraulic gradient. Results also show that the conceptualisation of gas and water occupancy in a fracture greatly influences model predictions of gas saturation and relative transmissivity. Images from laboratory degassing experiments indicate that tight apertures are completely filled with water, whereas both gas and water exist in wider apertures under degassing conditions; implementation of this relation in our model resulted in the best agreement between predictions and laboratory observations. Model predictions for conditions similar to those prevailing in field for single fractures at great depths indicate that degassing effects in boreholes should generally be small, unless the

  1. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Z.; de Leeuw, N.H.

    2012-01-01

    Calcite–water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity.

  2. Computer modeling of inelastic wave propagation in porous rock

    International Nuclear Information System (INIS)

    Cheney, J.A.; Schatz, J.F.; Snell, C.

    1979-01-01

    Computer modeling of wave propagation in porous rock has several important applications. Among them are prediction of fragmentation and permeability changes to be caused by chemical explosions used for in situ resource recovery, and the understanding of nuclear explosion effects such as seismic wave generation, containment, and site hardness. Of interest in all these applications are the distance from the source to which inelastic effects persist and the amount of porosity change within the inelastic region. In order to study phenomena related to these applications, the Cam Clay family of models developed at Cambridge University was used to develop a similar model that is applicable to wave propagation in porous rock. That model was incorporated into a finite-difference wave propagation computer code SOC. 10 figures, 1 table

  3. Long term thermo-hydro-mechanical interaction behavior study of the saturated, discontinuous granitic rock mass around the radwaste repository using a steady state flow algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jhin Wung; Bae, Dae Suk; Kang, Chul Hyung; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The objective of the present study is to understand the long term (500 years) thermo-hydro-mechanical interaction behavior of the 500 m depth underground radwaste repository in the saturated, discontinuous granitic rock mass using a steady state flow algorithm. The numerical model includes a saturated granitic rock mass with joints around the repository and a 45 .deg. C fault passing through the tunnel roof-wall intersection, and a canister with PWR spent fuels surrounded by the compacted bentonite and mixed-bentonite. Barton-Bandis joint constitutive model from the UDEC code is used for the joints. For the hydraulic analysis, a steady state flow algorithm is used for the groundwater flow through the rock joints. For the thermal analysis, heat transfer is modeled as isotropic conduction and heat decays exponentially with time. The results show that the variations of the hydraulic aperture, hydraulic conductivity, normal stress, normal displacements, and shear displacements of the joints are high in the vicinity of the repository and stay fairly constant on the region away from the repository. 14 refs., 15 figs., 11 tabs. (Author)

  4. Mineralogical controls on porosity and water chemistry during O_2-SO_2-CO_2 reaction of CO_2 storage reservoir and cap-rock core

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Golab, Alexandra; Dawson, Grant K.W.; Knuefing, Lydia; Goodwin, Carley; Golding, Suzanne D.

    2016-01-01

    could be expected to act as baffles to fluids preventing vertical fluid migration. Concentrations of dissolved elements including Ca, Fe, Mn, and Ni increased during reactions of several core samples, with Mn, Mg, Co, and Zn correlated with Ca from cap-rock cores. Precipitation of gypsum, Fe-oxides and clays on seal core samples sequestered dissolved elements including Fe through co-precipitation or adsorption. A conceptual model of impure CO_2-water-rock interactions for a siliciclastic reservoir is discussed. - Highlights: • O_2-SO_2-CO_2 experiments on CO_2 sequestration site reservoir and cap-rock cores. • Coupled micro CT and geochemical characterization before and after reactions. • Strong acidification with reservoir core, no change in porosity. • Formation of open porosity in calcite cemented core, with buffered pH. • Dissolved Mn, Mg, Co, and Zn correlated with Ca from cap-rocks.

  5. A model for the description of oxidation in sulfidic waste rock dumps

    International Nuclear Information System (INIS)

    Bennett, J. W.; Pantelis, G.; Ritchie, A.I.M.; Stepanyants, Y.A.

    2000-03-01

    Basic mathematical equations which describe the processes of sulfide oxidation and gas and water transport in waste rock dumps are presented and discussed. The governing equations account for gas and water flow, vaporisation and condensation with latent heat effects, heat transport and mass balance. Gas, water and solid phases are assumed to be in local thermal equilibrium at all times. Air is approximated as an ideal three-component gas. Different semi-empirical relationships between physical values are used: Darcy's law for fluid flow, ideal gas law, the Van Genuchten formula for the relationship between degree of water saturation and pressure head, Mualem's formula for the relative hydraulic conductivity as a function of pressure head, etc. Some important global quantities, such as the fraction of sulfide sulfur oxidised and the global oxidation rate, are defined and considered as functions of time. The full set of equations is collected and presented in explicit form, convenient for further numerical modelling. The glossary of some technical terms and the table of definitions of the main parameters as well as their units and characteristic values are given

  6. Investigating Natural Analogues for Co{sub 2} Sequestration in Ultra Mafic Rocks: A Reactive Transport Modelling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Gherardi, F. [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche, Pisa (Italy)

    2013-07-15

    Serpentinites of Ligurian ophiolites are studied as natural analogues for CO{sub 2} mineral sequestration in Italy. Mineralogical and geochemical observations indicate that silicification and carbonation are typical alteration processes induced by the interaction of CO{sub 2} charged fluids with pristine ultramafic rocks. Multicomponent reactive transport models have been applied to reproduce natural patterns and investigate carbon sequestration efficiency under high P{sub CO2} conditions. Temporal changes in porosity and permeability are predicted to affect the spatial and temporal occurrence of secondary minerals. The feedback between mineralogical transformations and transport properties of the geological media emerges as a key factor controlling the mineral carbonation potential of the investigated ultramafic rocks. (author)

  7. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden.

    Science.gov (United States)

    Gómez, Javier B; Gimeno, María J; Auqué, Luis F; Acero, Patricia

    2014-01-15

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water-rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. © 2013 Elsevier B.V. All rights reserved.

  8. Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix.

    Science.gov (United States)

    Shapiro, Allen M; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Hsieh, Paul A; Lacombe, Pierre J; DeFlaun, Mary F; Drew, Scott R; Curtis, Gary P

    2018-03-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards. © 2017, National Ground Water Association.

  9. A Model of Equilibrium Conditions of Roof Rock Mass Giving Consideration to the Yielding Capacity of Powered Supports

    Science.gov (United States)

    Jaszczuk, Marek; Pawlikowski, Arkadiusz

    2017-12-01

    The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support

  10. Estimation of water consumption of tomato crops planted in rock wool bed in greenhouse

    International Nuclear Information System (INIS)

    Ito, K.; Senge, M.; Iwama, K.; Hashimoto, I.

    2002-01-01

    For estimating the crop water consumption, it is necessary to determine meteorological data in greenhouse from open field data and calculate potential evaporation. In this study, temperature, humidity, wind velocity and solar radiation were measured in greenhouse as well as in open field. Then, we compared the meteorological data of greenhouse with that of open field. Results of the comparison differed from the reference values of the Official Manual (1997). Humidity during heating period and wind velocity in the greenhouse cannot be evaluated from the steps of the Official Manual. We applied the original equation that was derived in this observation to calculate the potential evaporation in the greenhouse. It became apparent that the potential evaporation could be estimated using open field data. A portion of irrigated water was consumed by vegetation and remainder was discharged from rock wool bed. Mean daily water consumption during the measurement period was 2.50(mm/d), with a monthly maximum occurring in July with 3.54(mm/d). Discharged water amounted to 9% of irrigated water. Tomato's crop coeffieiency with rock wool cultivation was calculated by potential evaporation and water consumption. In this field, this value was smaller than those recorded in the Official Manual. The amount of irrigation was same in all segments of the greenhouse. However, water consumption was affected by incident energy. A portion of discharged water (5% of irrigation water in this greenhouse) could not be saved because there existed a differential volume need for some plants which consumed more water in relation to others

  11. RETRAN operational transient analysis of the Big Rock Point plant boiling water reactor

    International Nuclear Information System (INIS)

    Sawtelle, G.R.; Atchison, J.D.; Farman, R.F.; VandeWalle, D.J.; Bazydlo, H.G.

    1983-01-01

    Energy Incorporated used the RETRAN computer code to model and calculate nine Consumers Power Company Big Rock Point Nuclear Power Plant transients. RETRAN, a best-estimate, one-dimensional, homogeneous-flow thermal-equilibrium code, is applicable to FSAR Chapter 15 transients for Conditions 1 through IV. The BWR analyses were performed in accordance with USNRC Standard Review Plan criteria and in response to the USNRC Systematic Evaluation Program. The RETRAN Big Rock Point model was verified by comparison to plant startup test data. This paper discusses the unique modeling techniques used in RETRAN to model this steam-drum-type BWR. Transient analyses results are also presented

  12. Failure Behavior and Constitutive Model of Weakly Consolidated Soft Rock

    Directory of Open Access Journals (Sweden)

    Wei-ming Wang

    2013-01-01

    Full Text Available Mining areas in western China are mainly located in soft rock strata with poor bearing capacity. In order to make the deformation failure mechanism and strength behavior of weakly consolidated soft mudstone and coal rock hosted in Ili No. 4 mine of Xinjiang area clear, some uniaxial and triaxial compression tests were carried out according to the samples of rocks gathered in the studied area, respectively. Meanwhile, a damage constitutive model which considered the initial damage was established by introducing a damage variable and a correction coefficient. A linearization process method was introduced according to the characteristics of the fitting curve and experimental data. The results showed that samples under different moisture contents and confining pressures presented completely different failure mechanism. The given model could accurately describe the elastic and plastic yield characteristics as well as the strain softening behavior of collected samples at postpeak stage. Moreover, the model could precisely reflect the relationship between the elastic modulus and confining pressure at prepeak stage.

  13. Mineralogy controls on reactive transport of Marcellus Shale waters.

    Science.gov (United States)

    Cai, Zhang; Wen, Hang; Komarneni, Sridhar; Li, Li

    2018-07-15

    Produced or flowback waters from Marcellus Shale gas extraction (MSWs) typically are highly saline and contain chemicals including trace metals, which pose significant concerns on water quality. The natural attenuation of MSW chemicals in groundwater is poorly understood due to the complex interactions between aquifer minerals and MSWs, limiting our capabilities to monitor and predict. Here we combine flow-through experiments and process-based reactive transport modeling to understand mechanisms and quantify the retention of MSW chemicals in a quartz (Qtz) column, a calcite-rich (Cal) column, and a clay-rich (Vrm, vermiculite) column. These columns were used to represent sand, carbonate, and clay-rich aquifers. Results show that the types and extent of water-rock interactions differ significantly across columns. Although it is generally known that clay-rich media retard chemicals and that quartz media minimize water-rock interactions, results here have revealed insights that differ from previous thoughts. We found that the reaction mechanisms are much more complex than merely sorption and mineral precipitation. In clay rich media, trace metals participate in both ion exchange and mineral precipitation. In fact, the majority of metals (~50-90%) is retained in the solid via mineral precipitation, which is surprising because we typically expect the dominance of sorption in clay-rich aquifers. In the Cal column, trace metals are retained not only through precipitation but also solid solution partitioning, leading to a total of 75-99% retention. Even in the Qtz column, trace metals are retained at unexpectedly high percentages (~20-70%) due to precipitation. The reactive transport model developed here quantitatively differentiates the relative importance of individual processes, and bridges a limited number of experiments to a wide range of natural conditions. This is particularly useful where relatively limited knowledge and data prevent the prediction of complex rock

  14. Hot dry rock heat mining

    International Nuclear Information System (INIS)

    Duchane, D.V.

    1992-01-01

    Geothermal energy utilizing fluids from natural sources is currently exploited on a commercial scale at sites around the world. A much greater geothermal resource exists, however, in the form of hot rock at depth which is essentially dry. This hot dry rock (HDR) resource is found almost everywhere, but the depth at which usefully high temperatures are reached varies from place to place. The technology to mine the thermal energy from HDR has been under development for a number of years. Using techniques adapted from the petroleum industry, water is pumped at high pressure down an injection well to a region of usefully hot rock. The pressure forces open natural joints to form a reservoir consisting of a small amount of water dispensed in a large volume of hot rock. This reservoir is tapped by second well located at some distance from the first, and the heated water is brought to the surface where its thermal energy is extracted. The same water is then recirculated to mine more heat. Economic studies have indicated that it may be possible to produce electricity at competitive prices today in regions where hot rock is found relatively close to the surface

  15. Modeling rock specimens through 3D printing: Tentative experiments and prospects

    Science.gov (United States)

    Jiang, Quan; Feng, Xiating; Song, Lvbo; Gong, Yahua; Zheng, Hong; Cui, Jie

    2016-02-01

    Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive manufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) compressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in producing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the simulation of similar material modeling experiments.

  16. Modelling of the thermomechanical behaviour of salt rock

    International Nuclear Information System (INIS)

    Albers, G.; Graefe, V.; Korthaus, E.; Pudewillis, A.; Prij, J.

    1986-01-01

    The modelling of the thermomechanical behaviour of salt rock is examined, with respect to the disposal of radioactive waste in salt formations. The calculation methods and programmes currently available for the modelling are described. Some examples are given of calculations carried out in parallel with tests. Some results of modelling calculations for a repository are presented by way of illustration. (U.K.)

  17. Modelling the effect of diffusion into the rock matrix on radionuclide migration

    International Nuclear Information System (INIS)

    Lever, D.A.; Bradbury, M.H.; Hemingway, S.J.

    1983-01-01

    Diffusion into the rock matrix is potentially an important retardation mechanism for nuclides leached from an underground radioactive waste repository in a fractured hard rock. Models of this diffusion process are discussed and incorporated into three-dimensional radionuclide migration models. Simple solutions to these models are derived for two regions: the region near to the repository where the nuclide is diffusing into effectively infinite rock, and that much further downstream where the concentrations in the rock and fractures are almost in equilibrium. These solutions are used to evaluate the possible impact on migration. It is shown that retardation factors in excess of 100 and reductions in the peak concentration at a given point on the flow path by three or four orders of magnitude are possibe for non-sorbed ions, which would otherwise be carried by the flow and not retarded at all. (author)

  18. Modelling of water-rock interaction at TVO investigation sites

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Leino-Forsman, H.

    1992-12-01

    The geochemistry of the groundwater at the Kivetty, Syyry and Olkiluoto site investigation areas in Finland for nuclear waste disposal is evaluated. The hydrogeological data is collected from boreholes drilled down to 100-m depth into crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data, and the structure and hydrology of the bedrock, using correlation diagrams and the thermodynamic calculations (PHREEQE,EQ3NR). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed

  19. HYBRID CONTINUUM-DISCONTINUUM MODELLING OF ROCK FRACUTRE PROCESS IN BRAZILIAN TENSILE STRENGTH TEST

    Directory of Open Access Journals (Sweden)

    Huaming An

    2017-10-01

    Full Text Available A hybrid continuum-discontinuum method is introduced to model the rock failure process in Brazilian tensile strength (BTS test. The key component of the hybrid continuum-discontinuum method, i.e. transition from continuum to discontinuum through fracture and fragmentation, is introduced in detail. A laboratory test is conducted first to capture the rock fracture pattern in the BTS test while the tensile strength is calculated according to the peak value of the loading forces. Then the proposed method is used to model the rock behaviour during BTS test. The stress propagation is modelled and compared with those modelled by finite element method in literatures. In addition, the crack initiation and propagation are captured and compared with the facture patter in laboratory test. Moreover, the force-loading displacement curve is obtained which represents a typical brittle material failure process. Furthermore, the stress distributions along the vertical direction are compared with the theoretical solution. It is concluded that the hybrid continuum-discontinuum method can model the stress propagation process and the entire rock failure process in BTS test. The proposed method is a valuable numerical tool for studying the rock behaviour involving the fracture and fragmentation processes.

  20. Coarse-Grained Model for Water Involving a Virtual Site.

    Science.gov (United States)

    Deng, Mingsen; Shen, Hujun

    2016-02-04

    In this work, we propose a new coarse-grained (CG) model for water by combining the features of two popular CG water models (BMW and MARTINI models) as well as by adopting a topology similar to that of the TIP4P water model. In this CG model, a CG unit, representing four real water molecules, consists of a virtual site, two positively charged particles, and a van der Waals (vdW) interaction center. Distance constraint is applied to the bonds formed between the vdW interaction center and the positively charged particles. The virtual site, which carries a negative charge, is determined by the locations of the two positively charged particles and the vdW interaction center. For the new CG model of water, we coined the name "CAVS" (charge is attached to a virtual site) due to the involvment of the virtual site. After being tested in molecular dynamic (MD) simulations of bulk water at various time steps, under different temperatures and in different salt (NaCl) concentrations, the CAVS model offers encouraging predictions for some bulk properties of water (such as density, dielectric constant, etc.) when compared to experimental ones.

  1. Integrated modeling of groundwater–surface water interactions in a tile-drained agricultural field

    NARCIS (Netherlands)

    Rosemeijer, J.C.; Velde, van der Y.; McLaren, R.G.; Geer, van F.C.; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Understanding the dynamics of groundwater–surface water interaction is needed to evaluate and simulate water and solute transport in catchments. However, direct measurements of the contributions of different flow routes from specific surfaces within a catchment toward the surface water are rarely

  2. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-10-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, which constitute alpine rock walls, has been denied in prior studies. These studies explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no significant velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimetre-large low-porosity (< 10% metamorphic, magmatic and sedimentary rock samples from permafrost sites with a natural texture (> 100 micro-fissures from 25 °C to −15 °C in 0.3 °C increments close to the freezing point. When freezing, p-wave velocity increases by 11–166% perpendicular to cleavage/bedding and equivalent to a matrix velocity increase from 11–200% coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's two-phase-equation implementing changes in matrix velocity dependent on lithology and demonstrate the general applicability of refraction seismics to differentiate frozen and unfrozen low-porosity bedrock.

  3. Evaluation of water content in rock mass by electromagnetic and resistivity tomography. Denjiha, hiteiko tomography ni yoru ganban no gansui jotai hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, T; Inoue, M; Matsumoto, K [Kajima Corp., Tokyo (Japan)

    1993-10-31

    As a method to evaluate the rock mass, electromagnetic tomography and resistivity tomography were tested on the original site. The electromagnetic tomography can tomographically analyze the propagation velocity and initial amplitude damping. The resistivity tomography uses a finite element method from the initial resistivity distribution model and finally gives a model which is nearly equal to the actual resistivity distribution. Both the above tomographic analyses can detect the crushed spot as a low velocity, high damping and low resistivity spot. However, the electromagnetic tomography could detect finer structure than the resistivity tomography. The water content of rock mass was evaluated from the damping coefficient which was given by the amplitude damping tomography of electromagnetic wave. If it is compared with the water content which is given by the dielectric constant of velocity tomography, there partially exists discrepancy between both, because the damping coefficient contains information on cracks which disperse and reflect the electromagnetic wave. Between the resistivity and porosity, there exists a known experimental formula, which was satisfied by the presently given resistivity. 9 refs., 10 figs.

  4. Interactions of Various types between Rock and Alkali-Activated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Mec Pavel

    2017-03-01

    Full Text Available Alkali-activated binders (AAB are very intensively studied materials nowadays. Because of possible usage as secondary raw materials, they can be environmentally efficient. Intensive research is focused especially on binder matrix, composition and its structure. For industrial usage, it is necessary to work with some aggregate for the preparation of mortars and concretes. Due to different structures of alkali-activated binders, the interaction with the aggregate will be different in comparison to an ordinary Portland cement binder. This paper deals with the study of interactions between several types of rocks used as aggregate and alkali-activated blast furnace slag. The research was focused especially on mechanical properties of prepared mortars.

  5. Bioremediation in fractured rock: 1. Modeling to inform design, monitoring, and expectations

    Science.gov (United States)

    Tiedeman, Claire; Shapiro, Allen M.; Hsieh, Paul A.; Imbrigiotta, Thomas; Goode, Daniel J.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Johnson, Carole D.; Williams, John H.; Curtis, Gary P.

    2018-01-01

    Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.

  6. The effect of the water-to-rock ratio on REE distribution in hydrothermal fluids: An experimental study

    Science.gov (United States)

    Beermann, Oliver; Garbe-Schönberg, Dieter; Holzheid, Astrid

    2013-04-01

    High-temperature submarine MOR hydrothermalism creates high elemental fluxes into, and out of, oceanic lithosphere significantly affecting ocean chemistry. The Turtle Pits hydrothermal system discovered at 5° S on the slow-spreading Mid-Atlantic Ridge (MAR) in water depths of ~3000 m (~300 bar) emanates 'ultrahot' fluids > 400 ° C [1] with high concentrations of dissolved gases (e.g., H2), transition metals, and rare earth elements (REE). The normalised REE patterns of these 'ultrahot' fluids are uncommon as they exhibit depletions of LREE and no Eu-anomaly ('special' REE-signature in [2]), which is in contrast to the "typical" LREE enrichment and pronounced positive Eu-anomaly known from many MOR vent fluids observed world-wide [e.g., 3]. Although hydrothermal fluid REE-signatures may play a key role in understanding processes during water-rock interaction, only few experimental data have been published on REE distribution in seawater-like fluids reacted with rocks from the ocean crust [e.g., 4, 5]. Besides temperature, the seawater-to-rock ratio (w/r ratio) strongly affects water-rock reaction processes and, thus, has significant control on the fluid chemistry [e.g., 6, 7]. To understand how vent fluid REE-signatures are generated during water-rock interaction processes we designed a series of experiments reacting different fluid types with mineral assemblages from fresh, unaltered gabbro at 425 ° C and 400 bar using cold seal pressure vessels (CSPV). Mixtures of 125-500 μm-sized hand-picked plagioclase and clinopyroxene grains separated from unaltered gabbro reacted in gold capsules with 3.2 wt.% NaCl(aq) fluid (similar to seawater salinity), or with natural seawater. The w/r (mass) ratio ranged from 1 to 100 and the run durations were varied from 3 to 30 d in the NaCl(aq) experiments, and was 3 d in the seawater experiments. The reacted fluids were extracted after quenching and analysed by ICP-OES and ICP-MS. Only in the seawater experiments, the gabbro

  7. Rock salt constitutive modeling

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1980-01-01

    The Serata model is the best operational model available today because it incorporates: (1) a yield function to demarcate between viscoelastic and viscoplastic behavior of rock salt; (2) a pressure and temperature dependence for yield stresses; and (3) a standard linear solid, which can be readily extended into the non-linear regime, to represent creep behavior. Its only deficiencies appear to be the lack of secondary creep behavior (a free dashpot) and some unsettling arbitrariness about the Poisson's ratio (ν → 0.5) argument for viscoplasticity. The Sandia/WIPP model will have good primary and secondary creep capability, but lacks the viscoplastic behavior. In some cases, estimated inelastic strains may be underpredicted. If a creep acceleration mechanism associated with brine inclusions is observed, this model may require extensive revision. Most of the other models available (SAI, RE-SPEC, etc.) are only useful for short-term calculations, because they employ temporal power law (t/sup n/) primary creep representations. These models are unsatisfactory because they cannot represent dual mechanisms with differing characteristic times. An approach based upon combined creep and plasticity is recommended in order to remove the remaining deficiency in the Serata model. DOE/Sandia/WIPP should be encouraged to move aggressively in this regard

  8. Modelling of rock mass response to glaciation in the Dounreay area, Scotland

    International Nuclear Information System (INIS)

    Errington, M.

    1992-01-01

    This report presents the results of a modelling study undertaken to investigate the potential response of a faulted rock mass to glacial loading. The modelled rock mass was a 10X10X10 km region around Dounreay. This site was selected as one of the two locations under consideration by UK Nirex Ltd for a deep repository for the disposal of low and intermediate radioactive waste. The model selected for the study was 3DEC, a distinct element code which has been used in similar modelling studies in Sweden. A set of seven regional fractures and five rock types were identified in the region to be modelled. Properties for these discontinuities and media were derived from published information where possible or from data for similar regimes. A number of parameters were selected for sensitivity studies. The results of the study form a useful basis for assessing the extent of fracture movement which might be expected in the region modelled. Site-specific results cannot be extended to other areas but the results of the sensitivity study indicate those parameters which have a significant effect on the modelled behaviour of the rock mass and which would thus require site-specific determination. (Author)

  9. Life on rock. Scaling down biological weathering in a new experimental design at Biosphere-2

    Science.gov (United States)

    Zaharescu, D. G.; Dontsova, K.; Burghelea, C. I.; Chorover, J.; Maier, R.; Perdrial, J. N.

    2012-12-01

    Biological colonization and weathering of bedrock on Earth is a major driver of landscape and ecosystem development, its effects reaching out into other major systems such climate and geochemical cycles of elements. In order to understand how microbe-plant-mycorrhizae communities interact with bedrock in the first phases of mineral weathering we developed a novel experimental design in the Desert Biome at Biosphere-2, University of Arizona (U.S.A). This presentation will focus on the development of the experimental setup. Briefly, six enclosed modules were designed to hold 288 experimental columns that will accommodate 4 rock types and 6 biological treatments. Each module is developed on 3 levels. A lower volume, able to withstand the weight of both, rock material and the rest of the structure, accommodates the sampling elements. A middle volume, houses the experimental columns in a dark chamber. A clear, upper section forms the habitat exposed to sunlight. This volume is completely sealed form exterior and it allows a complete control of its air and water parameters. All modules are connected in parallel with a double air purification system that delivers a permanent air flow. This setup is expected to provide a model experiment, able to test important processes in the interaction rock-life at grain-to- molecular scale.

  10. Strategy for a numerical Rock Mechanics Site Descriptive Model. Further development of the theoretical/numerical approach

    International Nuclear Information System (INIS)

    Olofsson, Isabelle; Fredriksson, Anders

    2005-05-01

    The Swedish Nuclear and Fuel Management Company (SKB) is conducting Preliminary Site Investigations at two different locations in Sweden in order to study the possibility of a Deep Repository for spent fuel. In the frame of these Site Investigations, Site Descriptive Models are achieved. These products are the result of an interaction of several disciplines such as geology, hydrogeology, and meteorology. The Rock Mechanics Site Descriptive Model constitutes one of these models. Before the start of the Site Investigations a numerical method using Discrete Fracture Network (DFN) models and the 2D numerical software UDEC was developed. Numerical simulations were the tool chosen for applying the theoretical approach for characterising the mechanical rock mass properties. Some shortcomings were identified when developing the methodology. Their impacts on the modelling (in term of time and quality assurance of results) were estimated to be so important that the improvement of the methodology with another numerical tool was investigated. The theoretical approach is still based on DFN models but the numerical software used is 3DEC. The main assets of the programme compared to UDEC are an optimised algorithm for the generation of fractures in the model and for the assignment of mechanical fracture properties. Due to some numerical constraints the test conditions were set-up in order to simulate 2D plane strain tests. Numerical simulations were conducted on the same data set as used previously for the UDEC modelling in order to estimate and validate the results from the new methodology. A real 3D simulation was also conducted in order to assess the effect of the '2D' conditions in the 3DEC model. Based on the quality of the results it was decided to update the theoretical model and introduce the new methodology based on DFN models and 3DEC simulations for the establishment of the Rock Mechanics Site Descriptive Model. By separating the spatial variability into two parts, one

  11. Cleaner shrimp use a rocking dance to advertise cleaning service to clients.

    Science.gov (United States)

    Becker, Justine H A; Curtis, Lynda M; Grutter, Alexandra S

    2005-04-26

    Signals transmit information to receivers about sender attributes, increase the fitness of both parties, and are selected for in cooperative interactions between species to reduce conflict [1, 2]. Marine cleaning interactions are known for stereotyped behaviors [3-6] that likely serve as signals. For example, "dancing" and "tactile dancing" in cleaner fish may serve to advertise cleaning services to client fish [7] and manipulate client behavior [8], respectively. Cleaner shrimp clean fish [9], yet are cryptic in comparison to cleaner fish. Signals, therefore, are likely essential for cleaner shrimp to attract clients. Here, we show that the yellow-beaked cleaner shrimp [10] Urocaridella sp. c [11] uses a stereotypical side-to-side movement, or "rocking dance," while approaching potential client fish in the water column. This dance was followed by a cleaning interaction with the client 100% of the time. Hungry cleaner shrimp, which are more willing to clean than satiated ones [12], spent more time rocking and in closer proximity to clients Cephalopholis cyanostigma than satiated ones, and when given a choice, clients preferred hungry, rocking shrimp. The rocking dance therefore influenced client behavior and, thus, appears to function as a signal to advertise the presence of cleaner shrimp to potential clients.

  12. Pore connectivity effects on solute transport in rocks

    International Nuclear Information System (INIS)

    Hu, Qinhong; Ewing, Robert P.

    2001-01-01

    Retardation of nuclear contaminants in rock matrices can lead to long retention times, allowing substantial radionuclide decay prior to eventual release. Imbibition and diffusion into the rock matrix can move contaminants away from an active fracture, thereby contributing to their retardation. However, diffusive transport in some rocks may behave anomalously because of their sparsely connected porespace, in contrast to diffusion in rocks with denser pore connections. We examined imbibition of weakly sorbing tracers into welded tuff and Indiana sandstone, and water imbibition into metagraywacke and Berea sandstone. Tuff samples were initially equilibrated to 12% and 76% water (v/v) within controlled humidity chambers, while the other rocks were air-dried. For imbibition, one face was exposed to water, with or without tracer, and uptake was measured over time. Following imbibition, tracer concentration measurements were made at fine (1 mm) increments. Three anomalous results were observed: (1) Indiana sandstone and metagraywacke showed mass of imbibed water scaling as time 0.26 , while tuff and Berea sandstone showed the more classical scaling with time 0.5 ; (2) tracer movement into dry (2% initial saturation) Indiana sandstone showed a dispersion pattern similar to that expected during tracer movement into moist (76% initial saturation) tuff; and (3) tracer concentrations at the inlet face of the tuff sample were approximately twice those deeper inside the sample. The experiment was then modeled using random walk methods on a 3-D lattice with different values of pore coordination. Network model simulations that used a pore coordination of 1.49 for Indiana sandstone and 1.56 for metagraywacke showed similar temporal scaling, a result of their porespace being close to the percolation threshold. Tracer concentration profiles in Indiana sandstone and tuff were closely matched by simulations that used pore coordinations of 1.49 and 1.68, respectively, because of how low

  13. Pore Connectivity Effects on Solute Transport in Rocks

    International Nuclear Information System (INIS)

    Oinhong Hu

    2001-01-01

    Retardation of nuclear contaminants in rock matrices can lead to long retention times, allowing substantial radionuclide decay prior to eventual release. Imbibition and diffusion into the rock matrix can move contaminants away from an active fracture, thereby contributing to their retardation. However, diffusive transport in some rocks may behave anomalously because of their sparsely connected porespace, in contrast to diffusion in rocks with denser pore connections. We examined imbibition of weakly sorbing tracers into welded tuff and Indiana sandstone, and water imbibition into metagraywacke and Berea sandstone. Tuff samples were initially equilibrated to 12% and 76% water (v/v) within controlled humidity chambers, while the other rocks were air-dried. For imbibition, one face was exposed to water, with or without tracer, and uptake was measured over time. Following imbibition, tracer concentration measurements were made at fine (1 mm) increments. Three anomalous results were observed: (1) Indiana sandstone and metagraywacke showed mass of imbibed water scaling as time 0.26 , while tuff and Berea sandstone showed the more classical scaling with time 0.05 ; (2) tracer movement into dry (2% initial saturation) Indiana sandstone showed a dispersion pattern similar to that expected during tracer movement into moist (76% initial saturation) tuft and (3) tracer concentrations at the inlet face of the tuff sample were approximately twice those deeper inside the sample. The experiment was then modeled using random walk methods on a 3-D lattice with different values of pore coordination. Network model simulations that used a pore coordination of 1.49 for Indiana sandstone and 1.56 for metagraywacke showed similar temporal scaling, a result of their porespace being close to the percolation threshold. Tracer concentration profiles in Indiana sandstone and tuff were closely matched by simulations that used pore coordinations of 1.49 and 1.68, respectively, because of how low

  14. Chlorine isotope constraints on fluid-rock interactions during subduction and exhumation of the Zermatt-Saas ophiolite

    Science.gov (United States)

    Selverstone, J.; Sharp, Z. D.

    2013-10-01

    Chlorine isotope compositions of high-pressure (˜2.3 GPa) serpentinite, rodingite, and hydrothermally altered oceanic crust (AOC) differ significantly from high- and ultrahigh-pressure (> 3.2 GPa) metasedimentary rocks in the Aosta region, Italy. Texturally early serpentinites, rodingites, and AOC have bulk δ37Cl values indistinguishable from those of modern seafloor analogues (δ37Cl = -1.0 to +1.0‰). In contrast, serpentinites and AOC samples that recrystallized during exhumation have low δ37Cl values (-2.7 to -0.5‰); 37Cl depletion correlates with progressive changes in bulk chemistry. HP/UHP metasediments have low δ37Cl values (median = -2.5‰) that differ statistically from modern marine sediments (median = -0.6‰). Cl in metasedimentary rocks is concentrated in texturally early minerals, indicating modification of seafloor compositions early in the subduction history. The data constrain fluid sources during both subduction and exhumation-related phases of fluid-rock interaction: (1) marine sediments at the top of the downgoing plate likely interacted with isotopically light pore fluids from the accretionary wedge in the early stages of subduction. (2) No pervasive interaction with externally derived fluid occurred during subsequent subduction to the maximum depths of burial. (3) Localized mixing between serpentinites and fluids released by previously isotopically modified metasediments occurred during exhumation in the subduction channel. Most samples, however, preserved protolith signatures during subduction to near-arc depths.

  15. Research on Dynamic Dissolving Model and Experiment for Rock Salt under Different Flow Conditions

    Directory of Open Access Journals (Sweden)

    Xinrong Liu

    2015-01-01

    Full Text Available Utilizing deep rock salt cavern is not only a widely recognized energy reserve method but also a key development direction for implementing the energy strategic reserve plan. And rock salt cavern adopts solution mining techniques to realize building cavity. In view of this, the paper, based on the dissolving properties of rock salt, being simplified and hypothesized the dynamic dissolving process of rock salt, combined conditions between dissolution effect and seepage effect in establishing dynamic dissolving models of rock salt under different flow quantities. Devices were also designed to test the dynamic dissolving process for rock salt samples under different flow quantities and then utilized the finite-difference method to find the numerical solution of the dynamic dissolving model. The artificial intelligence algorithm, Particle Swarm Optimization algorithm (PSO, was finally introduced to conduct inverse analysis of parameters on the established model, whose calculation results coincide with the experimental data.

  16. Numerical studies of rock-gas flow in Yucca Mountain

    International Nuclear Information System (INIS)

    Ross, B.; Amter, S.; Lu, Ning

    1992-02-01

    A computer model (TGIF -- Thermal Gradient Induced Flow) of two-dimensional, steady-state rock-gas flow driven by temperature and humidity differences is described. The model solves for the ''fresh-water head,'' a concept that has been used in models of variable-density water flow but has not previously been applied to gas flow. With this approach, the model can accurately simulate the flows driven by small differences in temperature. The unsaturated tuffs of Yucca Mountain, Nevada, are being studied as a potential site for a repository for high-level nuclear waste. Using the TGIF model, preliminary calculations of rock-gas flow in Yucca Mountain are made for four east-west cross-sections through the mountain. Calculations are made for three repository temperatures and for several assumptions about a possible semi-confining layer above the repository. The gas-flow simulations are then used to calculate travel-time distributions for air and for radioactive carbon-14 dioxide from the repository to the ground surface

  17. Regulation of ROCK Activity in Cancer

    Science.gov (United States)

    Morgan-Fisher, Marie; Wewer, Ulla M.

    2013-01-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  18. Recent advances in analysis and prediction of Rock Falls, Rock Slides, and Rock Avalanches using 3D point clouds

    Science.gov (United States)

    Abellan, A.; Carrea, D.; Jaboyedoff, M.; Riquelme, A.; Tomas, R.; Royan, M. J.; Vilaplana, J. M.; Gauvin, N.

    2014-12-01

    The acquisition of dense terrain information using well-established 3D techniques (e.g. LiDAR, photogrammetry) and the use of new mobile platforms (e.g. Unmanned Aerial Vehicles) together with the increasingly efficient post-processing workflows for image treatment (e.g. Structure From Motion) are opening up new possibilities for analysing, modeling and predicting rock slope failures. Examples of applications at different scales ranging from the monitoring of small changes at unprecedented level of detail (e.g. sub millimeter-scale deformation under lab-scale conditions) to the detection of slope deformation at regional scale. In this communication we will show the main accomplishments of the Swiss National Foundation project "Characterizing and analysing 3D temporal slope evolution" carried out at Risk Analysis group (Univ. of Lausanne) in close collaboration with the RISKNAT and INTERES groups (Univ. of Barcelona and Univ. of Alicante, respectively). We have recently developed a series of innovative approaches for rock slope analysis using 3D point clouds, some examples include: the development of semi-automatic methodologies for the identification and extraction of rock-slope features such as discontinuities, type of material, rockfalls occurrence and deformation. Moreover, we have been improving our knowledge in progressive rupture characterization thanks to several algorithms, some examples include the computing of 3D deformation, the use of filtering techniques on permanently based TLS, the use of rock slope failure analogies at different scales (laboratory simulations, monitoring at glacier's front, etc.), the modelling of the influence of external forces such as precipitation on the acceleration of the deformation rate, etc. We have also been interested on the analysis of rock slope deformation prior to the occurrence of fragmental rockfalls and the interaction of this deformation with the spatial location of future events. In spite of these recent advances

  19. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock. In order to learn more about the response of hard rock to underground nuclear explosions, we have attempted to model the PILEDRIVER event. PILEDRIVER was fired on June 2, 1966 in the granite stock of Area 15 at the Nevada Test Site. The working point was at a depth of 462.7 m and the yield was determined to be 61 kt. Numerous surface, sub-surface and free-field measurements were made and analyzed by SRI. An attempt was made to determine the contribution of spall to the teleseismic signal, but proved unsuccessful because most of the data from below-shot-level gauges was lost. Nonetheless, there is quite a bit of good quality data from a variety of locations. We have been able to obtain relatively good agreement with the experimental PILEDRIVER waveforms. In order to do so, we had to model the granodiorite as being considerably weaker than ''good quality'' granite, and it had to undergo considerable weakening due to shock damage as well. In addition, the near-surface layers had to be modeled as being weak and compressible and as have a much lower sound speed than the material at depth. The is consistent with a fractured and jointed material at depth, and a weathered material near the surface

  20. Strength and deformation properties of volcanic rocks in Iceland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Andreassen, Katrine Alling

    2016-01-01

    rock from Iceland has been the topic for rock mechanical studies carried out by Ice-landic guest students at the Department of Civil Engineering at the Technical University of Den-mark over a number of years in cooperation with University of Iceland, Vegagerðin (The Icelandic Road Directorate......) and Landsvirkjun (The National Power Company of Iceland). These projects involve engineering geological properties of volcanic rock in Iceland, rock mechanical testing and parameter evaluation. Upscaling to rock mass properties and modelling using Q- or GSI-methods have been studied by the students......Tunnelling work and preinvestigations for road traces require knowledge of the strength and de-formation properties of the rock material involved. This paper presents results related to tunnel-ling for Icelandic water power plants and road tunnels from a number of regions in Iceland. The volcanic...

  1. In silico prediction of ROCK II inhibitors by different classification approaches.

    Science.gov (United States)

    Cai, Chuipu; Wu, Qihui; Luo, Yunxia; Ma, Huili; Shen, Jiangang; Zhang, Yongbin; Yang, Lei; Chen, Yunbo; Wen, Zehuai; Wang, Qi

    2017-11-01

    ROCK II is an important pharmacological target linked to central nervous system disorders such as Alzheimer's disease. The purpose of this research is to generate ROCK II inhibitor prediction models by machine learning approaches. Firstly, four sets of descriptors were calculated with MOE 2010 and PaDEL-Descriptor, and optimized by F-score and linear forward selection methods. In addition, four classification algorithms were used to initially build 16 classifiers with k-nearest neighbors [Formula: see text], naïve Bayes, Random forest, and support vector machine. Furthermore, three sets of structural fingerprint descriptors were introduced to enhance the predictive capacity of classifiers, which were assessed with fivefold cross-validation, test set validation and external test set validation. The best two models, MFK + MACCS and MLR + SubFP, have both MCC values of 0.925 for external test set. After that, a privileged substructure analysis was performed to reveal common chemical features of ROCK II inhibitors. Finally, binding modes were analyzed to identify relationships between molecular descriptors and activity, while main interactions were revealed by comparing the docking interaction of the most potent and the weakest ROCK II inhibitors. To the best of our knowledge, this is the first report on ROCK II inhibitors utilizing machine learning approaches that provides a new method for discovering novel ROCK II inhibitors.

  2. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model

    Science.gov (United States)

    Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.

    2017-10-01

    We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.

  3. Interaction between an Eco-Spiral Bolt and Crushed Rock in a Borehole Evaluated by Pull-Out Testing

    Directory of Open Access Journals (Sweden)

    Seong-Seung Kang

    2017-01-01

    Full Text Available The interactions between an eco-spiral bolt and crushed rocks in a borehole were evaluated by pull-out testing in a laboratory and numerical analysis. The porosity of the crushed rock surrounding the bolt depended on the size of the eco-spiral bolt and affected the eco-spiral bolt’s axial resistance force. The axial resistance force and the porosity of the crushed rocks in the borehole showed an inverse relationship. The porosity was also related to the size of the eco-spiral bolt. The maximum principal stress between the bolt and the rock was related to the porosity of the crushed rock and the size difference between the eco-spiral bolt and the borehole. At low porosity the experimental and numerical analyses show similar relationships between the axial resistance force and the displacement. However, at high porosity, the numerical results deviated greatly from the experimental observation. The initial agreement is attributed to the state of residual resistance after the maximum axial resistance force, and the latter divergence was due to the decreasing axial resistance force owing to slippage.

  4. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes

    Science.gov (United States)

    Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling

    2017-10-01

    Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values

  5. Sliding rocks on Racetrack Playa, Death Valley National Park: first observation of rocks in motion.

    Directory of Open Access Journals (Sweden)

    Richard D Norris

    Full Text Available The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved > 60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, "windowpane" ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of -4-5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2-5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice.

  6. Impact on sediments and water by release of copper from chalcopyrite bearing rock due to acidic mine drainage

    Science.gov (United States)

    Shukla, Anoop Kant; Pradhan, Manoj; Tiwari, Onkar Nath

    2018-04-01

    Mining activity causes transition of rock-mass from its original position in earth into open environment. The action of environmental elements such air, water, microorganisms leads to oxidation of minerals which constitute the rock. The oxidation of sulphide minerals in presence of moisture releases acidic mine discharge (AMD). The acidic nature of AMD causes leaching of metals from rock minerals. Dissolution of other minerals may occur upon reaction with AMD. Chalcopyrite (CuFeS2) undergoes oxidation in acidic condition releasing copper among other products. This study reveals contamination of copper in sediment samples and seepage water from the tailing dam of a large copper project in located in central India. Elevation was studied using GIS to ascertain to the topographic elevation of tailing dam area. It was located at relatively high altitude causing seepage to flow away from tailing dam. The seepage water from tailing dam was found to be acidic with mean pH value of 4.0 and elevated copper content. Similarly, sediments from seepage water flow displayed elevated copper concentration. The copper concentration in seepage water was found with a mean value of 10.73 mg/l. The sediments from seepage water flow also displayed elevated copper concentration with mean value of 26.92 g/kg. This indicates impact on sediments by release of copper due to acidic mine drainage.

  7. Rock Failure Analysis Based on a Coupled Elastoplastic-Logarithmic Damage Model

    Science.gov (United States)

    Abdia, M.; Molladavoodi, H.; Salarirad, H.

    2017-12-01

    The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed

  8. Rock Physical Interpretation of the Relationship between Dynamic and Static Young's Moduli of Sedimentary Rocks

    Science.gov (United States)

    Takahashi, T.

    2017-12-01

    The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications

  9. Centrifuge modeling of rocking-isolated inelastic RC bridge piers.

    Science.gov (United States)

    Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George

    2014-12-01

    Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Published by John Wiley & Sons Ltd.

  10. ROCK TYPOLOGY IN CHOOSING SPRINGS. ANCIENT METHODS FOR DETERMINING WATER QUALITY IN THE PARMA REGION

    Directory of Open Access Journals (Sweden)

    Valentino Straser

    2011-12-01

    Full Text Available This study was a scientific validation of some ancient methods used for purifying water and selecting springs based on the nature of the soil and rocks. A historical and scientific analysis of the territory was made, with the aim of trying to identify ancient methods which might be retrieved and used again in a modern way for a comprehensive interpretation of the environment we live in. The investigation was led near Parma in the north of Italy, in mountainous and hilly areas which rise from rocky outcrops consisting of fragments of the ancient oceanic crust composed of argillaceous complexes, ultrabasic rocks from the ophiolite succession as well as flyschoid sedimentary rocks containing arenaceous, carboniferous and marly elements.

  11. Surface water management: a user's guide to calculate a water balance using the CREAMS model

    International Nuclear Information System (INIS)

    Lane, L.J.

    1984-11-01

    The hydrologic component of the CREAMS model is described and discussed in terms of calculating a surface water balance for shallow land burial systems used for waste disposal. Parameter estimates and estimation procedures are presented in detail in the form of a user's guide. Use of the model is illustrated with three examples based on analysis of data from Los Alamos, New Mexico and Rock Valley, Nevada. Use of the model in design of trench caps for shallow land burial systems is illustrated with the example applications at Los Alamos

  12. MCDIRC: A model to estimate creep produced by microcracking around a shaft in intact rock

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1989-12-01

    Atomic Energy of Canada Limited (AECL) is studying the concept of disposing of nuclear fuel waste in a vault in plutonic rock. Models are being developed to predict the mechanical behaviour of the rock in response to excavation and heat from the waste. The dominant mechanism of deformation at temperatures below 150 degrees C is microcracking, which results in rock creep and a decrease in rock strength. A model has been constructed to consider the perturbation of the stress state of intact rock by a vertical cylindrical opening. Slow crack-growth data are used to estimate time-dependent changes in rock strength, from which the movement (creep) of the opening wall and radial strain in the rock mass can be estimated

  13. Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks

    NARCIS (Netherlands)

    Balk, M.; Bose, M.; Ertem, G.; Rogoff, D.A.; Rothschild, L.J.; Freund, F.T.

    2009-01-01

    Common igneous and high-grade metamorphic rocks contain dormant defects, which release electronic charge carriers when stressed. Rocks thereby behave like a battery. The charge carriers of interest are defect electrons h¿, e.g. electronic states associated with O¿ in a matrix of O2¿. Known as

  14. A non-Linear transport model for determining shale rock characteristics

    Science.gov (United States)

    Ali, Iftikhar; Malik, Nadeem

    2016-04-01

    Unconventional hydrocarbon reservoirs consist of tight porous rocks which are characterised by nano-scale size porous networks with ultra-low permeability [1,2]. Transport of gas through them is not well understood at the present time, and realistic transport models are needed in order to determine rock properties and for estimating future gas pressure distribution in the reservoirs. Here, we consider a recently developed non-linear gas transport equation [3], ∂p-+ U ∂p- = D ∂2p-, t > 0, (1) ∂t ∂x ∂x2 complimented with suitable initial and boundary conditions, in order to determine shale rock properties such as the permeability K, the porosity φ and the tortuosity, τ. In our new model, the apparent convection velocity, U = U(p,px), and the apparent diffusivity D = D(p), are both highly non-linear functions of the pressure. The model incorporate various flow regimes (slip, surface diffusion, transition, continuum) based upon the Knudsen number Kn, and also includes Forchchiemers turbulence correction terms. In application, the model parameters and associated compressibility factors are fully pressure dependent, giving the model more realism than previous models. See [4]. Rock properties are determined by solving an inverse problem, with model parameters adjustment to minimise the error between the model simulation and available data. It is has been found that the proposed model performs better than previous models. Results and details of the model will be presented at the conference. Corresponding author: namalik@kfupm.edu.sa and nadeem_malik@cantab.net References [1] Cui, X., Bustin, A.M. and Bustin, R., "Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications", Geofluids 9, 208-223 (2009). [2] Chiba R., Fomin S., Chugunov V., Niibori Y. and Hashida T., "Numerical Simulation of Non Fickian Diffusion and Advection in a Fractured Porous Aquifer", AIP Conference Proceedings 898, 75 (2007

  15. Thermodynamic modeling using BINGO-ANTIDOTE: A new strategy to investigate metamorphic rocks

    Science.gov (United States)

    Lanari, Pierre; Duesterhoeft, Erik

    2016-04-01

    BINGO-ANTIDOTE is a new program, combing the achievements of the two petrological software packages XMAPTOOLS[1] and THERIAK-DOMINO[2]. XMAPTOOLS affords information about compositional zoning in mineral and local bulk composition of domains at the thin sections scale. THERIAK-DOMINO calculates equilibrium phase assemblages from given bulk rock composition, temperature T and pressure P. Primarily BINGO-ANTIDOTE can be described as an inverse THERIAK-DOMINO, because it uses the information provided by XMAPTOOLS to calculate the probable P-T equilibrium conditions of metamorphic rocks. Consequently, the introduced program combines the strengths of forward Gibbs free energy minimization models with the intuitive output of inverse thermobarometry models. In order to get "best" P-T equilibrium conditions of a metamorphic rock sample and thus estimating the degree of agreement between the observed and calculated mineral assemblage, it is critical to define a reliable scoring strategy. BINGO uses the THERIAKD ADD-ON[3] (Duesterhoeft and de Capitani, 2013) and is a flexible model scorer with 3+1 evaluation criteria. These criteria are the statistical agreement between the observed and calculated mineral-assemblage, -proportions (vol%) and -composition (mol). Additionally, a total likelihood, consisting of the first three criteria, allows the user an evaluation of the most probable equilibrium P-T condition. ANTIDOTE is an interactive user interface, displaying the 3+1 evaluation criteria as probability P-T-maps. It can be used with and without XMAPTOOLS. As a stand-alone program, the user is able to give the program macroscopic observations (i.e., mineral names and proportions), which ANTIDOTE converts to a readable BINGO input. In this manner, the use of BINGO-ANTIDOTE opens up thermodynamics to students and people with only a basic knowledge of phase diagrams and thermodynamic modeling techniques. This presentation introduces BINGO-ANTIDOTE and includes typical examples

  16. Modeling the growth and interaction of stylolite networks, using the discrete element method for pressure solution

    Science.gov (United States)

    Makedonska, N.; Sparks, D. W.; Aharonov, E.

    2012-12-01

    Pressure solution (also termed chemical compaction) is considered the most important ductile deformation mechanism operating in the Earth's upper crust. This mechanism is a major player in a variety of geological processes, including evolution of sedimentary basins, hydrocarbon reservoirs, aquifers, earthquake recurrence cycles, and fault healing. Pressure solution in massive rocks often localizes into solution seams or stylolites. Field observations of stylolites often show elastic/brittle interactions in regions between pressure solution features, including and shear fractures, veins and pull-apart features. To understand these interactions, we use a grain-scale model based on the Discrete Element Method that allows granular dissolution at stressed contacts between grains. The new model captures both the slow chemical compaction process and the more abrupt brittle fracturing and sliding between grains. We simulate a sample of rock as a collection of particles, each representing either a grain or a unit of rock, bonded to each other with breakable cement. We apply external stresses to this sample, and calculate elastic and frictional interactions between the grains. Dissolution is modeled by an irreversible penetration of contacting grains into each other at a rate that depends on the contact stress and an adjustable rate constant. Experiments have shown that dissolution rates at grain contacts are greatly enhanced when there is a mineralogical contrast. Therefore, we dissolution rate constant can be increased to account for an amount of impurities (e.g. clay in a quartz or calcite sandstone) that can accumulate on dissolving contacts. This approach allows large compaction and shear strains within the rock, while allowing examination of local grain-scale heterogeneity. For example, we will describe the effect of pressure solution on the distribution of contact forces magnitudes and orientations. Contact forces in elastic granular packings are inherently

  17. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States.

    Science.gov (United States)

    Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh

    2017-09-01

    Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates

  18. Finite element simulations of interactions between multiple hydraulic fractures in a poroelastic rock

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Usui, Tomoya; Paluszny, Adriana

    2017-01-01

    A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is presented, and used to investigate the ranges of applicability of the classical analytical solutions that are known to be valid in limiting cases. This model simultaneously accounts for fluid flow...

  19. The role of an evolving porosity in fluid-rock interaction - a synthesis of insights gained in six years of in-situ 4D microtomography experiments

    Science.gov (United States)

    Fusseis, Florian

    2017-04-01

    Effective fluid rock interaction relies on permeable pore space for fluid to move in. In dynamic (tectono-)metamorphic environments, pore space will be transient and subject to continuous modification. As a consequence, transport properties of rocks evolve throughout their metamorphic history, which complicates the interpretation of fossilised traces of fluid-rock interaction in natural rock samples. Thankfully, a large body of processes involved in fluid-rock interaction occur on time scales accessible in experiments, and over the past decades significant insights were gained in many now classical laboratory investigations. Until recently though, fluid-rock interaction could not be observed directly, and processes and rates were inferred through indirect measurements or post-mortem analyses. Studies that utilise x-rays or neutrons to continuously image fluid-mediated processes inside experimental vessels allow, on the one hand, to quantify their rates but also to assess and characterise transient porosity on the grain scale. In this presentation, I will synthesize the findings from several collaborative experimental studies that documented and quantified fluid-rock interaction in 4-dimensional x-ray microtomographic datasets. Most of these experiments were conducted in bespoke x-ray transparent vessels built in Edinburgh and all of them involved a dynamically evolving porosity as a key element of the studied processes. The latter are 1) the dehydration of gypsum single crystals and alabaster, 2) the carbonation of olivine aggregates, 3) pressure solution in polycrystalline salt, and 4) the dolomitisation of various carbonates. The microtomographic time series data enabled the direct observation of the above processes on the grain scale and were used to quantify their advance using sophisticated image analytical workflows. Each of the studies characterised porosity formation or alteration by a particular mechanism relevant to geological scenarios and it became

  20. Geotechnical modeling of high-level nuclear waste disposal by rock melting

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-12-01

    A new strategy has been developed for the geotechnical modeling of nuclear waste disposal by rock melting (DRM). Three seeparate tasks were performed to reach this objective: a review of the four scenarios which have been proposed for DRM, to date; an evaluation of computer-based numerical models which could be used to analyze the mechanical, thermal, and hydraulic processes involved in DRM; and a critical review of rock mass properties which are relevant to the design and safety of waste disposal by rock melting. It is concluded that several geotechnical aspects of DRM can be studied realistically with current state-of-the-art model capabilities and knowledge of material properties. The next step in the feasibility study of DRM should be a best-estimate calculation of the four cavity-melt and canister-burial concepts. These new analyses will indicate the most critical areas for subsequent research