Energy Technology Data Exchange (ETDEWEB)
Alcala Ruiz, F.
1984-07-01
It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs.
The Spectral Shift Function and Spectral Flow
Azamov, N. A.; Carey, A. L.; Sukochev, F. A.
2007-11-01
At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non
Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels
Li, Tianhao; Fu, Qian-Jie
2011-01-01
Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…
Spectral Shifting in Nondestructive Assay Instrumentation
Energy Technology Data Exchange (ETDEWEB)
Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nettleton, Anthony Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tutt, James Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaFleur, Adrienne Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-11-17
This project involves spectrum tailoring research that endeavors to better distinguish energies of gamma rays using different spectral material thicknesses and determine neutron energies by coating detectors with various materials.
Integrated optics refractometry: sensitivity in relation to spectral shifts
Hoekstra, Hugo; Hammer, M.
2013-01-01
A new variant of the Vernier-effect based sensor reported in ref. 1 is introduced. Both sensor types may show a huge index induced spectral shift. It will be shown in a poster presentation that with such sensors, as well as with surface plasmon based sensors, the constraints on the spectral
Integrated optics refractometry: sensitivity in relation to spectral shifts
Hoekstra, Hugo; Hammer, M.
2013-01-01
A new variant of the Vernier-effect based sensor reported in ref. 1 is introduced. Both sensor types may show a huge index induced spectral shift. It will be shown in a poster presentation that with such sensors, as well as with surface plasmon based sensors, the constraints on the spectral resoluti
Integrated optics refractometry: sensitivity in relation to spectral shifts
Hoekstra, H.J.W.M.
2013-01-01
A new variant of the Vernier-effect based sensor reported in ref. 1 is introduced. Both sensor types may show a huge index induced spectral shift. It will be shown in a poster presentation that with such sensors, as well as with surface plasmon based sensors, the constraints on the spectral resoluti
Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting
Directory of Open Access Journals (Sweden)
José L. Santacruz
2016-11-01
Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.
Oxide mediated spectral shifting in aluminum resonant optical antennas.
Schwab, Patrick M; Moosmann, Carola; Dopf, Katja; Eisler, Hans-Jürgen
2015-10-01
As a key feature among metals showing good plasmonic behavior, aluminum extends the spectrum of achievable plasmon resonances of optical antennas into the deep ultraviolet. Due to degradation, a native oxide layer gives rise to a metal-core/oxide-shell nanoparticle and influences the spectral resonance peak position. In this work, we examine the role of the underlying processes by applying numerical nanoantenna models that are experimentally not feasible. Finite-difference time-domain simulations are carried out for a large variety of elongated single-arm and two-arm gap nanoantennas. In a detailed analysis, which takes into account the varying surface-to-volume ratio, we show that the overall spectral shift toward longer wavelengths is mainly driven by the higher index surrounding material rather than by the decrease of the initial aluminum volume. In addition, we demonstrate experimentally that this shifting can be minimized by an all-inert fabrication and subsequent proof-of-concept encapsulation.
Spectral shift mechanisms of chlorophylls in liquids and proteins.
Renge, Indrek; Mauring, Koit
2013-02-01
Origins of non-excitonic spectral shifts of chlorophylls that can reach -1,000 cm(-1) in pigment-protein complexes are actively debated in literature. We investigate possible shift mechanisms, basing on absorption and fluorescence measurements in large number of liquids. Transition wavelength in solvent-free state was estimated (±2 nm) for chlorophyll a (Chl a, 647 nm), Chl b (624 nm), bacteriochlorophyll a (BChl a, 752 nm), and pheophytines. The dispersive-repulsive shift is a predominating mechanism. It depends on polarizability difference between the ground and the excited state Δα and the Lorenz-Lorentz function of refractive index of solvent (n). The approximate (± 2Å(3)) increase of polarizability Δα is close to 15Å(3) for S(1) bands of Chl a, BChl a, and BPheo a, slightly larger for Chl b (18Å(3)), and less for Pheo a (11Å(3)). The effect of solvent polarity, expressed in terms of static dielectric permittivity (ε) is relatively minor, but characteristic for different pigments and transitions. Remarkably, maximum influence of ε on S(1) band of BChl a is less (-20 ± 10 cm(-1)) than that for Chl a (-50 ± 10 cm(-1)), and not correlated with dipole moment changes on excitation Δμ (∼2D and 0.1 ± 0.1D, respectively). Hydrogen bonding in protic solvents produces red shifts in Chl a (-60 cm(-1)) and BChl a (-100 cm(-1)), but not in Chl b. Second axial ligand of BChl a has no influence on the S(1) band, whereas the S(2) transition suffers a -400 to -600 cm(-1) down shift. Aromatic character of solvent is responsible for a ∼-100 cm(-1) red shift of both Q transitions in BChl a. The S(1) bands in chlorophylls are relatively insensitive with respect to dielectric properties and specific solvation. Therefore, nontrivial mechanisms, yielding large site-energy shifts are expected in photosynthetic chlorophyll-proteins.
Spectral Shifts of Nonadiabatic High-Order Harmonic Generation
Directory of Open Access Journals (Sweden)
André D. Bandrauk
2013-03-01
Full Text Available High-order harmonic generation (HHG is a nonlinear nonperturbative process in ultrashort intense laser-matter interaction. It is the main source of coherent attosecond (1 as = 10−18 s laser pulses to investigate ultrafast electron dynamics. HHG has become an important table-top source covering a spectral range from infrared to extreme ultraviolet (XUV. One way to extend the cutoff energy of HHG is to increase the intensity of the laser pulses. A consequence of HHG in such intense short laser fields is the characteristic nonadiabatic red and blue shifts of the spectrum, which are reviewed in the present work. An example of this nonperturbative light-matter interaction is presented for the one-electron nonsymmetric molecular ion HeH2+, as molecular systems allow for the study of the laser-molecule orientation dependence of such new effects including a four-step model of MHOHG (Molecular High-order Harmonic Generation.
Polarization and spectral shift of benzophenone in supercritical water.
Fonseca, T L; Georg, H C; Coutinho, K; Canuto, S
2009-04-30
that the inclusion of this polarization is important for a reliable description of the spectral shifts considered here.
Spectrally and temporally resolved resonance shifts of a photonic crystal cavity switch
DEFF Research Database (Denmark)
Hansen, Per Lunnemann; Yu, Yi; Mørk, Jesper
2016-01-01
We present experimental results of temporally and spectrally resolved transmission measurements of a photonic crystal cavity using two-color pump-probe technique. With a gated spectral measurement, we measure the resonance shift's dependence on pump power.......We present experimental results of temporally and spectrally resolved transmission measurements of a photonic crystal cavity using two-color pump-probe technique. With a gated spectral measurement, we measure the resonance shift's dependence on pump power....
Spectrally and temporally resolved resonance shifts of a photonic crystal cavity switch
DEFF Research Database (Denmark)
Hansen, Per Lunnemann; Yu, Yi; Mørk, Jesper
2016-01-01
We present experimental results of temporally and spectrally resolved transmission measurements of a photonic crystal cavity using two-color pump-probe technique. With a gated spectral measurement, we measure the resonance shift's dependence on pump power.......We present experimental results of temporally and spectrally resolved transmission measurements of a photonic crystal cavity using two-color pump-probe technique. With a gated spectral measurement, we measure the resonance shift's dependence on pump power....
Conceptual design of a large Spectral Shift Controlled Reactor
Energy Technology Data Exchange (ETDEWEB)
Matzie, R A; Menzel, G P
1979-08-01
Within the framework of the Nonproliferation Alternative Systems Assessment Program (NASAP), the US Department of Energy (DOE) has sponsored the development of a conceptual design of a large Spectral Shift Controlled Reactor (SSCR). This report describes the results of the development program and assesses the performance of the conceptual SSCR on the basis of fuel resource utilization and total power costs. The point of departure of the design study was a 1270 MW(e) PWR using Combustion Engineering's System 80/sup TM/ reactor and Stone and Webster's Reference Plant Design. The initial phase of the study consisted of establishing an optimal core design for both the once-through uranium cycle and the denatured U-235/thorium cycle with uranium recycle. The performance of the SSCR was then also assessed for the denatured U-233/thorium cycle with uranium recycle and for the plutonium/thorium cycle with plutonium recycle. After the optimal core design was established, the design of the NSSS and balance of plant was developed.
On the Koplienko spectral shift function, I. Basics
Gesztesy, Fritz; Simon, Barry
2007-01-01
We study the Koplienko Spectral Shift Function (KoSSF), which is distinct from the one of Krein (KrSSF). KoSSF is defined for pairs $A,B$ with $(A-B)\\in\\calI_2$, the Hilbert-Schmidt operators, while KrSSF is defined for pairs $A,B$ with $(A-B)\\in\\calI_1$, the trace class operators. We review various aspects of the construction of both KoSSF and KrSSF. Among our new results are: (i) that any positive Riemann integrable function of compact support occurs as a KoSSF; (ii) that there exist $A,B$ with $(A-B)\\in\\calI_2$ so $\\det_2((A-z)(B-z)^{-1})$ does not have nontangential boundary values; (iii) an alternative definition of KoSSF in the unitary case; and (iv) a new proof of the invariance of the a.c. spectrum under $\\calI_1$-perturbations that uses the KrSSF.
Effects of source correlation on the spectral shift of light waves on scattering.
Wang, Tao; Zhao, Daomu
2013-05-01
The far-zone scattered spectrum has been investigated for the scattering of two correlated sources from a deterministic medium. It is shown that red shift or blue shift can be produced in the far-zone scattered spectrum, and the spectral shift is influenced by the source correlation.
Han, Jingshan; Li, Wenhui
2016-01-01
We perform spectroscopic measurements of electromagnetically induced transparency (EIT) in a strongly interacting Rydberg gas, and observe a significant spectral shift of the transparency from the single-atom EIT resonance as well as a spectral dephasing of the same order. We characterize the shift and dephasing as a function of atomic density, probe Rabi frequency, and principal quantum number of Rydberg states, and demonstrate that the observed spectral shift and dephasing are reduced if the size of a Gaussian atomic cloud is increased. We simulate our experiment with a semi-analytical model, which gives results in good agreement with our experimental data.
Laser induced infrared spectral shift of the MgB2:Cr superconductor films.
AlZayed, N S; Kityk, I V; Soltan, S; El-Naggar, A M; Shahabuddin, M
2015-02-01
During illumination of the MgB2:Cr2O3 films it was established substantial spectral shift of the infrared spectra in the vicinity of 20-50cm(-1). The excitations were performed by nanosecond Er:glass laser operating at 1.54μm and by microsecond 10.6μm CO2 laser. The spectral shifts of the IR maxima were in opposite spectral directions for the two types of lasers. This one observed difference correlates well with spectral shift of their critical temperatures. The possible explanation is given by performance of DFT calculations of the charge density redistribution and the time kinetics of the photovoltaic response. To understand the kinetics of the photoinduced processes the time kinetics of photoresponse was done for the particular laser wavelengths.
Spectral shifts and helium configurations in 4HeN-tetracene clusters
Energy Technology Data Exchange (ETDEWEB)
Whitley, H D; DuBois, J L; Whaley, K B
2009-05-20
Spectral shifts of electronic transitions of tetracene in helium droplets are investigated in a theoretical study of {sup 4}He{sub N}-tetracene clusters with 1 {le} N {le} 150. Utilizing a pair-wise interaction for the S{sub 0} state of tetracene with helium that is extended by semi-empirical terms to construct a potential for the S1 state of tetracene with helium, the spectral shift is calculated from path integral Monte Carlo calculations of the helium equilibrium properties with tetracene in the S{sub 0} and S{sub 1} states at T = 0 and at T = 0.625 K. The calculated spectral shifts are in quantitative agreement with available experimental measurements for small values of N ({le} 8) at T {approx} 0.4 K and show qualitative agreement for larger N (10-20). The extrapolated value of the spectral shift in large droplets (N {approx} 10{sup 4}) is {approx} 90% of the experimentally measured value. We find no evidence of multiple configurations of helium for any cluster size, for both the S{sub 0} or S{sub 1} states of tetracene. These results suggest that the observed spectral splitting of electronic transitions of tetracene in large helium droplets is not due to co-existence of static meta-stable helium densities, unlike the situation previously analyzed for the phthalocyanine molecule.
Numerical estimation of the total phase shift in complex spectral OCT in vivo imaging
Cyganek, Marta; Wojtkowski, Maciej; Targowski, Piotr; Kowalczyk, Andrzej
2004-07-01
Complex Spectral Optical Tomography (CSOCT) in comparison to ordinary SOCT produces images free of parasitic mirror terms which results in double extension of the measurement range. This technique, however, requires the exact knowledge about the values of the introduced phase shifts in consecutive measurements. Involuntary object movements, which shift the phase from one measurement to another are always present in in vivo experiments. This introduces residual ghosts in cross-sectional images. Here we present a new method of data analysis, which allows determining the real phase shifts introduced during the measurement, and which helps to reduce the ghost effect. Two-dimensional cross-sectional in vivo images of human eye and skin obtained with the aid of this improved complex spectral OCT technique are shown. The method is free of polychromatic phase error originating from the wavelength dependence of the phase shift introduced by the reference mirror translation.
Han, Jingshan; Vogt, Thibault; Li, Wenhui
2016-10-01
We perform spectroscopic measurements of electromagnetically induced transparency (EIT) in a strongly interacting Rydberg gas. We observe a significant spectral shift and attenuation of the transparency resonance due to the presence of interactions between Rydberg atoms. We characterize the attenuation as the result of an effective dephasing and show that the shift and the dephasing rate increase versus atomic density, probe Rabi frequency, and principal quantum number of Rydberg states. Moreover, we find that the spectral shift is reduced if the size of a Gaussian atomic cloud is increased and that the dephasing rate increases with the EIT pulse duration at large-parameter regimes. We simulate our experiment with a semianalytical model, which yields results in good agreement with our experimental data.
Institute of Scientific and Technical Information of China (English)
Hui Xue; Weidong Shen; Peifu Gu; Zhenyue Luo; Yueguang Zhang; Xu Liu
2009-01-01
A novel method to measure the absolute phase shift on reflection of thin film is presented utilizing a white-light interferometer in spectral domain.By applying Fourier transformation to the recorded spectral interference signal,we retrieve the spectral phase function ф,which is induced by three parts:the path length difference in air L,the effective thickness of slightly dispersive cube beam splitter Teff and the nonlinear phase function due to multi-reflection of the thin film structure.We utilize the fact that the overall optical path difference(OPD)is linearly dependent on the refractive index of the beam splitter to determine both L and Teff.The spectral phase shift on reflection of thin film structure can be obtained by subtracting these two parts from ф.We show theoretically and experimentally that our now method can provide a sinlple and fast solution in calculating the absolute spectral phase function of optical thin films,while still maintaining high accuracy.
Spectral Shifted Jacobi Tau and Collocation Methods for Solving Fifth-Order Boundary Value Problems
Directory of Open Access Journals (Sweden)
A. H. Bhrawy
2011-01-01
Full Text Available We have presented an efficient spectral algorithm based on shifted Jacobi tau method of linear fifth-order two-point boundary value problems (BVPs. An approach that is implementing the shifted Jacobi tau method in combination with the shifted Jacobi collocation technique is introduced for the numerical solution of fifth-order differential equations with variable coefficients. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplify the problem. Shifted Jacobi collocation method is developed for solving nonlinear fifth-order BVPs. Numerical examples are performed to show the validity and applicability of the techniques. A comparison has been made with the existing results. The method is easy to implement and gives very accurate results.
Alonso-Gonzalez, P; Neubrech, F; Huck, Christian; Chen, J; Golmar, F; Casanova, F; Hueso, L E; Pucci, A; Aizpurua, J; Hillenbrand, R
2013-01-01
Theory predicts a distinct spectral shift between the near- and far-field optical responses of plasmonic antennas. Here we combine near-field optical microscopy and far-field spectroscopy of individual infrared-resonant nanoantennas to verify experimentally this spectral shift. Numerical calculations corroborate our experimental results. We furthermore discuss the implications of this effect in surface-enhanced infrared spectroscopy (SEIRS).
Nejbauer, Michał; Radzewicz, Czesław
2012-01-30
We present a method for an efficient spectral shift and compression of pulses from a femtosecond laser system. The method enables generation of broadly tunable (615-985 nm) narrow bandwidth (≈10 cm(-1)) pulses from the femtosecond pulses at 1030 nm. It employs a direct parametric amplification--without spectral filtering--of highly chirped white light by a narrow bandwidth (pulse. The system, when pumped with just 200 μJ of the fundamental femtosecond pulse energy, generates pulses with energies of 3-9 μJ and an excellent beam quality in the entire tuning range.
Explicit solvent model for spectral shift of acrolein and simulation with molecular dynamics
Institute of Scientific and Technical Information of China (English)
ZHU Quan; LIU Jifeng; FU Kexiang; HAN Keli; LI Xiangyuan
2006-01-01
By introducing the concept of spring energy of permanent dipole and taking the conformations of solvent molecules into account, the formulas of electrostatic solvation energy in equilibrium and nonequilibrium are derived from the explicit solvent scheme, with the spatial distribution of the discrete permanent charges and induced dipoles of the solvent molecules involved. The energy change of solute due to the variation of wave function from the case of vacuum to that in solution is estimated by treating the solvent effect as external field in the iteration cycles of the self-consistent field. The expression for spectral shift is deduced and applied to the processes of light absorption and emission in solution. According to the new formulations, the averaged solvent electrostatic potential/molecular dynamics program is modified and adopted to investigate the equilibrium solvation energy of water molecule and spectral shift of acrolein.
Development of advanced BWR fuel bundle with spectral shift rod - BWR core characteristics with SSR
Energy Technology Data Exchange (ETDEWEB)
Hino, T.; Kondo, T.; Chaki, M.; Ohga, Y. [Hitachi-GE Nuclear Energy, Ltd., 1-1, Saiwai-cho, 3-chome, Hitachi-shi, Ibaraki-ken, 317-0073 (Japan); Makigami, T. [Tokyo Electric Power Company Inc., 1-1-3, Uchisaiwai-cho, Chiyoda-ku, Tokyo, 100-0011 (Japan)
2012-07-01
The neutron energy spectrum can be varied during an operation cycle to generate and utilize more plutonium from the non-fissile {sup 238}U by changing the void fraction in the core through control of the core coolant flow rate. This operation method, which is called a spectral shift operation, is practiced in BWRs to save natural uranium. A new component called a spectral shift rod (SSR), which is utilized instead of a conventional water rod, has been introduced to amplify the void fraction change and increase the spectral shift effect. In this study, fuel bundle design with the SSR and core design were carried out for the ABWR and the next generation BWR, HP-ABWR (High-Performance ABWR).The core characteristics with the SSR were evaluated and compared with those when using the conventional water rod. Influences of uncertainty of the water level in the SSR on the safety limit minimum critical power ratio (SLMCPR) were considered for evaluation of the uranium saving effect attained by the SSR. As a result, it was found that the amount of natural uranium needed for an operation cycle could be reduced more than 3% with 20% core coolant flow change and more than 5% with 30% core coolant flow change, in the form of increased discharge exposure by using the SSR compared with the conventional water rod use. (authors)
A cautionary (spectral) tail: red-shifted fluorescence by DAPI-DAPI interactions.
Omelon, Sidney; Georgiou, John; Habraken, Wouter
2016-02-01
The fluorescent dye DAPI is useful for its association with and consequent amplification of an ∼460 nm emission maximum upon binding to dsDNA. Labelling with higher DAPI concentrations is a technique used to reveal Pi polymers [polyphosphate (polyP)], with a red-shift to ∼520-550 nm fluorescence emission. DAPI-polyP emissions of ∼580 nm are also generated upon 415 nm excitation. Red-shifted DAPI emission has been associated with polyP and RNA and has more recently been reported with polyadenylic acid (polyA), specific inositol phosphates (IPs) and heparin. We find that amorphous calcium phosphate (ACP) also demonstrates red-shifted DAPI emission at high DAPI concentrations. This DAPI spectral shift has been attributed to DAPI-DAPI electrostatic interactions enabled by molecules with high negative charge density that increase the local DAPI concentration and favour DAPI molecular proximity, as observed by increasing the dye/phosphate ratio. Excitation of dry DAPI (∼360 nm) confirmed a red-shifted DAPI emission. Whereas enzymatic approaches to modify substrates can help define the nature of DAPI fluorescence signals, multiple approaches beyond red-shifted DAPI excitation/emission are advised before conclusions are drawn about DAPI substrate identification.
Statistical learning of music- and language-like sequences and tolerance for spectral shifts.
Daikoku, Tatsuya; Yatomi, Yutaka; Yumoto, Masato
2015-02-01
In our previous study (Daikoku, Yatomi, & Yumoto, 2014), we demonstrated that the N1m response could be a marker for the statistical learning process of pitch sequence, in which each tone was ordered by a Markov stochastic model. The aim of the present study was to investigate how the statistical learning of music- and language-like auditory sequences is reflected in the N1m responses based on the assumption that both language and music share domain generality. By using vowel sounds generated by a formant synthesizer, we devised music- and language-like auditory sequences in which higher-ordered transitional rules were embedded according to a Markov stochastic model by controlling fundamental (F0) and/or formant frequencies (F1-F2). In each sequence, F0 and/or F1-F2 were spectrally shifted in the last one-third of the tone sequence. Neuromagnetic responses to the tone sequences were recorded from 14 right-handed normal volunteers. In the music- and language-like sequences with pitch change, the N1m responses to the tones that appeared with higher transitional probability were significantly decreased compared with the responses to the tones that appeared with lower transitional probability within the first two-thirds of each sequence. Moreover, the amplitude difference was even retained within the last one-third of the sequence after the spectral shifts. However, in the language-like sequence without pitch change, no significant difference could be detected. The pitch change may facilitate the statistical learning in language and music. Statistically acquired knowledge may be appropriated to process altered auditory sequences with spectral shifts. The relative processing of spectral sequences may be a domain-general auditory mechanism that is innate to humans. Copyright © 2014 Elsevier Inc. All rights reserved.
The spectral shift function for planar obstacle scattering at low energy
McGillivray, I E
2011-01-01
Let $H$ signify the free non-negative Laplacian on $\\mathbb{R}^2$ and $H_Y$ the non-negative Dirichlet Laplacian on the complement $Y$ of a nonpolar compact subset $K$ in the plane. We derive the low-energy expansion for the Krein spectral shift function (scattering phase) for the obstacle scattering system $\\{\\,H_Y,\\,H\\,\\}$ including detailed expressions for the first three coefficients. We use this to investigate the large time behaviour of the expected volume of the pinned Wiener sausage associated to $K$.
The effect of spectral width on Goos-Hanchen and Imbert-Fedorov shifts
Prajapati, Chandravati; Ranganathan, D.
2013-02-01
We study the Goos-Hanchen and Imbert-Fedorov shifts for quasi-monochromatic Gaussian beams near the Brewster angle, when the reflection is from a denser to a rarer medium. This is the case of interest in the usual experiments on reflectometry, etc. We have incorporated the effects of the finite linewidth of the quasi-monochromatic light and treated the cases of a Lorentzian and a Gaussian lineshape of the input light spectrum. This study of light with a finite spectral width was carried out for the more frequently studied case, namely reflection from a dense to a rare medium. We found that the shift is increased as compared to the monochromatic Gaussian beam, and is zero at the Brewster angle for a p polarized beam. The shift variation with angle of incidence near the Brewster and critical angles at different values of refractive index ratios is found. We also studied the shift variation for Hermite-Gauss beams around the Brewster angle when the reflection is from a rarer to a denser medium and compare this with our earlier results for the case when the reflection was from a denser to a rarer medium.
The spectral shift between near- and far-field resonances of optical nano-antennas.
Menzel, Christoph; Hebestreit, Erik; Mühlig, Stefan; Rockstuhl, Carsten; Burger, Sven; Lederer, Falk; Pertsch, Thomas
2014-04-21
Within the past several years a tremendous progress regarding optical nano-antennas could be witnessed. It is one purpose of optical nano-antennas to resonantly enhance light-matter interactions at the nanoscale, e.g. the interaction of an external illumination with molecules. In this specific, but in almost all schemes that take advantage of resonantly enhanced electromagnetic fields in the vicinity of nano-antennas, the precise knowledge of the spectral position of resonances is of paramount importance to fully exploit their beneficial effects. Thus far, however, many nano-antennas were only optimized with respect to their far-field characteristics, i.e. in terms of their scattering or extinction cross sections. Although being an emerging feature in many numerical simulations, it was only recently fully appreciated that there exists a subtle but very important difference in the spectral position of resonances in the near-and the far-field. With the purpose to quantify this shift, Zuloaga et al. suggested a Lorentzian model to estimate the resonance shift. Here, we devise on fully analytical grounds a strategy to predict the resonance in the near-field directly from that in the far-field and disclose that the issue is involved and multifaceted, in general. We outline the limitations of our theory if more sophisticated optical nano-antennas are considered where higher order multipolar contributions and higher order antenna resonances become increasingly important. Both aspects are highlighted by numerically studying relevant nano-antennas.
Anomalous spectral shift of near- and far-field plasmonic resonances in nano-gaps
Lombardi, Anna; Weller, Lee; Andrae, Patrick; Benz, Felix; Chikkaraddy, Rohit; Aizpurua, Javier; Baumberg, Jeremy J
2016-01-01
The near-field and far-field spectral response of plasmonic systems are often assumed to be identical, due to the lack of methods that can directly compare and correlate both responses under similar environmental conditions. We develop a widely-tuneable optical technique to probe the near-field resonances within individual plasmonic nanostructures that can be directly compared to the corresponding far-field response. In tightly-coupled nanoparticle-on-mirror constructs with nanometer-sized gaps we find >40meV blueshifts of the near-field compared to the dark-field scattering peak, which agrees with full electromagnetic simulations. Using a transformation optics approach, we show such shifts arise from the different spectral interference between different gap modes in the near- and far-field. The control and tuning of near-field and far-field responses demonstrated here is of paramount importance in the design of optical nanostructures for field-enhanced spectroscopy, as well as to control near-field activity ...
Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D
2013-09-01
The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.
Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy
Wang, Ke; Qiu, Ping
2015-05-01
Tunable optical solitons generated by soliton self-frequency shift (SSFS) have become valuable tools for multiphoton microscopy (MPM). Recent progress in MPM using 1700 nm excitation enabled visualizing subcortical structures in mouse brain in vivo for the first time. Such an excitation source can be readily obtained by SSFS in a large effective-mode-area photonic crystal rod with a 1550-nm fiber femtosecond laser. A longpass filter was typically used to isolate the soliton from the residual in order to avoid excessive energy deposit on the sample, which ultimately leads to optical damage. However, since the soliton was not cleanly separated from the residual, the criterion for choosing the optimal filtering wavelength is lacking. Here, we propose maximizing the ratio between the multiphoton signal and the n'th power of the excitation pulse energy as a criterion for optimal spectral filtering in SSFS when the soliton shows dramatic overlapping with the residual. This optimization is based on the most efficient signal generation and entirely depends on physical quantities that can be easily measured experimentally. Its application to MPM may reduce tissue damage, while maintaining high signal levels for efficient deep penetration.
Colas, Florent
2016-06-06
Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.
Water-moderated reactor fuel cladding reliability study
Бакутяк, Елена Викторовна; Пелых, Сергей Николаевич
2014-01-01
Considering the fuel element, averaged by fuel assembly (FA) of water-moderated reactor with the power of 1000 MW (VVER-1000), the number of fuel elements with the greatest cladding failure probability after 4 operation years at Khmelnitsky NPP-2 (KNPP-2) is found. This will allow to calculate the fuel cladding failure probability and determine the most likely cladding damages, which will enable to improve the performance and economic indexes of VVER.The novelty of the paper lies in calculati...
Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Townsend, Kelly A; Schuman, Joel S
2009-02-01
To validate velocity measurements produced by spectral domain optical coherence tomography (SD-OCT) in an in vitro laminar flow model. A 30-mL syringe filled with skim milk was inserted into a syringe pump. Intravenous (i.v.) tubing connected the syringe within the pump to a glass capillary tube (internal diameter, 0.579 mm) shallowly embedded in agarose gel, then to a collection reservoir. SD-OCT imaging was performed with an anterior segment eye scanner and optics engine coupled with a 100-nm bandwidth broadband superluminescent diode. Scan density of 128 x 128 A-scans was spread over a 4 x 4 mm area, and each A-scan was 2 mm in length. Fifteen sequential stationary A-scans were obtained at each 128 x 128 position, and Doppler shifts were calculated from temporal changes in phase. The beam-to-flow vector Doppler angle was determined from three-dimensional scans. In all reflectance and Doppler images, a clear laminar flow pattern was observed, with v(max) appearing in the center of the flow column. Phase wrapping was observed at all measured flow velocities, and fringe washout progressively shattered reflectance and phase signals beyond the Nyquist limit. The observed percentages of the velocity profile at or below Nyquist frequency was highly correlated with the predicted percentages (R(2)=0.934; P=0.007). SD-OCT provides objective Doppler measurements of laminar fluid flow in an in vitro flow system in a range up to the Nyquist limit.
Raman spectral shift versus strain and composition in GeSn layers with 6%-15% Sn content
Gassenq, A.; Milord, L.; Aubin, J.; Pauc, N.; Guilloy, K.; Rothman, J.; Rouchon, D.; Chelnokov, A.; Hartmann, J. M.; Reboud, V.; Calvo, V.
2017-03-01
GeSn alloys are the subject of intense research activities as these group IV semiconductors present direct bandgap behaviors for high Sn contents. Today, the control of strain becomes an important challenge to improve GeSn devices. Strain micro-measurements are usually performed by Raman spectroscopy. However, different relationships linking the Raman spectral shifts to the built-in strain can be found in the literature. They were deduced from studies on low Sn content GeSn layers (i.e., xSn contributions of strain and chemical composition on the Ge-Ge Raman spectral shift. We have shown that the GeSn Raman-strain coefficient for high Sn contents is higher compared with that for pure Ge.
The effects of spectral shift absorbers on the design and safety of fast spectrum space reactors
King, Jeffrey Charles
Spectral Shift Absorbers (SSAs) are incorporated into space reactors to maintain them sufficiently subcritical when submerged in seawater or wet sand and subsequently flooded, following a launch abort accident. The effect of four SSAs (samarium-149, europium-151, gadolinium-155, and gadolinium-157) on the submersion criticality, operation, and temperature reactivity feedback of the thermal spectrum reactors developed in the Systems for Nuclear Auxilary Power (SNAP) program is extensively documented. Recent work on SSAs in fast spectrum space reactors, preferred for compactness and higher powers, has focused on rhenium as the primary SSA. In addition to identifying additional SSAs, the present work investigates the effects of SSAs on the overall size and mass, temperature reactivity feedback, and operational lifetime of fast spectrum space reactors. The fast spectrum S4 reactor has a sectored Mo-14%Re solid-core, loadedwith UN fuel, cooled by He-30%Xe, and designed to avoid single point failures at a steady thermal power of 550 kWth. The addition of SSAs to the reactor core increases the fuel enrichment and decreases the size and mass of the reactor and the radiation shadow shield. SSA additions of boron-10, europium-151, gadolinium-155 and iridium result in the smallest and lightest S4 reactors. The effects of SSA additions on the operational lifetime and the temperature and burnup reactivity coefficients of the S^4 reactor are studied. An increasein fuel enrichment with SSAs markedly increases the operational lifetime by decreasing the burnup reactivity coefficient with only a slight decrease in the temperature reactivity feedback coefficient. With no SSAs, the UN fuel enrichment is lowest (58.5 wt%), the temperature and burnup reactivity coefficients are the highest (-0.2709 ¢/K and -1.3470 /atom%), and the estimated operating lifetime is the shortest (7.6 years). The temperature and burnup reactivity coefficients decrease to -0.2649 ¢/K and -1.0230 /atom%, and
Spectral line shifts of alkali atoms in liquid helium: a relativistic density functional approach
Energy Technology Data Exchange (ETDEWEB)
Anton, J [Universitaet Kassel, Institut fuer Physik, 34109 Kassel (Germany); Mukherjee, P K [Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032 (India); Fricke, B [Universitaet Kassel, Institut fuer Physik, 34109 Kassel (Germany); Fritzsche, S [Universitaet Kassel, Institut fuer Physik, 34109 Kassel (Germany)
2007-06-28
Excitation line shifts of the principal resonance transitions in alkali atoms sodium and cesium embedded inside the liquid helium environment have been calculated using four-component relativistic density functional theory. The effect of the liquid helium environment is assumed to be represented by a cluster of 14 atoms surrounding the central alkali atom. The estimated blue shift of the principal resonance line {sup 2}S {yields}{sup 2}P is 22.8 nm for Na and 16.7 nm for Cs. The result for Cs is in good agreement with the experimental shift of 18.2 nm. In the absence of the experimental data for Na, our result is compared with those of other theoretical estimates.
Raman spectral shift versus strain and composition in GeSn layers with: 6 to 15% Sn contents
Gassenq, A.; Milord, L.; Aubin, J.; Pauc, N.; Guilloy, K.; Rothman, J.; Rouchon, D.; Chelnokov, A.; Hartmann, J.M.; Reboud, V.; Calvo, V.
2017-01-01
GeSn alloys are the subject of intense research activities as these group IV semiconductors present direct bandgap behaviors for high Sn contents. Today, the control of strain becomes an important challenge to improve GeSn devices. Strain micro-measurements are usually performed by Raman spectroscopy. However, different relationships linking the Raman spectral shifts to the built-in strain can be found in the literature. They were deduced from studies on low Sn content GeSn layers (i.e. xSn
Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications
Goeken, K.L.; Subramaniam, V.; Gill, R.
2015-01-01
Noble metal nanoparticles possess very large scattering cross-sections, which make them useful as tags in biosensing assays with the potential to detect even single binding events. In this study, we investigated the effects of nanoparticle size on the shift in the light scattering spectrum following
Empirical model of optical sensing via spectral shift of circular Bragg phenomenon
Mackay, Tom G
2009-01-01
Setting up an empirical model of optical sensing to exploit the circular Bragg phenomenon displayed by chiral sculptured thin films (CSTFs), we considered a CSTF with and without a central twist defect of $\\pi/2$ radians. The circular Bragg phenomenon of the defect-free CSTF, and the spectral hole in the co-polarized reflectance spectrum of the CSTF with the twist defect, were both found to be acutely sensitive to the refractive index of a fluid which infiltrates the void regions of the CSTF. These findings bode well for the deployment of CSTFs as optical sensors.
Kubelka, Jan
2013-10-15
Changes in the amide I' IR band with temperature are widely used for elucidation of peptide and protein conformational transitions and folding equilibria. Since amide I' exhibits inherent temperature dependent frequency shifts, standard mixture analysis methods are not applicable. To reliably extract the true thermodynamic states, frequency shifts of the component spectra must be explicitly taken into account. For this purpose, new methods termed shifted multivariate spectra analysis (SMSA) and parametric SMSA (pSMSA) are developed and tested on sets of synthetic data as well as real experimental amide I' spectra for thermal unfolding of an α-helical peptide. SMSA uses no specific functional form for the transition (soft modeling), while the parametric variant (pSMSA) assumes a thermodynamic model (hard modeling). The implementation is optimized specifically for amide I' IR in that it takes advantage of known, linear dependence of the frequencies as well as intensities on temperature. The synthetic data tests demonstrate the robustness of the methods; the initial test parameters are recovered with a high degree of reliability, although the nonparameteric SMSA is subject to the rotational ambiguity. Application to the peptide experimental amide I' data illustrates additional complications encountered with the analysis of real systems, such as correction for the side-chain spectra and interference of spectral shape changes. Nevertheless, the results are in excellent agreement with the independent control using circular dichroism (CD) data. The general applicability and limitations of the methods are discussed along with potential extensions.
Investigation of spectral shifts in a white light interferometer with a single interference peak
Xu, Chunhui; Yi, Yingyan; Shu, Zhuo; Li, Min
2015-04-01
When the optical path difference between the two arms of an interferometer is so small that only one peak exists within the measurable interference spectrum, traditional white light interference demodulation techniques based on two adjacent interference peaks are not a suitable choice. We report an experimental approach to measure the peak wavelength shifts with only a single interference peak in a fiber white light interferometer. The temperature measurement experiments prove a linear relationship between the peak wavelength and the temperature. The temperature resolution is 0.1°C in theory.
Rock, B. N.; Hoshizaki, T.; Miller, J. R.
1988-01-01
Visible IR Intelligent Spectrometer (VIRIS) reflectance data have been found to have similar features that are related to air-pollution-induced forest decline and visible damage in both the red spruce of Vermont and the Norway spruce of Baden-Wuerttemberg; the similarity suggests a common source of damage. Spectra of both species include a 5-nm blueshifting of the red-edge inflection point, while pigment data for both species indicate a loss of total chlorophylls. The blue shift of the chlorophyll absorption maximum, as well as the increased red radiance and decreased near-IR radiance of the damaged spruce, may be used to delineate and map damage areas.
Energy Technology Data Exchange (ETDEWEB)
Shi, Xingbo, E-mail: shixingbo123@aliyun.com; Zheng, Shu; Gao, Wenli; Wei, Wei; Chen, Meiling; Deng, Fangming; Liu, Xia; Xiao, Qian [Hunan Agricultural University, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology (China)
2014-12-15
The influence of excitation wavelength and intensity on core/shell CdSe/ZnS quantum dots (QDs) photo-spectral blue shift was investigated by spectral imaging. Analysis of the evolution of the distance between the zeroth-order spot and the first-order spectral streak, we found that the extent of blue shift strongly depends on the excitation wavelength and QDs sizes, but not on the excitation intensity. Converted the extent of blue shift into the decreased QDs volume at a series of time, the core oxidation kinetics of CdSe/ZnS QDs was uncovered that provided a quantitative comparison method for study the excitation wavelength and intensity dependence of single QDs blue shift. The core oxidation rate is almost proportional to the excitation intensity. These results are explained by a fact that higher energy excitation wavelength can accelerate individual exciton formation and higher excitation intensity can induce more amount of exciton formation per a unit time.
Guruprasad, V
2008-01-01
Any frequency selective device with an ongoing drift will cause observed spectra to be variously and simultaneously scaled in proportion to their source distances. The reason is that detectors after the drifting selection will integrate instantaneous electric or magnetic field values from successive sinusoids, and these sinusoids would differ in both frequency and phase. Phase differences between frequencies are ordinarily irrelevant, and recalibration procedures at most correct for frequency differences. With drifting selection, however, each integrated field value comes from *the sinusoid of the instantaneously selected frequency at its instantaneous received phase*, hence the waveform constructed by the integration will follow the drifting selection with a phase acceleration given by the drift rate times the slope of the received phase spectrum. A phase acceleration is literally a frequency shift, and the phase spectrum slope of a received waveform is an asymptotic measure of the source distance, as the pa...
Clark, W. G.; Hanson, M. E.; Lefloch, F.; Ségransan, P.
1995-03-01
A novel method of Fourier transform spectroscopy of the transient signals from wide, inhomogeneously broadened magnetic resonance spectra is described and analyzed. It has the advantages of high resolution, high sensitivity, and freedom from the distortions introduced by the finite amplitude of the pulsed rf magnetic field and the finite bandwidth of the receiving system. It consists of recording the transient signal at a series of magnetic fields, shifting the frequency of the transient by the corresponding field step for each point, and summing the corresponding Fourier transformed signals. Although the primary emphasis is on pulsed NMR, the analysis also applies to pulsed ESR. Criteria for the range and step interval of the magnetic field variation are discussed. The accuracy and sensitivity of the method are compared with earlier methods of spin echo spectroscopy. A description of the corresponding measurement of NQR, NMR, and ESR spectra obtained by stepping the frequency of the spectrometer is also presented.
Directory of Open Access Journals (Sweden)
R. M. Johann
2015-07-01
Full Text Available Fluorescence absorption and emission wavelengths can be influenced by environmental conditions, such as pressure, temperature and concentration. Here those effects are explored with an emphasis on determining the potential of rhodamine B and fluorescein as high-pressure indicators. The red shift of the emission peak maxima of rhodamine B and fluorescein are investigated in dependence of pressure up to 200 MPa using as the solvents water, ethanol and poly(dimethylsiloxane (PDMS with rhodamine B and water, polystyrene beads and melamine resin beads with fluorescein. Emission spectra recording and peak fitting is done automatically at time intervals of down to a second and with 0.3 nm wavelength resolution. The wavenumber-pressure relation for rhodamine B reveals increasing divergence from linear behavior in the sequence of the solvents water, ethanol and silicone rubber. Graphical correlation of the data diverging only slightly from linearity with a selection of polarity functions is enabled using the concept of ‘deviation from linearity (DL’ plots. Using the example of rhodamine B dissolved in PDMS elastomer it is shown that there is a temperature induced irreversible molecular reordering, when scanning between 3 and ∼50°C, and a polarity change in the proximity of the embedded dye molecule. Swelling studies are performed with PDMS containing rhodamine B, where the elastomer is first put in water, then in ethanol and again in water. There a complex solvent exchange process is revealed in the elastomer demonstrating the feasibility of fluorescence spectroscopy, when observing variations in wavelength, to indicate and enlighten molecular rearrangements and swelling dynamics in the polymer, and polarity changes and solvent exchange processes in the dye solvation shell.
Institute of Scientific and Technical Information of China (English)
LIU Yong; MA Biao; ZHENG Chang-song; LI Shun-chang
2015-01-01
The most common methodology used in element concentration measurement and analyzing of wear particles is Atomic emission (AE) spectroscopy .The present paper presents an evaluation method on wear in power-shift steering transmission (PSST) .By removing the problematic components which were highly corre-lated with oil additives ,the robust kernel principal component analysis (RKPCA ) method and the principal component analysis (PCA) method were accessed to extract the principal components of spectral data for oil samples collected from the life-cycle test of PSST in different stage and to calculate the amount of each princi-pal component and its contribution rate respectively .A comparison between the above mentioned two methods was made to show that RKPCA method has fewer amounts of principal components and higher cumulative con-tribution rate indicating that RKPCA method acts more effectively in variable dimension reduction due to the outliers and nonlinearity of spectral data .Therefore ,the effectiveness of RKPCA method in classification and identification of the wear in friction pairs was demonstrated subsequently through the correlation analysis be-tween the variable coefficients of RKPCA and metal elements of friction pairs .The demonstration showed that RKPCA functioned precisely in the classification and identification of the wear in friction pairs ,and in the eval-uation on the wear in PSST .Thereafter ,to detect the threshold point where the wear took place ,the fuzzy C-means clustering algorithm was introduced to classify the RKPCA eigenvalues ,and the results were compared with that of the spectral clustering algorithm .The fuzzy C-means clustering algorithm showed higher sensitivi-ty in detecting the threshold point indicting a more precise evaluation on the wear in PSST .It is clear that the introduction of RKPCA method in wear evaluation ,which takes the eigenvalues of spectral data as a critical variable to classify and identify the wear in
Anchal, Abhishek; Kumar, Pradeep; Landais, Pascal
2016-10-01
We propose and numerically verify a scheme of frequency-shift free mid-span spectral inversion (MSSI) for nonlinearity mitigation in an optical transmission system. Spectral inversion is accomplished by optical phase conjugation, realized by counter-propagating dual pumped four-wave mixing in a highly nonlinear fiber. We examine the performance of MSSI due to critical parameters such as nonlinear fiber length, pump and signal power. We demonstrate the near complete nonlinearity mitigation of 40 Gbps DQPSK modulated data transmitted over 1000 km standard single mode fiber using our method of MSSI. We perform simulation of bit-error rate as a function of optical signal to noise ratio to corroborate the effect of frequency-shift free MSSI.
Directory of Open Access Journals (Sweden)
Weifang Sun
2017-08-01
Full Text Available Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.
Sun, Weifang; Yao, Bin; He, Yuchao; Chen, Binqiang; Zeng, Nianyin; He, Wangpeng
2017-08-09
Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.
Directory of Open Access Journals (Sweden)
Tank H. K.
2012-07-01
Full Text Available Currently, whole of the measured “cosmological-red-shift ” is interpreted as due to the “metric-expansion-of-space”; so for the required “closer -density” of the universe, we need twenty times more mass-energy than the visible baryonic-matter contained in the universe. This paper proposes a new mechanism, which can account for good per- centage of the red-shift in the extra-galactic-light, greatly reducing the requirement of dark matter-energy. Also, this mechanism can cause a new kin d of blue-shift reported here, and their observational evidences. These spectral-s hifts are proposed to result due to cumulative phase-alteration of extra-galactic-light b ecause of vector-addition of: (i electric-field of extra-galactic-light and (ii that of the cosmic-microwave-background (CMB. Since the center-frequency of CMB is much lower than extra-galactic-light, the cumulative-phase-alteration results in red -shift, observed as an additional contribu- tor to the measured “cosmological red-shift”; and since the center-frequency of CMB is higher than the radio-frequency-signals used to measure velocity of space-probes like: Pioneer-10, Pioneer-11, Galileo and Ulysses, the cum ulative-phase-alteration re- sulted in blue-shift, leading to the interpretation of deceleration of these space-probes. While the galactic-light experiences the red-shift, and th e ranging-signals of the space- probes experience blue -shift, they are comparable in magnitude, providing a supportive- evidence for the new mechanism proposed here. More confirmative-experiments for this new mechanism are also proposed.
Sanders, C R
1993-01-01
The direct measurement of 13C chemical shift anisotropies (CSA) and 31P-13C dipolar splitting in random dispersions of unlabeled L alpha-phase phosphatidylcholine (PC) has traditionally been difficult because of extreme spectral boradening due to anisotropy. In this study, mixtures of dimyristoyl phosphatidylcholine (DMPC) with three different detergents known to promote the magnetic orientation of DMPC were employed to eliminate the powder-pattern nature of signals without totally averaging out spectral anisotropy. The detergents utilized were CHAPSO, Triton X-100, and dihexanoylphosphatidylcholine (DHPC). Using such mixtures, many of the individual 13C resonances from DMPC were resolved and a number of 13C-31P dipolar couplings were evident. In addition, differing line widths were observed for the components of some dipolar doublets, suggestive of dipolar/chemical shift anisotropy (CSA) relaxation interference effects. Oriented sample resonance assignments were made by varying the CHAPSO or DHPC to DMPC ratio to systematically scale overall bilayer order towards the isotropic limit. In this manner, peaks could be identified based upon extrapolation to their isotropic positions, for which assignments have previously been made (Lee, C.W.B., and R.G. Griffin. 1989. Biophys. J. 55:355-358; Forbes, J., J. Bowers, X. Shan, L. Moran, E. Oldfield, and M.A. Moscarello. 1988. J. Chem. Soc., Faraday, Trans. 1 84:3821-3849). It was observed that the plots of CSA or dipolar coupling versus overall bilayer order obtained from DHPC and CHAPSO titrations were linear. Estimates of the intrinsic dipolar couplings and chemical shift anisotropies for pure DMPC bilayers were made by extrapolating shifts and couplings from the detergent titrations to zero detergent. Both detergent titrations led to similar "intrinsic" CSAs and dipolar couplings. Results extracted from an oriented Triton-DMPC mixture also led to similar estimates for the detergent-free DMPC shifts and couplings. The
Physics Design of Water Moderator Criticality Assembly in Experimental Research About ADS
Institute of Scientific and Technical Information of China (English)
LV; Niu
2013-01-01
In order to meet the experimental demand of ADS research,we need to design a suitable criticality assembly.The key problem of the design work is the core design,we design a criticality assembly with the water moderator according to available nuclear material(Fig.1).The theoretical calculation have been
DEFF Research Database (Denmark)
Xu, G. S.; Wan, B. N.; Wang, H. Q.;
2016-01-01
A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett.110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wa...
Hanson, Erin K.; Ballantyne, Jack
2010-01-01
The ability to determine the time since deposition of a bloodstain found at a crime scene could prove invaluable to law enforcement investigators, defining the time frame in which the individual depositing the evidence was present. Although various methods of accomplishing this have been proposed, none has gained widespread use due to poor time resolution and weak age correlation. We have developed a method for the estimation of the time since deposition (TSD) of dried bloodstains using UV-VIS spectrophotometric analysis of hemoglobin (Hb) that is based upon its characteristic oxidation chemistry. A detailed study of the Hb Soret band (λmax = 412 nm) in aged bloodstains revealed a blue shift (shift to shorter wavelength) as the age of the stain increases. The extent of this shift permits, for the first time, a distinction to be made between bloodstains that were deposited minutes, hours, days and weeks prior to recovery and analysis. The extent of the blue shift was found to be a function of ambient relative humidity and temperature. The method is extremely sensitive, requiring as little as a 1 µl dried bloodstain for analysis. We demonstrate that it might be possible to perform TSD measurements at the crime scene using a portable low-sample-volume spectrophotometer. PMID:20877468
Directory of Open Access Journals (Sweden)
A. H. Bhrawy
2012-01-01
Full Text Available A shifted Jacobi Galerkin method is introduced to get a direct solution technique for solving the third- and fifth-order differential equations with constant coefficients subject to initial conditions. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. A quadrature Galerkin method is introduced for the numerical solution of these problems with variable coefficients. A new shifted Jacobi collocation method based on basis functions satisfying the initial conditions is presented for solving nonlinear initial value problems. Through several numerical examples, we evaluate the accuracy and performance of the proposed algorithms. The algorithms are easy to implement and yield very accurate results.
Fan, Jiajie; Mohamed, Moumouni Guero; Qian, Cheng; Fan, Xuejun; Zhang, Guoqi; Pecht, Michael
2017-07-18
With the expanding application of light-emitting diodes (LEDs), the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD), defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED's optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1) the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2) the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs), and color rendering indexes (CRIs) of phosphor-converted (pc)-white LEDs, and also can estimate the residual color life.
Basché, Thomas; Hinze, Gerald; Stöttinger, Sven
2016-09-01
A grand challenge in nanoscience is to correlate structure or morphology of individual nano-sized objects with their photo-physical properties. An early example have been measurements of the emission spectra and polarization of single semiconductor quantum dots as well as their crystallographic structure by a combination of confocal fluorescence microscopy and transmission electron microscopy.[1] Recently, the simultaneous use of confocal fluorescence and atomic force microscopy (AFM) has allowed for correlating the morphology/conformation of individual nanoparticle oligomers or molecules with their photo-physics.[2, 3] In particular, we have employed the tip of an AFM cantilever to apply compressive stress to single molecules adsorbed on a surface and follow the effect of the impact on the electronic states of the molecule by fluorescence spectroscopy.[3] Quantum mechanical calculations corroborate that the spectral changes induced by the localized force can be associated to transitions among the different possible conformers of the adsorbed molecule.
Boonmee, Chanida; Noipa, Tuanjai; Tuntulani, Thawatchai; Ngeontae, Wittaya
2016-12-01
We described a turn-on fluorescence sensor for the determination of Cu2 + ions, utilizing the quantum confinement effect of cadmium sulfide quantum dots capped with cysteamine (Cys-CdS QDs). The fluorescence intensity of the Cys-CdS QDs was both enhanced and red shifted (from blue-green to yellow) in the presence of Cu2 +. Fluorescence enhancement was linearly proportional to the concentration of Cu2 + in the concentration range 2 to 10 μM. Other cations at the same concentration level did not significantly change the intensity and spectral maxima of Cys-CdS QDs, except Ag+. The limit of detection was 1.5 μM. The sensor was applied to the determination of Cu2 + in (spiked) real water samples and gave satisfactory results, with recoveries ranging from 96.7 to 108.2%, and with RSDs ranging from 0.3 to 2.6%.
Delvisico, J. G.; OConnell, S.; Ortiz, J. D.
2002-05-01
Sediment cores collected within the Oxygen Minimum Zone (O2 Soledad Basin, desirable for its high sedimentation rates (100-120cm/kyr) and its 200 m sill depth. We maintain the hypothesis that variations in carbonate and organic carbon seen through the Diffuse Spectral Reflectance (DSR) will preferentially show the effects of local production on the spatial/temporal extent of the Oxygen Minimum Zone due to the circulation restrictions imposed on the basin by its shallow sill depth. The summer's work involved compiling a composite proxy record of variations in organic carbon through R-mode factor analysis of the Diffuse Spectral Reflectance signal, which was then further constrained through coulometry to provide confidence points for reflectance-derived proxy values. Through the compilation of the five piston core records, a continuous, high frequency climatic proxy record of changes in productivity was constructed over the past 15 Ka. Organic carbon shifts within the Soledad record also contain a periodicity within the time scale bounds of the present day Pacific Decadal Oscillation (20-50 year quasi-cyclicity) discerned initially from various forms of autospectral time series analysis, suggesting a connection between the two processes. The Soledad DSR record has also shown strong positive correlations to other high-resolution global paleoclimate proxy records, through which we hope to further elucidate rapid climate teleconnections between high and low latitude climate instability during the past 15 Ka.
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...
Directory of Open Access Journals (Sweden)
Karen Erbguth
Full Text Available The C. elegans nervous system is particularly well suited for optogenetic analyses of circuit function: Essentially all connections have been mapped, and light can be directed at the neuron of interest in the freely moving, transparent animals, while behavior is observed. Thus, different nodes of a neuronal network can be probed for their role in controlling a particular behavior, using different optogenetic tools for photo-activation or -inhibition, which respond to different colors of light. As neurons may act in concert or in opposing ways to affect a behavior, one would further like to excite these neurons concomitantly, yet independent of each other. In addition to the blue-light activated Channelrhodopsin-2 (ChR2, spectrally red-shifted ChR variants have been explored recently. Here, we establish the green-light activated ChR chimera C1V1 (from Chlamydomonas and Volvox ChR1's for use in C. elegans. We surveyed a number of red-shifted ChRs, and found that C1V1-ET/ET (E122T; E162T works most reliable in C. elegans, with 540-580 nm excitation, which leaves ChR2 silent. However, as C1V1-ET/ET is very light sensitive, it still becomes activated when ChR2 is stimulated, even at 400 nm. Thus, we generated a highly efficient blue ChR2, the H134R; T159C double mutant (ChR2-HR/TC. Both proteins can be used in the same animal, in different neurons, to independently control each cell type with light, enabling a further level of complexity in circuit analyses.
Energy Technology Data Exchange (ETDEWEB)
Sreekumar, R.; Mandal, A. [Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra (India); Gupta, S.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Chakrabarti, S., E-mail: subho@ee.iitb.ac.in [Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra (India)
2011-11-15
Graphical abstract: Authors demonstrate enhancement in photoluminescence efficiency (7 times) in single layer InAs/GaAs quantum dots using proton irradiation without any post-annealing treatment via either varying proton energy (a) or fluence (b). The increase in PL efficiency is explained by a proposed model before (c) and after irradiation (d). Highlights: {yields} Proton irradiation improved PL efficiency in InAs/GaAs quantum dots (QDs). {yields} Proton irradiation favoured defect and strain annihilation in InAs/GaAs QDs. {yields} Reduction in defects/non-radiative recombination improved PL efficiency. {yields} Protons could be used to improve PL efficiency without spectral shift. {yields} QD based devices will be benefited by this technique to improve device performance. -- Abstract: We demonstrate 7-fold increase of photoluminescence efficiency in GaAs/(InAs/GaAs) quantum dot hetero-structure, employing high energy proton irradiation, without any post-annealing treatment. Protons of energy 3-5 MeV with fluence in the range (1.2-7.04) x 10{sup 12} ions/cm{sup 2} were used for irradiation. X-ray diffraction analysis revealed crystalline quality of the GaAs cap layer improves on proton irradiation. Photoluminescence study conducted at low temperature and low laser excitation density proved the presence of non-radiative recombination centers in the system which gets eliminated on proton irradiation. Shift in photoluminescence emission towards higher wavelength upon irradiation substantiated the reduction in strain field existed between GaAs cap layer and InAs/GaAs quantum dots. The enhancement in PL efficiency is thus attributed to the annihilation of defects/non-radiative recombination centers present in GaAs cap layer as well as in InAs/GaAs quantum dots induced by proton irradiation.
Standard Guide for In-Service Annealing of Light-Water Moderated Nuclear Reactor Vessels
American Society for Testing and Materials. Philadelphia
2003-01-01
1.1 This guide covers the general procedures to be considered for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1). 1.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constrain...
Karlsson, J S; Ostlund, N; Larsson, B; Gerdle, B
2003-10-01
Frequency analysis of myoelectric (ME) signals, using the mean power spectral frequency (MNF), has been widely used to characterize peripheral muscle fatigue during isometric contractions assuming constant force. However, during repetitive isokinetic contractions performed with maximum effort, output (force or torque) will decrease markedly during the initial 40-60 contractions, followed by a phase with little or no change. MNF shows a similar pattern. In situations where there exist a significant relationship between MNF and output, part of the decrease in MNF may per se be related to the decrease in force during dynamic contractions. This study estimated force effects on the MNF shifts during repetitive dynamic knee extensions. Twenty healthy volunteers participated in the study and both surface ME signals (from the right vastus lateralis, vastus medialis, and rectus femoris muscles) and the biomechanical signals (force, position, and velocity) of an isokinetic dynamometer were measured. Two tests were performed: (i) 100 repetitive maximum isokinetic contractions of the right knee extensors, and (ii) five gradually increasing static knee extensions before and after (i). The corresponding ME signal time-frequency representations were calculated using the continuous wavelet transform. Compensation of the MNF variables of the repetitive contractions was performed with respect to the individual MNF-force relation based on an average of five gradually increasing contractions. Whether or not compensation was necessary was based on the shape of the MNF-force relationship. A significant compensation of the MNF was found for the repetitive isokinetic contractions. In conclusion, when investigating maximum dynamic contractions, decreases in MNF can be due to mechanisms similar to those found during sustained static contractions (force-independent component of fatigue) and in some subjects due to a direct effect of the change in force (force-dependent component of fatigue
Institute of Scientific and Technical Information of China (English)
马亚奇; 李忠科; 赵静
2012-01-01
In order to overcome the disadvantage of being sensitive to model gesture and noise in the present mesh segmentation algorithms, we present a consistent mesh segmentation algorithm based on Laplace spectral embedding and Mean Shift. We convert mesh into a normal form from the space domain to the spectral domain by using the Laplace-Beltrami operator. The noise is suppressed and spectral embedding enhances the structural segmentability. We adopt Mean Shift, a nonparametric kernel clustering technique, to gain the visual meaningful semantic patch or sub-mesh in the spectral domain. The experiment results show that the proposed algorithm can yield meaningful result rapidly and effectively for meshes which has an evident branch structure. Meanwhile, this approach is invariant to pose of model and robust to noise.%针对现有网格分割算法对模型姿态及噪声敏感的不足,提出一种基于Laplace谱嵌入和Mean Shift聚类的网格一致性分割算法.采用Laplace-Beltrami算子,将3维空域中的网格模型转化成高维Laplace谱域中的标准型,降低了姿态变化和噪声对分割算法的影响,并增强了网格的结构可分性；在高维谱域中,采用非参数核聚类MeanShift算法,获取模型有视觉意义的语义区域.实验结果表明:该算法可以快速有效地实现具有分支结构三角网格模型的有意义分割且对模型姿态和噪声具有较好的鲁棒性.
Miao, Dan; Ding, Wen-Long; Zhao, Bao-Qing; Lu, Lu; Xu, Qian-Zhao; Scheer, Hugo; Zhao, Kai-Hong
2016-06-01
Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660 nm and fluoresces near 675 nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing >700 nm and fluorescing >710 nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700 nm and fluoresce at 714 nm. The red shift of ~40 nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,3(1) double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711 nm, fluorescence at 628 or 726 nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation.
Budzák, Šimon; Mach, Pavel; Medved', Miroslav; Kysel', Ondrej
2015-07-21
Applications of contemporary polarisable continuum model (PCM) quantum chemical approaches to account for the solvent shifts of UV-Vis absorption charge transfer (CT) transitions in electron donor-acceptor (EDA) complexes (as well as to account for their stability and other properties in solvents) have been rather rare until now. In this study, we systematically applied different - mainly state-specific - PCM approaches to examine excited state properties, namely, solvatochromic excitation energy shifts in a series of EDA complexes of a tetracyanoethylene (TCNE) acceptor with methyl substituted benzenes with different degrees of methylation N (NMB). For these complexes, representative and reliable experimental data exist both for the gas phase and in solution (dichloromethane). We have found that the linear response (LR) solvent shifts are too small compared to the experimental values, while self-consistent SS approaches give values that are too large. The best agreement with experimental values was obtained by corrected LR (cLR). The transition energies were calculated by means of TD-DFT methodology with PBE0, CAM-B3LYP and M06-2X functionals as well as the wave function CC2 method for the gas phase, and the PCM solvent shifts were added to account for the solvent effects. The best results for transition energies in solvents were obtained using the CC2 method complemented by CAM-B3LYP/cLR for the gas phase transition energy red solvent shift, while all three TD-DFT approaches used gave insufficient values (ca. 50%) of the slope of the dependence of the transition energies on N compared to experimental values.
Lin, Ding-Zheng; Chuang, Po-Chun; Liao, Pei-Chen; Chen, Jung-Po; Chen, Yih-Fan
2016-07-15
We demonstrate an approach that utilizes DNA-functionalized gold nanorods (AuNRs) in an indirect competitive assay format to increase the spectra shift in localized surface plasmon resonance (LSPR) biosensing. We use interferon gamma (IFN-γ) as a model analyte to demonstrate the feasibility of our detection method. The LSPR chips with periodic gold nanodot arrays are fabricated using a thermal lithography process and are functionalized with IFN-γ aptamers for detection. The DNA-functionalized AuNRs and IFN-γ compete with each other to bind to the aptamers during detection, and the spectra shifts are mainly caused by the AuNRs rather than IFN-γ. When using our approach, the target molecules do not need to be captured by two capture ligands simultaneously during detection and thus do not require multiple binding sites. Both experiments and finite-difference time-domain (FDTD) simulations show that making the AuNRs as close to the chip surface as possible is very critical for increasing LSPR shifts, and the simulated results also show that the orientation of the AuNR affects the plasmon coupling between the gold nanodots on the chip surface and the nearby AuNRs. Although only the detection of IFN-γ is demonstrated in this study, we expect that the LSPR biosensing method can be applied to label-free detection of a variety of molecules as long as suitable aptamers are available.
Energy Technology Data Exchange (ETDEWEB)
Chen, X.; Tonner, B.P. [Univ. of Wisconsin, Milwaukee, WI (United States); Denlinger, J. [Univ. of Wisconsin, Milwaukee, WI (United States)][Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others
1997-04-01
The authors have performed angle-resolved x-ray photoelectron diffraction (XPD) from a Si(100)-c(4x2) surface to study the structural origin of Si-2p core-level shifts. In the experiment, the highly resolved surface Si-2p core-level spectra were measured as a fine grid of hemisphere and photon energies, using the SpectroMicroscopy Facility {open_quotes}ultraESCA{close_quotes} instrument. By carefully decomposing the spectra into several surface peaks, the authors are able to obtain surface-atom resolved XPD patterns. Using a multiple scattering analysis, they derived a detailed atomic model for the Si(100)-c(4x2) surface. In this model, the asymmetric dimers were found tilted by 11.5 plus/minus 2.0 degrees with bond length of 2.32 plus/minus 0.05{angstrom}. By matching model XPD patterns to experiment, the authors can identify which atoms in the reconstructed surface are responsible for specific photoemission lines in the 2p spectrum.
Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S
2015-11-22
Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. © 2015 The Author(s).
融合均值漂移和加权谱聚类的彩色图像分割%Color image segmentation combining mean shift and weighted spectral clustering
Institute of Scientific and Technical Information of China (English)
桂阳; 苑云; 杜晶
2012-01-01
This paper proposed a novel algorithm for improving efficiency of color image segmentation. Firstly, it filtered noise and transformed input image from pixel-based to region-based model by using mean shift algorithm, and composed the input image after mean shift procedure by some disjoint regions. Then it treated the regions as nodes in image plane and applied a graph structure to represent them. Finally it applied the weighted spectral clustering algorithm which merged the information of area differences and spatial distances among the regions to perform final clustering, and abtained the result of image segmentation. Experimental results show that the proposed algorithm is effective on color image segmentation, and it also has the prop-erties of low computation cost, keeping boundary well and reducing noise interference.%为了提高彩色图像分割的效率,提出了一种彩色图像分割新方法.该方法首先利用均值漂移算法滤除噪声干扰并对图像进行初始分割,初始分割后的图像由一些互不相交的区域组成；然后将这些区域视为图的节点建立区域连接图；最后采用融入了区域之间面积差异信息与空间距离信息的加权谱聚类算法进行聚类,获得最终分割结果.实验结果表明,该方法可较好地对彩色图像进行分割,并能有效地降低噪声的影响,保持图像边缘,且运算速度较快.
Spectral signatures of chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...
Bidirectional soliton spectral tunneling effects in the regime of optical event horizon
DEFF Research Database (Denmark)
Gu, Jie; Guo, Hairun; Wang, Shaofei
2015-01-01
We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....
Ingram, Jenni
2014-01-01
This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…
Ingram, Jenni
2014-01-01
This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…
DEFF Research Database (Denmark)
Brewer, Robert S.; Verdezoto, Nervo; Holst, Thomas;
2015-01-01
in a student dormitory and found that players did not shift their electricity use, because they were unwilling to change their schedules and found it easier to focus on reducing electricity use. Based on our findings, we discuss the implications for encouraging shifting, and also the challenges of integrating...
Shen, Jie; Wang, Li-Lian
2011-01-01
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
@@ "We are entering a new era of world history: the end of Western domination and the arrival of the Asian century. The question is: will Washington wake up to this reality?" This is the central premise of Kishore Mahbubani's provocative new book The New Asian Hemisphere: The Irresistible Shift of Global Power to the East.
Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.
2017-01-01
Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid
Cecconi, Jaures
2011-01-01
G. Bottaro: Quelques resultats d'analyse spectrale pour des operateurs differentiels a coefficients constants sur des domaines non bornes.- L. Garding: Eigenfuction expansions.- C. Goulaouic: Valeurs propres de problemes aux limites irreguliers: applications.- G. Grubb: Essential spectra of elliptic systems on compact manifolds.- J.Cl. Guillot: Quelques resultats recents en Scattering.- N. Schechter: Theory of perturbations of partial differential operators.- C.H. Wilcox: Spectral analysis of the Laplacian with a discontinuous coefficient.
Vigna, Sebastiano
2009-01-01
This note tries to attempt a sketch of the history of spectral ranking, a general umbrella name for techniques that apply the theory of linear maps (in particular, eigenvalues and eigenvectors) to matrices that do not represent geometric transformations, but rather some kind of relationship between entities. Albeit recently made famous by the ample press coverage of Google's PageRank algorithm, spectral ranking was devised more than fifty years ago, almost exactly in the same terms, and has been studied in psychology and social sciences. I will try to describe it in precise and modern mathematical terms, highlighting along the way the contributions given by previous scholars.
Pu, Jixiong; Cai, Chao; Nemoto, Shojiro
2004-06-01
It is shown that when partially coherent polychromatic light is focused by a filter-lens system with chromatic aberration, a spectral shift exists in the focused field, and a spectral switch that is defined as a sharp transition of the spectral shift also takes place at some positions of the focused field. The influence of the chromatic aberration of the lens, the coherence of the partially coherent light in the filter (a circular aperture), the radius of the aperture, and the spectral width of the partially coherent light in the aperture on the spectral shift and the spectral switch are investigated in detail. The numerical results show that these parameters affect the spectral shift and the spectral switch significantly. Potential applications of the spectral shift and the spectral switch of the partially coherent light are discussed.
Energy Technology Data Exchange (ETDEWEB)
Smartt, Heidi A. [Sandia National Laboratories (United States)
2003-05-01
This research examines the feasibility of spectral tagging, which involves modifying the spectral signature of a target, e.g. by mixing an additive with the target's paint. The target is unchanged to the human eye, but the tag is revealed when viewed with a spectrometer. This project investigates a layer of security that is not obvious, and therefore easy to conceal. The result is a tagging mechanism that is difficult to counterfeit. Uniquely tagging an item is an area of need in safeguards and security and non-proliferation. The powdered forms of the minerals lapis lazuli and olivine were selected as the initial test tags due to their availability and uniqueness in the visible to near-infrared spectral region. They were mixed with paints and applied to steel. In order to verify the presence of the tags quantitatively, the data from the spectrometer was input into unmixing models and signal detection algorithms. The mixture with the best results was blue paint mixed with lapis lazuli and olivine. The tag had a 0% probability of false alarm and a 100% probability of detection. The research proved that spectral tagging is feasible, although certain tag/paint mixtures are more detectable than others.
Energy Technology Data Exchange (ETDEWEB)
Ibarria, L; Lindstrom, P; Rossignac, J
2006-11-17
Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.
Eanes, Ritchie C.; Marcus, R. Kenneth
2000-04-01
This article is an electronic publication in Spectrochimica Acta Electronica (SAE), a section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by an electronic archive, stored on the SAE homepage at (http://www.elsevier.nl/locate/sabe). The archive contains program and data files. The main article discusses the scientific spectroscopic and instrumental aspects of the subject and explains the purpose of the program and data files. The work deals with a Microsoft Excel Visual Basic program, Peakfitter, which can process multiple Gaussian-shaped spectral peaks quickly and easily. The program employs Microsoft Excel Solver to process any Gaussian-like spectra that can be opened in Microsoft Excel 97. Up to three peaks in one to 225 spectra, each containing up to 2000 data points can be processed per data file to give background corrected peak areas for both raw data and its associated fit data as calculated by the trapezoidal method or by simple successive addition of channel intensities across each peak. Concurrently output also includes fit peak heights for Gaussian-shaped spectral peaks. Use of other statistical distributions such as the Lorentzian model requires only slight modification to a template file. Hence, Peakfitter was actually written as two application programs, 'Gaussfitter' and 'Lorenfitter' to accommodate spectra of Gaussian or Lorentzian character, respectively. Written initially to process data from a radio frequency glow discharge ion trap mass spectrometer (rf-GD/ITMS), the program is useful for processing sequentially acquired spectra, which have a limited number of data points across each peak. The user may examine and manipulate program variables in cases where the raw data is skewed with respect to the fit data. An assessment of Peakfitter is given using rf-GD/ITMS elemental analysis and ion-molecule reaction data. Peakfitter's (i.e. 'Gaussfitter's) utility in processing rf-GD/ITMS spectra is characterized by a slight
Search for Higgs shifts in white dwarfs
Energy Technology Data Exchange (ETDEWEB)
Onofrio, Roberto [Dipartimento di Fisica e Astronomia " Galileo Galilei," Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Wegner, Gary A., E-mail: onofrior@gmail.com, E-mail: gary.a.wegner@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)
2014-08-20
We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from high-energy physics or table-top experiments.
Giant Compton Shifts in Hyperbolic Metamaterial
Iorsh, Ivan; Ginzburg, Pavel; Belov, Pavel; Kivshar, Yuri
2014-01-01
We study the Compton scattering of light by free electrons inside a hyperbolic medium. We demonstrate that the unconventional dispersion and local density of states of the electromagnetic modes in such media can lead to a giant Compton shift and dramatic enhancement of the scattering cross section. We develop an universal approach for the study of coupled multi-photon processes in nanostructured media and derive the spectral intensity function of the scattered radiation for realistic metamaterial structures. We predict the Compton shift of the order of a few meVs for the infrared spectrum that is at least one order of magnitude larger than the Compton shift in any other system.
Spectral proper orthogonal decomposition
Sieber, Moritz; Paschereit, Christian Oliver
2015-01-01
The identification of coherent structures from experimental or numerical data is an essential task when conducting research in fluid dynamics. This typically involves the construction of an empirical mode base that appropriately captures the dominant flow structures. The most prominent candidates are the energy-ranked proper orthogonal decomposition (POD) and the frequency ranked Fourier decomposition and dynamic mode decomposition (DMD). However, these methods fail when the relevant coherent structures occur at low energies or at multiple frequencies, which is often the case. To overcome the deficit of these "rigid" approaches, we propose a new method termed Spectral Proper Orthogonal Decomposition (SPOD). It is based on classical POD and it can be applied to spatially and temporally resolved data. The new method involves an additional temporal constraint that enables a clear separation of phenomena that occur at multiple frequencies and energies. SPOD allows for a continuous shifting from the energetically ...
The vowel inherent spectral change of English vowels spoken by native and non-native speakers.
Jin, Su-Hyun; Liu, Chang
2013-05-01
The current study examined Vowel Inherent Spectral Change (VISC) of English vowels spoken by English-, Chinese-, and Korean-native speakers. Two metrics, spectral distance (amount of spectral shift) and spectral angle (direction of spectral shift) of formant movement from the onset to the offset, were measured for 12 English monophthongs produced in a /hvd/ context. While Chinese speakers showed significantly greater spectral distances of vowels than English and Korean speakers, there was no significant speakers' native language effect on spectral angles. Comparisons to their native vowels for Chinese and Korean speakers suggest that VISC might be affected by language-specific phonological structure.
A spectral invariant representation of spectral reflectance
Ibrahim, Abdelhameed; Tominaga, Shoji; Horiuchi, Takahiko
2011-03-01
Spectral image acquisition as well as color image is affected by several illumination factors such as shading, gloss, and specular highlight. Spectral invariant representations for these factors were proposed for the standard dichromatic reflection model of inhomogeneous dielectric materials. However, these representations are inadequate for other characteristic materials like metal. This paper proposes a more general spectral invariant representation for obtaining reliable spectral reflectance images. Our invariant representation is derived from the standard dichromatic reflection model for dielectric materials and the extended dichromatic reflection model for metals. We proof that the invariant formulas for spectral images of natural objects preserve spectral information and are invariant to highlights, shading, surface geometry, and illumination intensity. It is proved that the conventional spectral invariant technique can be applied to metals in addition to dielectric objects. Experimental results show that the proposed spectral invariant representation is effective for image segmentation.
$\\rho$ - meson spectral function in hot nuclear matter
Bhageerathi, P C Raje
2010-01-01
We study the $\\rho$-meson spectral function in hot nuclear matter by taking into account the isospin-symmetric pion and the nucleon loops within the quantum hadrodynamics (QHD) model as well as using an effective chiral SU(3) model. The spectral function of the $\\rho$ meson is studied in the mean field approximation (MFA) as well as in the relativistic Hartree (RHA) approximation. The inclusion of the nucleon loop considerably changes the $\\rho$-meson spectral function. Due to a larger mass drop of $ \\rho $ meson in the RHA, it is seen that the spectral function shifts towards the low invariant mass region, whereas in the MFA the spectral function is seen to be slightly shifted towards the high mass region. Moreover, while the spectral function is observed to be sharper with the nucleon-antinucleon polarization in RHA, the spectral function is seen to be broader in the MFA.
A spectral route to determining chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using...... this mapping, we derive a first-order shift of the band gap edges with chirality. Potentially, this effect could be used for measuring enantiomeric excess....
Ohlsson, Henrik; Eldar, Yonina C.; Yang, Allen Y.; Sastry, S. Shankar
2014-08-01
The classical shift retrieval problem considers two signals in vector form that are related by a shift. The problem is of great importance in many applications and is typically solved by maximizing the cross-correlation between the two signals. Inspired by compressive sensing, in this paper, we seek to estimate the shift directly from compressed signals. We show that under certain conditions, the shift can be recovered using fewer samples and less computation compared to the classical setup. Of particular interest is shift estimation from Fourier coefficients. We show that under rather mild conditions only one Fourier coefficient suffices to recover the true shift.
Spectral Decomposition Algorithm (SDA)
National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...
High Stokes shift perylene dyes for luminescent solar concentrators.
Sanguineti, Alessandro; Sassi, Mauro; Turrisi, Riccardo; Ruffo, Riccardo; Vaccaro, Gianfranco; Meinardi, Francesco; Beverina, Luca
2013-02-25
Highly efficient plastic based single layer Luminescent Solar Concentrators (LSCs) require the design of luminophores having complete spectral separation between absorption and emission spectra (large Stokes shift). We describe the design, synthesis and characterization of a new perylene dye possessing Stokes shift as high as 300 meV, fluorescent quantum yield in the LSC slab of 70% and high chemical and photochemical stability.
Hamhalter, Jan; Turilova, Ekaterina
2017-02-01
Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.
Spectral analysis of bedform dynamics
DEFF Research Database (Denmark)
Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko
. An assessment of bedform migration was achieved, as the growth and displacement of every single constituent can be distinguished. It can be shown that the changes in amplitude remain small for all harmonic constituents, whereas the phase shifts differ significantly. Thus the harmonics can be classified....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration....
Network Topology Inference from Spectral Templates
Segarra, Santiago; Mateos, Gonzalo; Ribeiro, Alejandro
2016-01-01
We address the problem of identifying a graph structure from the observation of signals defined on its nodes. Fundamentally, the unknown graph encodes direct relationships between signal elements, which we aim to recover from observable indirect relationships generated by a diffusion process on the graph. The fresh look advocated here permeates benefits from convex optimization and stationarity of graph signals, in order to identify the graph shift operator (a matrix representation of the graph) given only its eigenvectors. These spectral templates can be obtained, e.g., from the sample covariance of independent graph signals diffused on the sought network. The novel idea is to find a graph shift that, while being consistent with the provided spectral information, endows the network with certain desired properties such as sparsity. To that end we develop efficient inference algorithms stemming from provably-tight convex relaxations of natural nonconvex criteria, particularizing the results for two shifts: the...
Miller, Adam
2013-01-01
A standard tutorial-based approach to using OpenShift and deploying custom or pre-built web applications to the OpenShift Online cloud.This book is for software developers and DevOps alike who are interested in learning how to use the OpenShift Platform-as-a-Service for developing and deploying applications, how the environment works on the back end, and how to deploy their very own open source Platform-as-a-Service based on the upstream OpenShift Origin project.
Kort-Kamp, W J M; Dalvit, D A R
2015-01-01
We predict quantized Imbert-Fedorov, Goos-H\\"anchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant $\\alpha$, while the Goos- H\\"anchen ones in multiples of $\\alpha^2$. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.
Automated spectral classification using template matching
Institute of Scientific and Technical Information of China (English)
Fu-Qing Duan; Rong Liu; Ping Guo; Ming-Quan Zhou; Fu-Chao Wu
2009-01-01
An automated spectral classification technique for large sky surveys is pro-posed. We firstly perform spectral line matching to determine redshift candidates for an observed spectrum, and then estimate the spectral class by measuring the similarity be-tween the observed spectrum and the shifted templates for each redshift candidate. As a byproduct of this approach, the spectral redshift can also be obtained with high accuracy. Compared with some approaches based on computerized learning methods in the liter-ature, the proposed approach needs no training, which is time-consuming and sensitive to selection of the training set. Both simulated data and observed spectra are used to test the approach; the results show that the proposed method is efficient, and it can achieve a correct classification rate as high as 92.9%, 97.9% and 98.8% for stars, galaxies and quasars, respectively.
Gulati, Shekhar
2014-01-01
If you are a web application developer who wants to use the OpenShift platform to host your next big idea but are looking for guidance on how to achieve this, then this book is the first step you need to take. This is a very accessible cookbook where no previous knowledge of OpenShift is needed.
Cremers, Jan; Gramuglia, Alessia
2014-01-01
The CLR-network examined in 2006 the phenomenon of undeclared labour, with specific regard to the construction sector. The resulting study, Shifting Employment: undeclared labour in construction (Shifting-study hereafter), gave evidence that this is an area particularly affected by undeclared activi
Making Shifts toward Proficiency
McGatha, Maggie B.; Bay-Williams, Jennifer M.
2013-01-01
The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…
Shifted Independent Component Analysis
DEFF Research Database (Denmark)
Mørup, Morten; Madsen, Kristoffer Hougaard; Hansen, Lars Kai
2007-01-01
Delayed mixing is a problem of theoretical interest and practical importance, e.g., in speech processing, bio-medical signal analysis and financial data modelling. Most previous analyses have been based on models with integer shifts, i.e., shifts by a number of samples, and have often been carrie...
Spectral changes induced by a phase modulator acting as a time lens
Energy Technology Data Exchange (ETDEWEB)
Plansinis, B. W. [Univ. of Rochester, Rochester, NY (United States). Inst. of Optics.; Donaldson, W. R. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics; Agrawal, G. P. [Univ. of Rochester, Rochester, NY (United States). Inst. of Optics; Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.
2015-07-06
We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phase shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.
Fast spectral color image segmentation based on filtering and clustering
Xing, Min; Li, Hongyu; Jia, Jinyuan; Parkkinen, Jussi
2009-10-01
This paper proposes a fast approach to spectral image segmentation. In the algorithm, two popular techniques are extended and applied to spectral color images: the mean-shift filtering and the kernel-based clustering. We claim that segmentation should be completed under illuminant F11 rather than directly using the original spectral reflectance, because such illumination can reduce data variability and expedite the following filtering. The modes obtained in the mean-shift filtering represent the local features of spectral images, and will be applied to segmentation in place of pixels. Since the modes are generally small in number, the eigendecomposition of kernel matrices, the crucial step in the kernelbased clustering, becomes much easier. The combination of these two techniques can efficiently enhance the performance of segmentation. Experiments show that the proposed segmentation method is feasible and very promising for spectral color images.
Energy Technology Data Exchange (ETDEWEB)
Harms, Gary A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
The US Department of Energy (DOE) Nuclear Energy Research Initiative funded the design and construction of the Seven Percent Critical Experiment (7uPCX) at Sandia National Laboratories. The start-up of the experiment facility and the execution of the experiments described here were funded by the DOE Nuclear Criticality Safety Program. The 7uPCX is designed to investigate critical systems with fuel for light water reactors in the enrichment range above 5% ^{235}U. The 7uPCX assembly is a water-moderated and -reflected array of aluminum-clad square-pitched U(6.90%)O_{2} fuel rods.
Shift Verification and Validation
Energy Technology Data Exchange (ETDEWEB)
Pandya, Tara M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Evans, Thomas M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davidson, Gregory G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Seth R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-09-07
This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over a burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.
Shift Verification and Validation
Energy Technology Data Exchange (ETDEWEB)
Pandya, Tara M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Evans, Thomas M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davidson, Gregory G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Seth R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-09-07
This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of LightWater Reactors (CASL). Fivemain types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over a burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.
Single and Multiple Phase Shifts Tilted Fiber Bragg Gratings
Directory of Open Access Journals (Sweden)
Christophe Caucheteur
2009-01-01
Full Text Available The spectral behavior of single and multiple phase shifts tilted fiber Bragg gratings has been experimentally investigated. To this aim, a simple and cost-effective postprocessing technique based on local thermal treatment was used to create arbitrary phase shifts along the tilted grating structure. In particular, UV written tilted fiber Bragg gratings were treated by the electric arc discharge to erase the refractive index modulation in well-defined regions. We demonstrate that these defects give rise to interference pattern for all modes, and thus defect states can be achieved within all the attenuation bands, enabling a simple wavelength independent spectral tailoring of this class of devices.
Multi-spectral pyrometry—a review
Araújo, António
2017-08-01
In pyrometry measurements, the unknown target emissivity is a critical source of uncertainty, especially when the emissivity is low. Aiming to overcome this problem, various multi-spectral pyrometry systems and processing techniques have been proposed in the literature. Basically, all multi-spectral systems are based on the same principle: the radiation emitted by the target is measured at different channels having different spectral characteristics, and the emissivity is modelled as a function of wavelength with adjustable parameters to be obtained empirically, resulting in a system of equations whose solution is the target temperature and the parameters of the emissivity function. The present work reviews the most important multi-spectral developments. Concerning the spectral width of the measurement channels, multi-spectral systems are divided into multi-wavelength (monochromatic channels) and multi-band (wide-band channels) systems. Regarding the number of unknowns and equations (one equation per channel), pyrometry systems can either be determined (same number of unknowns and equations, having a unique solution) or overdetermined (more equations than unknowns, to be solved by least-squares). Generally, higher-order multi-spectral systems are overdetermined, since the uncertainty of the solutions obtained from determined systems increases as the number of channels increases, so that determined systems normally have less than four channels. In terms of the spectral characteristics of the measurement channels, narrow bands, far apart from each other and shifted towards lower wavelengths, seem to provide more accurate solutions. Many processing techniques have been proposed, but they strongly rely on the relationship between emissivity and wavelength, which is, in turn, strongly dependent on the characteristics of a particular target. Several accurate temperature and/or emissivity results have been reported, but no universally accepted multi-spectral technique has
Collision-induced shifts of Rydberg levels of strontium
Energy Technology Data Exchange (ETDEWEB)
Marafi, M; Bhatia, K S; Makdisi, Y Y; Philips, G [Department of Physics, Kuwait University, PO Box 5969, Safat, 13060 (Kuwait)
2003-05-14
Measurements of spectral line shifts induced by collisions with rare gas perturbers are reported. High Rydberg states were prepared by multiphoton excitation using an excimer pumped tunable dye laser. A thermionic detector inside a heat pipe was used to collect the ionization products resulting from excited states. Analysis of the data for the shifts of the absorption transition to 5snd {sup 1}D{sub 2} states in strontium is presented.
Collision-induced shifts of Rydberg levels of strontium
Marafi, M.; Bhatia, K. S.; Makdisi, Y. Y.; Philips, G.
2003-05-01
Measurements of spectral line shifts induced by collisions with rare gas perturbers are reported. High Rydberg states were prepared by multiphoton excitation using an excimer pumped tunable dye laser. A thermionic detector inside a heat pipe was used to collect the ionization products resulting from excited states. Analysis of the data for the shifts of the absorption transition to 5snd 1D 2 states in strontium is presented.
Compressive Spectral Renormalization Method
Bayindir, Cihan
2016-01-01
In this paper a novel numerical scheme for finding the sparse self-localized states of a nonlinear system of equations with missing spectral data is introduced. As in the Petviashivili's and the spectral renormalization method, the governing equation is transformed into Fourier domain, but the iterations are performed for far fewer number of spectral components (M) than classical versions of the these methods with higher number of spectral components (N). After the converge criteria is achieved for M components, N component signal is reconstructed from M components by using the l1 minimization technique of the compressive sampling. This method can be named as compressive spectral renormalization (CSRM) method. The main advantage of the CSRM is that, it is capable of finding the sparse self-localized states of the evolution equation(s) with many spectral data missing.
The electronic spectral properties of gallic acid
Fink, David W.; Stong, John D.
The electronic spectral properties of gallic acid (3,4,5-trihydroxybenzoic acid), a chemiluminescence reagent which is unstable in oxygenated aqueous solution, have been determined under conditions regulated to retard decomposition. The characteristic blue and red shifts in the u.v. absorption spectra which accompany carboxyl and phenol dissociation, respectively, are in accord with the trends usually observed for these functional groups. The dianionic species exhibits a fluorescence emission band with a peak at 370 nm under 300-nm excitation.
Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio
1995-01-01
Recently we showed that the spectral flow acting on the N=2 twisted topological theories gives rise to a topological algebra automorphism. Here we point out that the untwisting of that automorphism leads to a spectral flow on the untwisted N=2 superconformal algebra which is different from the usual one. This "other" spectral flow does not interpolate between the chiral ring and the antichiral ring. In particular, it maps the chiral ring into the chiral ring and the antichiral ring into the antichiral ring. We discuss the similarities and differences between both spectral flows. We also analyze their action on null states.
Bautista, Pinky A; Yagi, Yukako
2011-01-01
In this paper we introduced a digital staining method for histopathology images captured with an n-band multispectral camera. The method consisted of two major processes: enhancement of the original spectral transmittance and the transformation of the enhanced transmittance to its target spectral configuration. Enhancement is accomplished by shifting the original transmittance with the scaled difference between the original transmittance and the transmittance estimated with m dominant principal component (PC) vectors;the m-PC vectors were determined from the transmittance samples of the background image. Transformation of the enhanced transmittance to the target spectral configuration was done using an nxn transformation matrix, which was derived by applying a least square method to the enhanced and target spectral training data samples of the different tissue components. Experimental results on the digital conversion of a hematoxylin and eosin (H&E) stained multispectral image to its Masson's trichrome stained (MT) equivalent shows the viability of the method.
Protein Chemical Shift Prediction
Larsen, Anders S
2014-01-01
The protein chemical shifts holds a large amount of information about the 3-dimensional structure of the protein. A number of chemical shift predictors based on the relationship between structures resolved with X-ray crystallography and the corresponding experimental chemical shifts have been developed. These empirical predictors are very accurate on X-ray structures but tends to be insensitive to small structural changes. To overcome this limitation it has been suggested to make chemical shift predictors based on quantum mechanical(QM) calculations. In this thesis the development of the QM derived chemical shift predictor Procs14 is presented. Procs14 is based on 2.35 million density functional theory(DFT) calculations on tripeptides and contains corrections for hydrogen bonding, ring current and the effect of the previous and following residue. Procs14 is capable at performing predictions for the 13CA, 13CB, 13CO, 15NH, 1HN and 1HA backbone atoms. In order to benchmark Procs14, a number of QM NMR calculatio...
Brundavanam, Maruthi M; Viswanathan, Nirmal K; Rao, D Narayana
2009-12-01
We report here a detailed experimental study to demonstrate the effect of source spectral characteristics such as spectral bandwidth (Deltalambda), peak wavelength (lambda(0)), and shape of the spectrum on the spectral shifts and spectral switches measured due to temporal correlation in a white-light Michelson interferometer operated in the spectral domain. Behavior of the spectral switch characteristics such as the switch position, switch amplitude, and switch symmetry are discussed in detail as a function of optical path difference between the interfering beams. The experimental results are compared with numerical calculations carried out using interference law in the spectral domain with modified source spectral characteristics. On the basis of our results we feel that our study is of critical importance in the selection of source spectral characteristics to further improve the longitudinal resolution or the measurement sensitivity in spectral-domain optical coherence tomography and microscopy.
Stokes shift spectroscopy for breast cancer diagnosis
Jeyasingh, Ebenezar; Prakashrao, Aruna; Singaravelu, Ganesan
2010-02-01
The objective of this study is to assess the diagnostic potential of stokes shift (SS) spectroscopy (SSS) for normal and different pathological breast tissues such as fibroadenoma and infiltrating ductal carcinoma. The SS spectra is measured by simultaneously scanning both the excitation and emission wavelengths while keeping a fixed wavelength interval Δλ=20 nm between them. Characteristic, highly resolved peaks and significant spectral differences between normal and different pathological breast tissues were observed. The SS spectra of normal and different pathological breast tissues shows the distinct peaks around 300, 350, 450, 500 and 600 nm may be attributed to tryptophan, collagen, NADH, flavin and porphyrin respectively. Using SSS technique one can obtain all the key fluorophores in a single scan and hence they can be targeted as a tumor markers in this study. In order to quantify the altered spectral differences between normal and different pathological breast tissues are verified by different ratio parameters.
On Longitudinal Spectral Coherence
DEFF Research Database (Denmark)
Kristensen, Leif
1979-01-01
It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between...
Spectral geometry of spacetime
Kopf, T
2000-01-01
Spacetime, understood as a globally hyperbolic manifold, may be characterized by spectral data using a 3+1 splitting into space and time, a description of space by spectral triples and by employing causal relationships, as proposed earlier. Here, it is proposed to use the Hadamard condition of quantum field theory as a smoothness principle.
SRD 115 Hydrocarbon Spectral Database (Web, free access) All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.
Agarwal, A.; Mohan, P.; Gupta, Alok C.; Mangalam, A.; Volvach, A. E.; Aller, M. F.; Aller, H. D.; Gu, M. F.; Lähteenmäki, A.; Tornikoski, M.; Volvach, L. N.
2017-07-01
We studied the pc-scale core shift effect using radio light curves for three blazars, S5 0716+714, 3C 279 and BL Lacertae, which were monitored at five frequencies (ν) between 4.8 and 36.8 GHz using the University of Michigan Radio Astronomical Observatory (UMRAO), the Crimean Astrophysical Observatory (CrAO) and Metsähovi Radio Observatory for over 40 yr. Flares were Gaussian fitted to derive time delays between observed frequencies for each flare (Δt), peak amplitude (A) and their half width. Using A ∝ να, we infer α in the range of -16.67-2.41 and using Δ t ∝ ν ^{1/k_r}, we infer kr ∼ 1, employed in the context of equipartition between magnetic and kinetic energy density for parameter estimation. From the estimated core position offset (Ωrν) and the core radius (rcore), we infer that opacity model may not be valid in all cases. The mean magnetic field strengths at 1 pc (B1) and at the core (Bcore) are in agreement with previous estimates. We apply the magnetically arrested disc model to estimate black hole spins in the range of 0.15-0.9 for these blazars, indicating that the model is consistent with expected accretion mode in such sources. The power-law-shaped power spectral density has slopes -1.3 to -2.3 and is interpreted in terms of multiple shocks or magnetic instabilities.
Spectral Geometry and Causality
Kopf, T
1996-01-01
For a physical interpretation of a theory of quantum gravity, it is necessary to recover classical spacetime, at least approximately. However, quantum gravity may eventually provide classical spacetimes by giving spectral data similar to those appearing in noncommutative geometry, rather than by giving directly a spacetime manifold. It is shown that a globally hyperbolic Lorentzian manifold can be given by spectral data. A new phenomenon in the context of spectral geometry is observed: causal relationships. The employment of the causal relationships of spectral data is shown to lead to a highly efficient description of Lorentzian manifolds, indicating the possible usefulness of this approach. Connections to free quantum field theory are discussed for both motivation and physical interpretation. It is conjectured that the necessary spectral data can be generically obtained from an effective field theory having the fundamental structures of generalized quantum mechanics: a decoherence functional and a choice of...
Snapshot spectral imaging system
Arnold, Thomas; De Biasio, Martin; McGunnigle, Gerald; Leitner, Raimund
2010-02-01
Spectral imaging is the combination of spectroscopy and imaging. These fields are well developed and are used intensively in many application fields including industry and the life sciences. The classical approach to acquire hyper-spectral data is to sequentially scan a sample in space or wavelength. These acquisition methods are time consuming because only two spatial dimensions, or one spatial and the spectral dimension, can be acquired simultaneously. With a computed tomography imaging spectrometer (CTIS) it is possible to acquire two spatial dimensions and a spectral dimension during a single integration time, without scanning either spatial or spectral dimensions. This makes it possible to acquire dynamic image scenes without spatial registration of the hyperspectral data. This is advantageous compared to tunable filter based systems which need sophisticated image registration techniques. While tunable filters provide full spatial and spectral resolution, for CTIS systems there is always a tradeoff between spatial and spectral resolution as the spatial and spectral information corresponding to an image cube is squeezed onto a 2D image. The presented CTIS system uses a spectral-dispersion element to project the spectral and spatial image information onto a 2D CCD camera array. The system presented in this paper is designed for a microscopy application for the analysis of fixed specimens in pathology and cytogenetics, cell imaging and material analysis. However, the CTIS approach is not limited to microscopy applications, thus it would be possible to implement it in a hand-held device for e.g. real-time, intra-surgery tissue classification.
Eliminating light shifts for single atom trapping
Hutzler, Nicholas R.; Liu, Lee R.; Yu, Yichao; Ni, Kang-Kuen
2017-02-01
Microscopically controlled neutral atoms in optical tweezers and lattices have led to exciting advances in the study of quantum information and quantum many-body systems. The light shifts of atomic levels from the trapping potential in these systems can result in detrimental effects such as fluctuating dipole force heating, inhomogeneous detunings, and inhibition of laser cooling, which limits the atomic species that can be manipulated. In particular, these light shifts can be large enough to prevent loading into optical tweezers directly from a magneto-optical trap. We implement a general solution to these limitations by loading, as well as cooling and imaging the atoms with temporally alternating beams, and present an analysis of the role of heating and required cooling for single atom tweezer loading. Because this technique does not depend on any specific spectral properties, it should enable the optical tweezer platform to be extended to nearly any atomic or molecular species that can be laser cooled and optically trapped.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Administrative reforms are shifting prefecture government powers to the county level in an effort to boost local economies on July 8, the government of China’s southernmost Hainan Province announced that it was to hand over 177 of its administrative powers to county-level governments. The move practically dismantled the powers of the
Frequency shift in high order harmonic generation from isotopic molecules
He, Lixin; Zhai, Chunyang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Zhu, Xiaosong; Lu, Peixiang
2016-01-01
We report the first experimental observation of frequency shift in high order harmonic generation (HHG) from isotopic molecules H2 and D2 . It is found that harmonics generated from the isotopic molecules exhibit obvious spectral red shift with respect to those from Ar atom. The red shift is further demonstrated to arise from the laser-driven nuclear motion in isotopic molecules. By utilizing the red shift observed in experiment, we successfully retrieve the nuclear vibrations in H2 and D2, which agree well with the theoretical calculations from the time-dependent Schrodinger equation (TDSE) with Non-Born-Oppenheimer approximation. Moreover, we demonstrate that the frequency shift can be manipulated by changing the laser chirp.
International Conference on Spectral Theory and Mathematical Physics
Raikov, Georgi; Aldecoa, Rafael
2016-01-01
The present volume contains the Proceedings of the International Conference on Spectral Theory and Mathematical Physics held in Santiago de Chile in November 2014. Main topics are: Ergodic Quantum Hamiltonians, Magnetic Schrödinger Operators, Quantum Field Theory, Quantum Integrable Systems, Scattering Theory, Semiclassical and Microlocal Analysis, Spectral Shift Function and Quantum Resonances. The book presents survey articles as well as original research papers on these topics. It will be of interest to researchers and graduate students in Mathematics and Mathematical Physics.
Stevanovic, Dragan
2015-01-01
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the
Stark Widths of Spectral Lines of Neutral Neon
Indian Academy of Sciences (India)
Milan S. Dimitrijević; Zoran Simić; Andjelka Kovačević; Aleksandar Valjarević; Sylvie Sahal-Bréchot
2015-12-01
In order to complete Stark broadening data for Ne I spectral lines which are needed for analysis of stellar atmospheres, collisional widths and shifts (the so-called Stark broadening parameters) of 29 isolated spectral lines of neutral neon have been determined within the impact semiclassical perturbation method. Calculations have been performed for the broadening by collisions with electrons, protons and ionized helium for astrophysical applications, and for collisions with ionized neon and argon for laboratory plasma diagnostics. The shifts have been compared with existing experimental values. The obtained data will be included in the STARK-B database, which is a part of the Virtual Atomic and Molecular Data Center – VAMDC.
Energy Technology Data Exchange (ETDEWEB)
Villarroel, D. [Av. Tobalaba 3696, Puente Alto, Santiago, Metropolitana (Chile)
2008-02-15
The Lamb shift is calculated, in an approximate way, considering the hydrogen atom as an isolated physical system; the quantized radiation field does not play any role in the present approach. Our formalism is based on the generalization of the Dirac wave equation that incorporates the effects of the electron self-fields directly into it. Both the physical picture as well as the mathematical formalism have their roots in the classical theory of the electron. (author)
Unmixing of spectrally similar minerals
CSIR Research Space (South Africa)
Debba, Pravesh
2009-01-01
Full Text Available -bearing oxide/hydroxide/sulfate minerals in complex mixtures be obtained using hyperspectral data? Debba (CSIR) Unmixing of spectrally similar minerals MERAKA 2009 3 / 18 Method of spectral unmixing Old method: problem Linear Spectral Mixture Analysis (LSMA...
Vowel Inherent Spectral Change
Assmann, Peter
2013-01-01
It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...
Temporal Lorentzian spectral triples
Franco, Nicolas
2014-09-01
We present the notion of temporal Lorentzian spectral triple which is an extension of the notion of pseudo-Riemannian spectral triple with a way to ensure that the signature of the metric is Lorentzian. A temporal Lorentzian spectral triple corresponds to a specific 3 + 1 decomposition of a possibly noncommutative Lorentzian space. This structure introduces a notion of global time in noncommutative geometry. As an example, we construct a temporal Lorentzian spectral triple over a Moyal-Minkowski spacetime. We show that, when time is commutative, the algebra can be extended to unbounded elements. Using such an extension, it is possible to define a Lorentzian distance formula between pure states with a well-defined noncommutative formulation.
Spectral recognition of graphs
Directory of Open Access Journals (Sweden)
Cvetković Dragoš
2012-01-01
Full Text Available At some time, in the childhood of spectral graph theory, it was conjectured that non-isomorphic graphs have different spectra, i.e. that graphs are characterized by their spectra. Very quickly this conjecture was refuted and numerous examples and families of non-isomorphic graphs with the same spectrum (cospectral graphs were found. Still some graphs are characterized by their spectra and several mathematical papers are devoted to this topic. In applications to computer sciences, spectral graph theory is considered as very strong. The benefit of using graph spectra in treating graphs is that eigenvalues and eigenvectors of several graph matrices can be quickly computed. Spectral graph parameters contain a lot of information on the graph structure (both global and local including some information on graph parameters that, in general, are computed by exponential algorithms. Moreover, in some applications in data mining, graph spectra are used to encode graphs themselves. The Euclidean distance between the eigenvalue sequences of two graphs on the same number of vertices is called the spectral distance of graphs. Some other spectral distances (also based on various graph matrices have been considered as well. Two graphs are considered as similar if their spectral distance is small. If two graphs are at zero distance, they are cospectral. In this sense, cospectral graphs are similar. Other spectrally based measures of similarity between networks (not necessarily having the same number of vertices have been used in Internet topology analysis, and in other areas. The notion of spectral distance enables the design of various meta-heuristic (e.g., tabu search, variable neighbourhood search algorithms for constructing graphs with a given spectrum (spectral graph reconstruction. Several spectrally based pattern recognition problems appear in many areas (e.g., image segmentation in computer vision, alignment of protein-protein interaction networks in bio
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-08-01
Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.
Thermophotovoltaic Spectral Control
Energy Technology Data Exchange (ETDEWEB)
DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman
2004-06-09
Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.
Pressure Shift and Gravitational Red Shift of Balmer Lines in White Dwarfs. Rediscussion
Halenka, J; Madej, J; Grabowski, B
2015-01-01
The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of $H_\\alpha$ and $H_\\beta$ Balmer lines in spectra of DA white dwarfs (WDs), as masking effects in measurements of the gravitational red shift in WDs, have been examined in detail. The results are compared with our earlier ones from before a quarter of a century (Grabowski et al. 1987, hereafter ApJ'87; Madej and Grabowski 1990). In these earlier papers, as a dominant constituent of the Balmer-line-profiles, the standard, symmetrical Stark line profiles, shifted as the whole by PS-effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark-line-profiles (especially of $H_\\beta$) are immanently asymmetrical and shifted due to the effects of strong inhomogeneity of the perturbing fields in plasma. To calculate the Stark line-profiles in successive layers of the WD atmosphere we used the modified Full Computer Simulation Method (mFCSM), able to take adequately into account the ...
Rapid spectral analysis for spectral imaging.
Jacques, Steven L; Samatham, Ravikant; Choudhury, Niloy
2010-07-15
Spectral imaging requires rapid analysis of spectra associated with each pixel. A rapid algorithm has been developed that uses iterative matrix inversions to solve for the absorption spectra of a tissue using a lookup table for photon pathlength based on numerical simulations. The algorithm uses tissue water content as an internal standard to specify the strength of optical scattering. An experimental example is presented on the spectroscopy of portwine stain lesions. When implemented in MATLAB, the method is ~100-fold faster than using fminsearch().
Pressure Shift and Gravitational RedShift of Balmer Lines in White Dwarfs: Rediscussion
Halenka, Jacek; Olchawa, Wieslaw; Madej, Jerzy; Grabowski, Boleslaw
2015-08-01
The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of Hα and Hβ Balmer lines in spectra of DA white dwarfs (WDs), have been examined in detail as masking effects in measurements of the gravitational redshift in WDs. The results are compared with our earlier ones from a quarter of a century ago. In these earlier papers, the standard, symmetrical Stark line profiles, as a dominant constituent of the Balmer line profiles but shifted as a whole by the PS effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark line profiles (especially of Hβ) are inherently asymmetrical and shifted due to the effects of strong inhomogeneity of the perturbing fields in plasma. To calculate the Stark line profiles in successive layers of the WD atmosphere we used the modified Full Computer Simulation Method, able to take adequately into account the complexity of local elementary quantum processes in plasma. In the case of the Hα line, the present value of Stark-induced shift of the synthetic Hα line profile is about half the previous one and it is negligible in comparison with the gravitational redshift. In the case of the Hβ line, the present value of Stark-induced shift of the synthetic Hβ line profile is about twice the previous one. The source of this extra shift is the asymmetry of Hβ peaks. In memory of Jan Jerzy Kubikowski (1927-1968)—one of the pioneers of plasma in astrophysics.
The shifting beverage landscape.
Storey, Maureen
2010-04-26
STOREY, M.L. The shifting beverage landscape. PHYSIOL BEHAV, 2010. - Simultaneous lifestyle changes have occurred in the last few decades, creating an imbalance in energy intake and energy expenditure that has led to overweight and obesity. Trends in the food supply show that total daily calories available per capita increased 28% since 1970. Total energy intake among men and women has also increased dramatically since that time. Some have suggested that intake of beverages has had a disproportional impact on obesity. Data collected by the Beverage Marketing Corporation between 1988-2008 demonstrate that, in reality, fewer calories per ounce are being produced by the beverage industry. Moreover, data from the National Cancer Institute show that soft drink intake represents 5.5% of daily calories. Data from NHANES 1999-2003 vs. 2003-06 may demonstrate a shift in beverage consumption for age/gender groups, ages 6 to>60years. The beverages provided in schools have significantly changed since 2006 when the beverage industry implemented School Beverage Guidelines. This voluntary action has removed full-calorie soft drinks from participating schools across the country. This shift to lower-calorie and smaller-portion beverages in school has led to a significant decrease in total beverage calories in schools. These data support the concept that to prevent and treat obesity, public health efforts should focus on energy balance and that a narrow focus on sweetened beverages is unlikely to have any meaningful impact on this complex problem. Copyright 2010 Elsevier Inc. All rights reserved.
Catastrophic shifts in ecosystems
Scheffer, Marten; Carpenter, Steve; Foley, Jonathan A.; Folke, Carl; Walker, Brian
2001-10-01
All ecosystems are exposed to gradual changes in climate, nutrient loading, habitat fragmentation or biotic exploitation. Nature is usually assumed to respond to gradual change in a smooth way. However, studies on lakes, coral reefs, oceans, forests and arid lands have shown that smooth change can be interrupted by sudden drastic switches to a contrasting state. Although diverse events can trigger such shifts, recent studies show that a loss of resilience usually paves the way for a switch to an alternative state. This suggests that strategies for sustainable management of such ecosystems should focus on maintaining resilience.
Bipolar spectral associative memories.
Spencer, R G
2001-01-01
Nonlinear spectral associative memories are proposed as quantized frequency domain formulations of nonlinear, recurrent associative memories in which volatile network attractors are instantiated by attractor waves. In contrast to conventional associative memories, attractors encoded in the frequency domain by convolution may be viewed as volatile online inputs, rather than nonvolatile, off-line parameters. Spectral memories hold several advantages over conventional associative memories, including decoder/attractor separability and linear scalability, which make them especially well suited for digital communications. Bit patterns may be transmitted over a noisy channel in a spectral attractor and recovered at the receiver by recurrent, spectral decoding. Massive nonlocal connectivity is realized virtually, maintaining high symbol-to-bit ratios while scaling linearly with pattern dimension. For n-bit patterns, autoassociative memories achieve the highest noise immunity, whereas heteroassociative memories offer the added flexibility of achieving various code rates, or degrees of extrinsic redundancy. Due to linear scalability, high noise immunity and use of conventional building blocks, spectral associative memories hold much promise for achieving robust communication systems. Simulations are provided showing bit error rates for various degrees of decoding time, computational oversampling, and signal-to-noise ratio.
Teutsch, J
2007-01-01
It is possible to enumerate all computer programs. In particular, for every partial computable function, there is a shortest program which computes that function. f-MIN is the set of indices for shortest programs. In 1972, Meyer showed that f-MIN is Turing equivalent to 0'', the halting set with halting set oracle. This paper generalizes the notion of shortest programs, and we use various measures from computability theory to describe the complexity of the resulting "spectral sets." We show that under certain Godel numberings, the spectral sets are exactly the canonical sets 0', 0'', 0''', ... up to Turing equivalence. This is probably not true in general, however we show that spectral sets always contain some useful information. We show that immunity, or "thinness" is a useful characteristic for distinguishing between spectral sets. In the final chapter, we construct a set which neither contains nor is disjoint from any infinite arithmetic set, yet it is 0-majorized and contains a natural spectral set. Thus ...
Repetition and Translation Shifts
Directory of Open Access Journals (Sweden)
Simon Zupan
2006-06-01
Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.
Parametric Explosion Spectral Model
Energy Technology Data Exchange (ETDEWEB)
Ford, S R; Walter, W R
2012-01-19
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
Photovoltaic spectral responsivity measurements
Energy Technology Data Exchange (ETDEWEB)
Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)
1998-09-01
This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.
The influence of spatial coherence on the Goos-Haenchen shift at total internal reflection
Energy Technology Data Exchange (ETDEWEB)
Wang Liqin; Wang Ligang; Zhu Shiyao [Department of Physics, Zhejiang University, Hangzhou, 310027 (China); Zubairy, M Suhail [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)], E-mail: sxwlg@yahoo.com.cn
2008-03-14
In this paper, the influence of spatial coherence on the Goos-Haenchen (GH) shift at total internal reflection is theoretically investigated. Based on the theory of partial coherence, a general integral expression of the cross-spectral density is derived for a partially coherent beam reflected from an interface. Using numerical simulation, we find that the GH shift of the reflected beam greatly depends on the spatial coherence, and the GH shift is greatly reduced with a decrease in spatial coherence.
Spectral Astrometry Mission for Planets Detection
Energy Technology Data Exchange (ETDEWEB)
Erskine, D J; Edelstein, J
2002-08-09
The Spectral Astrometry Mission is a space-mission concept that uses simultaneous, multiple-star differential astrometry to measure exo-solar planet masses. The goal of SAM is to measure the reflex motions of hundreds of nearby ({approx}50 pc) F, G and K stars, relative to adjacent stars, with a resolution of 2.5 {micro}-arcsec. SAM is a new application of Spectral Interferometry (SI), also called Externally Dispersed Interferometry (EDI), that can simultaneously measure the angular difference between the target and multiple reference stars. SI has demonstrated the ability to measure a {lambda}/20,000 white-light fringe shift with only {lambda}/3 baseline control. SAM's structural stability and compensation requirements are therefore dramatically reduced compared to existing long-arm balanced-arm interferometric astrometry methods. We describe the SAM's mission concept, long-baseline SI astrometry method, and technical challenges to achieving the mission.
Gaiotto, Davide; Neitzke, Andrew
2012-01-01
We apply and illustrate the techniques of spectral networks in a large collection of A_{K-1} theories of class S, which we call "lifted A_1 theories." Our construction makes contact with Fock and Goncharov's work on higher Teichmuller theory. In particular we show that the Darboux coordinates on moduli spaces of flat connections which come from certain special spectral networks coincide with the Fock-Goncharov coordinates. We show, moreover, how these techniques can be used to study the BPS spectra of lifted A_1 theories. In particular, we determine the spectrum generators for all the lifts of a simple superconformal field theory.
Directory of Open Access Journals (Sweden)
A. H. Bhrawy
2013-01-01
Full Text Available We extend the application of the Galerkin method for treating the multiterm fractional differential equations (FDEs subject to initial conditions. A new shifted Legendre-Galerkin basis is constructed which satisfies exactly the homogeneous initial conditions by expanding the unknown variable using a new polynomial basis of functions which is built upon the shifted Legendre polynomials. A new spectral collocation approximation based on the Gauss-Lobatto quadrature nodes of shifted Legendre polynomials is investigated for solving the nonlinear multiterm FDEs. The main advantage of this approximation is that the solution is expanding by a truncated series of Legendre-Galerkin basis functions. Illustrative examples are presented to ensure the high accuracy and effectiveness of the proposed algorithms are discussed.
Spectral library searching in proteomics.
Griss, Johannes
2016-03-01
Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data.
Natural and artificial spectral edges in exoplanets
Lingam, Manasvi; Loeb, Abraham
2017-09-01
Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.
Enhancing solar cell efficiency by using spectral converters
Energy Technology Data Exchange (ETDEWEB)
Van Sark, W.G.J.H.M. [Department of Science, Technology and Society, Copernicus Institute, Utrecht University, Utrecht (Netherlands); Meijerink, A. [Department of Chemistry of Condensed Matter, Debye Institute, Utrecht University, Utrecht (Netherlands); Schropp, R.E.I. [Department of Surfaces, Interfaces and Devices, Debye Institute, Utrecht University, Utrecht (Netherlands); Van Roosmalen, J.A.M. [ECN Solar Energy, Petten (Netherlands); Lysen, E.H. [Utrecht Centre for Energy research UCE, Utrecht University, Utrecht (Netherlands)
2005-04-01
Planar converters containing quantum dots as wavelength-shifting moieties on top of a multi-crystalline silicon and an amorphous silicon solar cell were studied. The highly efficient quantum dots are to shift the wavelengths where the spectral response of the solar cell is low to wavelengths where the spectral response is high, in order to improve the conversion efficiency of the solar cell. It was calculated that quantum dots with an emission at 603 nm increase the multi-crystalline solar cell short-circuit current by nearly 10%. Simulation results for planar converters on hydrogenated amorphous silicon solar cells show no beneficial effects, due to the high spectral response at low wavelength.
Enhancing solar cell efficiency by using spectral converters
Energy Technology Data Exchange (ETDEWEB)
Sark, W.G.J.H.M. van [Utrecht University (Netherlands). Copernicus Institute; Meijerink, A.; Schropp, R.E.I. [Utrecht University (Netherlands). Debye Institute; Roosmalen, J.A.M. van [ECN Solar Energy, Petten (Netherlands); Lysen, E.H. [Utrecht University (Netherlands). Centre for Energy Research
2005-05-01
Planar converters containing quantum dots as wavelength-shifting moieties on top of a multi-crystalline silicon and an amorphous silicon solar cell were studied. The highly efficient quantum dots are to shift the wavelengths where the spectral response of the solar cell is low to wavelengths where the spectral response is high, in order to improve the conversion efficiency of the solar cell. It was calculated that quantum dots with an emission at 603 nm increase the multi-crystalline solar cell short-circuit current by nearly 10%. Simulation results for planar converters on hydrogenated amorphous silicon solar cells show no beneficial effects, due to the high spectral response at low wavelength. (author)
Institute of Scientific and Technical Information of China (English)
Zhao Guang-Pu; Lii Bai-Da
2009-01-01
Starting from the Rayleigh-Sommerfeld diffraction integral,this paper studies the spectral behavior in Young's experiment illuminated by nonparaxial partially coherent light and compares with the paraxial case,where the influence of nonparaxiality of partially coherent light on the spectral shifts and spectral switches is stressed.It is shown that there is a spectral shift in the nonparaxial case relative to the paraxial one and the critical position changes,at which the spectral switch occurs.The ratio of the waist width to the central wavelength ω0/λ0 and relative spatial correlation length △ affect the spectral difference.The smaller ω0/λ0 is,the larger the difference between the nonparaxial and paraxial results appears.The effect of relative spatial correlation length △ is relatively small.
Kyoung Won Jang; Sang Hun Shin; Seon Geun Kim; Jae Seok Kim; Wook Jae Yoo; Young Hoon Ji; Bongsoo Lee
2014-01-01
In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at...
Schunck, Franz E
2008-01-01
We reconsider the nonlinear second order Abel equation of Stewart and Lyth, which follows from a nonlinear second order slow-roll approximation. We find a new eigenvalue spectrum in the blue regime. Some of the discrete values of the spectral index n_s have consistent fits to the cumulative COBE data as well as to recent ground-base CMB experiments.
Large Spectral Library Problem
Energy Technology Data Exchange (ETDEWEB)
Chilton, Lawrence K.; Walsh, Stephen J.
2008-10-03
Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.
Energy Technology Data Exchange (ETDEWEB)
Mocsy, Agnes [Department of Mathematics and Science, Pratt Institute, Brooklyn, NY 11205 (United States)
2009-11-01
In this talk I summarize the progress achieved in recent years on the understanding of quarkonium properties at finite temperature. Theoretical studies from potential models, lattice QCD, and effective field theories are discussed. I also highlight a bridge from spectral functions to experiment.
Spectral representation of fingerprints
Xu, Haiyun; Bazen, Asker M.; Veldhuis, Raymond N.J.; Kevenaar, Tom A.M.; Akkermans, Anton H.M.
2007-01-01
Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and directions suffering from various deformations such as translation, rotation and scaling. The spectral minutiae representation introduced in this paper is a novel m
Spectral Envelopes - A Preliminary Report
Lawton, Wayne
2012-01-01
The spectral envelope S(F) of a subset of integers is the set of probability measures on the circle group that are weak star limits of squared moduli of trigonometric polynomials with frequencies in F. Fourier transforms of these measures are positive and supported in F - F but the converse generally fails. The characteristic function chiF of F is a binary sequence whose orbit closure gives a symbolic dynamical system O(F). Analytic properties of S(F) are related to dynamical properties of chiF. The Riemann-Lebesque lemma implies that if chiF is minimal, then S(F) is convex and hence S(F) is the closure of the convex hull of its extreme points Se(F). In this paper we (i) review the relationship between these concepts and the special case of the still open 1959 Kadison-Singer problem called Feichtinger's conjecture for exponential functions, (ii) partially characterize of elements in Se(F), for minimal chiF, in terms of ergodic properties of (O(F),lambda) where lambda is a shift invariant probability measure w...
Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping
DEFF Research Database (Denmark)
Frosz, Michael Henoch; Sørensen, Thorkild; Bang, Ole
2006-01-01
Supercontinuum generation using picosecond pulses pumped into cobweb photonic crystal fibers is investigated. Dispersion profiles are calculated for several fiber designs and used to analytically investigate the influence of the fiber structural parameters (core size and wall thickness......) on the location of the Stokes and anti-Stokes bands and gain bandwidth. An analysis shows that the Raman effect is responsible for reducing the four-wave mixing gain and a slight reduction in the corresponding frequency shift from the pump, when the frequency shift is much larger than the Raman shift. Using...... numerical simulations we find that four-wave mixing is the dominant physical mechanism for the pumping scheme considered, and that there is a trade-off between the spectral width and the spectral flatness of the supercontinuum. The balance of this trade-off is determined by nanometer-scale design...
Spectral-collocation variational integrators
Li, Yiqun; Wu, Boying; Leok, Melvin
2017-03-01
Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can achieve geometric rates of convergence and have a relatively small memory footprint. In this paper, we introduce a general framework to convert a spectral-collocation method into a shooting-based variational integrator for Hamiltonian systems. We also compare the proposed spectral-collocation variational integrators to spectral-collocation methods and Galerkin spectral variational integrators in terms of their ability to reproduce accurate trajectories in configuration and phase space, their ability to conserve momentum and energy, as well as the relative computational efficiency of these methods when applied to some classical Hamiltonian systems. In particular, we note that spectrally-accurate variational integrators, such as the Galerkin spectral variational integrators and the spectral-collocation variational integrators, combine the computational efficiency of spectral methods together with the geometric structure-preserving and long-time structural stability properties of symplectic integrators.
Wavelength conversion based spectral imaging
DEFF Research Database (Denmark)
Dam, Jeppe Seidelin
There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....
Direct experimental determination of spectral densities of molecular complexes
Energy Technology Data Exchange (ETDEWEB)
Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Chemical Physics Theory Group, Department of Chemistry and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada); Brumer, Paul [Chemical Physics Theory Group, Department of Chemistry and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)
2014-11-07
Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.
Renormalization of the Yang-Mills spectral action
van Suijlekom, Walter D
2011-01-01
We prove renormalizability of the full spectral action for the Yang-Mills system on a flat 4-dimensional background manifold. Interpreting the spectral action as a higher-derivative gauge theory, a power-counting argument shows that it is superrenormalizable. We determine the counterterms at one-loop using zeta function regularization in a background field gauge and establish their gauge invariance. Consequently, the spectral action can be renormalized by a simple shift of the coefficients appearing in the asymptotic expansion of the spectral action. This manuscript provides more details than the shorter companion paper, where we have used a (formal) quantum action principle to arrive at gauge invariance of the counterterms. Here, we give in addition an explicit expression for the gauge propagator.
Direct Experimental Determination of Spectral Densities of Molecular Complexes
Pachon, Leonardo A
2014-01-01
Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.
Measured Stark widths and shifts in the O IV spectrum
Directory of Open Access Journals (Sweden)
Đeniže Stevan
2003-01-01
Full Text Available Stark widths (W and shifts (d of 5 prominent triply ionized oxygen (O IV spectral lines in 3 multiplets have been measured in oxygen plasma at 42 000 K electron temperature using a linear, low-pressure, pulsed arc discharge as an optically thin plasma source. Obtained W and d values have been compared to available experimental and theoretical data. We found a good agreement among our experimental W and d values and theoretical expectations.
Snapshot Raman Spectral Imager
2010-03-31
range is appealing in this regard as upper atmospheric absorption by oxygen and ozone eliminate almost all radiation in the Raman shifted range of a...customer wanted to replace a bulky Fourier-Transform Infrared ( FTIR ) system with a dispersive system to lower the cost and size of the instrument. AQT
Context Dependent Spectral Unmixing
2014-08-01
International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa , July 2009. HONORS AND AWARDS: 1. IEEE Outstanding CECS Student Award...COMMEND on the Usgs1C2M3 data across the 25 runs and at all noise levels: (a) SME , (b) SMAE, (c) AME. . . . . . . . . . . . . . 59 6.10 True (solid lines...identifying multiple sets of endmembers. In other words, the unmixing process is adapted to different regions of the spectral space. Another challenge with most
Noninvasive diagnosis of oral cancer by Stokes shift spectroscopy
Ebenezar, Jeyasingh; Ganesan, Singaravelu; Aruna, Prakasrao; Muralinaidu, Radhakrishnan
2014-03-01
The objective of this study is to evaluate the diagnostic potential of stokes shift (SS) spectroscopy (S3) for normal, precancer and cancerous oral lesions in vivo. The SS spectra were recorded in the 250 - 650 nm spectral range by simultaneously scanning both the excitation and emission wavelengths while keeping a fixed wavelength interval Δλ=20 nm between them. Characteristic, highly resolved peaks and significant spectral differences between normal and different pathological oral lesions observed around 300, 355, 395, and 420 nm which are attributed to tryptophan, collagen, and NADH respectively. Using S3 technique one can obtain the key fluorophores in a single scan and hence they can be targeted as a tumor markers in this study. In order to quantify the altered spectral differences between normal and different pathological oral lesions are verified by different ratio parameters.
Quantized beam shifts in graphene
Energy Technology Data Exchange (ETDEWEB)
de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-08
We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α^{2}. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.
Beam shifts and distribution functions
Aiello, Andrea
2011-01-01
When a beam of light is reflected by a smooth surface its behavior deviates from geometrical optics predictions. Such deviations are quantified by the so-called spatial and angular Goos-Haenchen (GH) and Imbert-Fedorov (IF) shifts of the reflected beam. These shifts depend upon the shape of the incident beam, its polarization and on the material composition of the reflecting surface. In this article we suggest a novel approach that allows one to unambiguously isolate the beam-shape dependent aspects of GH and IF shifts. We show that this separation is possible as a result of some universal features of shifted distribution functions which are presented and discussed.
Status of MODIS spatial and spectral characterization and performance
Link, Dan; Wang, Zhipeng; Xiong, Xiaoxiong
2016-05-01
Since launch, both Terra and Aqua MODIS instruments have continued to operate and make measurements of the earth's top of atmospheric (TOA) radiances and reflectance. MODIS collects data in 36 spectral bands covering wavelengths from 0.41 to 14.4 μm. These spectral bands and detectors are located on four focal plane assemblies (FPAs). MODIS on-board calibrators (OBC) include a spectro-radiometric calibration assembly (SRCA), which was designed to characterize and monitor sensor spatial and spectral performance, such as on-orbit changes in the band-to-band registration (BBR), modulation transfer function (MTF), spectral band center wavelengths (CW) and bandwidths (BW). In this paper, we provide a status update of MODIS spatial and spectral characterization and performance, following a brief description of SRCA functions and on-orbit calibration activities. Sensor spatial and spectral performance parameters derived from SRCA measurements are introduced and discussed. Results show that on-orbit spatial performance has been very stable for both Terra and Aqua MODIS instruments. The large BBR shifts in Aqua MODIS, an issue identified pre-launch, have remained the same over its entire mission. On-orbit changes in CW and BW are less than 0.5 nm and 1 nm, respectively, for most VIS/NIR spectral bands of both instruments.
Tachyons, Lamb shifts and superluminal chaos
Tomaschitz, R.
2000-10-01
An elementary account on the origins of cosmic chaos in an open and multiply connected universe is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution. The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the geometric optics limit are derived. The potential of a static point source in this field theory is a damped periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 keV/c2 and estimate the tachyonic coupling strength to subluminal matter. The impact of the tachyon field on ground state hyperfine transitions in hydrogen and muonium is investigated. Bounds on atomic transition rates effected by tachyon radiation as well as estimates on the spectral energy density of a possible cosmic tachyon background radiation are derived.
Femtosecond laser fabrication of phase-shifted Bragg grating waveguides in fused silica.
Grenier, Jason R; Fernandes, Luís A; Aitchison, J Stewart; Marques, Paulo V S; Herman, Peter R
2012-06-15
Phase-shifted Bragg grating waveguides (PSBGWs) were formed in bulk fused silica glass by femtosecond laser direct writing to produce narrowband (22±3) pm filters at 1550 nm. Tunable π and other phase shifts generated narrow passbands in controlled positions of the Bragg stopband, while the accurate placement of multiple cascaded phase-shift regions yielded a rectangular-shaped bandpass filter. A waveguide birefringence of (7.5±0.3)×10(-5) is inferred from the polarization-induced spectral shifting of the PSBGW narrowband filters.
Goos-H\\"anchen and Imbert-Fedorov shifts for paraxial X-Waves
Ornigotti, Marco; Conti, Claudio
2014-01-01
We present a theoretical analysis for the \\GH and \\IF shifts experienced by an X-wave upon reflection from a dielectric interface. We show that the temporal chirp, as well as the bandwidth of the X-wave directly affect the spatial shifts in a way that can be experimentally observed, while the angular shifts do not depend on the spectral features of the X-Wave. A dependence of the spatial shifts on the spatial structure of the X-wave is also discussed.
Goos-Hänchen and Imbert-Fedorov shifts for paraxial X-waves
Ornigotti, Marco; Aiello, Andrea; Conti, Claudio
2015-02-01
We present a theoretical analysis for the \\GH and \\IF shifts experienced by an X-wave upon reflection from a dielectric interface. We show that the temporal chirp, as well as the bandwidth of the X-wave directly affect the spatial shifts in a way that can be experimentally observed, while the angular shifts do not depend on the spectral features of the X-Wave. A dependence of the spatial shifts on the spatial structure of the X-wave is also discussed.
Transmission spectra of coated phase shifted long-period fiber gratings
Institute of Scientific and Technical Information of China (English)
GU Zheng-tian; ZHAO Xiao-yun; ZHANG Jiang-tao
2009-01-01
The transmission spectrum of the coated phase-shifted long-period fiber gratings (LPFGs) with single and multiple phase shifts is analyzed by the coupled-mode theory and the transfer matrix method, and the influences of the film parameters on the spectral characteristics are also studied. It is shown that these parameters will affect the LPFG filtering characteristics. The loss peak of transmission spectrum decreases with the increase of film thickness, and the peak position shifts with the film refractive index. Compared with the non-coated phase-shifted LPFG, the coated one has the similar desirable filtering characteristics, and it has a flexile ability to adjust the transmission properties.
Regime shifts in resource management
de Zeeuw, A.J.
2014-01-01
Resource management has to take account of the possibility of tipping points and regime shifts in ecological systems that provide the resources. This article focuses on the typical model of regime shifts in the ecological literature and analyzes optimal management and common-property issues when tra
Work shifts in Emergency Medicine
Directory of Open Access Journals (Sweden)
Roberto Recupero
2007-06-01
Full Text Available Emergency Medicine is known as a high stress specialty. The adverse effect of constantly rotating shifts is the single most important reason given for premature attrition from the field. In this work problems tied with night shift work will be taken into account and some solutions to reduce the impact of night work on the emergency physicians will be proposed.
Energy Technology Data Exchange (ETDEWEB)
Aubert, G.; Hassig, J.M.; Laurent, N.; Thomas, B. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-07-01
In a heavy-water moderated reactor cooled by pressurized gas, an important problem from the point of view, of the reactor block and its economics is the choice of the gas supply system. In the pressure tube solution, the whole of the reactor block structure is at a relatively low temperature, whereas the gas supply equipment is at that of the gas, which is much higher. These parts, through which passes the heat carrying fluid have to present as low a resistance as possible to it so as to avoid costly extra blowing power. Finally, they may only be placed in the reactor block after it has been built; the time required for putting them in position should therefore not be too long. The work reported here concerns the various problems arising in the case of each channel being supplied individually by a tube at the entry and the exit which is connected to a main circuit made up of large size collectors. This individual tubing is sufficiently flexible to absorb the differential expansion and the movement of its ends without stresses or prohibitive reactions being produced; the tubing is also of relatively short length so as to reduce the pressure head of the pressurized gas outside the channels; the small amount of space taken up by the tubing makes it possible to assemble it in a manner which is satisfactory from the point of view both of the time required and of the technical quality. (authors) [French] Dans un reacteur modere a l'eau lourde et refroidi au gaz sous pression, un probleme important du point de vue du trace du bloc pile et de son economie est le choix du systeme d'alimentation en gaz. Pour une solution a tubes de force, l'ensemble des structures du bloc reacteur est a temperature relativement faible, alors que les organes d'alimentation en gaz sont a celle, notablement plus elevee, du gaz. Ces organes, traverses par le debit du caloporteur, doivent lui opposer le minimum de resistance afin de ne pas necessiter un supplement onereux de
Metabolic impact of shift work.
Zimberg, Ioná Zalcman; Fernandes Junior, Silvio A; Crispim, Cibele Aparecida; Tufik, Sergio; de Mello, Marco Tulio
2012-01-01
In developing countries, shift work represents a considerable contingent workforce. Recently, studies have shown that overweight and obesity are more prevalent in shift workers than day workers. In addition, shift work has been associated with a higher propensity for the development of many metabolic disorders, such as insulin resistance, diabetes, dislipidemias and metabolic syndrome. Recent data have pointed that decrease of the sleep time, desynchronization of circadian rhythm and alteration of environmental aspects are the main factors related to such problems. Shortened or disturbed sleep is among the most common health-related effects of shift work. The plausible physiological and biological mechanisms are related to the activation of the autonomic nervous system, inflammation, changes in lipid and glucose metabolism, and related changes in the risk for atherosclerosis, metabolic syndrome, and type II diabetes. The present review will discuss the impact of shift work on obesity and metabolic disorders and how disruption of sleep and circadian misalignment may contribute to these metabolic dysfunctions.
Gall, Clarence A.
1999-05-01
When an electromagnetic radiation (EMR) source is in uniform motion with respect to an observer, a spectral (Doppler) shift in frequency is seen (blue as it approaches, red as it recedes). Since special relativity is limited to coordinate systems in uniform relative motion, this theory should be subject to this condition. On the other hand, the gravitational red shift (Einstein; Relativity: The Special and the General Theory, Crown,(1961), p.129) claims that EMR frequency decreases as the gravitational field, where the source is located, increases. As a gravitational effect, one would expect its derivation from a solution of the general relativistic field equations (R_μσ=0). Up to now, it has only been possible to derive it indirectly, by comparing the gravitational field to a (centrifugal) field produced by coordinate systems in relative rotational motion as an approximation of special relativity. Since rotation implies acceleration, it does not meet the conditions of special relativity so this is unsatisfactory. This work shows that the problem lies in the Schwarzschild metric which is independent of EMR frequency. By contrast it is easy to deduce the gravitational red shift from the frequency dependent Gall metric (Gall in AIP Conference Proceedings 308, The Evolution of X-Ray Binaries,(1993), p. 87).
Indian Academy of Sciences (India)
Minfeng Gu; Y. L. Ai
2011-03-01
The optical variability of 29 flat spectrum radio quasars in SDSS Stripe 82 region are investigated by using DR7 released multi-epoch data. All FSRQs show variations with overall amplitude ranging from 0.24 mag to 3.46 mag in different sources. About half of FSRQs show a bluer-when-brighter trend, which is commonly observed for blazars. However, only one source shows a redder-when-brighter trend, which implies it is rare in FSRQs. In this source, the thermal emission may be responsible for the spectral behaviour.
Spectrally encoded confocal microscopy
Energy Technology Data Exchange (ETDEWEB)
Tearney, G.J.; Webb, R.H.; Bouma, B.E. [Wellman Laboratories of Photomedicine, Massachusetts General Hospital, 50 Blossom Street, BAR 703, Boston, Massachusetts 02114 (United States)
1998-08-01
An endoscope-compatible, submicrometer-resolution scanning confocal microscopy imaging system is presented. This approach, spectrally encoded confocal microscopy (SECM), uses a quasi-monochromatic light source and a transmission diffraction grating to detect the reflectivity simultaneously at multiple points along a transverse line within the sample. Since this method does not require fast spatial scanning within the probe, the equipment can be miniaturized and incorporated into a catheter or endoscope. Confocal images of an electron microscope grid were acquired with SECM to demonstrate the feasibility of this technique. {copyright} {ital 1998} {ital Optical Society of America}
Spectral Features of FM Spectroscopy of Two-Photon Interactions
Institute of Scientific and Technical Information of China (English)
夏慧荣; JohnL.Hall
1994-01-01
The spectral features of FM two-photon resonant interaction processes have been calculated for five different frequency modulation versions of counter-propagating incident fields. It is found that the proposed new modulation version (case b in the text) provides novel spectral features for a completely canceled absorption and a sharp dispersion shape at the fundamental beat note. Moreover, its absorption feature appears at the second harmonic of the RF modulation frequency generated by the joint modes via six interaction pathways without mutual phase shift. Such features persist even when the effects of the second-order sidebands of the incident fields are taken into account. Application potentials are emphasized.
Anomalous spectral behaviour of diffracted chirped Gaussian pulses in the near field
Institute of Scientific and Technical Information of China (English)
Pan Liu-Zhan; L(u) Bai-Da
2004-01-01
By using the Fourier transform method, analytical expressions for the axial power spectrum and near-field intensity in the spacetime domain of chirped Gaussian pulses diffracted at an aperture are derived, which permit us to study changes in spectral and temporal profiles of the chirped Gaussian pulses both analytically and numerically. Detailed numerical results and physical analysis show that spectral anomalies take place in the neighbourhood of certain critical distances, and the shifting of maximum and splitting of temporal intensity profiles appear. In particular, for ultrashort chirped pulses, there exists also spectral switch. Besides the truncation parameter, the chirp parameter and pulse duration affect the behaviour of spectral switches.
Explaining (Missing) Regulator Paradigm Shifts
DEFF Research Database (Denmark)
Wigger, Angela; Buch-Hansen, Hubert
2014-01-01
of competition regulation is heaving into sight. It sets out to explain this from the vantage point of a critical political economy perspective, which identifies the circumstances under which a crisis can result in a regulatory paradigm shift. Contrasting the current situation with the shift in EC/EU competition...... capitalism; the social power configuration underpinning the neoliberal order remains unaltered; no clear counter-project has surfaced; the European Commission has been (and remains) in a position to oppose radical changes; and finally, there are no signs of a wider paradigm shift in the EU's regulatory...
Measuring Velocity and Acceleration Using Doppler Shift of a Source with an Example of Jet in SS433
Indian Academy of Sciences (India)
Sanjay M. Wagh
2014-12-01
We describe here as to how the Doppler shift of a source needs to be used to measure its velocity and acceleration. We also apply this method, as an example here, to spectral lines of the blue-shifted jet in micro-quasar SS433 and discuss the intricacies of these measurements.
DEFF Research Database (Denmark)
Ørsnes, Bjarne
2013-01-01
The article discusses the placement of the VP anaphor det ‘it’ as a complement of verbs selecting VP complements in Danish. With verbs that only allow a VP complement, the VP anaphor must be in SpecCP regardless of its information structure properties. If SpecCP is occupied by an operator, the an...... be in situ. The article argues that a shifted pronominal in Danish must be categorially licensed by the verb and extends this analysis to shifting locatives. An Optimality Theory analysis is proposed that accounts for the observed facts......., the anaphor can be in situ, but it cannot shift. With verbs that allow its VP complement to alternate with an NP complement, the VP anaphor can be in SpecCP, shifted or in situ according to the information structural properties of the anaphor. Only if SpecCP is occupied by an operator, must a topical anaphor...
Shift Work: Improving Daytime Sleep
... sleeping during the day. Do you have any sleep tips for shift workers? Answers from Timothy Morgenthaler, ... to be awake during the day and to sleep at night. Good daytime sleep is possible, though, ...
Wide tunable shift of the reflection band in dual frequency cholesteric liquid crystals.
Oton, Eva; Netter, Estelle
2017-06-12
Technologies featuring external control of reflected and transmitted light are lately being explored for a wide range of optical and photonic applications. Yet, the options for spectral band tuning are scarce, especially if dynamic control of either reflected or transmitted light is required. In this work we demonstrate a tunable device capable of shifting the reflected light spectrum of an impinging light using dual frequency cholesteric liquid crystals. Modulating the frequency of the applied signal, the Bragg reflection can be dynamically shifted over a wide spectral range and also switched off. This feature can be applied to color filters, augmented reality, multi-color lasers or tunable windows.
Rectangular spectral collocation
Driscoll, Tobin A.
2015-02-06
Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.
Spectral disentangling with Spectangular
Sablowski, Daniel P.; Weber, Michael
2017-01-01
The paper introduces the software Spectangular for spectral disentangling via singular value decomposition with global optimisation of the orbital parameters of the stellar system or radial velocities of the individual observations. We will describe the procedure and the different options implemented in our program. Furthermore, we will demonstrate the performance and the applicability using tests on artificial data. Additionally, we use high-resolution spectra of Capella to demonstrate the performance of our code on real-world data. The novelty of this package is the implemented global optimisation algorithm and the graphical user interface (GUI) for ease of use. We have implemented the code to tackle SB1 and SB2 systems with the option of also dealing with telluric (static) lines. Based in part on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.
Spectral Classification Beyond M
Leggett, S K; Burgasser, A J; Jones, H R A; Marley, M S; Tsuji, T
2004-01-01
Significant populations of field L and T dwarfs are now known, and we anticipate the discovery of even cooler dwarfs by Spitzer and ground-based infrared surveys. However, as the number of known L and T dwarfs increases so does the range in their observational properties, and difficulties have arisen in interpreting the observations. Although modellers have made significant advances, the complexity of the very low temperature, high pressure, photospheres means that problems remain such as the treatment of grain condensation as well as incomplete and non-equilibrium molecular chemistry. Also, there are several parameters which control the observed spectral energy distribution - effective temperature, grain sedimentation efficiency, metallicity and gravity - and their effects are not well understood. In this paper, based on a splinter session, we discuss classification schemes for L and T dwarfs, their dependency on wavelength, and the effects of the parameters T_eff, f_sed, [m/H] and log g on optical and infra...
Spectral Animation Compression
Institute of Scientific and Technical Information of China (English)
Chao Wang; Yang Liu; Xiaohu Guo; Zichun Zhong; Binh Le; Zhigang Deng
2015-01-01
This paper presents a spectral approach to compress dynamic animation consisting of a sequence of homeomor-phic manifold meshes. Our new approach directly compresses the field of deformation gradient defined on the surface mesh, by decomposing it into rigid-body motion (rotation) and non-rigid-body deformation (stretching) through polar decompo-sition. It is known that the rotation group has the algebraic topology of 3D ring, which is different from other operations like stretching. Thus we compress these two groups separately, by using Manifold Harmonics Transform to drop out their high-frequency details. Our experimental result shows that the proposed method achieves a good balance between the reconstruction quality and the compression ratio. We compare our results quantitatively with other existing approaches on animation compression, using standard measurement criteria.
Spectral disentangling with Spectangular
Sablowski, Daniel P
2016-01-01
The paper introduces the software Spectangular for spectral disentangling via singular value decomposition with global optimisation of the orbital parameters of the stellar system or radial velocities of the individual observations. We will describe the procedure and the different options implemented in our program. Furthermore, we will demonstrate the performance and the applicability using tests on artificial data. Additionally, we use high-resolution spectra of Capella to demonstrate the performance of our code on real-world data. The novelty of this package is the implemented global optimisation algorithm and the graphical user interface (GUI) for ease of use. We have implemented the code to tackle SB1 and SB2 systems with the option of also dealing with telluric (static) lines.
Snyder, A W; Love, J D
1976-01-01
An extremely simple derivation of the Goos-Hänchen shift is presented for total internal reflection at a plane interface between two semiinfinite dielectric media, as well as for optical waveguides of plane arid circular cross section. The derivation is based on energy considerations, requires knowledge of Fresnel's equation only, and shows explicitly that the shift is due to the flow of energy across the dielectric boundary.
A parametric estimation approach to instantaneous spectral imaging.
Oktem, Figen S; Kamalabadi, Farzad; Davila, Joseph M
2014-12-01
Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is a fundamental diagnostic technique in the physical sciences with widespread application. Due to the intrinsic limitation of two-dimensional (2D) detectors in capturing inherently three-dimensional (3D) data, spectral imaging techniques conventionally rely on a spatial or spectral scanning process, which renders them unsuitable for dynamic scenes. In this paper, we present a nonscanning (instantaneous) spectral imaging technique that estimates the physical parameters of interest by combining measurements with a parametric model and solving the resultant inverse problem computationally. The associated inverse problem, which can be viewed as a multiframe semiblind deblurring problem (with shift-variant blur), is formulated as a maximum a posteriori (MAP) estimation problem since in many such experiments prior statistical knowledge of the physical parameters can be well estimated. Subsequently, an efficient dynamic programming algorithm is developed to find the global optimum of the nonconvex MAP problem. Finally, the algorithm and the effectiveness of the spectral imaging technique are illustrated for an application in solar spectral imaging. Numerical simulation results indicate that the physical parameters can be estimated with the same order of accuracy as state-of-the-art slit spectroscopy but with the added benefit of an instantaneous, 2D field-of-view. This technique will be particularly useful for studying the spectra of dynamic scenes encountered in space remote sensing.
SPECTRAL ANALYSIS OF RADIOXENON
Energy Technology Data Exchange (ETDEWEB)
Cooper, Matthew W.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; McIntyre, Justin I.; Schrom, Brian T.
2008-09-23
Monitoring changes in atmospheric radioxenon concentrations is a major tool in the detection of an underground nuclear explosion. Ground based systems like the Automated Radioxenon Sampler /Analyzer (ARSA), the Swedish Unattended Noble gas Analyzer (SAUNA) and the Automatic portable radiometer of isotopes Xe (ARIX), can collect and detect several radioxenon isotopes by processing and transferring samples into a high efficiency beta-gamma coincidence detector. The high efficiency beta-gamma coincidence detector makes these systems highly sensitive to the radioxenon isotopes 133Xe, 131mXe, 133mXe and 135Xe. The standard analysis uses regions of interest (ROI) to determine the amount of a particular radioxenon isotope present. The ROI method relies on the peaks of interest falling within energy limits of the ROI. Some potential problems inherent in this method are the reliance on stable detector gains and a fixed resolution for each energy peak. In addition, when a high activity sample is measured there will be more interference among the ROI, in particular within the 133Xe, 133mXe, and 131mXe regions. A solution to some of these problems can be obtained through spectral fitting of the data. Spectral fitting is simply the fitting of the peaks using known functions to determine the number and relative peak positions and widths. By knowing this information it is possible to determine which isotopes are present. Area under each peak can then be used to determine an overall concentration for each isotope. Using the areas of the peaks several key detector characteristics can be determined: efficiency, energy calibration, energy resolution and ratios between interfering isotopes (Radon daughters).
Spectral unmixing: estimating partial abundances
CSIR Research Space (South Africa)
Debba, Pravesh
2009-01-01
Full Text Available of spectral unmixing 3 End-member spectra and synthetic mixtures 4 Results 5 Conclusions Debba (CSIR) Spectral Unmixing LQM 2009 2 / 22 Background and Research Question If research could be as easy as eating a chocolate cake . . . Figure: Can you guess... the ingredients for this chocolate cake? Debba (CSIR) Spectral Unmixing LQM 2009 3 / 22 Background and Research Question Ingredients Quantity unsweetened chocolate unsweetened cocoa powder boiling water flour baking powder baking soda salt unsalted...
[Review of digital ground object spectral library].
Zhou, Xiao-Hu; Zhou, Ding-Wu
2009-06-01
A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.
Aberrations in shift-invariant linear optical imaging systems using partially coherent fields
Beltran, Mario A; Paganin, David M
2014-01-01
Here the role and influence of aberrations in optical imaging systems employing partially coherent complex scalar fields is studied. Imaging systems require aberrations to yield contrast in the output image. For linear shift-invariant optical systems, we develop an expression for the output cross-spectral density under the space-frequency formulation of statistically stationary partially coherentfields. We also develop expressions for the output cross{spectral density and associated spectral density for weak-phase, weak-phase-amplitude, and single-material objects in one transverse spatial dimension.
The characteristic analysis of spectral image for cabbage leaves damaged by diamondback moth pests
Lin, Li-bo; Li, Hong-ning; Cao, Peng-fei; Qin, Feng; Yang, Shu-ming; Feng, Jie
2015-02-01
Cabbage growth and health diagnosis are important parts for cabbage fine planting, spectral imaging technology with the advantages of obtaining spectrum and space information of the target at the same time, which has become a research hotspot at home and abroad. The experiment measures the reflection spectrum at different stages using liquid crystal tunable filter (LCTF) and monochromatic CMOS camera composed of spectral imaging system for cabbage leaves damaged by diamondback moth pests, and analyzes its feature bands and the change of spectral parameters. The study shows that the feature bands of cabbage leaves damaged by diamondback moth pests have a tendency to blue light direction, the red edge towards blue shift, and red valley raising in spectral characteristic parameters, which have a good indication in diagnosing the extent of cabbage damaged by pests. Therefore, it has a unique advantage of monitoring the cabbage leaves damaged by diamondback moth pests by combinating feature bands and spectral characteristic parameters in spectral imaging technology.
Papoulia, A; Ekman, J
2016-01-01
Background: Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. Purpose: To investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions that can be extracted from measured field shifts. Methods: Nuclear properties are obtained from nuclear density functional theory calculations based on the Skyrme-Hartree-Fock-Bogoliubov approach. These results are combined with multiconfiguration Dirac-Hartree-Fock methods to obtain realistic field shifts. Results: Phenomena such as nuclear deformation and variations in the diffuseness of nuclear charge distributions give measurable contributions to the field shifts. Using a novel approach, we demonstrate the possibility to extract new information concerning the n...
Spectral Tuning of Deep Red Cone Pigments†
Amora, Tabitha L.; Ramos, Lavoisier S.; Galan, Jhenny F.; Birge, Robert R.
2008-01-01
Visual pigments are G-protein-coupled receptors that provide a critical interface between organisms and their external environment. Natural selection has generated vertebrate pigments that absorb light from the far-UV (360 nm) to the deep red (630 nm) while using a single chromophore, in either the A1 (11-cis-retinal) or A2 (11-cis-3,4-dehydroretinal) form. The fact that a single chromophore can be manipulated to have an absorption maximum across such an extended spectral region is remarkable. The mechanisms of wavelength regulation remain to be fully revealed, and one of the least well-understood mechanisms is that associated with the deep red pigments. We investigate theoretically the hypothesis that deep red cone pigments select a 6-s-trans conformation of the retinal chromophore ring geometry. This conformation is in contrast to the 6-s-cis ring geometry observed in rhodopsin and, through model chromophore studies, the vast majority of visual pigments. Nomographic spectral analysis of 294 A1 and A2 cone pigment literature absorption maxima indicates that the selection of a 6-s-trans geometry red shifts M/LWS A1 pigments by ~1500 cm−1 (~50 nm) and A2 pigments by ~2700 cm−1 (~100 nm). The homology models of seven cone pigments indicate that the deep red cone pigments select 6-s-trans chromophore conformations primarily via electrostatic steering. Our results reveal that the generation of a 6-s-trans conformation not only achieves a significant red shift but also provides enhanced stability of the chromophore within the deep red cone pigment binding sites. PMID:18370404
Spectral tuning of deep red cone pigments.
Amora, Tabitha L; Ramos, Lavoisier S; Galan, Jhenny F; Birge, Robert R
2008-04-22
Visual pigments are G-protein-coupled receptors that provide a critical interface between organisms and their external environment. Natural selection has generated vertebrate pigments that absorb light from the far-UV (360 nm) to the deep red (630 nm) while using a single chromophore, in either the A1 (11- cis-retinal) or A2 (11- cis-3,4-dehydroretinal) form. The fact that a single chromophore can be manipulated to have an absorption maximum across such an extended spectral region is remarkable. The mechanisms of wavelength regulation remain to be fully revealed, and one of the least well-understood mechanisms is that associated with the deep red pigments. We investigate theoretically the hypothesis that deep red cone pigments select a 6- s- trans conformation of the retinal chromophore ring geometry. This conformation is in contrast to the 6- s- cis ring geometry observed in rhodopsin and, through model chromophore studies, the vast majority of visual pigments. Nomographic spectral analysis of 294 A1 and A2 cone pigment literature absorption maxima indicates that the selection of a 6- s- trans geometry red shifts M/LWS A1 pigments by approximately 1500 cm (-1) ( approximately 50 nm) and A2 pigments by approximately 2700 cm (-1) ( approximately 100 nm). The homology models of seven cone pigments indicate that the deep red cone pigments select 6- s- trans chromophore conformations primarily via electrostatic steering. Our results reveal that the generation of a 6- s- trans conformation not only achieves a significant red shift but also provides enhanced stability of the chromophore within the deep red cone pigment binding sites.
Spectral Analysis of Markov Chains
2007-01-01
The paper deals with the problem of a statistical analysis of Markov chains connected with the spectral density. We present the expressions for the function of spectral density. These expressions may be used to estimate the parameter of the Markov chain.
SPECTRAL ANALYSIS OF EXCHANGE RATES
Directory of Open Access Journals (Sweden)
ALEŠA LOTRIČ DOLINAR
2013-06-01
Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates
Miniature spectrally selective dosimeter
Energy Technology Data Exchange (ETDEWEB)
Adams, R.R.; Macconochie, I.O.; Poole, B.D.
1983-02-08
The present invention discloses a miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (e-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two e-cells and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one e-cell and three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame in a further embodiment, the electro-optic elements a packaged in a wristwatch case with attaching means being a watchband. The filters in all embodiments allow only selected wavelengths of radiation to be detected by the photovoltaic detectors and then integrated by the e-cells.
Exoplanetary Detection by Multifractal Spectral Analysis
Agarwal, Sahil; Del Sordo, Fabio; Wettlaufer, John S.
2017-01-01
Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio ≥ 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.
Gap timing and the spectral timing model.
Hopson, J W
1999-04-01
A hypothesized mechanism underlying gap timing was implemented in the Spectral Timing Model [Grossberg, S., Schmajuk, N., 1989. Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw. 2, 79-102] , a neural network timing model. The activation of the network nodes was made to decay in the absence of the timed signal, causing the model to shift its peak response time in a fashion similar to that shown in animal subjects. The model was then able to accurately simulate a parametric study of gap timing [Cabeza de Vaca, S., Brown, B., Hemmes, N., 1994. Internal clock and memory processes in aminal timing. J. Exp. Psychol.: Anim. Behav. Process. 20 (2), 184-198]. The addition of a memory decay process appears to produce the correct pattern of results in both Scalar Expectancy Theory models and in the Spectral Timing Model, and the fact that the same process should be effective in two such disparate models argues strongly that process reflects a true aspect of animal cognition.
Spectral numbers in Floer theories
Usher, Michael
2007-01-01
The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz, and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the "nondegenerate spectrality" axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and rather elementary, and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties provided that one works with coefficients in a Novikov ring whose degree-zero part \\Lambda_0 is a field. The key ingredient is a theorem about linear transforma...
DEFF Research Database (Denmark)
Monache, Davide Delle; Grassi, Stefano; Santucci de Magistris, Paolo
Short memory models contaminated by level shifts have long-memory features similar to those associated to processes generated under fractional integration. In this paper, we propose a robust testing procedure, based on an encompassing parametric specification, that allows to disentangle the level...... the highest power compared to other existing tests for spurious long-memory. Finally, we illustrate the usefulness of the proposed approach on the daily series of bipower variation and share turnover and on the monthly inflation series of G7 countries....... shift term from the ARFIMA component. The estimation is carried out via a state-space methodology and it leads to a robust estimate of the fractional integration parameter also in presence of level shifts.The Monte Carlo simulations show that this approach produces unbiased estimates of the fractional...
Energy Technology Data Exchange (ETDEWEB)
Hudson, James G.
2009-02-27
Detailed aircraft measurements were made of cloud condensation nuclei (CCN) spectra associated with extensive cloud systems off the central California coast in the July 2005 MASE project. These measurements include the wide supersaturation (S) range (2-0.01%) that is important for these polluted stratus clouds. Concentrations were usually characteristic of continental/anthropogenic air masses. The most notable feature was the consistently higher concentrations above the clouds than below. CCN measurements are so important because they provide a link between atmospheric chemistry and cloud-climate effects, which are the largest climate uncertainty. Extensive comparisons throughout the eleven flights between two CCN spectrometers operated at different but overlapping S ranges displayed the precision and accuracy of these difficult spectral determinations. There are enough channels of resolution in these instruments to provide differential spectra, which produce more rigorous and precise comparisons than traditional cumulative presentations of CCN concentrations. Differential spectra are also more revealing than cumulative spectra. Only one of the eleven flights exhibited typical maritime concentrations. Average below cloud concentrations over the two hours furthest from the coast for the 8 flights with low polluted stratus was 614?233 at 1% S, 149?60 at 0.1% S and 57?33 at 0.04% S cm-3. Immediately above cloud average concentrations were respectively 74%, 55%, and 18% higher. Concentration variability among those 8 flights was a factor of two. Variability within each flight excluding distances close to the coast ranged from 15-56% at 1% S. However, CN and probably CCN concentrations sometimes varied by less than 1% over distances of more than a km. Volatility and size-critical S measurements indicated that the air masses were very polluted throughout MASE. The aerosol above the clouds was more polluted than the below cloud aerosol. These high CCN concentrations from
Soliton blue-shift in tapered photonic crystal fiber
Stark, S P; Russell, P St J
2010-01-01
We show that solitons undergo a strong blue shift in fibers with a dispersion landscape that varies along the direction of propagation. The experiments are based on a small-core photonic crystal fiber, tapered to have a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 731 nm to 640 nm over the transition. The central wavelength of a soliton translates over 400 nm towards shorter wavelength. This accompanied by strong emission of radiation into the UV and IR spectral region. The experimental results are confirmed by numerical simulation.
Probing eigenfunction nonorthogonality by parametric shifts of resonance widths
Savin, D V
2013-01-01
Recently, it has been shown that the change of resonance widths in an open system under a perturbation of its interior is a sensitive indicator of the nonorthogonality of resonance states. We apply this measure to quantify parametric motion of the resonances. In particular, a strong redistribution of the widths is linked with the maximal degree of nonorthogonality. Then for weakly open chaotic systems we discuss the role of spectral rigidity on the statistical properties of the parametric width shifts, and derive the distribution of the latter in a picket-fence model with equidistant spectrum.
Tapered amplifier laser with frequency-shifted feedback
Bayerle, A; Vlaar, P; Pasquiou, B; Schreck, F
2016-01-01
We present a frequency-shifted feedback (FSF) laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.
Purcell effect and Lamb shift as interference phenomena.
Rybin, Mikhail V; Mingaleev, Sergei F; Limonov, Mikhail F; Kivshar, Yuri S
2016-02-10
The Purcell effect and Lamb shift are two well-known physical phenomena which are usually discussed in the context of quantum electrodynamics, with the zero-point vibrations as a driving force of those effects in the quantum approach. Here we discuss the classical counterparts of these quantum effects in photonics, and explain their physics trough interference wave phenomena. As an example, we consider a waveguide in a planar photonic crystal with a side-coupled defect, and demonstrate a perfect agreement between the results obtained on the basis of quantum and classic approaches and reveal their link to the Fano resonance. We find that in such a waveguide-cavity geometry the Purcell effect can modify the lifetime by at least 25 times, and the Lamb shift can exceed 3 half-widths of the cavity spectral line.
Purcell effect and Lamb shift as interference phenomena
Rybin, Mikhail V.; Mingaleev, Sergei F.; Limonov, Mikhail F.; Kivshar, Yuri S.
2016-02-01
The Purcell effect and Lamb shift are two well-known physical phenomena which are usually discussed in the context of quantum electrodynamics, with the zero-point vibrations as a driving force of those effects in the quantum approach. Here we discuss the classical counterparts of these quantum effects in photonics, and explain their physics trough interference wave phenomena. As an example, we consider a waveguide in a planar photonic crystal with a side-coupled defect, and demonstrate a perfect agreement between the results obtained on the basis of quantum and classic approaches and reveal their link to the Fano resonance. We find that in such a waveguide-cavity geometry the Purcell effect can modify the lifetime by at least 25 times, and the Lamb shift can exceed 3 half-widths of the cavity spectral line.
Eliminating light shifts in single-atom optical traps
Hutzler, Nicholas R; Yu, Yichao; Ni, Kang-Kuen
2016-01-01
Microscopically controlled neutral atoms in optical tweezers and lattices have led to exciting advances in the study of quantum information and quantum many-body systems. The light shifts of atomic levels from the trapping potential in these systems can result in detrimental effects such as fluctuating dipole force heating, inhomogeneous detunings, and inhibition of laser cooling, which limits the atomic species that can be manipulated. In particular, these light shifts can be large enough to prevent loading into optical tweezers directly from a magneto-optical trap. We present a general solution to these limitations by loading, cooling, and imaging single atoms with temporally alternating beams. Because this technique does not depend on any specific spectral properties, we expect it to enable the optical tweezer method to control nearly any atomic or molecular species that can be laser cooled and optically trapped. Furthermore, we present an analysis of the role of heating and required cooling for single ato...
Spectral and quantum-mechanical characterizations of 7-amino-4-trifluoromethyl coumarin
Benchea, Andreea Celia; Gaina, Marius; Dorohoi, Dana Ortansa
2017-01-01
Coumarins are crystalline compounds utilized in pharmaceutical, food and cosmetic industries. Our study refers to quantum-mechanical and spectral characterization of 7-amino-4-trifluoromethyl coumarin (7-NH2-4-CF3-coumarin or coumarin 151) in order to estimate its stability, reactivity and biological activity. The contribution of different types of interactions to the spectral shifts in homogeneous solutions and the limits in which the excited state dipole moment of the studied molecule can vary are established by solvatochromic study.
Bani-Yaseen, Abdulilah Dawoud; Al-Balawi, Mona
2014-01-01
The solvatochromic, spectral, and geometrical properties of nifenazone (NIF), a pyrazole-nicotinamide drug, were experimentally and computationally investigated in several neat solvents and in hydro-organic binary systems such as water-acetonitrile and water-dioxane systems. The bathochromic spectral shift observed in NIF absorption spectra when reducing the polarity of the solvent was correlated with the orientation polarizability (?f). Unlike aprotic solvents, a satisfactory correlation bet...
No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats
Simone Götze; Jens C Koblitz; Annette Denzinger; Hans-Ulrich Schnitzler
2016-01-01
Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be ...
Bani-Yaseen, Abdulilah Dawoud; Al-Balawi, Mona
2014-01-01
The solvatochromic, spectral, and geometrical properties of nifenazone (NIF), a pyrazole-nicotinamide drug, were experimentally and computationally investigated in several neat solvents and in hydro-organic binary systems such as water-acetonitrile and water-dioxane systems. The bathochromic spectral shift observed in NIF absorption spectra when reducing the polarity of the solvent was correlated with the orientation polarizability (?f). Unlike aprotic solvents, a satisfactory correlation bet...
Anthropometric changes and fluid shifts
Thornton, W. E.; Hoffler, G. W.; Rummel, J. A.
1974-01-01
Several observations of body size, shape, posture, and configuration were made to document changes resulting from direct effects of weightlessness during the Skylab 4 mission. After the crewmen were placed in orbit, a number of anatomical and anthropometric changes occurred including a straightening of the thoracolumbar spine, a general decrease in truncal girth, and an increase in height. By the time of the earliest in-flight measurement on mission day 3, all crewmen had lost more than two liters of extravascular fluid from the calf and thigh. The puffy facies, the bird legs effect, the engorgement of upper body veins, and the reduced volume of lower body veins were all documented with photographs. Center-of-mass measurements confirmed a fluid shift cephalad. This shift remained throughout the mission until recovery, when a sharp reversal occurred; a major portion of the reversal was completed in a few hours. The anatomical changes are of considerable scientific interest and of import to the human factors design engineer, but the shifts of blood and extravascular fluid are of more consequence. It is hypothesized that the driving force for the fluid shift is the intrinsic and unopposed lower limb elasticity that forces venous blood and then other fluid cephalad.
Environmental Protection: a shifting focus
Dr. ir. Jan Venselaar
2004-01-01
The last two decades have seen a fundamental change in the way chemistry handles environmental issues. A shift in focus has occurred from 'end-of-pipe' to prevention and process integration. Presently an even more fundamental change is brought about by the need for sustainable development. It is
Wavelength-shifted Cherenkov radiators
Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.
1976-01-01
The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.
The Shift Needed for Sustainability
Smith, Peter A. C.; Sharicz, Carol
2011-01-01
Purpose: The purpose of this action research is to begin to assess to what extent organizations have in practice begun to make the shift towards triple bottom line (TBL) sustainability. Design/methodology/approach: A definition of TBL sustainability is provided, and key elements of TBL sustainability considered necessary to success are identified…
Crichton's phase-shift ambiguity
Atkinson, D.; Johnson, P.W.; Mehta, N.; Roo, M. de
1973-01-01
A re-examination of the SPD phase-shift ambiguity is made with a view to understanding certain singular features of the elastic unitarity constraint. An explicit solution of Crichton's equations is presented, and certain features of this solution are displayed graphically. In particular, it is shown
spectral-cube: Read and analyze astrophysical spectral data cubes
Robitaille, Thomas; Ginsburg, Adam; Beaumont, Chris; Leroy, Adam; Rosolowsky, Erik
2016-09-01
Spectral-cube provides an easy way to read, manipulate, analyze, and write data cubes with two positional dimensions and one spectral dimension, optionally with Stokes parameters. It is a versatile data container for building custom analysis routines. It provides a uniform interface to spectral cubes, robust to the wide range of conventions of axis order, spatial projections, and spectral units that exist in the wild, and allows easy extraction of cube sub-regions using physical coordinates. It has the ability to create, combine, and apply masks to datasets and is designed to work with datasets too large to load into memory, and provide basic summary statistic methods like moments and array aggregates.
Size-Dependent Raman Shifts for nanocrystals.
Gao, Yukun; Zhao, Xinmei; Yin, Penggang; Gao, Faming
2016-04-22
Raman spectroscopy is a very sensitive tool for probing semiconductor nanocrystals. The underlying mechanism behind the size-dependent Raman shifts is still quite controversial. Here we offer a new theoretical method for the quantum confinement effects on the Raman spectra of semiconductor nanocrystals. We propose that the shift of Raman spectra in nanocrystals can result from two overlapping effects: the quantum effect shift and surface effect shift. The quantum effect shift is extracted from an extended Kubo formula, the surface effect shift is determined via the first principles calculations. Fairly good prediction of Raman shifts can be obtained without the use of any adjustable parameter. Closer analysis shows that the size-dependent Raman shifts in Si nanocrystals mainly result from the quantum effect shifts. For nanodiamond, the proportion of surface effect shift in Raman shift is up to about 40%. Such model can also provide a good baseline for using Raman spectroscopy as a tool to measure size.
Epistatic interactions influence terrestrial-marine functional shifts in cetacean rhodopsin.
Dungan, Sarah Z; Chang, Belinda S W
2017-03-15
Like many aquatic vertebrates, whales have blue-shifting spectral tuning substitutions in the dim-light visual pigment, rhodopsin, that are thought to increase photosensitivity in underwater environments. We have discovered that known spectral tuning substitutions also have surprising epistatic effects on another function of rhodopsin, the kinetic rates associated with light-activated intermediates. By using absorbance spectroscopy and fluorescence-based retinal release assays on heterologously expressed rhodopsin, we assessed both spectral and kinetic differences between cetaceans (killer whale) and terrestrial outgroups (hippo, bovine). Mutation experiments revealed that killer whale rhodopsin is unusually resilient to pleiotropic effects on retinal release from key blue-shifting substitutions (D83N and A292S), largely due to a surprisingly specific epistatic interaction between D83N and the background residue, S299. Ancestral sequence reconstruction indicated that S299 is an ancestral residue that predates the evolution of blue-shifting substitutions at the origins of Cetacea. Based on these results, we hypothesize that intramolecular epistasis helped to conserve rhodopsin's kinetic properties while enabling blue-shifting spectral tuning substitutions as cetaceans adapted to aquatic environments. Trade-offs between different aspects of molecular function are rarely considered in protein evolution, but in cetacean and other vertebrate rhodopsins, may underlie multiple evolutionary scenarios for the selection of specific amino acid substitutions.
Timescale Analysis of Spectral Lags
Institute of Scientific and Technical Information of China (English)
Ti-Pei Li; Jin-Lu Qu; Hua Feng; Li-Ming Song; Guo-Qiang Ding; Li Chen
2004-01-01
A technique for timescale analysis of spectral lags performed directly in the time domain is developed. Simulation studies are made to compare the time domain technique with the Fourier frequency analysis for spectral time lags. The time domain technique is applied to studying rapid variabilities of X-ray binaries and γ-ray bursts. The results indicate that in comparison with the Fourier analysis the timescale analysis technique is more powerful for the study of spectral lags in rapid variabilities on short time scales and short duration flaring phenomena.
Preliminary study of spectral features of normal and malignant cell cultures
Atif, M.; Farooq, W. A.; Siddiqui, Maqsood A.; Al-Khedhairy, Abdulaziz A.
2016-04-01
In this study the fluorescence emission spectra of normal and malignant cell cultures were recorded at an excitation wavelength of 290 nm, corresponding to the higher fluorescence intensity at 350 nm (due to tryptophan) of three malignant cells and normal cells. Similarly, Stokes shift spectra were recorded for normal and malignant cell cultures with a shift, Δλ, of 70 nm. The Stokes shift shows the existence of discriminating features between normal and carcinoma cell lines due to the higher concentration of phenylalanine and tryptophan in carcinoma cell lines which are completely absent in normal cell lines. Hence, both the emission spectra and the Stokes shift spectra showed considerably different spectral features between the normal and malignant cells. The preliminary studies indicate the potential application of fluorescence spectroscopy for cancer detection using the spectral features of biofluorophores.
Raman induced soliton self-frequency shift in microresonator Kerr frequency combs
Karpov, Maxim; Kordts, Arne; Brasch, Victor; Pfeiffer, Martin; Zervas, Michail; Geiselmann, Michael; Kippenberg, Tobias J
2015-01-01
The formation of temporal dissipative solitons in continuous wave laser driven microresonators enables the generation of coherent, broadband and spectrally smooth optical frequency combs as well as femtosecond pulses with compact form factor. Here we report for the first time on the observation of a Raman-induced soliton self-frequency shift for a microresonator soliton. The Raman effect manifests itself in amorphous SiN microresonator based single soliton states by a spectrum that is hyperbolic secant in shape, but whose center is spectrally red-shifted (i.e. offset) from the continuous wave pump laser. The Raman induced spectral red-shift is found to be tunable via the pump laser detuning and grows linearly with peak power. The shift is theoretically described by the first order shock term of the material's Raman response, and we infer a Raman shock time of 20 fs for amorphous SiN. Moreover, we observe that the Raman induced frequency shift can lead to a cancellation or overcompensation of the soliton recoi...
Qualitative analysis of collective mode frequency shifts in L-alanine using terahertz spectroscopy.
Taulbee, Anita R; Heuser, Justin A; Spendel, Wolfgang U; Pacey, Gilbert E
2009-04-01
We have observed collective mode frequency shifts in deuterium-substituted L-alanine, three of which have previously only been calculated. Terahertz (THz) absorbance spectra were acquired at room temperature in the spectral range of 66-90 cm(-1), or 2.0-2.7 THz, for L-alanine (L-Ala) and four L-Ala compounds in which hydrogen atoms (atomic mass = 1 amu) were substituted with deuterium atoms (atomic mass = 2 amu): L-Ala-2-d, L-Ala-3,3,3-d(3), L-Ala-2,3,3,3-d(4), and L-Ala-d(7). The absorbance maxima of two L-Ala collective modes in this spectral range were recorded for multiple spectral measurements of each compound, and the magnitude of each collective mode frequency shift due to increased mass of these specific atoms was evaluated for statistical significance. Calculations were performed which predict the THz absorbance frequencies based on the estimated reduced mass of the modes. The shifts in absorbance maxima were correlated with the location(s) of the substituted deuterium atom(s) in the L-alanine molecule, and the atoms contributing to the absorbing delocalized mode in the crystal structure were deduced using statistics described herein. The statistical analyses presented also indicate that the precision of the method allows reproducible frequency shifts as small as 1 cm(-1) or 0.03 THz to be observed and that these shifts are not random error in the measurement.
Broadband Advanced Spectral System Project
National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...
Matched Spectral Filter Imager Project
National Aeronautics and Space Administration — OPTRA proposes the development of an imaging spectrometer for greenhouse gas and volcanic gas imaging based on matched spectral filtering and compressive imaging....
Spectral Methods for Numerical Relativity
Grandclément, Philippe
2007-01-01
Equations arising in General Relativity are usually to complicated to be solved analytically and one has to rely on numerical methods to solve sets of coupled, partial differential, equations. Amongst the possible choices, this paper focuses on a class called spectral methods where, typically, the various functions are expanded onto sets of orthogonal polynomials or functions. A theoretical introduction on spectral expansion is first given and a particular emphasize is put on the fast convergence of the spectral approximation. We present then different approaches to solve partial differential equations, first limiting ourselves to the one-dimensional case, with one or several domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. One then turns to results obtained by various groups in the field of General Relativity by means of spectral methods. First, works which do not involve explicit t...
Substitution dynamical systems spectral analysis
Queffélec, Martine
2010-01-01
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...
Spectral Theory and Mirror Symmetry
Marino, Marcos
2015-01-01
Recent developments in string theory have revealed a surprising connection between spectral theory and local mirror symmetry: it has been found that the quantization of mirror curves to toric Calabi-Yau threefolds leads to trace class operators, whose spectral properties are conjecturally encoded in the enumerative geometry of the Calabi-Yau. This leads to a new, infinite family of solvable spectral problems: the Fredholm determinants of these operators can be found explicitly in terms of Gromov-Witten invariants and their refinements; their spectrum is encoded in exact quantization conditions, and turns out to be determined by the vanishing of a quantum theta function. Conversely, the spectral theory of these operators provides a non-perturbative definition of topological string theory on toric Calabi-Yau threefolds. In particular, their integral kernels lead to matrix integral representations of the topological string partition function, which explain some number-theoretic properties of the periods. In this...
Nanocatalytic resonance scattering spectral analysis
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The resonance scattering spectral technique has been established using the synchronous scanning technique on spectrofluorometry.Because of its advantages of simplicity,rapidity and sensitivity,it has been widely applied to analyses of proteins,nucleic acids and inorganic ions.This paper summarizes the application of immunonanogold and aptamer modified nanogold(AptAu) catalytic resonance scattering spectral technique in combination with the work of our group,citing 53 references.
Spectral Conditions for Positive Maps
Chruściński, Dariusz; Kossakowski, Andrzej
2009-09-01
We provide partial classification of positive linear maps in matrix algebras which is based on a family of spectral conditions. This construction generalizes the celebrated Choi example of a map which is positive but not completely positive. It is shown how the spectral conditions enable one to construct linear maps on tensor products of matrix algebras which are positive but only on a convex subset of separable elements. Such maps provide basic tools to study quantum entanglement in multipartite systems.
Prym varieties of spectral covers
Hausel, Tamás
2010-01-01
Given a possibly reducible and non-reduced spectral cover X over a smooth projective complex curve C we determine the group of connected components of the Prym variety Prym(X/C). We also describe the sublocus of characteristics a for which the Prym variety Prym(X_a/C) is connected. These results extend special cases of work of Ng\\^o who considered integral spectral curves.
Extremal energy shifts of radiation from a ring near a rotating black hole
Karas, Vladimir
2010-01-01
Radiation from a narrow circular ring shows a characteristic double-horn profile dominated by photons having energy around the maximum or minimum of the allowed range, i.e. near the extremal values of the energy shift. The energy span of a spectral line is a function of the ring radius, black hole spin, and observer's view angle. We describe a useful approach to calculate the extremal energy shifts in the regime of strong gravity. Then we consider an accretion disk consisting of a number of separate nested annuli in the equatorial plane of Kerr black hole, above the innermost stable circular orbit (ISCO). We suggest that the radial structure of the disk emission could be reconstructed using the extremal energy shifts of the individual rings deduced from the broad wings of a relativistic spectral line.
SPECTRAL CHARACTERISTICS OF ELECTRORETINOGRAM IN X-LINKED DICHROMATS-A PRELIMINARY STUDY
Institute of Scientific and Technical Information of China (English)
无
1991-01-01
Spectral characteristics of X-linked Dichromats(13 protanopes, 20 deuteranopes) were studied with spectral ERG. The results are as follows: The maximal spectral response of the b-wave in protanopes tended to shift toward the short wavelength side and the sensitivity to long wavelengths decreased obviously. The ratio value of the amplitude in 500nm and in 620nm(500/620) was greater in the protanope than that in the normal subject. Like the normals, the maximal response of the b-wave in deuteranopes appea...
Marfin, Yu S; Rumyantsev, E V
2014-09-15
Photophysical characteristics of several alkylated dipyrrin Zn(II) complexes in organic solvents were analyzed. Relations between spectral properties of complexes and physical-chemical parameters of solvents were determined with the use of linear regression analysis method. Each solvent parameter contribution in investigated spectral characteristics was estimated. Spectral properties of complexes under study depend on the specific interactions of zinc with the solvent molecules by specific axial coordination. Increasing of alkyl substitution lead to the bathochromic shifts in spectra due to the positive induction effect of alkyl groups.
Spectral Method with the Tensor-Product Nodal Basis for the Steklov Eigenvalue Problem
Directory of Open Access Journals (Sweden)
Xuqing Zhang
2013-01-01
Full Text Available This paper discusses spectral method with the tensor-product nodal basis at the Legendre-Gauss-Lobatto points for solving the Steklov eigenvalue problem. A priori error estimates of spectral method are discussed, and based on the work of Melenk and Wohlmuth (2001, a posterior error estimator of the residual type is given and analyzed. In addition, this paper combines the shifted-inverse iterative method and spectral method to establish an efficient scheme. Finally, numerical experiments with MATLAB program are reported.
Marfin, Yu. S.; Rumyantsev, E. V.
2014-09-01
Photophysical characteristics of several alkylated dipyrrin Zn(II) complexes in organic solvents were analyzed. Relations between spectral properties of complexes and physical-chemical parameters of solvents were determined with the use of linear regression analysis method. Each solvent parameter contribution in investigated spectral characteristics was estimated. Spectral properties of complexes under study depend on the specific interactions of zinc with the solvent molecules by specific axial coordination. Increasing of alkyl substitution lead to the bathochromic shifts in spectra due to the positive induction effect of alkyl groups.
Looping through the Lamb Shift
Energy Technology Data Exchange (ETDEWEB)
Hazi, A U
2007-02-06
Sometimes in science, a small measurement can have big ramifications. For a team of Livermore scientists, such was the case when they measured a small shift in the spectrum of extremely ionized atoms of uranium. The measurement involves the Lamb shift, a subtle change in the energy of an electron orbiting an atom's nucleus. The precision of the Livermore result was 10 times greater than that of existing measurements, making it the best measurement to date of a complicated correction to the simplest quantum description of how atoms behave. The measurement introduces a new realm in the search for deviations between the theory of quantum electrodynamics (QED), which is an extension of quantum mechanics, and the real world. Such deviations, if discovered, would have far-reaching consequences, indicating that QED is not a fundamental theory of nature.
Lamb shift in muonic deuterium
Energy Technology Data Exchange (ETDEWEB)
Gorchtein, Mikhail; Vanderhaeghen, Marc [Institut für Kernphysik, Universität Mainz, 55128 Mainz (Germany); Carlson, Carl E. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187 (United States)
2013-11-07
We consider the two-photon exchange contribution to the 2P-2S Lamb shift in muonic deuterium in the framework of forward dispersion relations. The dispersion integrals are evaluated with minimal model dependence using experimental data on elastic deuteron form factors and inelastic electron-deuteron scattering, both in the quasielastic and hadronic range. The subtraction constant that is required to ensure convergence of the dispersion relation for the forward Compton amplitude T{sub 1} (ν,Q{sup 2}) is related to the deuteron magnetic polarizability β(Q{sup 2}) and represents the main source of uncertainty in our analysis. We obtain for the Lamb shift ΔE{sub 2P-2S} = 1.620±0.190 meV and discuss ways to further reduce this uncertainty.
Anthropometric changes and fluid shifts
Thornton, W. E.; Hoffler, G. W.; Rummel, J. A.
1977-01-01
In an effort to obtain the most comprehensive and coherent picture of changes under weightlessness, a set of measurements on Skylab 2 was initiated and at every opportunity, additional studies were added. All pertinent information from ancillary sources were gleaned and collated. On Skylab 2, the initial anthropometric studies were scheduled in conjunction with muscle study. A single set of facial photographs was made in-flight. Additional measurements were made on Skylab 3, with photographs and truncal and limb girth measurements in-flight. Prior to Skylab 4, it was felt there was considerable evidence for large and rapid fluid shifts, so a series of in-flight volume and center of mass measurements and infrared photographs were scheduled to be conducted in the Skylab 4 mission. A number of changes were properly documented for the first time, most important of which were the fluid shifts. The following description of Skylab anthropometrics address work done on Skylab 4 primarily.
Debt Shifting and Ownership Structure
Dirk Schindler; Guttorm Schjelderup
2011-01-01
Previous theoretical studies on the debt shifting behavior of multinationals have assumed affiliates of multinationals to be wholly owned. We develop a model that allows a multinational firm to determine both the leverage and ownership structure in affiliates endogenously. A main finding is that affiliates with minority owners have less debt than wholly owned affiliates and therefore a less tax efficient financing structure. This is due to an externality that arises endogenously in our model,...
Lamb shift in muonic deuterium
Carboni, G
1973-01-01
The author has calculated the various contributions to 2s-2p splitting for muonic deuterium. An instantaneous potential is constructed between the muon and the nucleus. Except for the Coulomb potential, all the remaining terms are treated as a perturbation. The effects taken into account are fine structure, magnetic and electric hyperfine structure, muonic Lamb shift, vacuum polarisation, nuclear polarisation and nuclear size. (11 refs).
Frequency shifts in gravitational resonance spectroscopy
Baeßler, S; Pignol, G; Protasov, K V; Rebreyend, D; Kupriyanova, E A; Voronin, A Yu
2015-01-01
Quantum states of ultracold neutrons in the gravitational field are to be characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts, which we call Stern-Gerlach shift, interference shift, and spectator state shift, appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments.
Shift work and endocrine disorders.
Ulhôa, M A; Marqueze, E C; Burgos, L G A; Moreno, C R C
2015-01-01
The objective of this review was to investigate the impact of shift and night work on metabolic processes and the role of alterations in the sleep-wake cycle and feeding times and environmental changes in the occurrence of metabolic disorders. The literature review was performed by searching three electronic databases for relevant studies published in the last 10 years. The methodological quality of each study was assessed, and best-evidence synthesis was applied to draw conclusions. The literature has shown changes in concentrations of melatonin, cortisol, ghrelin, and leptin among shift workers. Melatonin has been implicated for its role in the synthesis and action of insulin. The action of this hormone also regulates the expression of transporter glucose type 4 or triggers phosphorylation of the insulin receptor. Therefore, a reduction in melatonin can be associated with an increase in insulin resistance and a propensity for the development of diabetes. Moreover, shift work can negatively affect sleep and contribute to sedentarism, unhealthy eating habits, and stress. Recent studies on metabolic processes have increasingly revealed their complexity. Physiological changes induced in workers who invert their activity-rest cycle to fulfill work hours include disruptions in metabolic processes.
Shift Work and Endocrine Disorders
Directory of Open Access Journals (Sweden)
M. A. Ulhôa
2015-01-01
Full Text Available The objective of this review was to investigate the impact of shift and night work on metabolic processes and the role of alterations in the sleep-wake cycle and feeding times and environmental changes in the occurrence of metabolic disorders. The literature review was performed by searching three electronic databases for relevant studies published in the last 10 years. The methodological quality of each study was assessed, and best-evidence synthesis was applied to draw conclusions. The literature has shown changes in concentrations of melatonin, cortisol, ghrelin, and leptin among shift workers. Melatonin has been implicated for its role in the synthesis and action of insulin. The action of this hormone also regulates the expression of transporter glucose type 4 or triggers phosphorylation of the insulin receptor. Therefore, a reduction in melatonin can be associated with an increase in insulin resistance and a propensity for the development of diabetes. Moreover, shift work can negatively affect sleep and contribute to sedentarism, unhealthy eating habits, and stress. Recent studies on metabolic processes have increasingly revealed their complexity. Physiological changes induced in workers who invert their activity-rest cycle to fulfill work hours include disruptions in metabolic processes.
Directory of Open Access Journals (Sweden)
S. E. Milan
Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.
Key words. Ionosphere (ionospheric irregularities
Effects of NMR spectral resolution on protein structure calculation.
Directory of Open Access Journals (Sweden)
Suhas Tikole
Full Text Available Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.
Mahieu, Benoît; De Ninno, Giovanni; Dacasa, Hugo; Lozano, Magali; Rousseau, Jean-Philippe; Zeitoun, Philippe; Garzella, David; Merdji, Hamed
2015-01-01
We present a setup for complete characterization of femtosecond pulses generated by seeded free-electron lasers (FEL's) in the extreme-ultraviolet spectral region. Two delayed and spectrally shifted replicas are produced and used for spectral phase interferometry for direct electric field reconstruction (SPIDER). We show that it can be achieved by a simple arrangement of the seed laser. Temporal shape and phase obtained in FEL simulations are well retrieved by the SPIDER reconstruction, allowing to foresee the implementation of this diagnostic on existing and future sources. This will be a significant step towards an experimental investigation and control of FEL spectral phase.
Sectoral Shifts and Cyclical Fluctuations Sectoral Shifts and Cyclical Fluctuations
Directory of Open Access Journals (Sweden)
Richard Rogerson
1991-03-01
Full Text Available Sectoral Shifts and Cyclical Fluctuations This paper studies a two sector real business cycle model in which the sectors experience different trend rates of growth and labor mobility is costly. Predictions are derived concerning the correlation between sectoral reallocation of workers and the cycle. This correlation may be positive or negative depending upon whether the growing sector displays larger or smaller fluctuations than the shrinking sector. The post- World War II period has witnessed two major patterns of sectoral change in industrialized countries: movement out of agriculture and movement out of the industrial sector. The model's basic prediction is shown to be consistent with the observed pattern of reallocation.
de Boer, W.D.A.M.; Timmerman, D.; Dohnalová, K.; Yassievich, I.N.; Zhang, H.; Buma, W.J.; Gregorkiewicz, T.
2010-01-01
Crystalline silicon is the most important semiconductor material in the electronics industry. However, silicon has poor optical properties because of its indirect bandgap, which prevents the efficient emission and absorption of light. The energy structure of silicon can be manipulated through quantu
Explanation of red spectral shifts at CdTe grain boundaries
Moseley, John
The best research-cell efficiencies for CdTe thin-film solar cells have recently increased from 17.3% to 20.4%. Despite these impressive recent gains, many improvements in device technology are necessary to reach the detailed-balance efficiency limit for CdTe-based (single-junction, non-concentrator) solar cells of ~32%. Improvements will increasingly rely on knowledge of the fundamental relationships between processing, electrical properties of defects, and device performance. In this study, scanning electron microscope (SEM)-based cathodoluminescence (CL) spectrum imaging was used to examine these fundamental relationships. In CL spectrum imaging we collect a spectrum per pixel in a 256 x 256 pixel SEM image by synchronizing a cryogenic silicon charge-coupled device with the electron-beam positioning. High spatial resolution photon energy maps obtained with this technique can reveal intricate luminescence phenomena that are not apparent in spectroscopic data. CL spectrum imaging was performed at T= 25 K on the back surface of CSS-deposited CdTe thin-films in a CdTe/CdS/SnO_2/glass configuration without back contacting. Both as-deposited and CdCl2 vapor-treated samples were analyzed. Luminescence emission is detected (bands) at ~1.32 eV and ~1.50 eV, which are consistent with Z- and Y-bands. The importance of the Z-band to CdTe solar cells is discussed. For the grains in the as-deposited films, there is a significant redshift in the transition energies near the grain boundaries. For the Z-band, this behavior is due to the effect of the high GB recombination velocity (sX~1x10 4 cm/s) in as-deposited CSS films on the donor-acceptor pair transition mechanism. The concentration of the shallow donor species participating in the Z-band transition was estimated to be ~1017 cm-3 . Based on this estimate, and the spatial correlation between the Z-band and the A-center (VCd-ClTe) complex transitions, ClTe is proposed as is the shallow donor species.
Spectral Estimation of NMR Relaxation
Naugler, David G.; Cushley, Robert J.
2000-08-01
In this paper, spectral estimation of NMR relaxation is constructed as an extension of Fourier Transform (FT) theory as it is practiced in NMR or MRI, where multidimensional FT theory is used. nD NMR strives to separate overlapping resonances, so the treatment given here deals primarily with monoexponential decay. In the domain of real error, it is shown how optimal estimation based on prior knowledge can be derived. Assuming small Gaussian error, the estimation variance and bias are derived. Minimum bias and minimum variance are shown to be contradictory experimental design objectives. The analytical continuation of spectral estimation is constructed in an optimal manner. An important property of spectral estimation is that it is phase invariant. Hence, hypercomplex data storage is unnecessary. It is shown that, under reasonable assumptions, spectral estimation is unbiased in the context of complex error and its variance is reduced because the modulus of the whole signal is used. Because of phase invariance, the labor of phasing and any error due to imperfect phase can be avoided. A comparison of spectral estimation with nonlinear least squares (NLS) estimation is made analytically and with numerical examples. Compared to conventional sampling for NLS estimation, spectral estimation would typically provide estimation values of comparable precision in one-quarter to one-tenth of the spectrometer time when S/N is high. When S/N is low, the time saved can be used for signal averaging at the sampled points to give better precision. NLS typically provides one estimate at a time, whereas spectral estimation is inherently parallel. The frequency dimensions of conventional nD FT NMR may be denoted D1, D2, etc. As an extension of nD FT NMR, one can view spectral estimation of NMR relaxation as an extension into the zeroth dimension. In nD NMR, the information content of a spectrum can be extracted as a set of n-tuples (ω1, … ωn), corresponding to the peak maxima
Speech recognition from spectral dynamics
Indian Academy of Sciences (India)
Hynek Hermansky
2011-10-01
Information is carried in changes of a signal. The paper starts with revisiting Dudley’s concept of the carrier nature of speech. It points to its close connection to modulation spectra of speech and argues against short-term spectral envelopes as dominant carriers of the linguistic information in speech. The history of spectral representations of speech is brieﬂy discussed. Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) ﬁltering. Next, the frequency domain perceptual linear prediction technique for deriving autoregressive models of temporal trajectories of spectral power in individual frequency bands is reviewed. Finally, posterior-based features, which allow for straightforward application of modulation frequency domain information, are described. The paper is tutorial in nature, aims at a historical global overview of attempts for using spectral dynamics in machine recognition of speech, and does not always provide enough detail of the described techniques. However, extensive references to earlier work are provided to compensate for the lack of detail in the paper.
Geometric Baryogenesis from Shift Symmetry.
De Simone, Andrea; Kobayashi, Takeshi; Liberati, Stefano
2017-03-31
We present a new scenario for generating the baryon asymmetry of the Universe that is induced by a Nambu-Goldstone (NG) boson. The shift symmetry naturally controls the operators in the theory while allowing the NG boson to couple to the spacetime geometry as well as to the baryons. The cosmological background thus sources a coherent motion of the NG boson, which leads to baryogenesis. Good candidates of the baryon-generating NG boson are the QCD axion and axionlike fields. In these cases, the axion induces baryogenesis in the early Universe and can also serve as dark matter in the late Universe.
New approach to spectral features modeling
Brug, H. van; Scalia, P.S.
2012-01-01
The origin of spectral features, speckle effects, is explained, followed by a discussion on many aspects of spectral features generation. The next part gives an overview of means to limit the amplitude of the spectral features. This paper gives a discussion of all means to reduce the spectral featur
Spectral element simulation of ultrafiltration
DEFF Research Database (Denmark)
Hansen, M.; Barker, Vincent A.; Hassager, Ole
1998-01-01
A spectral element method for simulating stationary 2-D ultrafiltration is presented. The mathematical model is comprised of the Navier-Stokes equations for the velocity field of the fluid and a transport equation for the concentration of the solute. In addition to the presence of the velocity...... vector in the transport equation, the system is coupled by the dependency of the fluid viscosity on the solute concentration and by a concentration-dependent boundary condition for the Navier-Stokes equations at the membrane surface. The spectral element discretization yields a nonlinear algebraic system....... The performance of the spectral element code when applied to several ultrafiltration problems is reported. (C) 1998 Elsevier Science Ltd. All rights reserved....
Spectral Tensor-Train Decomposition
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.
2016-01-01
The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT.......e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT...... decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm \\tt TT-DMRG-cross to obtain the TT decomposition of tensors resulting from suitable...
Optical Spectral Variability of Blazars
Indian Academy of Sciences (India)
Haritma Gaur
2014-09-01
It is well established that blazars show flux variations in the complete electromagnetic (EM) spectrum on all possible time scales ranging from a few tens of minutes to several years. Here, we report the review of optical flux and spectral variability properties of different classes of blazars on IDV and STV time-scales. Our analysis show HSPs are less variable in optical bands as compared to LSPs. Also, we investigated the spectral slope variability and found that the average spectral slopes of LSPs showed a good agreement with the synchrotron self-Compton loss-dominated model. However, spectra of the HSPs and FSRQs have significant additional emission components. In general, spectra of BL Lacs get flatter when they become brighter, while for FSRQs the opposite trend appears to hold.
On spectral synthesis on element-wise compact Abelian groups
Platonov, S. S.
2015-08-01
Let G be an arbitrary locally compact Abelian group and let C(G) be the space of all continuous complex-valued functions on G. A closed linear subspace \\mathscr H\\subseteq C(G) is referred to as an invariant subspace if it is invariant with respect to the shifts τ_y\\colon f(x)\\mapsto f(xy), y\\in G. By definition, an invariant subspace \\mathscr H\\subseteq C(G) admits strict spectral synthesis if \\mathscr H coincides with the closure in C(G) of the linear span of all characters of G belonging to \\mathscr H. We say that strict spectral synthesis holds in the space C(G) on G if every invariant subspace \\mathscr H\\subseteq C(G) admits strict spectral synthesis. An element x of a topological group G is said to be compact if x is contained in some compact subgroup of G. A group G is said to be element-wise compact if all elements of G are compact. The main result of the paper is the proof of the fact that strict spectral synthesis holds in C(G) for a locally compact Abelian group G if and only if G is element-wise compact. Bibliography: 14 titles.
Spatial and Spectral Methods for Weed Detection and Localization
Directory of Open Access Journals (Sweden)
Truchetet Frédéric
2002-01-01
Full Text Available This study concerns the detection and localization of weed patches in order to improve the knowledge on weed-crop competition. A remote control aircraft provided with a camera allowed to obtain low cost and repetitive information. Different processings were involved to detect weed patches using spatial then spectral methods. First, a shift of colorimetric base allowed to separate the soil and plant pixels. Then, a specific algorithm including Gabor filter was applied to detect crop rows on the vegetation image. Weed patches were then deduced from the comparison of vegetation and crop images. Finally, the development of a multispectral acquisition device is introduced. First results for the discrimination of weeds and crops using the spectral properties are shown from laboratory tests. Application of neural networks were mostly studied.
Chlorophyll modifications and their spectral extension in oxygenic photosynthesis.
Chen, Min
2014-01-01
Chlorophylls are magnesium-tetrapyrrole molecules that play essential roles in photosynthesis. All chlorophylls have similar five-membered ring structures, with variations in the side chains and/or reduction states. Formyl group substitutions on the side chains of chlorophyll a result in the different absorption properties of chlorophyll b, chlorophyll d, and chlorophyll f. These formyl substitution derivatives exhibit different spectral shifts according to the formyl substitution position. Not only does the presence of various types of chlorophylls allow the photosynthetic organism to harvest sunlight at different wavelengths to enhance light energy input, but the pigment composition of oxygenic photosynthetic organisms also reflects the spectral properties on the surface of the Earth. Two major environmental influencing factors are light and oxygen levels, which may play central roles in the regulatory pathways leading to the different chlorophylls. I review the biochemical processes of chlorophyll biosynthesis and their regulatory mechanisms.
How far can a single hydrogen bond tune the spectral properties of the GFP chromophore?
DEFF Research Database (Denmark)
Kiefer, Hjalte; Lattouf, Elie; Persen, Natascha Wardinghus;
2015-01-01
absorption spectrum is measured. Our theoretical account of the spectral shape reveals that the anionic 0–0 transition (464 nm) is blue-shifted compared to that of the wild-type protein (478 nm) due to the stronger H-bond in the dimer, and represents an upper bound for that of the isolated anion. At the same...
Spectral analysis by correlation; Analyse spectrale par correlation
Energy Technology Data Exchange (ETDEWEB)
Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1969-07-01
The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [French] La densite spectrale d'un signal qui represente la repartition de sa puissance sur l'axe des frequences est une fonction de premiere importance, constamment utilisee dans tout ce qui touche le traitement du signal (identification de processus, analyse de vibrations, etc...). Parmi toutes les methodes possibles de calcul de cette fonction, la methode par correlation (calcul de la fonction de correlation + transformation de Fourier) est tres seduisante par sa simplicite et ses performances. L'etude qui est faite ici va deboucher sur la realisation d'un appareil qui, couple a un correlateur, constituera un ensemble d'analyse spectrale en temps reel couvrant la gamme de frequence 0 a 5 MHz. (auteur)
Multi-spectral camera development
CSIR Research Space (South Africa)
Holloway, M
2012-10-01
Full Text Available stream_source_info Holloway_2012.pdf.txt stream_content_type text/plain stream_size 6209 Content-Encoding ISO-8859-1 stream_name Holloway_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Multi-Spectral Camera... Development 4th Biennial Conference Presented by Mark Holloway 10 October 2012 Fused image ? Red, Green and Blue Applications of the Multi-Spectral Camera ? CSIR 2012 Slide 2 Green and Blue, Near Infrared (IR) RED Applications of the Multi...
Stingray: Spectral-timing software
Huppenkothen, Daniela; Bachetti, Matteo; Stevens, Abigail L.; Migliari, Simone; Balm, Paul
2016-08-01
Stingray is a spectral-timing software package for astrophysical X-ray (and more) data. The package merges existing efforts for a (spectral-)timing package in Python and is composed of a library of time series methods (including power spectra, cross spectra, covariance spectra, and lags); scripts to load FITS data files from different missions; a simulator of light curves and event lists that includes different kinds of variability and more complicated phenomena based on the impulse response of given physical events (e.g. reverberation); and a GUI to ease the learning curve for new users.
Cortisol shifts financial risk preferences
Kandasamy, Narayanan; Hardy, Ben; Page, Lionel; Schaffner, Markus; Graggaber, Johann; Powlson, Andrew S.; Fletcher, Paul C.; Gurnell, Mark; Coates, John
2014-01-01
Risk taking is central to human activity. Consequently, it lies at the focal point of behavioral sciences such as neuroscience, economics, and finance. Many influential models from these sciences assume that financial risk preferences form a stable trait. Is this assumption justified and, if not, what causes the appetite for risk to fluctuate? We have previously found that traders experience a sustained increase in the stress hormone cortisol when the amount of uncertainty, in the form of market volatility, increases. Here we ask whether these elevated cortisol levels shift risk preferences. Using a double-blind, placebo-controlled, cross-over protocol we raised cortisol levels in volunteers over 8 d to the same extent previously observed in traders. We then tested for the utility and probability weighting functions underlying their risk taking and found that participants became more risk-averse. We also observed that the weighting of probabilities became more distorted among men relative to women. These results suggest that risk preferences are highly dynamic. Specifically, the stress response calibrates risk taking to our circumstances, reducing it in times of prolonged uncertainty, such as a financial crisis. Physiology-induced shifts in risk preferences may thus be an underappreciated cause of market instability. PMID:24550472
Zdziarski, Andrzej A; Pjanka, Patryk; Tchekhovskoy, Alexander
2014-01-01
We study the effect of core shift in jets, which is the dependence of the position of the jet radio core on the frequency. We derive a new method to measure the jet magnetic field based on both the value of the shift and the observed flux, which compliments the standard method assuming equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, $\\simeq$0.1--0.2 divided by the bulk Lorentz factor, $\\Gamma_{\\rm j}$. Larger values, e.g., $1/\\Gamma_{\\rm j}$, would imply very strong departures from equipartition. A small jet opening angle implies in turn the magnetization parameter of $\\ll 1$. We determine the jet magnetic flux taking this effect into account. We find that the average jet magnetic flux is compatible with the model of jet formation due to black-hole spin energy extraction and accretion being magnetically arrested. We calculate the ...
Spectral Analysis of Nonstationary Spacecraft Vibration Data
1965-11-01
the instantaneous power spectral density function for the process (y(t)). This spectral function can take on negative values for certain cases...power spectral density function is not directly measurable in the frequency domain. An experimental estimate for the function can be obtained only by...called the generalized power spectral density function for the process (y(t)) . This spectral description for nonstationary data is of great value for
Soliton self-frequency blue-shift in gas-filled hollow-core photonic crystal fibers
Saleh, Mohammed F; Hoelzer, Philipp; Nazarkin, Alexander; Travers, John C; Joly, Nicolas Y; Russell, Philip St J; Biancalana, Fabio
2011-01-01
We show theoretically that the photoionization process in a hollow-core photonic crystal fiber filled with a Raman-inactive noble gas leads to a constant acceleration of solitons in the time domain with a continuous shift to higher frequencies, limited only by ionization loss. This phenomenon is opposite to the well-known Raman self-frequency red-shift of solitons in solid-core glass fibers. We also predict the existence of unconventional long-range non-local soliton interactions leading to spectral and temporal soliton clustering. Furthermore, if the core is filled with a Raman-active molecular gas, spectral transformations between red-shifted, blue-shifted and stabilized solitons can take place in the same fiber.
Kuzin, Evgeny; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph; Rojas-Laguna, Roberto
2005-05-02
We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.
Kuzin, Evgeny A.; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph W.; Rojas-Laguna, Roberto
2005-05-01
We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.
Discussion of the specific method of power spectral density
Ren Huan; Jiang Xiao Dong; Peng Jing; Ye Lin; Huang Zu Xin; Tang Can
2002-01-01
The wavefront power spectral density (PSD) can give the spatial frequency distribution of wavefront aberration, limit the waviness and the roughness, and specify the large components employed in high power density solid-state laser for inertial confinement fusion (ICF). The definition and the calculation of the PSD are given. In experiment, a large phase shifting Fizeau interferometer was used to test the transmissive wavefront of a Nd glass, creating the one dimension wavefront PSD. Same time, relationship between the PSD and the RMS is shown
Spectral Shearing of Quantum Light Pulses by Electro-Optic Phase Modulation.
Wright, Laura J; Karpiński, Michał; Söller, Christoph; Smith, Brian J
2017-01-13
Frequency conversion of nonclassical light enables robust encoding of quantum information based upon spectral multiplexing that is particularly well-suited to integrated-optics platforms. Here we present an intrinsically deterministic linear-optics approach to spectral shearing of quantum light pulses and show it preserves the wave-packet coherence and quantum nature of light. The technique is based upon an electro-optic Doppler shift to implement frequency shear of heralded single-photon wave packets by ±200 GHz, which can be scaled to an arbitrary shift. These results demonstrate a reconfigurable method to controlling the spectral-temporal mode structure of quantum light that could achieve unitary operation.
Shift-invariant optical associative memories
Energy Technology Data Exchange (ETDEWEB)
Psaltis, D.; Hong, J.
1987-01-01
Shift invariance in the context of associative memories is discussed. Two optical systems that exhibit shift invariance are described in detail with attention given to the analysis of storage capacities. It is shown that full shift invariance cannot be achieved with systems that employ only linear interconnections to store the associations.
Continuous-data FIFO bubble shift register
Chen, T. T.
1977-01-01
Simple loop first-in-first-out (FIFO) bubble memory shift register has continuous storage capability. Bubble shift register simplifies chip-control electronics by enabling all control functions to be alined at same bit. FIFO shift register is constructed from passive replicator and annihilator combinations.
Uniqueness and Zeros of -Shift Difference Polynomials
Indian Academy of Sciences (India)
Kai Liu; Xin-Ling Liu; Ting-Bin Cao
2011-08-01
In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift difference polynomials that share a common value.
Rayleigh imaging in spectral mammography
Berggren, Karl; Danielsson, Mats; Fredenberg, Erik
2016-03-01
Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.
Spectral Methods for Numerical Relativity
Directory of Open Access Journals (Sweden)
Grandclément Philippe
2009-01-01
Full Text Available Equations arising in general relativity are usually too complicated to be solved analytically and one must rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods in which, typically, the various functions are expanded in sets of orthogonal polynomials or functions. First, a theoretical introduction of spectral expansion is given with a particular emphasis on the fast convergence of the spectral approximation. We then present different approaches to solving partial differential equations, first limiting ourselves to the one-dimensional case, with one or more domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. We then present results obtained by various groups in the field of general relativity by means of spectral methods. Work, which does not involve explicit time-evolutions, is discussed, going from rapidly-rotating strange stars to the computation of black-hole–binary initial data. Finally, the evolution of various systems of astrophysical interest are presented, from supernovae core collapse to black-hole–binary mergers.
Polynomial J-spectral factorization
Kwakernaak, Huibert; Sebek, Michael
1994-01-01
Several algorithms are presented for the J-spectral factorization of a para-Hermitian polynomial matrix. The four algorithms that are discussed are based on diagonalization, successive factor extraction, interpolation, and the solution of an algebraic Riccati equation, respectively. The paper includ
Asymptotics of thermal spectral functions
Caron-Huot, S
2009-01-01
We use operator product expansion (OPE) techniques to study the spectral functions of currents at finite temperature, in the high-energy time-like region $\\omega\\gg T$. The leading corrections to the spectral function of currents and stress tensors are proportional to $\\sim T^4$ expectation values in general, and the leading corrections $\\sim g^2T^4$ are calculated at weak coupling, up to one undetermined coefficient in the shear viscosity channel. Spectral functions in the asymptotic regime are shown to be infrared safe up to order $g^8T^4$. The convergence of sum rules in the shear and bulk viscosity channels is established in QCD to all orders in perturbation theory, though numerically significant tails $\\sim T^4/(\\log\\omega)^3$ are shown to exist in the bulk viscosity channel and to have an impact on sum rules recently proposed by Kharzeev and Tuchin. We argue that the spectral functions of currents and stress tensors in strongly coupled $\\mathcal{N}=4$ super Yang-Mills do not receive any medium-dependent...
Spectral representation of Gaussian semimartingales
DEFF Research Database (Denmark)
Basse-O'Connor, Andreas
2009-01-01
The aim of the present paper is to characterize the spectral representation of Gaussian semimartingales. That is, we provide necessary and sufficient conditions on the kernel K for X t =∫ K t (s) dN s to be a semimartingale. Here, N denotes an independently scattered Gaussian random measure...
Spectral problems for operator matrices
Bátkai, A.; Binding, P.; Dijksma, A.; Hryniv, R.; Langer, H.
2005-01-01
We study spectral properties of 2 × 2 block operator matrices whose entries are unbounded operators between Banach spaces and with domains consisting of vectors satisfying certain relations between their components. We investigate closability in the product space, essential spectra and generation of
Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback
Kim, Seung Kwan; Chu, Moo Jung; Lee, Jong Hyun
2001-04-01
Wideband multiwavelength erbium-doped fiber ring lasers with frequency shifted feedback are described. The use of an intra-cavity gain flattening filter (GFF) was proposed in order to increase the lasing spectral bandwidth, leading to a demonstration of 34 lasing wavelengths in 28 nm bandwidth in C-band. The GFF induced spectral output power fluctuation is discussed. Multiwavelength operation was also demonstrated for the first time in L-band, where wideband laser operation was obtained without a GFF. Optical bistability and Kerr effect induced pulsation were determined to be limiting factors to stable operation range in this kind of multiwavelength lasers.
PARADIGM SHIFT IN ISLAMIC STUDIES
Directory of Open Access Journals (Sweden)
Editor Al-Jami'ah: Journal of Islamic Studies
2008-08-01
Full Text Available In the early 1990s, there was a heated debate among students ofIAIN (the State Institute for Islamic Studies Sunan KalijagaYogyakarta about the future of Islamic studies, focusing on the possibilityof incorporating Thomas Kuhn’s paradigm to the discourse ofIslamic studies. Kuhn explains in detail the rise and decline of scientificparadigm in his classic work, The Structure of Scientific Revolutions,firstly published in 1970. Paradigm is defined as a set of beliefs thatguides the researchers to address some important problems or issuesunder a certain theoretical framework and provides procedures how tosolve those problems. A paradigm shift is a process whereby a newway of perceiving the world comes into existence and is accepted byscholars in a given time. Kuhn proposed two conditions for paradigmshift; first, the presence of anomalies in ‘normal science’, and secondly,the presence of alternative paradigm.
Insights on the Spectral Signatures of Stellar Activity and Planets from PCA
Davis, Allen B.; Cisewski, Jessi; Dumusque, Xavier; Fischer, Debra A.; Ford, Eric B.
2017-09-01
Photospheric velocities and stellar activity features such as spots and faculae produce measurable radial velocity signals that currently obscure the detection of sub-meter-per-second planetary signals. However, photospheric velocities are imprinted differently in a high-resolution spectrum than are Keplerian Doppler shifts. Photospheric activity produces subtle differences in the shapes of absorption lines due to differences in how temperature or pressure affects the atomic transitions. In contrast, Keplerian Doppler shifts affect every spectral line in the same way. With a high enough signal-to-noise (S/N) and resolution, statistical techniques can exploit differences in spectra to disentangle the photospheric velocities and detect lower-amplitude exoplanet signals. We use simulated disk-integrated time-series spectra and principal component analysis (PCA) to show that photospheric signals introduce spectral line variability that is distinct from that of Doppler shifts. We quantify the impact of instrumental resolution and S/N for this work.
Superresolved phase-shifting Gabor holography by CCD shift
Micó, V.; Granero, L.; Zalevsky, Z.; García, J.
2009-12-01
Holography in the Gabor regime is restricted to weak diffraction assumptions. Otherwise, diffraction prevents an accurate recovery of the object's complex wavefront. We have recently proposed a modified Gabor-like setup to extend Gabor's concept to any sample provided that it be non-diffusive. However, the resolution of the final image becomes limited as a consequence of the additional elements considered in the proposed setup. In this paper we present an experimental approach to overcome such a limitation in which the former configuration is used while the CCD camera is shifted to different off-axis positions in order to generate a synthetic aperture. Thus, once the whole image set is recorded and digitally processed for each camera position, we merge the resulting band-pass images into one image by assembling a synthetic aperture. Finally, a superresolved image is recovered by Fourier transformation of the information contained in the generated synthetic aperture. Experimental results validate our concepts for a gain in resolution of close to 2.
Dynamics and computation in functional shifts
Namikawa, Jun; Hashimoto, Takashi
2004-07-01
We introduce a new type of shift dynamics as an extended model of symbolic dynamics, and investigate the characteristics of shift spaces from the viewpoints of both dynamics and computation. This shift dynamics is called a functional shift, which is defined by a set of bi-infinite sequences of some functions on a set of symbols. To analyse the complexity of functional shifts, we measure them in terms of topological entropy, and locate their languages in the Chomsky hierarchy. Through this study, we argue that considering functional shifts from the viewpoints of both dynamics and computation gives us opposite results about the complexity of systems. We also describe a new class of shift spaces whose languages are not recursively enumerable.
A NEW ALGORITHM FOR ELIMINATING PHASE-SHIFT ERROR IN PHASE SHIFTING INTERFEROMETRY
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
The effect of phase-shift error in phase shifting interferometry is investigated. A new algorithm with two sets of 4 samples for eliminating phase-shift error is presented. The computer simulation and experiment result show that the phase-shift offset should be π when the algorithm is used, and this algorithm has gotten better result than the original 4-sample algorithm.
Spectral Variation of NLS1 Galaxy PMN J0948+0022
Indian Academy of Sciences (India)
X. N. Sun; Jin Zhang; Y. Lu; E. W. Liang; S. N. Zhang
2014-09-01
Four well-sampled Spectral Energy Distributions (SEDs) of PMN J0948+0022 are fitted with the syn+SSC+EC model to derive the physical parameters of its jets and to investigate the spectral variations of its SEDs. A tentative correlation between the peak luminosity (c) and peak frequency (c) of its inverse Compton (IC) bump is found in both the observer and co-moving frames, indicating that the variations of luminosity are accompanied by the spectral shift. A correlation between cs and is found, and thus the magnification of external photon field by the bulk motion of the radiation regions is an essential reason for the spectral variation since, IC bump of PMN J0948+0022 is dominated by the EC process.
Spectral Variation of NLS1 Galaxy PMN J0948+0022
Sun, X N; Lu, Y; Liang, E W; Zhang, S N
2013-01-01
Four well-sampled spectral energy distributions (SEDs) of PMN J0948+0022 are fitted with the syn+SSC+EC model to derive the physical parameters of its jets and to investigate the spectral variations of its SEDs. A tentative correlation between the peak luminosity L_c and peak frequency nu_c of its inverse Compton (IC) bump is found in both the observer and co-moving frames, indicating that the variations of luminosity are accompanied with the spectral shift. A correlation between L_c and delta is found, and thus the magnification of the external photon field by the bulk motion of the radiation regions is an essential reason for the spectral variation since the IC bump of PMN J0948+0022 is dominated by the EC process.
A rotated transmission grating spectrometer for detecting spectral separation of doublet Na
Energy Technology Data Exchange (ETDEWEB)
Santosa, Ignatius Edi [Department of Physics Education, Sanata Dharma University, Paingan Maguwohardjo Depok Sleman, Yogyakarta 55281, Indonesia edi@usd.ac.id (Indonesia)
2015-04-16
Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold.
Spectral Line Non-thermal Broadening and MHD Waves in the Solar Corona
Zaqarashvili, T. V.
2009-04-01
The rapid temperature rise from the solar surface (6000 K) up to the corona (1 MK) and acceleration of solar wind particles still are unresolved problems in solar physics. The energy source for the coronal heating and the wind acceleration probably lies in the solar photosphere. MHD waves are believed to carry the photospheric energy into the corona. Recent observations from space based telescopes made significant progress in understanding the process of MHD wave propagation from the solar surface towards the corona. Some of MHD wave modes have been observed through intensity variations and Doppler shift oscillations in spectral lines. Another powerful mechanism is to detect the waves through the non-thermal broadening of spectral lines. The lecture gives the basic points of wave induced effects in solar coronal spectral lines and recent progress in wave observations through spectral line non-thermal broadening.
Spectral computations for bounded operators
Ahues, Mario; Limaye, Balmohan
2001-01-01
Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...
Spectral diagonal ensemble Kalman filters
Kasanický, Ivan; Vejmelka, Martin
2015-01-01
A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the aproximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields, which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.
Spectral Synthesis of SDSS Galaxies
Sodre, J; Mateus, A; Stasinska, G; Gomes, J M
2005-01-01
We investigate the power of spectral synthesis as a mean to estimate physical properties of galaxies. Spectral synthesis is nothing more than the decomposition of an observed spectrum in terms of a superposition of a base of simple stellar populations of various ages and metallicities (here from Bruzual & Charlot 2003), producing as output the star-formation and chemical histories of a galaxy, its extinction and velocity dispersion. We discuss the reliability of this approach and apply it to a volume limited sample of 50362 galaxies from the SDSS Data Release 2, producing a catalog of stellar population properties. A comparison with recent estimates of both observed and physical properties of these galaxies obtained by other groups shows good qualitative and quantitative agreement, despite substantial differences in the method of analysis. The confidence in the method is further strengthened by several empirical and astrophysically reasonable correlations between synthesis results and independent quantiti...
Spectral Clustering with Imbalanced Data
Qian, Jing; Saligrama, Venkatesh
2013-01-01
Spectral clustering is sensitive to how graphs are constructed from data particularly when proximal and imbalanced clusters are present. We show that Ratio-Cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced data since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to deal with imbalanced data. Our approach parameterizes a family of graphs, by ada...
Remote application for spectral collection
Cone, Shelli R.; Steele, R. J.; Tzeng, Nigel H.; Firpi, Alexer H.; Rodriguez, Benjamin M.
2016-05-01
In the area of collecting field spectral data using a spectrometer, it is common to have the instrument over the material of interest. In certain instances it is beneficial to have the ability to remotely control the spectrometer. While several systems have the ability to use a form of connectivity to capture the measurement it is essential to have the ability to control the settings. Additionally, capturing reference information (metadata) about the setup, system configuration, collection, location, atmospheric conditions, and sample information is necessary for future analysis leading towards material discrimination and identification. This has the potential to lead to cumbersome field collection and a lack of necessary information for post processing and analysis. The method presented in this paper describes a capability to merge all parts of spectral collection from logging reference information to initial analysis as well as importing information into a web-hosted spectral database. This allows the simplification of collecting, processing, analyzing and storing field spectra for future analysis and comparisons. This concept is developed for field collection of thermal data using the Designs and Prototypes (D&P) Hand Portable FT-IR Spectrometer (Model 102). The remote control of the spectrometer is done with a customized Android application allowing the ability to capture reference information, process the collected data from radiance to emissivity using a temperature emissivity separation algorithm and store the data into a custom web-based service. The presented system of systems allows field collected spectra to be used for various applications by spectral analysts in the future.
Chebyshev and Fourier spectral methods
Boyd, John P
2001-01-01
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Shifting boundaries in professional care.
Hopkins, A; Solomon, J; Abelson, J
1996-07-01
The nature of the work undertaken by different health professionals and inter-professional boundaries are constantly shifting. The greater knowledge of users of health care, and the increasing technical and organizational complexity of modern medicine, have partly eroded the control of health professionals over the substance of their work. The definition of a field of work as lying within the province of any one profession is culturally rather than scientifically determined. It is evident that care of good quality should be delivered at the lowest possible cost. This might include delivery of care by a less trained person than heretofore, or by someone with limited but focused training. Sharing of skills is a more sensible subject for discussion than transfer of tasks. We review a number of studies which show the effectiveness of inter-professional substitution in various care settings, and also the effectiveness of substitution by those other than health professionals. The views of users of health services on inter-professional substitution need to be considered. Health professionals and others need to work together to devise innovative ways of delivering effective health care. The legal issues need clarification.
The JCMT Spectral Legacy Survey
Plume, R; Helmich, F; Van der Tak, F F S; Roberts, H; Bowey, J; Buckle, J; Butner, H; Caux, E; Ceccarelli, C; Van Dishoeck, E F; Friberg, P; Gibb, A G; Hatchell, J; Hogerheijde, M R; Matthews, H; Millar, T; Mitchell, G; Moore, T J T; Ossenkopf, V; Rawlings, J; Richer, J; Roellig, M; Schilke, P; Spaans, M; Tielens, A G G M; Thompson, M A; Viti, S; Weferling, B; White, G J; Wouterloot, J; Yates, J; Zhu, M; White, Glenn J.
2006-01-01
Stars form in the densest, coldest, most quiescent regions of molecular clouds. Molecules provide the only probes which can reveal the dynamics, physics, chemistry and evolution of these regions, but our understanding of the molecular inventory of sources and how this is related to their physical state and evolution is rudimentary and incomplete. The Spectral Legacy Survey (SLS) is one of seven surveys recently approved by the JCMT Board. Starting in 2007, the SLS will produce a spectral imaging survey of the content and distribution of all the molecules detected in the 345 GHz atmospheric window (between 332 GHz and 373 GHz) towards a sample of 5 sources. Our intended targets are: a low mass core (NGC1333 IRAS4), 3 high mass cores spanning a range of star forming environments and evolutionary states (W49, AFGL2591, and IRAS20126), and a PDR (the Orion Bar). The SLS will use the unique spectral imaging capabilities of HARP-B/ACSIS to study the molecular inventory and the physical structure of these objects, w...
Tan, Hung Nguyen; Tanizawa, Ken; Inoue, Takashi; Kurosu, Takayuki; Namiki, Shu
2013-09-01
We demonstrate a seamless spectral defragmentation in an elastic all-optical add-drop node based on wavelength division multiplexing (WDM) channels of Nyquist optical time division multiplexing (OTDM) signal. A 172 Gbaud Nyquist OTDM signal occupying a 215 GHz range is elastically shifted adjacent to its neighboring channel, completely filling a variable spectral gap caused by the dropped channel. The frequency shift is done in a dual-stage polarization-diversity four wave mixing-based converter using polarization-maintaining highly nonlinear fiber. The spectrally defragmented signals are successfully transmitted over a 80 km fiber link with BER<10(-9).
Stark Broadening Parameters for Neutral Oxygen Spectral Lines
Indian Academy of Sciences (India)
N. Alonizan; R. Qindeel; N. Ben Nessib; S. Sahal-Bréchot; Milan S. Dimitrijević
2015-12-01
Stark broadening parameters for nine neutral oxygen (O I) lines have been determined within the impact approximation and the semiclassical perturbation method. The atomic data have been taken from the TOPbase and NIST atomic databases. The electron and proton Stark widths and shifts and ion broadening parameter values for these O I lines have been calculated for electron density of 1016 cm$^{−3}$ and for 4 different electron temperatures in the range of 5000 K to 40000 K. These Stark broadening parameters are compared with our previous results (Ben Nessib, N. et al. 1996, Physica Scripta, 54, 603–613), where we calculated Stark broadening parameters for only four O I spectral lines and where Stark widths and shifts were compared with experimental and theoretical data available in the literature. In the present paper, we have also compared our results with the Griem's book (Griem, H. R. 1974, Spectral line broadening by plasmas) and VALD (Ryabchikova, T. et al. 2015, Physica Scripta, 90, 054005) values.
On the concept of spectral singularities
Indian Academy of Sciences (India)
Gusein Sh Guseinov
2009-09-01
In this paper, we discuss the concept of spectral singularities for non-Hermitian Hamiltonians. We exihibit spectral singularities of some well-known concrete Hamiltonians with complex-valued coefficients.
Global and local aspects of spectral actions
Iochum, Bruno; Vassilevich, Dmitri
2012-01-01
The principal object in noncommutatve geometry is the spectral triple consisting of an algebra A, a Hilbert space H, and a Dirac operator D. Field theories are incorporated in this approach by the spectral action principle, that sets the field theory action to Tr f(D^2/\\Lambda^2), where f is a real function such that the trace exists, and \\Lambda is a cutoff scale. In the low-energy (weak-field) limit the spectral action reproduces reasonably well the known physics including the standard model. However, not much is known about the spectral action beyond the low-energy approximation. In this paper, after an extensive introduction to spectral triples and spectral actions, we study various expansions of the spectral actions (exemplified by the heat kernel). We derive the convergence criteria. For a commutative spectral triple, we compute the heat kernel on the torus up the second order in gauge connection and consider limiting cases.
Spectral efficiency analysis of OCDMA systems
Institute of Scientific and Technical Information of China (English)
Hui Yan; Kun Qiu; Yun Ling
2009-01-01
We discuss several kinds of code schemes and analyze their spectral efficiency, code utilizing efficiency, and the maximal spectral efficiency. Error correction coding is used to increase the spectral efficiency, and it can avoid the spectral decrease with the increase of the length. The extended primer code (EPC) has the highest spectral efficiency in the unipolar code system. The bipolar code system has larger spectral efficiency than unipolar code system, but has lower code utilizing efficiency and the maximal spectral efficiency. From the numerical results, we can see that the spectral efficiency increases by 0.025 (b/s)/Hz when the bit error rate (BER) increases from 10-9 to 10-7.
Observational evidence for travelling wave modes bearing distance proportional shifts
Guruprasad, V
2015-01-01
Discrepancies of range between the Space Surveillance Network radars and the Deep Space Network in tracking the 1998 earth flyby of NEAR, and between ESA's Doppler and range data in Rosetta's 2009 flyby, reveal a consistent excess delay, or lag, equal to instantaneous one-way travel time in the telemetry signals. These lags readily explain all details of the flyby anomaly, and are shown to be symptoms of chirp d'Alembertian travelling wave solutions, relating to traditional sinusoidal waves by a rotation of the spectral decomposition due to the clock acceleration caused by the Doppler rates during the flybys. The lags thus relate to special relativity, but yield distance proportional shifts like those of cosmology at short range.
Calibration with near-continuous spectral measurements
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik
2001-01-01
In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....
USGS Spectral Library Version 7
Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.
2017-04-10
We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and
Control of the soliton self-frequency shift dynamics using topographic optical fibers.
Bendahmane, A; Vanvincq, O; Mussot, A; Kudlinski, A
2013-09-01
We demonstrate that the dynamics of the soliton self-frequency shift can be accurately controlled by using tapered optical fibers with optimized longitudinal profile shape (that we term topographic fibers). The tapering profiles tailored for a targeted soliton spectral trajectory through dispersion and nonlinearity management are determined by an inverse algorithm. This control is demonstrated experimentally with topographic photonic crystal fibers fabricated directly on a drawing tower.
Pneumatic, PLC Controlled, Automotive Gear Shifting Mechanism
Directory of Open Access Journals (Sweden)
Muntaser Momani
2010-05-01
Full Text Available In this study, a gear shifting mechanism was designed and applied to make the shifting process faster and less destructible for the driver. The new device must be reliable, has a small dimensions, low construction and maintenance cost. This paper aims to improve gear shifting process using devices as: a manual four speed gear box, four pneumatic double acting cylinders, four pneumatic two position five ways directional control valves, Programmable Logic Controller (PLC LOGO unit, an electrical motor, an electrical clutch, a belt, two pulleys, limit switches, push buttons, bulbs, a table (holder and power supply. According to suggested gear_ shifting method the driver can select the transmission gear ratio without moving his hands from the steering wheel by putting the gear shifting push buttons on the steering wheel. Using this method leaves to the driver the excitement of choosing the shifting moment.
Planck 2013 results. IX. HFI spectral response
DEFF Research Database (Denmark)
Planck Collaboration,; Ade, P. A. R.; Aghanim, N.;
2013-01-01
The Planck HFI spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests is to measure the relative spectral response (including the level of out-of-band s...
Spectral averaging techniques for Jacobi matrices
del Rio, Rafael; Schulz-Baldes, Hermann
2008-01-01
Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.
Empirical isotropic chemical shift surfaces
Energy Technology Data Exchange (ETDEWEB)
Czinki, Eszter; Csaszar, Attila G. [Eoetvoes University, Laboratory of Molecular Spectroscopy, Institute of Chemistry (Hungary)], E-mail: csaszar@chem.elte.hu
2007-08-15
A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles {phi} and {psi} characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS({phi},{psi}) surfaces obtained for the model peptides For-(l-Ala){sub n}-NH{sub 2}, with n = 1, 3, and 5, resulted in so-called empirical ICS({phi},{psi}) surfaces for all major nuclei of the 20 naturally occurring {alpha}-amino acids. Out of the many empirical surfaces determined, it is the 13C{sup {alpha}} ICS({phi},{psi}) surface which seems to be most promising for identifying major secondary structure types, {alpha}-helix, {beta}-strand, left-handed helix ({alpha}{sub D}), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring {alpha}-amino acids. Two-dimensional empirical 13C{sup {alpha}}-{sup 1}H{sup {alpha}} ICS({phi},{psi}) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins.
Filtered gradient reconstruction algorithm for compressive spectral imaging
Mejia, Yuri; Arguello, Henry
2017-04-01
Compressive sensing matrices are traditionally based on random Gaussian and Bernoulli entries. Nevertheless, they are subject to physical constraints, and their structure unusually follows a dense matrix distribution, such as the case of the matrix related to compressive spectral imaging (CSI). The CSI matrix represents the integration of coded and shifted versions of the spectral bands. A spectral image can be recovered from CSI measurements by using iterative algorithms for linear inverse problems that minimize an objective function including a quadratic error term combined with a sparsity regularization term. However, current algorithms are slow because they do not exploit the structure and sparse characteristics of the CSI matrices. A gradient-based CSI reconstruction algorithm, which introduces a filtering step in each iteration of a conventional CSI reconstruction algorithm that yields improved image quality, is proposed. Motivated by the structure of the CSI matrix, Φ, this algorithm modifies the iterative solution such that it is forced to converge to a filtered version of the residual ΦTy, where y is the compressive measurement vector. We show that the filtered-based algorithm converges to better quality performance results than the unfiltered version. Simulation results highlight the relative performance gain over the existing iterative algorithms.
SHIFT: Shared Information Framework and Technology Concept
2009-02-01
As a result, the information has often been unsystematically gathered, has often been insufficient to meet needs, and in some cases has even led to...unnecessary risk -taking and overlapping or counterproductive actions. SHIFT differs from most of the earlier initiatives because of its emphasis on a...idea is that the SHIFT community will constitute a self- correcting environment. The SHIFT philosophy holds that the risk of false information is
Night shift work and modifiable lifestyle factors
Directory of Open Access Journals (Sweden)
Beata Pepłońska
2014-10-01
Full Text Available Objectives: Night shift work has been linked to some chronic diseases. Modification of lifestyle by night work may partially contribute to the development of these diseases, nevertheless, so far epidemiological evidence is limited. The aim of the study was to explore association between night shift work and lifestyle factors using data from a cross-sectional study among blue-collar workers employed in industrial plants in Łódź, Poland. Material and Methods: The anonymous questionnaire was self-administered among 605 employees (236 women and 369 men, aged 35 or more - 434 individuals currently working night shifts. Distribution of the selected lifestyle related factors such as smoking, alcohol drinking, physical activity, body mass index (BMI, number of main meals and the hour of the last meal was compared between current, former, and never night shift workers. Adjusted ORs or predicted means were calculated, as a measure of the associations between night shift work and lifestyle factors, with age, marital status and education included in the models as covariates. Results: Recreational inactivity (defined here as less than one hour per week of recreational physical activity was associated with current night shift work when compared to never night shift workers (OR = 2.43, 95% CI: 1.13-5.22 among men. Alcohol abstinence and later time of the last meal was associated with night shift work among women. Statistically significant positive relationship between night shift work duration and BMI was observed among men (p = 0.029. Conclusions: This study confirms previous studies reporting lower exercising among night shift workers and tendency to increase body weight. This finding provides important public health implication for the prevention of chronic diseases among night shift workers. Initiatives promoting physical activity addressed in particular to the night shift workers are recommended.
Shifting currents: Progress, setbacks, and shifts in policy and practice
,; Dunning, Charles; Robertson, Dale
2016-01-01
clean water future. More than a decade has passed since our first statewide WOW conversation and the report that captured recommendations from its participants: Waters of Wisconsin: The Future of Our Aquatic Ecosystems and Resources. Drawing from a diverse and growing set of stakeholders from across the state, the Wisconsin Academy initiated a new conversation in 2012 (known as WOW II) to assess progress in regard to our 2003 recommendations. We also sought to review the status of waters in Wisconsin today. The result of this renewed conversation is Shifting Currents: Progress, Setbacks, and Shifts in Policy and Practice. The new report assesses progress in brief, and explores in greater depth the continuing and emerging challenges to water quality, supply, and aquatic ecosystems in Wisconsin.In this report, we first review the context and frameworks for public decision-making about water and then examine some of the root causes—or “drivers”—and ecological stressors that underlie many of the symptoms we see in the form of pollution or ecosystem degradation in Wisconsin. This is followed by a summary of current water issues, many of which had been identified in the 2003 report and remain relevant today. We examine progress since 2003 but also setbacks, and discuss issues that we are likely to continue to face in the coming decades, including controlling agricultural runoff, mitigating climate change and grappling with its effects on the state’s waters, protecting groundwater from bacterial contamination and other pollutants, and preventing groundwater depletion. We also attempt to anticipate issues on the horizon. We offer a deeper look at some particular challenges, such as phosphorus pollution and groundwater contamination. We then consider the current decision-making framework and how it is shaping our capacity to respond to water challenges in Wisconsin. Finally, we offer recommendations and identify opportunities to safeguard Wisconsin’s waters in the
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-03-01
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in
Unbounded subnormal weighted shifts on directed trees
Budzynski, Piotr; Jung, Il Bong; Stochel, Jan
2011-01-01
A new method of verifying the subnormality of unbounded Hilbert space operators based on an approximation technique is proposed. Diverse sufficient conditions for subnormality of unbounded weighted shifts on directed trees are established. An approach to this issue via consistent systems of probability measures is invented. The role played by determinate Stieltjes moment sequences is elucidated. Lambert's characterization of subnormality of bounded operators is shown to be valid for unbounded weighted shifts on directed trees that have sufficiently many quasi-analytic vectors, which is a new phenomenon in this area. The cases of classical weighted shifts and weighted shifts on leafless directed trees with one branching vertex are studied.
Goos-Haenchen shift in complex crystals
Energy Technology Data Exchange (ETDEWEB)
Longhi, Stefano; Della Valle, Giuseppe; Staliunas, Kestutis [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Departament de Fisica i Enginyeria Nuclear, Instituci Catalana de Recerca i Estudis Avanats (ICREA), Universitat Politcnica de Catalunya, Colom 11, E-08222 Terrassa, Barcelona (Spain)
2011-10-15
The Goos-Haenchen (GH) effect for wave scattering from complex PT-symmetric periodic potentials (complex crystals) is theoretically investigated, with specific reference to optical GH shift in photonic crystal slabs with a sinusoidal periodic modulation of both real and imaginary parts of the dielectric constant. The analysis highlights some distinct and rather unique features as compared to the GH shift found in ordinary crystals. In particular, as opposed to GH shift in ordinary crystals, which is large at the band gap edges, in complex crystals the GH shift can be large inside the reflection (amplification) band and becomes extremely large as the PT symmetry-breaking threshold is approached.
Kobayashi, Hiroyuki
2012-01-01
Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.
Sharp Upper and Lower Bounds for the Laplacian Spectral Radius and the Spectral Radius of Graphs
Institute of Scientific and Technical Information of China (English)
Ji-ming Guo
2008-01-01
In this paper, sharp upper bounds for the Laplacian spectral radius and the spectral radius of graphs are given, respectively. We show that some known bounds can be obtained from our bounds. For a bipartite graph G, we also present sharp lower bounds for the Laplacian spectral radius and the spectral radius,respectively.
Planar-waveguide integrated spectral comparator.
Mossberg, T W; Iazikov, D; Greiner, C
2004-06-01
A cost-effective yet robust and versatile dual-channel spectral comparator is presented. The silica-on-silicon planar-waveguide integrated device includes two holographic Bragg-grating reflectors (HBRs) with complementary spectral transfer functions. Output comprises projections of input signal spectra onto the complementary spectral channels. Spectral comparators may be useful in optical code-division multiplexing, optical packet decoding, spectral target recognition, and the identification of molecular spectra. HBRs may be considered to be mode-specific photonic crystals.
Spectral Engineering with Coupled Microcavities: Active Control of Resonant Mode-Splitting
Souza, Mario C M M; Barea, Luis A M; von Zuben, Antonio A G; Wiederhecker, Gustavo S; Frateschi, Newton C
2015-01-01
Optical mode-splitting is an efficient tool to shape and fine-tune the spectral response of resonant nanophotonic devices. The active control of mode-splitting, however, is either small or accompanied by undesired resonance shifts, often much larger than the resonance-splitting. We report a control mechanism that enables reconfigurable and widely tunable mode-splitting while efficiently mitigating undesired resonance shifts. This is achieved by actively controlling the excitation of counter-traveling modes in coupled resonators. The transition from a large splitting (80 GHz) to a single-notch resonance is demonstrated using low power microheaters (35 mW). We show that the spurious resonance-shift in our device is only limited by thermal crosstalk and resonance-shift-free splitting control may be achieved.
Spectral clustering for TRUS images
Directory of Open Access Journals (Sweden)
Salama Magdy MA
2007-03-01
Full Text Available Abstract Background Identifying the location and the volume of the prostate is important for ultrasound-guided prostate brachytherapy. Prostate volume is also important for prostate cancer diagnosis. Manual outlining of the prostate border is able to determine the prostate volume accurately, however, it is time consuming and tedious. Therefore, a number of investigations have been devoted to designing algorithms that are suitable for segmenting the prostate boundary in ultrasound images. The most popular method is the deformable model (snakes, a method that involves designing an energy function and then optimizing this function. The snakes algorithm usually requires either an initial contour or some points on the prostate boundary to be estimated close enough to the original boundary which is considered a drawback to this powerful method. Methods The proposed spectral clustering segmentation algorithm is built on a totally different foundation that doesn't involve any function design or optimization. It also doesn't need any contour or any points on the boundary to be estimated. The proposed algorithm depends mainly on graph theory techniques. Results Spectral clustering is used in this paper for both prostate gland segmentation from the background and internal gland segmentation. The obtained segmented images were compared to the expert radiologist segmented images. The proposed algorithm obtained excellent gland segmentation results with 93% average overlap areas. It is also able to internally segment the gland where the segmentation showed consistency with the cancerous regions identified by the expert radiologist. Conclusion The proposed spectral clustering segmentation algorithm obtained fast excellent estimates that can give rough prostate volume and location as well as internal gland segmentation without any user interaction.
In-line phase shift tomosynthesis
Energy Technology Data Exchange (ETDEWEB)
Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.; Donnelly, Edwin F. [Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232 (United States)
2013-08-15
Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS with a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.
Brain cancer probed by native fluorescence and stokes shift spectroscopy
Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.
2012-12-01
Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).
Carboxylate shifts steer interquinone electron transfer in photosynthesis.
Chernev, Petko; Zaharieva, Ivelina; Dau, Holger; Haumann, Michael
2011-02-18
Understanding the mechanisms of electron transfer (ET) in photosynthetic reaction centers (RCs) may inspire novel catalysts for sunlight-driven fuel production. The electron exit pathway of type II RCs comprises two quinone molecules working in series and in between a non-heme iron atom with a carboxyl ligand (bicarbonate in photosystem II (PSII), glutamate in bacterial RCs). For decades, the functional role of the iron has remained enigmatic. We tracked the iron site using microsecond-resolution x-ray absorption spectroscopy after laser-flash excitation of PSII. After formation of the reduced primary quinone, Q(A)(-), the x-ray spectral changes revealed a transition (t½ ≈ 150 μs) from a bidentate to a monodentate coordination of the bicarbonate at the Fe(II) (carboxylate shift), which reverted concomitantly with the slower ET to the secondary quinone Q(B). A redox change of the iron during the ET was excluded. Density-functional theory calculations corroborated the carboxylate shift both in PSII and bacterial RCs and disclosed underlying changes in electronic configuration. We propose that the iron-carboxyl complex facilitates the first interquinone ET by optimizing charge distribution and hydrogen bonding within the Q(A)FeQ(B) triad for high yield Q(B) reduction. Formation of a specific priming intermediate by nuclear rearrangements, setting the stage for subsequent ET, may be a common motif in reactions of biological redox cofactors.
Spectral Methods for Magnetic Anomalies
Parker, R. L.; Gee, J. S.
2013-12-01
Spectral methods, that is, those based in the Fourier transform, have long been employed in the analysis of magnetic anomalies. For example, Schouten and MaCamy's Earth filter is used extensively to map patterns to the pole, and Parker's Fourier transform series facilitates forward modeling and provides an efficient algorithm for inversion of profiles and surveys. From a different, and perhaps less familiar perspective, magnetic anomalies can be represented as the realization of a stationary stochastic process and then statistical theory can be brought to bear. It is vital to incorporate the full 2-D power spectrum, even when discussing profile data. For example, early analysis of long profiles failed to discover the small-wavenumber peak in the power spectrum predicted by one-dimensional theory. The long-wavelength excess is the result of spatial aliasing, when energy leaks into the along-track spectrum from the cross-track components of the 2-D spectrum. Spectral techniques may be used to improve interpolation and downward continuation of survey data. They can also evaluate the reliability of sub-track magnetization models both across and and along strike. Along-strike profiles turn out to be surprisingly good indicators of the magnetization directly under them; there is high coherence between the magnetic anomaly and the magnetization over a wide band. In contrast, coherence is weak at long wavelengths on across-strike lines, which is naturally the favored orientation for most studies. When vector (or multiple level) measurements are available, cross-spectral analysis can reveal the wavenumber interval where the geophysical signal resides, and where noise dominates. One powerful diagnostic is that the phase spectrum between the vertical and along-path components of the field must be constant 90 degrees. To illustrate, it was found that on some very long Project Magnetic lines, only the lowest 10% of the wavenumber band contain useful geophysical signal. In this
Numerical relativity and spectral methods
Grandclement, P.
2016-12-01
The term numerical relativity denotes the various techniques that aim at solving Einstein's equations using computers. Those computations can be divided into two families: temporal evolutions on the one hand and stationary or periodic solutions on the other one. After a brief presentation of those two classes of problems, I will introduce a numerical tool designed to solve Einstein's equations: the KADATH library. It is based on the the use of spectral methods that can reach high accuracy with moderate computational resources. I will present some applications about quasicircular orbits of black holes and boson star configurations.
Spectral Properties of Schwarzschild Instantons
Jante, Rogelio
2016-01-01
We study spectral properties of the Dirac and scalar Laplace operator on the Euclidean Schwarzschild space, both twisted by a family of abelian connections with anti-self-dual curvature. We show that the zero-modes of the gauged Dirac operator, first studied by Pope, take a particularly simple form in terms of the radius of the Euclidean time orbits, and interpret them in the context of geometric models of matter. For the gauged Laplace operator, we study the spectrum of bound states numerically and observe that it can be approximated with remarkable accuracy by that of the exactly solvable gauged Laplace operator on the Euclidean Taub-NUT space.
Spectral Methods in Spatial Statistics
Directory of Open Access Journals (Sweden)
Kun Chen
2014-01-01
Full Text Available When the spatial location area increases becoming extremely large, it is very difficult, if not possible, to evaluate the covariance matrix determined by the set of location distance even for gridded stationary Gaussian process. To alleviate the numerical challenges, we construct a nonparametric estimator called periodogram of spatial version to represent the sample property in frequency domain, because periodogram requires less computational operation by fast Fourier transform algorithm. Under some regularity conditions on the process, we investigate the asymptotic unbiasedness property of periodogram as estimator of the spectral density function and achieve the convergence rate.
Science with CMB spectral distortions
Chluba, Jens
2014-01-01
The measurements of COBE/FIRAS have shown that the CMB spectrum is extremely close to a perfect blackbody. There are, however, a number of processes in the early Universe that should create spectral distortions at a level which is within reach of present day technology. In this talk, I will give a brief overview of recent theoretical and experimental developments, explaining why future measurements of the CMB spectrum will open up an unexplored window to early-universe and particle physics with possible non-standard surprises but also several guaranteed signals awaiting us.
[Spectral emissivity of thin films].
Zhong, D
2001-02-01
In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.
Subnanosecond spectral diffusion measurement using photon correlation
Sallen, Gregory; Aichele, Thomas; André, Régis; Besombes, Lucien; Bougerol, Catherine; Richard, Maxime; Tatarenko, Serge; Kheng, Kuntheak; Poizat, Jean-Philippe; 10.1038/nphoton.2010.174
2012-01-01
Spectral diffusion is a result of random spectral jumps of a narrow line as a result of a fluctuating environment. It is an important issue in spectroscopy, because the observed spectral broadening prevents access to the intrinsic line properties. However, its characteristic parameters provide local information on the environment of a light emitter embedded in a solid matrix, or moving within a fluid, leading to numerous applications in physics and biology. We present a new experimental technique for measuring spectral diffusion based on photon correlations within a spectral line. Autocorrelation on half of the line and cross-correlation between the two halves give a quantitative value of the spectral diffusion time, with a resolution only limited by the correlation set-up. We have measured spectral diffusion of the photoluminescence of a single light emitter with a time resolution of 90 ps, exceeding by four orders of magnitude the best resolution reported to date.
Language identification using spectral and prosodic features
Rao, K Sreenivasa; Maity, Sudhamay
2015-01-01
This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stress features for discriminating the languages. They present how the proposed spectral and prosodic features capture the language specific information from two complementary aspects, showing how the development of language identification (LID) system using the combination of spectral and prosodic features will enhance the accuracy of identification as well as improve the robustness of the system. This book provides the methods to extract the spectral and prosodic features at various levels, and also suggests the appropriate models for developing robust LID systems according to specific spectral and prosodic features. Finally, the book discuss about various combinations of spectral and prosodic features, and the desire...
Planck 2013 results. IX. HFI spectral response
Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A
2014-01-01
The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Ver...
The photopic spectral sensitivity of a dichromatic teleost fish (Perca fluviatilis).
Cameron, N E
1982-01-01
Spectral sensitivity curves for the freshwater perch were measured using an operant procedure. Sensitivity peaks were found at 530-560 nm and 660-680 nm. Compared with perch cone pigments (P530(2) and P617(2)), the red-shift of the maximum long wave length sensitivity suggested that opponent interactions between the cone types were responsible for the shape of the curve. The absorptions of the lens and yellow cornea were measured, and used to correct the sensitivity curve. It is suggested that the yellow cornea's function depends on its spectral selectivity. Like goldfish, perch show some aberrant high sensitivity around 400 nm.
Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger
2012-08-01
Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (contaminants at BTEX contaminated sites. Copyright © 2012 Elsevier B.V. All rights reserved.
Boscencu, Rica
2012-05-10
A series of A₃B and A₄ type mesoporphyrinic complexes were synthesized with superior yields using microwave irradiation under solvent-free conditions. The structures of the complexes were confirmed using elemental analysis, FT-IR, UV-Vis, EPR and NMR spectral data. The influence of environmental polarity on spectral properties of the mesoporphyrinic complexes was investigated. The obtained results indicate that the shape of absorption and fluorescence spectra does not depend on the solvent polarity under the experimental conditions used. The small shifts of the absorption and emission maximums that occur by increasing of solvent polarity reflects the physical interaction between the porphyrinic substituents and the solvent molecules.
Geometric phase and o-mode blue shift in a chiral anisotropic medium inside a Fabry-P\\'erot cavity
Timofeev, I V; Sutormin, V S; Myslivets, S A; Arkhipkin, V G; Vetrov, S Ya; Lee, W; Zyryanov, V Ya
2015-01-01
Anomalous spectral shift of transmission peaks is observed in a Fabry--P\\'erot cavity filled with a chiral anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman method and geometrically using the generalized Mauguin--Poincar\\'e rolling cone method. The $o$-mode blue shift is measured for a 4-methoxybenzylidene-4'-$n$-butylaniline twisted--nematic layer inside the Fabry--P\\'erot cavity. The twist is electrically induced due to the homeoplanar--twisted configuration transition in an ionic-surfactant-doped liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.
Effects of extended work shifts and shift work on patient safety, productivity, and employee health.
Keller, Simone M
2009-12-01
It is estimated 1.3 million health care errors occur each year and of those errors 48,000 to 98,000 result in the deaths of patients (Barger et al., 2006). Errors occur for a variety of reasons, including the effects of extended work hours and shift work. The need for around-the-clock staff coverage has resulted in creative ways to maintain quality patient care, keep health care errors or adverse events to a minimum, and still meet the needs of the organization. One way organizations have attempted to alleviate staff shortages is to create extended work shifts. Instead of the standard 8-hour shift, workers are now working 10, 12, 16, or more hours to provide continuous patient care. Although literature does support these staffing patterns, it cannot be denied that shifts beyond the traditional 8 hours increase staff fatigue, health care errors, and adverse events and outcomes and decrease alertness and productivity. This article includes a review of current literature on shift work, the definition of shift work, error rates and adverse outcomes related to shift work, health effects on shift workers, shift work effects on older workers, recommended optimal shift length, positive and negative effects of shift work on the shift worker, hazards associated with driving after extended shifts, and implications for occupational health nurses.
Language Shift in a Singapore Family.
Gupta, Anthea Fraser; Yeok, Siew Pui
1995-01-01
Discusses the major language shift in Singapore from the familial use of varieties of Chinese other than Mandarin towards the languages of education, English and Mandarin. An ethnographic study is presented of a Singaporean Chinese family that has moved from Cantonese to English, and the underlying pressures leading to this shift are examined. (19…
On the calculation of Mossbauer isomer shift
Filatov, Michael
2007-01-01
A quantum chemical computational scheme for the calculation of isomer shift in Mossbauer spectroscopy is suggested. Within the described scheme, the isomer shift is treated as a derivative of the total electronic energy with respect to the radius of a finite nucleus. The explicit use of a finite nuc
Lamb Shift in Nonrelativistic Quantum Electrodynamics.
Grotch, Howard
1981-01-01
The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)
Pole Inflation - Shift Symmetry and Universal Corrections
Broy, Benedict J.; Galante, Mario; Roest, Diederik; Westphal, Alexander
2015-01-01
An appealing explanation for the Planck data is provided by inflationary models with a singular non-canonical kinetic term: a Laurent expansion of the kinetic function translates into a potential with a nearly shift-symmetric plateau in canonical fields. The shift symmetry can be broken at large
Multiscale regime shifts and planetary boundaries
Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.
2013-01-01
Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a ti
Characteristics of Menstrual Cycle in Shift Workers
Attarchi, Mirsaeed; Darkhi, Hamidreza; Kashanian, Maryam; khodarahmian, Mahshad; Dolati, Mandana; Ghaffari, Mostafa; Mirzamohammadi, Elham; Mohammadi, Saber
2013-01-01
Background: In this study, the characteristics of menstrual cycle in shift workers employed in the pharmaceutical industry are investigated. Method: This study was conducted in a pharmaceutical industrial complex in Tehran in 2012. 406 female workers in packaging units were studied on the menstrual cycle characteristics. The studied workers were divided into two groups of shift workers and non-shift workers and were compared in terms of the frequency of menstrual disorder (short-term cycle, long-term cycle, irregular cycle and bleeding during menstrual cycle) as well as hormonal values (FSH, LH, TSH, and Prolactin). Results: The odds ratio (OR) for menstrual disorder in the shift workers was 5.54 (95% CI=2.78-11.02) compared to the non-shift workers. The mean difference of hormonal values (except prolactin) between shift workers and non-shift workers was not significant (P> 0.05). Conclusion: This study suggests that shift work may disrupt the menstrual cycle. PMID:23618486
Social Change and Language Shift: South Africa.
Kamwangamalu, Nkonko M.
2003-01-01
Examines language shift from majority African languages, such as Sotho, Xhosa, and Zulu to English in South Africa. Examines the extent to which sociopolitical changes that have taken place in South Africa have impacted everyday linguistic interaction and have contributed to language shift from the indigenous African language to English,…
Machiavellianism, Discussion Time, and Group Shift
Lamm, Helmut; Myers, David G.
1976-01-01
Social-emotional and rational-cognitive explanations of group risky shift on choice dilemmas (hypothetical life situations) were evaluated by comparing shift in groups of low Mach (emotional) and high Mach (non-emotional) subjects. Effects of Machiavellian beliefs on social functioning are examined. Group composition was not observed to affect…
Gain Shift Corrections at Chi-Nu
Energy Technology Data Exchange (ETDEWEB)
Brown, Tristan Brooks [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Massachusetts, Lowell, MA (United States). Dept. of Physics and Applied Physics; Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-30
Ambient conditions have the potential to cause changes in liquid scintillator detector gain that vary with time and temperature. These gain shifts can lead to poor resolution in both energy as well as pulse shape discrimination. In order to correct for these shifts in the Chi-Nu high energy array, a laser system has been developed for calibration of the pulse height signals.
Set Shifting Among Adolescents with Anorexia Nervosa
Fitzpatrick, Kathleen Kara; Darcy, Alison; Colborn, Danielle; Gudorf, Caroline; Lock, James
2012-01-01
Objective Set shifting difficulties are documented for adults with anorexia nervosa (AN). However, AN typically onsets in adolescents and it is unclear if set-shifting difficulties are a result of chronic AN or present earlier in its course. This study examined whether adolescents with short duration AN demonstrated set shifting difficulties compared to healthy controls (HC). Method Data on set shifting collected from the Delis-Kaplan Executive Functioning System (DKEFS) and Wisconsin Card Sort Task (WCST) as well as eating psychopathology were collected from 32 adolescent inpatients with AN and compared to those from 22 HCs. Results There were no differences in set-shifting in adolescents with AN compared to HCs on most measures. Conclusion The findings suggest that set-shifting difficulties in AN may be a consequence of AN. Future studies should explore set-shifting difficulties in a larger sample of adolescents with the AN to determine if there is sub-set of adolescents with these difficulties and determine any relationship of set-shifting to the development of a chronic from of AN. PMID:22692985
Hippocampal theta frequency shifts and operant behaviour
Lopes da Silva, F.H.; Kamp, A.
1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and
Convective shifts of iron lines in the spectrum of the solar photosphere
Sheminova, V A
2010-01-01
The influence of the convective structure of the solar photosphere on the shifts of spectral lines of iron was studied. Line profiles in the visible and infrared spectrum were synthesized with the use of 2-D time-dependent hydrodynamic solar model atmospheres. The dependence of line shifts on excitation potential, wavelength, and line strength was analyzed, along with the depression contribution functions. The line shifts were found to depend on the location of the line formation region in convective cells and the difference between the line depression contributions from granules and intergranular lanes. In visible spectrum the weak and moderate lines are formed deep in the photosphere. Their effective line formation region is located in the central parts of granules, which make the major contribution to the absorption of spatially unresolved lines. The cores of strong lines are formed in upper photospheric layers where is formed reversed granulation due to convection reversal and physical conditions change d...
A new method for detecting velocity shifts and distortions between optical spectra
Evans, Tyler M
2013-01-01
Recent quasar spectroscopy from the VLT and Keck telescopes suggests that fundamental constants may not actually be constant. To better confirm or refute this result, systematic errors between telescopes must be minimized. We present a new method to directly compare spectra of the same object and measure any velocity shifts between them. This method allows for the discovery of wavelength-dependent velocity shifts between spectra, i.e. velocity distortions, that could produce spurious detections of cosmological variations in fundamental constants. This "direct comparison" method has several advantages over alternative techniques: it is model-independent (cf. line-fitting approaches), blind, in that spectral features do not need to be identified beforehand, and it produces meaningful uncertainty estimates for the velocity shift measurements. In particular, we demonstrate that, when comparing echelle-resolution spectra with unresolved absorption features, the uncertainty estimates are reliable for signal-to-nois...
Shift and broadening of emission lines in Nd$^{3+}$:YAG laser crystal influenced by input energy
Indian Academy of Sciences (India)
POURMAND SEYED EBRAHIM; REZAEI GHASEM
2016-06-01
Spectroscopic properties of the flashlamp-pumped Nd$^{3+}$:YAG laser as a function of input energy were studied over the range of 18–75 J. The spectral widths and shifts of quasi-three-level and four-level inter-Stark emissions within the respective intermanifold transitions of $^4$F$_{3/2}$ $\\rightarrow$ $^{4}$I$_{9/2} $ and $^{4}$F$_{3/2}$ $\\rightarrow$ $^{4}$I$_{11/2}$ were investigated. The emission lines of $^{4}$F$_{3/2}$ $\\rightarrow$ $^{4}$I$_{9/2}$ shifted towards longer wavelength (red shift) and broadened, while the positions and linewidths of the $^{4}$F$_{3/2}$ $\\rightarrow$ $^{4}$I$_{11/2}$ transition lines remained constant by increasing the pumping energy. This is attributed to the thermal population as well as one-phonon and multiphonon emission processes in the ground state. This phenomenon degrades the output performance of the lasers.
Does workplace health promotion reach shift workers?
DEFF Research Database (Denmark)
Nabe-Nielsen, Kirsten; Garde, Anne Helene; Clausen, Thomas;
2015-01-01
OBJECTIVES: One reason for health disparities between shift and day workers may be that workplace health promotion does not reach shift workers to the same extent as it reaches day workers. This study aimed to investigate the association between shift work and the availability of and participation...... in workplace health promotion. METHODS: We used cross-sectional questionnaire data from a large representative sample of all employed people in Denmark. We obtained information on the availability of and participation in six types of workplace health promotion. We also obtained information on working hours, ie......). RESULTS: In the general working population, fixed evening and fixed night workers, and employees working variable shifts including night work reported a higher availability of health promotion, while employees working variable shifts without night work reported a lower availability of health promotion...
Design principles for shift current photovoltaics.
Cook, Ashley M; M Fregoso, Benjamin; de Juan, Fernando; Coh, Sinisa; Moore, Joel E
2017-01-25
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W(-1). Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.
Quality of life in shift work syndrome.
Puca, F M; Perrucci, S; Prudenzano, M P; Savarese, M; Misceo, S; Perilli, S; Palumbo, M; Libro, G; Genco, S
1996-01-01
Air Force radar controllers represent an excellent example of night shift workers, as they are obliged to demonstrate perfect alertness during working hours. We set out: a) to assess the quality of life in these shift workers; b) to identify those with shift work syndrome and c) to evaluate the possible effects of triazolam both on their quality of life and sleep. The results reveal an impairment of the quality of life in shift workers, independently of the presence of a circadian rhythm sleep disorder. Quality of life was more severely impaired in subjects with circadian rhythm sleep disorder. Hypnotic therapy brought about an improvement both in the sleep disorder and in the quality of life of subjects affected by shift work syndrome. Selective alertness tests failed to demonstrate any "sedative carry-over" in the treated patients.
World Manufacturing Industry: Structural and Spatial Shifts
Directory of Open Access Journals (Sweden)
IRINA RODIONOVA
2012-01-01
Full Text Available The article estimates countries’ and regions’ posit ions on the world ranking hierarchy in the manufacturing industry. The research is focusing on the characteristic of structural and spatial shift s of the world manufacturing industry. These trends have led to the restructuring of the world economy and main shifts in the manufacturing locations both at regional and global levels occurred. Developing countries have got a great chance to become active players in the world economy. Structural shifts occ ur suddenly both in manufacturing location and in the industrial composition in the recent decades. There have been shifts in the HT-industry compositi on. The shift to developing Asian countries is reve aled.
Design principles for shift current photovoltaics
Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando; Coh, Sinisa; Moore, Joel E.
2017-01-01
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W-1. Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.
Effect of radiation damping on the spectral response of plasmonic components.
Kats, Mikhail A; Yu, Nanfang; Genevet, Patrice; Gaburro, Zeno; Capasso, Federico
2011-10-24
We explore the relationship between the near-field enhancement, absorption, and scattering spectra of localized plasmonic elements. A simple oscillator model including both internal and radiative damping is developed, and is shown to accurately capture the near- and far-field spectral features of linear optical antennas, including their phase response. At wavelengths away from the interband transitions of the metal, we expect the absorption of a plasmonic element to be red-shifted relative to the scattering, and the near-field to be red-shifted relative to both.
Directory of Open Access Journals (Sweden)
Colene Trent
2014-01-01
Full Text Available The theory of compensating differentials asserts that night shift workers should receive compensating wage differentials due to undesirable work conditions. In weak local economies, workers may have difficulty finding jobs; thus, these workers might be more likely to accept night shift work and be less concerned with the size of the compensating differential for night shifts. Using CPS data from 2001, this paper employs maximum likelihood estimation of an endogenous switching regression model to analyze wages of day and night shift workers and shift choice. The findings indicate the presence of selection bias, thus emphasizing the importance of correcting for self-selection into night shifts. The average of the estimated wage differentials for night shift work is negative for the overall sample, with differentials varying by worker characteristics. The shift differential is found to be a statistically significant predictor of shift choice, indicating that shift premiums play an important role in motivating individuals to select night shift work. Using two measures of local economic conditions and a new method of analyzing interaction effects in the context of an endogenous switching regression model, this paper finds limited evidence that weak local economic conditions lessen the impact of compensating differentials on shift choice.
Directory of Open Access Journals (Sweden)
Hidehiko eOkamoto
2012-05-01
Full Text Available Natural sounds contain complex spectral components, which are temporally modulated as time-varying signals. Recent studies have suggested that the auditory system encodes spectral and temporal sound information differently. However, it remains unresolved how the human brain processes sounds containing both spectral and temporal changes. In the present study, we investigated human auditory evoked responses elicited by spectral, temporal, and spectral-temporal sound changes by means of magnetoencephalography (MEG. The auditory evoked responses elicited by the spectral-temporal change were very similar to those elicited by the spectral change, but those elicited by the temporal change were delayed by 30 – 50 ms and differed from the others in morphology. The results suggest that human brain responses corresponding to spectral sound changes precede those corresponding to temporal sound changes, even when the spectral and temporal changes occur simultaneously.
Scalar Field Theories with Polynomial Shift Symmetries
Griffin, Tom; Horava, Petr; Yan, Ziqi
2014-01-01
We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree $P$ in spatial coordinates. These "polynomial shift symmetries" in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree $P$, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree $P$? To answer this (essen...
Spectral compression of single photons
Lavoie, Jonathan; Wright, Logan G; Fedrizzi, Alessandro; Resch, Kevin J
2013-01-01
Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generatio...
A Spectral Canonical Electrostatic Algorithm
Webb, Stephen D
2015-01-01
Studying single-particle dynamics over many periods of oscillations is a well-understood problem solved using symplectic integration. Such integration schemes derive their update sequence from an approximate Hamiltonian, guaranteeing that the geometric structure of the underlying problem is preserved. Simulating a self-consistent system over many oscillations can introduce numerical artifacts such as grid heating. This unphysical heating stems from using non-symplectic methods on Hamiltonian systems. With this guidance, we derive an electrostatic algorithm using a discrete form of Hamilton's Principle. The resulting algorithm, a gridless spectral electrostatic macroparticle model, does not exhibit the unphysical heating typical of most particle-in-cell methods. We present results of this using a two-body problem as an example of the algorithm's energy- and momentum-conserving properties.
Active spectral imaging and mapping
Steinvall, Ove
2014-04-01
Active imaging and mapping using lasers as illumination sources have been of increasing interest during the last decades. Applications range from defense and security, remote sensing, medicine, robotics, and others. So far, these laser systems have mostly been based on a fix wavelength laser. Recent advances in lasers enable emission of tunable, multiline, or broadband emission, which together with the development of array detectors will extend the capabilities of active imaging and mapping. This paper will review some of the recent work on active imaging mainly for defense and security and remote sensing applications. A short survey of basic lidar relations and present fix wavelength laser systems is followed by a review of the benefits of adding the spectral dimension to active and/or passive electro-optical systems.
Spectral emissivity of cirrus clouds
Beck, Gordon H.; Davis, John M.; Cox, Stephen K.
1993-01-01
The inference of cirrus cloud properties has many important applications including global climate studies, radiation budget determination, remote sensing techniques and oceanic studies from satellites. Data taken at the Parsons Kansas site during the FIRE II project are used for this study. On November 26 there were initially clear sky conditions gradually giving way to a progressively thickening cirrus shield over a period of a few hours. Interferometer radiosonde and lidar data were taken throughout this event. Two techniques are used to infer the downward spectral emittance of the observed cirrus layer. One uses only measurements and the other involves measurements and FASCODE III calculations. FASCODE III is a line-by line radiance/transmittance model developed at the Air Force Geophysics Laboratory.
Biswas, Deblina; Vasudevan, Srivathsan; Chen, George C. K.; Sharma, Norman
2017-02-01
Formation of blood clots, called thrombus, can happen due to hyper-coagulation of blood. Thrombi, while moving through blood vessels can impede blood flow, an important criterion for many critical diseases like deep vein thrombosis and heart attacks. Understanding mechanical properties of clot formation is vital for assessment of severity of thrombosis and proper treatment. However, biomechanics of thrombus is less known to clinicians and not very well investigated. Photoacoustic (PA) spectral response, a non-invasive technique, is proposed to investigate the mechanism of formation of blood clots through elasticity and also differentiate clots from blood. Distinct shift (increase in frequency) of the PA response dominant frequency during clot formation is reported. In addition, quantitative differentiation of blood clots from blood has been achieved through parameters like dominant frequency and spectral energy of PA spectral response. Nearly twofold increases in dominant frequency in blood clots compared to blood were found in the PA spectral response. Significant changes in energy also help in quantitatively differentiating clots from blood, in the blood. Our results reveal that increase in density during clot formation is reflected in the PA spectral response, a significant step towards understanding the mechanobiology of thrombus formation. Hence, the proposed tool, in addition to detecting thrombus formation, could reveal mechanical properties of the sample through quantitative photoacoustic spectral parameters.
Early detection of ecosystem regime shifts
DEFF Research Database (Denmark)
Lindegren, Martin; Dakos, Vasilis; Groeger, Joachim P.;
2012-01-01
methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face......Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited...
Forecasting interest rates with shifting endpoints
DEFF Research Database (Denmark)
Van Dijk, Dick; Koopman, Siem Jan; Wel, Michel van der
2014-01-01
We consider forecasting the term structure of interest rates with the assumption that factors driving the yield curve are stationary around a slowly time-varying mean or ‘shifting endpoint’. The shifting endpoints are captured using either (i) time series methods (exponential smoothing) or (ii......) long-range survey forecasts of either interest rates or inflation and output growth, or (iii) exponentially smoothed realizations of these macro variables. Allowing for shifting endpoints in yield curve factors provides substantial and significant gains in out-of-sample predictive accuracy, relative...... to stationary and random walk benchmarks. Forecast improvements are largest for long-maturity interest rates and for long-horizon forecasts....
Limits to superweak amplification of beam shifts
Götte, Jörg B
2013-01-01
The magnitudes of beam shifts (Goos-H\\"anchen and Imbert-Fedorov, spatial and angular) are greatly enhanced when a reflected light beam is postselected by an analyzer, by analogy with superweak measurements in quantum theory. Particularly strong enhancements can be expected close to angles at which no light is transmitted for a fixed initial and final polarizations. We derive a formula for the angular and spatial shifts at such angles (which includes the Brewster angle), and we show that their maximum size is limited by higher-order terms from the reflection coefficients occurring in the Artmann shift formula.
Competition for FDI and Profit Shifting
DEFF Research Database (Denmark)
Ma, Jie; Raimondos-Møller, Pascalis
When countries compete for the location of a new multinational plant they need to be aware of the profit shifting opportunities this new plant creates for the global multinational firm. By modelling explicitly the multinational’s intra-firm transactions, we show that the home market advantage...... that large countries have due to their size will be counteracted by such profit shifting opportunities. As a result of this, large countries will not be able to capitalize on their size and sustain high corporate taxes. We show that, on the basis of these profit shifting opportunities, a small country can...
Phase shifting in the spatial frequency domain
Yazdani, Roghayeh; Petsch, Sebastian; Fallah, Hamidreza; Hajimahmoodzadeh, Morteza; Zappe, Hans
2016-03-01
We present a simple mathematical method for phase shifting that overcomes some phase shift errors and limitations of commonly used methods. The method is used to generate a sequence of phase-shifted interferograms from a single interferogram. The generated interferograms are employed to reconstruct the wavefront aberrations, as an application. The approach yields results with only very small deviations compared to both simulated wavefront aberrations, including the first 25 Zernike polynomials (0.05%) and those measured with a Shack-Hartmann sensor (0.5%).
Scandinavian Object Shift and Optimality Theory
DEFF Research Database (Denmark)
Engels, Eva; Vikner, Sten
This study presents an account of object shift, a word order phenomenon found in most of the Scandinavian languages where an object occurs unexpectedly to the left and not to the right of a sentential adverbial. The book examines object shift across many of the Scandinavian languages and dialects...... for the variation as well as the interaction of object shift with other syntactic constructions such as verb second, other verb movements, double object constructions, particle verbs and causative verbs. The book moves on to investigate the interaction with remnant VP-topicalisation in great detail. With new...
Directory of Open Access Journals (Sweden)
Hisatomo Waga
2017-03-01
Full Text Available Species distributions are changing with various rates and directions in response to recent global warming. The velocity of sea surface temperature (SST has been used to predict species migration and persistence as an expectation of how species track their thermal niches; however, several studies have found that evidence for species shifts has deviated from the velocity of SST. This study investigated whether estimation of the velocity of shifts in phytoplankton size structure using remote sensing data could contribute to better prediction of species shifts. A chlorophyll-a (Chla size distribution (CSD model was developed by quantifying the relationships between the size structure of the phytoplankton community and the spectral features of the phytoplankton absorption coefficient (aph(λ, based on the principal component analysis approach. Model validation demonstrated that the exponent of CSD (hereafter, CSD slope, which can describe the synoptic size structure of a phytoplankton community, was derived successfully with a relative root mean square error of 18.5%. The median velocity of CSD slope across the ocean was 485.2 km·decade−1, broadly similar to Chla (531.5 km·decade−1. These values were twice the velocity of SST, and the directions of shifts in CSD slope and Chla were quite different from that of SST. Because Chla is generally covariant with the size structure of a phytoplankton community, we believe that spatiotemporal changes in Chla can explain the variations of phytoplankton size structure. Obvious differences in both rate and direction of shifts were found between the phytoplankton size structure and SST, implying that shifts of phytoplankton size structure could be a powerful tool for assessing the distributional shifts of marine species. Our results will contribute to generate global and regional maps of expected species shifts in response to environmental forcing.
Spectral Selectivity Applied To Hybrid Concentration Systems
Hamdy, M. A.; Luttmann, F.; Osborn, D. E.; Jacobson, M. R.; MacLeod, H. A.
1985-12-01
The efficiency of conversion of concentrated solar energy can be improved by separating the solar spectrum into portions matched to specific photoquantum processes and the balance used for photothermal conversion. The basic approaches of spectrally selective beam splitters are presented. A detailed simulation analysis using TRNSYS is developed for a spectrally selective hybrid photovoltaic/photothermal concentrating system. The analysis shows definite benefits to a spectrally selective approach.
Sowoidnich, Kay; Kronfeldt, Heinz-Detlef
2012-05-01
The identification of food products and the detection of adulteration are of global interest for food safety and quality control. We present a non-invasive in-situ approach for the differentiation of meat from selected animal species using microsystem diode laser based shifted excitation Raman difference spectroscopy (SERDS) at 671 nm and 785 nm. In that way, the fingerprint Raman spectra can be used for identification without a disturbing fluorescence background masking Raman signals often occurring in the investigation of biological samples. Two miniaturized SERDS measurement heads including the diode laser and all optical elements are fiber-optically coupled to compact laboratory spectrometers. To realize two slightly shifted excitation wavelengths necessary for SERDS the 671 nm laser (spectral shift: 0.7 nm, optical power: 50 mW) comprises two separate laser cavities each with a volume Bragg grating for frequency selection whereas the 785 nm light source (spectral shift: 0.5 nm, optical power: 110 mW) is a distributed feedback laser. For our investigations we chose the most consumed meat types in the US and Europe, i.e. chicken and turkey as white meat as well as pork and beef as red meat species. The applied optical powers were sufficient to detect meat Raman spectra with integration times of 10 seconds pointing out the ability for a rapid discrimination of meat samples. Principal components analysis was applied to the SERDS spectra to reveal spectral differences between the animals suitable for their identification. The results will be discussed with respect to specific characteristics of the analyzed meat species.
Development of Chip-Based Frequency Combs for Spectral and Timing Applications
2011-12-01
by measuring the RF beat note. A 1-nm section of the comb spectrum is filtered at 1540 nm and amplified with an EDFA . The output is sent to a fast...amplitude Approved for public release; distribution unlimited. 13 noise from the EDFA and the laser. We estimate a frequency shift of approximately 100...oxide-semiconductor EDFA erbium-doped fiber amplifier FSR free spectral range FWM four-wave mixing IR infrared OPO optical parametric
Spectral mapping theorems a bluffer's guide
Harte, Robin
2014-01-01
Written by an author who was at the forefront of developments in multi-variable spectral theory during the seventies and the eighties, this guide sets out to describe in detail the spectral mapping theorem in one, several and many variables. The basic algebraic systems – semigroups, rings and linear algebras – are summarised, and then topological-algebraic systems, including Banach algebras, to set up the basic language of algebra and analysis. Spectral Mapping Theorems is written in an easy-to-read and engaging manner and will be useful for both the beginner and expert. It will be of great importance to researchers and postgraduates studying spectral theory.
Spectral Lag Evolution among -Ray Burst Pulses
Indian Academy of Sciences (India)
Lan-Wei Jia; Yun-Feng Liang; En-Wei Liang
2014-09-01
We analyse the spectral lag evolution of -ray burst (GRB) pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed.Our results suggest that the spectral lag would be due to radiation physics and dynamics of a given emission episode, possibly due to the longer lasting emission in a lower energy band, and the spectral lag may not be an intrinsic parameter to discriminate the long and short GRBs.
Autoregressive Spectral Estimation and Functional Inference.
1982-06-01
spectral density function . Note that F(O) - 0, F(l) = 1, and (15) F(w) = f(w’) dw’, O<w<l...correlation function p(v) is summable, and its spectral density function f(w) is bounded above and below in the sense that the dynamic range of f(w) (2) DR...l The AR(-n) and MA(-) representations have important implications for spectral 6 analysis since they provide formulas for the spectral density function
Postnova, Svetlana; Robinson, Peter A; Postnov, Dmitry D
2013-01-01
Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers' sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8) in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers' adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21:00 instead of 00:00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters.
Directory of Open Access Journals (Sweden)
Svetlana Postnova
Full Text Available Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers' sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8 in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers' adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21:00 instead of 00:00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters.
Chackrabarti, Santosh; Zargar, Rayees A.; Bansal, Jyoti; Zaker, Tho-alfiqar A.; Hafiz, A. K.
2016-08-01
The temperature dependent spectral shifts in 658 nm AlGaInP multiple quantum well (MQW) red laser diodes due to band gap narrowing at room temperatures (5 °Csbnd 45 °C) is reported. The density of states effective mass approximation and the conduction band effective mass approximation are employed to formulate the carrier concentrations. The spectral shift mechanism is explored with a threshold current density of 42.28 kA/cm2 and a good characteristic temperature of 149 K. The photoluminescence (PL) peak intensity shifts towards the higher wavelength(red shift) and the full width at half maximum (FWHM) increases with the increase in temperature. The band gap narrowing value determined by a simple formula amounts to 67.4 meV and displays N1/3 dependence at higher densities. The carrier density dependence conveys that the red shift of the spectral emission is due to band gap narrowing.
The Lamb shift in de Sitter spacetime
Zhou, Wenting
2010-01-01
We study the Lamb shift of both freely-falling and static two-level atoms in interaction with quantized conformally coupled massless scalar fields in the de Sitter-invariant vacuum. We find that the Lamb shifts of both freely-falling and static atoms are in structural similarity to that of an inertial atom immersed in a thermal bath in a Minkowski spacetime. For the freely-falling atom, the Lamb shift gets a correction as if it was immersed in a thermal bath at the Gibbons-Hawking temperature, thus revealing clearly the intrinsic thermal nature of de Sitter spacetime. For the static atom, the Lamb shift is affected by a combination of the effect of the intrinsic thermal nature of de Sitter spacetime and the Unruh effect associated with the inherent acceleration of the atom.
Trends in adsorbate induced core level shifts
Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik
2015-10-01
Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.
Job Strain in Shift and Daytime Workers.
Knutsson; Nilsson
1997-07-01
Cross-sectional questionnaire data were used to compare the levels of job strain in shift and daytime workers. Job strain was measured according to Karasek's Demands/Discretion model. Four occupational groups were included: drivers, industrial workers, policemen/watchmen, and cooks. The study subjects were a random sample of 508 daytime workers and 418 shift workers. Job demand did not differentiate between shift and daytime workers, comparing groups broken down by gender and by occupation. The daytime workers reported higher levels of job strain than the shift workers, and women experienced a higher level of job strain than did men. Multiple linear regression analysis showed that only occupational group and gender predicted job strain level. Shiftwork was not significantly associated with job strain in the regression model.
Regime shifts in models of dryland vegetation
Zelnik, Yuval R; Yizhaq, Hezi; Bel, Golan; Meron, Ehud
2013-01-01
Drylands are pattern-forming systems showing self-organized vegetation patchiness, multiplicity of stable states and fronts separating domains of alternative stable states. Pattern dynamics, induced by droughts or disturbances, can result in desertification shifts from patterned vegetation to bare soil. Pattern-formation theory suggests various scenarios for such dynamics; an abrupt global shift involving a fast collapse to bare soil, a gradual global shift involving the expansion and coalescence of bare-soil domains, and an incipient shift to a hybrid state consisting of stationary bare-soil domains in an otherwise periodic pattern. Using models of dryland vegetation we address the question which of these scenarios can be realized. We found that the models can be split into two groups: models that exhibit multiplicity of periodic-pattern and bare-soil states, and models that exhibit, in addition, multiplicity of hybrid states. Furthermore, in all models we could not identify parameter regimes in which bare-s...
Postural Stability is Altered by Blood Shift
Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.
2008-06-01
Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.
Scandinavian Object Shift and Optimality Theory
DEFF Research Database (Denmark)
Engels, Eva; Vikner, Sten
This study presents an account of object shift, a word order phenomenon found in most of the Scandinavian languages where an object occurs unexpectedly to the left and not to the right of a sentential adverbial. The book examines object shift across many of the Scandinavian languages and dialects......, and analyses the variation, for example whether object shift is optional or obligatory, whether it applies only to pronouns or other objects as well, and whether it applies to adverbials. The authors show that optimality theory, traditionally used in phonology, is a useful framework for accounting...... for the variation as well as the interaction of object shift with other syntactic constructions such as verb second, other verb movements, double object constructions, particle verbs and causative verbs. The book moves on to investigate the interaction with remnant VP-topicalisation in great detail. With new...
[Sleep disorders among physicians on shift work].
Schlafer, O; Wenzel, V; Högl, B
2014-11-01
Sleep disorders in physicians who perform shift work can result in increased risks of health problems that negatively impact performance and patient safety. Even those who cope well with shift work are likely to suffer from sleep disorders. The aim of this manuscript is to discuss possible causes, contributing factors and consequences of sleep disorders in physicians and to identify measures that can improve adaptation to shift work and treatment strategies for shift work-associated sleep disorders. The risk factors that influence the development of sleep disorders in physicians are numerous and include genetic factors (15 % of the population), age (> 50 years), undiagnosed sleep apnea,, alcohol abuse as well as multiple stress factors inherent in clinical duties (including shift work), research, teaching and family obligations. Several studies have reported an increased risk for medical errors in sleep-deprived physicians. Shift workers have an increased risk for psychiatric and cardiovascular diseases and shift work may also be a contributing factor to cancer. A relationship has been reported not only with sleep deprivation and changes in food intake but also with diabetes mellitus, obesity, hypertension and coronary heart disease. Nicotine and alcohol consumption are more frequent among shift workers. Increased sickness and accident rates among physicians when commuting (especially after night shifts) have a socioeconomic impact. In order to reduce fatigue and to improve performance, short naps during shiftwork or naps plus caffeine, have been proposed as coping strategies; however, napping during adverse circadian phases is less effective, if not impossible when unable to fall asleep. Bright and blue light supports alertness during a night shift. After shiftwork, direct sunlight exposure to the retina can be avoided by using dark sunglasses or glasses with orange lenses for commuting home. The home environment for daytime sleeping after a night shift should be
Spectral properties of correlation matrices--towards enhanced spectral clustering.
Fulger, Daniel; Scalas, Enrico
2011-01-01
This chapter compiles some properties of eigenvalues and eigenvectors of correlation and other matrices constructed from uncorrelated as well as systematically correlated Gaussian noise. All results are based on simulations. The situations depicted in the settings are found in time series analysis as one extreme variant and in gene/protein profile analysis with micro-arrays as the other extreme variant of the possible scenarios for correlation analysis and clustering where random matrix theory might contribute. The main difference between both is the number of variables versus the number of observations. To what extent the results can be transferred is yet unclear. While random matrix theory as such makes statements about the statistical properties of eigenvalues and eigenvectors, the expectation is that these statements, if used in a proper way, will improve the clustering of genes for the detection of functional groups. In the course of the scenarios, the relation and interchangeability between the concepts of time, experiment, and realizations of random variables play an important role. The mapping between a classical random matrix ensemble and the micro-array scenario is not yet obvious. In any case, we can make statements about pitfalls and sources of false conclusions. We also develop an improved spectral clustering algorithm that is based on the properties of eigenvalues and eigenvectors of correlation matrices. We found it necessary to rehearse and analyse these properties from the bottom up starting at one extreme end of scenarios and moving to the micro-array scenario.
Hydrogen isotope effect on the Dimits shift
Itoh, S.-I.; Itoh, K.
2016-10-01
The hydrogen isotope effect on the Dimits shift in drift wave turbulence (Dimits et al 2000 Phys. Plasmas 7 969) is discussed using the theory of zonal flows, in which the nonlinear damping rate of zonal flows is taken into account. The up-shift of the critical linear growth rate of the drift waves, above which drift wave fluctuations develop, is investigated. The dependence on the mass number of the hydrogen isotope is discussed.
Analytic matrix elements with shifted correlated Gaussians
DEFF Research Database (Denmark)
Fedorov, D. V.
2017-01-01
Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....
Uniqueness from locality and BCFW shifts
Rodina, Laurentiu
2016-01-01
We introduce a BCFW shift which can be used to recursively build the full Yang-Mills amplitude as a function of polarization vectors. Furthermore, in line with the recent results of arXiv:1612.02797, we conjecture that the Yang-Mills scattering amplitude is uniquely fixed by locality and demanding the usual asymptotic behavior under a sufficient number of shifts. Unitarity therefore emerges from locality and constructability. We prove this statement at the leading order in the soft expansion.
Research on Habitat Shift Promoting Species Diversification
Institute of Scientific and Technical Information of China (English)
2011-01-01
PNAS published on August 15,2011 the article ＂Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification＂ by Professor Shuqiang Li of Institute of Zoology,CAS,together with Slovenian cooperators. Current theory predicts that a shift to a new habitat would increase the rate of diversification;while as lineages evolve into multiple species,intensified competition would decrease the rate of diversification.
Optical Doppler shift with structured light
2011-01-01
When a light beam with a transverse spatially varying phase is considered for optical remote sensing, in addition to the usual longitudinal Doppler frequency shift of the returned signal induced by the motion of the scatter along the beam axis, a new transversal Doppler shift appears associated to the motion of the scatterer in the plane perpendicular to the beam axis. We discuss here how this new effect can be used to enhance the current capabilities of optical measurement system...
Sign (di)Lemma for Dimension Shifting
Indian Academy of Sciences (India)
Nitin Nitsure
2009-04-01
There is a surprising occurrence of some minus signs in the isomorphisms produced in the well-known technique of dimension shifting in calculating derived functors in homological algebra. We explicitly determine these signs. Getting these signs right is important in order to avoid basic contradictions. We illustrate the result – which we call as the sign lemma for dimension shifting – by some de Rham cohomology and Chern class considerations for compact Riemann surfaces.
Explicit filtering for large eddy simulation as use of a spectral buffer
Mathew, Joseph
2016-01-01
The explicit filtering method for large eddy simulation (LES,) which comprises integration of the governing equations without any added terms for sub-grid-scale modeling and the application of a low-pass filter to transported fields, is discussed. The shapes of filter response functions of numerical schemes for spatial derivatives and the explicit filter, that have been used for several LES, are examined. Generally, these are flat (no filtering) over a range of low wavenumbers, and then fall off over a small range of the highest represented wavenumbers. It is argued that this high wavenumber part can be viewed as a spectral buffer analogous to physical buffer (or sponge) zones used near outflow boundaries. The monotonic convergence of this approach to a direct numerical simulation, and the shifting of the spectral buffer to larger wavenumbers as the represented spectral range is increased, without altering the low wavenumber part of solutions, is demonstrated with LES of two sample flows. Connections to other...
Improved spectral characteristics of 980 nm broad area slotted Fabry-Perot diode lasers
Institute of Scientific and Technical Information of China (English)
Gao Zhuo; Wang Jun; Xiong Cong; Liu Yuanyuan; Liu Suping; Ma Xiaoyu
2012-01-01
A novel broad area slotted Fabry-Perot diode laser is designed and fabricated.Using a new semianalytical method,we introduce effective refractive index perturbations in the form of etched slot features into a conventional 980 nm broad area Fabry-Perot cavity,and the spectral characteristics of the device are expected to be noticeably improved.A low density of slot features is formed by using standard optical lithography and inductively coupled plasma dry etching.The experimental results show that the full spectral width at half-maximum is less than 0.4 nm,meanwhile,the thermal shift of the emission spectrum is decreased from 0.26 to 0.07 nm/℃ over a temperature range of 10 to 60 ℃.The improved spectral characteristics of the device are proved to be attributed to such slotted Fabry-Perot laser structures.
Bayesian inference of non-positive spectral functions in quantum field theory
Rothkopf, Alexander
2016-01-01
We present the generalization to non positive definite spectral functions of a recently proposed Bayesian deconvolution approach (BR method). The novel prior used here retains many of the beneficial analytic properties of the original method, in particular it allows us to integrate out the hyperparameter $\\alpha$ directly. To preserve the underlying axiom of scale invariance, we introduce a second default-model related function, whose role is discussed. Our reconstruction prescription is contrasted with existing direct methods, as well as with an approach where shift functions are introduced to compensate for negative spectral features. A mock spectrum analysis inspired by the study of gluon spectral functions in QCD illustrates the capabilities of this new approach.
Stochastic analysis of spectral broadening by a free turbulent shear layer
Hardin, J. C.; Preisser, J. S.
1981-01-01
The effect of the time-varying shear layer between a harmonic acoustic source and an observer on the frequency content of the observed sound is considered. Experimental data show that the spectral content of the acoustic signal is considerably broadened upon passing through such a shear layer. Theoretical analysis is presented which shows that such spectral broadening is entirely consistent with amplitude modulation of the acoustic signal by the time-varying shear layer. Thus, no actual frequency shift need be hypothesized to explain the spectral phenomenon. Experimental tests were conducted at 2, 4, and 6 kHz and at free jet flow velocities of 10, 20, and 30 m/s. Analysis of acoustic pressure time histories obtained from these tests confirms the above conclusion, at least for the low Mach numbers considered.
Real-time full bandwidth measurement of spectral noise in supercontinuum generation
Wetzel, B; Larger, L; Lacourt, P A; Merolla, J M; Sylvestre, T; Kudlinski, A; Mussot, A; Genty, G; Dias, F; Dudley, J M; 10.1038/srep00882
2012-01-01
The ability to measure real-time fluctuations of ultrashort pulses propagating in optical fiber has provided significant insights into fundamental dynamical effects such as modulation instability and the formation of frequency-shifting rogue wave solitons. We report here a detailed study of real-time fluctuations across the full bandwidth of a fiber supercontinuum which directly reveals the significant variation in measured noise statistics across the spectrum, and which allows us to study correlations between widely separated spectral components. For two different propagation distances corresponding to the onset phase of spectral broadening and the fully-developed supercontinuum, we measure real time noise across the supercontinuum bandwidth, and we quantify the supercontinuum noise using statistical higher-order moments and a frequency-dependent intensity correlation map. We identify correlated spectral regions within the supercontinuum associated with simultaneous sideband generation, as well as signatures...
Coupling of gravity to matter, spectral action and cosmic topology
Cacic, Branimir; Teh, Kevin
2011-01-01
We consider a model of modified gravity based on the spectral action functional, for a cosmic topology given by a spherical space form, and the associated slow-roll inflation scenario. We consider then the coupling of gravity to matter determined by an almost commutative geometry over the spherical space form. We show that this produces a multiplicative shift of the amplitude of the power spectra for the density fluctuations and the gravitational waves, by a multiplicative factor equal to the total number of fermions in the matter sector of the model. We obtain the result by an explicit nonperturbative computation, based on the Poisson summation formula and the spectra of twisted Dirac operators on spherical space forms, as well as by a heat-kernel computation.
On the spectral quality of scanner illumination with LEDs
Cui, Chengwu
2013-01-01
Document scanner illumination has evolved along with general illumination technologies. LEDs have become more and more popular as the illumination sources for document scanning. LED technologies provide a wide range of choices both in terms of structural design and spectral compositions. In this report, we examine some popular LED technologies used for document scanner. We evaluate the color rendering performance of scanner models with different illumination technologies by examining their rendering of the Macbeth ColorChecker™ in sRGB. We found that more phosphors in phosphor conversion types of white LEDs may not be necessarily advantageous in terms of scanner color rendering performance. Also CIS type of scanner may be sensitive to the peak wavelength shift and can be particularly problematic when the peaks are out of certain range.
Metrology on phase-shift masks
Roeth, Klaus-Dieter; Maurer, Wilhelm; Blaesing-Bangert, Carola
1992-06-01
In the evaluation of new manufacturing processes, metrology is a key function, beginning with the first step of process development through the final step of everyday mass production at the fabrication floor level. RIM-type phase shift masks are expected to be the first application of phase shift masks in high volume production, since they provide improved lithography process capability at the expense of only moderate complexity in their manufacturing. Measurements of critical dimension (CD) and pattern position (overlay) on experimental rim-type and chromeless phase shift masks are reported. Pattern placement (registration) was measured using the Leitz LMS 2000. The overall design and important components were already described. The pattern placement of the RIM type phase shift structures on the photomask described above was determined within a tolerance of 25 nm (3s); nominal accuracy was within 45 nm (3s). On the chromeless phase shift mask the measurement results were easily obtained using a wafer intensity algorithm available with the system. The measurement uncertainties were less than 25 nm and 50 nm for precision and nominal accuracy respectively. The measurement results from the Leitz CD 200 using transmitted light were: a CD- distribution of 135 nm (3s) on a typical 6 micrometers structure all over the mask; the 0.9 micrometers RIM structure had a distribution of 43 nm (3s). Typical long term precision performance values for the CD 200 on both chrome and phase shift structures have been less than 15 nm.
Spectral calibration for convex grating imaging spectrometer
Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Chen, Yuheng; Shen, Weimin
2013-12-01
Spectral calibration of imaging spectrometer plays an important role for acquiring target accurate spectrum. There are two spectral calibration types in essence, the wavelength scanning and characteristic line sampling. Only the calibrated pixel is used for the wavelength scanning methods and he spectral response function (SRF) is constructed by the calibrated pixel itself. The different wavelength can be generated by the monochromator. The SRF is constructed by adjacent pixels of the calibrated one for the characteristic line sampling methods. And the pixels are illuminated by the narrow spectrum line and the center wavelength of the spectral line is exactly known. The calibration result comes from scanning method is precise, but it takes much time and data to deal with. The wavelength scanning method cannot be used in field or space environment. The characteristic line sampling method is simple, but the calibration precision is not easy to confirm. The standard spectroscopic lamp is used to calibrate our manufactured convex grating imaging spectrometer which has Offner concentric structure and can supply high resolution and uniform spectral signal. Gaussian fitting algorithm is used to determine the center position and the Full-Width-Half-Maximum（FWHM）of the characteristic spectrum line. The central wavelengths and FWHMs of spectral pixels are calibrated by cubic polynomial fitting. By setting a fitting error thresh hold and abandoning the maximum deviation point, an optimization calculation is achieved. The integrated calibration experiment equipment for spectral calibration is developed to enhance calibration efficiency. The spectral calibration result comes from spectral lamp method are verified by monochromator wavelength scanning calibration technique. The result shows that spectral calibration uncertainty of FWHM and center wavelength are both less than 0.08nm, or 5.2% of spectral FWHM.
A two dimensional power spectral estimate for some nonstationary processes. M.S. Thesis
Smith, Gregory L.
1989-01-01
A two dimensional estimate for the power spectral density of a nonstationary process is being developed. The estimate will be applied to helicopter noise data which is clearly nonstationary. The acoustic pressure from the isolated main rotor and isolated tail rotor is known to be periodically correlated (PC) and the combined noise from the main and tail rotors is assumed to be correlation autoregressive (CAR). The results of this nonstationary analysis will be compared with the current method of assuming that the data is stationary and analyzing it as such. Another method of analysis is to introduce a random phase shift into the data as shown by Papoulis to produce a time history which can then be accurately modeled as stationary. This method will also be investigated for the helicopter data. A method used to determine the period of a PC process when the period is not know is discussed. The period of a PC process must be known in order to produce an accurate spectral representation for the process. The spectral estimate is developed. The bias and variability of the estimate are also discussed. Finally, the current method for analyzing nonstationary data is compared to that of using a two dimensional spectral representation. In addition, the method of phase shifting the data is examined.
Xu, Zhang-Hua; Liu, Jian; Yu, Kun-Yong; Gong, Cong-Hong; Xie, Wan-Jun; Tang, Meng-Ya; Lai, Ri-Wen; Li, Zeng-Lu
2013-02-01
Taking 51 field measured hyperspectral data with different pest levels in Yanping, Fujian Province as objects, the spectral reflectance and first derivative features of 4 levels of healthy, mild, moderate and severe insect pest were analyzed. On the basis of 7 detecting parameters construction, the pest level detecting models were built. The results showed that (1) the spectral reflectance of Pinus massoniana with pests were significantly lower than that of healthy state, and the higher the pest level, the lower the reflectance; (2) with the increase in pest level, the spectral reflectance curves' "green peak" and "red valley" of Pinus massoniana gradually disappeared, and the red edge was leveleds (3) the pest led to spectral "green peak" red shift, red edge position blue shift, but the changes in "red valley" and near-infrared position were complicated; (4) CARI, RES, REA and REDVI were highly relevant to pest levels, and the correlations between REP, RERVI, RENDVI and pest level were weak; (5) the multiple linear regression model with the variables of the 7 detection parameters could effectively detect the pest levels of Dendrolimus punctatus Walker, with both the estimation rate and accuracy above 0.85.
3D phase-shifting fringe projection system on the basis of a tailored free-form mirror.
Zwick, Susanne; Heist, Stefan; Steinkopf, Ralf; Huber, Sandra; Krause, Sylvio; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther
2013-05-10
Phase-shifting fringe projection is an effective method to perform 3D shape measurements. Conventionally, fringe projection systems utilize a digital projector that images fringes into the measurement plane. The performance of such systems is limited to the visible spectral range, as most projectors experience technical limitations in UV or IR spectral ranges. However, for certain applications these spectral ranges are of special interest. We present a wideband fringe projector that has been developed on the basis of a picture generating beamshaping mirror. This mirror generates a sinusoidal fringe pattern in the measurement plane without any additional optical elements. Phase shifting is realized without any mechanical movement by a multichip LED. As the system is based on a single mirror, it is wavelength-independent in a wide spectral range and therefore applicable in UV and IR spectral ranges. We present the design and a realized setup of this fringe projection system and the characterization of the generated intensity distribution. Experimental results of 3D shape measurements are presented.
Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.
2016-03-01
In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.
Directory of Open Access Journals (Sweden)
Feng-Yu Wang
Full Text Available Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2 revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292 and four putative (S124, V189, V286, I290 tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice.
Spectral Energy Distributions of SDSS Blazars
Indian Academy of Sciences (India)
H. Z. Li; L. E. Chen
2014-09-01
We compiled the radio, optical and X-ray data for SDSS sample, and presented broad band spectral index. The broad band energy distribution reveals that FSRQs and LBLs objects have similar spectral properties. However, HBLs have a separate distinct property. Even so, a unified scheme was also revealed from colour–colour diagram.
Abnormal Raman spectral phenomenon of silicon nanowires
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The Raman spectra of two one-dimensional silicon nanowire samples with different excitation wavelengths were measured and an abnormal phenomenon was discovered that the Raman spectral features change with the wavelengths of excitation. Closer analysis of the crystalline structure of samples and the changes in Raman spectral features showed that the abnormal behavior is the result of resonance Raman scattering selection effect.
Measuring Collimator Infrared (IR) Spectral Transmission
2016-05-01
TECHNICAL REPORT RDMR-WD-16-15 MEASURING COLLIMATOR INFRARED (IR) SPECTRAL TRANSMISSION Christopher L. Dobbins Weapons...Distribution Statement A: Approved for public release; distribution unlimited. DESTRUCTION NOTICE FOR CLASSIFIED DOCUMENTS...AND DATES COVERED Final 4. TITLE AND SUBTITLE Measuring Collimator Infrared (IR) Spectral Transmission 5. FUNDING NUMBERS 6. AUTHOR(S) Christopher L
The Copernicus ultraviolet spectral atlas of Sirius
Rogerson, John B., Jr.
1987-01-01
A near-ultraviolet spectral atlas for the A1 V star Alpha CMa (Sirius) has been prepared from data taken by the Princeton spectrometer aboard the Copernicus satellite. The spectral region from 1649 to 3170 A has been scanned with a resolution of 0.1 A. The atlas is presented in graphs, and line identifications for the absorption features have been tabulated.
Spectral stability of unitary network models
Asch, Joachim; Bourget, Olivier; Joye, Alain
2015-08-01
We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one-dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.
Spectral properties of supersymmetric shape invariant potentials
Indian Academy of Sciences (India)
Barnali Chakrabarti
2008-01-01
We present the spectral properties of supersymmetric shape invariant potentials (SIPs). Although the folded spectrum is completely random, unfolded spectrum shows that energy levels are highly correlated and absolutely rigid. All the SIPs exhibit harmonic oscillator-type spectral statistics in the unfolded spectrum. We conjecture that this is the reflection of shape invariant symmetry.
Spectral analysis of individual realization LDA data
Tummers, M.J.; Passchier, D.M.
1998-01-01
The estimation of the autocorrelation function (act) or the spectral density function (sdt) from LDA data poses unique data-processing problems. The random sampling times in LDA preclude the use of the spectral methods for equi-spaced samples. As a consequence, special data-processing algorithms are
XSL : The X-Shooter Spectral Library
Chen, Yanping; Trager, Scott; Peletier, Reynier; Lançon, Ariane
2011-01-01
We are building a new spectral library with the X-Shooter instrument on ESO's VLT: XSL, the X-Shooter Spectral Library. We present our progress in building XSL, which covers the wavelength range from the near-UV to the near-IR with a resolution of R~10 000. At the time of writing we have collected s
XSL: The X-Shooter Spectral Library
Chen, Yanping; Trager, Scott; Peletier, Reynier; Lançon, Ariane
2011-01-01
We are building a new spectral library with the X-Shooter instrument on ESO's VLT: XSL, the X-Shooter Spectral Library. We present our progress in building XSL, which covers the wavelength range from the near-UV to the near-IR with a resolution of R~10 000. At the time of writing we have collected s
XSL : The X-Shooter Spectral Library
Chen, Yanping; Trager, Scott; Peletier, Reynier; Lan¸con, Ariane
2011-01-01
We are building a new spectral library with the X-Shooter instrument on ESO’s VLT: XSL, the X-Shooter Spectral Library. We present our progress in building XSL, which covers the wavelength range from the near-UV to the near-IR with a resolution of R 10000. At the time of writing we have collected sp
Spectral distance on the Moyal plane
Energy Technology Data Exchange (ETDEWEB)
Martinetti, Pierre [Universitaet Goettingen (Germany). Courant Centre
2010-07-01
We compute the spectral distance, defined in Connes' noncommutative geometry, in the Moyal plane. We find that the distance between the eigenstates m,m+1 of the quantum harmonic oscillator is proportional to m{sup -1/2}. We also show how to truncate the Moyal spectral triple in order to obtain quantum metric spaces in the sense of Rieffel.
Basic Functional Analysis Puzzles of Spectral Flow
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....
Compact high-resolution spectral phase shaper
Postma, S.; Walle, van der P.; Offerhaus, H.L.; Hulst, van N.F.
2005-01-01
The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses fro
Spectral methods for partial differential equations
Hussaini, M. Y.; Streett, C. L.; Zang, T. A.
1984-01-01
Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid-dynamical applications are emphasized.
Spectral Methods in Numerical Plasma Simulation
DEFF Research Database (Denmark)
Coutsias, E.A.; Hansen, F.R.; Huld, T.;
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...
Active spectral imaging nondestructive evaluation (SINDE) camera
Energy Technology Data Exchange (ETDEWEB)
Simova, E.; Rochefort, P.A., E-mail: eli.simova@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)
2016-06-15
A proof-of-concept video camera for active spectral imaging nondestructive evaluation has been demonstrated. An active multispectral imaging technique has been implemented in the visible and near infrared by using light emitting diodes with wavelengths spanning from 400 to 970 nm. This shows how the camera can be used in nondestructive evaluation to inspect surfaces and spectrally identify materials and corrosion. (author)
Quantitative spectrally resolved imaging through a spectrograph
Tolboom, RAL; Sijtsema, NM; ter Meulen, JJ; Dam, N.J.
2003-01-01
A grating spectrograph can be used for spectrally selective two-dimensional imaging if it is operated with a broad entrance slit. The resulting intensity distribution in its exit plane is a one-dimensional convolution of the spatial and spectral distributions of incident light. We present a dedicate
Spectral properties of the temporal evolution of brain network structure
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Influence of laser array performance on spectrally combined beam
Wu, Zhen; Yang, Lei; Zhong, Zheqiang; Zhang, Bin
2016-10-01
Incoherent spectral beam combining (SBC) of multiple laser beams is accomplished along the emitters' arraying direction. Considering that the output beams from a laser array (LA) usually have deflection angles, positional displacements and divergence angles even after being collimated, a propagation model of SBC systems based on multilayer dielectric gratings has been built up. On the basis, properties of the spectrally combined beam affected by parameters of the LA have been discussed in detail. Simulation results show that with the increase in the deflection angle, both the power and the beam quality of the combined beam degrade dramatically. The positional displacement has little impact on the intensity distribution and the beam quality of combined beam but change the wavelength composition of the combined beam. The divergence angle strongly affects the intensity distribution and the beam quality of the combined beam. Additionally, the effect of the deflection angle on the output beam quality is more obvious and may shift the beam spot when comparing with that of the divergence angle.
Images and Spectral Performance of WFC3 Interference Filters
Quijada, Manuel A.; Boucarut, R.; Telfer, R.; Baggett, S.; Quijano, J. Kim; Allen, George; Arsenovic, Peter
2006-01-01
The Wide Field Camera 3 (WFC3) is a panchromatic imager that will be deployed in the Hubble Space Telescope (HST). The mission of the WFC3 is to enhance HST1s imaging capability in the ultraviolet, visible and near-infrared spectral regions. Together with a wavelength coverage spanning 2000A to 1.7 micron, the WFC3 high sensitivity, high spatial resolution, and large field-of-view provide the astronomer with an unprecedented set of tools for exploring all types of exciting astrophysical terrain and for addressing many key questions in astronomy today. The filter compliment, which includes broad, medium, and narrow band filters, naturally reflects the diversity of astronomical programs to be targeted with WFC3. The WFC3 holds 61 UVIS filters elements, 14 IR filters, and 3 dispersive elements. During ground testing, the majority of the UVIS filters were found to exhibit excellent performance consistent with or exceeding expectations; however, a subset of filters showed considerable ghost images; some with relative intensity as high as 10-15%. Replacement filters with band-defining coatings that substantially reduce these ghost images were designed and procured. A state-of-the-art characterization setup was developed to measured the intensity of ghost images, focal shift, wedge direction , transmitted uniformity and surface feature of filters that could effect uniform flat field images. We will report on this new filter characterization methods, as well as the spectral performance measurements of the in-band transmittance and blocking.
Ultrasensitive plasmonic sensing in air using optical fibre spectral combs
Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques
2016-11-01
Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture--a gold-coated highly tilted Bragg grating--that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10-8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas.
Phase shifts extraction based on time-domain orthogonal character of phase-shifting interferograms
Shou, Junwei; Zhong, Liyun; Zhou, Yunfei; Tian, Jindong; Lu, Xiaoxu
2017-01-01
Based on the time-domain orthogonal character of different pixel intensity variation of phase-shifting interferograms, a novel non-iterative algorithm is proposed to achieve the phase shifts in random phase-shifting interferometry. Due to there is no requirement for the fringe number of phase-shifting interferograms, the proposed algorithm can work well even in the case that the fringe number of interferogram is less than one, which is a difficult problem in interferometry. Moreover, only two one-dimensional vectors, achieved from the average intensity of several pixels of interferogram, are enough to perform the phase shifts extraction, the proposed algorithm reveals rapid processing speed. Specially, compared with the conventional phase shifts extraction algorithms, the proposed algorithm does not need to perform the pixel-pixel calculation or the iterative calculation, so its processing speed is greatly improved. Both the simulation and the experiment demonstrate the outstanding performance of the proposed algorithm.
Shift work and circadian dysregulation of reproduction
Directory of Open Access Journals (Sweden)
Karen L. Gamble
2013-08-01
Full Text Available Health impairments, including reproductive issues, are associated with working nights or rotating shifts. For example, shift work has been associated with an increased risk of irregular menstrual cycles, endometriosis, infertility, miscarriage, low birth weight or pre-term delivery, and reduced incidence of breastfeeding. Based on what is known about circadian regulation of endocrine rhythms in rodents (and much less in humans, the circadian clock is an integral regulatory part of the reproductive system. When this 24-h program is disordered by environmental perturbation (such as shift work or genetic alterations, the endocrine system can be impaired. The purpose of this review is to explore the hypothesis that misalignment of reproductive hormones with the environmental light-dark cycle and/or sleep wake rhythms can disrupt menstrual cycles, pregnancy, and parturition. We highlight the role of the circadian clock in regulating human reproductive physiology and shift work-induced pathology within each step of the reproductive axis while exploring potential mechanisms from the animal model literature. In addition to documenting the reproductive hazards of shift work, we also point out important gaps in our knowledge as critical areas for future investigation. For example, future studies should examine whether forced desynchronization disrupts gonadotropin secretion rhythms and whether there are sleep/wake schedules that are better or worse for the adaptation of the reproductive system to shift work. These studies are necessary in order to define not only whether or not shift-work induced circadian misalignment impairs reproductive capacity, but also to identify strategies for the future that can minimize this desynchronization.
Contractive spectral triples for crossed products
Paterson, Alan L T
2012-01-01
Connes showed that spectral triples encode (noncommutative) metric information. Further, Connes and Moscovici in their metric bundle construction showed that, as with the Takesaki duality theorem, forming a crossed product spectral triple can substantially simplify the structure. In a recent paper, Bellissard, Marcolli and Reihani (among other things) studied in depth metric notions for spectral triples and crossed product spectral triples for $Z$-actions, with applications in number theory and coding theory. In the work of Connes and Moscovici, crossed products involving groups of diffeomorphisms and even of \\'{e}tale groupoids are required. With this motivation, the present paper develops part of the Bellissard-Marcolli-Reihani theory for a general discrete group action, and in particular, introduces coaction spectral triples and their associated metric notions. The isometric condition is replaced by the contractive condition.
Broadband Spectral Study of Magnetar Bursts
Kirmizibayrak, Demet; Gogus, Ersin; Sasmaz Mus, Sinem; Kaneko, Yuki
2016-07-01
Magnetar bursts occur sporadically on random occasions, and every burst-active episode carries unique information about the bursting magnetar. Therefore, in-depth spectral and temporal analyses of each of the magnetar bursts provide new insights into the bursting and radiation mechanisms. There have been a number of studies over the last decade, investigating the spectral and temporal properties of magnetar bursts. The spectra of typical magnetar bursts were generally described with the Comptonized model or the sum of two blackbody functions. However, it was recently shown that the actual spectral nature of these bursts can be conclusively determined if the spectral analysis is performed on a wide energy coverage. We present the results of in-depth systematic broadband (2 - 250 keV) spectral analysis of a large number of bursts originated from three magnetars: SGR 1806-20, SGR 1900+14, and SGR J1550-5418, observed with the Rossi X-ray Timing Explorer.
Spectral ratio method for measuring emissivity
Watson, K.
1992-01-01
The spectral ratio method is based on the concept that although the spectral radiances are very sensitive to small changes in temperature the ratios are not. Only an approximate estimate of temperature is required thus, for example, we can determine the emissivity ratio to an accuracy of 1% with a temperature estimate that is only accurate to 12.5 K. Selecting the maximum value of the channel brightness temperatures is an unbiased estimate. Laboratory and field spectral data are easily converted into spectral ratio plots. The ratio method is limited by system signal:noise and spectral band-width. The images can appear quite noisy because ratios enhance high frequencies and may require spatial filtering. Atmospheric effects tend to rescale the ratios and require using an atmospheric model or a calibration site. ?? 1992.
Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator.
Karpov, Maxim; Guo, Hairun; Kordts, Arne; Brasch, Victor; Pfeiffer, Martin H P; Zervas, Michail; Geiselmann, Michael; Kippenberg, Tobias J
2016-03-11
The formation of temporal dissipative Kerr solitons in microresonators driven by a continuous-wave laser enables the generation of coherent, broadband, and spectrally smooth optical frequency combs as well as femtosecond pulse sources with compact form factors. Here we report the observation of a Raman-induced soliton self-frequency shift for a microresonator dissipative Kerr soliton also referred to as the frequency-locked Raman soliton. In amorphous silicon nitride microresonator-based single soliton states the Raman effect manifests itself by a spectrum that is sech^{2} in shape and whose center is spectrally redshifted from the continuous wave pump laser. The shift is theoretically described by the first-order shock term of the material's Raman response, and we infer a Raman shock time of ∼20 fs for amorphous silicon nitride. Moreover, we observe that the Raman-induced frequency shift can lead to a cancellation or overcompensation of the soliton recoil caused by the formation of a coherent dispersive wave. The observations are in agreement with numerical simulations based on the Lugiato-Lefever equation with a Raman shock term. Our results contribute to the understanding of Kerr frequency combs in the soliton regime, enable one to substantially improve the accuracy of modeling, and are relevant to the understanding of the fundamental timing jitter of microresonator solitons.
Spectral Reconstruction for Obtaining Virtual Hyperspectral Images
Perez, G. J. P.; Castro, E. C.
2016-12-01
Hyperspectral sensors demonstrated its capabalities in identifying materials and detecting processes in a satellite scene. However, availability of hyperspectral images are limited due to the high development cost of these sensors. Currently, most of the readily available data are from multi-spectral instruments. Spectral reconstruction is an alternative method to address the need for hyperspectral information. The spectral reconstruction technique has been shown to provide a quick and accurate detection of defects in an integrated circuit, recovers damaged parts of frescoes, and it also aids in converting a microscope into an imaging spectrometer. By using several spectral bands together with a spectral library, a spectrum acquired by a sensor can be expressed as a linear superposition of elementary signals. In this study, spectral reconstruction is used to estimate the spectra of different surfaces imaged by Landsat 8. Four atmospherically corrected surface reflectance from three visible bands (499 nm, 585 nm, 670 nm) and one near-infrared band (872 nm) of Landsat 8, and a spectral library of ground elements acquired from the United States Geological Survey (USGS) are used. The spectral library is limited to 420-1020 nm spectral range, and is interpolated at one nanometer resolution. Singular Value Decomposition (SVD) is used to calculate the basis spectra, which are then applied to reconstruct the spectrum. The spectral reconstruction is applied for test cases within the library consisting of vegetation communities. This technique was successful in reconstructing a hyperspectral signal with error of less than 12% for most of the test cases. Hence, this study demonstrated the potential of simulating information at any desired wavelength, creating a virtual hyperspectral sensor without the need for additional satellite bands.
Expert system application for prioritizing preventive actions for shift work: shift expert.
Esen, Hatice; Hatipoğlu, Tuğçen; Cihan, Ahmet; Fiğlali, Nilgün
2017-09-19
Shift patterns, work hours, work arrangements and worker motivations have increasingly become key factors for job performance. The main objective of this article is to design an expert system that identifies the negative effects of shift work and prioritizes mitigation efforts according to their importance in preventing these negative effects. The proposed expert system will be referred to as the shift expert. A thorough literature review is conducted to determine the effects of shift work on workers. Our work indicates that shift work is linked to demographic variables, sleepiness and fatigue, health and well-being, and social and domestic conditions. These parameters constitute the sections of a questionnaire designed to focus on 26 important issues related to shift work. The shift expert is then constructed to provide prevention advice at the individual and organizational levels, and it prioritizes this advice using a fuzzy analytic hierarchy process model, which considers comparison matrices provided by users during the prioritization process. An empirical study of 61 workers working on three rotating shifts is performed. After administering the questionnaires, the collected data are analyzed statistically, and then the shift expert produces individual and organizational recommendations for these workers.
Influences on Dietary Choices during Day versus Night Shift in Shift Workers: A Mixed Methods Study
Directory of Open Access Journals (Sweden)
Emily K. Bonnell
2017-02-01
Full Text Available Shift work is associated with diet-related chronic conditions such as obesity and cardiovascular disease. This study aimed to explore factors influencing food choice and dietary intake in shift workers. A fixed mixed method study design was undertaken on a convenience sample of firefighters who continually work a rotating roster. Six focus groups (n = 41 were conducted to establish factors affecting dietary intake whilst at work. Dietary intake was assessed using repeated 24 h dietary recalls (n = 19. Interviews were audio recorded, transcribed verbatim, and interpreted using thematic analysis. Dietary data were entered into FoodWorks and analysed using Wilcoxon signed-rank test; p < 0.05 was considered significant. Thematic analysis highlighted four key themes influencing dietary intake: shift schedule; attitudes and decisions of co-workers; time and accessibility; and knowledge of the relationship between food and health. Participants reported consuming more discretionary foods and limited availability of healthy food choices on night shift. Energy intakes (kJ/day did not differ between days that included a day or night shift but greater energy density (EDenergy, kJ/g/day of the diet was observed on night shift compared with day shift. This study has identified a number of dietary-specific shift-related factors that may contribute to an increase in unhealthy behaviours in a shift-working population. Given the increased risk of developing chronic diseases, organisational change to support workers in this environment is warranted.
An Efficient Variant of the Restarted Shifted GMRES Method for Solving Shifted Linear Systems
Institute of Scientific and Technical Information of China (English)
Akira IMAKURA; Tomohiro SOGABE; Shaoliang ZHANG
2013-01-01
We investigate the restart of the Restarted Shifted GMRES method for solving shifted linear systems.Recently the variant of the GMRES(m) method with the unfixed update has been proposed to improve the convergence of the GMRES(m) method for solving linear systems,and shown to have an efficient convergence property.In this paper,by applying the unfixed update to the Restarted Shifted GMRES method,we propose a variant of the Restarted Shifted GMRES method.We show a potentiality for efficient convergence within the variant by some numerical results.
Modelling a Nurse Shift Schedule with Multiple Preference Ranks for Shifts and Days-Off
Directory of Open Access Journals (Sweden)
Chun-Cheng Lin
2014-01-01
Full Text Available When it comes to nurse shift schedules, it is found that the nursing staff have diverse preferences about shift rotations and days-off. The previous studies only focused on the most preferred work shift and the number of satisfactory days-off of the schedule at the current schedule period but had few discussions on the previous schedule periods and other preference levels for shifts and days-off, which may affect fairness of shift schedules. As a result, this paper proposes a nurse scheduling model based upon integer programming that takes into account constraints of the schedule, different preference ranks towards each shift, and the historical data of previous schedule periods to maximize the satisfaction of all the nursing staff's preferences about the shift schedule. The main contribution of the proposed model is that we consider that the nursing staff’s satisfaction level is affected by multiple preference ranks and their priority ordering to be scheduled, so that the quality of the generated shift schedule is more reasonable. Numerical results show that the planned shifts and days-off are fair and successfully meet the preferences of all the nursing staff.
Phase shifting interferometry from two normalized interferograms with random tilt phase-shift.
Liu, Fengwei; Wu, Yongqian; Wu, Fan
2015-07-27
We propose a novel phase shifting interferometry from two normalized interferograms with random tilt phase-shift. The determination of tilt phase-shift is performed by extracting the tilted phase-shift plane from the phase difference of two normalized interferograms, and with the calculated tilt phase-shift value the phase distribution can be retrieved from the two normalized frames. By analyzing the distribution of phase difference and utilizing special points fitting method, the tilted phase-shift plane is extracted in three different cases, which relate to different magnitudes of tilts. Proposed method has been applied to simulations and experiments successfully and the satisfactory results manifest that proposed method is of high accuracy and high speed compared with the three step iterative method. Additionally, both open and closed fringe can be analyzed with proposed method. What's more, it cannot only eliminate the small tilt-shift error caused by slight vibration in phase-shifting interferometry, but also detect the large tilt phase-shift in phase-tilting interferometry. Thus, it will relaxes the requirements on the accuracy of phase shifter, and the costly phase shifter may even be useless by applying proposed method in high amplitude vibrated circumstance to achieve high-precision analysis.
Chemical shift prediction for denatured proteins
Energy Technology Data Exchange (ETDEWEB)
Prestegard, James H., E-mail: jpresteg@ccrc.uga.edu; Sahu, Sarata C.; Nkari, Wendy K.; Morris, Laura C.; Live, David; Gruta, Christian
2013-02-15
While chemical shift prediction has played an important role in aspects of protein NMR that include identification of secondary structure, generation of torsion angle constraints for structure determination, and assignment of resonances in spectra of intrinsically disordered proteins, interest has arisen more recently in using it in alternate assignment strategies for crosspeaks in {sup 1}H-{sup 15}N HSQC spectra of sparsely labeled proteins. One such approach involves correlation of crosspeaks in the spectrum of the native protein with those observed in the spectrum of the denatured protein, followed by assignment of the peaks in the latter spectrum. As in the case of disordered proteins, predicted chemical shifts can aid in these assignments. Some previously developed empirical formulas for chemical shift prediction have depended on basis data sets of 20 pentapeptides. In each case the central residue was varied among the 20 amino common acids, with the flanking residues held constant throughout the given series. However, previous choices of solvent conditions and flanking residues make the parameters in these formulas less than ideal for general application to denatured proteins. Here, we report {sup 1}H and {sup 15}N shifts for a set of alanine based pentapeptides under the low pH urea denaturing conditions that are more appropriate for sparse label assignments. New parameters have been derived and a Perl script was created to facilitate comparison with other parameter sets. A small, but significant, improvement in shift predictions for denatured ubiquitin is demonstrated.
Written Language Shift among Norwegian Youth
Directory of Open Access Journals (Sweden)
Kamil ÖZERK
2013-07-01
Full Text Available In Norway there are two written Norwegian languages, Bokmål and Nynorsk. Of these two written languages Bokmål is being used by the majority of the people, and Bokmål has the highest prestige in the society. This article is about the shift of written language from Nynorsk to Bokmål among young people in a traditional Nynorsk district in the country. Drawing on empirical data we conclude that many adolescents are experiencing written language shift. We discuss various reasons for this phenomenon in the linguistic landscape of Norway. In our discussions we emphasize the importance of the school with regard to language maintenance and language revitalization. We call for a new language policy in the educational system that can prevent language shift. Having several dialects and two officially written forms of Norwegian in the country, creates a special linguistic landscape in Norway. Despite the fact that the Norwegian language situation is in several ways unique, it’s done very little research on how the existing policy works in practice. Our research reveals that the existing language policy and practice in the school system is not powerful enough to prevent language shift and language decay among the youngsters. The school system functions like a fabric for language shift.
Choice Shift in Opinion Network Dynamics
Gabbay, Michael
Choice shift is a phenomenon associated with small group dynamics whereby group discussion causes group members to shift their opinions in a more extreme direction so that the mean post-discussion opinion exceeds the mean pre-discussion opinion. Also known as group polarization, choice shift is a robust experimental phenomenon and has been well-studied within social psychology. In opinion network models, shifts toward extremism are typically produced by the presence of stubborn agents at the extremes of the opinion axis, whose opinions are much more resistant to change than moderate agents. However, we present a model in which choice shift can arise without the assumption of stubborn agents; the model evolves member opinions and uncertainties using coupled nonlinear differential equations. In addition, we briefly describe the results of a recent experiment conducted involving online group discussion concerning the outcome of National Football League games are described. The model predictions concerning the effects of network structure, disagreement level, and team choice (favorite or underdog) are in accord with the experimental results. This research was funded by the Office of Naval Research and the Defense Threat Reduction Agency.
Spectral and dynamical properties of a Zr-based MOF.
Gutiérrez, Mario; Sánchez, Félix; Douhal, Abderrazzak
2016-02-21
We report on the spectra and dynamics of a Zr-naphthalene dicarboxylic acid (Zr-NDC) MOF in different diluted solvent suspensions and in a concentrated tetrahydrofuran (THF) one. In a diluted diethyl ether (DE) suspension, we observed intraparticle excimer formation between neighboring naphthalene organic linkers, leading to a red-shifted broad band in the emission spectrum and to a dynamics composed of three components τ1 = 650 ps, τ2 = 3.7 ns and τ3 = 13.9 ns, assigned to the excimer photoproduction, monomer and excimer lifetimes, respectively. Furthermore, both absorption and emission spectra show a blue shift in more polar solvents characterized by the solvent polarity function f(ε,n). We also observed changes in the excimer formation time (490-840 ps) probably due to a variation in the MOF structural fluctuation induced by solvent filling. The global fluorescence quantum yield of these suspensions is around 0.30 ± 0.05. At higher concentrations of the MOF particles, we observed the absorption and emission signals of aggregates having an intercrystal excimer formation in ∼ 5 ps in a THF suspension, ∼ 100 times shorter than that observed in a diluted one. Our results give the spectral and dynamical properties of a Zr-NDC MOF in solvent suspensions, opening the way to further studies of these kinds of MOFs interacting with fluorescent dyes for possible photonic applications.
Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation.
Maram, Reza; Azaña, José
2013-11-18
Integer and fractional spectral self-imaging effects are induced on infinite-duration periodic frequency combs (probe signal) using cross-phase modulation (XPM) with a parabolic pulse train as pump signal. Free-spectral-range tuning (fractional effects) or wavelength-shifting (integer effects) of the frequency comb can be achieved by changing the parabolic pulse peak power or/and repetition rate without affecting the spectral envelope shape and bandwidth of the original comb. For design purposes, we derive the complete family of different pump signals that allow implementing a desired spectral self-imaging process. Numerical simulation results validate our theoretical analysis. We also investigate the detrimental influence of group-delay walk-off and deviations in the nominal temporal shape or power of the pump pulses on the generated output frequency combs.
Obregón-Mendoza, Marco A; Sánchez-Castellanos, Mariano; Cuevas, Gabriel; Gnecco, Dino; Cassani, Julia; Poveda-Jaramillo, Juan C; Reynolds, William F; Enríquez, Raúl G
2017-03-01
The effect of the stereochemistry of the sulfur atom on (1) H chemical shifts of the diasteromeric pair of cyclic sulfites of 4-[methoxy(4-nitrophenyl)methyl]-5-phenyl-1,3,2-dioxathiolan-2-oxide was investigated. The complete (1) H and (13) C NMR spectral assignment was achieved by the use of one-dimensional and two-dimensional NMR techniques in combination with X-ray data. A correlation of experimental data with theoretical calculations of chemical shift tensors using density functional theory and topological theory of atoms in molecules was made. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Transition Mean Values of Shifted Convolution Sums
Petrow, Ian
2011-01-01
Let f be a classical holomorphic cusp form for SL_2(Z) of weight k which is a normalized eigenfunction for the Hecke algebra, and let \\lambda(n) be its eigenvalues. In this paper we study "shifted convolution sums" of the eigenvalues \\lambda(n) after averaging over many shifts h and obtain asymptotic estimates. The result is somewhat surprising: one encounters a transition region depending on the ratio of the square of the length of the average over h to the length of the shifted convolution sum. The phenomenon is similar to that encountered by Conrey, Farmer and Soundararajan in their 2000 paper Transition Mean Values of Real Characters, and the connection of both results to Eisenstein series and multiple Dirichlet series is discussed.
Protein Structure Determination Using Chemical Shifts
DEFF Research Database (Denmark)
Christensen, Anders Steen
In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes...... chemical shifts. The method is benchmarked on folding simulations of five small proteins. In four cases the resulting structures are in excellent agreement with experimental data, the fifth case fail likely due to inaccuracies in the energy function. For the Chymotrypsin Inhibitor protein, a structure...... is determined using only chemical shifts recorded and assigned through automated processes. The CARMSD to the experimental X-ray for this structure is 1.1. Å. Additionally, the method is combined with very sparse NOE-restraints and evolutionary distance restraints and tested on several protein structures >100...
The affective shift model of work engagement.
Bledow, Ronald; Schmitt, Antje; Frese, Michael; Kühnel, Jana
2011-11-01
On the basis of self-regulation theories, the authors develop an affective shift model of work engagement according to which work engagement emerges from the dynamic interplay of positive and negative affect. The affective shift model posits that negative affect is positively related to work engagement if negative affect is followed by positive affect. The authors applied experience sampling methodology to test the model. Data on affective events, mood, and work engagement was collected twice a day over 9 working days among 55 software developers. In support of the affective shift model, negative mood and negative events experienced in the morning of a working day were positively related to work engagement in the afternoon if positive mood in the time interval between morning and afternoon was high. Individual differences in positive affectivity moderated within-person relationships. The authors discuss how work engagement can be fostered through affect regulation.
Special offer for early shift takers!
Muriel
Peter Jenni, spokesperson of the ATLAS collaboration, just made the following announcement. "Despite the few problems that we are encountering, which of course are unavoidable in such a large project, I am very pleased with the way the ATLAS experiment is taking shape. With the imminence of data taking, I would like to make a special gesture as a thank you to all of you who are working so hard for ATLAS to meet its many deadlines. The first 100 ATLAS members who will sign up for shifts will receive twice the standard OTSMOU credit." You can sign up for shifts as of April 1st by sending an e-mail to Atlas.Shifts@cern.ch.
Do working environment interventions reach shift workers?
DEFF Research Database (Denmark)
Nabe-Nielsen, Kirsten; Jørgensen, Marie Birk; Garde, Anne Helene
2016-01-01
workers were less likely to be reached by workplace interventions. For example, night workers less frequently reported that they had got more flexibility (OR 0.5; 95 % CI 0.3-0.7) or that they had participated in improvements of the working procedures (OR 0.6; 95 % CI 0.5-0.8). Quality of leadership......PURPOSE: Shift workers are exposed to more physical and psychosocial stressors in the working environment as compared to day workers. Despite the need for targeted prevention, it is likely that workplace interventions less frequently reach shift workers. The aim was therefore to investigate whether...... the reach of workplace interventions varied between shift workers and day workers and whether such differences could be explained by the quality of leadership exhibited at different times of the day. METHODS: We used questionnaire data from 5361 female care workers in the Danish eldercare sector...
Leung, Michael; Tranmer, Joan; Hung, Eleanor; Korsiak, Jill; Day, Andrew G; Aronson, Kristan J
2016-05-01
Shift work-related carcinogenesis is hypothesized to be mediated by melatonin; however, few studies have considered the potential effect modification of this underlying pathway by chronotype or specific aspects of shift work such as the number of consecutive nights in a rotation. In this study, we examined melatonin patterns in relation to shift status, stratified by chronotype and number of consecutive night shifts, and cumulative lifetime exposure to shift work. Melatonin patterns of 261 female personnel (147 fixed-day and 114 on rotations, including nights) at Kingston General Hospital were analyzed using cosinor analysis. Urine samples were collected from all voids over a 48-hour specimen collection period for measurement of 6-sulfatoxymelatonin concentrations using the Buhlmann ELISA Kit. Chronotypes were assessed using mid-sleep time (MSF) derived from the Munich Chronotype Questionnaire (MCTQ). Sociodemographic, health, and occupational information were collected by questionnaire. Rotational shift nurses working nights had a lower mesor and an earlier time of peak melatonin production compared to day-only workers. More pronounced differences in mesor and acrophase were seen among later chronotypes, and shift workers working ≥3 consecutive nights. Among nurses, cumulative shift work was associated with a reduction in mesor. These results suggest that evening-types and/or shift workers working ≥3 consecutive nights are more susceptible to adverse light-at-night effects, whereas long-term shift work may also chronically reduce melatonin levels. Cumulative and current exposure to shift work, including nights, affects level and timing of melatonin production, which may be related to carcinogenesis and cancer risk. Cancer Epidemiol Biomarkers Prev; 25(5); 830-8. ©2016 AACR. ©2016 American Association for Cancer Research.
Influence of mineral composition on spectral induced polarization in sediments
Chuprinko, Daniil; Titov, Konstantin
2017-01-01
We discuss a membrane polarization effect that can occur when the walls of two sequential pores are built of different minerals, with different interface properties (the zeta potential and the partition coefficient). The differences in the interface properties lead to a difference in the ion transport numbers (even if the two aforementioned pores are of the same radius) and, therefore, to a membrane polarization when an electrical field is applied. Based on published data, we discuss differences in the interface properties of common minerals: silicates, carbonates, clay minerals, organic material, etc. Based on the theory presented by Marshall & Madden (1959) and recently extended by Bücker & Hördt (2013 a) we semi-analytically model the membrane polarization effect for a system that consists of two pores of equal radius. We calculate maximum values of the phase shift as a function of the pore radius. We also calculate values of the peak frequency (the frequency corresponding to the phase-shift peak) as a function of the pores' lengths. The modelling results show that the phase shift can assume values of up to 80 mrad for pores with radii of about 0.1 micron. The peak frequency values are within the typical frequency range of spectral induced polarization measurements and, therefore, the effect can be detected. Based on the modelling data, we hypothesize that the effect of differences in interface properties of the minerals constituting the walls of sequential pores can be superimposed on the polarization effect of the Stern layer coating the mineral grains and the classical membrane polarization effect.
Nonlinear spectral imaging of biological tissues
Palero, J. A.
2007-07-01
The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.
Augmented Classical Least Squares Multivariate Spectral Analysis
Energy Technology Data Exchange (ETDEWEB)
Haaland, David M. (Albuquerque, NM); Melgaard, David K. (Albuquerque, NM)
2005-01-11
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Augmented Classical Least Squares Multivariate Spectral Analysis
Energy Technology Data Exchange (ETDEWEB)
Haaland, David M. (Albuquerque, NM); Melgaard, David K. (Albuquerque, NM)
2005-07-26
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Partial spectral analysis of hydrological time series
Jukić, D.; Denić-Jukić, V.
2011-03-01
SummaryHydrological time series comprise the influences of numerous processes involved in the transfer of water in hydrological cycle. It implies that an ambiguity with respect to the processes encoded in spectral and cross-spectral density functions exists. Previous studies have not paid attention adequately to this issue. Spectral and cross-spectral density functions represent the Fourier transforms of auto-covariance and cross-covariance functions. Using this basic property, the ambiguity is resolved by applying a novel approach based on the spectral representation of partial correlation. Mathematical background for partial spectral density, partial amplitude and partial phase functions is presented. The proposed functions yield the estimates of spectral density, amplitude and phase that are not affected by a controlling process. If an input-output relation is the subject of interest, antecedent and subsequent influences of the controlling process can be distinguished considering the input event as a referent point. The method is used for analyses of the relations between the rainfall, air temperature and relative humidity, as well as the influences of air temperature and relative humidity on the discharge from karst spring. Time series are collected in the catchment of the Jadro Spring located in the Dinaric karst area of Croatia.
On the spectral formulation of Granger causality.
Chicharro, D
2011-12-01
Spectral measures of causality are used to explore the role of different rhythms in the causal connectivity between brain regions. We study several spectral measures related to Granger causality, comprising the bivariate and conditional Geweke measures, the directed transfer function, and the partial directed coherence. We derive the formulation of dependence and causality in the spectral domain from the more general formulation in the information-theory framework. We argue that the transfer entropy, the most general measure derived from the concept of Granger causality, lacks a spectral representation in terms of only the processes associated with the recorded signals. For all the spectral measures we show how they are related to mutual information rates when explicitly considering the parametric autoregressive representation of the processes. In this way we express the conditional Geweke spectral measure in terms of a multiple coherence involving innovation variables inherent to the autoregressive representation. We also link partial directed coherence with Sims' criterion of causality. Given our results, we discuss the causal interpretation of the spectral measures related to Granger causality and stress the necessity to explicitly consider their specific formulation based on modeling the signals as linear Gaussian stationary autoregressive processes.
Understanding and diagnosing shift work disorder.
Thorpy, Michael
2011-09-01
A significant proportion of the workforce in industrialized countries (16%) are employed as shift workers. These workers may be susceptible to shift work disorder (SWD), a circadian rhythm sleep disorder, particularly those who work at night or on early-morning shifts. Shift work disorder remains an underdiagnosed and undertreated problem among this population. Patients with SWD have difficulty initiating sleep and waking up. Often, these patients have excessive sleepiness during their work shift. Shift work disorder has been associated with decreased productivity, impaired safety, diminished quality of life, and adverse effects on health. Several tools have been validated to assess excessive daytime sleepiness and are often used to assess excessive nighttime sleepiness, such as that experienced in patients with SWD, including the Epworth Sleepiness Scale and the Multiple Sleep Latency Test. The criteria for diagnosing SWD as established by the American Academy of Sleep Medicine (AASM) and published in the International Classification of Sleep Disorders-Second Edition (ICSD-2) were most recently updated in 2005 and thus do not contain newer agents approved for use in patients with SWD. The symptoms of SWD can be treated using behavioral, prescription, and nonprescription therapies. Current treatment guidelines suggest nonpharmacologic interventions, such as exercise and exposure to light. In addition, medications that contain melatonin or caffeine may have clinical benefits in some patients with SWD. However, modafinil and armodafinil are approved by the US Food and Drug Administration to improve wakefulness in patients with excessive sleepiness associated with SWD, and recent data suggest a clinical benefit. The use of these therapies can significantly improve sleep, performance, and quality of life for patients with SWD.
Bautista, Pinky A; Yagi, Yukako
2012-05-01
Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.
Lamb shift of Unruh detector levels
Energy Technology Data Exchange (ETDEWEB)
Garbrecht, Bjoern [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Prokopec, Tomislav [Institute for Theoretical Physics (ITF) and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands)
2006-06-07
We argue that the energy levels of an Unruh detector experience an effect similar to the Lamb shift in quantum electrodynamics. As a consequence, the spectrum of energy levels in a curved background is different from that in flat space. As examples, we consider a detector in an expanding universe and in Rindler space, and for the latter case we suggest a new expression for the local virtual energy density seen by an accelerated observer. In the ultraviolet domain, that is when the space between the energy levels is larger than the Hubble rate or the acceleration of the detector, the Lamb shift quantitatively dominates over the thermal response rate.
Beta-shifts, their languages and computability
DEFF Research Database (Denmark)
Simonsen, Jakob Grue
2011-01-01
they give into the dynamics of the underlying system. We prove that the language of the ß-shift is recursive iff ß is a computable real number. That fact yields a precise characterization of the reals: The real numbers ß for which we can compute arbitrarily good approximations—hence in particular...... the numbers for which we can compute their expansion to some base—are precisely those for which there exists a program that decides for any finite sequence of digits whether the sequence occurs as a subword of some element of the ß-shift. While the “only if” part of the proof of the above result...
Computing partial-shift respirator use periods
Energy Technology Data Exchange (ETDEWEB)
Shotwell, H.P.; Caporossi, J.C.
1983-02-01
Airborne contaminant concentrations cannot always be reduced to desired levels even after the installation of feasible engineering controls. The industrial hygienist may have to recommend full-shift or partial-shift use of appropriate respirators to reduce exposures. The method described allows a recommendation to be made of the minimum period of time an exposed employee needs to use a repirator in order to reach the desired exposure level. The procedure is based on the calculation of time-weighted averages, using the upper confidence levels of air sampling data, and the respirator protection factors.
Lamb shift in the muonic deuterium atom
Energy Technology Data Exchange (ETDEWEB)
Krutov, A. A.; Martynenko, A. P. [Samara State University, Pavlov street 1, 443011, Samara (Russian Federation); Samara State University, Pavlov Street 1, 443011, Samara, Russia and Samara State Aerospace University named after academician S.P. Korolyov, Moskovskoye Shosse 34, 443086, Samara (Russian Federation)
2011-11-15
We present an investigation of the Lamb shift (2P{sub 1/2}-2S{sub 1/2}) in the muonic deuterium ({mu}D) atom using the three-dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear-structure, and recoil effects are calculated with the account of contributions of orders {alpha}{sup 3}, {alpha}{sup 4}, {alpha}{sup 5}, and {alpha}{sup 6}. The results are compared with earlier performed calculations. The obtained numerical value of the Lamb shift at 202.4139 meV can be considered a reliable estimate for comparison with forthcoming experimental data.
Lamb Shift of Unruh Detector Levels
Garbrecht, B; Garbrecht, Bjorn; Prokopec, Tomislav
2006-01-01
We argue that the energy levels of an Unruh detector experience an effect similar to the Lamb shift in Quantum Electrodynamics. As a consequence, the spectrum of energy levels in a curved background is different from that in flat space. As examples, we consider a detector in an expanding Universe and in Rindler space, and for the latter case we suggest a new expression for the local virtual energy density seen by an accelerated observer. In the ultraviolet domain, that is when the space between the energy levels is larger than the Hubble rate or the acceleration of the detector, the Lamb shift quantitatively dominates over the thermal response rate.
Lamb shift in muonic helium ion
Martynenko, A P
2006-01-01
The Lamb shift (2P_{1/2}-2S_{1/2}) in the muonic helium ion (mu ^4_2He)^+ is calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. Special attention is given to corrections of the electron vacuum polarization, the nuclear structure and recoil effects. The obtained numerical value of the Lamb shift 1381.716 meV can be considered as a reliable estimate for the comparison with experimental data.
Lamb shift in muonic deuterium atom
Krutov, A A
2011-01-01
We present new investigation of the Lamb shift (2P_{1/2}-2S_{1/2}) in the muonic deuterium (mu d) atom using the three-dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear structure and recoil effects are calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. The results are compared with earlier performed calculations. The obtained numerical value of the Lamb shift 202.3616 meV can be considered as a reliable estimate for the comparison with forthcoming experimental data.
Lambda shifted photonic crystal cavity laser
DEFF Research Database (Denmark)
Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara
2010-01-01
We propose and demonstrate an alternative type of photonic crystal laser design that shifts all the holes in the lattice by a fixed fraction of the targeted emission wavelength. The structures are realized in InGaAsP =1.15 with InGaAsP quantum wells =1.52 as gain material. Cavities with shifts of 1....../4 and 3/4 of the emission wavelength were fabricated and characterized. Measurements show threshold behavior for several modes at room temperature. Both structures are simulated using a finite difference time domain method to identify the resonances in the spectra and calculate the mode volume...