WorldWideScience

Sample records for water-moderated spectral shift

  1. Graphite-moderated and heavy water-moderated spectral shift controlled reactors

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs

  2. Graphite-moderated and heavy water-moderated spectral shift controlled reactors; Reactores de moderador solido controlados por desplazamiento espectral

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F

    1984-07-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs.

  3. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1981-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drivemechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displayer rods through the reactor vessel

  4. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1982-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drive mechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displacer rods through the reactor vessel. (author)

  5. Spectral shift rod for the boiling water reactor

    International Nuclear Information System (INIS)

    Yokomizo, O.; Kashiwai, S.; Nishida, K.; Orii, A.; Yamashita, J.; Mochida, T.

    1993-01-01

    A Boiling Water Reactor core concept has been proposed using a new fuel component called spectral shift rod (SSR). The SSR is a new type of water rod in which a water level is formed during core operation. The water level can be controlled by the core recirculation flow rate. By using SSRs, the reactor can be operated with all control rods withdrawn through the operation cycle as well as that a much larger natural uranium saving is possible due to spectral shift operation than in current BWRs. The steady state and transient characteristics of the SSRs have been examined by experiments and analyses to certify the feasibility. In a reference design, a four times larger spectral shift width as for the current BWR has been obtained. (orig.)

  6. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Wilson, J.F.; Sherwood, D.G.

    1982-01-01

    A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)

  7. Spectral shift reactor

    International Nuclear Information System (INIS)

    Carlson, W.R.; Piplica, E.J.

    1982-01-01

    A spectral shift pressurized water reactor comprising apparatus for inserting and withdrawing water displacer elements having differing neutron absorbing capabilities for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The displacer elements comprise substantially hollow cylindrical low neutron absorbing rods and substantially hollow cylindrical thick walled stainless rods. Since the stainless steel displacer rods have greater neutron absorbing capability, they can effect greater reactivity change per rod. However, by arranging fewer stainless steel displacer rods in a cluster, the reactivity worth of the stainless steel displacer rod cluster can be less than a low neutron absorbing displacer rod cluster. (author)

  8. The slightly-enriched spectral shift control reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.R.; Lee, J.C.; Larsen, E.W. (Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering); Edlund, M.C. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical and Nuclear Engineering)

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.

  9. The slightly-enriched spectral shift control reactor

    International Nuclear Information System (INIS)

    Martin, W.R.; Lee, J.C.; Larsen, E.W.; Edlund, M.C.

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile 238 U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC

  10. Plutonium fuel cycles in the spectral shift controlled reactor

    International Nuclear Information System (INIS)

    Sider, F.M.; Matzie, R.A.

    1980-01-01

    The spectral shift controlled reactor (SSCR) controls excess core reactivity during an operating cycle through the use of variable heavy water concentrations in the moderator. With heavy water in the coolant, the neutron spectrum is shifted to higher energy levels, thus increasing fertile conversion. In addition, since heavy water obviates the need for soluble boron, neutron losses to control poison are eliminated. As a result, better resource utilization is obtained in the SSCR employing plutonium fuel cycles compared to similarly fueled pressurized water reactors (PWRs). The SSCR, however, is not competitive with the PWR due to higher capital costs, operation and maintenance costs, and the heavy water costs, which outweigh the fuel cycle cost savings. The SSCR may become an attractive alternative to the PWR if uranium prices increase substantially

  11. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Doshi, P.K.; George, R.A.; Dollard, W.J.

    1982-01-01

    A mechanical spectral shift arrangement for controlling a nuclear reactor includes a plurality of reactor coolant displacer members which are inserted into a reactor core at the beginning of the core life to reduce the volume of reactor coolant-moderator in the core at start-up. However, as the reactivity of the core declines with fuel depletion, selected displacer members are withdrawn from the core at selected time intervals to increase core moderation at a time when fuel reactivity is declining. (author)

  12. Power spectral density measurements with 252Cf for a light water moderated research reactor

    International Nuclear Information System (INIS)

    King, W.T.; Mihalczo, J.T.

    1979-01-01

    A method of determining the reactivity of far subcritical systems from neutron noise power spectral density measurements with 252 Cf has previously been tested in fast reactor critical assemblies: a mockup of the Fast Flux Test Facility reactor and a uranium metal sphere. Calculations indicated that this measurement was feasible for a pressurized water reactor (PWR). In order to evaluate the ability to perform these measurements with moderated reactors which have long prompt neutron lifetimes, measurements were performed with a small plate-type research reactor whose neutron lifetime (57 microseconds) was about a factor of three longer than that of a PWR and approx. 50% longer than that of a boiling water reactor. The results of the first measurements of power spectral densities with 252 Cf for a water moderated reactor are presented

  13. IRPHE/B and W-SS-LATTICE, Spectral Shift Reactor Lattice Experiments

    International Nuclear Information System (INIS)

    2003-01-01

    Description: B and W has performed and analysed a series of physics experiments basically concerned with the technology of heterogeneous reactors moderated and cooled by a variable mixture of heavy and light water. A reactor so moderated is termed Spectral Shift Control Reactor (S SCR). In the practical application of this concept, the moderator mixture is rich in heavy water at the beginning of core life, so a relatively large fraction of the neutrons are epithermal and are absorbed in the fertile material. As fuel is consumed, the moderator is diluted with light water. In this way the neutron spectrum is shifted, thereby increasing the proportion of thermal neutrons and the reactivity of the system. The general objective of the S SCR Basic Physics Program was to study the nuclear properties of rod lattices moderated by D 2 O-H 2 O mixtures. The volume ratio of moderator to non-moderator in all lattices was approximately 1.0, and the fuel was either 4%-enriched UO 2 clad in stainless steel or 93%-enriched UO 2 -ThO 2 (Nth/N 15) pellets clad in aluminum. The D 2 O concentration in the moderator ranged from zero to about 90 mole %. The experimental program includes critical experiments with both types of fuel, exponential experiments at room temperature with both types of fuel, exponential experiments at elevated temperatures with the 4%-enriched UO 2 fuel, and neutron age measurements in ThO 2 lattices. The theoretical program included the development of calculation methods applicable to these systems, and the analysis and correlation of the experimental data. A first report provides the results of critical experiments performed under the Spectral Shift Control Reactor Basic Physics Program. A second report documents experimental results and theoretical interpretation of a series of twenty uniform lattice critical experiments in which the neutron spectrum is varied over a fairly broad range. A third report addresses issues that bear on the problems associated with

  14. The slightly-enriched spectral shift control reactor

    International Nuclear Information System (INIS)

    Martin, W.R.; Lee, J.C.; Edlund, M.C.

    1990-06-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in larger neutron captures in fertile 238 U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 show that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies have been carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, effort will focus on performing the final design calculations and continuing the research to develop improved methods for tight lattice analysis

  15. The slightly-enriched spectral shift control reactor. Final report, September 30, 1988--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.R.; Lee, J.C.; Larsen, E.W. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering; Edlund, M.C. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical and Nuclear Engineering

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.

  16. Nuclear fuel assembly with improved spectral shift-producing rods

    International Nuclear Information System (INIS)

    Ferrari, H.M.

    1987-01-01

    This patent describes a nuclear reactor having fuel assemblies and a moderator-coolant liquid flowing through the fuel assemblies, each fuel assembly including an organized array of nuclear fuel rods wherein the moderator-coolant liquid flows along the fuel rods, at least one improved spectral shift-producing rod disposed among the fuel rods. The spectra shift-producing rod consists of: (a) an elongated hollow hermetically-sealed tubular member; (b) a weakened region formed in a portion of the member, the portion being subject to rupture at a given level of internal pressure; and (c) burnable poison material contained in the member which generates gas in the member as operation of the reactor proceeds normally, the material being soluble in the moderator-coolant liquid when brought into contact therewith; (d) the given level of internal pressure being less than the maximum level of internal pressure normally expected to be generated within the member by the poison material by normal operation of the reactor

  17. Moderate drop in water table increases peatland vulnerability to post-fire regime shift.

    Science.gov (United States)

    Kettridge, N; Turetsky, M R; Sherwood, J H; Thompson, D K; Miller, C A; Benscoter, B W; Flannigan, M D; Wotton, B M; Waddington, J M

    2015-01-27

    Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition previously observed within only severely disturbed tropical peatlands. The combined impact of moderate drainage followed by wildfire converted the low productivity, moss-dominated peatland to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy of stored peat carbon.

  18. ABWR-II Core Design with Spectral Shift Rods for Operation with All Control Rods Withdrawn

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Anegawa, Takafumi; Okada, Hiroyuki; Sakurada, Koichi; Tanabe, Akira

    2004-01-01

    An innovative reactor core concept applying spectral shift rods (SSRs) is proposed to improve the plant economy and the operability of the 1700-MW(electric) Advanced Boiling Water Reactor II (ABWR-II). The SSR is a new type of water rod in which a water level is naturally developed during operation and changed according to the coolant flow rate through the channel. By taking advantage of the large size of the ABWR-II bundle, the enhanced spectral shift operation by eight SSRs allows operation of the ABWR-II with all control rods withdrawn. In addition, the uranium-saving factor of 6 to 7% relative to the reference ABWR-II core with conventional water rods can be expected due to the greater effect of spectral shift. The combination of these advantages means the ABWR-II with SSRs should be an attractive alternative for the next-generation nuclear reactor

  19. Evaluation of spectral shift controlled reactors operating on the uranium fuel cycle. Final report

    International Nuclear Information System (INIS)

    Matzie, R.A.; Sider, F.M.

    1979-08-01

    The performance of the spectral shift controlled reactor (SSCR) operating on uranium fuel cycles was evaluated and compared with the conventional pressurized water reactor (PWR). In order to analyze the SSCR, the PSR design methodology was extended to include systems moderated by mixtures of light water and heavy water and these methods were validated by comparison with experimental results. Once the design methods had been formulated, the resouce requirements and power costs were determined for the uranium-fueled SSCR. The ore requirements of the UO 2 once-through fuel cycle and the UO 2 fuel cycle with self-generated recycle (SGR) of plutonium were found to be 10% and 19% less than those of similarly fueled PWRs, respectively. A fuel cycle optimization study was performed for the UO 2 once-through SSCR and the SGR SSCR. By individually altering lattice parameters, discharge exposure or number of in-core batches, savings of less than 8% in resource requirements and less than 1% in power costs were obtained

  20. Neutron absorption profile in a reactor moderated by different mixtures of light and heavy waters

    International Nuclear Information System (INIS)

    Nagy, Mohamed E.; Aly, Mohamed N.; Gaber, Fatma A.; Dorrah, Mahmoud E.

    2014-01-01

    Highlights: • We studied neutron absorption spectra in a mixed water moderated reactor. • Changing D 2 O% in moderator induced neutron energy spectral shift. • Most of the neutrons absorbed in control rods were epithermal. • Control rods worth changes were not proportional to changes of D 2 O% in moderator. • Control rod arrangement influenced the neutronic behavior of the reactor. - Abstract: A Monte-Carlo parametric study was carried out to investigate the neutron absorption profile in a model of LR-0 reactor when it is moderated by different mixtures of heavy/light waters at molecular ratios ranging from 0% up to 100% D 2 O at increments of 10% in D 2 O. The tallies included; neutron absorption profiles in control rods and moderator, and neutron capture profile in 238 U. The work focused on neutron absorption in control rods entailing; total mass of control rods needed to attain criticality, neutron absorption density and total neutron absorption in control rods at each of the studied mixed water moderators. The aim was to explore whether thermal neutron poisons are the most suitable poisons to be used in control rods of nuclear reactors moderated by mixed heavy/light water moderators

  1. Spectral stability of shifted states on star graphs

    Science.gov (United States)

    Kairzhan, Adilbek; Pelinovsky, Dmitry E.

    2018-03-01

    We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N  -  1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥slant 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N  -  1 edges are spectrally stable, whereas the shifted states with non-monotone profiles in the N  -  1 edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states in the case of (ii) are nonlinearly unstable under the NLS flow due to the perturbations breaking the reduction to the homogeneous NLS equation.

  2. Perceptual adaptation of voice gender discrimination with spectrally shifted vowels.

    Science.gov (United States)

    Li, Tianhao; Fu, Qian-Jie

    2011-08-01

    To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the speech of 5 male and 5 female talkers with 16-channel sine-wave vocoders. The subjects were randomly divided into 2 groups; one subjected to 50-Hz, and the other to 200-Hz, temporal envelope cutoff frequencies. No preview or feedback was provided. There was significant adaptation in voice gender discrimination with the 200-Hz cutoff frequency, but significant improvement was observed only for 3 female talkers with F(0) > 180 Hz and 3 male talkers with F(0) gender discrimination under spectral shift conditions with perceptual adaptation, but spectral shift may limit the exclusive use of spectral information and/or the use of formant structure on voice gender discrimination. The results have implications for cochlear implant users and for understanding voice gender discrimination.

  3. Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels

    Science.gov (United States)

    Li, Tianhao; Fu, Qian-Jie

    2011-01-01

    Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…

  4. Neutronic studies of a liquid hydrogen-water composite moderator

    International Nuclear Information System (INIS)

    Tahara, T.; Ooi, M.; Iwasa, H.; Kiyanagi, Y.; Iverson, E.B.; Crabtree, J.A.; Lucas, A.T.

    2001-01-01

    A liquid hydrogen-liquid water composite moderator may provide performance like liquid methane at high-power spallation sources where liquid methane is impractical. We have measured the neutronic properties of such a composite moderator, where a hydrogen layer 1.25 cm thick was closely backed by water layers of 1.75 cm and 3.75 cm thickness. We also studied a moderator in which a 1.75 cm water layer was closely backed by a 1.25 cm hydrogen layer. We further performed simulations for each of these systems for comparison to the experimental results. We observed enhancement of the spectral intensity in the 'thermal' energy range as compared to the spectrum from a conventional liquid hydrogen moderator. This enhancement grew more significant as the water thickness increased, although the pulse shapes became wider as well. (author)

  5. Improving fuel utilization in SmAHTR with spectral shift control design: Proof of concept

    International Nuclear Information System (INIS)

    Kotlyar, D.; Lindley, B.A.; Mohamed, H.

    2017-01-01

    Highlights: • Improving the fuel utilization in a graphite moderated reactor by adopting the ‘spectral shift’ concept. • The feasibility of this concept was tested in the Small Advanced High-Temperature Reactor. • At BOL, the reactor is under-moderated, with excess neutrons being primarily breeding 239 Pu. • Graphite is continuously inserted thermalizing the neutron spectrum and increasing reactivity. • The extra 239 Pu bred during the cycle is then burned, allowing the cycle to be extended. - Abstract: This paper presents a spectral shift design based approach to improve the fuel utilization factor or alternatively to increase the cycle length in a graphite moderated reactor. The feasibility of this concept was tested in the Small Advanced High-Temperature Reactor (SmAHTR). This is a small sized Fluoride-salt-cooled high-temperature reactor (FHR) that uses tri-isotropic (TRISO)-coated particle fuels and graphite moderator materials. A major benefit of the TRISO particles is the ability to mitigate fission product release in the case of an accident. However, the fabrication costs associated with TRISO particles are expected to be significantly higher than the traditional UO 2 fuel. The preliminary studies presented in the paper are focused on extending the achievable irradiation period without increasing the value of the enrichment. In order to increase the discharge burnup, the design includes graphite structures that are initially removed from the core. This imposes a harder spectrum, which enhances the breeding of 239 Pu. Then, the graphite structures are gradually and continuously inserted into the core to sustain criticality. This procedure shifts the hard spectrum into a more thermal one and enables a more efficient utilization of 239 Pu. The preliminary results indicate that this design achieves considerably longer irradiation periods and hence lower fuel cycle costs than the reference design.

  6. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    Science.gov (United States)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  7. The Spectral Shift Control Reactor as an option for much improved uranium utilisation in single-batch SMRs

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, B.A., E-mail: bal29@cam.ac.uk; Parks, G.T.

    2016-12-01

    Highlights: • A PWR with mixed D{sub 2}O/H{sub 2}O moderator/coolant is investigated for SMR applications. • Heavy water concentration varied over the cycle to give ‘spectral shift’ operation. • Much wetter lattice than normal is neutronically favourable. • Taller fuel stack is thus needed to ensure acceptable MDNBR. • 35–43% increase in uranium utilisation for single batch reactor is possible. - Abstract: The Spectral Shift Control Reactor (SSCR) uses a mix of D{sub 2}O and H{sub 2}O to moderate and cool the reactor. Initially, a high proportion of D{sub 2}O is used, such that the reactor is substantially under-moderated, with excess neutrons being primarily captured in {sup 238}U, breeding {sup 239}Pu. Towards the end of the cycle (EOC), the coolant is predominantly H{sub 2}O, thermalising the neutron spectrum and increasing reactivity. Recently, small modular reactors (SMRs) have gained significant interest as a means of providing a power source that requires little maintenance and refuelling. This motivates long cycles and reduced batch operation. For a single-batch reactor, there is typically a 33% penalty to uranium utilisation compared to a 3-batch reactor. Lattice calculations demonstrate the potential of the SSCR to greatly improve uranium utilisation in single-batch reactors over a range of enrichments. A relatively ‘wet’ lattice is employed which further improves uranium utilisation. Cases with 5% and 15% fissile loading are considered, for which it is respectively possible to achieve 47% and 39% increases in natural uranium utilisation using the SSCR relative to a ‘reference’ light water reactor. In the latter case, if 25% thorium is mixed into the fuel, the improvement in uranium utilisation increases to a total of 49%. Hence, in both cases, it is possible to in effect eliminate the penalty of using a single fuel batch. The ‘wet’ lattice introduces substantial thermal-hydraulic challenges due to the significantly higher fuel

  8. Integrated optics refractometry: sensitivity in relation to spectral shifts

    NARCIS (Netherlands)

    Hoekstra, Hugo; Hammer, M.

    2013-01-01

    A new variant of the Vernier-effect based sensor reported in ref. 1 is introduced. Both sensor types may show a huge index induced spectral shift. It will be shown in a poster presentation that with such sensors, as well as with surface plasmon based sensors, the constraints on the spectral

  9. Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting

    Directory of Open Access Journals (Sweden)

    José L. Santacruz

    2016-11-01

    Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.

  10. A differential detection scheme of spectral shifts in long-period fiber gratings

    Science.gov (United States)

    Zhelyazkova, Katerina; Eftimov, Tinko; Smietana, Mateusz; Bock, Wojtek

    2010-10-01

    In this work we present an analysis of the response of a compact, simple and inexpensive optoelectronic sensor system intended to detect spectral shifts of a long-period fiber grating (LPG). The system makes use of a diffraction grating and a couple of receiving optical fibers that pick up signals at two different wavelengths. This differential detection system provides the same useful information from an LPG-based sensor as with a conventional laboratory system using optical spectrum analyzers for monitoring the minimum offset of LPG. The design of the fiber detection pair as a function of the parameters of the dispersion grating, the pick-up fiber and the LPG parameters, is presented in detail. Simulation of the detection system responses is presented using real from spectral shifts in nano-coated LPGs caused by the evaporation of various liquids such as water, ethanol and acetone, which are examples of corrosive, flammable and hazardous substances. Fiber optic sensors with similar detection can find applications in structural health monitoring for moisture detection, monitoring the spillage of toxic and flammable substances in industry etc.

  11. Fluid moderator control system reactor internals distribution system

    International Nuclear Information System (INIS)

    Fensterer, H.F.; Klassen, W.E.; Veronesi, L.; Boyle, D.E.; Salton, R.B.

    1987-01-01

    This patent describes a spectral shift pressurized water nuclear reactor employing a low neutron moderating fluid for the spectral shift including a reactor pressure vessel, a core comprising a plurality of fuel assemblies, a core support plate, apparatus comprising means for penetrating the reactor vessel for introducing the moderating fluid into the reactor vessel. Means associated with the core support plate for directly distributing the moderating fluid to and from the fuel assemblies comprises at least one inlet flow channel in the core plate; branch inlet feed lines connect to the inlet flow channel in the core plate; vertical inlet flow lines flow connected to the branch inlet feed lines; each vertical flow line communicates with a fuel assembly; the distribution means further comprise lines serving as return flow lines, each of which is connected to one of the fuel assemblies; branch exit flow lines in the core plate flow connected to the return flow lines of the fuel assembly; and at least one outlet flow channel flow connected to the branch exit flow lines; and a flow port interposed between the penetration means and the distribution means for flow connecting the penetration means with the distribution means

  12. Optimization of the fuel cell of a spectral shift controlled reactor

    International Nuclear Information System (INIS)

    Alcala, F.

    1984-01-01

    Some low enriched uranium-graphite watercooled cells are analyzed from the point of view of both neutronic and thermal behavior. Such cells are of greater interest if their reactivity control is carried out by means of spectral shifting. This may be achieved by changing the relative concentration of a mixture of heavy and light water used as a coolant that flows through a system of tubes arranged in the graphite blocks. The increase of the relative fraction of light water during the burnup cycle extends the length of the cycle and makes it less proliferative. Performance of a cell of this kind is compared with that of a typical pressurized water reactor cell having the same type of fuel, degree of enrichment, specific power, and total power output

  13. Thermal hydraulic test of advanced fuel bundle with spectral shift rod (SSR) for BWR. Effect of thermal hydraulic parameters on steady state characteristics

    International Nuclear Information System (INIS)

    Kondo, Takao; Kitou, Kazuaki; Chaki, Masao; Ohga, Yukiharu; Makigami, Takeshi

    2011-01-01

    Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR's merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test results of the base geometry case in SSR thermal hydraulic test, which was conducted under the national project of next generation LWR. In the test, thermal hydraulic parameters, such as flow rate, pressure, inlet subcooling and heater rod power are changed to evaluate these effects on SSR water level and other SSR characteristics. In the test results, SSR water level rose as flow rate rose, which showed controllability of SSR water level by flow rate. The sensitivities of other thermal hydraulic parameters on SSR water level were also evaluated. The obtained data of parameter's sensitivities is various enough for the further analytical evaluation. The fluctuation of SSR water level was also measured to be small enough. As a result, it was confirmed that SSR's steady state performance was as planned and that SSR design concept is feasible. (author)

  14. Impact of moderator history on physics parameters in pressurized water reactors

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1988-01-01

    The magnitude of differential reactivity effects that result from spectral differences in different portions of a pressurized water (PWR) core is studied, and it is shown that these effects can be correlated very well with the local moderator history. The impact of these differences on physics parameters such as axial offset, isothermal moderator temperature coefficient, and differential control rod worth is shown to be significant for two PWRs of considerably different design

  15. Fluorescence spectral shift of QD films with electron injection: Dependence on counterion proximity

    Science.gov (United States)

    Lu, Meilin; Li, Bo; Zhang, Yaxin; Liu, Weilong; Yang, Yanqiang; Wang, Yuxiao; Yang, Qingxin

    2017-05-01

    Due to the promising application of quantum dot (QD) films in solar cells, LEDs and environmental detectors, the fluorescence of charged QD films has achieved much attention during recent years. In this work, we observe the spectral shift of photoluminescence (PL) in charged CdSe/ZnS QD films controlled by electrochemical potential. The spectral center under negative bias changes from red-shift to blue-shift while introducing smaller inorganic counterions (potassium ions) into the electrolyte. This repeatable effect is attributed to the enhanced electron injection with smaller cations and the electronic perturbations of QD luminescence by these excess charges.

  16. Extension of Newton's Dynamical Spectral Shift for Photons in ...

    African Journals Online (AJOL)

    Extension of Newton's Dynamical Spectral Shift for Photons in Gravitational Fields of Static Homogeneous Spherical Massive Bodies. ... is perfectly in agreement with the physical fact that gravitational scalar potential is negative and increase in recession leads to decrease in kinetic energy and hence decrease in frequency.

  17. Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS).

    Science.gov (United States)

    Guo, Shuxia; Chernavskaia, Olga; Popp, Jürgen; Bocklitz, Thomas

    2018-08-15

    Fluorescence emission is one of the major obstacles to apply Raman spectroscopy in biological investigations. It is usually several orders more intense than Raman scattering and hampers further analysis. In cases where the fluorescence emission is too intense to be efficiently removed via routine mathematical baseline correction algorithms, an alternative approach is needed. One alternative approach is shifted-excitation Raman difference spectroscopy (SERDS), where two Raman spectra are recorded with two slightly different excitation wavelengths. Ideally, the fluorescence emission at the two excitations does not change while the Raman spectrum shifts according to the excitation wavelength. Hence the fluorescence is removed in the difference of the two recorded Raman spectra. For better interpretability a spectral reconstruction procedure is necessary to recover the fluorescence-free Raman spectrum. This is challenging due to the intensity variations between the two recorded Raman spectra caused by unavoidable experimental changes as well as the presence of noise. Existent approaches suffer from drawbacks like spectral resolution loss, fluorescence residual, and artefacts. In this contribution, we proposed a reconstruction method based on non-negative least squares (NNLS), where the intensity variations between the two measurements are utilized in the reconstruction model. The method achieved fluorescence-free reconstruction on three real-world SERDS datasets without significant information loss. Thereafter, we quantified the performance of the reconstruction based on artificial datasets from four aspects: reconstructed spectral resolution, precision of reconstruction, signal-to-noise-ratio (SNR), and fluorescence residual. The artificial datasets were constructed with varied Raman to fluorescence intensity ratio (RFIR), SNR, full-width at half-maximum (FWHM), excitation wavelength shift, and fluorescence variation between the two spectra. It was demonstrated that

  18. Spectral changes in conifers subjected to air pollution and water stress: Experimental studies

    Science.gov (United States)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    The roles of leaf anatomy, moisture and pigment content, and number of leaf layers on spectral reflectance in healthy, pollution-stressed, and water-stressed conifer needles were examined experimentally. Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were exposed to ozone and acid mist treatments in fumigation chambers; red pine (Pinus resinosa) needles were artificially dried. Infrared reflectance from stacked needles rose with free water loss. In an air-drying experiment, cell volume reductions induced by loss of turgor caused near-infrared reflectance (TM band 4) to drop after most free water was lost. Under acid mist fumigation, stunting of tissue development similarly reduced band 4 reflectance. Both artificial drying and pollutant fumigation caused a blue shift of the red edge of spectral reflectance curves in conifers, attributable to chlorophyll denaturation. Thematic mapper band ratio 4/3 fell and 5/4 rose with increasing pollution stress on artificial drying. Loss of water by air-drying, freeze-drying, or oven-drying enhanced spectral features, due in part to greater scattering and reduced water absorption. Grinding of the leaf tissue further enhanced the spectral features by increasing reflecting surfaces and path length. In a leaf-stacking experiment, an asymptote in visible and infrared reflectance was reached at 7-8 needle layers of red pine.

  19. Stark shift measurements of Xe II and Xe III spectral lines

    International Nuclear Information System (INIS)

    Cirisan, M; Pelaez, R J; Djurovic, S; Aparicio, J A; Mar, S

    2007-01-01

    Stark shift measurements of singly and doubly ionized Xe spectral lines are presented in this paper. Shifts of 110 Xe II lines and 42 Xe III lines are reported, including a significant number of new results. A low-pressure-pulsed arc with 95% of He and 5% of Xe was used as a plasma source. All measurements were performed under the following plasma conditions: electron density (0.2-1.4) x 10 23 m -3 and electron temperature 18 000-23 000 K. The measured Stark shifts are compared with other experimental and theoretical data

  20. Multiparametric fat-water separation method for fast chemical-shift imaging guidance of thermal therapies.

    Science.gov (United States)

    Lin, Jonathan S; Hwang, Ken-Pin; Jackson, Edward F; Hazle, John D; Stafford, R Jason; Taylor, Brian A

    2013-10-01

    A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively) and fat (0.763 ± 0.006, 0

  1. Inelastic neutron scattering and spectral measurements of advanced cold moderator materials

    International Nuclear Information System (INIS)

    Conrad, H.; Prager, M.; Nuenighoff, K.; Pohl, C.; Kuhs, W.F.

    2004-01-01

    Inelastic neutron scattering with emphasis on energetically low lying modes as well as cold neutron leakage measurements have been performed on four prospective advanced cold moderator materials. Employing the time-of-flight instrument SV29 at the Juelich FRJ-2 reactor, spectra have been obtained from synthetic methane clathrate, tetrahydro-furane (THF) clathrate, 1,3,5-trimethyl-benzene (mesitylene) and light water ice at several temperatures between 2 K and 70 K. Clearly separated excitations at energy transfers of ±1 meV, +2 meV and +3 meV have been observed with synthetic methane clathrate. In mesitylene a wealth of low lying excitations have been observed. In the quenched phase we found lines at 4.7, 7.2, 9.6, 13.6, 15.4, 18.4, 19.0, 23.0, 29.5 and 34.3 meV, respectively. In the annealed phase, we observed significant shifts with the majority of lines. The lowest lying lines now are located at 7.0, 8.5 and 10.5 meV, respectively. In hexagonal ice at T=2 K up to now unreported low lying energy levels were found at energy transfers of 1.8 meV and 2.8 meV. An additional line at about 10 meV could be detected in THF clathrate. Mesitylene, synthetic methane clathrate and water ice, all at T=20 K, have been tested as moderators at the Juelich spallation mock-up JESSICA. The expected gain in neutron leakage current at energies around 2 meV as compared to conventional liquid hydrogen moderators has been observed for methane clathrate and mesitylene. (orig.)

  2. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent; Cottat, Maximilien; Gillibert, Raymond; Guillot, Nicolas; Djaker, Nadia; Lidgi-Guigui, Nathalie; Toury, Timothé e; Barchiesi, Dominique; Toma, Andrea; Di Fabrizio, Enzo M.; Gucciardi, Pietro Giuseppe; de la Chapelle, Marc Lamy

    2016-01-01

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  3. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent

    2016-06-06

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  4. High conversion heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Wakabayashi, Toshio.

    1989-01-01

    In the present invention, fuel rods using uranium-plutonium oxide mixture fuels are arranged in a square lattice at the same pitch as that in light water cooled reactor and heavy water moderators are used. Accordingly, the volume ratio (Vm/Vf) between the moderator and the fuel can be, for example, of about 2. When heavy water is used for the moderator (coolant), since the moderating effect of heavy water is lower than that of light water, a high conversion ratio of not less than 0.8 can be obtained even if the fuel rod arrangement is equal to that of PWR (Vm/Vf about 2). Accordingly, it is possible to avoid problems caused by dense arrangement of fuel rods as in high conversion rate light water cooled reactors. That is, there are no more troubles in view of thermal hydrodynamic characteristics, re-flooding upon loss of coolant accident, etc., as well as the fuel production cost is not increased. (K.M.)

  5. Statistical learning of music- and language-like sequences and tolerance for spectral shifts.

    Science.gov (United States)

    Daikoku, Tatsuya; Yatomi, Yutaka; Yumoto, Masato

    2015-02-01

    In our previous study (Daikoku, Yatomi, & Yumoto, 2014), we demonstrated that the N1m response could be a marker for the statistical learning process of pitch sequence, in which each tone was ordered by a Markov stochastic model. The aim of the present study was to investigate how the statistical learning of music- and language-like auditory sequences is reflected in the N1m responses based on the assumption that both language and music share domain generality. By using vowel sounds generated by a formant synthesizer, we devised music- and language-like auditory sequences in which higher-ordered transitional rules were embedded according to a Markov stochastic model by controlling fundamental (F0) and/or formant frequencies (F1-F2). In each sequence, F0 and/or F1-F2 were spectrally shifted in the last one-third of the tone sequence. Neuromagnetic responses to the tone sequences were recorded from 14 right-handed normal volunteers. In the music- and language-like sequences with pitch change, the N1m responses to the tones that appeared with higher transitional probability were significantly decreased compared with the responses to the tones that appeared with lower transitional probability within the first two-thirds of each sequence. Moreover, the amplitude difference was even retained within the last one-third of the sequence after the spectral shifts. However, in the language-like sequence without pitch change, no significant difference could be detected. The pitch change may facilitate the statistical learning in language and music. Statistically acquired knowledge may be appropriated to process altered auditory sequences with spectral shifts. The relative processing of spectral sequences may be a domain-general auditory mechanism that is innate to humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds.

    Science.gov (United States)

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-07-12

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

  7. The moderating effect of work-time influence on the effect of shift work: a prospective cohort study

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Kirsten; Garde, Anne Helene; Albertsen, Karen

    2011-01-01

    To investigate whether work-time influence moderated the effect of shift work on psychological well-being measured as vitality, mental health, somatic stress symptoms, and disturbed sleep.......To investigate whether work-time influence moderated the effect of shift work on psychological well-being measured as vitality, mental health, somatic stress symptoms, and disturbed sleep....

  8. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  9. Spectral Band Characterization for Hyperspectral Monitoring of Water Quality

    Science.gov (United States)

    Vermillion, Stephanie C.; Raqueno, Rolando; Simmons, Rulon

    2001-01-01

    A method for selecting the set of spectral characteristics that provides the smallest increase in prediction error is of interest to those using hyperspectral imaging (HSI) to monitor water quality. The spectral characteristics of interest to these applications are spectral bandwidth and location. Three water quality constituents of interest that are detectable via remote sensing are chlorophyll (CHL), total suspended solids (TSS), and colored dissolved organic matter (CDOM). Hyperspectral data provides a rich source of information regarding the content and composition of these materials, but often provides more data than an analyst can manage. This study addresses the spectral characteristics need for water quality monitoring for two reasons. First, determination of the greatest contribution of these spectral characteristics would greatly improve computational ease and efficiency. Second, understanding the spectral capabilities of different spectral resolutions and specific regions is an essential part of future system development and characterization. As new systems are developed and tested, water quality managers will be asked to determine sensor specifications that provide the most accurate and efficient water quality measurements. We address these issues using data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and a set of models to predict constituent concentrations.

  10. Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions

    Science.gov (United States)

    Hoge, Frank E.; Wright, C. Wayne; Kana, Todd M.; Swift, Robert N.; Yungel, James K.

    1998-07-01

    We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains of phycoerythrin-containing marine cyanobacteria. The airborne 532-nm laser-induced phycoerythrin fluorescence of the upper oceanic volume showed distinct segregation of cyanobacterial chromophore types in a flight transect from coastal water to the Sargasso Sea in the western North Atlantic. High phycourobilin levels were restricted to the oceanic (oligotrophic) end of the flight transect, in agreement with historical ship findings. These remotely observed phycoerythrin spectral fluorescence shifts have the potential to permit rapid, wide-area studies of the spatial variability of spectrally distinct cyanobacteria, especially across interfacial regions of coastal and oceanic water masses. Airborne laser-induced phytoplankton spectral fluorescence observations also further the development of satellite algorithms for passive detection of phytoplankton pigments. Optical modifications to the NASA Airborne Oceanographic Lidar are briefly described that permitted observation of the fluorescence spectral shifts.

  11. Effect of algae and water on water color shift

    Science.gov (United States)

    Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun

    1991-03-01

    This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.

  12. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.

    Science.gov (United States)

    Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor

    2013-08-01

    The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.

  13. Spectral phase shift and residual angular dispersion of an accousto-optic programme dispersive filter

    International Nuclear Information System (INIS)

    Boerzsoenyi, A.; Meroe, M.

    2010-01-01

    Complete text of publication follows. There is an increasing demand for active and precise dispersion control of ultrashort laser pulses. In chirped pulse amplification (CPA) laser systems, the dispersion of the optical elements of the laser has to be compensated at least to the fourth order to obtain high temporal contrast compressed pulses. Nowadays the most convenient device for active and programmable control of spectral phase and amplitude of broadband laser pulses is the acousto-optic programmable dispersive filter (AOPDF), claimed to be able to adjust the spectral phase up to the fourth order. Although it has been widely used, surprisingly enough there has been only a single, low resolution measurement reported on the accuracy of the induced spectral phase shift of the device. In our paper we report on the first systematic experiment aiming at the precise characterization of an AOPDF device. In the experiment the spectral phase shift of the AOPDF device was measured by spectrally and spatially resolved interferometry, which is especially powerful tool to determine small dispersion values with high accuracy. Besides the spectral phase dispersion, we measured both the propagation direction angular dispersion (PDAD) and the phase front angular dispersion (PhFAD). Although the two quantities are equal for plane waves, there may be noticeable difference for Gaussian pulses. PDAD was determined simply by focusing the beam on the slit of an imaging spectrograph, while PhFAD was measured by the use of an inverted Mach-Zehnder interferometer and an imaging spectrograph. In the measurements, the spectral phase shift and both types of angular dispersion have been recorded upon the systematic change of all the accessible functions of the acousto-optic programmable dispersive filter. The measured values of group delay dispersion (GDD) and third order dispersion (TOD) have been found to agree with the preset values within the error of the measurement (1 fs 2 and 10 fs 3

  14. Chebyshev super spectral viscosity method for water hammer analysis

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2013-09-01

    Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.

  15. Fuel to Moderator Ratio Sensitivity Study Using Water Rod Moderator in SCWR Conceptual Core Design

    International Nuclear Information System (INIS)

    Bae, Seong Man; Kim, Yong Bae; Park, Dong Hwan; Lee, Kwang Ho

    2009-01-01

    The conceptual operating condition of Super Critical Water-cooled Reactor (SCWR) is above critical point of water, such that the coolant temperature ranges from 280 .deg. C to 510 .deg. C with a pressure of 25MPa. This operating condition makes an SCWR have both merits and demerits when compared with current Light Water Reactors (LWRs). One of the demerits of SCWR is degradation of neutron moderation due to a lower water density from ∼0.1g/cm 3 to ∼0.7g/cm 3 under a high coolant temperature condition. Therefore it is necessary to enhance the moderation capability for SCWR to slow down the fast fission neutrons. Many SCWR designs have a water rod concept as an additional moderator, because water has a good moderation capability. Through reviewing the previous water rod assembly designs, it was identified that a sensitivity study is required to optimize fuel assembly pitch to increase the neutron economy. In this paper, the results of the conceptual assembly design sensitivity study which focuses on the comparison of sensitivity for the fuel pitch to diameter (P/D) ratio using water rod moderator, are presented

  16. Reactor core

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    In a BWR type reactor, a great number of pipes (spectral shift pipes) are disposed in the reactor core. Moderators having a small moderating cross section (heavy water) are circulated in the spectral shift pipes to suppress the excess reactivity while increasing the conversion ratio at an initial stage of the operation cycle. After the intermediate stage of the operation cycle in which the reactor core reactivity is lowered, reactivity is increased by circulating moderators having a great moderating cross section (light water) to extend the taken up burnup degree. Further, neutron absorbers such as boron are mixed to the moderator in the spectral shift pipe to control the concentration thereof. With such a constitution, control rods and driving mechanisms are no more necessary, to simplify the structure of the reactor core. This can increase the fuel conversion ratio and control great excess reactivity. Accordingly, a nuclear reactor core of high conversion and high burnup degree can be attained. (I.N.)

  17. Spectral BRDF-based determination of proper measurement geometries to characterize color shift of special effect coatings.

    Science.gov (United States)

    Ferrero, Alejandro; Rabal, Ana; Campos, Joaquín; Martínez-Verdú, Francisco; Chorro, Elísabet; Perales, Esther; Pons, Alicia; Hernanz, María Luisa

    2013-02-01

    A reduced set of measurement geometries allows the spectral reflectance of special effect coatings to be predicted for any other geometry. A physical model based on flake-related parameters has been used to determine nonredundant measurement geometries for the complete description of the spectral bidirectional reflectance distribution function (BRDF). The analysis of experimental spectral BRDF was carried out by means of principal component analysis. From this analysis, a set of nine measurement geometries was proposed to characterize special effect coatings. It was shown that, for two different special effect coatings, these geometries provide a good prediction of their complete color shift.

  18. Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system

    Science.gov (United States)

    Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria

    2017-07-01

    In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.

  19. The effect of spectral width on Goos–Hanchen and Imbert–Fedorov shifts

    International Nuclear Information System (INIS)

    Prajapati, Chandravati; Ranganathan, D

    2013-01-01

    We study the Goos–Hanchen and Imbert–Fedorov shifts for quasi-monochromatic Gaussian beams near the Brewster angle, when the reflection is from a denser to a rarer medium. This is the case of interest in the usual experiments on reflectometry, etc. We have incorporated the effects of the finite linewidth of the quasi-monochromatic light and treated the cases of a Lorentzian and a Gaussian lineshape of the input light spectrum. This study of light with a finite spectral width was carried out for the more frequently studied case, namely reflection from a dense to a rare medium. We found that the shift is increased as compared to the monochromatic Gaussian beam, and is zero at the Brewster angle for a p polarized beam. The shift variation with angle of incidence near the Brewster and critical angles at different values of refractive index ratios is found. We also studied the shift variation for Hermite–Gauss beams around the Brewster angle when the reflection is from a rarer to a denser medium and compare this with our earlier results for the case when the reflection was from a denser to a rarer medium. (paper)

  20. Moderator clean-up system in a heavy water reactor

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Hamamura, Kenji.

    1983-01-01

    Purpose: To decrease the fluctuation of the poison concentration in heavy water moderator due to a heavy water clean-up system. Constitution: To a calandria tank filled with heavy water as poison-containing moderators, are connected both end of a pipeway through which heavy water flows and to which a clean-up device is provided. Strongly basic resin is filled within the clean-up device and a cooler is disposed to a pipeway at the upstream of the clean-up device. In this structure, the temperature of heavy water at the inlet of the clean-up device at a constant level between the temperature at the exit of the cooler and the lowest temperature for the moderator to thereby decrease the fluctuation in the poison concentration in the heavy water moderator due to the heavy water clean-up device. (Moriyama, K.)

  1. Pd based ultrathin membranes for the tritiated water gas shift reaction in the ITER breeder recovery system

    International Nuclear Information System (INIS)

    Tosti, S.; Bettinali, L.; Violante, V.; Basile, A.; Chiappetta, M.; Criscuoli, A.; Drioli, E.; Rizzelo, C.

    1998-01-01

    A mathematical model of a catalytic membrane reactor (CMR) for the water gas shift reaction has been carried out. Based on the model, a new closed loop process for the tritium removal system for the ITER test module of helium cooled pebble bed blanket concept has been studied. A CMR is the main equipment of the proposed process. The main advantages of the closed loop process are related to the absence of secondary wastes, low tritium inventories, moderate operating temperatures and pressures, low dilution of the stream to be processed by isotopic separation. As permeating membranes in the CMR ultra-thin metallic membranes of Pd and PdAg (50-70 μm thick) have been studied. A ceramic porous tube, containing the catalyst in the lumen, has been put in the metallic tube to obtain the CMR for the water gas shifting. Experimental tests, carried out both on ultra-thin membranes and CMRs for the water gas shift reaction, confirmed the behavior studied by the theoretical model and showed a long live of the membrane. (authors)

  2. Apparent wavelength shifts of H-like ions caused by the spectral fine structure observed in CHS plasmas

    International Nuclear Information System (INIS)

    Nishimura, Shin; Ida, Katsumi

    1998-01-01

    A new charge exchange spectroscopy (CXS) system viewing the plasma from the upside and the downside simultaneously was installed on the Compact Helical System (CHS) to detect the absolute value of Doppler shift due to poloidal rotation velocity ( i ∼ 100 eV) and in the after-glow recombining phase (T i ∼ 30 eV). The apparent Doppler shift is always red-shift regardless the direction of plasma rotation and is explained as the effect of the spectral fine structure of hydrogen-like ions. (author)

  3. Using AVIRIS for in-flight calibration of the spectral shifts of SPOT-HRV and of AVHRR?

    Science.gov (United States)

    Willart-Soufflet, Veronique; Santer, Richard

    1993-01-01

    The response of a satellite sensor varies during its lifetime; internal calibration devices can be used to follow the sensor degradation or in-flight calibrations are conducted from estimates of the radiance at satellite level for well predictable situations. Changes in gain are evaluated assuming that the spectral response of the sensor is stable with time; i.e., that the filter response as well as the optics or the electronics are not modified since the prelaunch determinations. Nevertheless, there is some evidence that the SPOT interferometer filters are affected by outgassing effects during the launch. Tests in vacuum chambers indicated a narrowing of the filters with a shift of the upper side towards the blue of about 10 nm which is more over consistant with the loss of gain observed during the launch. Also, during the lifetime of SPOT, the relationship between the loss of sensitivity and the filter bandwidth may correspond to this effect. On the other hand, the inconsistancy of the NOAA7 calibration between two methods (desert and ocean) having a different spectral sensitivity may indicate a spectral problem with a shift of the central wavelength of -20 nm. The basic idea here is to take advantage of the good spectral definition of AVIRIS to monitor these potential spectral degradations with an experimental opportunity provided by a field campaign held in La Crau (S.E. of France) in June 1991 which associated ground-based measurements and AVIRIS, SPOT2, NOAA-11 overpasses over both the calibration site of La Crau and an agricultural area.

  4. Acute alcohol effects on set-shifting and its moderation by baseline individual differences: a latent variable analysis.

    Science.gov (United States)

    Korucuoglu, Ozlem; Sher, Kenneth J; Wood, Phillip K; Saults, John Scott; Altamirano, Lee; Miyake, Akira; Bartholow, Bruce D

    2017-03-01

    To compare the acute effects of alcohol on set-shifting task performance (relative to sober baseline performance) during ascending and descending limb breath alcohol concentration (BrAC), as well as possible moderation of these effects by baseline individual differences. Shifting performance was tested during an initial baseline and a subsequent drinking session, during which participants were assigned randomly to one of three beverage conditions (alcohol, placebo or control) and one of two BrAC limb conditions [ascending and descending (A/D) or descending-only (D-only)]. A human experimental laboratory on the University of Missouri campus in Columbia, MO, USA. A total of 222 moderate-drinking adults (ages 21-30 years) recruited from Columbia, MO and tested between 2010 and 2013. The outcome measure was performance on set-shifting tasks under the different beverage and limb conditions. Shifting performance assessed at baseline was a key moderator. Although performance improved across sessions, this improvement was reduced in the alcohol compared with no-alcohol groups (post-drink latent mean comparison across groups, all Ps ≤ 0.05), and this effect was more pronounced in individuals with lower pre-drink performance (comparison of pre- to post-drink path coefficients across groups, all Ps ≤ 0.05). In the alcohol group, performance was better on descending compared with ascending limb (P ≤ 0.001), but descending limb performance did not differ across the A/D and D-only groups. Practising tasks before drinking moderates the acute effects of alcohol on the ability to switch between tasks. Greater impairment in shifting ability on descending compared with ascending breath alcohol concentration is not related to task practice. © 2016 Society for the Study of Addiction.

  5. Behavioral inhibition and anxiety: The moderating roles of inhibitory control and attention shifting

    Science.gov (United States)

    White, Lauren K.; McDermott, Jennifer Martin; Degnan, Kathryn A.; Henderson, Heather A.; Fox, Nathan A.

    2013-01-01

    Behavioral inhibition (BI), a temperament identified in early childhood, is associated with social reticence in childhood and an increased risk for anxiety problems in adolescence and adulthood. However, not all behaviorally inhibited children remain reticent or develop an anxiety disorder. One possible mechanism accounting for the variability in the developmental trajectories of BI is a child’s ability to successfully recruit cognitive processes involved in the regulation of negative reactivity. However, separate cognitive processes may differentially moderate the association between BI and later anxiety problems. The goal of the current study was to examine how two cognitive processes - attention shifting and inhibitory control - laboratory assessed at 48 months of age moderated the association between 24-month BI and anxiety symptoms in the preschool years. Results revealed that high levels of attention shifting decreased the risk for anxiety symptoms in children with high levels of BI, whereas high levels of inhibitory control increased this risk for anxiety symptoms. These findings suggest that different cognitive processes may influence relative levels of risk or adaptation depending upon a child’s temperamental reactivity. PMID:21301953

  6. LIGHT WATER MODERATED NEUTRONIC REACTOR

    Science.gov (United States)

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  7. Combined Monte Carlo and quantum mechanics study of the solvatochromism of phenol in water. The origin of the blue shift of the lowest pi-pi* transition.

    Science.gov (United States)

    Barreto, Rafael C; Coutinho, Kaline; Georg, Herbert C; Canuto, Sylvio

    2009-03-07

    A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value. Using statistically uncorrelated configurations sampled from the MC simulation, first-principle size-extensive calculations are performed to obtain the solvatochromic shift. Analysis is then made of the origin of the blue shift. Results both at the optimized geometry and in room-temperature liquid water show that hydrogen bonds of water with phenol promote a red shift when phenol is the proton-donor and a blue shift when phenol is the proton-acceptor. In the case of the optimized clusters the calculated shifts are in very good agreement with results obtained from mass-selected free jet expansion experiments. In the liquid case the contribution of the solute-solvent hydrogen bonds partially cancels and the total shift obtained is dominated by the contribution of the outer solvent water molecules. Our best result, including both inner and outer water molecules, is 570 +/- 35 cm(-1), in very good agreement with the small experimental shift of 460 cm(-1) for the absorption maximum.

  8. Assessing corn water stress using spectral reflectance

    Science.gov (United States)

    Mefford, Brenna S.

    Multiple remote sensing techniques have been developed to identify crop water stress, but some methods may be difficult for farmers to apply. Unlike most techniques, shortwave vegetation indices can be calculated using satellite, aerial, or ground imagery from the green (525-600 nm), red (625-700 nm), and near infrared (750-900 nm) spectral bands. If vegetation indices can be used to monitor crop water stress, growers could use this information as a quick low-cost guideline for irrigation management, thus helping save water by preventing over irrigating. This study occurred in the 2013 growing season near Greeley, CO, where pressurized drip irrigation was used to irrigate twelve corn ( Zea mays L.) treatments of varying water deficit. Multispectral data was collected and four different vegetation indices were evaluated: Normalized Difference Vegetation Index (NDVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), Green Normalized Difference Vegetation Index (GNDVI), and the Wide Dynamic Range Vegetation Index (WDRVI). The four vegetation indices were compared to corn water stress as indicated by the stress coefficient (Ks) and water deficit in the root zone, calculated by using a water balance that monitors crop evapotranspiration (ET), irrigation events, precipitation events, and deep percolation. ET for the water balance was calculated using two different methods for comparison purposes: (1) calculation of the stress coefficient (Ks) using FAO-56 standard procedures; (2) use of canopy temperature ratio (Tc ratio) of a stressed crop to a non-stressed crop to calculate Ks. It was found that obtaining Ks from Tc ratio is a viable option, and requires less data to obtain than Ks from FAO-56. In order to compare the indices to Ks, vegetation ratios were developed in the process of normalization. Vegetation ratios are defined as the non-stressed vegetation index divided by the stressed vegetation index. Results showed that vegetation ratios were sensitive to water

  9. High-resolution quantization based on soliton self-frequency shift and spectral compression in a bi-directional comb-fiber architecture

    Science.gov (United States)

    Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong

    2018-03-01

    We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.

  10. Measurement of the spectral shift of the 3d→4p transitions in Ar+, Cl+ and S+ by means of collinear fast-beam laser spectroscopy

    International Nuclear Information System (INIS)

    Eichhorn, A.

    1981-01-01

    The spectral shift of the 3d→4p transitions in Ar + ( 36 Ar + and 40 Ar + ) Cl + ( 35 Cl + and 37 Cl + ) and S + ( 32 S + + 34 S + ) were measured by means of collinear fast-beam laser spectroscopy. Since the volume effect is neglectible only the normal and specific mass effect give contributions to the spectral shift. (BEF)

  11. Chemical shift imaging: a review

    International Nuclear Information System (INIS)

    Brateman, L.

    1986-01-01

    Chemical shift is the phenomenon that is seen when an isotope possessing a nuclear magnetic dipole moment resonates at a spectrum of resonance frequencies in a given magnetic field. These resonance frequencies, or chemical shifts, depend on the chemical environments of particular nuclei. Mapping the spatial distribution of nuclei associated with a particular chemical shift (e.g., hydrogen nuclei associated with water molecules or with lipid groups) is called chemical shift imaging. Several techniques of proton chemical shift imaging that have been applied in vivo are presented, and their clinical findings are reported and summarized. Acquiring high-resolution spectra for large numbers of volume elements in two or three dimensions may be prohibitive because of time constraints, but other methods of imaging lipid of water distributions (i.e., selective excitation, selective saturation, or variations in conventional magnetic resonance imaging pulse sequences) can provide chemical shift information. These techniques require less time, but they lack spectral information. Since fat deposition seen by chemical shift imaging may not be demonstrated by conventional magnetic resonance imaging, certain applications of chemical shift imaging, such as in the determination of fatty liver disease, have greater diagnostic utility than conventional magnetic resonance imaging. Furthermore, edge artifacts caused by chemical shift effects can be eliminated by certain selective methods of data acquisition employed in chemical shift imaging

  12. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes.

    Science.gov (United States)

    Gutierrez, Mario; Reynolds, Matthew P; Klatt, Arthur R

    2010-07-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r(2) >0.6-0.8) with leaf water potential (psi(leaf)) across a broad range of values (-2.0 to -4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (psi(soil)) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision

  13. Perturbation method utilization in the analysis of the Convertible Spectral Shift Reactor (RCVS)

    International Nuclear Information System (INIS)

    Bruna, G.B; Legendre, J.F.; Porta, J.; Doriath, J.Y.

    1988-01-01

    In the framework of the preliminary faisability studies on a new core concept, techniques derived from perturbation theory show-up very useful in the calculation and physical analysis of project parameters. We show, in the present work, some applications of these methods to the RCVS (Reacteur Convertible a Variation de Spectre - Convertible Spectral Shift Reactor) Concept studies. Actually, we present here the search of a few group project type energy structure and the splitting of reactivity effects into individual components [fr

  14. Development of advanced BWR fuel bundle with spectral shift rod (3) -transient analysis of ABWR core with SSR

    International Nuclear Information System (INIS)

    Ikegawa, T.; Chaki, M.; Ohga, Y.; Abe, M.

    2010-01-01

    The spectral shift rod (SSR) is a new type of water rod, utilized instead of the conventional water rod, in which a water level develops during core operation. The water level can be changed according to the fuel channel flow rate. In this study, ABWR plant performance with SSR fuel bundles under transient conditions has been evaluated using the TRACG code. The TRACG code, which can treat three-dimensional hydrodynamic calculations in a reactor pressure vessel, is well suited for evaluating the reactor transient performance with the SSR fuel bundles because it can calculate the water levels in the SSR at each channel grouping and therefore evaluate the core reactivity according to the water level changes in the SSR. 'Generator load rejection with total turbine bypass failure' and 'Recirculation flow control failure with increasing flow' were selected as cases which may increase the reactivity with the increasing water level in the SSR. It was found that the absolute value of the void reactivity coefficient in the SSR core was larger than that in the conventional water rod core because the core averaged void fraction in the SSR core, which has the vapor region above the water level in the SSR, was larger than that in the conventional water rod core. Therefore, AMCPR for the SSR core was a little larger than that for the conventional water rod core; however, the difference was smaller than 0.02 because the inlet of the SSR ascending path was designed to be small enough to prevent the rapid water level increase in the SSR. (authors)

  15. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    Science.gov (United States)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for

  16. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Science.gov (United States)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  17. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Science.gov (United States)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-03-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  18. Power control device for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Matsushima, Hidesuke; Masuda, Hiroyuki.

    1978-01-01

    Purpose: To improve self controllability of a nuclear power plant, as well as enable continuous power level control by a controlled flow of moderators in void pipes provided in a reactor core. Constitution: Hollow void pipes are provided in a reactor core to which a heavy water recycle loop for power control, a heavy water recycle pump for power control, a heavy water temperature regulator and a heavy water flow rate control valve for power control are connected in series to constitute a heavy water recycle loop for flowing heavy water moderators. The void ratio in each of the void pipes are calculated by a process computer to determine the flow rate and the temperature for the recycled heavy water. Based on the above calculation result, the heavy water temperature regulator is actuated by way of a temperature setter at the heavy water inlet and the heavy water flow rate is controlled by the actuation of the heavy water flow rate control valve. (Kawakami, Y.)

  19. Conceptual design of a large Spectral Shift Controlled Reactor

    International Nuclear Information System (INIS)

    Matzie, R.A.; Menzel, G.P.

    1979-08-01

    Within the framework of the Nonproliferation Alternative Systems Assessment Program (NASAP), the US Department of Energy (DOE) has sponsored the development of a conceptual design of a large Spectral Shift Controlled Reactor (SSCR). This report describes the results of the development program and assesses the performance of the conceptual SSCR on the basis of fuel resource utilization and total power costs. The point of departure of the design study was a 1270 MW(e) PWR using Combustion Engineering's System 80/sup TM/ reactor and Stone and Webster's Reference Plant Design. The initial phase of the study consisted of establishing an optimal core design for both the once-through uranium cycle and the denatured U-235/thorium cycle with uranium recycle. The performance of the SSCR was then also assessed for the denatured U-233/thorium cycle with uranium recycle and for the plutonium/thorium cycle with plutonium recycle. After the optimal core design was established, the design of the NSSS and balance of plant was developed

  20. Conceptual design of a large Spectral Shift Controlled Reactor

    International Nuclear Information System (INIS)

    Matzie, R.A.; Menzel, G.P.

    1979-08-01

    Within the framework of the Nonproliferation Alternative Systems Assessment Program (NASAP), the US Department of Energy (DOE) has sponsored the development of a conceptual design of a large Spectral Shift Controlled Reactor (SSCR). The results are presented of the development program, and the performance of the conceptual SSCR is assessed on the basis of fuel resource utilization and total power costs. The point of departure of the design study was a 1270 MW(e) PWR using Combustion Engineering's System 80 reactor and Stone and Webster's Reference Plant Design. The initial phase of the study consisted of establishing an optimal core design for both the once-through uranium cycle and the denatured U-235/thorium cycle with uranium recycle. The performance of the SSCR was then also assessed for the denatured U-233/thorium cycle with uranium recycle and for the plutonium/thorium cycle with plutonium recycle. After the optimal core design was established, the design of the NSSS and balance of plant was developed

  1. Conceptual designing of reduced-moderation water reactor with heavy water coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hibi, Kohki; Shimada, Shoichiro; Okubo, Tsutomu E-mail: okubo@hems.jaeri.go.jp; Iwamura, Takamichi; Wada, Shigeyuki

    2001-12-01

    The conceptual designing of reduced-moderation water reactors, i.e. advanced water-cooled reactors using plutonium mixed-oxide fuel with high conversion ratios more than 1.0 and negative void reactivity coefficients, has been carried out. The core is designed on the concept of a pressurized water reactor with a heavy water coolant and a triangular tight lattice fuel pin arrangement. The seed fuel assembly has an internal blanket region inside the seed fuel region as well as upper and lower blanket regions (i.e. an axial heterogeneous core). The radial blanket fuel assemblies are introduced in a checkerboard pattern among the seed fuel assemblies (i.e. a radial heterogeneous core). The radial blanket region is shorter than the seed fuel region. This study shows that the heavy water moderated core can achieve negative void reactivity coefficients and conversion ratios of 1.06-1.11.

  2. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  3. Nuclear calculation methods for light water moderated reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1961-02-01

    This report is intended as an introductory review. After a brief discussion of problems encountered in the nuclear design of water moderated reactors a comprehensive scheme of calculations is described. This scheme is based largely on theoretical methods and computer codes developed in the U.S.A. but some previously unreported developments made in this country are also described. It is shown that the effective reproduction factor of simple water moderated lattices may be estimated to an accuracy of approximately 1%. Methods for treating water gap flux peaking and control absorbers are presented in some detail, together with a brief discussion of temperature coefficients, void coefficients and burn-up problems. (author)

  4. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    Science.gov (United States)

    Wen, Biyang; Li, Ke

    2016-08-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  5. Variational study of spectral shifts. II

    International Nuclear Information System (INIS)

    Peton, A.

    1979-01-01

    In a static gravitational field the paths of light are curved. This property can be a priori stated for a V 3 Riemannian manifold: through any two points of V 3 it is possible to draw two families of curves, the straight lines of Euclidean geometry and the photon trajectories z. A fibration of the Galilean space-time can be performed in an original way, by taking the z-trajectories of the photons as the base, the isochronic surfaces as fibres, and 'the equal length time on a z trajectory to reach a given point' as the equivalence relation. The straight lines of Euclidean geometry can then carry the classical mechanics time t, and the z trajectories can carry the optics time (T). These times are related by d(T)=F(x,t)dt. If the Universe is classed as a pseudo-Riemannian manifold of normal hyperbolic type Csup(infinity), the time (T) determined above can be taken as the time coordinate in V 4 . Under these conditions d(S) 2 =F 2 ds 2 , where d(S) 2 is the metric of the Riemannian manifold, conforming to the metric ds 2 and allowing (T) as the cosmic time. The results previously achieved by the author (Peton, 1979) can be used to find 1+zsub(G)=F(Asub(s), tsub(s))/F(Asub(O),tsub(O)) where zsub(G) denotes the shift of the spectral lines due to the metric. In the case of relative motion between O and S, 1+z'=(1+zsub(G))(1+βsub(r))(1-β 2 )sup(-1/2)). The Doppler-Fizeau effect therefore appears as a result of the application of the Fermat principle. (Auth.)

  6. Cumulative-Phase-Alteration of Galactic-Light Passing Through the Cosmic-Microwave-Background: A New Mechanism for Some Observed Spectral-Shifts

    Directory of Open Access Journals (Sweden)

    Tank H. K.

    2012-07-01

    Full Text Available Currently, whole of the measured “cosmological-red-shift ” is interpreted as due to the “metric-expansion-of-space”; so for the required “closer -density” of the universe, we need twenty times more mass-energy than the visible baryonic-matter contained in the universe. This paper proposes a new mechanism, which can account for good per- centage of the red-shift in the extra-galactic-light, greatly reducing the requirement of dark matter-energy. Also, this mechanism can cause a new kin d of blue-shift reported here, and their observational evidences. These spectral-s hifts are proposed to result due to cumulative phase-alteration of extra-galactic-light b ecause of vector-addition of: (i electric-field of extra-galactic-light and (ii that of the cosmic-microwave-background (CMB. Since the center-frequency of CMB is much lower than extra-galactic-light, the cumulative-phase-alteration results in red -shift, observed as an additional contribu- tor to the measured “cosmological red-shift”; and since the center-frequency of CMB is higher than the radio-frequency-signals used to measure velocity of space-probes like: Pioneer-10, Pioneer-11, Galileo and Ulysses, the cum ulative-phase-alteration re- sulted in blue-shift, leading to the interpretation of deceleration of these space-probes. While the galactic-light experiences the red-shift, and th e ranging-signals of the space- probes experience blue -shift, they are comparable in magnitude, providing a supportive- evidence for the new mechanism proposed here. More confirmative-experiments for this new mechanism are also proposed.

  7. Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting

    International Nuclear Information System (INIS)

    Gholizadeh, A; Reyhani, A; Mortazavi, S Z; Parvin, P

    2017-01-01

    ZnO nanostructures (including nano-plates and nano-rods (NRs)) are grown in various temperatures and Ar/O 2 flow rates using thermal chemical vapor deposition, which affect the structure, nano-plate/NR population, and the quality of ZnO nanostructures. X-ray diffraction (XRD) attests that the peak intensity of the crystallographic plane (1 0 0) is correlated to nano-plate abundance. Moreover, optical properties elucidate that the population of nano-plates in samples strongly affect the band gap, binding energy of the exciton, and UV–visible (UV–vis) absorption and spectral luminescence emissions. In fact, the exciton binding energy reduces from ∼100 to 80 meV when the population of nano-plates increases in samples. Photovoltaic characteristics based on the drop-casting on Si solar cells reveals three dominant factors, namely, the equivalent series resistance, decreasing reflectance, and down-shifting, in order to scale up the absolute efficiency by 3%. As a consequence, the oxygen vacancies in ZnO nanostructures give rise to the down-shifting and increase of free-carriers, leading to a reduction in the equivalent series resistance and an enlargement of fill factor. To obtain a larger I sc , reduction of spectral reflectance is essential; however, the down-shifting process is shown to be dominant by lessening the surface electron-hole recombination rate over the UV–blue spectral range. (paper)

  8. Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting

    Science.gov (United States)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.

    2017-05-01

    ZnO nanostructures (including nano-plates and nano-rods (NRs)) are grown in various temperatures and Ar/O2 flow rates using thermal chemical vapor deposition, which affect the structure, nano-plate/NR population, and the quality of ZnO nanostructures. X-ray diffraction (XRD) attests that the peak intensity of the crystallographic plane (1 0 0) is correlated to nano-plate abundance. Moreover, optical properties elucidate that the population of nano-plates in samples strongly affect the band gap, binding energy of the exciton, and UV-visible (UV-vis) absorption and spectral luminescence emissions. In fact, the exciton binding energy reduces from ~100 to 80 meV when the population of nano-plates increases in samples. Photovoltaic characteristics based on the drop-casting on Si solar cells reveals three dominant factors, namely, the equivalent series resistance, decreasing reflectance, and down-shifting, in order to scale up the absolute efficiency by 3%. As a consequence, the oxygen vacancies in ZnO nanostructures give rise to the down-shifting and increase of free-carriers, leading to a reduction in the equivalent series resistance and an enlargement of fill factor. To obtain a larger I sc, reduction of spectral reflectance is essential; however, the down-shifting process is shown to be dominant by lessening the surface electron-hole recombination rate over the UV-blue spectral range.

  9. Spectral Shifting in Nondestructive Assay Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nettleton, Anthony Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tutt, James Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaFleur, Adrienne Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    This project involves spectrum tailoring research that endeavors to better distinguish energies of gamma rays using different spectral material thicknesses and determine neutron energies by coating detectors with various materials.

  10. Accurate atmospheric parameters at moderate resolution using spectral indices: Preliminary application to the marvels survey

    International Nuclear Information System (INIS)

    Ghezzi, Luan; Da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; Ge, Jian; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Cargile, Phillip; Pepper, Joshua; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Wang, Ji

    2014-01-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff , metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ∼ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff , 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test

  11. Method of operating heavy water moderated reactors

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1980-01-01

    Purpose: To enable stabilized reactor control, and improve the working rate and the safety of the reactor by removing liquid poison in heavy water while maintaining the power level constant to thereby render the void coefficient of the coolants negative in the low power operation. Method: The operation device for a heavy water moderated reactor comprises a power detector for the reactor, a void coefficient calculator for coolants, control rods inserted into the reactor, a poison regulator for dissolving poisons into or removing them out of heavy water and a device for removing the poisons by the poison regulator device while maintaining the predetermined power level or inserting the control rods by the signals from the power detector and the void coefficient calculator in the high temperature stand-by conditions of the reactor. Then, the heavy water moderated reactor is operated so that liquid poisons in the heavy water are eliminated in the high temperature stand-by condition prior to the start for the power up while maintaining the power level constant and the plurality of control rods are inserted into the reactor core and the void coefficient of the coolants is rendered negative in the low power operation. (Seki, T.)

  12. Spectral entropy as a mean to quantify water stress history for natural vegetation and irrigated agriculture in a water-stressed tropical environment

    Science.gov (United States)

    Kim, Y.; Johnson, M. S.

    2017-12-01

    Spectral entropy (Hs) is an index which can be used to measure the structural complexity of time series data. When a time series is made up of one periodic function, the Hs value becomes smaller, while Hs becomes larger when a time series is composed of several periodic functions. We hypothesized that this characteristic of the Hs could be used to quantify the water stress history of vegetation. For the ideal condition for which sufficient water is supplied to an agricultural crop or natural vegetation, there should be a single distinct phenological cycle represented in a vegetation index time series (e.g., NDVI and EVI). However, time series data for a vegetation area that repeatedly experiences water stress may include several fluctuations that can be observed in addition to the predominant phenological cycle. This is because the process of experiencing water stress and recovering from it generates small fluctuations in phenological characteristics. Consequently, the value of Hs increases when vegetation experiences several water shortages. Therefore, the Hs could be used as an indicator for water stress history. To test this hypothesis, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data for a natural area in comparison to a nearby sugarcane area in seasonally-dry western Costa Rica. In this presentation we will illustrate the use of spectral entropy to evaluate the vegetative responses of natural vegetation (dry tropical forest) and sugarcane under three different irrigation techniques (center pivot irrigation, drip irrigation and flood irrigation). Through this comparative analysis, the utility of Hs as an indicator will be tested. Furthermore, crop response to the different irrigation methods will be discussed in terms of Hs, NDVI and yield.

  13. Investigations of an advanced reactor with Pu fuel controlled without soluble boron

    International Nuclear Information System (INIS)

    Bergeron, J.; Lenain, R.

    1988-09-01

    This paper presents the neutronic investigations of a pressurized water reactor with spectral shift. The fuel is plutonium. The moderation ratio can vary from 1.45 to 1.15. The reactor is controlled and monitored by means of gadoliniated spectral shift rod clusters and by B4C control rod clusters enriched with boron 10. A sufficient Gd 2 O 3 content (6%) has been determined. The fissile material balance of the cycle is compiled by identifying the gains of the spectral shift: 14% of cycle time. The presence of an absorber in the spectral shift clusters is necessary to guarantee the subcriticality of the core in warm conditions (180 0 C)

  14. Synthesis and spectral properties of axially substituted zirconium(IV) and hafnium(IV) water soluble phthalocyanines in solutions

    International Nuclear Information System (INIS)

    Gerasymchuk, Y.S.; Volkov, S.V.; Chernii, V.Ya.; Tomachynski, L.A.; Radzki, St.

    2004-01-01

    Methods of synthesis of novel water soluble axially substituted Zr(IV) and Hf(IV) phthalocyanines with gallic, 5-sulfosalicyllic, oxalic acids, and methyl ester of gallic acid as axial ligands coordinated to the central atom metal of phthalocyanine are presented. The absorption spectra of complex solutions in various solvents were characterized. The dependence of the spectral red shift from Reichardt's empirical polarity parameter is described. The deviation from the linearity of Beer-Bouguer-Lambert law was investigated for the range of concentration 5x10 -6 to 10x10 -5 M. Fluorescent properties of axially substituted phthalocyaninato metal complexes in DMSO solutions were investigated

  15. Testing a "content meets process" model of depression vulnerability and rumination: Exploring the moderating role of set-shifting deficits.

    Science.gov (United States)

    Vergara-Lopez, Chrystal; Lopez-Vergara, Hector I; Roberts, John E

    2016-03-01

    MacCoon and Newman's (2006) "content meets process" model posits that deficits in cognitive control make it difficult to disengage from negative cognitions caused by a negative cognitive style (NCS). The present study examined if the interactive effect of cognitive set-shifting abilities and NCS predicts rumination and past history of depression. Participants were 90 previously depressed individuals and 95 never depressed individuals. We administered three laboratory tasks that assess set-shifting: the Wisconsin Card-Sorting Task, the Emotional Card-Sorting Task, and the Internal Switch Task, and self-report measures of NCS and rumination. Shifting ability in the context of emotional distractors moderated the association between NCS and depressive rumination. Although previously depressed individuals had more NCS and higher trait rumination relative to never depressed individuals, shifting ability did not moderate the association between NCS and depression history. The cross-sectional correlational design cannot address the causal direction of effects. It is also not clear whether findings will generalize beyond college students. NCS was elevated in previously depressed individuals consistent with its theoretical role as trait vulnerability to the disorder. Furthermore, NCS may be particularly likely to trigger rumination among individuals with poor capacity for cognitive control in the context of emotional distraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A two-step method for developing a control rod program for boiling water reactors

    International Nuclear Information System (INIS)

    Taner, M.S.; Levine, S.H.; Hsiao, M.Y.

    1992-01-01

    This paper reports on a two-step method that is established for the generation of a long-term control rod program for boiling water reactors (BWRs). The new method assumes a time-variant target power distribution in core depletion. In the new method, the BWR control rod programming is divided into two steps. In step 1, a sequence of optimal, exposure-dependent Haling power distribution profiles is generated, utilizing the spectral shift concept. In step 2, a set of exposure-dependent control rod patterns is developed by using the Haling profiles generated at step 1 as a target. The new method is implemented in a computer program named OCTOPUS. The optimization procedure of OCTOPUS is based on the method of approximation programming, in which the SIMULATE-E code is used to determine the nucleonics characteristics of the reactor core state. In a test in cycle length over a time-invariant, target Haling power distribution case because of a moderate application of spectral shift. No thermal limits of the core were violated. The gain in cycle length could be increased further by broadening the extent of the spetral shift

  17. Applications of Graph Spectral Techniques to Water Distribution Network Management

    Directory of Open Access Journals (Sweden)

    Armando di Nardo

    2018-01-01

    Full Text Available Cities depend on multiple heterogeneous, interconnected infrastructures to provide safe water to consumers. Given this complexity, efficient numerical techniques are needed to support optimal control and management of a water distribution network (WDN. This paper introduces a holistic analysis framework to support water utilities on the decision making process for an efficient supply management. The proposal is based on graph spectral techniques that take advantage of eigenvalues and eigenvectors properties of matrices that are associated with graphs. Instances of these matrices are the adjacency matrix and the Laplacian, among others. The interest for this application is to work on a graph that specifically represents a WDN. This is a complex network that is made by nodes corresponding to water sources and consumption points and links corresponding to pipes and valves. The aim is to face new challenges on urban water supply, ranging from computing approximations for network performance assessment to setting device positioning for efficient and automatic WDN division into district metered areas. It is consequently created a novel tool-set of graph spectral techniques adapted to improve main water management tasks and to simplify the identification of water losses through the definition of an optimal network partitioning. Two WDNs are used to analyze the proposed methodology. Firstly, the well-known network of C-Town is investigated for benchmarking of the proposed graph spectral framework. This allows for comparing the obtained results with others coming from previously proposed approaches in literature. The second case-study corresponds to an operational network. It shows the usefulness and optimality of the proposal to effectively manage a WDN.

  18. SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features

    Science.gov (United States)

    Harwit, M.

    2010-03-01

    We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.

  19. Bidirectional soliton spectral tunneling effects in the regime of optical event horizon

    DEFF Research Database (Denmark)

    Gu, Jie; Guo, Hairun; Wang, Shaofei

    2015-01-01

    We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....

  20. The impact of different reference panels on spectral reflectance coefficients of some biological water pollutants

    Science.gov (United States)

    Jenerowicz, Agnieszka; Walczykowski, Piotr

    2015-10-01

    Monitoring of water environment and ecosystem, detecting water contaminants and understanding water quality parameters are most important tasks in water management and protection of whole aquatic environment. Detection of biological contaminants play a very important role in preserving human health and water management. To obtain accurate and precise results of determination of the level of biological contamination and to distinguish its type it is necessary to determine precisely spectral reflectance coefficients of several water biological pollutants with inter alia spectroradiometer. This paper presents a methodology and preliminary results of acquisition of spectral reflectance coefficients with different reference panels (e.g. with 5%, 20%, 50%, 80% and 96% of reflectivity) of several biological pollutants. The authors' main task was to measure spectral reflectance coefficients of different biological water pollutants with several reference panels and to select optimal reference standard, which would allow for distinguish different types of several biological contaminants. Moreover it was necessary to indicate the spectral range in which it is possible to discriminate investigated samples of biological contaminants. By conducting many series of measurements of several samples of different types of biological pollutants, authors had concluded how the reflectivity of reference panel influences the accuracy of acquisition of spectral reflectance coefficients. This research was crucial in order to be able to distinguish several types of biological pollutants and to determine the useful spectral range for detection of different kinds of biological contaminants with multispectral and hyperspectral imagery.

  1. [Spectral features analysis of Pinus massoniana with pest of Dendrolimus punctatus Walker and levels detection].

    Science.gov (United States)

    Xu, Zhang-Hua; Liu, Jian; Yu, Kun-Yong; Gong, Cong-Hong; Xie, Wan-Jun; Tang, Meng-Ya; Lai, Ri-Wen; Li, Zeng-Lu

    2013-02-01

    Taking 51 field measured hyperspectral data with different pest levels in Yanping, Fujian Province as objects, the spectral reflectance and first derivative features of 4 levels of healthy, mild, moderate and severe insect pest were analyzed. On the basis of 7 detecting parameters construction, the pest level detecting models were built. The results showed that (1) the spectral reflectance of Pinus massoniana with pests were significantly lower than that of healthy state, and the higher the pest level, the lower the reflectance; (2) with the increase in pest level, the spectral reflectance curves' "green peak" and "red valley" of Pinus massoniana gradually disappeared, and the red edge was leveleds (3) the pest led to spectral "green peak" red shift, red edge position blue shift, but the changes in "red valley" and near-infrared position were complicated; (4) CARI, RES, REA and REDVI were highly relevant to pest levels, and the correlations between REP, RERVI, RENDVI and pest level were weak; (5) the multiple linear regression model with the variables of the 7 detection parameters could effectively detect the pest levels of Dendrolimus punctatus Walker, with both the estimation rate and accuracy above 0.85.

  2. Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    Science.gov (United States)

    Ghezzi, Luan; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji; Paegert, Martin

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ~ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was

  3. Spectral-directional reflectivity of Tyvek immersed in water

    CERN Document Server

    Filevich, A; Bianchi, H; Rodríguez-Martino, J; Torlasco, G

    1999-01-01

    Spectral-directional relative intensity of the light scattered by a Tyvek sample, immersed in water, has been measured for visible and UV wavelengths. The obtained information is useful to simulate the behavior of light in water Cherenkov detectors, such as those proposed for the observation of high energy cosmic ray air showers. In this work a simple empirical dependence of the scattering pattern on the angle was found, convenient to be used in Monte Carlo simulation programs.

  4. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    Science.gov (United States)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  5. Criticality evaluations with moderators other than water for uranium metal fuels

    International Nuclear Information System (INIS)

    Toffer, H.; Tollefson, D.A.; Finfrock, S.H.

    1986-01-01

    Occasionally, nuclear criticality safety analyses of fissile material handling operations or transport situations require consideration of moderation other than water. Such moderators could be oils, plastics, wood, concrete, carbon, or even wet sand. All of these materials contain either hydrogen, carbon, or mixtures of the two elements as the principal moderators. Other elements as part of the compounds or mixtures contribute less to the neutron slowing down process and can possibly be significant parasitic neutron absorbers. Results of a series of calculations are presented illustrating the impact of various moderators on critical masses or critical parameters as a function of lattice pitch for different uranium metal fuel elements at low 235 U enrichments. Several nuclear criticality safety analyses performed at the Hanford N Reactor, operated by UNC Nuclear Industries for the US Department of Energy, have considered alternative moderators to assure that water moderation represented the most limiting case

  6. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma.

    Science.gov (United States)

    Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W

    2016-03-04

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

  7. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  8. A NEW MULTI-SPECTRAL THRESHOLD NORMALIZED DIFFERENCE WATER INDEX (MST-NDWI WATER EXTRACTION METHOD – A CASE STUDY IN YANHE WATERSHED

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2018-05-01

    Full Text Available Accurate remote sensing water extraction is one of the primary tasks of watershed ecological environment study. Since the Yanhe water system has typical characteristics of a small water volume and narrow river channel, which leads to the difficulty for conventional water extraction methods such as Normalized Difference Water Index (NDWI. A new Multi-Spectral Threshold segmentation of the NDWI (MST-NDWI water extraction method is proposed to achieve the accurate water extraction in Yanhe watershed. In the MST-NDWI method, the spectral characteristics of water bodies and typical backgrounds on the Landsat/TM images have been evaluated in Yanhe watershed. The multi-spectral thresholds (TM1, TM4, TM5 based on maximum-likelihood have been utilized before NDWI water extraction to realize segmentation for a division of built-up lands and small linear rivers. With the proposed method, a water map is extracted from the Landsat/TM images in 2010 in China. An accuracy assessment is conducted to compare the proposed method with the conventional water indexes such as NDWI, Modified NDWI (MNDWI, Enhanced Water Index (EWI, and Automated Water Extraction Index (AWEI. The result shows that the MST-NDWI method generates better water extraction accuracy in Yanhe watershed and can effectively diminish the confusing background objects compared to the conventional water indexes. The MST-NDWI method integrates NDWI and Multi-Spectral Threshold segmentation algorithms, with richer valuable information and remarkable results in accurate water extraction in Yanhe watershed.

  9. Electrostatic Origin of the Red Solvatochromic Shift of DFHBDI in RNA Spinach.

    Science.gov (United States)

    Bose, Samik; Chakrabarty, Suman; Ghosh, Debashree

    2017-05-11

    Interactions with the environment tune the spectral properties of biological chromophores, e.g., fluorescent proteins. Understanding the relative contribution of the various types of noncovalent interactions in the spectral shifts can provide rational design principles toward developing new fluorescent probes. In this work, we investigate the origin of the red shift in the absorption spectra of the difluoro hydroxybenzylidene dimethyl imidazolinone (DFHBDI) chromophore in RNA spinach as compared to the aqueous solution. We systematically decompose the effects of various components of interactions, namely, stacking, hydrogen bonding, and long-range electrostatics, in order to elucidate the relative role of these interactions in the observed spectral behavior. We find that the absorption peak of DFHBDI is red-shifted by ∼0.35 eV in RNA relative to the aqueous solution. Earlier proposals from Huang and co-workers have implicated the stacking interactions between DFHBDI and nucleic acid bases to be the driving force behind the observed red shift. In contrast, our findings reveal that the long-range electrostatic interactions between DFHBDI and negatively charged RNA make the most significant contribution. Moreover, we notice that the opposing electrostatic fields due to the RNA backbone and the polarized water molecules around the RNA give rise to the resultant red shift. Our results emphasize the effect of strong heterogeneity in the various environmental factors that might be competing with each other.

  10. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NARCIS (Netherlands)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-01-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in

  11. Under Water Thermal Cutting of the Moderator Vessel and Thermal Shield

    International Nuclear Information System (INIS)

    Loeb, A.; Sokcic-Kostic, M.; Eisenmann, B.; Prechtl, E.

    2007-01-01

    This paper presents the segmentation of the in 8 meter depth of water and for cutting through super alloyed moderator vessel and of the thermal shield of the MZFR stainless steel up to 130 mm wall thickness. Depending on the research reactor by means of under water plasma and contact arc metal cutting. The moderator vessel and the thermal shield are the most essential parts of the MZFR reactor vessel internals. These components have been segmented in 2005 by means of remotely controlled under water cutting utilizing a special manipulator system, a plasma torch and CAMC (Contact Arc Metal Cutting) as cutting tools. The engineered equipment used is a highly advanced design developed in a two years R and D program. It was qualified to cut through steel walls of more than 100 mm thickness in 8 meters water depth. Both the moderator vessel and the thermal shield had to be cut into such size that the segments could afterwards be packed into shielded waste containers each with a volume of roughly 1 m 3 . Segmentation of the moderator vessel and of the thermal shield was performed within 15 months. (author)

  12. Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships.

    Science.gov (United States)

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-09

    The present study provides an extensive overview of red and near infra-red (NIR) spectral relationships found in the literature and used to constrain red or NIR-modeling schemes in current atmospheric correction (AC) algorithms with the aim to improve water-leaving reflectance retrievals, ρw(λ), in turbid waters. However, most of these spectral relationships have been developed with restricted datasets and, subsequently, may not be globally valid, explaining the need of an accurate validation exercise. Spectral relationships are validated here with turbid in situ data for ρw(λ). Functions estimating ρw(λ) in the red were only valid for moderately turbid waters (ρw(λNIR) turbidity ranges presented in the in situ dataset. In the NIR region of the spectrum, the constant NIR reflectance ratio suggested by Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167-1179), was valid for moderately to very turbid waters (ρw(λNIR) turbid waters (ρw(λNIR) > 10(-2)). The results of this study suggest to use the red bounding equations and the polynomial NIR function to constrain red or NIR-modeling schemes in AC processes with the aim to improve ρw(λ) retrievals where current AC algorithms fail.

  13. Variation in plasmonic (electronic) spectral parameters of Pr (III) and Nd (III) with varied concentration of moderators

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Shubha, E-mail: shubhamishra03@gmail.com [School of Studies in Physics, Vikram University, Ujjain (M. P.) (India); Limaye, S. N., E-mail: snl222@yahoo.co.in [Department of Chemistry, Dr. H.S. Gour University, A Central University, Sagar (M.P.) (India)

    2015-07-31

    It is said that the -4f shells behave as core and are least perturbed by changes around metal ion surrounding. However, there are evidences that-4f shells partially involved in direct moderator interaction. A systematic investigation on the plasmonic (electronic) spectral studies of some Rare Earths[RE(III).Mod] where, RE(III) = Pr(III),Nd(III) and Mod(moderator) = Y(III),La(III),Gd(III) and Lu(III), increased moderator concentration from 0.01 mol dm{sup −3} to 0.025 mol dm{sup −3} keeping the metal ion concentration at 0.01mol dm{sup −3} have been carried out. Variations in oscillator strengths (f), Judd-Ofelt parameters (T{sub λ}),inter-electronic repulsion Racah parameters (δE{sup k}),nephelauxetic ratio (β), radiative parameters (S{sub ED},A{sub T},β{sub R},T{sub R}). The values of oscillator strengths and Judd-Ofelt parameters have been discussed in the light of coordination number of RE(III) metal ions, denticity and basicity of the moderators. The [RE(III).Mod] bonding pattern has been studies in the light of the change in Racah parameters and nephelauxetic ratio.

  14. Effects of moderation level on core reactivity and. neutron fluxes in natural uranium fueled and heavy water moderated reactors

    International Nuclear Information System (INIS)

    Khan, M.J.; Aslam; Ahmad, N.; Ahmed, R.; Ahmad, S.I.

    2005-01-01

    The neutron moderation level in a nuclear reactor has a strong influence on core multiplication, reactivity control, fuel burnup, neutron fluxes etc. In the study presented in this article, the effects of neutron moderation level on core reactivity and neutron fluxes in a typical heavy water moderated nuclear research reactor is explored and the results are discussed. (author)

  15. Conceptual design of a pressure tube light water reactor with variable moderator control

    International Nuclear Information System (INIS)

    Rachamin, R.; Fridman, E.; Galperin, A.

    2012-01-01

    This paper presents the development of innovative pressure tube light water reactor with variable moderator control. The core layout is derived from a CANDU line of reactors in general, and advanced ACR-1000 design in particular. It should be stressed however, that while some of the ACR-1000 mechanical design features are adopted, the core design basics of the reactor proposed here are completely different. First, the inter fuel channels spacing, surrounded by the calandria tank, contains a low pressure gas instead of heavy water moderator. Second, the fuel channel design features an additional/external tube (designated as moderator tube) connected to a separate moderator management system. The moderator management system is design to vary the moderator tube content from 'dry' (gas) to 'flooded' (light water filled). The dynamic variation of the moderator is a unique and very important feature of the proposed design. The moderator variation allows an implementation of the 'breed and burn' mode of operation. The 'breed and burn' mode of operation is implemented by keeping the moderator tube empty ('dry' filled with gas) during the breed part of the fuel depletion and subsequently introducing the moderator by 'flooding' the moderator tube for the 'burn' part. This paper assesses the conceptual feasibility of the proposed concept from a neutronics point of view. (authors)

  16. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    present at +7.0 Hz and may be specific to white matter anatomy. Moreover, a frequency shift of 6.76 ± 0.55 Hz was measured between the molecular and granular layers of the cerebellum. This shift is demonstrated in corresponding spectra; water peaks from voxels in the molecular and granular layers are consistently 2 bins apart (7.0 Hz, as dictated by the spectral resolution) from one another. Conclusions: High spectral and spatial resolution MR imaging has the potential to accurately measure the changes in the water resonance in small voxels. This information can guide optimization and interpretation of more commonly used, more rapid imaging methods that depend on image contrast produced by local susceptibility gradients. In addition, with improved sampling methods, high spectral and spatial resolution data could be acquired in reasonable run times, and used for in vivo scans to increase sensitivity to variations in local susceptibility

  17. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    NARCIS (Netherlands)

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the

  18. Thorium utilization in heavy water moderated Accelerator Driven Systems

    International Nuclear Information System (INIS)

    Bajpai, Anil; Degweker, S.B.; Ghosh, Biplab

    2011-01-01

    Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. With limited indigenous U availability and the presence of large Th deposits in the country, there is a clear incentive to develop Th related technologies. India also has vast experience in design, construction and operation of heavy water moderated reactors. Heavy water moderated reactors employing solid Th fuels can be self sustaining, but the discharge burnups are too low to be economical. A possible way to improve the performance such reactors is to use an external neutron source as is done in ADS. This paper discusses our studies on Th utilization in heavy water moderated ADSs. The study is carried out at the lattice level. The time averaged k-infinity of the Th bundle from zero burnup up to the discharge burnup is taken to be the same as the core (ensemble) averaged k-infinity. For the purpose of the analysis we have chosen standard PHWR and AHWR assemblies. Variation of the pitch and coolant (H 2 O/D 2 O) are studied. Both, the once through cycle and the recycling option are studied. In the latter case the study is carried out for various enrichments (% 233 U in Th) of the recycled Th fuel bundles. The code DTF as modified for lattice and burnup calculations (BURNTRAN) was used for carrying out the study. The once through cycle represents the most attractive ADS concept (Th burner ADS) possible for Th utilization. It avoids reprocessing of Th spent fuel and in the ideal situation the use of any fissile material either initially or for sustaining itself. The gain in this system is however rather low requiring a high power accelerator and a substantial fraction of the power generated to be fed back to the accelerator. The self sustaining Th-U cycle in a heavy moderated ADS

  19. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.

    Science.gov (United States)

    Al Shehhi, Maryam R; Gherboudj, Imen; Ghedira, Hosni

    2017-10-01

    Mapping of Chlorophyll-a (Chl-a) over the coastal waters of the Arabian Gulf and the Sea of Oman using the satellite-based observations, such as MODIS (Moderate Resolution Imaging Spectro-radiometer), has shown inferior performance (Chl-a overestimation) than that of deep waters. Studies in the region have shown that this poor performance is due to three reasons: (i) water turbidity (sediments re-suspension), and the presence of colored dissolved organic matter (CDOM), (ii) bottom reflectance and (iii) incapability of the existing atmospheric correction models to reduce the effect of the aerosols from the water leaving radiance. Therefore, this work focuses on investigating the sensitivity of the in situ spectral signatures of these coastal waters to the algal (chlorophyll: Chl-a), non-algal (sediments and CDOM) and the bottom reflectance properties, in absence of contributions from the atmosphere. Consequently, the collected in situ spectral signatures will improve our understanding of Arabian Gulf and Sea of Oman water properties. For this purpose, comprehensive field measurements were carried out between 2013 and 2016, over Abu-Dhabi (Arabian Gulf) and Fujairah (Sea of Oman) where unique water quality data were collected. Based on the in situ water spectral analysis, the bottom reflectance (water depth<20m) are found to degrade the performance of the conventional ocean color algorithms more than the sediment-laden waters where these waters increase the R rs at the blue and red ranges. The increasing presence of CDOM markedly decreases the R rs in the blue range, which is conflicting with the effect of Chl-a. Given the inadequate performance of the widely used ocean-color algorithms (OC3: ocean color 3, OC2: ocean color 2) in retrieving Chl-a in these very shallow coastal waters, therefore, a new algorithm is proposed here based on a 3-bands ratio approach using [R rs (656) -1 -R rs (506) -1 ]×R rs (661). The selected optimum bands (656nm, 506nm, and 661nm) from

  20. Spectral Analysis of Moderately Charged Rare-Gas Atoms

    Directory of Open Access Journals (Sweden)

    Jorge Reyna Almandos

    2017-03-01

    Full Text Available This article presents a review concerning the spectral analysis of several ions of neon, argon, krypton and xenon, with impact on laser studies and astrophysics that were mainly carried out in our collaborative groups between Argentina and Brazil during many years. The spectra were recorded from the vacuum ultraviolet to infrared regions using pulsed discharges. Semi-empirical approaches with relativistic Hartree–Fock and Dirac-Fock calculations were also included in these investigations. The spectral analysis produced new classified lines and energy levels. Lifetimes and oscillator strengths were also calculated.

  1. Origin of the blue shift of the CH stretching band for 2-butoxyethanol in water.

    Science.gov (United States)

    Katsumoto, Yukiteru; Komatsu, Hiroyuki; Ohno, Keiichi

    2006-07-26

    The blue shift of the isolated CD stretching band of 2-butoxyethanol (C4E1), which is observed for the aqueous solution during the dilution process, has been investigated by infrared (IR) spectroscopy and quantum chemical calculations. Mono-deuterium-labeled C4E1's were employed to remove the severe overlapping among the CH stretching bands. The isolated CD stretching mode of the alpha-methylene in the butoxy group shows a large blue shift, while those of the beta-methylene and methyl groups are not largely shifted. The spectral simulation results for the C4E1/H2O complexes indicate that the large blue shift of the CD stretching band of the butoxy group arises mainly from the hydration of the ether oxygen atom.

  2. Study on core design for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Okubo, Tsutomu

    2002-01-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  3. Study on core design for reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  4. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves

    Science.gov (United States)

    Bowman, William D.

    1989-01-01

    Measurements of leaf spectral reflectance, the components of water potential, and leaf gas exchanges as a function of leaf water content were made to evaluate the use of NIR reflectance as an indicator of plant water status. Significant correlations were determined between spectral reflectance at 810 nm, 1665 nm, and 2210 nm and leaf relative water content, total water potential, and turgor pressure. However, the slopes of these relationships were relatively shallow and, when evaluated over the range of leaf water contents in which physiological activity occurs (e.g., photosynthesis), had lower r-squared values, and some relationships were not statistically significant. NIR reflectance varied primarily as a function of leaf water content, and not independently as a function of turgor pressure, which is a sensitive indicator of leaf water status. The limitations of this approach to measuring plant water stress are discussed.

  5. Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal.

    Science.gov (United States)

    Dimovski, Alicia M; Robert, Kylie A

    2018-05-02

    The focus of sustainable lighting tends to be on reduced CO 2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m 2 ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m 2 ), and no lighting (irradiance from sky glow light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. © 2018 Wiley Periodicals, Inc.

  6. Summary of the 4th workshop on the reduced-moderation water reactor

    International Nuclear Information System (INIS)

    Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi

    2001-09-01

    The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The workshop on the RMWRs has been held every year since fiscal 1997 aimed at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors. The 4th workshop was held on March 2, 2001 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The workshop began with three lectures on recent research activities in JAERI entitled 'Recent Situation of Research on Reduced-Moderation Water Reactor', 'Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors' and 'Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR'. Then five lectures followed: 'Micro Reactor Physics of MOX Fueled LWR' which shows the recent results of reactor physics, Fast Reactor Cooled by Supercritical Light Water' which is another type of reduced-moderation reactor, 'Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC), 'Integral Type Small PWR with Stand-alone Safety' which is intended to suit for the future consumers' needs, and Utilization of Plutonium in Reduced-Moderation Water Reactors' which dictates benefits of plutonium utilization with RMWRs. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as presentation handouts, program and participant list as appendixes. The 8 of the presented papers are indexed individually. (J.P.N.)

  7. WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS; A

    International Nuclear Information System (INIS)

    Carl R.F. Lund

    2001-01-01

    This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO(sub 2). During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO(sub 2) partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO(sub 2) partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO(sub 2). Finally, the performance of sulfided CoMo/Al(sub 2)O(sub 3) catalysts under conditions of high CO(sub 2) partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H(sub 2)S that is required in the feed

  8. Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle.

    Science.gov (United States)

    Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C

    2013-01-15

    We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (pmotor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Deuterium depleted water effect on seawater spectral energy and marine phytoplankton

    International Nuclear Information System (INIS)

    Mirza, Maria; Zaharia, Mihaela; Cristescu, T.M.; Titescu, Gh.

    2002-01-01

    Solar radiation is the primary source of new energy in most aquatic ecosystems and it is the sun variability in amount and spectral distribution that drives many of the changes in material flux on different time and space scales. The dependency of ecosystem dynamics on sunlight is largely attributable to the simple fact that plants require solar radiation to carry out photosynthesis. The resulting primary production (the rate of the plant growth and reproduction) is an index of aquatic processes, including food web dynamics and biogeochemical cycling of compounds that affect everything from aquatic chemistry to regional and global weather patterns. Light dependent processes in plants (photo-synthesis, photoinhibition, phototaxis and photoprotection) and in aquatic environment, animal vision and microbial mediation of the photo-dissociation of chemical have evolved over millennia and most of them are regulated or at least influenced by the spectral composition of the light field The paper deals with the investigation of relations between water spectral energy modified by deuterium depleted water (DDW) and the microphyte alga Tetraselmis suecica or the total marine micro-phytoplankton growth. (authors)

  10. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    the water resonance that is not present at +7.0 Hz and may be specific to white matter anatomy. Moreover, a frequency shift of 6.76 ± 0.55 Hz was measured between the molecular and granular layers of the cerebellum. This shift is demonstrated in corresponding spectra; water peaks from voxels in the molecular and granular layers are consistently 2 bins apart (7.0 Hz, as dictated by the spectral resolution) from one another. Conclusions: High spectral and spatial resolution MR imaging has the potential to accurately measure the changes in the water resonance in small voxels. This information can guide optimization and interpretation of more commonly used, more rapid imaging methods that depend on image contrast produced by local susceptibility gradients. In addition, with improved sampling methods, high spectral and spatial resolution data could be acquired in reasonable run times, and used for in vivo scans to increase sensitivity to variations in local susceptibility.

  11. Summary of the 4th workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The workshop on the RMWRs has been held every year since fiscal 1997 aimed at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors. The 4th workshop was held on March 2, 2001 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The workshop began with three lectures on recent research activities in JAERI entitled 'Recent Situation of Research on Reduced-Moderation Water Reactor', 'Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors' and 'Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR'. Then five lectures followed: 'Micro Reactor Physics of MOX Fueled LWR' which shows the recent results of reactor physics, Fast Reactor Cooled by Supercritical Light Water' which is another type of reduced-moderation reactor, 'Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC), 'Integral Type Small PWR with Stand-alone Safety' which is intended to suit for the future consumers' needs, and Utilization of Plutonium in Reduced-Moderation Water Reactors' which dictates benefits of plutonium utilization with RMWRs. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as presentation handouts, program and participant list as appendixes. The 8 of the presented papers are indexed individually. (J.P.N.)

  12. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBin; ZHANG PengYan; MA Kai; HAN Fang; CHEN GuoHua; WEI XiongHui

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures, The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume, which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×106 (volume ratio) in the gas phase. Meanwhile, FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration, respectively. Furthermore, the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  13. Hydrogen bonding interactions between ethylene glycol and water:density,excess molar volume,and spectral study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures. The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume,which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×10?6 (volume ratio) in the gas phase. Meanwhile,FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration,respectively. Furthermore,the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  14. Heavy water moderated tubular type nuclear reactor

    International Nuclear Information System (INIS)

    Oohashi, Masahisa.

    1986-01-01

    Purpose: To enable to effectively change the volume of heavy water per unit fuel lattice in heavy water moderated pressure tube type nuclear reactors. Constitution: In a nuclear reactor in which fuels are charged within pressure tubes and coolants are caused to flow between the pressure tubes and the fuels, heavy water tubes for recycling heavy water are disposed to a gas region formed to the outside of the pressure tubes. Then, the pressure tube diameter at the central portion of the reactor core is made smaller than that at the periphery of the reactor core. Further, injection means for gas such as helium is disposed to the upper portion for each of the heavy water tubes so that the level of the heavy water can easily be adjusted by the control for the gas pressure. Furthermore, heavy water reflection tubes are disposed around the reactor core. In this constitution, since the pitch for the pressure tubes can be increased, the construction and the maintenance for the nuclear reactor can be facilitated. Also, since the liquid surface of the heavy water in the heavy water tubes can be varied, nuclear properties is improved and the conversion ratio is improved. (Ikeda, J.)

  15. Economic and safety aspects of using moderator heat for feed water heating in a nuclear power plant

    International Nuclear Information System (INIS)

    Patwegar, I.A.; Dutta, Anu; Chaki, S.K.; Venkat Raj, V.

    2002-01-01

    Full text: In the proposed advanced heavy water reactor (AHWR), coolant and moderator are separated by the coolant channel. The coolant absorbs most of the fission heat produced in the reactor core. However, the moderator absorbs about 5 to 6 % of the fission heat. In a reactor producing 750 MW(th) power, this moderator heat is about 40 MW. In the present Indian PHWR (pressurized heavy water reactor) systems, this moderator heat is lost to a sink through the moderator heat exchangers, which are cooled by process water. This paper presents the results of the steam cycle analysis carried out for AHWR using moderator heat exchangers as part of the feed heating system. The present study is an attempt to determine the gain in electrical output (MW) if moderator heat is utilized for feed water heating. The operational and safety aspects of using moderator heat are also discussed in the paper

  16. Spectral pattern of urinary water as a biomarker of estrus in the giant panda

    Science.gov (United States)

    Kinoshita, Kodzue; Miyazaki, Mari; Morita, Hiroyuki; Vassileva, Maria; Tang, Chunxiang; Li, Desheng; Ishikawa, Osamu; Kusunoki, Hiroshi; Tsenkova, Roumiana

    2012-11-01

    Near infrared spectroscopy (NIRS) has been successfully used for non-invasive diagnosis of diseases and abnormalities where water spectral patterns are found to play an important role. The present study investigates water absorbance patterns indicative of estrus in the female giant panda. NIR spectra of urine samples were acquired from the same animal on a daily basis over three consecutive putative estrus periods. Characteristic water absorbance patterns based on 12 specific water absorbance bands were discovered, which displayed high urine spectral variation, suggesting that hydrogen-bonded water structures increase with estrus. Regression analysis of urine spectra and spectra of estrone-3-glucuronide standard concentrations at these water bands showed high correlation with estrogen levels. Cluster analysis of urine spectra grouped together estrus samples from different years. These results open a new avenue for using water structure as a molecular mirror for fast estrus detection.

  17. Physiological Assessment of Water Stress in Potato Using Spectral Information.

    Science.gov (United States)

    Romero, Angela P; Alarcón, Andrés; Valbuena, Raúl I; Galeano, Carlos H

    2017-01-01

    Water stress in potato ( Solanum tuberosum L.) causes considerable losses in yield, and therefore, potato is often considered to be a drought sensitive crop. Identification of water deficit tolerant potato genotypes is an adaptation strategy to mitigate the climatic changes that are occurring in the Cundiboyacense region in Colombia. Previous studies have evaluated potato plants under water stress conditions using physiological analyses. However, these methodologies require considerable amounts of time and plant material to perform these measurements. This study evaluated and compared the physiological and spectral traits between two genotypes, Diacol Capiro and Perla Negra under two drought levels (10 and 15 days without irrigation from flowering). Reflectance information was used to calculate indexes which were associated with the physiological behavior in plants. The results showed that spectral information was correlated (ρ < 0.0001) with physiological variables such as foliar area (FA), total water content (H 2 Ot), relative growth rate of potato tubers (RGTtub), leaf area ratio (LAR), and foliar area index (AFI). In general, there was a higher concentration of chlorophyll under drought treatments. In addition, Perla Negra under water deficit treatments did not show significant differences in its physiological variables. Therefore, it could be considered a drought tolerant genotype because its physiological performance was not affected under water stress conditions. However, yield was affected in both genotypes after being subject to 15 days of drought. The results suggested that reflectance indexes are a useful and affordable approach for potato phenotyping to select parent and segregant populations in breeding programs.

  18. Summary of the 3rd workshop on the reduced-moderation water reactor

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  19. Summary of the 3rd workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi [eds.

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  20. Core design study on reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Hiroshi, Akie; Yoshihiro, Nakano; Toshihisa, Shirakawa; Tsutomu, Okubo; Takamichi, Iwamura

    2002-01-01

    The conceptual core design study of reduced-moderation water reactors (RMWRs) with tight-pitched MOX-fuelled lattice has been carried out at JAERI. Several different RMWR core concepts based on both BWR and PWR have been proposed. All the core concepts meet with the aim to achieve both a conversion ratio of 1.0 or larger and negative void reactivity coefficient. As one of these RMWR concepts, the ABWR compatible core is also proposed. Although the conversion ratio of this core is 1.0 and the void coefficient is negative, the discharge burn-up of the fuel was about 25 GWd/t. By adopting a triangular fuel pin lattice for the reduction of moderator volume fraction and modifying axial Pu enrichment distribution, it was aimed to extend the discharge burn-up of ABWR compatible type RMWR. By using a triangular fuel lattice of smaller moderator volume fraction, discharge burn-up of 40 GWd/t seems achievable, keeping the high conversion ratio and the negative void coefficient. (authors)

  1. Monitoring of Water Spectral Pattern Reveals Differences in Probiotics Growth When Used for Rapid Bacteria Selection.

    Directory of Open Access Journals (Sweden)

    Aleksandar Slavchev

    Full Text Available Development of efficient screening method coupled with cell functionality evaluation is highly needed in contemporary microbiology. The presented novel concept and fast non-destructive method brings in to play the water spectral pattern of the solution as a molecular fingerprint of the cell culture system. To elucidate the concept, NIR spectroscopy with Aquaphotomics were applied to monitor the growth of sixteen Lactobacillus bulgaricus one Lactobacillus pentosus and one Lactobacillus gasseri bacteria strains. Their growth rate, maximal optical density, low pH and bile tolerances were measured and further used as a reference data for analysis of the simultaneously acquired spectral data. The acquired spectral data in the region of 1100-1850nm was subjected to various multivariate data analyses - PCA, OPLS-DA, PLSR. The results showed high accuracy of bacteria strains classification according to their probiotic strength. Most informative spectral fingerprints covered the first overtone of water, emphasizing the relation of water molecular system to cell functionality.

  2. Spar-Type Vertical-Axis Wind Turbines in Moderate Water Depth: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Ting Rui Wen

    2018-03-01

    Full Text Available The applications of floating vertical-axis wind turbines (VAWTs in deep water have been proposed and studied by several researchers recently. However, the feasibility of deploying a floating VAWT at a moderate water depth has not yet been studied. In this paper, this feasibility is thoroughly addressed by comparing the dynamic responses of spar-type VAWTs in deep water and moderate water depth. A short spar VAWT supporting a 5 MW Darrieus rotor at moderate water depth is proposed by following the deep spar concept in deep water. A fully coupled simulation tool, SIMO-RIFLEX-DMS code, is utilized to carry out time domain simulations under turbulent wind and irregular waves. Dynamic responses of the short spar and deep spar VAWTs are analyzed and compared, including the natural periods, wind turbine performance, platform motions, tower base bending moments, and tension of mooring lines. The statistical characteristics of the thrust and power production for both spars are similar. The comparison of platform motions and tower base bending moments demonstrate a good agreement for both spars, but the short spar has better performance in surge/sway motions and side–side bending moments. The 2P response dominates the bending moment spectra for both spars. A significant variation in tension of Mooring Line 1 and a larger corresponding spectrum value are found in the short spar concept. The results indicate that the application of short spar VAWTs is feasible and could become an alternative concept at moderate water depth.

  3. The analysis of toxic connections content in water by spectral methods

    Science.gov (United States)

    Plotnikova, I. V.; Chaikovskaya, O. N.; Sokolova, I. V.; Artyushin, V. R.

    2017-08-01

    The current state of ecology means the strict observance of measures for the utilization of household and industrial wastes that is connected with very essential expenses of means and time. Thanks to spectroscopic devices usage the spectral methods allow to carry out the express quantitative and qualitative analysis in a workplace and field conditions. In a work the application of spectral methods by studying the degradation of toxic organic compounds after preliminary radiation of various sources is shown. Experimental data of optical density of water at various influences are given.

  4. Shifting cultivation effects on creek water quality around Barkal Upazila in Chittagong Hill Tracts, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Shyamal Karmakar; S.M.Sirajul Haque; M.Mozaffar Hossain; Sohag Miah

    2012-01-01

    We report the effects of shifting cultivation on water quality in 16 creeks investigated once in 2007 and twice in 2008 in 16 apparently similar small neighboring watersheds,each of 3 to 5 ha,at four locations around Barkal sub-district under Rangamati District of Chittagong Hill Tracts in Bangladesh.Concentrations of SO42-and K+,and pH in creek water were lower,and NO3-N and Na+ concentrations were higher in shifting-cultivation land compared to land with either plantation or natural forest or a combination of these cover types.Shifting cultivation effects on some water quality parameters were not significant due to change in land cover of the watershed between two sampling periods either through introduction of planted tree species or naturally regenerated vegetation.Conductivity and concentrations of HCO3-.PO43-,Ca2+ and Mg2+ in creek water showed no definite trend between shifting cultivation and the other land cover types.At one area near the Forest Range Office of Barkal,creek water pH was 5.8 under land cover with a combination of shifting cultivation and plantation.At this area Na+ concentration in shifting-cultivation land ranged from 32.33 to 33.00 mg·L-1 and in vegetated area from 25.00 to 30.50 mg·L-1 in 2007.At another area,Chaliatali Chara,SO42-concentration in a shifting-cultivation watershed ranged from 4.46 to 10.51 mg·L-1,lower than in a vegetated watershed that ranged from 11.69 to 19.98 mg·L-1 in 2007.SO42-concentration in this shifting-cultivation area ranged from 1.28 to 1.37 mg·L-1 and in the vegetated area from 1.37 to 3.50 mg·L-1 in 2008.

  5. Development of a standard for calculation and measurement of the moderator temperature coefficient of reactivity in water-moderated power reactors

    International Nuclear Information System (INIS)

    Mosteller, R.D.; Hall, R.A.; Lancaster, D.B.; Young, E.H.; Gavin, P.H.; Robertson, S.T.

    1998-01-01

    The contents of ANS 19.11, the standard for ''Calculation and Measurement of the Moderator Temperature Coefficient of Reactivity in Water-Moderated Power Reactors,'' are described. The standard addresses the calculation of the moderator temperature coefficient (MTC) both at standby conditions and at power. In addition, it describes several methods for the measurement of the at-power MTC and assesses their relative advantages and disadvantages. Finally, it specifies a minimum set of documentation requirements for compliance with the standard

  6. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

    2008-03-07

    Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

  7. Phase extracting algorithms analysis in the white-light spectral interferometry

    Science.gov (United States)

    Guo, Tong; Li, Bingtong; Li, Minghui; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2018-01-01

    As an optical testing method, white-light spectral interferometry has the characteristics of non-contact, high precision. The phase information can be obtained by analyzing the spectral interference signal of the tested sample, and then the absolute distance is calculated. Fourier transform method, temporal phase-shifting method, spatial phase-shifting method and envelope method can be used to extract the phase information of the spectral interference signal. In this paper, the performance of four methods to extract phase information is simulated and analyzed by using the ideal spectral interference signal. It turns out that temporal phase-shifting method has the performance of high precision, the results of Fourier transform method and envelop method are distorted at the edge of the signal, and spatial phase-shifting method has the worst precision. Adding different levels of white noise to the ideal signal, temporal phase-shifting method is most accurate, while Fourier transform method and envelope method are relatively poor. Finally, the absolute distance measurement experiment is carried out on the constructed test system, and the results are consistent with the simulation ones.

  8. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    Science.gov (United States)

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  9. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    Science.gov (United States)

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  10. A stabilised nodal spectral element method for fully nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele

    2016-01-01

    can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively......We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...

  11. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  12. Spectral mixture analysis for water quality assessment over the Amazon floodplain using Hyperion/EO-1 images

    Directory of Open Access Journals (Sweden)

    Lênio Soares Galvão

    2006-12-01

    Full Text Available Water composition undergoes complex spatial and temporal variations throughout the central Amazon floodplain. This study analyzed the spectral mixtures of the optically active substances (OASs in water with spaceborne hyperspectral images. The test site was located upstream the confluence of Amazon (white water and Tapajós (clear-water rivers, where two Hyperion images were acquired from the Earth Observing One (EO-1 satellite. The first image was acquired on September 16, 2001, during the falling water period of the Amazon River. The second image was acquired on June 23, 2005, at the end of the high water period. The images were pre-processed to remove stripes of anomalous pixels, convert radiance-calibrated data to surface reflectance, mask land, clouds and macrophytes targets, and spectral subset the data within the range of 457-885nm. A sequential procedure with the techniques Minimum Noise Fraction (MNF, Pixel Purity Index (PPI and n-dimensional visualization of the MNF feature space was employed to select end-members from both images. A single set of end-members was gathered to represent the following spectrally unique OASs: clear-water; dissolved organic matter; suspended sediments; and phytoplankton. The Linear Spectral Unmixing algorithm was applied to each Hyperion image in order to map the spatial distribution of these constituents, in terms of sub-pixel fractional abundances. Results showed three patterns of changes in the water quality from high to falling flood periods: decrease of suspended inorganic matter concentration in the Amazon River; increase of suspended inorganic matter and phytoplankton concentrations in varzea lakes; and increase of phytoplankton concentration in the Tapajós River.

  13. Spectral mixture analysis for water quality assessment over the Amazon floodplain using Hyperion/EO-1 images

    Directory of Open Access Journals (Sweden)

    Lênio Soares Galvão

    2007-06-01

    Full Text Available Water composition undergoes complex spatial and temporal variations throughout the central Amazon floodplain. This study analyzed the spectral mixtures of the optically active substances (OASs in water with spaceborne hyperspectral images. The test site was located upstream the confluence of Amazon (white water and Tapajós (clear-water rivers, where two Hyperion images were acquired from the Earth Observing One (EO-1 satellite. The first image was acquired on September 16, 2001, during the falling water period of the Amazon River. The second image was acquired on June 23, 2005, at the end of the high water period. The images were pre-processed to remove stripes of anomalous pixels, convert radiance-calibrated data to surface reflectance, mask land, clouds and macrophytes targets, and spectral subset the data within the range of 457-885nm. A sequential procedure with the techniques Minimum Noise Fraction (MNF, Pixel Purity Index (PPI and n-dimensional visualization of the MNF feature space was employed to select end-members from both images. A single set of end-members was gathered to represent the following spectrally unique OASs: clear-water; dissolved organic matter; suspended sediments; and phytoplankton. The Linear Spectral Unmixing algorithm was applied to each Hyperion image in order to map the spatial distribution of these constituents, in terms of sub-pixel fractional abundances. Results showed three patterns of changes in the water quality from high to falling flood periods: decrease of suspended inorganic matter concentration in the Amazon River; increase of suspended inorganic matter and phytoplankton concentrations in varzea lakes; and increase of phytoplankton concentration in the Tapajós River.

  14. Simulation of Water Gas Shift Zeolite Membrane Reactor

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Rizki, Z.; Zunita, Megawati; Dharmawijaya, P. T.

    2017-07-01

    The search of alternative energy sources keeps growing from time to time. Various alternatives have been introduced to reduce the use of fossil fuel, including hydrogen. Many pathways can be used to produce hydrogen. Among all of those, the Water Gas Shift (WGS) reaction is the most common pathway to produce high purity hydrogen. The WGS technique faces a downstream processing challenge due to the removal hydrogen from the product stream itself since it contains a mixture of hydrogen, carbon dioxide and also the excess reactants. An integrated process using zeolite membrane reactor has been introduced to improve the performance of the process by selectively separate the hydrogen whilst boosting the conversion. Furthermore, the zeolite membrane reactor can be further improved via optimizing the process condition. This paper discusses the simulation of Zeolite Membrane Water Gas Shift Reactor (ZMWGSR) with variation of process condition to achieve an optimum performance. The simulation can be simulated into two consecutive mechanisms, the reaction prior to the permeation of gases through the zeolite membrane. This paper is focused on the optimization of the process parameters (e.g. temperature, initial concentration) and also membrane properties (e.g. pore size) to achieve an optimum product specification (concentration, purity).

  15. Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method

    Directory of Open Access Journals (Sweden)

    Weifang Sun

    2017-08-01

    Full Text Available Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.

  16. Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method.

    Science.gov (United States)

    Sun, Weifang; Yao, Bin; He, Yuchao; Chen, Binqiang; Zeng, Nianyin; He, Wangpeng

    2017-08-09

    Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.

  17. Nuclear fuel saving assessment of poison-free control in LWRs [light water reactors

    International Nuclear Information System (INIS)

    Abu-Zaied, G.

    1988-01-01

    If neutron losses to control absorbers are to be eliminated, an alternative reactivity control system has to be introduced. Due to improved neutron economy, the fuel utilization of these other alternatives is better than for a conventional poison-controlled PWR [pressurized water reactor]. It is the objective in this work to assess the uranium savings attributable to reactivity control without poison. An investigation into the savings due to the elimination of PWR control by neutron capture has been carried out. The most important finding was that up to a 30% savings in natural uranium can be achieved if fuel to moderator ratio, V f /V m , of SSC [spectral-shift-control] core at EOC [end of cycle] is similar to the standard core V f /V m

  18. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Shunsuke Uchida; Eishi Ibe; Katsumi Ohsumi

    1994-01-01

    Application of hydrogen water chemistry to moderate corrosive circumstances is a promising approach to preserve structural integrities of major components and structures in the primary cooling system of BWRs. The benefits of HWC application are usually accompanied by several disadvantages. After evaluating merits and demerits of HWC application, it is concluded that optimal amounts of hydrogen injected into the feed water can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. (authors). 1 fig., 4 refs

  19. Warm water temperatures and shifts in seasonality increase trout recruitment but only moderately decrease adult size in western North American tailwaters

    Science.gov (United States)

    Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.

    2018-01-01

    Dams throughout western North America have altered thermal regimes in rivers, creating cold, clear “tailwaters” in which trout populations thrive. Ongoing drought in the region has led to highly publicized reductions in reservoir storage and raised concerns about potential reductions in downstream flows. Large changes in riverine thermal regimes may also occur as reservoir water levels drop, yet this potential impact has received far less attention. We analyzed historic water temperature and fish population data to anticipate how trout may respond to future changes in the magnitude and seasonality of river temperatures. We found that summer temperatures were inversely related to reservoir water level, with warm temperatures associated with reduced storage and with dams operated as run-of-river units. Variation in rainbow trout (Oncorhynchus mykiss) recruitment was linked to water temperature variation, with a 5-fold increase in recruitment occurring at peak summer temperatures (18 °C vs. 7 °C) and a 2.5-fold increase in recruitment when peak temperatures occurred in summer rather than fall. Conversely, adult trout size was only moderately related to temperature. Rainbow and brown trout (Salmo trutta) size decreased by ~24 mm and 20 mm, respectively, as mean annual and peak summer temperatures increased. Further, rainbow trout size decreased by ~29 mm with an earlier onset of cold winter temperatures. While increased recruitment may be the more likely outcome of a warmer and drier climate, density-dependent growth constraints could exacerbate temperature-dependent growth reductions. As such, managers may consider implementing flows to reduce recruitment or altering infrastructure to maintain coldwater reservoir releases.

  20. Heavy water moderated gas-cooled reactors

    International Nuclear Information System (INIS)

    Bailly du Bois, B.; Bernard, J.L.; Naudet, R.; Roche, R.

    1964-01-01

    France has based its main effort for the production of nuclear energy on natural Uranium Graphite-moderated gas-cooled reactors, and has a long term programme for fast reactors, but this country is also engaged in the development of heavy water moderated gas-cooled reactors which appear to present the best middle term prospects. The economy of these reactors, as in the case of Graphite, arises from the use of natural or very slightly enriched Uranium; heavy water can take the best advantages of this fuel cycle and moreover offers considerable development potential because of better reactor performances. A prototype plant EL 4 (70 MW) is under construction and is described in detail in another paper. The present one deals with the programme devoted to the development of this reactor type in France. Reasons for selecting this reactor type are given in the first part: advantages and difficulties are underlined. After reviewing the main technological problems and the Research and Development carried out, results already obtained and points still to be confirmed are reported. The construction of EL 4 is an important step of this programme: it will be a significant demonstration of reactor performances and will afford many experimentation opportunities. Now the design of large power reactors is to be considered. Extension and improvements of the mechanical structures used for EL 4 are under study, as well as alternative concepts. The paper gives some data for a large reactor in the present state of technology, as a result from optimization studies. Technical improvements, especially in the field of materials could lead to even more interesting performances. Some prospects are mentioned for the long run. Investment costs and fuel cycles are discussed in the last part. (authors) [fr

  1. Prior storm experience moderates water surge perception and risk.

    Directory of Open Access Journals (Sweden)

    Gregory D Webster

    Full Text Available BACKGROUND: How accurately do people perceive extreme water speeds and how does their perception affect perceived risk? Prior research has focused on the characteristics of moving water that can reduce human stability or balance. The current research presents the first experiment on people's perceptions of risk and moving water at different speeds and depths. METHODS: Using a randomized within-person 2 (water depth: 0.45, 0.90 m ×3 (water speed: 0.4, 0.8, 1.2 m/s experiment, we immersed 76 people in moving water and asked them to estimate water speed and the risk they felt. RESULTS: Multilevel modeling showed that people increasingly overestimated water speeds as actual water speeds increased or as water depth increased. Water speed perceptions mediated the direct positive relationship between actual water speeds and perceptions of risk; the faster the moving water, the greater the perceived risk. Participants' prior experience with rip currents and tropical cyclones moderated the strength of the actual-perceived water speed relationship; consequently, mediation was stronger for people who had experienced no rip currents or fewer storms. CONCLUSIONS: These findings provide a clearer understanding of water speed and risk perception, which may help communicate the risks associated with anticipated floods and tropical cyclones.

  2. Pursuing atmospheric water vapor retrieval through NDSA measurements between two LEO satellites: evaluation of estimation errors in spectral sensitivity measurements

    Science.gov (United States)

    Facheris, L.; Cuccoli, F.; Argenti, F.

    2008-10-01

    NDSA (Normalized Differential Spectral Absorption) is a novel differential measurement method to estimate the total content of water vapor (IWV, Integrated Water Vapor) along a tropospheric propagation path between two Low Earth Orbit (LEO) satellites. A transmitter onboard the first LEO satellite and a receiver onboard the second one are required. The NDSA approach is based on the simultaneous estimate of the total attenuations at two relatively close frequencies in the Ku/K bands and of a "spectral sensitivity parameter" that can be directly converted into IWV. The spectral sensitivity has the potential to emphasize the water vapor contribution, to cancel out all spectrally flat unwanted contributions and to limit the impairments due to tropospheric scintillation. Based on a previous Monte Carlo simulation approach, through which we analyzed the measurement accuracy of the spectral sensitivity parameter at three different and complementary frequencies, in this work we examine such accuracy for a particularly critical atmospheric status as simulated through the pressure, temperature and water vapor profiles measured by a high resolution radiosonde. We confirm the validity of an approximate expression of the accuracy and discuss the problems that may arise when tropospheric water vapor concentration is lower than expected.

  3. Subjective thirst moderates changes in speed of responding associated with water consumption

    Directory of Open Access Journals (Sweden)

    Caroline Jane Edmonds

    2013-07-01

    Full Text Available Participants (N=34 undertook a CANTAB battery on two separate occasions after fasting and abstaining from fluid intake since the previous evening. On one occasion they were offered 500 ml water shortly before testing, and on the other occasion no water was consumed prior to testing. Reaction times, as measured by Simple Reaction Time (SRT, were faster on the occasion on which they consumed water. Furthermore, subjective thirst was found to moderate the effect of water consumption on speed of responding. Response latencies in the SRT task were greater under the no water condition than under the water condition, but only for those participants with relatively high subjective thirst after abstaining from fluid intake overnight. For those participants with relatively low subjective thirst, latencies were unaffected by water consumption, and were similarly fast as those recorded for thirsty participants who had consumed water. These results reveal the novel finding that subjective thirst moderates the positive effect of fluid consumption on speed of responding. The results also showed evidence that practice also affected task performance. These results imply that, for speed of responding at least, the positive effects of water supplementation may result from an attenuation of the central processing resources consumed by the subjective sensation of thirst that otherwise impair the execution of speeded cognitive processes.

  4. Remote measurement of water color in coastal waters. [spectral radiance data used to obtain quantitative values for chlorophyll and turbidity

    Science.gov (United States)

    Weldon, J. W.

    1973-01-01

    An investigation was conducted to develop procedure to obtain quantitative values for chlorophyll and turbidity in coastal waters by observing the changes in spectral radiance of the backscattered spectrum. The technique under consideration consists of Examining Exotech model 20-D spectral radiometer data and determining which radiance ratios best correlated with chlorophyll and turbidity measurements as obtained from analyses of water samples and sechi visibility readings. Preliminary results indicate that there is a correlation between backscattered light and chlorophyll concentration and secchi visibility. The tests were conducted with the spectrometer mounted in a light aircraft over the Mississippi Sound at altitudes of 2.5K, 2.8K and 10K feet.

  5. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    Science.gov (United States)

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.

  6. Ion Transfer Voltammetry Associated with Two Polarizable Interfaces Within Water and Moderately Hydrophobic Ionic Liquid Systems

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhou, Min; Zhang, Jingdong

    2013-01-01

    An electrochemical system composed of two polarizable interfaces (the metallic electrode|water and water|ionic liquid interfaces), namely two‐polarized‐interface (TPI) technique, has been proposed to explore the ion transfer processes between water and moderately hydrophobic ionic liquids (W...... to an extremely narrow polarized potential window (ppw) caused by these moderately hydrophobic ionic components. In this article, we show that TPI technique has virtually eliminated the ppw limitation based on a controlling step of concentration polarization at the electrode|water interface. With the aid...

  7. Proposed upgrade of the lower tier water moderators for the LANSE 1L MARK-III upgrade

    International Nuclear Information System (INIS)

    Muhrer, G.; Pitcher, E.J.; Russell, G.J.

    2005-01-01

    We will show in this article the proposed upgrade for the lower tier water moderators for the LANSCE 1L Mark-III design. This proposal will include the introduction of pre-moderators for the high intensity moderators and a change of the decoupler from Cadmium to Gadolinium on all lower tier water moderators. We will present the influence of these changes on the integrated thermal flux and the time distribution of these moderators. As part of the upgrade of the Manual Lujan Jr. Neutron Scattering Center target (1L target) the goal was to increase the integrated thermal flux of the lower high intensity and the high resolution moderator by 20%. We will show in this paper that this goal can be achieved by introducing a pre-moderator concept on the high resolution moderators and by changing the decoupling scheme on all three moderators. Furthermore we will show that this goal can be achieved without jeopardizing the time of flight resolution of these moderators. For the all these calculations we used the radiation transport code MCNPX, which is most commonly used for this type of calculations.

  8. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  9. Segmented fuel and moderator rod

    International Nuclear Information System (INIS)

    Doshi, P.K.

    1987-01-01

    This patent describes a continuous segmented fuel and moderator rod for use with a water cooled and moderated nuclear fuel assembly. The rod comprises: a lower fuel region containing a column of nuclear fuel; a moderator region, disposed axially above the fuel region. The moderator region has means for admitting and passing the water moderator therethrough for moderating an upper portion of the nuclear fuel assembly. The moderator region is separated from the fuel region by a water tight separator

  10. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  11. Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes

    Science.gov (United States)

    Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo

    2017-04-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.

  12. Atmospheric-water absorption features near 2.2 micrometers and their importance in high spectral resolution remote sensing

    Science.gov (United States)

    Kruse, F. A.; Clark, R. N.

    1986-01-01

    Selective absorption of electromagnetic radiation by atmospheric gases and water vapor is an accepted fact in terrestrial remote sensing. Until recently, only a general knowledge of atmospheric effects was required for analysis of remote sensing data; however, with the advent of high spectral resolution imaging devices, detailed knowledge of atmospheric absorption bands has become increasingly important for accurate analysis. Detailed study of high spectral resolution aircraft data at the U.S. Geological Survey has disclosed narrow absorption features centered at approximately 2.17 and 2.20 micrometers not caused by surface mineralogy. Published atmospheric transmission spectra and atmospheric spectra derived using the LOWTRAN-5 computer model indicate that these absorption features are probably water vapor. Spectral modeling indicates that the effects of atmospheric absorption in this region are most pronounced in spectrally flat materials with only weak absorption bands. Without correction and detailed knowledge of the atmospheric effects, accurate mapping of surface mineralogy (particularly at low mineral concentrations) is not possible.

  13. PSYCHE Pure Shift NMR Spectroscopy.

    Science.gov (United States)

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Concept of safe tank-type water cooled and moderated reactor with HTGR microparticle fuel compacts

    International Nuclear Information System (INIS)

    Gol'tsev, A.O.; Kukharkin, N.E.; Mosevitskij, I.S.; Ponomarev-Stepnoj, N.N.; Popov, S.V.; Udyanskij, Yu.N.; Tsibul'skij, V.F.

    1993-01-01

    Concept of safe tank-type water-cooled and moderated reactor on the basis of HTGR fuel microparticles which enable to avoid environment contamination with radioactive products under severe accidents, is proposed. Results of neutron-physical and thermal-physical studies of water cooled and moderated reactor with HTGR microparticle compacts are presented. Characteristics of two reactors with thermal power of 500 and 1500 MW are indicated within the concept frames. The reactor behaviour under severe accident connected with complete loss of water coolant is considered. It is shown that under such an accident the fission products release from fuel microparticles does not occur

  15. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    Science.gov (United States)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  16. On the detection and monitoring of reduced water content in plants using spectral responses in the visible domain

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer; Chen, Tenn F.

    2016-05-01

    The water status of cultivated plants can have a significant impact not only on food production, but also on the appropriate usage of increasingly scarce freshwater supplies. Accordingly, the cost-effective detection and monitoring of changes in their water content are longstanding remote sensing goals. Existing procedures employed to achieve these goals are largely based on the spectral responses of plant leaves in the infrared domain where the light absorption within the foliar tissues is dominated by water. Recently, it has been suggested that such procedures could be implemented using spectral responses, more specifically spectral subsurface reflectance to transmittance ratios, obtained in the visible domain. The basis for this proposition resides on the premise that a reduced water content (RWC) can result in histological changes whose effects on the foliar optical properties may not be limited to the infrared domain. However, the experiments leading to this proposition were performed on detached leaves, which were not influenced by the whole plant's adaptation mechanisms to water stress. In this work, we investigate whether the spectral responses of living plant leaves in the visible domain can lead to reliable RWC estimations. We employ measured biophysical data and predictive light transport simulations in order to extend qualitatively and quantitatively the scope of previous studies in this area. Our findings indicate that the living specimens' physiological responses to water stress should be taken into account in the design of new procedures for the cost-effective RWC estimation using visible subsurface reflectance to transmittance ratios.

  17. Overdetermined shooting methods for computing standing water waves with spectral accuracy

    International Nuclear Information System (INIS)

    Wilkening, Jon; Yu Jia

    2012-01-01

    A high-performance shooting algorithm is developed to compute time-periodic solutions of the free-surface Euler equations with spectral accuracy in double and quadruple precision. The method is used to study resonance and its effect on standing water waves. We identify new nucleation mechanisms in which isolated large-amplitude solutions, and closed loops of such solutions, suddenly exist for depths below a critical threshold. We also study degenerate and secondary bifurcations related to Wilton's ripples in the traveling case, and explore the breakdown of self-similarity at the crests of extreme standing waves. In shallow water, we find that standing waves take the form of counter-propagating solitary waves that repeatedly collide quasi-elastically. In deep water with surface tension, we find that standing waves resemble counter-propagating depression waves. We also discuss the existence and non-uniqueness of solutions, and smooth versus erratic dependence of Fourier modes on wave amplitude and fluid depth. In the numerical method, robustness is achieved by posing the problem as an overdetermined nonlinear system and using either adjoint-based minimization techniques or a quadratically convergent trust-region method to minimize the objective function. Efficiency is achieved in the trust-region approach by parallelizing the Jacobian computation, so the setup cost of computing the Dirichlet-to-Neumann operator in the variational equation is not repeated for each column. Updates of the Jacobian are also delayed until the previous Jacobian ceases to be useful. Accuracy is maintained using spectral collocation with optional mesh refinement in space, a high-order Runge–Kutta or spectral deferred correction method in time and quadruple precision for improved navigation of delicate regions of parameter space as well as validation of double-precision results. Implementation issues for transferring much of the computation to a graphic processing units are briefly

  18. Heavy water moderated reactors advances and challenges

    International Nuclear Information System (INIS)

    Meneley, D.A.; Olmstead, R.A.; Yu, A.M.; Dastur, A.R.; Yu, S.K.W.

    1994-01-01

    Nuclear energy is now considered a key contributor to world electricity production, with total installed capacity nearly equal to that of hydraulic power. Nevertheless, many important challenges lie ahead. Paramount among these is gaining public acceptance: this paper makes the basic assumption that public acceptance will improve if, and only if, nuclear power plants are operated safely and economically over an extended period of time. The first task, therefore, is to ensure that these prerequisites to public acceptance are met. Other issues relate to the many aspects of economics associated with nuclear power, include capital cost, operation cost, plant performance and the risk to the owner's investment. Financing is a further challenge to the expansion of nuclear power. While the ability to finance a project is strongly dependent on meeting public acceptance and economic challenges, substantial localisation of design and manufacture is often essential to acceptance by the purchaser. The neutron efficient heavy water moderated CANDU with its unique tube reactor is considered to be particularly well qualified to respond to these market challenges. Enhanced safety can be achieved through simplification of safety systems, design of the moderator and shield water systems to mitigate severe accident events, and the increased use of passive systems. Economics are improved through reduction in both capital and operating costs, achieved through the application of state-of-the-art technologies and economy of scale. Modular features of the design enhance the potential for local manufacture. Advanced fuel cycles offer reduction in both capital costs and fuelling costs. These cycles, including slightly enriched uranium and low grade fuels from reprocessing plants can serve to increase reactor output, reduce fuelling cost and reduce waste production, while extending resource utilisation. 1 ref., 1 tab

  19. NIR detection of honey adulteration reveals differences in water spectral pattern.

    Science.gov (United States)

    Bázár, György; Romvári, Róbert; Szabó, András; Somogyi, Tamás; Éles, Viktória; Tsenkova, Roumiana

    2016-03-01

    High fructose corn syrup (HFCS) was mixed with four artisanal Robinia honeys at various ratios (0-40%) and near infrared (NIR) spectra were recorded with a fiber optic immersion probe. Levels of HFCS adulteration could be detected accurately using leave-one-honey-out cross-validation (RMSECV=1.48; R(2)CV=0.987), partial least squares regression and the 1300-1800nm spectral interval containing absorption bands related to both water and carbohydrates. Aquaphotomics-based evaluations showed that unifloral honeys contained more highly organized water than the industrial sugar syrup, supposedly because of the greater variety of molecules dissolved in the multi-component honeys. Adulteration with HFCS caused a gradual reduction of water molecular structures, especially water trimers, which facilitate interaction with other molecules. Quick, non-destructive NIR spectroscopy combined with aquaphotomics could be used to describe water molecular structures in honey and to detect a rather common form of adulteration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. SPECTRAL SMILE CORRECTION IN CRISM HYPERSPECTRAL IMAGES

    Science.gov (United States)

    Ceamanos, X.; Doute, S.

    2009-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is affected by a common artifact in "push-broom" sensors, the so-called "spectral smile". As a consequence, both central wavelength and spectral width of the spectral response vary along the across-track dimension, thus giving rise to a shifting and smoothing of spectra (see Fig. 1 (left)). In fact, both effects are greater for spectra on the edges, while they are minimum for data acquired by central detectors, the so-called "sweet spot". The prior artifacts become particularly critical for Martian observations which contain steep spectra such as CO2 ice-rich polar images. Fig. 1 (right) shows the horizontal brightness gradient which appears in every band corresponding to a steep portion of spectra. The correction of CRISM spectral smile is addressed using a two-step method which aims at modifying data sensibly in order to mimic the optimal CRISM response. First, all spectra, which are previously interpolated by cubic splines, are resampled to the "sweet spot" wavelengths in order to overcome the spectra shift. Secondly, the non-uniform spectral width is overcome by mimicking an increase of spectral resolution thanks to a spectral sharpening. In order to minimize noise, only bands particularly suffering from smile are selected. First, bands corresponding to the outliers of the Minimum Noise Transformation (MNF) eigenvector, which corresponds to the MNF band related to smile (MNF-smile), are selected. Then, a spectral neighborhood Θi, which takes into account the local spectral convexity or concavity, is defined for every selected band in order to maximize spectral shape preservation. The proposed sharpening technique takes into account both the instrument parameters and the observed spectra. First, every reflectance value belonging to a Θi is reevaluated by a sharpening which depends on a ratio of the spectral width of the current detector and the "sweet spot" one. Then, the optimal degree of

  1. Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model

    Science.gov (United States)

    Ma, Jing; Fu, Yu-Long; Yu, Si-Yuan; Xie, Xiao-Long; Tan, Li-Ying

    2018-03-01

    A new expression of the scintillation index (SI) for a Gaussian-beam wave propagating through moderate-to-strong non-Kolmogorov turbulence is derived, using a generalized effective atmospheric spectrum and the extended Rytov approximation theory. Finite inner and outer scale parameters and high wave number “bump” are considered in the spectrum with a generalized spectral power law in the range of 3–4, instead of the fixed classical Kolmogorov power law of 11/3. The obtained SI expression is then used to analyze the effects of the spectral power law and the inner scale and outer scale on SI under various non-Kolmogorov fluctuation conditions. These results will be useful in future investigations of optical wave propagation through atmospheric turbulence.

  2. Optimization of a water-gas shift reactor over a Pt/ceria/alumina monolith

    Energy Technology Data Exchange (ETDEWEB)

    Quiney, A.S.; Germani, G.; Schuurman, Y. [Institut de Recherches sur la Catalyse-CNRS, 2 Avenue A. Einstein, 69626 Villeurbanne (France)

    2006-10-06

    The water-gas shift (WGS) reaction is an important step in the purification of hydrogen for fuel cells. It lowers the carbon monoxide content and produces extra hydrogen. The constraints of automotive applications render the commercial WGS catalysts unsuitable. Pt/ceria catalysts are cited as promising catalysts for onboard applications as they are highly active and non-pyrophoric. This paper reports on a power law rate expression for a Pt/CeO{sub 2}/Al{sub 2}O{sub 3} catalyst. This rate equation is used to compare different reactor configurations for an onboard water-gas shift reactor. A one-dimensional heterogeneous model that accounts for the interfacial and intraparticle gradients has been used to optimize a dual stage adiabatic monolith reactor. (author)

  3. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    Science.gov (United States)

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  4. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    Science.gov (United States)

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  5. Improvement of SSR core design for ABWR-II

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Okada, Hiroyuki; Kitamura, Hideya; Sakurada, Koichi; Tanabe, Akira

    2003-01-01

    In order to enhance the spectral shift effect in the ABWR-II reactor, a novel core design to bring out better performance of spectral shift rods (SSRs) is studied. The SSR is a new type of water rod, in which the water level develops naturally during operation and changes according to the coolant flow rate through the channel. By using the SSR, the average moderator density, which is directly related to core reactivity, can be controlled over a wide range by the core flow rate. In the new SSR core design, two types of SSR bundles, in which settings for the SSR water levels are different, are utilized and loaded according to flow distribution in the core. This two-region SSR core design allows wide variation in the average SSR water level, thus improving fuel economy. Enhancement of SSR function in the two-region SSR core increases the uranium saving factor by about 25%, from the 6% of the conventional uniform SSR core to about 8%. (author)

  6. Bloodstain detection and discrimination impacted by spectral shift when using an interference filter-based visible and near-infrared multispectral crime scene imaging system

    Science.gov (United States)

    Yang, Jie; Messinger, David W.; Dube, Roger R.

    2018-03-01

    Bloodstain detection and discrimination from nonblood substances on various substrates are critical in forensic science as bloodstains are a critical source for confirmatory DNA tests. Conventional bloodstain detection methods often involve time-consuming sample preparation, a chance of harm to investigators, the possibility of destruction of blood samples, and acquisition of too little data at crime scenes either in the field or in the laboratory. An imaging method has the advantages of being nondestructive, noncontact, real-time, and covering a large field-of-view. The abundant spectral information provided by multispectral imaging makes it a potential presumptive bloodstain detection and discrimination method. This article proposes an interference filter (IF) based area scanning three-spectral-band crime scene imaging system used for forensic bloodstain detection and discrimination. The impact of large angle of views on the spectral shift of calibrated IFs is determined, for both detecting and discriminating bloodstains from visually similar substances on multiple substrates. Spectral features in the visible and near-infrared portion employed by the relative band depth method are used. This study shows that 1 ml bloodstain on black felt, gray felt, red felt, white cotton, white polyester, and raw wood can be detected. Bloodstains on the above substrates can be discriminated from cola, coffee, ketchup, orange juice, red wine, and green tea.

  7. Determination of particles concentration in Black Sea waters from spectral beam attenuation coefficient

    Science.gov (United States)

    Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.

    2017-11-01

    The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.

  8. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    Science.gov (United States)

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  9. Research on Reduced-Moderation Water Reactor (RMWR)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Shimada, Shoichiro

    1999-11-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from 238 U to 239 Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPCO) in 1998. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR with high void fraction and super-flat core, a long operation cycle BWR using void channels, a high conversion BWR without blankets, a high conversion PWR using heavy water as a coolant, and a PWR for plutonium multi-recycle using seed-blanket type fuel assemblies. The present report summarizes the objectives, domestic and international trends, principles and characteristics, core conceptual designs and future R and D plans of the RMWR. (J.P.N.)

  10. Research on Reduced-Moderation Water Reactor (RMWR)

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Takamichi; Okubo, Tsutomu; Shimada, Shoichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1999-11-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from {sup 238}U to {sup 239}Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPCO) in 1998. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR with high void fraction and super-flat core, a long operation cycle BWR using void channels, a high conversion BWR without blankets, a high conversion PWR using heavy water as a coolant, and a PWR for plutonium multi-recycle using seed-blanket type fuel assemblies. The present report summarizes the objectives, domestic and international trends, principles and characteristics, core conceptual designs and future R and D plans of the RMWR. (J.P.N.)

  11. Color Shift Failure Prediction for Phosphor-Converted White LEDs by Modeling Features of Spectral Power Distribution with a Nonlinear Filter Approach

    Directory of Open Access Journals (Sweden)

    Jiajie Fan

    2017-07-01

    Full Text Available With the expanding application of light-emitting diodes (LEDs, the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD, defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED’s optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1 the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2 the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs, and color rendering indexes (CRIs of phosphor-converted (pc-white LEDs, and also can estimate the residual color life.

  12. Color Shift Failure Prediction for Phosphor-Converted White LEDs by Modeling Features of Spectral Power Distribution with a Nonlinear Filter Approach.

    Science.gov (United States)

    Fan, Jiajie; Mohamed, Moumouni Guero; Qian, Cheng; Fan, Xuejun; Zhang, Guoqi; Pecht, Michael

    2017-07-18

    With the expanding application of light-emitting diodes (LEDs), the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD), defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED's optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1) the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2) the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs), and color rendering indexes (CRIs) of phosphor-converted (pc)-white LEDs, and also can estimate the residual color life.

  13. Shift of the spectrum in the non-inertial reference frame

    International Nuclear Information System (INIS)

    Kudykina, T. A.; Pervak, A. I.

    2012-01-01

    We propose a new natural explanation of the spectral redshift (blue shift) arguing that the rotatory non-inertial reference frame of cosmological objects is the main reason of the shift of the frequency of emitting light. (Author)

  14. Quantized beam shifts in graphene

    Energy Technology Data Exchange (ETDEWEB)

    de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  15. Interpretation of UV radiometric measurements of spectrally non-uniform sources

    International Nuclear Information System (INIS)

    Murphy, P.J.; Gardner, D.G.

    1988-01-01

    Narrow bandpass UV radiometers are used in a variety of high-temperature measurement applications. Significant systematic errors, in the form of an apparent wavelength shift in the system response curve, may be introduced when interpreting data obtained from spectrally nonuniform sources. Theoretical calculations, using transmission curves from commercially available narrow bandpass filters, show that the apparent shift in the system spectral response is a function of temperature for a blackbody source. A brief comparison between the theoretical analysis and experimentaal data is presented

  16. Absorber rod bundle actuator in a pressurized water nuclear reactor

    International Nuclear Information System (INIS)

    Martin, J.; Peletan, R.

    1984-01-01

    The invention concerns an absorber rod bundle actuator in a pressurized water reactor with spectral shift control. The device comprises two coaxial control bars. The inner bar is integral with the absorber rod bundle; it has an enlarged zone which acts as a proton under pressure difference across an annular seal which can be radially expanded, the pressure difference allowing to the absorber rod bundles actuating on the piston. When a pressure difference is applied, the seal expands radially by a sufficient amount to make sealing contact with the zone of larger diameter in the outer bar. The invention applies more particularly to reactors with spectral shift control using bundles of fertile rods [fr

  17. Discussion on problems of terrestrial heat and moderate-hot water at an uranium deposit in Jiangxi province

    International Nuclear Information System (INIS)

    Liu Xiangguo

    2003-01-01

    According to scientific research and technical summing up reports, based on the field investigation, the possible problems of terrestrial heat and moderate-hot water during the exploitation of an uranium deposit in Jiangxi Province are discussed. The preliminary analysis and discussion on the distribution, distribution regularity, causes of formation and correlation of terrestrial heat and moderate-hot water at the uranium deposit are carried out

  18. Density functional theory study on water-gas-shift reaction over molybdenum disulfide

    DEFF Research Database (Denmark)

    Shi, X. R.; Wang, Shengguang; Hu, J.

    2009-01-01

    . The pathway for water-gas-shift reaction on both terminations has been carefully studied where the most favorable reaction path precedes the redox mechanism, namely the reaction takes place as follows: CO + H2O --> CO + OH + H --> CO + O + 2H --> CO2 + H-2. The most likely reaction candidates for the formate......Density functional theory calculations have been carried out to investigate the adsorption of reaction intermediates appearing during water-gas-shift reaction at the sulfur covered MoS2 (1 0 0)surfaces, Mo-termination with 37.5% S coverage and S-termination with 50% S coverage using periodic slabs...... species HCOO formation is the surface CO2 reaction with H as a side reaction of CO2 desorption on S-termination with 50% S coverage. The formed HCOO species will react further with adsorbed hydrogen yielding H2COO followed by breaking its C-O bond to form the surface CH2O and O species....

  19. Method of collecting helium cover gas for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyamoto, Keiji; Ueda, Hiroshi.

    1981-01-01

    Purpose: To reduce the systematic facility cost in a heavy water moderated reactor by contriving the simplification of a helium cover gas collecting intake system. Method: A detachable low pressure metal tank and a neoprene balloon are prepared for a vacuum pump in a permanent vacuum drying facility. When all of the helium cover gas is collected from a heavy water moderated reactor, a large capacity of neoprene balloon capable of temporarily storing it under low pressure is connected to the exhaust of the vacuum pump. On the other hand, while the reactor is operating, a suitable amount of the low pressure tank or neoprene balloon is connected to the exhaust side of the pump, thereby regulating the pressure of the helium cover gas. When refeeding the cover gas, the balloon, with a large capacity for collecting and storing the cover gas is connected to the intake side of the pump. Thus, the pressure regulation, collection of all of the cover gas and refeeding of the cover gas can be conducted without using a high discharge pump and high pressure tank. (Kamimura, M.)

  20. Some threshold spectral problems of Schroedinger operators

    International Nuclear Information System (INIS)

    Jia, X.

    2009-01-01

    This Ph.D. thesis deals with some spectral problems of the Schroedinger operators. We first consider the semi-classical limit of the number of bound states of unique two-cluster N-body Schroedinger operator. Then we use Dirichlet-Neumann bracket to get semi-classical limit of Riesz means of the discrete eigenvalues of N-body Schroedinger operator. The effective potential of N-body Schroedinger operator with Coulomb potential is also considered and we find that the effective potential has critical decay at infinity. Thus, the Schroedinger operator with critical potential is studied in this thesis. We study the coupling constant threshold of Schroedinger operator with critical potential and the asymptotic expansion of resolvent of Schroedinger operator with critical potential. We use that expansion to study low-energy asymptotics of derivative of spectral shift function for perturbation with critical decay. After that, we use this result and the known result for high-energy asymptotic expansion of spectral shift function to obtain the Levinson theorem. (author)

  1. Status of research and development on reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    2002-01-01

    To improve uranium utilization, a design study of the Reduced-Moderation Water Reactor (RMWR) has been carried out intensively since 1998 at the Japan Atomic Energy Research Institute (JAERI). In this reactor, the nuclear fission reaction is designed to be realized mainly by high energy neutrons. To achieve this, the volume of water used to cool the fuel rods is decreased by reducing the gap width between the fuel rods. Conversion ratio greater than 1.0 is expected whether the core i-s cooled by boiling water or pressurized water and whether the core size is small or large. Status of the RMWR design is reviewed and planning of R and D for future deployment of this reactor after 20-20 is presented. To improve economics of this reactor, development of fuel cans for high burnup and low-cost reprocessing technology of mixed oxide spect fuels are highly needed. R and D has been conducted under the cooperation with utilities, industry, research organization and academia. (T. Tanaka)

  2. Status of research and development on reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    To improve uranium utilization, a design study of the Reduced-Moderation Water Reactor (RMWR) has been carried out intensively since 1998 at the Japan Atomic Energy Research Institute (JAERI). In this reactor, the nuclear fission reaction is designed to be realized mainly by high energy neutrons. To achieve this, the volume of water used to cool the fuel rods is decreased by reducing the gap width between the fuel rods. Conversion ratio greater than 1.0 is expected whether the core i-s cooled by boiling water or pressurized water and whether the core size is small or large. Status of the RMWR design is reviewed and planning of R and D for future deployment of this reactor after 20-20 is presented. To improve economics of this reactor, development of fuel cans for high burnup and low-cost reprocessing technology of mixed oxide spect fuels are highly needed. R and D has been conducted under the cooperation with utilities, industry, research organization and academia. (T. Tanaka)

  3. Estimation of bias shifts in a steam-generator water-level controller

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1983-01-01

    A method for detecting and estimating the value of sudden bias shifts in a U-tube steam-generator water-level controller is described and evaluated. Generalized likelihood ratios (GLR) are used to perform both the bias detection and bias estimation. Simulation results using a seventh-order, linear, discrete steam-generator model demonstrate the capabilities of the GLR detection/estimation approach

  4. [Analysis of spectral features based on water content of desert vegetation].

    Science.gov (United States)

    Zhao, Zhao; Li, Xia; Yin, Ye-biao; Tang, Jin; Zhou, Sheng-bin

    2010-09-01

    By using HR-768 field-portable spectroradiometer made by the Spectra Vista Corporation (SVC) of America, the hyper-spectral data of nine types of desert plants were measured, and the water content of corresponding vegetation was determined by roasting in lab. The continuum of measured hyperspectral data was removed by using ENVI, and the relationship between the water content of vegetation and the reflectance spectrum was analyzed by using correlation coefficient method. The result shows that the correlation between the bands from 978 to 1030 nm and water content of vegetation is weak while it is better for the bands from 1133 to 1266 nm. The bands from 1374 to 1534 nm are the characteristic bands because of the correlation between them and water content is the best. By using cluster analysis and according to the water content, the vegetation could be marked off into three grades: high (>70%), medium (50%-70%) and low (<50%). The research reveals the relationship between water content of desert vegetation and hyperspectral data, and provides basis for the analysis of area in desert and the monitoring of desert vegetation by using remote sensing data.

  5. Testing of the method for water microleakage detection from OH hydroxyl spectral lines at the L-2M stellarator

    International Nuclear Information System (INIS)

    Voronov, G. S.; Berezhetskii, M. S.; Bondar’, Yu. F.; Vafin, I. Yu.; Vasil’kov, D. G.; Voronova, E. V.; Grebenshchikov, S. E.; Grishina, I. A.; Larionova, N. F.; Letunov, A. A.; Logvinenko, V. P.; Meshcheryakov, A. I.; Pleshkov, E. I.; Khol’nov, Yu. V.; Fedyanin, O. I.; Tsygankov, V. A.; Shchepetov, S. V.; Kurnaev, V. A.; Vizgalov, I. V.; Urusov, V. A.

    2013-01-01

    Results are presented from L-2M stellarator experiments on testing a possible method for detection of water microleakages in the cooling system of the first wall and vacuum chamber of ITER. The method consists in the spectroscopic detection of spectral lines of the OH hydroxyl, which forms via the dissociation of water molecules in plasma. Emission in the spectral band of 305–310 nm can be detected even at water leakage rates less than 10 −4 Pa m 3 /s. Chemical reactions between water and boron compounds on the vacuum chamber wall delay the detection of leakages up to ∼2000 s. A similar phenomenon can be expected when a leakage will occur in ITER, where the materials suggested for the first wall (Be, Li) can also chemically react with water.

  6. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  7. Design and development of rolled joint for moderator sparger channel of an Indian Pressurised Heavy Water Reactor

    International Nuclear Information System (INIS)

    Joemon, V.; Sinha, R.K.

    1993-01-01

    Indian Pressurised Heavy Water Reactors are natural uranium fuelled heavy water moderated and cooled reactors. As per the conventional scheme, the moderator enters through one or more inlet nozzles penetrating the calandria shell and flows out through outlet nozzles. Baffles are fixed at the inlet nozzles for proper distribution of moderator in the calandria and to avoid the impact of the jet on the neighbouring calandria tubes. An alternate scheme for moderator inlet has been conceived and engineered in which three lower peripheral lattice locations of the reactor are converted into moderator inlets. This is achieved by moderator sparger channels each containing a 5 m long perforated zircaloy-2 sparger tube rolled to the calandria tube sheets and extended by stainless steel tubular components (inserts) at both ends of a sparger channel. Moderator enters the sparger channel at both ends and flows into the calandria. In the absence of standard codes for design of rolled joints, it was requires to develop these joints based on trials followed by various tests. this paper discusses the details of the rolled joint developed for this purpose, the details of the trials with test results and optimization of rolling parameters for these joints

  8. Pulsed neutron intensity from rectangular shaped light water moderator with fast-neutron reflector

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatsu

    1982-01-01

    With a view to enhancing the thermal-neutron intensity obtained from a pulsed neutron source, an experimental study has been made to determine the optimum size of a rectangular shaped light water moderator provided with fast neutron reflector of beryllium oxide or graphite, and decoupled thermal-neutronically by means of Cd sheet. The optimum dimensions for the moderator are derived for the neutron emission surface and the thickn ess, for the cases in which the neutron-producing target is placed beneath the moderator (''wing geometry'') or immediately behind the moderator (''slab geometry''). The major conclusions drawn from the experimental results are as follows. The presence of the Cd decoupler inserted between the moderator and reflector prevent the enhancement of thermal-neutron emission time gained by the provision of reflector. With a graphite reflector about 14 cm thick, (a) the optimum area of emission surface would be 25 x 25 cm 2 for wing geometry and still larger for slab geometry, and (b) the optimum moderator thickness would be 5.5 cm for slab geometry and 8.5 cm for wing geometry. It is thus concluded that a higher neutron emission intensity can be obtained with slab than with wing geometry provided that a large emission surface can be adopted for the moderator. (author)

  9. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION; A

    International Nuclear Information System (INIS)

    Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

    2001-01-01

    Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H(sub 2) removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H(sub 2)-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H(sub 2) to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO(sub 2)-rich gases, a Cu-CeO(sub 2) catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H(sub 2) permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window

  10. Magnitude of shift of tumor position as a function of moderated deep inspiration breath-hold: An analysis of pooled data of lung patients with active breath control in image-guided radiotherapy

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2008-01-01

    Full Text Available The purpose of this study was to evaluate the reproducibility and magnitude of shift of tumor position by using active breathing control and iView-GT for patients with lung cancer with moderate deep-inspiration breath-hold (mDIBH technique. Eight patients with 10 lung tumors were studied. CT scans were performed in the breath-holding phase. Moderate deep-inspiration breath-hold under spirometer-based monitoring system was used. Few important bony anatomic details were delineated by the radiation oncologist. To evaluate the interbreath-hold reproducibility of the tumor position, we compared the digital reconstruction radiographs (DRRs from planning system with the DRRs from the iView-GT in the machine room. We measured the shift in x, y, and z directions. The reproducibility was defined as the difference between the bony landmarks from the DRR of the planning system and those from the DRR of the iView-GT. The maximum shift of the tumor position was 3.2 mm, 3.0 mm, and 2.9 mm in the longitudinal, lateral, and vertical directions. In conclusion, the moderated deep-inspiration breath-hold method using a spirometer is feasible, with relatively good reproducibility of the tumor position for image-guided radiotherapy in lung cancers.

  11. On the Confounding Effect of Temperature on Chemical Shift-Encoded Fat Quantification

    Science.gov (United States)

    Hernando, Diego; Sharma, Samir D.; Kramer, Harald; Reeder, Scott B.

    2014-01-01

    Purpose To characterize the confounding effect of temperature on chemical shift-encoded (CSE) fat quantification. Methods The proton resonance frequency of water, unlike triglycerides, depends on temperature. This leads to a temperature dependence of the spectral models of fat (relative to water) that are commonly used by CSE-MRI methods. Simulation analysis was performed for 1.5 Tesla CSE fat–water signals at various temperatures and echo time combinations. Oil–water phantoms were constructed and scanned at temperatures between 0 and 40°C using spectroscopy and CSE imaging at three echo time combinations. An explanted human liver, rejected for transplantation due to steatosis, was scanned using spectroscopy and CSE imaging. Fat–water reconstructions were performed using four different techniques: magnitude and complex fitting, with standard or temperature-corrected signal modeling. Results In all experiments, magnitude fitting with standard signal modeling resulted in large fat quantification errors. Errors were largest for echo time combinations near TEinit ≈ 1.3 ms, ΔTE ≈ 2.2 ms. Errors in fat quantification caused by temperature-related frequency shifts were smaller with complex fitting, and were avoided using a temperature-corrected signal model. Conclusion Temperature is a confounding factor for fat quantification. If not accounted for, it can result in large errors in fat quantifications in phantom and ex vivo acquisitions. PMID:24123362

  12. UK methods for studying fuel management in water moderated reactors

    International Nuclear Information System (INIS)

    Fayers, F.J.

    1970-10-01

    Current UK methods for studying fuel management and for predicting the reactor physics performance for both light and heavy water moderated power reactors are reviewed. Brief descriptions are given of the less costly computer codes used for initial assessment studies, and also the more elaborate programs associated with detailed evaluation are discussed. Some of the considerations influencing the accuracy of predictions are included with examples of various types of experimental confirmation. (author)

  13. Explicit treatment of spectral history effects in PWR design

    International Nuclear Information System (INIS)

    Gavin, P.H.

    1995-01-01

    Spectral history effects in pressurized water reactors (PWRs) are a consequence of spatially distributed and/or time-dependent quantities such as power, moderator temperature, soluble boron concentration, control rod position, etc., defining open-quotes operating conditions.close quotes Operating conditions, global and local, affect neutron spectrum and isotopic reaction rates and thus the evolution of the fuel composition. Any effect that hardens the neutron spectrum, such as elevated temperature or high soluble boron concentration, will increase the fuel conversion ratio and result in more reactive fuel. This paper describes history effects for an 18-month equilibruim cycle of an ABB CE system 80 PWR

  14. Experimental Line List of Water Vapor Absorption Lines in the Spectral Ranges 1850 - 2280 CM-1 and 2390-4000 CM-1

    Science.gov (United States)

    Loos, Joep; Birk, Manfred; Wagner, Georg

    2017-06-01

    A new experimental line parameter list of water vapor absorption lines in the spectral ranges 1850 - 2280 cm-1 and 2390 - 4000 cm-1 is presented. The line list is based on the analysis of several transmittance spectra measured using a Bruker IFS 125 HR high resolution Fourier transform spectrometer. A total of 54 measurements of pure water and water/air-mixtures at 296 K as well as water/air-mixtures at high and low temperatures were performed. A multispectrum fitting approach was used applying a quadratic speed-dependent hard collision line shape model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation in order to retrieve line positions, intensities, self- and air-broadening parameters, their speed-dependence, self- and air-shifts as well as line mixing and in some cases collisional narrowing parameters. Additionally, temperature dependence parameters for widths, shifts and in a few cases line mixing were retrieved. For every parameter an extensive error estimation calculation was performed identifying and specifying systematic error sources. The resulting parameters are compared to the databases HITRAN12 as well as experimental values. For intensities, a detailed comparison to results of recent ab initio calculations performed at University College London was done showing an agreement within 2 % for a majority of the data. However, for some bands there are systematic deviations attributed to ab initio calculation errors. .H. Ngo et al. JQSRT 129, 89-100 (2013) doi:10.1016/j.jqsrt.2013.05.034; JQSRT 134, 105 (2014) doi:10.1016/j.jqsrt.2013.10.016. H. Tran et al. JQSRT 129, 199-203 (2013) doi:10.1016/j.jqsrt.2013.06.015; JQSRT 134, 104 (2014) doi:10.1016/j.jqsrt.2013.10.015. L.S. Rothman et al. JQSRT 130, 4-50 (2013) doi:10.1016/j.jqsrt.2013.07.002. N. Jacquinet-Husson et al. JMS 112, 2395-2445 (2016) doi:10.1016/j.jms.2016.06.007.

  15. Preliminary thermal-hydraulic and structural strength analyses for pre-moderator of cold moderator

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsuhiko; Hino, Ryutaro

    2001-08-01

    A light-water cooled pre-moderator with a thin-walled structure made of aluminum alloy is installed around a liquid hydrogen moderator in order to enhance the neutron performance of a MW-scale spallation target system which is being developed in the Japan Atomic Energy Research Institute (JAERI). Since the pre-moderator is needed to be located close to a target working as a neutron source, it is indispensable to remove nuclear heat deposition in the pre-moderator effectively by means of smooth water flow without flow stagnation. Also, the structural integrity of the thin-walled structure should be kept against the water pressure. Preliminary thermal-hydraulic analytical results showed that the water temperature rise could be suppressed less than 1degC while keeping the smooth water flow, which would assure the expected neutron performance. As for the structural integrity, several measures to meet allowable stress conditions of aluminum alloy were proposed on the basis of the preliminary structural strength analyses. (author)

  16. Audiovisual Cues and Perceptual Learning of Spectrally Distorted Speech

    Science.gov (United States)

    Pilling, Michael; Thomas, Sharon

    2011-01-01

    Two experiments investigate the effectiveness of audiovisual (AV) speech cues (cues derived from both seeing and hearing a talker speak) in facilitating perceptual learning of spectrally distorted speech. Speech was distorted through an eight channel noise-vocoder which shifted the spectral envelope of the speech signal to simulate the properties…

  17. A spectral route to determining chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using...... this mapping, we derive a first-order shift of the band gap edges with chirality. Potentially, this effect could be used for measuring enantiomeric excess....

  18. Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation.

    Science.gov (United States)

    Sokolov, Alexei V; Naveira, Lucas M; Poudel, Milan P; Strohaber, James; Trendafilova, Cynthia S; Buck, William C; Wang, Jieyu; Strycker, Benjamin D; Wang, Chao; Schuessler, Hans; Kolomenskii, Alexandre; Kattawar, George W

    2010-01-20

    We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.

  19. Spectral integration in speech and non-speech sounds

    Science.gov (United States)

    Jacewicz, Ewa

    2005-04-01

    Spectral integration (or formant averaging) was proposed in vowel perception research to account for the observation that a reduction of the intensity of one of two closely spaced formants (as in /u/) produced a predictable shift in vowel quality [Delattre et al., Word 8, 195-210 (1952)]. A related observation was reported in psychoacoustics, indicating that when the components of a two-tone periodic complex differ in amplitude and frequency, its perceived pitch is shifted toward that of the more intense tone [Helmholtz, App. XIV (1875/1948)]. Subsequent research in both fields focused on the frequency interval that separates these two spectral components, in an attempt to determine the size of the bandwidth for spectral integration to occur. This talk will review the accumulated evidence for and against spectral integration within the hypothesized limit of 3.5 Bark for static and dynamic signals in speech perception and psychoacoustics. Based on similarities in the processing of speech and non-speech sounds, it is suggested that spectral integration may reflect a general property of the auditory system. A larger frequency bandwidth, possibly close to 3.5 Bark, may be utilized in integrating acoustic information, including speech, complex signals, or sound quality of a violin.

  20. BODIPY associates in organic matrices: Spectral properties, photostability and evaluation as OLED emitters

    Energy Technology Data Exchange (ETDEWEB)

    Merkushev, D.A.; Usoltsev, S.D. [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation); Marfin, Yu.S., E-mail: marfin@isuct.ru [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation); Pushkarev, A.P., E-mail: pushkarev@iomc.ras.ru [G.A. Razuvaev Institute of Organometallic Chemistry RAS, Tropinina 49, 603950 Nizhny Novgorod (Russian Federation); Volyniuk, D.; Grazulevicius, J.V. [Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Rumyantsev, E.V. [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation)

    2017-02-01

    In the present study four BODIPY (boron dipyrromethene: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes with π-extended substituents in C-8 position were investigated in solvents and polymer mediums. High aggregation degree was observed for the dyes in the solid state. Association and twisted intramolecular charge transfer processes were found to affect the spectral properties of the compounds causing bathochromic shifts in absorption and fluorescence spectra. The extension of substituent π-conjugation gains molecular association evoked presumably by π-π interaction between the substituents of the adjacent molecules. Photostability of the complexes in different forms was analyzed and the distorted form stabilized by polymer matrix was found to be the most stable. The substituent nature did not affect strongly the photostability of dyes. Displacement of monomer-associate equilibrium in hybrid materials with polymethylmethacrylate and poly(9-vinylcarbazole) was exploited for tuning spectral characteristics of the materials. Two dyes readily forming aggregates at the lowest concentrations were applied for the fabrication of organic light-emitting diodes. The fabricated devices exhibited electroluminescence in the appropriate spectral ranges with moderate efficiency. - Highlights: • Four BODIPY dyes with π-extended substituents in 8-position were investigated in solvents and polymers. • Substituent influence on photophysical properties and photostability of the compounds are discussed. • Aggregation induced spectral changes were observed. • Displacement of monomer-aggregate equilibrium was exploited for tuning electroluminescent characteristics of OLED devices.

  1. SPECTRALLY RESOLVED PURE ROTATIONAL LINES OF WATER IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Pontoppidan, Klaus M.; Salyk, Colette; Blake, Geoffrey A.; Kaeufl, Hans Ulrich

    2010-01-01

    We present ground-based high-resolution N-band spectra (Δv = 15 km s -1 ) of pure rotational lines of water vapor in two protoplanetary disks surrounding the pre-main-sequence stars AS 205N and RNO 90, selected based on detections of rotational water lines by the Spitzer InfraRed Spectrograph. Using VISIR on the Very Large Telescope, we spectrally resolve individual lines and show that they have widths of 30-60 km s -1 , consistent with an origin in Keplerian disks at radii of ∼1 AU. The water lines have similar widths to those of the CO at 4.67 μm, indicating that the mid-infrared water lines trace similar radii. The rotational temperatures of the water are 540 and 600 K in the two disks, respectively. However, the line ratios show evidence of non-LTE excitation, with low-excitation line fluxes being overpredicted by two-dimensional disk LTE models. Due to the limited number of observed lines and the non-LTE line ratios, an accurate measure of the water ortho/para (O/P) ratio is not available, but a best estimate for AS 205N is O/P =4.5 ± 1.0, apparently ruling out a low-temperature origin of the water. The spectra demonstrate that high-resolution spectroscopy of rotational water lines is feasible from the ground, and further that ground-based high-resolution spectroscopy is likely to significantly improve our understanding of the inner disk chemistry revealed by recent Spitzer observations.

  2. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments

    Directory of Open Access Journals (Sweden)

    MingXia He

    2007-12-01

    Full Text Available About 30 years ago, NASA launched the first ocean-color observing satellite:the Coastal Zone Color Scanner. CZCS had 5 bands in the visible-infrared domain with anobjective to detect changes of phytoplankton (measured by concentration of chlorophyll inthe oceans. Twenty years later, for the same objective but with advanced technology, theSea-viewing Wide Field-of-view Sensor (SeaWiFS, 7 bands, the Moderate-ResolutionImaging Spectrometer (MODIS, 8 bands, and the Medium Resolution ImagingSpectrometer (MERIS, 12 bands were launched. The selection of the number of bands andtheir positions was based on experimental and theoretical results achieved before thedesign of these satellite sensors. Recently, Lee and Carder (2002 demonstrated that foradequate derivation of major properties (phytoplankton biomass, colored dissolved organicmatter, suspended sediments, and bottom properties in both oceanic and coastalenvironments from observation of water color, it is better for a sensor to have ~15 bands inthe 400 – 800 nm range. In that study, however, it did not provide detailed analysesregarding the spectral locations of the 15 bands. Here, from nearly 400 hyperspectral (~ 3-nm resolution measurements of remote-sensing reflectance (a measure of water colortaken in both coastal and oceanic waters covering both optically deep and optically shallowwaters, first- and second-order derivatives were calculated after interpolating themeasurements to 1-nm resolution. From these derivatives, the frequency of zero values foreach wavelength was accounted for, and the distribution spectrum of such frequencies wasobtained. Furthermore, the wavelengths that have the highest appearance of zeros wereidentified. Because these spectral locations indicate extrema (a local maximum orminimum of the reflectance spectrum or inflections of the spectral curvature, placing the bands of a sensor at these wavelengths maximizes the potential of capturing (and then restoring

  3. Isotope shifting capacity of rock

    International Nuclear Information System (INIS)

    Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1980-01-01

    Any oxygen isotope shifted rock volume exactly defines a past throughput of water. An expression is derived that relates the throughput of an open system to the isotope shift of reservoir rock and present-day output. The small isotope shift of Ngawha reservoir rock and the small, high delta oxygen-18 output are best accounted for by a magmatic water source

  4. Extraction of neutron spectral information from Bonner-Sphere data

    CERN Document Server

    Haney, J H; Zaidins, C S

    1999-01-01

    We have extended a least-squares method of extracting neutron spectral information from Bonner-Sphere data which was previously developed by Zaidins et al. (Med. Phys. 5 (1978) 42). A pulse-height analysis with background stripping is employed which provided a more accurate count rate for each sphere. Newer response curves by Mares and Schraube (Nucl. Instr. and Meth. A 366 (1994) 461) were included for the moderating spheres and the bare detector which comprise the Bonner spectrometer system. Finally, the neutron energy spectrum of interest was divided using the philosophy of fuzzy logic into three trapezoidal regimes corresponding to slow, moderate, and fast neutrons. Spectral data was taken using a PuBe source in two different environments and the analyzed data is presented for these cases as slow, moderate, and fast neutron fluences. (author)

  5. Spectral Monte Carlo simulation of collimated solar irradiation transfer in a water-filled prismatic louver.

    Science.gov (United States)

    Cai, Yaomin; Guo, Zhixiong

    2018-04-20

    The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.

  6. Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch; Sørensen, Thorkild; Bang, Ole

    2006-01-01

    ) on the location of the Stokes and anti-Stokes bands and gain bandwidth. An analysis shows that the Raman effect is responsible for reducing the four-wave mixing gain and a slight reduction in the corresponding frequency shift from the pump, when the frequency shift is much larger than the Raman shift. Using......Supercontinuum generation using picosecond pulses pumped into cobweb photonic crystal fibers is investigated. Dispersion profiles are calculated for several fiber designs and used to analytically investigate the influence of the fiber structural parameters (core size and wall thickness...... numerical simulations we find that four-wave mixing is the dominant physical mechanism for the pumping scheme considered, and that there is a trade-off between the spectral width and the spectral flatness of the supercontinuum. The balance of this trade-off is determined by nanometer-scale design...

  7. A further step toward H2 in automobile : development of an efficient bi-functional catalyst for single stage water gas shift

    NARCIS (Netherlands)

    Azzam, K.G.H.

    2008-01-01

    The suitability of polymer electrolyte fuel (PEM) cells for stationary and vehicular applications initiated research in all areas of fuel processor (i.e. reformer, water-gas-shift, preferential oxidation of CO (PROX)) catalysts for hydrogen generation. Water gas shift (WGS) reaction is an essential

  8. Advanced concept of reduced-moderation water reactor (RMWR) for plutonium multiple recycling

    International Nuclear Information System (INIS)

    Okubo, T.; Iwamura, T.; Takeda, R.; Yamamoto, K.; Okada, H.

    2001-01-01

    An advanced water-cooled reactor concept named the Reduced-Moderation Water Reactor (RMWR) has been proposed to attain a high conversion ratio more than 1.0 and to achieve the negative void reactivity coefficient. At present, several types of design concepts satisfying both the design targets have been proposed based on the evaluation for the fuel without fission products and minor actinides. In this paper, the feasibility of the RMWR core is investigated for the plutonium multiple recycling under advanced reprocessing schemes with low decontamination factors as proposed for the FBR fuel cycle. (author)

  9. Calculations on heavy-water moderated and cooled natural uranium fuelled power reactors

    International Nuclear Information System (INIS)

    Pinedo V, J.L.

    1979-01-01

    One of the codes that the Instituto Nacional de Investigaciones Nucleares (Mexico) has for the nuclear reactors design calculations is the LEOPARD code. This work studies the reliability of this code in reactors design calculations which component materials are the same of the heavy water moderated and cooled, natural uranium fuelled power reactors. (author)

  10. Analysis of optical proprieties of the water reservoir Rodolfo Costa e Silva – Itaara, RS, Brazil, with field spectral data and orbital multispectral images

    Directory of Open Access Journals (Sweden)

    Waterloo Pereira Filho

    2007-08-01

    Full Text Available An evaluation of the discrimination of water classes using continuum removal technique applied over spectral data obtained in field and multispectral images classification is presented. The study area was the Rodolfo Costa e Silva water reservoir, located in central region of Rio Grande do Sul (RS State, in Southern region of Brazil. The methodology was based on in situ data collection of: total suspended solids, chlorophyll (a, b and c, water transparency, and bidirectional spectral reflectance. These data were collected in 21 point (samples in May 16, 2006. The continuum removal technique was applied on the spectral data over 4 absorption bands: 400-550nm, 610-640nm, 650-680nm e 580-700nm. The continuum removal parameters analyzed for each absorption band were: depth, area and width. The multispectral images used were CBERS-2/CCD and Landsat 5/TM. The images were acquired in a date nearest to field work and with appropriate weather conditions. These images were corrected by removing atmospheric effects and then classified. According to the results obtained from the continuum removal technique, it was verified that band depth, area and width did not present a good potential to separate different water classes. Digital classification results did not show significant correlations with the limnological parameters collected in field and, therefore, could not be used to characterize spectrally different water classes or compartments. The main problem of establishing relationships between spectral reflectance and water quality parameters was due to the low variability of optical components in the water of Rodolfo Costa e Silva Reservoir. In this case the spectral analyses (considering both techniques were not sensitive to the relative small variations observed in field data.

  11. Spectral structure of mesoscale winds over the water

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Vincent, Claire Louise; Larsen, Søren Ejling

    2013-01-01

    to describe the spectral slope transition as well as the limit for application of the Taylor hypothesis. The stability parameter calculated from point measurements, the bulk Richardson number, is found insufficient to represent the various atmospheric structures that have their own spectral behaviours under...... spectra show universal characteristics, in agreement with the findings in literature, including the energy amplitude and the −5/3 spectral slope in the mesoscale range transitioning to a slope of −3 for synoptic and planetary scales. The integral time-scale of the local weather is found to be useful...... different stability conditions, such as open cells and gravity waves. For stationary conditions, the mesoscale turbulence is found to bear some characteristics of two-dimensional isotropy, including (1) very minor vertical variation of spectra; (2) similar spectral behaviour for the along- and across...

  12. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    Science.gov (United States)

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  13. Enhancing load-following and/or spectral shift capability in single-sparger natural circulation boiling water reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1992-01-01

    This patent describes a method for obtaining load-following capability in a coiling water reactor (BWR) wherein housed within a reactor pressure vessel (RPV) is a nuclear core disposed within a shroud having a shroud head and which with the RPV defines an annulus region disposed beneath the nuclear core, an upper steam dome connected to a steam outlet in the RPV, a core upper plenum formed within the shroud head and disposed atop the nuclear core, a chimney mounted atop the shroud head and in fluid communication with the core upper plenum and with a steam separator having a skirt which is in fluid communication with the steam dome, the region outside of the chimney defining a downcomer region, there being a water level established therein under normal operation of the BWR, and the RPV containing a feedwater inlet. It comprises: disposing a single sparger connected to the feedwater inlet above the steam separator skirt bottom about the interior circumference of the RPV at an elevation at approximately the water level established during normal operation of the BWR; and adjusting the feedwater flow through the inlet and into the sparger to vary the water level to be above, at or below the elevational location of the sparger in response to load-following need

  14. Spectral Line Shapes in Plasmas and Gases

    International Nuclear Information System (INIS)

    Oks, E.; Dalimier, D.; Stamm, R.; Stehle, CH.; Gonzalez, M.A.

    2011-01-01

    The subject of spectral line shapes (SLS), a.k.a. spectral line broadening, which embraces both shapes and shifts of spectral lines, is of both fundamental and practical importance. On the fundamental side, the study of the spectral line profiles reveals the underlying atomic and molecular interactions. On the practical side, the spectral line profiles are employed as powerful diagnostic tools for various media, such as neutral gases, technological gas discharges, magnetically confined plasmas for fusion, laser- and Z-pinch-produced plasmas (for fusion and other purposes), astrophysical plasmas (most importantly, solar plasmas), and planetary atmospheres. The research area covered by this special issue includes both the SLS dominated by various electric fields (including electron and ion micro fields in strongly ionized plasmas) and the SLS controlled by neutral particles. In the physical slang, the former is called plasma broadening while the latter is called neutral broadening (of course, the results of neutral broadening apply also to the spectral line broadening in neutral gases)

  15. CLUMPED LIGHT WATER MODERATED UO$sub 2$ SUPERHEAT CRITICALS. PART I. EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Warzek, F. G.; Johnston, H. F.

    1963-11-15

    The following critical and subcritical measurements were made in the EVESR core: reactivity with no control rods; full core reactivity with control rods; and power distribution in the full core with control rods. The fuel was UO/ sub 2/, and the elements were of the superheating type. The reactor was light- water-cooled and -moderated. (T.F.H.)

  16. Spectrally- and Time-Resolved Sum Frequency Generation (STiR-SFG): a new tool for ultrafast hydrogen bond dynamics at interfaces.

    Science.gov (United States)

    Benderskii, Alexander; Bordenyuk, Andrey; Weeraman, Champika

    2006-03-01

    The recently developed spectrally- and time-resolved Sum Frequency Generation (STiR-SFG) is a surface-selective 3-wave mixing (IR+visible) spectroscopic technique capable of measuring ultrafast spectral evolution of vibrational coherences. A detailed description of this measurement will be presented, and a noniterative method or deconvolving the laser pulses will be introduced to obtain the molecular response function. STiR-SFG, combined with the frequency-domain SFG spectroscopy, was applied to study hydrogen bonding dynamics at aqueous interfaces (D2O/CaF2). Spectral dynamics of the OD-stretch on the 50-150 fs time scale provides real-time observation of ultrafast H-bond rearrangement. Tuning the IR wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different sub-ensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding) shows monotonic red-shift of the OD-frequency. In contrast, the red-side excitation (stronger H-bonding structures) produces a blue-shift and a recursion, which may indicate the presence of an underdamped intermolecular mode of interfacial water. Effect of electrolyte concentration on the H-bond dynamics will be discussed.

  17. Spectral Noise Logging for well integrity analysis in the mineral water well in Asselian aquifer

    Directory of Open Access Journals (Sweden)

    R.R. Kantyukov

    2017-06-01

    Full Text Available This paper describes a mineral water well with decreasing salinity level according to lab tests. A well integrity package including Spectral Noise Logging (SNL, High-Precision Temperature (HPT logging and electromagnetic defectoscopy (EmPulse was performed in the well which allowed finding casing leaks and fresh water source. In the paper all logging data were thoroughly analyzed and recommendation for workover was mentioned. The SNL-HPT-EmPulse survey allowed avoiding well abandonment.

  18. Fuel enrichment reduction for heavy water moderated research reactors

    International Nuclear Information System (INIS)

    McCulloch, D.B.

    1984-01-01

    Twelve heavy-water-moderated research reactors of significant power level (5 MW to 125 MW) currently operate in a number of countries, and use highly enriched uranium (HEU) fuel. Most of these reactors could in principle be converted to use uranium of lower enrichment, subject in some cases to the successful development and demonstration of new fuel materials and/or fuel element designs. It is, however, generally accepted as desirable that existing fuel element geometry be retained unaltered to minimise the capital costs and licensing difficulties associated with enrichment conversion. The high flux Australian reactor, HIFAR, at Lucas Heights, Sydney is one of 5 Dido-class reactors in the above group. It operates at 10 MW using 80% 235 U HEU fuel. Theoretical studies of neutronic, thermohydraulic and operational aspects of converting HIFAR to use fuels of reduced enrichment have been made over a period. It is concluded that with no change of fuel element geometry and no penalty in the present HEU fuel cycle burn-up performance, conversion to MEU (nominally 45% 235 U) would be feasible within the limits of current fully qualified U-Al fuel materials technology. There would be no significant, adverse effects on safety-related parameters (e.g. reactivity coefficients) and only small penalties in reactor flux. Conversion to LEU (nominally 20% 235 U) a similar basis would require that fuel materials of about 2.3 g U cm -3 be fully qualified, and would depress the in-core thermal neutron flux by about 15 per cent relative to HEU fuelling. In qualitative terms, similar conclusions would be expected to hold for a majority of the above heavy water moderated reactors. (author)

  19. Detection of crop water status in mature olive orchards using vegetation spectral measurements

    Science.gov (United States)

    Rallo, Giovanni; Ciraolo, Giuseppe; Farina, Giuseppe; Minacapilli, Mario; Provenzano, Giuseppe

    2013-04-01

    Leaf/stem water potentials are generally considered the most accurate indicators of crop water status (CWS) and they are quite often used for irrigation scheduling, even if costly and time-consuming. For this reason, in the last decade vegetation spectral measurements have been proposed, not only for environmental monitoring, but also in precision agriculture, to evaluate crop parameters and consequently for irrigation scheduling. Objective of the study was to assess the potential of hyperspectral reflectance (450-2400 nm) data to predict the crop water status (CWS) of a Mediterranean olive orchard. Different approaches were tested and particularly, (i) several standard broad- and narrow-band vegetation indices (VIs), (ii) specific VIs computed on the basis of some key wavelengths, predetermined by simple correlations and finally, (iii) using partial least squares (PLS) regression technique. To this aim, an intensive experimental campaign was carried out in 2010 and a total of 201 reflectance spectra, at leaf and canopy level, were collected with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc.) handheld field spectroradiometer. CWS was contemporarily determined by measuring leaf and stem water potentials with the Scholander chamber. The results indicated that the considered standard vegetation indices were weakly correlated with CWS. On the other side, the prediction of CWS can be improved using VIs pointed to key-specific wavelengths, predetermined with a correlation analysis. The best prediction accuracy, however, can be achieved with models based on PLS regressions. The results confirmed the dependence of leaf/canopy optical features from CWS so that, for the examined crop, the proposed methodology can be considered a promising tool that could also be extended for operational applications using multispectral aerial sensors.

  20. An investigation of differences between measured and calculated bucklings of a series of light water and heavy water moderated experimental cores

    International Nuclear Information System (INIS)

    Figgins, A.J.G.

    1966-02-01

    A series of light water and light and heavy water moderated exponential and critical experiments performed by the Babcock and Wilcox Company were analysed using the METHUSELAH programme and it was found that the calculated and measured critical bucklings differed significantly. The effect was most marked as the temperature of the moderator was raised in the light water cores where it amounted to 10 m -2 for a 200 deg. C rise above room temperature. Of this discrepancy 3 m -2 , at the most, could be explained as being caused by the experimental cores not being large enough to have a central asymptotic region, leaving an unexplained difference of 7 m -2 . It is suggested that the only region in which METHUSELAH could be usefully modified to improve this agreement is in the calculation of the resonance escape probability. The last section of the report compares the calculated and measured results obtained at room temperatures. (author)

  1. Calculation of spectral shifts in UV–visible region and photoresponsive behaviour of fluorinated liquid crystals: Effect of solvent and substituent

    International Nuclear Information System (INIS)

    Lakshmi Praveen, P.; Ojha, Durga P.

    2012-01-01

    The photoresponsive behaviour of fluorinated liquid crystals p-phenylene-4-methoxy benzoate-4-trifluoromethylbenzoate (FLUORO1), and 4-propyloxyphenyl-4-(4-trifluoromethylbenzoyloxy) benzoate (FLUORO2) has been systematically investigated using the CNDO/S + CI and INDO/S + CI methods. These methods have been employed to calculate/analyze the spectral shifts, and absorbance measurements in UV–visible region of the systems. The electronic transitions, absorption wavelength, HOMO (highest occupied molecular orbital), and LUMO (lowest unoccupied molecular orbital) energies have been calculated. Further, ultraviolet (UV) stability of the molecules has been discussed in the light of absorption wavelength and electronic transition oscillator strength (f). The effect of different solvent media and substituents on transition energies, oscillator strength, and other absorption parameters have also been reported. The present article provides valuable information regarding enhancing the UV stability of molecules by marinating their conductivity. Highlights: ► The strongest bands of FLUORO molecules can be assigned as π → π ∗ transitions. ► A small red-shift indicates a weak exciton coupling of chromophores. ► No n → π ∗ transition occurs due to the rigidity of the ring system of the molecules. ► The HOMO, LUMO, and E g values have been found to be independent of solvent effect.

  2. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    Science.gov (United States)

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  3. An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults

    Directory of Open Access Journals (Sweden)

    Laura Toxqui

    2016-06-01

    Full Text Available Water intake is essential for health maintenance and disease prevention. The effects of an intervention with two mineral waters, sodium-bicarbonated mineral water (BW or control mineral water low in mineral content (CW, on cardiometabolic risk biomarkers were studied. In a randomised-controlled crossover-trial, sixty-four moderately hypercholesterolaemic adults were randomly assigned to consume 1 L/day of either BW (sodium, 1 g/L; bicarbonate, 2 g/L or CW with the main meals for eight weeks, separated by an eight-week washout period. Blood lipids, lipid oxidation, glucose, insulin, aldosterone, urine pH, urinary electrolytes, blood pressure, body weight, fluid intake, energy, and nutrients from total diet and beverages were determined. Total cholesterol, LDL cholesterol, and glucose decreased (p < 0.01, oxidised LDL tended to decrease (p = 0.073, and apolipoprotein B increased during the intervention, without water type effect. Energy and carbohydrates from beverages decreased since soft drinks and fruit juice consumptions decreased throughout the trial. BW increased urinary pH (p = 0.006 and reduced calcium/creatinine excretion (p = 0.011. Urinary potassium/creatinine decreased with both waters. Consumption of 1 L/day of mineral water with the main meals reduces cardiometabolic risk biomarkers, likely to be attributed to a replacement of soft drinks by water. In addition, BW does not affect blood pressure and exerts a moderate alkalizing effect in the body.

  4. Shift Verification and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Tara M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Evans, Thomas M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davidson, Gregory G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Seth R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-07

    This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over a burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.

  5. Fourier coefficients of Eisenstein series formed with modular symbols and their spectral decomposition

    NARCIS (Netherlands)

    Bruggeman, R.W.; Diamantis, N.

    2016-01-01

    The Fourier coefficient of a second order Eisenstein series is described as a shifted convolution sum. This description is used to obtain the spectral decomposition of and estimates for the shifted convolution sum.

  6. Digital staining for histopathology multispectral images by the combined application of spectral enhancement and spectral transformation.

    Science.gov (United States)

    Bautista, Pinky A; Yagi, Yukako

    2011-01-01

    In this paper we introduced a digital staining method for histopathology images captured with an n-band multispectral camera. The method consisted of two major processes: enhancement of the original spectral transmittance and the transformation of the enhanced transmittance to its target spectral configuration. Enhancement is accomplished by shifting the original transmittance with the scaled difference between the original transmittance and the transmittance estimated with m dominant principal component (PC) vectors;the m-PC vectors were determined from the transmittance samples of the background image. Transformation of the enhanced transmittance to the target spectral configuration was done using an nxn transformation matrix, which was derived by applying a least square method to the enhanced and target spectral training data samples of the different tissue components. Experimental results on the digital conversion of a hematoxylin and eosin (H&E) stained multispectral image to its Masson's trichrome stained (MT) equivalent shows the viability of the method.

  7. Search for Higgs shifts in white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Onofrio, Roberto [Dipartimento di Fisica e Astronomia " Galileo Galilei," Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Wegner, Gary A., E-mail: onofrior@gmail.com, E-mail: gary.a.wegner@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2014-08-20

    We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from high-energy physics or table-top experiments.

  8. Non-occupational physical activity levels of shift workers compared with non-shift workers

    Science.gov (United States)

    Loef, Bette; Hulsegge, Gerben; Wendel-Vos, G C Wanda; Verschuren, W M Monique; Bakker, Marije F; van der Beek, Allard J; Proper, Karin I

    2017-01-01

    Objectives Lack of physical activity (PA) has been hypothesised as an underlying mechanism in the adverse health effects of shift work. Therefore, our aim was to compare non-occupational PA levels between shift workers and non-shift workers. Furthermore, exposure–response relationships for frequency of night shifts and years of shift work regarding non-occupational PA levels were studied. Methods Data of 5980 non-shift workers and 532 shift workers from the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) were used in these cross-sectional analyses. Time spent (hours/week) in different PA types (walking/cycling/exercise/chores) and intensities (moderate/vigorous) were calculated based on self-reported PA. Furthermore, sports were operationalised as: playing sports (no/yes), individual versus non-individual sports, and non-vigorous-intensity versus vigorous-intensity sports. PA levels were compared between shift workers and non-shift workers using Generalized Estimating Equations and logistic regression. Results Shift workers reported spending more time walking than non-shift workers (B=2.3 (95% CI 1.2 to 3.4)), but shift work was not associated with other PA types and any of the sports activities. Shift workers who worked 1–4 night shifts/month (B=2.4 (95% CI 0.6 to 4.3)) and ≥5 night shifts/month (B=3.7 (95% CI 1.8 to 5.6)) spent more time walking than non-shift workers. No exposure–response relationships were found between years of shift work and PA levels. Conclusions Shift workers spent more time walking than non-shift workers, but we observed no differences in other non-occupational PA levels. To better understand if and how PA plays a role in the negative health consequences of shift work, our findings need to be confirmed in future studies. PMID:27872151

  9. Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis.

    Science.gov (United States)

    Wondraczek, Lothar; Tyystjärvi, Esa; Méndez-Ramos, Jorge; Müller, Frank A; Zhang, Qinyuan

    2015-12-01

    Solar energy harvesting is largely limited by the spectral sensitivity of the employed energy conversion system, where usually large parts of the solar spectrum do not contribute to the harvesting scheme, and where, of the contributing fraction, the full potential of each photon is not efficiently used in the generation of electrical or chemical energy. Extrinsic sensitization through photoluminescent spectral conversion has been proposed as a route to at least partially overcome this problem. Here, we discuss this approach in the emerging context of photochemical energy harvesting and storage through natural or artificial photosynthesis. Clearly contrary to application in photovoltaic energy conversion, implementation of solar spectral conversion for extrinsic sensitization of a photosynthetic machinery is very straightforward, and-when compared to intrinsic sensitization-less-strict limitations with regard to quantum coherence are seen. We now argue the ways in which extrinsic sensitization through photoluminescent spectral converters will-and will not-play its role in the area of ultra-efficient photosynthesis, and also illustrate how such extrinsic sensitization requires dedicated selection of specific conversion schemes and design strategies on system scale.

  10. Neutronic calculations in heavy water moderated multiplying media using GGC-3 library nuclear data

    International Nuclear Information System (INIS)

    Boado, H.J.; Gho, C.J.; Abbate, M.J.

    1981-01-01

    Differences in obtaining transference matrices between GGC-3 code and the system to produce multigroup cross sections using GGC-3 library, recently implemented at the Neutrons and Reactors Division, have been analized. Neutronic calculations in multiplicative systems containing heavy water have been made using both methods. From the obtained results, it is concluded that the new method is more appropriate to deal with systems including moderators other than light water. (author) [es

  11. Whole body cooling by immersion in water at moderate temperatures.

    Science.gov (United States)

    Marino, F; Booth, J

    1998-06-01

    This study investigated the potential use of whole body cooling by water immersion for lowering body temperatures prior to endurance exercise. Rectal temperature (Tre), mean skin temperature (Tsk), oxygen consumption (VO2), and ventilation (VE) were measured in 7 male and 3 female subjects who were immersed in a water bath for up to 60 min. Initial water temperature was 28.8+/-1.5 degrees C and decreased to 23.8+/-1.1 degrees C by the end of immersion. Pre-immersion Tre of 37.34+/-0.36 degrees C was not altered by 60 min water immersion but decreased to 36.64+/-0.34 degrees C at 3 min post immersion (p immersion. Reductions in Tre and Tsk resulted in reduced body heat content (Hc) of approximately 545 kJ (p immersion. VO2 and VE increased from pre-immersion values of 0.34+/-0.08 L x min(-1) and 6.2+/-1.4 L x min(-1) to 0.54+/-0.09 L x min(-) and 11.5+/-5.4 L x min(-1) at the end of immersion, respectively. Heart rate remained unchanged throughout immersion. These results indicate that whole body immersion in moderately cold water temperatures is an effective cooling maneuver for lowering body temperatures and body Hc in the absence of severe physiological responses generally associated with sudden cold stress.

  12. Moderator for nuclear reactor

    International Nuclear Information System (INIS)

    Milgram, M.S.; Dunn, J.T.; Hart, R.S.

    1995-01-01

    This invention relates to a moderator for a nuclear reactor and more specifically, to a composite moderator. A moderator is designed to slow down, or thermalize, neutrons which are released during nuclear reactions in the reactor fuel. Pure or almost pure materials like light water, heavy water, beryllium or graphite are used singly as moderators at present. All these materials, are used widely. Graphite has a good mechanical strength at high temperatures encountered in the nuclear core and therefore is used as both the moderator and core structural material. It also exhibits a low neutron-capture cross section and high neutron scattering cross section. However, graphite is susceptible to attach by carbon dioxide and/or oxygen where applicable, and releases stress energy under certain circumstances, although under normal operating conditions these reactions can be controlled. (author). 1 tab

  13. Quantifying seasonal dynamics of canopy structure and function using inexpensive narrowband spectral radiometers

    Science.gov (United States)

    Vierling, L. A.; Garrity, S. R.; Campbell, G.; Coops, N. C.; Eitel, J.; Gamon, J. A.; Hilker, T.; Krofcheck, D. J.; Litvak, M. E.; Naupari, J. A.; Richardson, A. D.; Sonnentag, O.; van Leeuwen, M.

    2011-12-01

    Increasing the spatial and temporal density of automated environmental sensing networks is necessary to quantify shifts in plant structure (e.g., leaf area index) and function (e.g., photosynthesis). Improving detection sensitivity can facilitate a mechanistic understanding by better linking plant processes to environmental change. Spectral radiometer measurements can be highly useful for tracking plant structure and function from diurnal to seasonal time scales and calibrating and validating satellite- and aircraft-based spectral measurements. However, dense ground networks of such instruments are challenging to establish due to the cost and complexity of automated instrument deployment. We therefore developed simple to operate, lightweight and inexpensive narrowband (~10nm bandwidth) spectral instruments capable of continuously measuring four to six discrete bands that have proven capacity to describe key physiological processes and structural features of plant canopies. These bands are centered at 530, 570, 675, 800, 880, and 970 nm to enable calculation of the physiological reflectance index (PRI), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and water band index (WBI) collected above and within vegetation canopies. To date, measurements have been collected above grassland, semi-arid shrub steppe, piñon-juniper woodland, dense conifer forest, mixed deciduous-conifer forest, and cropland canopies, with additional measurements collected along vertical transects through a temperate conifer rainforest. Findings from this work indicate not only that key shifts in plant phenology, physiology, and structure can be captured using such instruments, but that the temporally dense nature of the measurements can help to disentangle heretofore unreported complexities of simultaneous phenological and structural change on canopy reflectance.

  14. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  15. Control rod for the operation of nuclear reactor

    International Nuclear Information System (INIS)

    Ishida, Hiromi

    1987-01-01

    Purpose: To conduct spectrum shift operation without complicating the reactor core structures, reducing the probability of failures. Constitution: An operation control rod which is driven while passed vertically in the reactor core comprises a strong absorption portion, moderation portion and weak moderation portion defined orderly from above to below and the length for each of the portions is greater than the effective reactor core height. If the operation control rod is lifted to the maximum limit in the upward direction of the reactor core, the weak moderation portion is corresponded over the effective length of the reactor core. Since the weak moderation portion is filled with zirconium and moderators are not present in the operation control rod, water draining gap is formed, neutron spectral shift is formed, excess reactivity is suppressed, absorption of neutrons to fuel fertile material is increased and the formation of nuclear fission material is increased. From the middle to the final stage of the cycle, the control rod is lowered, by which the moderator/fuel effective volume ratio is increased to increase the reactivity. (Kamimura, M.)

  16. Comparison of methods for the determination of boron in heavy water moderator

    International Nuclear Information System (INIS)

    Green, L.W.; Davey, E.C.; Gulens, J.; Longhurst, T.H.; Mislan, J.P.

    1984-01-01

    Five analysis methods were compared for the determination of boron in heavy water moderator: isotope dilution mass spectrometry, spectrophotometry, neutron activation, inductively coupled plasma -atomic emission spectrometry, and ion selective electrode potentiometry. Ten samples were analysed by each method; the results showed close agreement between all of the methods. Only mass spectrometry achieved the required precision ( 10 B concentration must be determined, only mass spectrometry and neutron activation are applicable

  17. Calculation of spectral shifts in UV-visible region and photoresponsive behaviour of fluorinated liquid crystals: Effect of solvent and substituent

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi Praveen, P. [Liquid Crystal Research Laboratory, Post-Graduate Department of Physics, Andhra Loyola College, Vijayawada 520 008, A.P. (India); Ojha, Durga P., E-mail: durga_ojha@hotmail.com [Liquid Crystal Research Laboratory, Post-Graduate Department of Physics, Andhra Loyola College, Vijayawada 520 008, A.P. (India)

    2012-08-15

    The photoresponsive behaviour of fluorinated liquid crystals p-phenylene-4-methoxy benzoate-4-trifluoromethylbenzoate (FLUORO1), and 4-propyloxyphenyl-4-(4-trifluoromethylbenzoyloxy) benzoate (FLUORO2) has been systematically investigated using the CNDO/S + CI and INDO/S + CI methods. These methods have been employed to calculate/analyze the spectral shifts, and absorbance measurements in UV-visible region of the systems. The electronic transitions, absorption wavelength, HOMO (highest occupied molecular orbital), and LUMO (lowest unoccupied molecular orbital) energies have been calculated. Further, ultraviolet (UV) stability of the molecules has been discussed in the light of absorption wavelength and electronic transition oscillator strength (f). The effect of different solvent media and substituents on transition energies, oscillator strength, and other absorption parameters have also been reported. The present article provides valuable information regarding enhancing the UV stability of molecules by marinating their conductivity. Highlights: Black-Right-Pointing-Pointer The strongest bands of FLUORO molecules can be assigned as {pi} {yields} {pi}{sup Asterisk-Operator} transitions. Black-Right-Pointing-Pointer A small red-shift indicates a weak exciton coupling of chromophores. Black-Right-Pointing-Pointer No n {yields} {pi}{sup Asterisk-Operator} transition occurs due to the rigidity of the ring system of the molecules. Black-Right-Pointing-Pointer The HOMO, LUMO, and E{sub g} values have been found to be independent of solvent effect.

  18. Development of an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated reactors

    International Nuclear Information System (INIS)

    Babaev, N.S.

    1981-06-01

    The results of work carried out under IAEA Contract No. 2336/RB are described (subject: an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated (VVER) reactors). The basic principles of an accounting system for this type of nuclear power plant are outlined. The general structure and individual units of the information computer program used to achieve automated accounting are described and instructions are given on the use of the program. A detailed example of its application (on a simulated nuclear power plant) is examined

  19. Impact of different moderator ratios with light and heavy water cooled reactors in equilibrium states

    International Nuclear Information System (INIS)

    Permana, Sidik; Takaki, Naoyuki; Sekimoto, Hiroshi

    2006-01-01

    As an issue of sustainable development in the world, energy sustainability using nuclear energy may be possible using several different ways such as increasing breeding capability of the reactors and optimizing the fuel utilization using spent fuel after reprocessing as well as exploring additional nuclear resources from sea water. In this present study the characteristics of light and heavy water cooled reactors for different moderator ratios in equilibrium states have been investigated. The moderator to fuel ratio (MFR) is varied from 0.1 to 4.0. Four fuel cycle schemes are evaluated in order to investigate the effect of heavy metal (HM) recycling. A calculation method for determining the required uranium enrichment for criticality of the systems has been developed by coupling the equilibrium fuel cycle burn-up calculation and cell calculation of SRAC 2000 code using nuclear data library from the JENDL 3.2. The results show a thermal spectrum peak appears for light water coolant and no thermal peak for heavy water coolant along the MFR (0.1 ≤ MFR ≤ 4.0). The plutonium quality can be reduced effectively by increasing the MFR and number of recycled HM. Considering the effect of increasing number of recycled HM; it is also effective to reduce the uranium utilization and to increase the conversion ratio. trans-Plutonium production such as americium (Am) and curium (Cm) productions are smaller for heavy water coolant than light water coolant. The light water coolant shows the feasibility of breeding when HM is recycled with reducing the MFR. Wider feasible area of breeding has been obtained when light water coolant is replaced by heavy water coolant

  20. Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion

    International Nuclear Information System (INIS)

    Gražulevičiūtė, I; Garejev, N; Majus, D; Tamošauskas, G; A Dubietis; Jukna, V

    2016-01-01

    We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space–time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45–2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse. (paper)

  1. Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion

    Science.gov (United States)

    Gražulevičiūtė, I.; Garejev, N.; Majus, D.; Jukna, V.; Tamošauskas, G.; Dubietis, A.

    2016-02-01

    We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space-time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45-2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse.

  2. Spectral fitting for signal assignment and structural analysis of uniformly {sup 13}C-labeled solid proteins by simulated annealing based on chemical shifts and spin dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Matsuki, Yoh; Akutsu, Hideo; Fujiwara, Toshimichi [Osaka University, Institute for Protein Research (Japan)], E-mail: tfjwr@protein.osaka-u.ac.jp

    2007-08-15

    We describe an approach for the signal assignment and structural analysis with a suite of two-dimensional {sup 13}C-{sup 13}C magic-angle-spinning solid-state NMR spectra of uniformly {sup 13}C-labeled peptides and proteins. We directly fit the calculated spectra to experimental ones by simulated annealing in restrained molecular dynamics program CNS as a function of atomic coordinates. The spectra are calculated from the conformation dependent chemical shift obtained with SHIFTX and the cross-peak intensities computed for recoupled dipolar interactions. This method was applied to a membrane-bound 14-residue peptide, mastoparan-X. The obtained C', C{sup {alpha}} and C{sup {beta}} chemical shifts agreed with those reported previously at the precisions of 0.2, 0.7 and 0.4 ppm, respectively. This spectral fitting program also provides backbone dihedral angles with a precision of about 50 deg. from the spectra even with resonance overlaps. The restraints on the angles were improved by applying protein database program TALOS to the obtained chemical shifts. The peptide structure provided by these restraints was consistent with the reported structure at the backbone RMSD of about 1 A.

  3. Critical sizes of light-water moderated UO2 and PuO2-UO2 lattices

    International Nuclear Information System (INIS)

    Tsuruta, Harumichi; Kobayashi, Iwao; Suzuki, Takenori; Ohno, Akio; Murakami, Kiyonobu

    1978-02-01

    Experimental critical sizes are presented for a total of about 250 lattices with 2.6 w/o UO 2 and 3.0 w/o PuO 2 -natural UO 2 fuel rods. The moderator was H 2 O and water-to-fuel volume ratios in the lattice cells ranged from 1.50 to 3.00 in the UO 2 lattices and from 2.42 to 5.55 in the PuO 2 -UO 2 lattices. The critical sizes were determined with the number of the fuel rods and a water level which were required to make the lattice critical in the shape of a rectangular parallelepiped over the temperature range from room temperature to 80 0 C. Reactivity variations of the PuO 2 -UO 2 lattices due to decaying of 241 Pu to 241 Am were traced during 3 years. Some critical sizes of the UO 2 and PuO 2 -UO 2 lattices with a water gap and of the UO 2 lattices with liquid poison in the moderator are also reported. Some physics parameters, such as the temperature coefficient of reactivity, the water-level worth, the reflector saving, the ratio between a migration area and an infinite multiplication factor and the critical buckling, are shown in relation to the critical sizes of the unperturbed lattices without the water gap and liquid poison. (auth.)

  4. Non-occupational physical activity levels of shift workers compared with non-shift workers.

    Science.gov (United States)

    Loef, Bette; Hulsegge, Gerben; Wendel-Vos, G C Wanda; Verschuren, W M Monique; Vermeulen, Roel C H; Bakker, Marije F; van der Beek, Allard J; Proper, Karin I

    2017-05-01

    Lack of physical activity (PA) has been hypothesised as an underlying mechanism in the adverse health effects of shift work. Therefore, our aim was to compare non-occupational PA levels between shift workers and non-shift workers. Furthermore, exposure-response relationships for frequency of night shifts and years of shift work regarding non-occupational PA levels were studied. Data of 5980 non-shift workers and 532 shift workers from the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) were used in these cross-sectional analyses. Time spent (hours/week) in different PA types (walking/cycling/exercise/chores) and intensities (moderate/vigorous) were calculated based on self-reported PA. Furthermore, sports were operationalised as: playing sports (no/yes), individual versus non-individual sports, and non-vigorous-intensity versus vigorous-intensity sports. PA levels were compared between shift workers and non-shift workers using Generalized Estimating Equations and logistic regression. Shift workers reported spending more time walking than non-shift workers (B=2.3 (95% CI 1.2 to 3.4)), but shift work was not associated with other PA types and any of the sports activities. Shift workers who worked 1-4 night shifts/month (B=2.4 (95% CI 0.6 to 4.3)) and ≥5 night shifts/month (B=3.7 (95% CI 1.8 to 5.6)) spent more time walking than non-shift workers. No exposure-response relationships were found between years of shift work and PA levels. Shift workers spent more time walking than non-shift workers, but we observed no differences in other non-occupational PA levels. To better understand if and how PA plays a role in the negative health consequences of shift work, our findings need to be confirmed in future studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Feasibility study on thermal-hydraulic performance in tight-lattice rod bundles for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Ohnuki, A.; Kureta, M.; Liu, W.; Tamai, H.; Akimoto, H.

    2004-01-01

    Research and development project for investigating thermal-hydraulic performance in tight-lattice rod bundles for Reduced-Moderation Water Reactor (RMWR) started at Japan Atomic Energy Research Institute (JAERI) in 2002. The RMWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured light-water reactor technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important issues for the RMWR because of the tight-lattice configuration. The project has mainly consisted of a large-scale thermal-hydraulic test and development of analytical methods named modeling engineering. In the large-scale test, 37-rod bundle experiments can be performed. Steady-state critical power experiments have been achieved in the test facility and the experimental data reveal the feasibility of RMWR

  6. Assessment of the accident response of a light-water-moderated breeder-reactor system: AWBA development program

    International Nuclear Information System (INIS)

    High, H.M.

    1983-05-01

    The predicted accident response for a light water moderated, thorium/U-233 fueled, seed-blanket reactor concept was assessed. The first part of the assessment compared breeder accident response with that of a current commercial pressurized water reactor design for several different types of transients. Based on these comparisons and a review of the various parameter differences between the breeder and a U-235 fueled plant, the second part of the assessment studied the breeder accident behavior in more detail, particularly in areas of potential concern. Based on the two parts of the assessment, it was concluded that the breeder accident response would be very similar to that of present commercial pressurized water reactor plants. The large Doppler and moderator reactivity coefficients of the breeder would significantly reduce the severity of many of the accidents that must be considered. It is expected that the accident response of the breeder can be shown to meet regulatory criteria

  7. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band

    Science.gov (United States)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.

    2016-01-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  8. Validity of self-reported exposure to shift work.

    Science.gov (United States)

    Härmä, Mikko; Koskinen, Aki; Ropponen, Annina; Puttonen, Sampsa; Karhula, Kati; Vahtera, Jussi; Kivimäki, Mika

    2017-03-01

    To evaluate the validity of widely used questionnaire items on work schedule using objective registry data as reference. A cohort study of hospital employees who responded to a self-administered questionnaire on work schedule in 2008, 2012 and 2014 and were linked to individual-level pay-roll-based records on work shifts. For predictive validity, leisure-time fatigue was assessed. According to the survey data in 2014 (n=8896), 55% of the day workers had at least 1 year of earlier shift work experience. 8% of the night shift workers changed to day work during the follow-up. Using pay-roll data as reference, questions on 'shift work with night shifts' and 'permanent night work' showed high sensitivity (96% and 90%) and specificity (92% and 97%). Self-reported 'regular day work' showed moderate sensitivity (73%), but high specificity (99%) and 'shift work without night shifts' showed low sensitivity (62%) and moderate specificity (87%). In multivariate logistic regression analysis, the age-adjusted, sex-adjusted and baseline fatigue-adjusted association between 'shift work without night shifts' and leisure-time fatigue was lower for self-reported compared with objective assessment (1.30, 95% CI 0.94 to 1.82, n=1707 vs 1.89, 95% CI 1.06 to 3.39, n=1627). In contrast, shift work with night shifts, compared with permanent day work, was similarly associated with fatigue in the two assessments (2.04, 95% CI 1.62 to 2.57, n=2311 vs 1.82, 95% CI 1.28 to 2.58, n=1804). The validity of self-reported assessment of shift work varies between work schedules. Exposure misclassification in self-reported data may contribute to bias towards the null in shift work without night shifts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Reactivity margins in heavy water moderated production reactors

    International Nuclear Information System (INIS)

    Benton, F.D.

    1981-11-01

    The design of the reactor core and components of the heavy water moderated reactors at the Savannah River Plant (SFP) can be varied to produce a number of isotopes. For the past decade, the predominant reactor core design has been the enriched-depleted lattice. In this lattice, fuel assemblies of highly enriched uranium and target assemblies of depleted uranium, which produce plutonium, occupy alternate lattice positions. This heterogeneous lattice arrangement and a nonuniform control rod distribution result in a reactor core that requires sophisticated calculational methods for accurate reactivity margin and power distribution predictions. For maximum accuracy, techniques must exist to provide a base of observed data for the calculations. Frequent enriched-depleted lattice design changes are required as product demands vary. These changes provided incentive for the development of techniques to combine the results of calculations and observed reactivity data to accurately and conveniently monitor reactivity margins during operation

  10. Relationship of red and photographic infrared spectral radiances to alfalfa biomass, forage water content, percentage canopy cover, and severity of drought stress

    Science.gov (United States)

    Tucker, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1979-01-01

    Red and photographic infrared spectral data were collected using a handheld radiometer for two cuttings of alfalfa. Significant linear and non-linear correlation coefficients were found between the spectral variables and plant height, biomass, forage water content, and estimated canopy cover for the earlier alfalfa cutting. The alfalfa of later cutting experienced a period of severe drought stress which limited growth. The spectral variables were found to be highly correlated with the estimated drought scores for this alfalfa cutting.

  11. Community shift of biofilms developed in a full-scale drinking water distribution system switching from different water sources.

    Science.gov (United States)

    Li, Weiying; Wang, Feng; Zhang, Junpeng; Qiao, Yu; Xu, Chen; Liu, Yao; Qian, Lin; Li, Wenming; Dong, Bingzhi

    2016-02-15

    The bacterial community of biofilms in drinking water distribution systems (DWDS) with various water sources has been rarely reported. In this research, biofilms were sampled at three points (A, B, and C) during the river water source phase (phase I), the interim period (phase II) and the reservoir water source phase (phase III), and the biofilm community was determined using the 454-pyrosequencing method. Results showed that microbial diversity declined in phase II but increased in phase III. The primary phylum was Proteobacteria during three phases, while the dominant class at points A and B was Betaproteobacteria (>49%) during all phases, but that changed to Holophagae in phase II (62.7%) and Actinobacteria in phase III (35.6%) for point C, which was closely related to its water quality. More remarkable community shift was found at the genus level. In addition, analysis results showed that water quality could significantly affect microbial diversity together, while the nutrient composition (e.g. C/N ration) of the water environment might determine the microbial community. Furthermore, Mycobacterium spp. and Pseudomonas spp. were detected in the biofilm, which should give rise to attention. This study revealed that water source switching produced substantial impact on the biofilm community. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Calculation of neutron flux distribution of thermal neutrons from microtron converter in a graphite moderator with water reflector

    International Nuclear Information System (INIS)

    Andrejsek, K.

    1977-01-01

    The calculation is made of the thermal neutron flux in the moderator and reflector by solving the neutron diffusion equation using the four-group theory. The correction for neutron absorption in the moderator was carried out using the perturbation theory. The calculation was carried out for four groups with the following energy ranges: the first group 2 MeV to 3 keV, the second group 3 keV to 5 eV, the third group 5 eV to 0.025 eV and the fourth group 0.025 eV. The values of the macroscopic cross section of capture and scattering, of the diffusion coefficient, the macroscopic cross section of the moderator, of the neutron age and the extrapolation length for the water-graphite moderator used in the calculations are given. The spatial distribution of the thermal neutron flux is graphically represented for graphite of a 30, 40, and 50 cm radius and for graphite of a 30 and 40 cm radius with a 10 cm water reflector; a graphic comparison is made of the distribution of the thermal neutron flux in water and in graphite, both 40 cm in radius. The system of graphite with reflector proved to be the best and most efficient system for raising the flux density of thermal neutrons. (J.P.)

  13. Determining the Pressure Shift of Helium I Lines Using White Dwarf Stars

    Science.gov (United States)

    Camarota, Lawrence

    This dissertation explores the non-Doppler shifting of Helium lines in the high pressure conditions of a white dwarf photosphere. In particular, this dissertation seeks to mathematically quantify the shift in a way that is simple to reproduce and account for in future studies without requiring prior knowledge of the star's bulk properties (mass, radius, temperature, etc.). Two main methods will be used in this analysis. First, the spectral line will be quantified with a continuous wavelet transformation, and the components will be used in a chi2 minimizing linear regression to predict the shift. Second, the position of the lines will be calculated using a best-fit Levy-alpha line function. These techniques stand in contrast to traditional methods of quantifying the center of often broad spectral lines, which usually assume symmetry on the parts of the lines.

  14. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    resistance increased both in the high and low frequency region, which indicates a strong poisoning of the water gas shift reaction and thus a lack of hydrogen fuel in addition to the poisoning of the electrochemical hydrogen oxidation. All poisoning effects are reversible under the applied operating...

  15. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  16. Progress in design study on reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Shirakawa, Toshihisa; Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takeda, Renzo [Hitachi Ltd., Tokyo (Japan); Yokoyama, Tsugio [Toshiba Corp., Kawasaki, Kanagawa (Japan); Hibi, Koki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Wada, Shigeyuki [Japan Atomic Power Co., Tokyo (Japan)

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from {sup 238}U to {sup 239}Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPC) in 1998, under technical cooperation with three Japanese reactor vendors. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight-lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR type core with high void fraction and super-flat core, a long operation cycle BWR type core using void tube assembly, a high conversion BWR type core without blankets, a high conversion PWR type core using heavy water as a coolant, and a PWR type core for plutonium multi-recycle using seed-blanket type fuel assemblies. Detailed feasibility studies for the RMWR have been continued on core design study. The present report summarizes the recent progress in the design study for the RMWR. (author)

  17. Remote Sensing of Suspended Sediments and Shallow Coastal Waters

    Science.gov (United States)

    Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.

    2002-01-01

    Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  18. Indicating pressure and environmental effects by means of the spectral shift with rhodamine B and fluorescein

    Directory of Open Access Journals (Sweden)

    R. M. Johann

    2015-07-01

    Full Text Available Fluorescence absorption and emission wavelengths can be influenced by environmental conditions, such as pressure, temperature and concentration. Here those effects are explored with an emphasis on determining the potential of rhodamine B and fluorescein as high-pressure indicators. The red shift of the emission peak maxima of rhodamine B and fluorescein are investigated in dependence of pressure up to 200 MPa using as the solvents water, ethanol and poly(dimethylsiloxane (PDMS with rhodamine B and water, polystyrene beads and melamine resin beads with fluorescein. Emission spectra recording and peak fitting is done automatically at time intervals of down to a second and with 0.3 nm wavelength resolution. The wavenumber-pressure relation for rhodamine B reveals increasing divergence from linear behavior in the sequence of the solvents water, ethanol and silicone rubber. Graphical correlation of the data diverging only slightly from linearity with a selection of polarity functions is enabled using the concept of ‘deviation from linearity (DL’ plots. Using the example of rhodamine B dissolved in PDMS elastomer it is shown that there is a temperature induced irreversible molecular reordering, when scanning between 3 and ∼50°C, and a polarity change in the proximity of the embedded dye molecule. Swelling studies are performed with PDMS containing rhodamine B, where the elastomer is first put in water, then in ethanol and again in water. There a complex solvent exchange process is revealed in the elastomer demonstrating the feasibility of fluorescence spectroscopy, when observing variations in wavelength, to indicate and enlighten molecular rearrangements and swelling dynamics in the polymer, and polarity changes and solvent exchange processes in the dye solvation shell.

  19. The response of wavelength shifting panels in large water Cherenkov systems

    International Nuclear Information System (INIS)

    Bakich, A.M.; Peak, L.S.

    1986-01-01

    This paper describes a series of tests performed with a panel Bicron wavelength shifting acrylic plastic (BC-480) coupled to an EMI 9623B photomultiplier tube. The aim was to effectively increase the cathode coverage and its sensitivity to incident Cherenkov radiation, so that such a system could be employed in a solar neutrino detector. Measurements of the uniformity and effective efficiency of the system have been made and compared with the results of various simulation runs. The effects of side mirrors, back reflector, water interface and possible shaping of the panel to enhance its response are also assessed. (orig.)

  20. Characterization of the titanium Kβ spectral profile

    International Nuclear Information System (INIS)

    Chantler, C T; Smale, L F; Kinnane, M N; Illig, A J; Kimpton, J A; Crosby, D N

    2013-01-01

    Transition metals have Kα and Kβ characteristic radiation possessing complex asymmetric spectral profiles. Instrumental broadening normally encountered in x-ray experiments shifts features of profiles used for calibration, such as peak energy, by many times the quoted accuracies. We measure and characterize the titanium Kβ spectral profile. The peak energy of the titanium Kβ spectral profile is found to be 4931.966 ± 0.022 eV prior to instrumental broadening. This 4.5 ppm result decreases the uncertainty over the past literature by a factor of 2.6 and is 2.4 standard deviations from the previous standard. The spectrum is analysed and the resolution-free lineshape is extracted and listed for use in other experiments. We also incorporate improvement in analysis applied to earlier results for V Kβ. (paper)

  1. Aiming at super long term application of nuclear energy. Scope and subjects on the water cooled breeder reactor, the 'reduced moderation water reactor'

    International Nuclear Information System (INIS)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji

    2001-01-01

    In order to make possible on nuclear energy application for super long term, development of sodium cooling type fast breeder reactor (FBR) has been carried out before today. However, as it was found that its commercialization was technically and economically difficult beyond expectation, a number of nations withdrew from its development. And, as Japan has continued its development, scope of its actual application is not found yet. Now, a research and development on a water cooling type breeder reactor, the reduced moderation water reactor (RMWR)' using LWR technology has now been progressed under a center of JAERI. This RMWR is a reactor intending a jumping upgrade of conversion ratio by densely arranging fuel bars to shift neutron spectrum to faster region. The RMWR has a potential realizable on full-dress plutonium application at earlier timing through its high conversion ratio, high combustion degree, plutonium multi-recycling, and so on. And, it has also feasibility to solve uranium resource problem by realization of conversion ratio with more than 1.0, to contribute to super long term application of nuclear energy. Here was investigated on an effect of reactor core on RMWR, especially of its conversion ratio and plutonium loading on introduction effect as well as on how RMWR could be contributed to reduction of uranium resource consumption, by drawing some scenario on development of power generation reactor and fuel cycle in Japan under scope of super long term with more than 100 years in future. And, trial calculation on power generation cost of the RMWR was carried out to investigate some subjects at a viewpoint of upgrading on economy. (G.K.)

  2. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    Science.gov (United States)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  3. Assessing the potential of spectral induced polarization to detect in situ changes in iron reduction

    Science.gov (United States)

    Rosier, C. L.; Price, A.; Sharma, S.; Atekwana, E. A.

    2016-12-01

    The near surface geophysical technique Spectral Induced Polarization (SIP), provides promise as an effective method measuring in situ biofilm formation/development. Yet, potential mechanisms responsible for observed shifts in SIP response due to biofilm are not clearly understood. In order to address possible mechanisms we assessed the influence of Shewanella oneidensis (MR1) cell density (colony forming units; CFU), biofilm production (Bradford assay) and iron reduction metabolism (colorimetric assay) on SIP response. Laboratory measurements were collected over three months on columns packed with either iron-coated or iron-free sands and amended with artificial ground water and acetate in order to stimulate biofilm production and microbial iron reduction. Additionally, scanning electron microscopy (SEM) was used to confirm the presence of S. oneidensis cells and biofilm. Our results suggest that during early/initial stage (75 days) of column incubation, SIP measurements revealed that phase and imaginary conductivity responses decreased as the concentration of reduced iron decreased below 2.0 mM. In contrast, we observed only a moderate increase in phase and imaginary conductivity ( 30%) within iron-free columns as a result of increases in S. oneidensis cells (CFU 1.5 x 1011) and biofilm production (7.0 mg ml-1). SEM analysis confirmed the presence of biofilm and cells within both iron-coated and iron-free columns. We hypothesize that the production of microbial metabolic byproducts is a potential mechanism explaining large phase shits observed in previous studies ( 50 mrads) rather than the conductivity of cells or biofilm. Our findings provide support for the following: i) ratio of cells to biofilm production only moderately influences both phase and imaginary conductivity response and ii) largest phase and imaginary conductivity response resulted from microbial metabolism (i.e. iron reduction) and potentially biofilm trapping of conductive materials (i

  4. Effects of spectral smearing on performance of the spectral ripple and spectro-temporal ripple tests.

    Science.gov (United States)

    Narne, Vijaya Kumar; Sharma, Mridula; Van Dun, Bram; Bansal, Shalini; Prabhu, Latika; Moore, Brian C J

    2016-12-01

    The main aim of this study was to use spectral smearing to evaluate the efficacy of a spectral ripple test (SRt) using stationary sounds and a recent variant with gliding ripples called the spectro-temporal ripple test (STRt) in measuring reduced spectral resolution. In experiment 1 the highest detectable ripple density was measured using four amounts of spectral smearing (unsmeared, mild, moderate, and severe). The thresholds worsened with increasing smearing and were similar for the SRt and the STRt across the three conditions with smearing. For unsmeared stimuli, thresholds were significantly higher (better) for the STRt than for the SRt. An amplitude fluctuation at the outputs of simulated (gammatone) auditory filters centered above 6400 Hz was identified as providing a potential detection cue for the STRt stimuli. Experiment 2 used notched noise with energy below and above the passband of the SRt and STRt stimuli to reduce confounding cues in the STRt. Thresholds were almost identical for the STRt and SRt for both unsmeared and smeared stimuli, indicating that the confounding cue for the STRt was eliminated by the notched noise. Thresholds obtained with notched noise present could be predicted reasonably accurately using an excitation-pattern model.

  5. Qualification of the ALKASORB sorbent for the sorption-enhanced water-gas shift process

    Energy Technology Data Exchange (ETDEWEB)

    Van Selow, E.R.; Cobden, P.D.; Dijk, Van H.A.J.; Walspurger, S.; Verbraeken, P.A.; Jansen, D.

    2013-07-01

    For the sorption-enhanced water-gas shift (SEWGS) process, a new sorbent material has been qualified in a reactor of 2 m length under conditions close to industrial designs. The sorbent ALKASORB is a potassium-carbonate promoted hydrotalcite-based compound. ALKASORB is shown to have many favourable properties in comparison to the reference sorbent, in particular with respect to mechanical stability. The cyclic capacity of the new compound is substantially higher than the cyclic capacity of the reference sorbent, and it allows a reduction of the steam requirement of 50%. The sorbent has demonstrated catalytic activity for the water-gas shift reaction that is sufficient to omit a separate catalyst. It is demonstrated that the sorbent remains chemically and mechanically stable during operation of at least 2000 adsorption-desorption cycles, even in the presence of H2S in the feed. H2S is shown not to influence CO2 adsorption capacity and is co-captured with the CO2. In contrast to the reference material that showed mechanical degradation during extended adsorption-desorption cycles, the new material is stable and allows to obtain carbon capture levels exceeding 95% more efficiently and more economically since the required size of the vessels will be smaller.

  6. Foodsheds in Virtual Water Flow Networks: A Spectral Graph Theory Approach

    Directory of Open Access Journals (Sweden)

    Nina Kshetry

    2017-06-01

    Full Text Available A foodshed is a geographic area from which a population derives its food supply, but a method to determine boundaries of foodsheds has not been formalized. Drawing on the food–water–energy nexus, we propose a formal network science definition of foodsheds by using data from virtual water flows, i.e., water that is virtually embedded in food. In particular, we use spectral graph partitioning for directed graphs. If foodsheds turn out to be geographically compact, it suggests the food system is local and therefore reduces energy and externality costs of food transport. Using our proposed method we compute foodshed boundaries at the global-scale, and at the national-scale in the case of two of the largest agricultural countries: India and the United States. Based on our determination of foodshed boundaries, we are able to better understand commodity flows and whether foodsheds are contiguous and compact, and other factors that impact environmental sustainability. The formal method we propose may be used more broadly to study commodity flows and their impact on environmental sustainability.

  7. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  8. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    Science.gov (United States)

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  9. Thermal hydraulic simulation of moderator heat exchanger

    International Nuclear Information System (INIS)

    Anil Lal, S.; Rajakumar, A.; Vaidyanathan, G.; Srinivasan, R.; Chetal, S.C.

    1993-01-01

    Pressurized heavy water reactors form the majority in the first stage of India's nuclear power programme. Heavy water is both moderator and primary coolant. The heat generated in the moderator due to neutron moderation and capture has to be removed in moderator heat exchangers. It has been desired to improve the performance characteristics of moderator heat exchangers, whereby moderator would enter the calandria vessel at a low temperature and would enable higher power of operation for the same limiting temperature of moderator in the calandria. Results of studies carried out using a three dimensional computer code for various operating options are given. Using these velocities the heat exchangers have been analysed for flow induced vibrations. 7 refs., 6 figs., 6 tabs

  10. The influence of river water temperature annual variation to the moderator heat exchangers heat flux

    International Nuclear Information System (INIS)

    Nita, I. P.

    2015-01-01

    The Main Moderator heat exchangers are the most important consumers supplied by Recirculated Cooling Water (RCW) System. In order to determine an appropriate operating configuration of the RCW system it is needed to determine the flowrate required by the Main Moderator consumers, in real time. From operating experience, the required RCW flowrate necessary to be supplied to the main moderator heat exchangers is much lower than design flowrate. In installation, there are no flow elements that could measure especially that flow. However, there are two control valves which regulate the flow to the main moderator heaters; they control the outlet temperature of the moderator to 69"oC. That leads to the requirement of calculating the flowrate function of the outside temperature for all possible temperatures during a calendar year. One considered all possible temperatures during an operating year, and more, going beyond design point, up to 36"oC, temperature that can occur during quick transients after forth RCW pump starting. The calculation was made to verify the capacity of heat exchanger to remove the designed 100 MW(t) in the new condition of reducing moderator temperature outlet from 77 to 69°C. The obtained model was validated using field temperatures and flow measurements and the conclusion was the model can accurately predict how the RCW system operates in all year operation conditions. (authors)

  11. Shifting Pacific storm tracks as stressors to ecosystems of western North America.

    Science.gov (United States)

    Dannenberg, Matthew P; Wise, Erika K

    2017-11-01

    Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North America to the latitudinal position of cool-season Pacific storm tracks. We calculated correlations between storm track variability and three hydroclimatic variables: gridded cool-season standardized precipitation-evapotranspiration index, April snow water equivalent, and water year streamflow from a network of USGS stream gauges. To assess how historical storm track variability affected ecosystem processes, we derived forest growth estimates from a large network of tree-ring widths and land surface phenology and wildfire estimates from remote sensing. From 1980 to 2014, cool-season storm tracks entered western North America between approximately 41°N and 53°N. Cool-season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. Ecosystems of the western United States were greener and more productive following winters with south-shifted storm tracks, while Canadian ecosystems were greener in years when the cool-season storm track was shifted to the north. On average, larger areas of the northwestern United States were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north-shifted storm tracks. These results suggest that projected shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern United States, where moisture supply and ecosystem processes are highly sensitive to the position of cool-season storm tracks.

  12. Theoretical Stark widths and shifts of spectral lines of 2p5nf and 2p55g configurations of Mg III

    International Nuclear Information System (INIS)

    Moreno-Díaz, Cristina; Alonso-Medina, Aurelia; Colón, Cristóbal

    2014-01-01

    In this paper, we report theoretical Stark widths and shifts calculated using the Griem semi-empirical approach, which corresponds to 111 spectral lines of Mg III. The values of these Stark broadening parameters of spectral lines that arise from levels of 2p 5 nf and 2p 5 5g configurations of Mg III are presented in the literature for the first time. The aim of this work is to provide values to estimate the electron density of plasma Mg III in astrophysics and industrial applications. The data are presented for the temperatures T = 0.5–10.0 (10 4 K) and for an electron density of 10 17 cm −3 . The matrix of elements used in these calculations has been determined from 23 configurations of Mg III: 2s 2 2p 6 , 2s 2 2p 5 3p, 2s 2 2p 5 4p, 2s 2 2p 5 4f and 2s 2 2p 5 5f for the even parity and 2s 2 2p 5 ns (n = 3–6), 2s 2 2p 5 nd (n = 3–9), 2s 2 2p 5 5g and 2s2p 6 np (n = 3–8) for the odd parity. For the intermediate coupling calculations, we use the standard method of least square fitting from experimental energy levels by means of Cowan’s computer code. Lines with wavelengths of 134.6460, 135.2800, 189.0380, 190.0043, 192.8424, 408.2939 and 409.4375 nm have high probabilities and also have high values of broadening. Therefore, these lines can be used in some applications. A common regularity for the Stark width of the 189.038 nm spectral line of Mg III is discussed. (paper)

  13. Water Grabbing and the Role of Power: Shifting Water Governance in the Light of Agricultural Foreign Direct Investment

    Directory of Open Access Journals (Sweden)

    Andrea Bues

    2012-06-01

    Full Text Available In recent years, the trend for foreign actors to secure land for agricultural production in low-income countries has increased substantially. The concurrent acquisition of water resources changes the institutional arrangement for water management in the investment areas. The consequences of 'land grabbing' on the local water governance systems have not so far been adequately examined. This paper presents an institutional analysis of a small-scale irrigation scheme in Ethiopia, where foreign and national horticultural farms started to use water from an irrigation canal that was formerly managed as a user-group common-pool resource by local smallholders. The study follows a qualitative case-study approach with semi-structured interviews as the main source of data. For the analysis we employed the Common-pool Resource Theory and the Distributional Theory of Institutional Change. We found that the former management regime changed in that most of the farmers’ water rights shifted to the investment farms. We found three key characteristics responsible for the different bargaining power of the two actor groups: dependency on natural resources, education and knowledge, and dependency on government support. We conclude that not only the struggle for land but also the directly linked struggle for water is led by diverging interests, which are determined by diverging power resources.

  14. Shift work and hypertension: Prevalence and analysis of disease pathways in a German car manufacturing company.

    Science.gov (United States)

    Ohlander, Johan; Keskin, Mekail-Cem; Stork, Joachim; Radon, Katja

    2015-05-01

    Hypertension and cardiovascular disease (CVD) may share a similar pathophysiology. Despite shift workers' CVD excess risk, studies on shift work and hypertension are inconclusive. Blood pressure and shift status for 25,343 autoworkers were obtained from medical check-ups and company registers. Cross-sectional associations modeling the total effect from shift work (day shifts, shift work without nights, rotating shift work with nights, and night shifts) on hypertension were assessed. By sequential adjustments, the influence of behavioral, psychosocial, and physiological factors on the total effect was examined, with subsequent mediation and moderation analyses. Adjusted for confounders, shift work without nights (vs. day shifts) was significantly associated with hypertension (OR 1.15, 95%CI 1.02-1.30). The total effect was mediated by BMI, physical inactivity, and sleep disorders. No moderation of the total effect by behaviors was found. The association between shift work and hypertension seems mainly attributable to behavioral mechanisms. © 2015 Wiley Periodicals, Inc.

  15. Crowding and experience-use history: a study of the moderating effect of place attachment among water-based recreationists.

    Science.gov (United States)

    Budruk, Megha; Wilhem Stanis, Sonja A; Schneider, Ingrid E; Heisey, Jennifer J

    2008-04-01

    Effective recreation resource management relies on understanding visitor perceptions and behaviors. Given current and increasing pressures on water resources, understanding crowding evaluations seems important. Beyond crowding, however, variables that possibly relate to or influence crowding are of interest and in particular, place attachment and experience-use history (EUH). As EUH is related to place attachment and likely affects crowding, this study explored the moderating effect of place attachment dimensions on the relationships between EUH and visitor crowding evaluations. Water based recreationists at a U.S. Army Corps of Engineers site were contacted onsite and asked questions related to experience-use history, crowding evaluations, place attachment, and activity participation. Anglers and campers at the site identified similar crowding perceptions and place attachments. Only one of eight models tested revealed a moderating effect. Specifically, place identity moderated the relationship between the total times visited in the past twelve months and expected crowding among anglers. As such, the quest continues to understand the relationship among these important variables.

  16. Spectral Dependence of the Scattering Coefficient in Case 1 and Case 2 Waters

    Science.gov (United States)

    Gould, Richard W., Jr.; Arnone, Robert A.; Martinolich, Paul M.

    1999-04-01

    An approximate linear relationship between the scattering coefficient and the wavelength of light in the visible is found in case 1 and case 2 waters. From this relationship, we estimate scattering at an unknown wavelength from scattering at a single measured wavelength. This approximation is based on measurements in a 1.5-m-thick surface layer collected with an AC9 instrument at 63 stations in the Arabian Sea, northern Gulf of Mexico, and coastal North Carolina. The light-scattering coefficient at 412 nm ranged from 0.2 to 15.1 m 1 in these waters, and the absorption coefficient at 412 nm ranged from 0.2 to 4.0 m 1 . A separate data set for 100 stations from Oceanside, California, and Chesapeake Bay, Virginia, was used to validate the relationship. Although the Oceanside waters were considerably different from the developmental data set (based on absorption-to-scattering ratios and single-scattering albedos), the average error between modeled and measured scattering values was 6.0% for the entire test data set over all wavelengths (without regard to sign). The slope of the spectral scattering relationship decreases progressively from high-scattering, turbid waters dominated by suspended sediments to lower-scattering, clear waters dominated by phytoplankton.

  17. Automated processing for proton spectroscopic imaging using water reference deconvolution.

    Science.gov (United States)

    Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W

    1994-06-01

    Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.

  18. Influence of ligand spin-orbit coupling to the sign of the zero-field splitting and pressure-induced spectral shift for ZnS:Mn2+ (bulk/nanocrystal)

    International Nuclear Information System (INIS)

    Zhao, M.G.; Lei, Y.

    2004-01-01

    Serious difficulties exist in explaining the zero-field splitting (ZFS) of 3d 5 ions in crystal, with the current crystal-field theory. The calculated cubic ZFS a-value of 3d 5 ion is positive identically. However, K.A. Mueller and W. Low found experimentally that a is negative for some ZnS:Mn 2+ crystals. In this work, an unified explanation is developed for the ZFS, optical spectra and pressure-induced spectral shift for the ZnS:Mn 2+ (bulk/nanocrystal) by considering the influence of the spin-orbit coupling to the ZFS and spectral bands. The excellent agreement between calculation and experiments shows that the above-mentioned difficulties can be removed based on the calculation model proposed by authors. Calculation result shows that there are two kinds of stable electron states with (λ π , λ σ , λ s ) = (0.2713448, -0.1619936, -0.08) and (0.2713448, 0.346885, -0.220), respectively, where (λ π , λ σ , λ s ) denote the mixing coefficients of Mn 2+ - 4S 2- anti-bonding in ZnS:Mn 2+

  19. In-flight spectral performance monitoring of the Airborne Prism Experiment.

    Science.gov (United States)

    D'Odorico, Petra; Alberti, Edoardo; Schaepman, Michael E

    2010-06-01

    Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor's performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson's correlation coefficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions

  20. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-01-01

    Current interest in the thorium cycle, as an alternative to the uranium cycle, for water-moderated reactors is based on two attractive aspects of its use - the extension of uranium resources, and the related lower sensitivity of energy costs to uranium price. While most of the scientific basis required is already available, some engineering demonstrations are needed to provide better economic data for rational decisions. Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. There appear to be no major feasibility problems associated with the use of thorium, although development is required in the areas of fuel testing and fuel management. The use of thorium cycles implies recycling the fuel, and the major uncertainties are in the associated costs. Experience in the design and operation of fuel reprocessing and active-fabrication facilities is required to estimate costs to the accuracy needed for adequately defining the range of conditions economically favourable to thorium cycles. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An ''inventory'' of uranium of between 1 and 2Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium), is some two decades

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Bassler, E.A.; Huckestein, E.A.; Salton, R.B.; Tower, S.N.

    1988-01-01

    A fuel assembly adapted for use with a pressurized water nuclear reactor having capabilities for fluid moderator spectral shift control is described comprising: parallel arranged elongated nuclear fuel elements; means for providing for axial support of the fuel elements and for arranging the fuel elements in a spaced array; thimbles interspersed among the fuel elements adapted for insertion of a rod control cluster therewithin; means for structurally joining the fuel elements and the guide thimbles; fluid moderator control means for providing a volume of low neutron absorbing fluid within the fuel assembly and for removing a substantially equivalent volume of reactor coolant water therefrom, a first flow manifold at one end of the fuel assembly sealingly connected to a first end of the moderator control tubes whereby the first ends are commonly flow connected; and a second flow manifold, having an inlet passage and an outlet passage therein, sealingly connected to a second end of the moderator control tubes at a second end of the fuel assembly

  2. Mars analog minerals' spectral reflectance characteristics under Martian surface conditions

    Science.gov (United States)

    Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.

    2018-05-01

    We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent

  3. The Morphological Change of Silver Nanoparticles in Water

    International Nuclear Information System (INIS)

    Wang Peng; Wang Rong-Yao; Jin Jing-Yang; Xu Le; Shi Qing-Fan

    2012-01-01

    The solvent-induced morphological change of silver nanoparticles is studied with a combination of optical spectroscopy and atomic force microscopy (AFM). By using the local surface plasmon resonance (LSPR) spectroscopy arising from Ag nanoparticles, an in-situ investigation of the spectral changes is carried out before, during and after exposure of Ag island films to water. Combining with the morphological observations by AFM, we sort out the morphological and dielectric contributions to the water-induced LSPR changes. Our results demonstrate that a slight morphological change induced by water contact can result in an apparent blue shift of the LSPR spectral maximum. Furthermore, it is found that this structural change leads to a higher sensitivity of the Ag island films in response to the change in the external dielectric environment. This solvent-induced morphological change, and consequently the modification of the LSPR of the metal nanoparticles, may have significant impact in the applications of solvent-involved plasmon sensors, such as chemical/biological sensing and single-molecule spectroscopy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  5. Chemisorption of H2O and CO2 on hydrotalcites for sorptionenhanced water-gas-shift processes

    NARCIS (Netherlands)

    Coenen, K.T.; Gallucci, F.; Cobden, P.; van Dijk, E; Hensen, E.J.M.; van Sint Annaland, M.

    2017-01-01

    Thermogravimetric analysis and breakthrough experiments in a packed bed reactor were used to validate a developed adsorption model to describe the cyclic working capacity of CO2 and H2O on a potassium-promoted hydrotalcite, a very promising adsorbent for sorption-enhanced water-gas-shift

  6. Chemisorption of H2O and CO2 on hydrotalcites for sorptionenhanced water-gas-shift processes

    NARCIS (Netherlands)

    Coenen, K.T.; Gallucci, F.; Cobden, P.; van Dijk, E.; Hensen, E.J.M.; van Sint Annaland, M.

    2016-01-01

    Thermogravimetric analysis and breakthrough experiments in a packed bed reactor were used to validate a developed adsorption model to describe the cyclic working capacity of CO¬2 and H2O on a potassium-promoted hydrotalcite, a very promising adsorbent for sorption-enhanced water-gas-shift

  7. Pre-"peak water" time in the southwest Yukon: when cryospheric changes trigger hydrological regime shifts

    Science.gov (United States)

    Baraer, M.; Chesnokova, A.; Huh, K. I.; Laperriere-Robillard, T.

    2017-12-01

    Saint-Elias Mountains host numerous cryospheric systems such as glaciers, seasonal and perennial snow cover, permafrost, aufeis, and different forms of buried ice. Those systems are very sensitive to climate changes and exhibit ongoing reduction in extent and/or changes in formation/ablation times. Because they highly influence the hydrological regimes of rivers, cryospheric changes raise concerns about consequences for regional water resources and ecosystems. The present study combines historical data analysis and hydrological modeling in order to estimate how cryospheric changes impact hydrological regimes at eight watersheds of different glacier cover (0- 30%) in the southwest Yukon. Methods combine traditional hydrograph analysis techniques and more advance techniques such as Fast Fourier Transform filters used to isolate significant trends in discharge properties from noise or climatic oscillations. Measured trends in discharge variables are connected to cryospheric changes by using a water balance / peak water model (Baraer et al., 2012), here adapted to the main cryospheric systems that characterize the southwest Yukon.Results show three distinct hydrological regimes for (1) non glacierized, (2) glacierized, and (3) major lakes hosting catchments. The studied glacierized catchments have not passed the "peak water" yet and still exhibit increases in yearly and late summer discharges and a decrease in runoff variability. All watersheds show an increase in winter discharge and a snowmelt-driven shift of yearly peak discharge toward earlier in the season. The study suggests that, in a couple of decades, water resources and dependent ecosystems will face the combined effects of (A) a shift in the contribution trend from declining perennial cryospheric systems and (B) continuing alteration of the contribution from the seasonal cryospheric systems.

  8. Optimization of compressive 4D-spatio-spectral snapshot imaging

    Science.gov (United States)

    Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing

    2017-10-01

    In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.

  9. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Ibe, Eishi; Nakata, Kiyatomo; Fuse, Motomasa; Ohsumi, Katsumi; Takashima, Yoshie

    1995-01-01

    Many efforts to preserve the structural integrity of major piping, components, and structures in a boiling water reactor (BWR) primary cooling system have been directed toward avoiding intergranular stress corrosion cracking (IGSCC). Application of hydrogen water chemistry (HWC) to moderate corrosive circumstances is a promising approach to preserve the structural integrity during extended lifetimes of BWRs. The benefits of HWC application are (a) avoiding the occurrence of IGSCC on structural materials around the bottom of the crack growth rate, even if microcracks are present on the structural materials. Several disadvantage caused by HWC are evaluated to develop suitable countermeasures prior to HWC application. The advantages and disadvantages of HWC are quantitatively evaluated base on both BWR plant data and laboratory data shown in unclassified publications. Their trade-offs are discussed, and suitable applications of HWC are described. It is concluded that an optimal amount of Hydrogen injected into the feedwater can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. The conclusions have been drawn by combining experimental and theoretical results. Experiments in BWR plants -- e.g., direct measurements of electrochemical corrosion potential and crack growth rate at the RPV bottom -- are planned that would collect data to support the theoretical considerations

  10. Moderator purification and design modifications based on operation feedback

    International Nuclear Information System (INIS)

    Das, S.; Chakrabarti, A.K.; Shirolkar, K.M.; Sharma, V.K.

    1994-01-01

    Heavy water is used as a moderator in the Pressurized Heavy Water Reactors using natural uranium as a fissile fuel. The purification system is provided to maintain the purity of moderator heavy water so as to minimise the radiolytic decomposition of heavy water due to nuclear radiation which otherwise would lead to hazardous concentration of deuterium in the moderator cover gas. The presence of dissolved impurity in the moderator increases the radiolysis rate by impeding the reverse reaction and hence these must be removed. The purification system in general controls the chemistry of moderator by minimizing the corrosion of piping in the circuit and along with the liquid poison injection system adjusts the concentration of the poisons in the moderator. This paper describes the evolution of the purification system for the 500 MWe PHWRs based on various operating requirements and feedback from the operating stations. (author)

  11. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  12. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  13. Design concept of the HPLWR moderator flow path

    International Nuclear Information System (INIS)

    Koehly, Christina; Schulenberg, Thomas; Starflinger, Joerg

    2009-01-01

    The latest design concept of the High Performance Light Water Reactor (HPLWR) includes a thermal core in which supercritical water at 25 MPa inlet pressure is heated up from 280degC reactor inlet temperature to 500degC core exit temperature in three steps with intermediate coolant mixing to minimize peak cladding temperatures of the fuel rods. Prior to entering the first fuel assemblies, the coolant is used as moderator in water rods inside assemblies, in the gap volume between assembly boxes, as well as in the surrounding axial or radial reflectors. Even though assembly boxes and moderator rods are designed with a certain thermal insulation, heat is generated in the moderator water or transferred to it from the superheated steam inside assemblies, causing concern of natural convection phenomena with uncontrolled neutronic feedback on the core power distribution. Moreover, bypass flows of the moderator water need to be minimized at any thermal expansion of the reactor internal structures to avoid an unpredictable moderator mass flow. The design concept of the moderator flow path described in this paper is trying to overcome these problems. Downward flow of moderator water is limited to sub-cooled conditions, well below the pseudo-critical point of supercritical water. Dedicated orifices are foreseen to allow later correction of the mass flow split. The sealing concept accounts for larger thermal expansions of reactor components by using C-rings or bellows. A welded construction is preferred wherever possible to minimize leakage. The removable steam plenum is aligned at the extractable steam pipes to minimize thermal displacements at the sealing positions. The paper is showing several design details to illustrate the technical solutions. (author)

  14. Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water-leaving radiance

    Science.gov (United States)

    Moline, Mark A.; Oliver, Matthew J.; Mobley, Curtis D.; Sundman, Lydia; Bensky, Thomas; Bergmann, Trisha; Bissett, W. Paul; Case, James; Raymond, Erika H.; Schofield, Oscar M. E.

    2007-11-01

    Nighttime water-leaving radiance is a function of the depth-dependent distribution of both the in situ bioluminescence emissions and the absorption and scattering properties of the water. The vertical distributions of these parameters were used as inputs for a modified one-dimensional radiative transfer model to solve for spectral bioluminescence water-leaving radiance from prescribed depths of the water column. Variation in the water-leaving radiance was consistent with local episodic physical forcing events, with tidal forcing, terrestrial runoff, particulate accumulation, and biological responses influencing the shorter timescale dynamics. There was a >90 nm shift in the peak water-leaving radiance from blue (˜474 nm) to green as light propagated to the surface. In addition to clues in ecosystem responses to physical forcing, the temporal dynamics in intensity and spectral quality of water-leaving radiance provide suitable ranges for assessing detection. This may provide the information needed to estimate the depth of internal light sources in the ocean, which is discussed in part 2 of this paper.

  15. Spectral density and a family of Dirac operators

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1985-01-01

    The spectral density for a class Dirac operators is investigated by relating its even and odd parts to the Riemann zeta-function and to the eta-invariant by Atiyah, Padoti and Singer. Asymptotic expansions are studied and a 'hidden' supersymmetry is revealed and used to relate the Dirac operator to a supersymmetric quantum mechanics. A general method for the computation of the odd spectral density is developed, and various applications are discussed. In particular the connection to the fermion number and a relation between the odd spectral density and some ratios of Jost functions and relative phase shifts are pointed out. Chiral symmetry breaking is investigated using methods analogous to those applied in the investigation of the fermion number, and related to supersymmetry breaking in the corresponding quantum mechanical model. (orig.)

  16. Noise analysis method for monitoring the moderator temperature coefficient of pressurized water reactors: Neural network calibration

    International Nuclear Information System (INIS)

    Thomas, J.R. Jr.; Adams, J.T.

    1994-01-01

    A neural network was trained with data for the frequency response function between in-core neutron noise and core-exit thermocouple noise in a pressurized water reactor, with the moderator temperature coefficient (MTC) as target. The trained network was subsequently used to predict the MTC at other points in the same fuel cycle. Results support use of the method for operating pressurized water reactors provided noise data can be accumulated for several fuel cycles to provide a training base

  17. 3D phase-shifting fringe projection system on the basis of a tailored free-form mirror.

    Science.gov (United States)

    Zwick, Susanne; Heist, Stefan; Steinkopf, Ralf; Huber, Sandra; Krause, Sylvio; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther

    2013-05-10

    Phase-shifting fringe projection is an effective method to perform 3D shape measurements. Conventionally, fringe projection systems utilize a digital projector that images fringes into the measurement plane. The performance of such systems is limited to the visible spectral range, as most projectors experience technical limitations in UV or IR spectral ranges. However, for certain applications these spectral ranges are of special interest. We present a wideband fringe projector that has been developed on the basis of a picture generating beamshaping mirror. This mirror generates a sinusoidal fringe pattern in the measurement plane without any additional optical elements. Phase shifting is realized without any mechanical movement by a multichip LED. As the system is based on a single mirror, it is wavelength-independent in a wide spectral range and therefore applicable in UV and IR spectral ranges. We present the design and a realized setup of this fringe projection system and the characterization of the generated intensity distribution. Experimental results of 3D shape measurements are presented.

  18. Spectral Method with the Tensor-Product Nodal Basis for the Steklov Eigenvalue Problem

    Directory of Open Access Journals (Sweden)

    Xuqing Zhang

    2013-01-01

    Full Text Available This paper discusses spectral method with the tensor-product nodal basis at the Legendre-Gauss-Lobatto points for solving the Steklov eigenvalue problem. A priori error estimates of spectral method are discussed, and based on the work of Melenk and Wohlmuth (2001, a posterior error estimator of the residual type is given and analyzed. In addition, this paper combines the shifted-inverse iterative method and spectral method to establish an efficient scheme. Finally, numerical experiments with MATLAB program are reported.

  19. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    Science.gov (United States)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in

  20. Multi-physical Developments for Safety Related Investigations of Low Moderated Boiling Water Reactors

    OpenAIRE

    Schlenker, Markus Thomas

    2014-01-01

    The main objective of this dissertation is the development and optimization of a low moderated boiling water reactor (BWR) core with improved fuel utilization to be incorporated in a Gen II BWR nuclear power plant. The assessment of the new core design is done by comparing it with a full MOX BWR core design regarding neutron physical and thermal-hydraulic design and safety criteria (e.g. inherent reactivity coefficients) and different sustainability parameters (e.g. conversion ratio).

  1. Multi-physical developments for safety related investigations of low moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, Markus Thomas

    2014-12-19

    The main objective of this dissertation is the development and optimization of a low moderated boiling water reactor (BWR) core with improved fuel utilization to be incorporated in a Gen II BWR nuclear power plant. The assessment of the new core design is done by comparing it with a full MOX BWR core design regarding neutron physical and thermal-hydraulic design and safety criteria (e.g. inherent reactivity coefficients) and different sustainability parameters (e.g. conversion ratio).

  2. Insights on the Spectral Signatures of Stellar Activity and Planets from PCA

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Allen B.; Fischer, Debra A. [Department of Astronomy, Yale University, 52 Hillhouse Avenue, New Haven, CT 06511 (United States); Cisewski, Jessi [Department of Statistics, Yale University, 24 Hillhouse Avenue, New Haven, CT 06511 (United States); Dumusque, Xavier [Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Versoix (Switzerland); Ford, Eric B., E-mail: allen.b.davis@yale.edu [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-09-01

    Photospheric velocities and stellar activity features such as spots and faculae produce measurable radial velocity signals that currently obscure the detection of sub-meter-per-second planetary signals. However, photospheric velocities are imprinted differently in a high-resolution spectrum than are Keplerian Doppler shifts. Photospheric activity produces subtle differences in the shapes of absorption lines due to differences in how temperature or pressure affects the atomic transitions. In contrast, Keplerian Doppler shifts affect every spectral line in the same way. With a high enough signal-to-noise (S/N) and resolution, statistical techniques can exploit differences in spectra to disentangle the photospheric velocities and detect lower-amplitude exoplanet signals. We use simulated disk-integrated time-series spectra and principal component analysis (PCA) to show that photospheric signals introduce spectral line variability that is distinct from that of Doppler shifts. We quantify the impact of instrumental resolution and S/N for this work.

  3. Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Rubén, E-mail: ruben.nunez@ies-def.upm.es; Antón, Ignacio, E-mail: ruben.nunez@ies-def.upm.es; Askins, Steve, E-mail: ruben.nunez@ies-def.upm.es; Sala, Gabriel, E-mail: ruben.nunez@ies-def.upm.es [Instituto de Energía Solar - Universidad Politécnica de Madrid, Instituto de Energía Solar, ETSI Telecomunicación, Ciudad Universitaria 28040 Madrid (Spain)

    2014-09-26

    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatch Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.

  4. Impact of Vertical Canopy Position on Leaf Spectral Properties and Traits across Multiple Species

    Directory of Open Access Journals (Sweden)

    Tawanda W. Gara

    2018-02-01

    Full Text Available Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the entire spectrum for multiple species is poorly understood. In this study, we examined the ability of leaf optical properties to track variability in leaf traits across the vertical canopy profile using Partial Least Square Discriminatory Analysis (PLS-DA. Leaf spectral measurements together with leaf traits (nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf area were studied at three vertical canopy positions along the plant stem: lower, middle and upper. We observed that foliar nitrogen (N, chlorophyll (Cab, carbon (C, and equivalent water thickness (EWT were higher in the upper canopy leaves compared with lower shaded leaves, while specific leaf area (SLA increased from upper to lower canopy leaves. We found that leaf spectral reflectance significantly (P ≤ 0.05 shifted to longer wavelengths in the ‘red edge’ spectrum (685–701 nm in the order of lower > middle > upper for the pooled dataset. We report that spectral bands that are influential in the discrimination of leaf samples into the three groups of canopy position, based on the PLS-DA variable importance projection (VIP score, match with wavelength regions of foliar traits observed to vary across the canopy vertical profile. This observation demonstrated that both leaf traits and leaf reflectance co-vary across the vertical canopy profile in multiple species. We conclude that canopy vertical position has a significant impact on leaf spectral properties of an individual plant’s traits, and this finding holds for multiple species. These findings have important implications on field sampling protocols, upscaling leaf traits to canopy level

  5. Moderator purification and design modifications based on operation feedback

    Energy Technology Data Exchange (ETDEWEB)

    Das, S; Chakrabarti, A K; Shirolkar, K M; Sharma, V K [Nuclear Power Corporation, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Heavy water is used as a moderator in the Pressurized Heavy Water Reactors using natural uranium as a fissile fuel. The purification system is provided to maintain the purity of moderator heavy water so as to minimise the radiolytic decomposition of heavy water due to nuclear radiation which otherwise would lead to hazardous concentration of deuterium in the moderator cover gas. The presence of dissolved impurity in the moderator increases the radiolysis rate by impeding the reverse reaction and hence these must be removed. The purification system in general controls the chemistry of moderator by minimizing the corrosion of piping in the circuit and along with the liquid poison injection system adjusts the concentration of the poisons in the moderator. This paper describes the evolution of the purification system for the 500 MWe PHWRs based on various operating requirements and feedback from the operating stations. (author). 2 refs., 3 figs., 1 tab.

  6. Spectral Properties and Orientation of Voltage-Sensitive Dyes in Lipid Membranes

    KAUST Repository

    Matson, Maria; Carlsson, Nils; Beke-Somfai, Tamá s; Nordé n, Bengt

    2012-01-01

    Voltage-sensitive dyes are frequently used for probing variations in the electric potential across cell membranes. The dyes respond by changing their spectral properties: measured as shifts of wavelength of absorption or emission maxima

  7. Multi-Spectral Remote Sensing of Phytoplankton Pigment Absorption Properties in Cyanobacteria Bloom Waters: A Regional Example in the Western Basin of Lake Erie

    Directory of Open Access Journals (Sweden)

    Guoqing Wang

    2017-12-01

    Full Text Available Phytoplankton pigments absorb sunlight for photosynthesis, protect the chloroplast from damage caused by excess light energy, and influence the color of the water. Some pigments act as bio-markers and are important for separation of phytoplankton functional types. Among many efforts that have been made to obtain information on phytoplankton pigments from bio-optical properties, Gaussian curves decomposed from phytoplankton absorption spectrum have been used to represent the light absorption of different pigments. We incorporated the Gaussian scheme into a semi-analytical model and obtained the Gaussian curves from remote sensing reflectance. In this study, a series of sensitivity tests were conducted to explore the potential of obtaining the Gaussian curves from multi-spectral satellite remote sensing. Results showed that the Gaussian curves can be retrieved with 35% or less mean unbiased absolute percentage differences from MEdium Resolution Imaging Spectrometer (MERIS and Moderate Resolution Imaging Spectroradiometer (MODIS-like sensors. Further, using Lake Erie as an example, the spatial distribution of chlorophyll a and phycocyanin concentrations were obtained from the Gaussian curves and used as metrics for the spatial extent of an intense cyanobacterial bloom occurred in Lake Erie in 2014. The seasonal variations of Gaussian absorption properties in 2011 were further obtained from MERIS imagery. This study shows that it is feasible to obtain Gaussian curves from multi-spectral satellite remote sensing data, and the obtained chlorophyll a and phycocyanin concentrations from these Gaussian peak heights demonstrated potential application to monitor harmful algal blooms (HABs and identification of phytoplankton groups from satellite ocean color remote sensing semi-analytically.

  8. Spectral Estimation of UV-Vis Absorbance Time Series for Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Leonardo Plazas-Nossa

    2017-05-01

    Full Text Available Context: Signals recorded as multivariate time series by UV-Vis absorbance captors installed in urban sewer systems, can be non-stationary, yielding complications in the analysis of water quality monitoring. This work proposes to perform spectral estimation using the Box-Cox transformation and differentiation in order to obtain stationary multivariate time series in a wide sense. Additionally, Principal Component Analysis (PCA is applied to reduce their dimensionality. Method: Three different UV-Vis absorbance time series for different Colombian locations were studied: (i El-Salitre Wastewater Treatment Plant (WWTP in Bogotá; (ii Gibraltar Pumping Station (GPS in Bogotá; and (iii San-Fernando WWTP in Itagüí. Each UV-Vis absorbance time series had equal sample number (5705. The esti-mation of the spectral power density is obtained using the average of modified periodograms with rectangular window and an overlap of 50%, with the 20 most important harmonics from the Discrete Fourier Transform (DFT and Inverse Fast Fourier Transform (IFFT. Results: Absorbance time series dimensionality reduction using PCA, resulted in 6, 8 and 7 principal components for each study site respectively, altogether explaining more than 97% of their variability. Values of differences below 30% for the UV range were obtained for the three study sites, while for the visible range the maximum differences obtained were: (i 35% for El-Salitre WWTP; (ii 61% for GPS; and (iii 75% for San-Fernando WWTP. Conclusions: The Box-Cox transformation and the differentiation process applied to the UV-Vis absorbance time series for the study sites (El-Salitre, GPS and San-Fernando, allowed to reduce variance and to eliminate ten-dency of the time series. A pre-processing of UV-Vis absorbance time series is recommended to detect and remove outliers and then apply the proposed process for spectral estimation. Language: Spanish.

  9. Neutron transport from targets to moderators

    International Nuclear Information System (INIS)

    Taylor, A.D.

    1981-06-01

    By appropriately choosing parameters such as temperature, decoupler, thickness and effective size it is possible to tailor the moderators of a pulsed spallation neutron source in such a way that the different characteristics regarding time structure and spectral distribution as requested for the different instruments can be met very closely. This enables a unique flexibility in the design of neutron spectrometers to be used at such a source. (author)

  10. Complex of spectral techniques for remote monitoring of oil spills on water surface

    International Nuclear Information System (INIS)

    Patsayeva, S.; Yuzhakov, V.; Barbini, R.; Fantini, R.; Frassanito, C.; Palucci, A.; Varlamov, V.

    1999-01-01

    Spectral properties of oil films on water surfaces were studied under laboratory conditions. A laser fluorosensor was used to measure fluorescence response; fluorescence decay measurements were also performed. Differences in decay time were noted for different mineral oils (ranging from 1 ns to 3.5 ns) and for refined oils (which ranged from 3.5 ns to 8 ns). Film thickness was estimated by calculating the wavelength -dependent absorption of the mineral oil. This new approach is independent of many accidental factors, and does not demand the a priori measured signal from clean water which is required by the more conventional method of suppression of the water Raman integral signal. These experiments confirmed the suitability of fluorescent spectroscopy as a very sensitive tool for oil detection and mapping, however, when applied to quantitative measurement or oil recognition in remote sensing, care must be taken to account for the factors influencing fluorescence response of mineral oil. It was also shown that fluorescence decay time is a useful technique to characterize the type of mineral oil spilled on water surface in that it provides a means to distinguish between the various types, using time-resolved spectra. 12 refs., 1 tab., 4 figs

  11. Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Sun, Y.; Boettger, T.; Babbitt, W.R.; Cone, R.L.

    2010-01-01

    We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the 3 H 4 and 3 F 4 excited states of Tm 3+ , persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the 169 Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 μs at zero field to 23 μs in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm 3+ and the 7 Li and 93 Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for 7 Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.

  12. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R

    2011-12-01

    The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Event-related potentials (ERPs) were recorded in response to+200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Application of the finite-element method and the eigenmode expansion method to investigate the periodic and spectral characteristic of discrete phase-shift fiber Bragg grating

    Science.gov (United States)

    He, Yue-Jing; Hung, Wei-Chih; Syu, Cheng-Jyun

    2017-12-01

    The finite-element method (FEM) and eigenmode expansion method (EEM) were adopted to analyze the guided modes and spectrum of phase-shift fiber Bragg grating at five phase-shift degrees (including zero, 1/4π, 1/2π, 3/4π, and π). In previous studies on optical fiber grating, conventional coupled-mode theory was crucial. This theory contains abstruse knowledge about physics and complex computational processes, and thus is challenging for users. Therefore, a numerical simulation method was coupled with a simple and rigorous design procedure to help beginners and users to overcome difficulty in entering the field; in addition, graphical simulation results were presented. To reduce the difference between the simulated context and the actual context, a perfectly matched layer and perfectly reflecting boundary were added to the FEM and the EEM. When the FEM was used for grid cutting, the object meshing method and the boundary meshing method proposed in this study were used to effectively enhance computational accuracy and substantially reduce the time required for simulation. In summary, users can use the simulation results in this study to easily and rapidly design an optical fiber communication system and optical sensors with spectral characteristics.

  14. Morphology-Dependent Properties of Cu/CeO2 Catalysts for the Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Zhibo Ren

    2017-02-01

    Full Text Available CeO2 nanooctahedrons, nanorods, and nanocubes were prepared by the hydrothermal method and were then used as supports of Cu-based catalysts for the water-gas shift (WGS reaction. The chemical and physical properties of these catalysts were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption/desorption, UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS, hydrogen temperature-programmed reduction (H2-TPR and in situ diffuse reflectance infra-red fourier transform spectroscopy (DRIFTS techniques. Characterization results indicate that the morphology of the CeO2 supports, originating from the selective exposure of different crystal planes, has a distinct impact on the dispersion of Cu and the catalytic properties. The nanooctahedron CeO2 catalyst (Cu-CeO2-O showed the best dispersion of Cu, the largest amount of moderate copper oxide, and the strongest Cu-support interaction. Consequently, the Cu-CeO2-O catalyst exhibited the highest CO conversion at the temperature range of 150–250 °C when compared with the nanocube and nanorod Cu-CeO2 catalysts. The optimized Cu content of the Cu-CeO2-O catalysts is 10 wt % and the CO conversion reaches 91.3% at 300 °C. A distinctive profile assigned to the evolution of different types of carbonate species was observed in the 1000–1800 cm−1 region of the in situ DRIFTS spectra and a particular type of carbonate species was identified as a potential key reaction intermediate at low temperature.

  15. The effects of shift work on free-living physical activity and sedentary behavior.

    Science.gov (United States)

    Loprinzi, Paul D

    2015-07-01

    Although occupation may influence physical activity and shift work schedule may influence cardiovascular disease risk factors, our understanding of the effects of shift work schedule on overall physical activity behavior and sedentary behavior is limited. Data from the 2005-2006 National Health and Nutrition Examination Survey were used. Shift work schedule was defined as regular daytime shift, evening, night, rotating or another schedule. Physical activity and sedentary behavior were assessed via accelerometry. 1536 adult participants (≥20years) indicated they currently work and provided data on all study variables. After adjustments, and compared to adults working a regular daytime shift, those working an evening (RR=0.41, p=0.001) and night (RR=0.30, p=0.001) shift, respectively, engaged in 59% and 70% less sustained (bouts) moderate-to-vigorous physical activity, but no differences occurred for overall moderate-to-vigorous physical activity. After adjustments, and compared to those working a regular daytime shift, those working a rotating shift engaged in more light-intensity physical activity (overall: β=26.3min/day; p=0.03; bouts: β=37.5, p=0.01) and less sedentary behavior (β=-28.5min/day, p=0.01). Shift work schedule differentially influences physical activity and sedentary behavior. Physical activity and sedentary intervention strategies may need to be tailored based on shift work schedule. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  17. The Radical Flank Effect and Cross-occupational Collaboration for Technology Development during a Power Shift

    Science.gov (United States)

    Truelove, Emily; Kellogg, Katherine C.

    2016-01-01

    This 12-month ethnographic study of an early entrant into the U.S. car-sharing industry demonstrates that when an organization shifts its focus from developing radical new technology to incrementally improving this technology, the shift may spark an internal power struggle between the dominant engineering group and a challenger occupational group such as the marketing group. Analyzing 42 projects in two time periods that required collaboration between engineering and marketing during such a shift, we show how cross-occupational collaboration under these conditions can be facilitated by a radical flank threat, through which the bargaining power of moderates is strengthened by the presence of a more-radical group. In the face of a strong threat by radical members of a challenger occupational group, moderate members of the dominant engineering group may change their perceptions of their power to resist challengers’ demands and begin to distinguish between the goals of radical versus more-moderate challengers. To maintain as much power as possible and prevent the more-dramatic change in engineering occupational goals demanded by radical challengers, moderate engineers may build a coalition with moderate challengers and collaborate for incremental technology development. PMID:28424533

  18. The Radical Flank Effect and Cross-occupational Collaboration for Technology Development during a Power Shift.

    Science.gov (United States)

    Truelove, Emily; Kellogg, Katherine C

    2016-12-01

    This 12-month ethnographic study of an early entrant into the U.S. car-sharing industry demonstrates that when an organization shifts its focus from developing radical new technology to incrementally improving this technology, the shift may spark an internal power struggle between the dominant engineering group and a challenger occupational group such as the marketing group. Analyzing 42 projects in two time periods that required collaboration between engineering and marketing during such a shift, we show how cross-occupational collaboration under these conditions can be facilitated by a radical flank threat, through which the bargaining power of moderates is strengthened by the presence of a more-radical group. In the face of a strong threat by radical members of a challenger occupational group, moderate members of the dominant engineering group may change their perceptions of their power to resist challengers' demands and begin to distinguish between the goals of radical versus more-moderate challengers. To maintain as much power as possible and prevent the more-dramatic change in engineering occupational goals demanded by radical challengers, moderate engineers may build a coalition with moderate challengers and collaborate for incremental technology development.

  19. Spectral model for clear sky atmospheric longwave radiation

    Science.gov (United States)

    Li, Mengying; Liao, Zhouyi; Coimbra, Carlos F. M.

    2018-04-01

    An efficient spectrally resolved radiative model is used to calculate surface downwelling longwave (DLW) radiation (0 ∼ 2500 cm-1) under clear sky (cloud free) conditions at the ground level. The wavenumber spectral resolution of the model is 0.01 cm-1 and the atmosphere is represented by 18 non-uniform plane-parallel layers with pressure in each layer determined on a pressure-based coordinate system. The model utilizes the most up-to-date (2016) HITRAN molecular spectral data for 7 atmospheric gases: H2O, CO2, O3, CH4, N2O, O2 and N2. The MT_CKD model is used to calculate water vapor and CO2 continuum absorption coefficients. Longwave absorption and scattering coefficients for aerosols are modeled using Mie theory. For the non-scattering atmosphere (aerosol free), the surface DLW agrees within 2.91% with mean values from the InterComparison of Radiation Codes in Climate Models (ICRCCM) program, with spectral deviations below 0.035 W cm m-2. For a scattering atmosphere with typical aerosol loading, the DLW calculated by the proposed model agrees within 3.08% relative error when compared to measured values at 7 climatologically diverse SURFRAD stations. This relative error is smaller than a calibrated parametric model regressed from data for those same 7 stations, and within the uncertainty (+/- 5 W m-2) of pyrgeometers commonly used for meteorological and climatological applications. The DLW increases by 1.86 ∼ 6.57 W m-2 when compared with aerosol-free conditions, and this increment decreases with increased water vapor content due to overlap with water vapor bands. As expected, the water vapor content at the layers closest to the surface contributes the most to the surface DLW, especially in the spectral region 0 ∼ 700 cm-1. Additional water vapor content (mostly from the lowest 1 km of the atmosphere) contributes to the spectral range of 400 ∼ 650 cm-1. Low altitude aerosols ( ∼ 3.46 km or less) contribute to the surface value of DLW mostly in the

  20. Spatial distribution of moderated neutrons along a Pb target irradiated by high-energy protons

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Kulakov, B.A.; Krivopustov, M.I.; Sosnin, A.N.; Debeauvais, M.; Adloff, J.C.; Zamani Valasiadou, M.

    2006-01-01

    High-energy protons in the range of 0.5-7.4 GeV have irradiated an extended Pb target covered with a paraffin moderator. The moderator was used in order to shift the hard Pb spallation neutron spectrum to lower energies and to increase the transmutation efficiency via (n,γ) reactions. Neutron distributions along and inside the paraffin moderator were measured. An analysis of the experimental results was performed based on particle production by high-energy interactions with heavy targets and neutron spectrum shifting by the paraffin. Conclusions about the spallation neutron production in the target and moderation through the paraffin are presented. The study of the total neutron fluence on the moderator surface as a function of the proton beam energy shows that neutron cost is improved up to 1 GeV. For higher proton beam energies it remains constant with a tendency to decline

  1. Comparison of methods for the determination of boron in heavy water moderator

    Energy Technology Data Exchange (ETDEWEB)

    Green, L.W.; Davey, E.C.; Gulens, J.; Longhurst, T.H.; Mislan, J.P. (Atomic Energy of Canada Ltd., Chalk River, Ontario. Chalk River Nuclear Labs.)

    1984-08-01

    Five analysis methods were compared for the determination of boron in heavy water moderator: isotope dilution mass spectrometry, spectrophotometry, neutron activation, inductively coupled plasma -atomic emission spectrometry, and ion selective electrode potentiometry. Ten samples were analysed by each method; the results showed close agreement between all of the methods. Only mass spectrometry achieved the required precision (<1 percent rsd) for samples taken during initial reactor operation, but all of the methods achieved sufficient precision (<10 percent rsd) for samples taken during normal operation. For samples for which the /sup 10/B concentration must be determined, only mass spectrometry and neutron activation are applicable.

  2. GOSAT-2014 methane spectral line list

    International Nuclear Information System (INIS)

    Nikitin, A.V.; Lyulin, O.M.; Mikhailenko, S.N.; Perevalov, V.I.; Filippov, N.N.; Grigoriev, I.M.; Morino, I.; Yoshida, Y.; Matsunaga, T.

    2015-01-01

    The updated methane spectral line list GOSAT-2014 for the 5550–6240 cm −1 region with the intensity cutoff of 5×10 –25 cm/molecule at 296 K is presented. The line list is based on the extensive measurements of the methane spectral line parameters performed at different temperatures and pressures of methane without and with buffer gases N 2 , O 2 and air. It contains the following spectral line parameters of about 12150 transitions: line position, line intensity, energy of lower state, air-induced and self-pressure-induced broadening and shift coefficients and temperature exponent of air-broadening coefficient. The accuracy of the line positions and intensities are considerably improved in comparison with the previous version GOSAT-2009. The improvement of the line list is done mainly due to the involving to the line position and intensity retrieval of six new spectra recorded with short path way (8.75 cm). The air-broadening and air-shift coefficients for the J-manifolds of the 2ν 3 (F 2 ) band are refitted using the new more precise values of the line positions and intensities. The line assignment is considerably extended. The lower state J-value was assigned to 6397 lines representing 94.4% of integrated intensity of the considering wavenumber region. The complete assignment was done for 2750 lines. - Highlights: • The upgrade of the GOSAT methane line list in the 5550–6240 cm −1 region is done. • 12,146 experimental methane line positions and intensities are retrieved. • 6376 lower energy levels for methane lines are determined

  3. Evaluating the energy and CO2 emissions impacts of shifts in residential water heating in the United States

    International Nuclear Information System (INIS)

    Sanders, Kelly T.; Webber, Michael E.

    2015-01-01

    Water heating represented nearly 13% of 2010 residential energy consumption making it an important target for energy conservation efforts. The objective of this work is to identify spatially-resolved strategies for energy conservation, since little analysis has been done to identify how regional characteristics affect the energy consumed for water heating. We present a first-order thermodynamic analysis, utilizing ab initio calculations and regression methods, to quantify primary energy consumption and CO 2 emissions with regional specificity by considering by considering local electricity mixes, heat rates, solar radiation profiles, heating degrees days, and water heating unit sales for 27 regions of the US. Results suggest that shifting from electric towards natural gas or solar water heating offered primary energy and CO 2 emission reductions in most US regions, but these reductions varied considerably according to regional electricity mix and solar resources. We find that regions that would benefit most from technology transitions, are often least likely to switch due to limited economic incentives. Our results suggest that federal energy factor metrics, which ignore upstream losses in power generation, are insufficient in informing consumers about the energy performance of residential end use appliances. - Highlights: • US energy factor ratings for water heaters ignore upstream losses. • Switching from electric storage water heating reduces CO 2 emissions in most US regions. • Regions with greatest potential for CO 2 avoidance are least likely to shift technologies. • Benefits vary significantly according to climate and regional electricity fuel mix

  4. Validation of Spectral Unmixing Results from Informed Non-Negative Matrix Factorization (INMF) of Hyperspectral Imagery

    Science.gov (United States)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2017-12-01

    Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. We describe the development of an Informed Non-Negative Matrix Factorization (INMF) spectral unmixing method to exploit this spectral information and separate atmospheric and surface signals based on their physical sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO), with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric and surface conditions. These include atmospheres with varying aerosol optical thicknesses and cloud cover. HICO images also provide a range of surface conditions including deep ocean regions, with only minor contributions from the ocean surfaces; and more complex shallow coastal regions with contributions from the seafloor or suspended sediments. We provide extensive comparison of INMF decomposition results against independent measurements of physical properties. These include comparison against traditional model-based retrievals of water-leaving, aerosol, and molecular scattering radiances and other satellite products, such as aerosol optical thickness from

  5. Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina

    2018-02-16

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.

  6. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina

    2018-01-01

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances. PMID:29462907

  7. Application of Rader transforms to the analysis of nuclear spectral data

    International Nuclear Information System (INIS)

    Kekre, H.B.; Madan, V.K.; Bairi, B.R.

    1988-01-01

    This paper describes a Rader transform method using a special arithmetic for the processing of nuclear spectral data. Rader transforms offer impressive computational savings vis-a-vis Fourier transform methods. Rader transforms require only integer additions and word shifts but no multiplications while Fourier transforms require complex arithmetic operations. Moreover, use of Rader transforms gives exact computations without any roundoff errors and does not require storage of basis functions. They are 'the best transforms' for computer processing of nuclear spectral data. Rader transforms using a Fermat prime 65 537 have been applied to deconvolve observed spectral data using a special filter function. A uniform improvement in resolution of 45% has been observed both in single and double spectrallines. A FORTRAN program GAMRAD is written to deconvolve spectral data using the special filter function. (orig.)

  8. Validation of a spectral correction procedure for sun and sky reflections in above-water reflectance measurements.

    Science.gov (United States)

    Groetsch, Philipp M M; Gege, Peter; Simis, Stefan G H; Eleveld, Marieke A; Peters, Steef W M

    2017-08-07

    A three-component reflectance model (3C) is applied to above-water radiometric measurements to derive remote-sensing reflectance Rrs (λ). 3C provides a spectrally resolved offset Δ(λ) to correct for residual sun and sky radiance (Rayleigh- and aerosol-scattered) reflections on the water surface that were not represented by sky radiance measurements. 3C is validated with a data set of matching above- and below-water radiometric measurements collected in the Baltic Sea, and compared against a scalar offset correction Δ. Correction with Δ(λ) instead of Δ consistently reduced the (mean normalized root-mean-square) deviation between Rrs (λ) and reference reflectances to comparable levels for clear (Δ: 14.3 ± 2.5 %, Δ(λ): 8.2 ± 1.7 %), partly clouded (Δ: 15.4 ± 2.1 %, Δ(λ): 6.5 ± 1.4 %), and completely overcast (Δ: 10.8 ± 1.7 %, Δ(λ): 6.3 ± 1.8 %) sky conditions. The improvement was most pronounced under inhomogeneous sky conditions when measurements of sky radiance tend to be less representative of surface-reflected radiance. Accounting for both sun glint and sky reflections also relaxes constraints on measurement geometry, which was demonstrated based on a semi-continuous daytime data set recorded in a eutrophic freshwater lake in the Netherlands. Rrs (λ) that were derived throughout the day varied spectrally by less than 2 % relative standard deviation. Implications on measurement protocols are discussed. An open source software library for processing reflectance measurements was developed and is made publicly available.

  9. Effect of input spectrum on the spectral switch characteristics in a white-light Michelson interferometer.

    Science.gov (United States)

    Brundavanam, Maruthi M; Viswanathan, Nirmal K; Rao, D Narayana

    2009-12-01

    We report here a detailed experimental study to demonstrate the effect of source spectral characteristics such as spectral bandwidth (Deltalambda), peak wavelength (lambda(0)), and shape of the spectrum on the spectral shifts and spectral switches measured due to temporal correlation in a white-light Michelson interferometer operated in the spectral domain. Behavior of the spectral switch characteristics such as the switch position, switch amplitude, and switch symmetry are discussed in detail as a function of optical path difference between the interfering beams. The experimental results are compared with numerical calculations carried out using interference law in the spectral domain with modified source spectral characteristics. On the basis of our results we feel that our study is of critical importance in the selection of source spectral characteristics to further improve the longitudinal resolution or the measurement sensitivity in spectral-domain optical coherence tomography and microscopy.

  10. Photophysical behavior in spread monolayers. Dansyl fluorescence as a probe for polarity at the air-water interface. [N-(5-(dimethylamino)naphthalene-1-sulfonyl)dihexadecylamine

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, F.; Thistlethwaite, P.; Urquhart, R.; Patterson, L.K.

    1987-09-24

    The emission spectrum of N-(5-(dimethylamino)naphthalene-1-sulfonyl)dihexadecylamine (dansyldihexadecylamine) in monolayers at the air-water interface has been studied. In some cases sudden shifts in the dansyl emission can be correlated with particular features of the surface pressure-area isotherms. These spectral shifts can be explained in terms of a change in the conformation of the head group on the surface and with aggregation of the dansyldihexadecylamine. In other cases the dansyl emission shows a blue shift with increasing compression that can be associated with reduced head-group hydration.

  11. Laser ablation molecular isotopic spectrometry of water for {sub 1}D{sup 2}/{sub 1}H{sup 1} ratio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Arnab [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mao, Xianglei; Chan, George C.-Y. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Russo, Richard E., E-mail: rerusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2013-10-01

    Laser Ablation Molecular Isotopic Spectrometry (LAMIS) has been investigated for optical isotopic analysis of the deuterium to protium ratio in enriched water samples in ambient air at atmospheric pressure. Multivariate PLSR (Partial Least Squares Regression) based calibrations were carried out and validated using multiple statistical parameters. Comparisons of results are reported using two spectrometers having two orders of magnitude difference in spectral resolution. The accuracy and precision of isotopic analysis depends on the spectral resolution and the inherent isotope shift of the elements. The requirements for spectral resolution of the measurement system can be significantly relaxed when the isotopic abundance ratio is determined using chemometric processing of the spectra. Large isotopic shifts in the individual rotational branches of OH/OD molecular emission spectra were measured. Optimized temporal conditions for LAMIS measurements were established. Several sub-regions of spectra were used for PLSR calibration and the results demonstrate that both the emission intensity and degree of spectral differentiation affect the quality of the PLSR calibration. LAMIS results also were compared with traditional LIBS results obtained using PLSR and a spectral deconvolution method, demonstrating the advantages of LAMIS over LIBS with respect to isotopic composition determination. - Highlights: • D/H isotopic ratio in water over a large dynamic range was measured by LAMIS. • PLSR based multivariate calibration was used for construction of calibrations. • Region of interest significantly affects the analytical results of isotopic ratio. • LAMIS has improved results over LIBS irrespective of the spectrometer resolution. • The superiority is more prominent in the case using low resolution spectrometer.

  12. Sources of neutronics data involving thorium of 233U and light water moderation

    International Nuclear Information System (INIS)

    Davenport, L.C.

    1978-11-01

    A literature search has been conducted to locate sources of neutronics data for light water moderated systems which contain thorium and/or uranium-233. It is concluded that insufficient data is currently available to validate neutronics design methods for licensing the 233 UO 2 -ThO 2 fuel cycle in light water reactors. A summary of the neutronics data sources found is reported in this document. These sources include critical and exponential experiments with lattices of fuel rods containing 233 U + Th or 235 U + Th. A few experiments using homogeneous aqueous solutions of 233 UO 2 (NO 3 ) 2 or 233 UO 2 F 2 are also included. The only critical lattice data using both 233 U and Th came from the LWBR program. All these experiments were zoned radially and in most cases axially also. Geometrically clean lattice critical data were measured for the CETR and TUPE programs. Both series used 235 UO 2 -ThO 2 pellets. A series of 21 exponential experiments using 3% 233 UO 2 - 97% ThO 2 fuel vibratory compacted to 92% of theoretical density in Zircaloy-2 tubing was performed at BNL using both unpoisoned and boric acid poisoned H 2 O moderator. For completeness, homogeneous systems are listed in which basic neutronics data have been measured. However, it is expected that most data concerning homogeneous systems will be applied to criticality safety problems rather than neutronics methods validation

  13. Choice Shift in Opinion Network Dynamics

    Science.gov (United States)

    Gabbay, Michael

    Choice shift is a phenomenon associated with small group dynamics whereby group discussion causes group members to shift their opinions in a more extreme direction so that the mean post-discussion opinion exceeds the mean pre-discussion opinion. Also known as group polarization, choice shift is a robust experimental phenomenon and has been well-studied within social psychology. In opinion network models, shifts toward extremism are typically produced by the presence of stubborn agents at the extremes of the opinion axis, whose opinions are much more resistant to change than moderate agents. However, we present a model in which choice shift can arise without the assumption of stubborn agents; the model evolves member opinions and uncertainties using coupled nonlinear differential equations. In addition, we briefly describe the results of a recent experiment conducted involving online group discussion concerning the outcome of National Football League games are described. The model predictions concerning the effects of network structure, disagreement level, and team choice (favorite or underdog) are in accord with the experimental results. This research was funded by the Office of Naval Research and the Defense Threat Reduction Agency.

  14. Changes in deviation of absorbed dose to water among users by chamber calibration shift.

    Science.gov (United States)

    Katayose, Tetsurou; Saitoh, Hidetoshi; Igari, Mitsunobu; Chang, Weishan; Hashimoto, Shimpei; Morioka, Mie

    2017-07-01

    The JSMP01 dosimetry protocol had adopted the provisional 60 Co calibration coefficient [Formula: see text], namely, the product of exposure calibration coefficient N C and conversion coefficient k D,X . After that, the absorbed dose to water D w  standard was established, and the JSMP12 protocol adopted the [Formula: see text] calibration. In this study, the influence of the calibration shift on the measurement of D w among users was analyzed. The intercomparison of the D w using an ionization chamber was annually performed by visiting related hospitals. Intercomparison results before and after the calibration shift were analyzed, the deviation of D w among users was re-evaluated, and the cause of deviation was estimated. As a result, the stability of LINAC, calibration of the thermometer and barometer, and collection method of ion recombination were confirmed. The statistical significance of standard deviation of D w was not observed, but that of difference of D w among users was observed between N C and [Formula: see text] calibration. Uncertainty due to chamber-to-chamber variation was reduced by the calibration shift, consequently reducing the uncertainty among users regarding D w . The result also pointed out uncertainty might be reduced by accurate and detailed instructions on the setup of an ionization chamber.

  15. Comparison of Background Parenchymal Enhancement at Contrast-enhanced Spectral Mammography and Breast MR Imaging.

    Science.gov (United States)

    Sogani, Julie; Morris, Elizabeth A; Kaplan, Jennifer B; D'Alessio, Donna; Goldman, Debra; Moskowitz, Chaya S; Jochelson, Maxine S

    2017-01-01

    Purpose To assess the extent of background parenchymal enhancement (BPE) at contrast material-enhanced (CE) spectral mammography and breast magnetic resonance (MR) imaging, to evaluate interreader agreement in BPE assessment, and to examine the relationships between clinical factors and BPE. Materials and Methods This was a retrospective, institutional review board-approved, HIPAA-compliant study. Two hundred seventy-eight women from 25 to 76 years of age with increased breast cancer risk who underwent CE spectral mammography and MR imaging for screening or staging from 2010 through 2014 were included. Three readers independently rated BPE on CE spectral mammographic and MR images with the ordinal scale: minimal, mild, moderate, or marked. To assess pairwise agreement between BPE levels on CE spectral mammographic and MR images and among readers, weighted κ coefficients with quadratic weights were calculated. For overall agreement, mean κ values and bootstrapped 95% confidence intervals were calculated. The univariate and multivariate associations between BPE and clinical factors were examined by using generalized estimating equations separately for CE spectral mammography and MR imaging. Results Most women had minimal or mild BPE at both CE spectral mammography (68%-76%) and MR imaging (69%-76%). Between CE spectral mammography and MR imaging, the intrareader agreement ranged from moderate to substantial (κ = 0.55-0.67). Overall agreement on BPE levels between CE spectral mammography and MR imaging and among readers was substantial (κ = 0.66; 95% confidence interval: 0.61, 0.70). With both modalities, BPE demonstrated significant association with menopausal status, prior breast radiation therapy, hormonal treatment, breast density on CE spectral mammographic images, and amount of fibroglandular tissue on MR images (P spectral mammographic and MR images. © RSNA, 2016.

  16. Energetics of semi-catalyzed-deuterium, light-water-moderated, fusion-fission toroidal reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Towner, H.H.; Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.

    1978-07-01

    The semi-catalyzed-deuterium Light-Water Hybrid Reactor (LWHR) comprises a lithium-free light-water-moderated blanket with U 3 Si fuel driven by a deuterium-based fusion-neutron source, with complete burn-up of the tritium but almost no burn-up of the helium-3 reaction product. A one-dimensional model for a neutral-beam-driven tokamak plasma is used to determine the operating modes under which the fusion energy multiplication Q/sub p/ can be equal to or greater than 0.5. Thermonuclear, beam-target, and energetic-ion reactions are taken into account. The most feasible operating conditions for Q/sub p/ approximately 0.5 are tau/sub E/ = 2 to 4 x 10 14 cm -3 s, = 10 to 20 keV, and E/sub beam/ = 500 to 1000 keV, with approximately 40% of the fusion energy produced by beam-target reactions. Illustrative parameters of LWHRs are compared with those of an ignited D-T reactor

  17. Measuring Velocity and Acceleration Using Doppler Shift of a ...

    Indian Academy of Sciences (India)

    to be used to measure its velocity and acceleration. We also apply this method, as an example here, to spectral lines of the blue-shifted jet in micro-quasar SS433 and discuss the intricacies of these measurements. Key words. Doppler effect—measuring velocity and acceleration of the source— jet in SS433. 1. Introduction.

  18. Effects of Napping During Shift Work on Sleepiness and Performance in Emergency Medical Services Personnel and Similar Shift Workers: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Martin-Gill, Christian; Barger, Laura K; Moore, Charity G; Higgins, J Stephen; Teasley, Ellen M; Weiss, Patricia M; Condle, Joseph P; Flickinger, Katharyn L; Coppler, Patrick J; Sequeira, Denisse J; Divecha, Ayushi A; Matthews, Margaret E; Lang, Eddy S; Patterson, P Daniel

    2018-02-15

    Scheduled napping during work shifts may be an effective way to mitigate fatigue-related risk. This study aimed to critically review and synthesize existing literature on the impact of scheduled naps on fatigue-related outcomes for EMS personnel and similar shift worker groups. A systematic literature review was performed of the impact of a scheduled nap during shift work on EMS personnel or similar shift workers. The primary (critical) outcome of interest was EMS personnel safety. Secondary (important) outcomes were patient safety; personnel performance; acute states of fatigue, alertness, and sleepiness; indicators of sleep duration and/or quality; employee retention/turnover; indicators of long-term health; and cost to the system. Meta-analyses were performed to evaluate the impact of napping on a measure of personnel performance (the psychomotor vigilance test [PVT]) and measures of acute fatigue. Of 4,660 unique records identified, 13 experimental studies were determined relevant and summarized. The effect of napping on reaction time measured at the end of shift was small and non-significant (SMD 0.12, 95% CI -0.13 to 0.36; p = 0.34). Napping during work did not change reaction time from the beginning to the end of the shift (SMD -0.01, 95% CI -25.0 to 0.24; p = 0.96). Naps had a moderate, significant effect on sleepiness measured at the end of shift (SMD 0.40, 95% CI 0.09 to 0.72; p = 0.01). The difference in sleepiness from the start to the end of shift was moderate and statistically significant (SMD 0.41, 95% CI 0.09 to 0.72; p = 0.01). Reviewed literature indicated that scheduled naps at work improved performance and decreased fatigue in shift workers. Further research is required to identify the optimal timing and duration of scheduled naps to maximize the beneficial outcomes.

  19. Study on neutronics performance of flower shape advanced supercritical water cooled fast reactor with different solid moderators

    International Nuclear Information System (INIS)

    Yu Tao; Li Zhifeng; Xie Jinsen; Peng Honghua

    2015-01-01

    The supercritical water cooled fast reactors worked at such harsh condition with high temperature and high pressure, huge hydrogen balance pressure and thermal shock can result in a great loss of hydrogen. The released hydrogen would be out of control under accident situations. K_e_f_f, conversion ratio, moderator temperature effect, Doppler effect and void effect of different material such as ZrH_1_._7, Bp, BeO, C and SiC are discussed. BeO and SiC hold better integrated performance among these materials. Besides, moderators have less effect on the Doppler effect of fuel. (authors)

  20. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States

    Science.gov (United States)

    Nelson, James R.; Guarda, Sonia

    1995-05-01

    Visible absorption spectra of particulate and dissolved materials were characterized on the continental shelf off the southeastern United States (the South Atlantic Bight), emphasizing cross-shelf and seasonal variability. A coastal front separates turbid coastal waters from clearer midshelf waters. Spatial and seasonal patterns were evident in absorption coefficients for phytoplankton, detritus, and colored dissolved organic matter (CDOM); spectral shape parameters for CDOM and detritus; and phytoplankton chlorophyll-specific absorption. The magnitude of CDOM absorption reflected seasonal differences in freshwater discharge and the salinity of the midshelf waters. In the spring of 1993 (high discharge), CDOM absorption at 443 nm was >10 times that of total particulate absorption between 12 and 50 km offshore (0.28-0.69 m-1 versus 0.027-0.062 m-1) and up to 10 times the CDOM absorption measured in the previous summer (low discharge). Phytoplankton chlorophyll-specific absorption in the blue increased with distance from shore (from shift in phytoplankton species composition (from predominantly diatoms inshore to a cyanobacteria-dominated assemblage midshelf in summer), pigment packaging, and higher carotenoid:chlorophyll with distance from shore.

  1. Results of two years of water training on jump height in postmenopausal women with moderate hip risk fracture

    Directory of Open Access Journals (Sweden)

    María Carrasco Poyatos

    2010-01-01

    Full Text Available The aim of the present study was to investigate the effect of a water-based calisthenics and resistance program on jump height in postmenopausal women with moderate hip risk fracture. 39 women were divided into three groups: swimming group (GN; n = 17, calisthenics and resistance group (GIR; n = 14, and control group (GC; n = 8. Body composition test included body mass index (IMC and waist to hip ratio (ICC. Jump height was assessed by a countermovement jump (CMJ. GN showed a significant (p<0.05 decrease in ICC (5.81%. GIR showed a significant decrease in IMC (3.65% and a significant increase in CMJ (15.5%. Two years of water-based calisthenics and resistance training can offer significant benefits in jump height in postmenopausal women with moderate hip risk fracture. Both exercise programs can also improve body composition.

  2. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and

  3. Noninvasive diagnosis of oral cancer by Stokes shift spectroscopy

    Science.gov (United States)

    Ebenezar, Jeyasingh; Ganesan, Singaravelu; Aruna, Prakasrao; Muralinaidu, Radhakrishnan

    2014-03-01

    The objective of this study is to evaluate the diagnostic potential of stokes shift (SS) spectroscopy (S3) for normal, precancer and cancerous oral lesions in vivo. The SS spectra were recorded in the 250 - 650 nm spectral range by simultaneously scanning both the excitation and emission wavelengths while keeping a fixed wavelength interval Δλ=20 nm between them. Characteristic, highly resolved peaks and significant spectral differences between normal and different pathological oral lesions observed around 300, 355, 395, and 420 nm which are attributed to tryptophan, collagen, and NADH respectively. Using S3 technique one can obtain the key fluorophores in a single scan and hence they can be targeted as a tumor markers in this study. In order to quantify the altered spectral differences between normal and different pathological oral lesions are verified by different ratio parameters.

  4. Luminosity and Redshift dependence of quasar spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Daniel E. Vanden Berk et al.

    2004-03-09

    Using a large sample of quasar spectra from the SDSS, we examine the composite spectral trends of quasars as functions of both redshift and luminosity, independently of one another. Aside from the well known Baldwin effect (BE)--the decrease of line equivalent width with luminosity--the average spectral properties are remarkably similar. Host galaxy contamination and the BE are the primary causes for apparent changes in the average spectral slope of the quasars. The BE is detected for most emission lines, including the Balmer lines, but with several exceptions including NV1240A. Emission line shifts of several lines are associated with the BE. The BE is mainly a function of luminosity, but also partly a function of redshift in that line equivalent widths become stronger with redshift. Some of the complex iron features change with redshift, particularly near the small blue bump region.

  5. X-ray spectral decomposition imaging system

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-27

    Projection measurements are made of the transmitted X-ray beam in low and high energy regions. These are combined in a non-linear processor to produce atomic-number-dependent and density-dependent projection information. This information is used to provide cross-sectional images which are free of spectral-shift artifacts and completely define the specific material properties. The invention described herein was made in the course of work under a grant from the Department of Health, Education, and Welfare.

  6. Copper-chromium compounds formed in the preparation of a low-temperature water gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sharkina, V I; Salomatin, G I; Boevskaya, E A

    1978-12-01

    IR and X-ray phase analyses of commercial water gas shift catalyst samples prepared by mixing solid chromic anhydride, basic copper carbonate (malachite), aluminum hydroxide, and water at 70/sup 0/-100/sup 0/C and 0.35:1 to 1.2:1 ratio of water to solid components (R) showed the formation of a basic copper chromate (BCC) CuCrO/sub 4/-2CuO-2H/sub 2/O at 80/sup 0/C (any R) and at 100/sup 0/C and R Vertical Bar3: 1.2:1, but at 100/sup 0/C and lower R (especially at R 0.7:1), a different, unidentified phase was formed. The samples containing these two phases had different colors; the high-temperature, low-water phase showed lower thermal stability but higher catalytic activity than the BCC. The BCC catalyst samples contained less unreacted malachite and their IR spectra contained a 3100-3200/cm band characteristic of hydroxyls associated by hydrogen bonds, and more molecular water, suggesting the formation of a hydroxo-polymeric structured system.

  7. Study of the light emitted in the moderation of a heavy-water pile

    International Nuclear Information System (INIS)

    Breton, D.

    1958-06-01

    During the running of a reactor which uses water as a neutron moderator, a bluish light is seen to appear inside the liquid. A detailed study of this radiation, undertaken on the Fontenay-aux-Roses pile, has shown that the spectrum is identical with that which characterises the light produced by the Cerenkov effect. The light intensity as a function of the pile power grows exponentially as a function of time when the pile diverges, with a lifetime equal to that of the rise in power. An examination of the various particles present in the pile has led to the conclusion that only electrons with an energy greater than 260 keV con produce the Cerenkov light. The light source thus produced is about 2.10 6 photons/cm 2 of water, when the pile power equals 1 watt. (author) [fr

  8. Examining Exposure Assessment in Shift Work Research: A Study on Depression Among Nurses.

    Science.gov (United States)

    Hall, Amy L; Franche, Renée-Louise; Koehoorn, Mieke

    2018-02-13

    Coarse exposure assessment and assignment is a common issue facing epidemiological studies of shift work. Such measures ignore a number of exposure characteristics that may impact on health, increasing the likelihood of biased effect estimates and masked exposure-response relationships. To demonstrate the impacts of exposure assessment precision in shift work research, this study investigated relationships between work schedule and depression in a large survey of Canadian nurses. The Canadian 2005 National Survey of the Work and Health of Nurses provided the analytic sample (n = 11450). Relationships between work schedule and depression were assessed using logistic regression models with high, moderate, and low-precision exposure groupings. The high-precision grouping described shift timing and rotation frequency, the moderate-precision grouping described shift timing, and the low-precision grouping described the presence/absence of shift work. Final model estimates were adjusted for the potential confounding effects of demographic and work variables, and bootstrap weights were used to generate sampling variances that accounted for the survey sample design. The high-precision exposure grouping model showed the strongest relationships between work schedule and depression, with increased odds ratios [ORs] for rapidly rotating (OR = 1.51, 95% confidence interval [CI] = 0.91-2.51) and undefined rotating (OR = 1.67, 95% CI = 0.92-3.02) shift workers, and a decreased OR for depression in slow rotating (OR = 0.79, 95% CI = 0.57-1.08) shift workers. For the low- and moderate-precision exposure grouping models, weak relationships were observed for all work schedule categories (OR range 0.95 to 0.99). Findings from this study support the need to consider and collect the data required for precise and conceptually driven exposure assessment and assignment in future studies of shift work and health. Further research into the effects of shift rotation frequency on depression is

  9. Measurement of Cerenkov Radiation Induced by the Gamma-Rays of Co-60 Therapy Units Using Wavelength Shifting Fiber

    Directory of Open Access Journals (Sweden)

    Kyoung Won Jang

    2014-04-01

    Full Text Available In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%.

  10. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    Science.gov (United States)

    Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  11. Photoreceptor spectral sensitivity in the bumblebee, Bombus impatiens (Hymenoptera: Apidae.

    Directory of Open Access Journals (Sweden)

    Peter Skorupski

    Full Text Available The bumblebee Bombus impatiens is increasingly used as a model in comparative studies of colour vision, or in behavioural studies relying on perceptual discrimination of colour. However, full spectral sensitivity data on the photoreceptor inputs underlying colour vision are not available for B. impatiens. Since most known bee species are trichromatic, with photoreceptor spectral sensitivity peaks in the UV, blue and green regions of the spectrum, data from a related species, where spectral sensitivity measurements have been made, are often applied to B impatiens. Nevertheless, species differences in spectral tuning of equivalent photoreceptor classes may result in peaks that differ by several nm, which may have small but significant effects on colour discrimination ability. We therefore used intracellular recording to measure photoreceptor spectral sensitivity in B. impatiens. Spectral peaks were estimated at 347, 424 and 539 nm for UV, blue and green receptors, respectively, suggesting that this species is a UV-blue-green trichromat. Photoreceptor spectral sensitivity peaks are similar to previous measurements from Bombus terrestris, although there is a significant difference in the peak sensitivity of the blue receptor, which is shifted in the short wave direction by 12-13 nm in B. impatiens compared to B. terrestris.

  12. The spectral induced polarisation method and its application to hydrogeological problems

    International Nuclear Information System (INIS)

    Hoerdt, A.

    2007-01-01

    The spectral induced polarisation (SIP) method is an extension of the DC resistivity technique, where an alternating current is injected and the phase shift between voltage and current is measured in addition to the amplitude. In unconsolidated sediments, the phase shift includes complementary information on the structure of the pore space, and thus it should be possible to estimate hydraulic parameters from SIP measurements. Here, I describe some recent developments and give one example where hydraulic conductivity was estimated at the field scale

  13. Transforming Water: Social Influence Moderates Psychological, Physiological, and Functional Response to a Placebo Product.

    Science.gov (United States)

    Crum, Alia J; Phillips, Damon J; Goyer, J Parker; Akinola, Modupe; Higgins, E Tory

    2016-01-01

    This paper investigates how social influence can alter physiological, psychological, and functional responses to a placebo product and how such responses influence the ultimate endorsement of the product. Participants consumed a product, "AquaCharge Energy Water," falsely-labeled as containing 200 mg of caffeine but which was actually plain spring water, in one of three conditions: a no social influence condition, a disconfirming social influence condition, and a confirming social influence condition. Results demonstrated that the effect of the product labeling on physiological alertness (systolic blood pressure), psychological alertness (self-reported alertness), functional alertness (cognitive interference), and product endorsement was moderated by social influence: participants experienced more subjective, physiological and functional alertness and stronger product endorsement when they consumed the product in the confirming social influence condition than when they consumed the product in the disconfirming social influence condition. These results suggest that social influence can alter subjective, physiological, and functional responses to a faux product, in this case transforming the effects of plain water.

  14. Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.

    Science.gov (United States)

    Kerfahi, Dorsaf; Hall-Spencer, Jason M; Tripathi, Binu M; Milazzo, Marco; Lee, Junghoon; Adams, Jonathan M

    2014-05-01

    The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.

  15. Linking marine resources to ecotonal shifts of water uptake by terrestrial dune vegetation.

    Science.gov (United States)

    Greaver, Tara L; Sternberg, Leonel L da S

    2006-09-01

    As evidence mounts that sea levels are rising, it becomes increasingly important to understand the role of ocean water within terrestrial ecosystem dynamics. Coastal sand dunes are ecosystems that occur on the interface of land and sea. They are classic ecotones characterized by zonal distribution of vegetation in response to strong gradients of environmental factors from the ocean to the inland. Despite the proximity of the dune ecosystem to the ocean, it is generally assumed that all vegetation utilizes only freshwater and that water sources do not change across the ecotone. Evidence of ocean water uptake by vegetation would redefine the traditional interpretation of plant-water relations in the dune ecosystem and offer new ideas for assessing maritime influences on function and spatial distribution of plants across the dune. The purpose of this study was to identify sources of water (ocean, ground, and rain) taken up by vegetation using isotopic analysis of stem water and to evaluate water uptake patterns at the community level based on the distribution and assemblage of species. Three coastal dune systems located in southern Florida, USA, and the Bahamian bank/platform system were investigated. Plant distributions across the dune were zonal for 61-94% of the 18 most abundant species at each site. Species with their highest frequency on the fore dune (nearest the ocean) indicate ocean water uptake as evidenced by delta 18O values of stem water. In contrast, species most frequent in the back dune show no evidence of ocean water uptake. Analysis of species not grouped by frequency, but instead sampled along a transect from the ocean toward the inland, indicates that individuals from the vegetation assemblage closest to the ocean had a mixed water-harvesting strategy characterized by plants that may utilize ocean, ground-, and/or rainwater. In contrast, the inland vegetation relies mostly on rainwater. Our results show evidence supporting ocean water use by dune

  16. Spectral conversion for thin film solar cells and luminescent solar concentrators

    NARCIS (Netherlands)

    Sark, van W.G.J.H.M.; Wild, de J.; Krumer, Z.; Mello Donegá, de C.; Schropp, R.E.I.; Nozik, A.J.; Beard, M.C.; Conibeer, G.

    2014-01-01

    Full spectrum absorption combined with effective generation and collection of charge carriers is a prerequisite for attaining high efficiency solar cells. Two examples of spectral conversion are treated in this chapter, i.e., up-conversion and down-shifting. Up-conversion is applied to thin film

  17. Narrow CIV lambda 1549A Absorption Lines in Moderate-Redshift Quasars

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2002-01-01

    A large, high-quality spectral data base of well-selected, moderate-redshift radio-loud and radio-quiet quasars is used to characterize the incidence of narrow associated CIV lambda 1549 absorption, and how this may depend on some quasar properties, including radio-type. Preliminary results...

  18. Reduction and Analysis of Low Temperature Shift Heterogeneous Catalyst for Water Gas Reaction in Ammonia Production

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2013-09-01

    Full Text Available In order to obtain additional quantities of hydrogen after the reforming reactions of natural gas and protect the ammonia synthesis catalyst, it is crucial to achieve and maintain maximum possible activity, selectivity and stability of the low temperature shift catalyst for conversion of water gas reaction during its lifetime. Whereas the heterogeneous catalyst comes in oxidized form, it is of the utmost importance to conduct the reduction procedure properly. The proper reduction procedure and continuous analysis of its performance would ensure the required activity, selectivity and stability throughout the catalyst’s service time. For the proper reduction procedure ofthe low temperature shift catalyst, in addition to process equipment, also necessary is a reliable and realistic system for temperature measurements, which will be effective for monitoring the exothermal temperature curves through all catalyst bed layers. For efficiency evaluation of low shift temperature catalyst reduction and its optimization, it is necessary to determine at regular time intervals the temperature approach to equilibrium and temperature profiles of individual layers by means of "S" and "die off" temperature exothermal curves. Based on the obtained data, the optimum inlet temperature could be determined, in order to maximally extend the service life of the heterogeneous catalyst as much as possible, and achieve the optimum equilibrium for conversion of the water gas. This paper presents the methodology for in situ reduction of the low temperature shift heterogeneous catalyst and the developed system for monitoring its individual layers to achieve the minimum possible content of carbon monoxide at the exit of the reactor. The developed system for temperature monitoring through heterogeneous catalyst layers provides the proper procedure for reduction and adjustment of optimum process working conditions for the catalyst by the continuous increase of reactor inlet

  19. Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics

    Science.gov (United States)

    Fahrenfeld, N.L.; Reyes, Hannah Delos; Eramo, Alessia; Akob, Denise M.; Mumford, Adam; Cozzarelli, Isabelle M.

    2017-01-01

    Unconventional oil and gas (UOG) production produces large quantities of wastewater with complex geochemistry and largely uncharacterized impacts on surface waters. In this study, we assessed shifts in microbial community structure and function in sediments and waters upstream and downstream from a UOG wastewater disposal facility. To do this, quantitative PCR for 16S rRNA and antibiotic resistance genes along with metagenomic sequencing were performed. Elevated conductivity and markers of UOG wastewater characterized sites sampled downstream from the disposal facility compared to background sites. Shifts in overall high level functions and microbial community structure were observed between background sites and downstream sediments. Increases in Deltaproteobacteria and Methanomicrobia and decreases in Thaumarchaeota were observed at downstream sites. Genes related to dormancy and sporulation and methanogenic respiration were 18–86 times higher at downstream, impacted sites. The potential for these sediments to serve as reservoirs of antimicrobial resistance was investigated given frequent reports of the use of biocides to control the growth of nuisance bacteria in UOG operations. A shift in resistance profiles downstream of the UOG facility was observed including increases in acrB and mexB genes encoding for multidrug efflux pumps, but not overall abundance of resistance genes. The observed shifts in microbial community structure and potential function indicate changes in respiration, nutrient cycling, and markers of stress in a stream impacted by UOG waste disposal operations.

  20. Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean

    Science.gov (United States)

    Tang, Miaomiao; Zhao, Daomu

    2014-02-01

    Based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization of light, the spectral changes of stochastic anisotropic electromagnetic beams propagating through oceanic turbulence are revealed. As an example, some numerical calculations are illustrated for an anisotropic electromagnetic Gaussian Schell-model beam propagating in a homogeneous and isotropic turbulent ocean. It is shown that, under the influence of oceanic turbulence, the on-axis spectrum is always blue-shifted along with the propagation distance, however, for the off-axis positions, red-blue spectral switch can be found.

  1. Resilience of the Nexus of Competitive Water Consumption between Human Society and Environment Development: Regime Shifts and Early Warning Signals

    Science.gov (United States)

    Li, Z.; Liu, P.; Feng, M.; Zhang, J.

    2017-12-01

    Based on the modeling of the water supply, power generation and environment (WPE) nexus by Feng et al. (2016), a refined theoretical model of competitive water consumption between human society and environment has been presented in this study, examining the role of technology advancement and social environmental awareness growth-induced pollution mitigation to the environment as a mechanism for the establishment and maintenance of the coexistence of both higher social water consumption and improved environment condition. By coupling environmental and social dynamics, both of which are represented by water consumption quantity, this study shows the possibility of sustainable situation of the social-environmental system when the benefit of technology offsets the side effect (pollution) of social development to the environment. Additionally, regime shifts could be triggered by gradually increased pollution rate, climate change-induced natural resources reduction and breakdown of the social environmental awareness. Therefore, in order to foresee the pending abrupt regime shifts of the system, early warning signals, including increasing variance and autocorrelation, have been examined when the system is undergoing stochastic disturbance. ADDIN EN.REFLIST Feng, M. et al., 2016. Modeling the nexus across water supply, power generation and environment systems using the system dynamics approach: Hehuang Region, China. J. Hydrol., 543: 344-359.

  2. Outline of design, manufacturing and installation experience of pressure vessel structure for the prototype heavy water moderated boiling light water cooled reactor 'FUGEN'

    International Nuclear Information System (INIS)

    Shibato, Eizo; Oguchi, Isao; Kishi, Toshikazu; Kitagawa, Yuji

    1977-01-01

    After component installation completed in June 1977 and various functional tests to be conducted later, the prototype heavy water moderated, boiling light water cooled reactor ''FUGEN'' is scheduled to reach first criticality in March 1978. Since the pressure vessel of ''FUGEN'' is completely different from that of a light water reactor in structure and materials, through research and development work was carried out prior to fabrication and construction. Based on these studies, installation of the actual pressure vessel was completed. Functional tests are now under way. This article describes examples in which our research and development results are reflected on design, manufacture, and installation of the pressure vessel. Also it introduces noteworthy achievements relevant to production techniques in manufacture and installation. (auth.)

  3. Reference moderator calculated performance for the LANSCE upgrade project

    International Nuclear Information System (INIS)

    Ferguson, P.D.; Russell, G.J.; Pitcher, E.J.

    1995-01-01

    The authors have calculated the performance of five moderators of interest to the LANSCE upgrade project. Coupled and decoupled light water and liquid hydrogen moderators in flux-trap geometry surrounded by a neutronically infinite heavy-water cooled beryllium reflector have been studied. Time and energy spectra, as well as semi-empirical fits to the data, are presented. The data has been made available to aid the instrument design and moderator selection process

  4. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems

    Science.gov (United States)

    Linares, C.; Vidal, M.; Canals, M.; Kersting, D. K.; Amblas, D.; Aspillaga, E.; Cebrián, E.; Delgado-Huertas, A.; Díaz, D.; Garrabou, J.; Hereu, B.; Navarro, L.; Teixidó, N.; Ballesteros, E.

    2015-01-01

    Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications. PMID:26511045

  5. Moderate-resolution spectral standards from lambda 5600 to lambda 9000

    Science.gov (United States)

    Allen, Lori E.; Strom, Karen M.

    1995-01-01

    We present a grid of stellar classification spectra of moderate resolution (R approximately 1500) in the range lambda lambda 5600-9000 A, compiled from high signal-to noise spectra of 275 stars, most in the open clusters Praesepe and M67. The grid covers dwarfs from types B8 through M5, giants from G8 through M7, and subgiants from F5 through K0. We catalog atomic and molecular absorption features useful for stellar classification, and demonstrate the use of luminosity-sensitive features to distinguish between late-type dwarf and giant stars. The entire database is made available in digital format on anonymous ftp and through the World Wide Web.

  6. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    Science.gov (United States)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  7. Recombination emissions and spectral blueshift of pump radiation from ultrafast laser induced plasma in a planar water microjet

    Science.gov (United States)

    Anija, M.; Philip, Reji

    2009-09-01

    We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 10 15 W/cm 2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.

  8. Neutronic studies on decoupled hydrogen moderator for a short-pulse spallation source

    International Nuclear Information System (INIS)

    Harada, Masahide; Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya; Ikeda, Yujiro

    2005-01-01

    Neutronic studies of decoupled hydrogen moderators were performed by calculations taking into account para hydrogen content, decoupling energy, moderator dimensions/shapes and reflector material. Low-energy parts of calculated spectral intensities with different para hydrogen contents were analyzed by a modified Maxwell function to characterize neutron spectra. The result shows that a 100% para hydrogen moderator gives the highest pulse peak intensity together with the narrowest pulse width and the shortest decay times. Pulse broadening with a reflector was explained by time distributions of source neutrons entering into the moderator through a decoupler. Material dependence of time distribution was studied. A decoupling energy higher than 1 eV does not bring about a large improvement in pulse widths and decay times, even at a large penalty in the peak intensity. The optimal moderator thickness was also discussed for a rectangular parallelepipe-shaped and a canteen-shaped moderator

  9. Armodafinil for Treatment of Excessive Sleepiness Associated With Shift Work Disorder: A Randomized Controlled Study

    OpenAIRE

    Czeisler, Charles A.; Walsh, James K.; Wesnes, Keith A.; Arora, Sanjay; Roth, Thomas

    2009-01-01

    OBJECTIVE: To assess the effect of armodafinil, 150 mg, on the physiologic propensity for sleep and cognitive performance during usual night shift hours in patients with excessive sleepiness associated with chronic (≥3 months) shift work disorder (SWD) of moderate or greater severity.

  10. Advanced electrolytic cascade process for tritium recovery from irradiated heavy water moderator (Preprint No. PD-15)

    International Nuclear Information System (INIS)

    Ragunathan, P.; Mitra, S.K.; Jain, D.K.; Nayar, M.G.; Ramani, M.P.S.

    1989-04-01

    The paper briefly describes a design study of an electrolytic cascade process plant for enrichment and recovery of tritium from irradiated heavy water moderators from Rajasthan Atomic Power Station Reactors. In direct multistage electrolysis process, tritiated heavy water from the reactor units is fed to the electrolytic cell modules arranged in the form of a cascade where it is enriched and decomposed into O 2 gas stream and D 2 /DT gas stream. The direct electrolysis of tritiated heavy water allows tritium to be concentrated in the aqueous phase. Several stages are used to achieve the necessary enrichment. The cascade plant incorporates the advanced electrolyser technology developed in Bhabha Atomic Research Centre (Bombay) using porous nickel electrodes, capable o f high current density operation at reduced energy consumption for electrolysis. (author). 3 tabs

  11. Detection of Earth-rotation Doppler shift from Suomi National Polar-Orbiting Partnership Cross-Track Infrared Sounder.

    Science.gov (United States)

    Chen, Yong; Han, Yong; Weng, Fuzhong

    2013-09-01

    The Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-Orbiting Partnership Satellite is a Fourier transform spectrometer and provides a total of 1305 channels for sounding the atmosphere. Quantifying the CrIS spectral accuracy, which is directly related to radiometric accuracy, is crucial for improving its data assimilation in numerical weather prediction. In this study, a cross-correlation method is used for detecting the effect of Earth-rotation Doppler shift (ERDS) on CrIS observations. Based on a theoretical calculation, the ERDS can be as large as about 1.3 parts in 10(6) (ppm) near Earth's equator and at the satellite scan edge for a field of regard (FOR) of 1 or 30. The CrIS observations exhibit a relative Doppler shift as large as 2.6 ppm for a FOR pair of 1 and 30 near the equator. The variation of the ERDS with latitude and scan position detected from CrIS observations is similar to that derived theoretically, which indicates that the spectral stability of the CrIS instrument is very high. To accurately calibrate CrIS spectral accuracy, the ERDS effect should be removed. Since the ERDS is easily predictable, the Doppler shift is correctable in the CrIS spectra.

  12. The perceptual enhancement of tones by frequency shifts.

    Science.gov (United States)

    Demany, Laurent; Carcagno, Samuele; Semal, Catherine

    2013-04-01

    In a chord of pure tones with a flat spectral profile, one tone can be perceptually enhanced relative to the other tones by the previous presentation of a slightly different chord. "Intensity enhancement" (IE) is obtained when the component tones of the two chords have the same frequencies, but in the first chord the target of enhancement is attenuated relative to the other tones. "Frequency enhancement" (FE) is obtained when both chords have a flat spectral profile, but the target of enhancement shifts in frequency from the first to the second chord. We report here an experiment in which IE and FE were measured using a task requiring the listener to indicate whether or not the second chord included a tone identical to a subsequent probe tone. The results showed that a global attenuation of the first chord relative to the second chord disrupted IE more than FE. This suggests that the mechanisms of IE and FE are not the same. In accordance with this suggestion, computations of the auditory excitation patterns produced by the chords indicate that the mechanism of IE is not sufficient to explain FE for small frequency shifts. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Impact of shift work on critical care nurses.

    Science.gov (United States)

    Pryce, Cheryl

    2016-01-01

    Shift work is a common practice in the health care field to maintain 24-hour patient care. The purpose of this article is to recognize the negative impact of shift work on critical care nurses, and identify strategies to mitigate these effects. A review of the literature was completed, using the search terms: 'shift work, 'critical care', impact, and health. The literature revealed that shift work has an adverse effect on the health of a nurse. Some of the health implications include stress, sleep deprivation, cardiovascular disease, gastrointestinal symptoms, and mental health illnesses. Furthermore, shift work impacts a nurse's social life and may result in patient harm. Strategies to reduce the negative impact of shift work will be focused on educating critical care nurses and managers. These strategies include frontline staff maintaining a moderate amount of exercise, sustaining a well-balanced diet, using relaxation techniques, reducing the use of cigarettes, working an eight-hour work day, and napping during scheduled breaks. Recommendations for managers include implementing quiet time at the workplace, providing a safe space for staff to nap during breaks, facilitating an eight-hour work day, and encouraging a multidisciplinary team approach when managing workload.

  14. Spectral Wave Characteristics in the Nearshore Waters of Northwestern Bay of Bengal

    Science.gov (United States)

    Anjali Nair, M.; Sanil Kumar, V.; Amrutha, M. M.

    2018-03-01

    The spectral wave characteristics in the nearshore waters of northwestern Bay of Bengal are presented based on the buoy-measured data from February 2013 to December 2015 off Gopalpur at 15-m water depth. The mean seasonal significant wave height and mean wave period indicate that the occurrence of higher wave heights and wave periods is during the southwest monsoon period (June-September). 74% of the sea surface height variance in a year is a result of waves from 138 to 228° and 16% are from 48 to 138°. Strong inter-annual variability is observed in the monthly average wave parameters due to the occurrence of tropical cyclones. Due to the influence of the tropical cyclone Phailin, maximum significant wave height of 6.7 m is observed on 12 October 2013 and that due to tropical cyclone Hudhud whose track is 250 southwest of the study location is 5.84 m on 12 October 2014. Analysis revealed that a single tropical cyclone influenced the annual maximum significant wave height and not the annual average value which is almost same ( 1 m) in 2014 and 2015. The waves in the northwestern Bay of Bengal are influenced by the southwest and northeast monsoons, southern ocean swells and cyclones.

  15. Spectral induced polarization (SIP) response of mine tailings.

    Science.gov (United States)

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Multidimensional space-time kinetics of a heavy water moderated nuclear reactor

    International Nuclear Information System (INIS)

    Winn, W.G.; Baumann, N.P.; Jewell, C.E.

    1980-01-01

    Diffusion theory analysis of a series of multidimensional space-time experiments is appraised in terms of the final experiment of the series. In particular, TRIMHX diffusion calculations were examined for an experiment involving free-fall insertion of a 235 U-bearing rod into a heavy water moderated reactor with a large reflector. The experimental transient flux-tilts were accurately reproduced after cross section adjustments forced agreement between static diffusion calculations and static reactor measurements. The time-dependent features were particularly well modeled, and the bulk of the small discrepancies in space-dependent features should be removable by more refined cross-section adjustments. This experiment concludes a series of space-time experiments that span a wide range of delayed neutron holdback effects. TRIMHX calculations of these experiments demonstrate the accuracy of the modeling employed in the code

  17. A novel and compact spectral imaging system based on two curved prisms

    Science.gov (United States)

    Nie, Yunfeng; Bin, Xiangli; Zhou, Jinsong; Li, Yang

    2013-09-01

    As a novel detection approach which simultaneously acquires two-dimensional visual picture and one-dimensional spectral information, spectral imaging offers promising applications on biomedical imaging, conservation and identification of artworks, surveillance of food safety, and so forth. A novel moderate-resolution spectral imaging system consisting of merely two optical elements is illustrated in this paper. It can realize the function of a relay imaging system as well as a 10nm spectral resolution spectroscopy. Compared to conventional prismatic imaging spectrometers, this design is compact and concise with only two special curved prisms by utilizing two reflective surfaces. In contrast to spectral imagers based on diffractive grating, the usage of compound-prism possesses characteristics of higher energy utilization and wider free spectral range. The seidel aberration theory and dispersive principle of this special prism are analyzed at first. According to the results, the optical system of this design is simulated, and the performance evaluation including spot diagram, MTF and distortion, is presented. In the end, considering the difficulty and particularity of manufacture and alignment, an available method for fabrication and measurement is proposed.

  18. Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2012-06-01

    Full Text Available Two methods of cloud masking tuned to tropical conditions have been developed, based on spectral analysis and Principal Components Analysis (PCA of Moderate Resolution Imaging Spectroradiometer (MODIS data. In the spectral approach, thresholds were applied to four reflective bands (1, 2, 3, and 4, three thermal bands (29, 31 and 32, the band 2/band 1 ratio, and the difference between band 29 and 31 in order to detect clouds. The PCA approach applied a threshold to the first principal component derived from the seven quantities used for spectral analysis. Cloud detections were compared with the standard MODIS cloud mask, and their accuracy was assessed using reference images and geographical information on the study area.

  19. Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates

    Science.gov (United States)

    Williams, D.J.; Bigham, J.M.; Cravotta, C.A.; Traina, S.J.; Anderson, J.E.; Lyon, J.G.

    2002-01-01

    The pH of mine impacted waters was estimated from the spectral reflectance of resident sediments composed mostly of chemical precipitates. Mine drainage sediments were collected from sites in the Anthracite Region of eastern Pennsylvania, representing acid to near neutral pH. Sediments occurring in acidic waters contained primarily schwertmannite and goethite while near neutral waters produced ferrihydrite. The minerals comprising the sediments occurring at each pH mode were spectrally separable. Spectral angle difference mapping was used to correlate sediment color with stream water pH (r2=0.76). Band-center and band-depth analysis of spectral absorption features were also used to discriminate ferrihydrite and goethite and/or schwertmannite by analyzing the 4T1??? 6A1 crystal field transition (900-1000 nm). The presence of these minerals accurately predicted stream water pH (r2=0.87) and provided a qualitative estimate of dissolved SO4 concentrations. Spectral analysis results were used to analyze airborne digital multispectral video (DMSV) imagery for several sites in the region. The high spatial resolution of the DMSV sensor allowed for precise mapping of the mine drainage sediments. The results from this study indicate that airborne and space-borne imaging spectrometers may be used to accurately classify streams impacted by acid vs. neutral-to-alkaline mine drainage after appropriate spectral libraries are developed.

  20. Ambient temperature aqueous synthesis of ultrasmall copper doped ceria nanocrystals for the water gas shift and carbon monoxide oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curran, Christopher D. [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA; Lu, Li [Department of Materials Science and Engineering; Lehigh University; Bethlehem; USA; Kiely, Christopher J. [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA; Department of Materials Science and Engineering; McIntosh, Steven [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA

    2018-01-01

    Ultra-small CuxCe1-xO2-δnanocrystals were prepared through a room temperature, aqueous synthesis method, achieving high copper doping and low water gas shift activation energy.

  1. Summary report of the 7th reduced-moderation water reactor workshop

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Nabeshima, Kunihiko; Uchikawa, Sadao

    2005-08-01

    As a research on the future innovative water reactor, the development of Reduced-Moderation Water Reactors (RMWRs) has been performed in Japan Atomic Energy Research Institute (JAERI). The workshop on RMWRs is aiming at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors, and has been held every year since 1998. The 7th workshop was held on March 5, 2004 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The program of the workshop was composed of 5 lectures and an overall discussion time. The workshop started with the lecture by JAERI on the status and future program of PMWR research and development, followed by the two presentations by JAERI and Japan Nuclear Cycle Development Institute, respectively, on the investigation and evaluation of water cooled reactor in Feasibility Study Program on Commercialized Fast Reactor Systems. The lectures were also made on the Japan's nuclear fuel cycle and scenarios for RMWRs deployment by JAERI, and on the next generation reactor development activity by Hitachi, Ltd. The main subjects of the overall discussion time were Na cooled fast reactor, deployment effects of RMWRs and the future plan of the RMWR research and development. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as of the discussion time. In addition in the Appendices, there are included presentation handouts of each lecture, program of the workshop and the participants list. (author)

  2. Optical decoherence and persistent spectral hole burning in Tm{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States); Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Babbitt, W.R. [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States); Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Cone, R.L. [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States)

    2010-09-15

    We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the {sup 3}H{sub 4} and {sup 3}F{sub 4} excited states of Tm{sup 3+}, persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the {sup 169}Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 {mu}s at zero field to 23 {mu}s in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm{sup 3+} and the {sup 7}Li and {sup 93}Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for {sup 7}Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.

  3. SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-Yang; Reddy, Vishnu; Corre, Lucille Le; Sykes, Mark V.; Prettyman, Thomas H. [Planetary Science Institute, 1700 E. Ft. Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael [Max Planck Institute for Solar System Research, Göttingen (Germany); Izawa, Matthew R. M.; Cloutis, Edward A. [University of Winnipeg, Winnipeg, Manitoba (Canada); Carsenty, Uri; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Schröder, Stefan E. [German Aerospace Center (DLR), Institute of Planetary Research, Berlin (Germany); Castillo-Rogez, Julie C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Schenk, Paul [Lunar and Planetary Institute, Houston, TX 77058 (United States); Williams, David A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Smith, David E. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Zuber, Maria T. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. The active area on Ceres is less than 1 km{sup 2}, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  4. Optimization of moderators and beam extraction at the ESS

    Czech Academy of Sciences Publication Activity Database

    Andersen, K. H.; Bertelsen, M.; Zanini, L.; Klinkby, E. B.; Schonfeldt, T.; Bentley, P. M.; Šaroun, Jan

    2018-01-01

    Roč. 51, č. 4 (2018), s. 264-281 ISSN 1600-5767 R&D Projects: GA MŠk LM2015048 Institutional support: RVO:61389005 Keywords : water moderators * para-hydrogen moderators * low-dimensional moderators * pancake moderators * butterfly moderators * brilliance transfer * neutron instruments Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.495, year: 2016

  5. Long-term scenarios of power reactors and fuel cycle development and the role of reduced moderation water reactors

    International Nuclear Information System (INIS)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji

    2000-01-01

    Reduced moderation spectrum reactor is one of water cooled type reactors in future, which is based on the advanced technology of conventional nuclear power plants. The reduced moderation water reactor (RMWR) has various advantages, such as effective utilization of uranium resources, high conversion ratio, high burn-up, long-term cycle operation, and multiple recycle of plutonium. The RMWR is expected to be a substitute of fast breeder reactor (FBR) of which the development encounters with some technical and financial difficulties, and discontinues in many countries. The role of the RMWR on long-term scenarios of power reactor and fuel cycle development in Japan is investigated from the point of view of uranium resource needed. The consumption of natural uranium needed up to the year 2200 is calculated on various assumptions for the following three cases: (1) no breeder reactor; plutonium-thermal cycle in conventional light water reactor, (2) introduction of the FBR, and (3) introduction of the RMWR. The amounts of natural uranium consumption depends largely on the conversion ratio and plutonium quantity needed of a reactor type. The RMWR has a possibility as a substitute technology of the FBR with the improvement of conversion ratio and high burn-up. (Suetake, M.)

  6. Long-term scenarios of power reactors and fuel cycle development and the role of reduced moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    Reduced moderation spectrum reactor is one of water cooled type reactors in future, which is based on the advanced technology of conventional nuclear power plants. The reduced moderation water reactor (RMWR) has various advantages, such as effective utilization of uranium resources, high conversion ratio, high burn-up, long-term cycle operation, and multiple recycle of plutonium. The RMWR is expected to be a substitute of fast breeder reactor (FBR) of which the development encounters with some technical and financial difficulties, and discontinues in many countries. The role of the RMWR on long-term scenarios of power reactor and fuel cycle development in Japan is investigated from the point of view of uranium resource needed. The consumption of natural uranium needed up to the year 2200 is calculated on various assumptions for the following three cases: (1) no breeder reactor; plutonium-thermal cycle in conventional light water reactor, (2) introduction of the FBR, and (3) introduction of the RMWR. The amounts of natural uranium consumption depends largely on the conversion ratio and plutonium quantity needed of a reactor type. The RMWR has a possibility as a substitute technology of the FBR with the improvement of conversion ratio and high burn-up. (Suetake, M.)

  7. Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau

    Science.gov (United States)

    Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo

    2017-03-01

    The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been

  8. Comparisons of thermal SCWR assembly designs by in- or inter-assembly moderation

    International Nuclear Information System (INIS)

    Zhang, P.; Wang, K.

    2010-01-01

    As one of the six GEN-IV reactor systems and the only one with water as coolant, SCWR is thought to be the most hopeful future nuclear energy system. Many designs have already been proposed worldwide. For thermal SCWR designs, a key consideration factor is how to provide the dedicated moderation, which leads to various designs with water as moderator. It is much like BWR, where under-moderation is an important issue and central water rods are adopted to account for it. Naturally, water rods can be adopted in SCWR assemblies too, but with counter-flow scheme to increase the outlet temperature and thermal efficiency which is unlike the co-flow scheme in BWR. This type can be seen in the American, Japanese and European HPLWR designs. As the other option, moderation could be provided with inter-assembly gap like CANDU-SCWR design. It is worthy of review of these designs for better understanding the water moderating effects and putting forward any new designs. (author)

  9. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients

    Science.gov (United States)

    Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z.

    2014-11-01

    Nowadays remote sensing plays a very important role in many different study fields, i.e. environmental studies, hydrology, mineralogy, ecosystem studies, etc. One of the key areas of remote sensing applications is water quality monitoring. Understanding and monitoring of the water quality parameters and detecting different water contaminants is an important issue in water management and protection of whole environment and especially the water ecosystem. There are many remote sensing methods to monitor water quality and detect water pollutants. One of the most widely used method for substance detection with remote sensing techniques is based on usage of spectral reflectance coefficients. They are usually acquired using discrete methods such as spectrometric measurements. These however can be very time consuming, therefore image-based methods are used more and more often. In order to work out the proper methodology of obtaining spectral reflectance coefficients from hyperspectral and multispectral images, it is necessary to verify the impact of cameras radiometric resolution on the accuracy of determination of them. This paper presents laboratory experiments that were conducted using two monochromatic XEVA video sensors (400-1700 nm spectral data registration) with two different radiometric resolutions (12 and 14 bits). In view of determining spectral characteristics from images, the research team used set of interferometric filters. All data collected with multispectral digital video cameras were compared with spectral reflectance coefficients obtained with spectroradiometer. The objective of this research is to find the impact of cameras radiometric resolution on reflectance values in chosen wavelength. The main topic of this study is the analysis of accuracy of spectral coefficients from sensors with different radiometric resolution. By comparing values collected from images acquired with XEVA sensors and with the curves obtained with spectroradiometer it

  10. The effects of acute alcohol on psychomotor, set-shifting, and working memory performance in older men and women.

    Science.gov (United States)

    Hoffman, Lauren A; Sklar, Alfredo L; Nixon, Sara Jo

    2015-05-01

    A limited number of publications have documented the effects of acute alcohol administration among older adults. Among these, only a few have investigated sex differences within this population. The current project examined the behavioral effects of acute low- and moderate-dose alcohol on 62 older (ages 55-70) male and female, healthy, light to moderate drinkers. Participants were randomly assigned to one of three dose conditions: placebo (peak breath alcohol concentration [BrAC] of 0 mg/dL), low (peak BrAC of 40 mg/dL), and moderate (peak BrAC of 65 mg/dL). Tasks assessed psychomotor, set-shifting, and working memory performance. Better set-shifting abilities were observed among women, whereas men demonstrated more efficient working memory, regardless of dose. The moderate-dose group did not significantly differ from the placebo group on any task. However, the low-dose group performed better than the moderate-dose group across measures of set shifting and working memory. Relative to the placebo group, the low-dose group exhibited better working memory, specifically for faces. Interestingly, there were no sex by dose interactions. These data suggest that, at least for our study's task demands, low and moderate doses of alcohol do not significantly hinder psychomotor, set-shifting, or working memory performance among older adults. In fact, low-dose alcohol may facilitate certain cognitive abilities. Furthermore, although sex differences in cognitive abilities were observed, these alcohol doses did not differentially affect men and women. Further investigation is necessary to better characterize the effects of sex and alcohol dose on cognition in older adults. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    Energy Technology Data Exchange (ETDEWEB)

    Santosa, Ignatius Edi [Department of Physics Education, Sanata Dharma University, Paingan Maguwohardjo Depok Sleman, Yogyakarta 55281, Indonesia edi@usd.ac.id (Indonesia)

    2015-04-16

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold.

  12. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    International Nuclear Information System (INIS)

    Santosa, Ignatius Edi

    2015-01-01

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold

  13. MEDIASTINAL SHIFT: A SIGN OF SIGNIFICANT CLINICAL AND RADIOLOGICAL IMPORTANCE IN DIAGNOSIS OF MALIGNANT PLEURAL EFFUSION

    Directory of Open Access Journals (Sweden)

    R Khajotia

    2012-08-01

    Full Text Available Mediastinal shift (upper and lower is a clinical and radiologicalmarker of significant importance, which at times helps todetermine the aetiological cause of the underlying pathology.Tracheal shift is an indicator of upper mediastinal shift, whilea shift in the position of the heart indicates a lower mediastinalshift. Since the pleural cavity is confined by the rib cage, incase of a moderately large pleural effusion, the structures inthe thoracic cavity normally get ‘pushed’ to the opposite sideresulting in a shift of the upper and lower mediastinum. Thisis clinically and radiologically detected by a shift in the tracheaand heart to the side opposite to the pleural effusion. This iscommonly seen in pleural effusions resulting from tuberculosisor other infections. However, in some cases even a largepleural effusion fails to shift the mediastinum to the oppositeside. In fact, in some cases, the trachea and heart areobserved to be central or even shifted to the same side asthe effusion. This finding is of immense importance as it is aclinical indicator of a more serious condition which needsprompt diagnosis and urgent management. We report here,one such case of a middle-aged man who presented to theemergency department with complaints of increasingbreathlessness and whose clinical and radiological examinationrevealed a moderately large right-sided pleural effusion withthe trachea and heart also shifted to the right side.

  14. Reflectionless discrete Schr\\"odinger operators are spectrally atypical

    OpenAIRE

    VandenBoom, Tom

    2017-01-01

    We prove that, if an isospectral torus contains a discrete Schr\\"odinger operator with nonconstant potential, the shift dynamics on that torus cannot be minimal. Consequently, we specify a generic sense in which finite unions of nondegenerate closed intervals having capacity one are not the spectrum of any reflectionless discrete Schr\\"odinger operator. We also show that the only reflectionless discrete Schr\\"odinger operators having zero, one, or two spectral gaps are periodic.

  15. Spectral Imaging for Intracranial Stents and Stent Lumen.

    Science.gov (United States)

    Weng, Chi-Lun; Tseng, Ying-Chi; Chen, David Yen-Ting; Chen, Chi-Jen; Hsu, Hui-Ling

    2016-01-01

    Application of computed tomography for monitoring intracranial stents is limited because of stent-related artifacts. Our purpose was to evaluate the effect of gemstone spectral imaging on the intracranial stent and stent lumen. In vitro, we scanned Enterprise stent phantom and a stent-cheese complex using the gemstone spectral imaging protocol. Follow-up gemstone spectral images of 15 consecutive patients with placement of Enterprise from January 2013 to September 2014 were also retrospectively reviewed. We used 70-keV, 140-keV, iodine (water), iodine (calcium), and iodine (hydroxyapatite) images to evaluate their effect on the intracranial stent and stent lumen. Two regions of interest were individually placed in stent lumen and adjacent brain tissue. Contrast-to-noise ratio was measured to determine image quality. The maximal diameter of stent markers was also measured to evaluate stent-related artifact. Two radiologists independently graded the visibility of the lumen at the maker location by using a 4-point scale. The mean of grading score, contrast/noise ratio and maximal diameter of stent markers were compared among all modes. All results were analyzed by SPSS version 20. In vitro, iodine (water) images decreased metallic artifact of stent makers to the greatest degree. The most areas of cheese were observed on iodine (water) images. In vivo, iodine (water) images had the smallest average diameter of stent markers (0.33 ± 0.17mm; P stent lumen (160.03 ±37.79; P stent-related artifacts of Enterprise and enhance contrast of in-stent lumen. Spectral imaging may be considered a noninvasive modality for following-up patients with in-stent stenosis.

  16. Thermal gradients caused by the CANDU moderator circulation

    International Nuclear Information System (INIS)

    Mohindra, V.K.; Vartolomei, M.A.; Scharfenberg, R.

    2008-01-01

    The heavy water moderator circulation system of a CANDU reactor, maintains calandria moderator temperature at power-dependent design values. The temperature differentials between the moderator and the cooler heavy water entering the calandria generate thermal gradients in the reflector and moderator. The resultant small changes in thermal neutron population are detected by the out-of-core ion chambers as small, continuous fluctuations of the Log Rate signals. The impact of the thermal gradients on the frequency of the High Log Rate fluctuations and their amplitude is relatively more pronounced for Bruce A as compared to Bruce B reactors. The root cause of the Log Rate fluctuations was investigated using Bruce Power operating plant information data and the results of the investigation support the interpretation based on the thermal gradient phenomenon. (author)

  17. Effects of self-similar correlations on the spectral line shape in the neutral gas

    International Nuclear Information System (INIS)

    Kharintsev, S.S.; Salakhov, M.Kh.

    2001-01-01

    The paper is devoted to the study of the influence of self-similar correlations on the Doppler and pressure broadening within the non-equilibrium Boltzmann gas. The diffuse model for the thermal motion of the radiator and the self-similar mechanism of interference of scalar perturbations for phase shifts of an atomic oscillator are developed. It is shown that taking into account self-similar correlation in a description of the spectral line shape allows one to explain, on the one hand, the additional spectral line Dicke-narrowing in the Doppler regime, and, on the other hand, the asymmetry in wings of the spectral line in a high pressure region

  18. FLUID MODERATED REACTOR

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1957-10-22

    A reactor which utilizes fissionable fuel elements in rod form immersed in a moderator or heavy water and a means of circulating the heavy water so that it may also function as a coolant to remove the heat generated by the fission of the fuel are described. In this design, the clad fuel elements are held in vertical tubes immersed in heavy water in a tank. The water is circulated in a closed system by entering near the tops of the tubes, passing downward through the tubes over the fuel elements and out into the tank, where it is drawn off at the bottom, passed through heat exchangers to give up its heat and then returned to the tops of the tubes for recirculation.

  19. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Aoyama, Motoo; Koyama, Jun-ichi; Ishibashi, Yoko; Mochida, Takaaki; Soneda, Hideo.

    1994-01-01

    In a fuel assembly having moderator rods, an axial average value of a ratio between the total of the lateral cross sectional area of a portion to be filled with moderators and the total of the lateral cross sectional area of fuel pellets is determined as greater than 0.4, a lateral cross sectional area of a portion to be filled with moderators per one moderator rod is determined as from 14 to 50cm 2 and the ratio between the total of the lateral cross sectional area of moderators and a total of the lateral cross sectional area of fuel pellets in a horizontal cross section is determined as from 2.7 to 3.4. Since the axial average value for lateral cross sectional area of a portion to be filled with moderators/lateral cross sectional area of fuel pellets is determined as ≥ 0.4, the lateral cross sectional area of moderators of moderator rods is increased, the lateral cross sectional area of a gap water region is decreased to reduce the value of local power peaking coefficient, so that thermal margin is ensured. At least one of the moderating rods is formed as a double-walled water rod tube to enhance an effect of spectral shift by flow rate control, reduce an uranium enrichment degree, and conduct operation without inserting control rods. (N.H.)

  20. REDSHANK I and GREENSHANK I (comprehensive point reactivity programmes for liquid moderated UO2 lattices)

    International Nuclear Information System (INIS)

    Alpiar, R.A.

    1963-08-01

    A recently issued programme (SANDPIPER I) enables few group diffusion parameters and reactivities to be derived for liquid moderated UO 2 lattices. The present programmes investigate the life history of such lattices. Burn up equations recalculate the fuel isotopic composition, in a series of steps. At each step, new few group constants and reactivity are recalculated for the new fuel composition. In addition, at each step, the control required to keep the reactivity of the reactor within a given deadband is recalculated. This control is effected by control rod withdrawal in Redshank, and by heavy water spectrum shift in Greenshank. The programme continues until the reactivity of the uncontrolled reactor falls below the deadband. (author)

  1. Phase-shifting response to light in older adults.

    Science.gov (United States)

    Kim, Seong Jae; Benloucif, Susan; Reid, Kathryn Jean; Weintraub, Sandra; Kennedy, Nancy; Wolfe, Lisa F; Zee, Phyllis C

    2014-01-01

    Age-related changes in circadian rhythms may contribute to the sleep disruption observed in older adults. A reduction in responsiveness to photic stimuli in the circadian timing system has been hypothesized as a possible reason for the advanced circadian phase in older adults. This project compared phase-shifting responses to 2 h of broad-spectrum white light at moderate and high intensities in younger and older adults. Subjects included 29 healthy young (25.1 ± 4.1 years; male to female ratio: 8: 21) and 16 healthy older (66.5 ± 6.0 years; male to female ratio: 5: 11) subjects, who participated in two 4-night and 3-day laboratory stays, separated by at least 3 weeks. Subjects were randomly assigned to one of three different time-points, 8 h before (-8), 3 h before (-3) or 3 h after (+3) the core body temperature minimum (CBTmin) measured on the baseline night. For each condition, subjects were exposed in a randomized order to 2 h light pulses of two intensities (2000 lux and 8000 lux) during the two different laboratory stays. Phase shifts were analysed according to the time of melatonin midpoint on the nights before and after light exposure. Older subjects in this study showed an earlier baseline phase and lower amplitude of melatonin rhythm compared to younger subjects, but there was no evidence of age-related changes in the magnitude or direction of phase shifts of melatonin midpoint in response to 2 h of light at either 2000 lux or 8000 lux. These results indicate that the acute phase-shifting response to moderate- or high-intensity broad spectrum light is not significantly affected by age.

  2. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing

  3. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  4. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Science.gov (United States)

    Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred

    2017-09-01

    The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff

  5. Prolonged whole-body cold water immersion: fluid and ion shifts.

    Science.gov (United States)

    Deuster, P A; Smith, D J; Smoak, B L; Montgomery, L C; Singh, A; Doubt, T J

    1989-01-01

    To characterize fluid and ion shifts during prolonged whole-body immersion, 16 divers wearing dry suits completed four whole-body immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 msw. One immersion was conducted at 1000 (AM) and one at 2200 (PM) so that diurnal variations could be evaluated. Fifty-four hours separated the immersions, which lasted up to 6 h; 9 days separated each air saturation dive. Blood was collected before and after immersion; urine was collected for 12 h before, during, and after immersion for a total of 24 h. Plasma volume decreased significantly and to the same extent (approximately 17%) during both AM and PM immersions. Urine flow increased by 236.1 +/- 38.7 and 296.3 +/- 52.0%, urinary excretion of Na increased by 290.4 +/- 89.0 and 329.5 +/- 77.0%, K by 245.0 +/- 73.4 and 215.5 +/- 44.6%, Ca by 211.0 +/- 31.4 and 241.1 +/- 50.4%, Mg by 201.4 +/- 45.9 and 165.3 +/- 287%, and Zn by 427.8 +/- 93.7 and 301.9 +/- 75.4% during AM and PM immersions, respectively, compared with preimmersion. Urine flow and K excretion were significantly higher during the AM than PM. In summary, when subjects are immersed in cold water for prolonged periods, combined with a slow rate of body cooling afforded by thermal protection and enforced intermittent exercise, there is diuresis, decreased plasma volume, and increased excretions of Na, K, Ca, Mg, and Zn.

  6. Effects of NMR spectral resolution on protein structure calculation.

    Directory of Open Access Journals (Sweden)

    Suhas Tikole

    Full Text Available Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.

  7. Performance of operational satellite bio-optical algorithms in different water types in the southeastern Arabian Sea

    Directory of Open Access Journals (Sweden)

    P. Minu

    2016-10-01

    Full Text Available The in situ remote sensing reflectance (Rrs and optically active substances (OAS measured using hyperspectral radiometer, were used for optical classification of coastal waters in the southeastern Arabian Sea. The spectral Rrs showed three distinct water types, that were associated with the variability in OAS such as chlorophyll-a (chl-a, chromophoric dissolved organic matter (CDOM and volume scattering function at 650 nm (β650. The water types were classified as Type-I, Type-II and Type-III respectively for the three Rrs spectra. The Type-I waters showed the peak Rrs in the blue band (470 nm, whereas in the case of Type-II and III waters the peak Rrs was at 560 and 570 nm respectively. The shifting of the peak Rrs at the longer wavelength was due to an increase in concentration of OAS. Further, we evaluated six bio-optical algorithms (OC3C, OC4O, OC4, OC4E, OC3M and OC4O2 used operationally to retrieve chl-a from Coastal Zone Colour Scanner (CZCS, Ocean Colour Temperature Scanner (OCTS, Sea-viewing Wide Field-of-view Sensor (SeaWiFS, MEdium Resolution Imaging Spectrometer (MERIS, Moderate Resolution Imaging Spectroradiometer (MODIS and Ocean Colour Monitor (OCM2. For chl-a concentration greater than 1.0 mg m−3, algorithms based on the reference band ratios 488/510/520 nm to 547/550/555/560/565 nm have to be considered. The assessment of algorithms showed better performance of OC3M and OC4. All the algorithms exhibited better performance in Type-I waters. However, the performance was poor in Type-II and Type-III waters which could be attributed to the significant co-variance of chl-a with CDOM.

  8. Methane spectral line widths and shifts, and dependences on physical parameters

    Science.gov (United States)

    Fox, K.; Quillen, D. T.; Jennings, D. E.; Wagner, J.; Plymate, C.

    1991-01-01

    A detailed report of the recent high-resolution spectroscopic research on widths and shifts measured for a strong infrared-active fundamental of methane is presented. They were measured in collision with several rare gases and diatomic molecules, in the vibrational-rotational fundamental near 3000/cm. These measurements were made at an ambient temperature of 294 K over a range of pressures from 100 to 700 torr. The measurements are discussed in a preliminary but detailed and quantitative manner with reference to masses, polarizabilities, and quadrupole moments. Some functional dependences on these physical parameters are considered. The present data are useful for studies of corresponding planetary spectra.

  9. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    Science.gov (United States)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas

  10. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  11. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    Science.gov (United States)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small

  12. STUDY OF WATER HAMMERS IN THE FILLING OF THE SYSTEM OF PRESSURE COMPENSATION IN THE WATER-COOLED AND WATER-MODERATED POWER REACTORS

    Directory of Open Access Journals (Sweden)

    A. V. Korolyev

    2017-01-01

    list of initial events of severe accidents at NPPs with a water-cooled and water-moderated power reactor can be expanded.

  13. Spectral Slope as an Indicator of Pasture Quality

    Directory of Open Access Journals (Sweden)

    Rachel Lugassi

    2014-12-01

    Full Text Available In this study, we develop a spectral method for assessment of pasture quality based only on the spectral information obtained with a small number of wavelengths. First, differences in spectral behavior were identified across the near infrared–shortwave infrared spectral range that were indicative of changes in chemical properties. Then, slopes across different spectral ranges were calculated and correlated with the changes in crude protein (CP, neutral detergent fiber (NDF and metabolic energy concentration (MEC. Finally, partial least squares (PLS regression analysis was applied to identify the optimal spectral ranges for accurate assessment of CP, NDF and MEC. Six spectral domains and a set of slope criteria for real-time evaluation of pasture quality were suggested. The evaluation of three level categories (low, medium, high for these three parameters showed a success rate of: 73%–96% for CP, 72%–87% for NDF and 60%–85% for MEC. Moreover, only one spectral range, 1748–1764 nm, was needed to provide a good estimation of CP, NDF and MEC. Importantly, five of the six selected spectral regions were not affected by water absorbance. With some modifications, this rationale can be applied to further analyses of pasture quality from airborne sensors.

  14. High performance multi-spectral interrogation for surface plasmon resonance imaging sensors.

    Science.gov (United States)

    Sereda, A; Moreau, J; Canva, M; Maillart, E

    2014-04-15

    Surface plasmon resonance (SPR) sensing has proven to be a valuable tool in the field of surface interactions characterization, especially for biomedical applications where label-free techniques are of particular interest. In order to approach the theoretical resolution limit, most SPR-based systems have turned to either angular or spectral interrogation modes, which both offer very accurate real-time measurements, but at the expense of the 2-dimensional imaging capability, therefore decreasing the data throughput. In this article, we show numerically and experimentally how to combine the multi-spectral interrogation technique with 2D-imaging, while finding an optimum in terms of resolution, accuracy, acquisition speed and reduction in data dispersion with respect to the classical reflectivity interrogation mode. This multi-spectral interrogation methodology is based on a robust five parameter fitting of the spectral reflectivity curve which enables monitoring of the reflectivity spectral shift with a resolution of the order of ten picometers, and using only five wavelength measurements per point. In fine, such multi-spectral based plasmonic imaging system allows biomolecular interaction monitoring in a linear regime independently of variations of buffer optical index, which is illustrated on a DNA-DNA model case. © 2013 Elsevier B.V. All rights reserved.

  15. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    Science.gov (United States)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  16. The affective shift model of work engagement.

    Science.gov (United States)

    Bledow, Ronald; Schmitt, Antje; Frese, Michael; Kühnel, Jana

    2011-11-01

    On the basis of self-regulation theories, the authors develop an affective shift model of work engagement according to which work engagement emerges from the dynamic interplay of positive and negative affect. The affective shift model posits that negative affect is positively related to work engagement if negative affect is followed by positive affect. The authors applied experience sampling methodology to test the model. Data on affective events, mood, and work engagement was collected twice a day over 9 working days among 55 software developers. In support of the affective shift model, negative mood and negative events experienced in the morning of a working day were positively related to work engagement in the afternoon if positive mood in the time interval between morning and afternoon was high. Individual differences in positive affectivity moderated within-person relationships. The authors discuss how work engagement can be fostered through affect regulation. (c) 2011 APA, all rights reserved.

  17. Development of a modular directional and spectral neutron detection system using solid-state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Weltz, A., E-mail: weltza3@gmail.com; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-21

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a {sup 252}Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  18. Frequency domain phase retrieval of simultaneous multi-wavelength phase-shifting interferometry

    International Nuclear Information System (INIS)

    Yin, Zhenxing; Zhong, Liyun; Xu, Xiaofei; Zhang, Wangping; Lu, Xiaoxu; Tian, Jindong

    2016-01-01

    In simultaneous multi-wavelength phase-shifting interferometry, we propose a novel frequency domain phase retrieval (FDPR) algorithm. First, using only a one-time phase-shifting operation, a sequence of simultaneous multi-wavelength phase-shifting interferograms (SPSMWIs) are captured by a monochrome charge-coupled device. Second, by performing a Fourier transform for each pixel of SPSMWIs, the wrapped phases of each wavelength can be retrieved from the complex amplitude located in the spectral peak of each wavelength. Finally, the phase of the synthetic wavelength can be obtained by the subtraction between the wrapped phases of a single wavelength. In this study, the principle and the application condition of the proposed approach are discussed. Both the simulation and the experimental result demonstrate the simple and convenient performance of the proposed FDPR approach. (paper)

  19. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    International Nuclear Information System (INIS)

    Duan, X; Arbique, G; Guild, J; Anderson, J; Yagil, Y

    2016-01-01

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluated by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips

  20. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X; Arbique, G; Guild, J; Anderson, J [UT Southwestern Medical Center, Dallas, TX (United States); Yagil, Y [Philips Healthcare, Haifa (Israel)

    2016-06-15

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluated by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips

  1. Links between the recruitment success of northern European hake (Merluccius merluccius L.) and a regime shift on the NE Atlantic continental shelf

    KAUST Repository

    Goikoetxea, Nerea

    2013-07-01

    The distribution of northern European hake (Merluccius merluccius L.) extends from the Bay of Biscay up to Norwegian waters. However, despite its wide geographical distribution, there have been few studies on fluctuations in the European hake populations. Marine ecosystem shifts have been investigated worldwide and their influence on trophic levels has been studied, from top predator fish populations down to planktonic prey species, but there is little information on the effect of atmosphere-ocean shifts on European hake. This work analyses hake recruitment success (recruits per adult biomass) in relation to environmental changes over the period 1978-2006 in order to determine whether the regime shift identified in several abiotic and biotic variables in the North Sea also affected the Northeast Atlantic shelf oceanography. Hake recruitment success as well as parameters such as the sea surface temperature, wind patterns and copepod abundance changed significantly at the end of the 1980s, demonstrating an ecological regime shift in the Northeast Atlantic. Despite the low reproductive biomass recorded during the last decades, hake recruitment success has been higher since the change in 1989/90. The higher productivity may have sustained the population despite the intense fishing pressure; copepod abundance, warmer water temperatures and moderate eastward transport were found to be beneficial. In conclusion, in 1988/89 the Northeast Atlantic environment shifted to a favourable regime for northern hake production. This study supports the hypothesis that the hydro-climatic regime shift that affected the North Sea in the late 1980s may have influenced a wider region, such as the Northeast Atlantic. © 2013 John Wiley & Sons Ltd.

  2. Determination of neutron interaction effect and subcriticality for light water moderated UO2 lattices

    International Nuclear Information System (INIS)

    Miyoshi, Y.; Suzaki, T.; Kobayashi, I.

    1984-01-01

    From the view point of nuclear criticality safety for fuel storage, transport and processing, a series of critical experiments have been performed using a Tank-type Critical Assembly (TCA) at the Japan Atomic Energy Research Institute. The first series of experiments are concerned with the neutron interaction effects between two cores composed of BWR-type fuel rods in water. The reactivity contribution from one core to another have been measured by the water level worth method and a pulsed neutron source method. Two symmetrical rectangular cores were composed in TCA and the water gap between two cores were parametrically changed. The volume ratios of water to fuel are 1.83 and 2.48 of which lattice pitches are 1.96 cm and 2.15 cm respectively. As for the pulsed neutron experiment, Gozani's area ratio method is theoretically extended to a coupled-core system, and the applicability of this method has been studied for determination of the reactivity at a subcritical state and the coupling coefficient that represents reactivity contribution from one core to another. The object of the second series of experiment is development of the technique which determine the reactivity at a high sub-critical state. The CF-252 source driven neutron noise analysis method proposed by Mihalczo has been tested in order to examine whether it could be available for measuring the subcriticality for the light water moderated system. The tested core was water reflected annular type which consisted of 308 UO 2 fuel rods and had a void region at the core center

  3. Spectral Properties and Orientation of Voltage-Sensitive Dyes in Lipid Membranes

    KAUST Repository

    Matson, Maria

    2012-07-24

    Voltage-sensitive dyes are frequently used for probing variations in the electric potential across cell membranes. The dyes respond by changing their spectral properties: measured as shifts of wavelength of absorption or emission maxima or as changes of absorption or fluorescence intensity. Although such probes have been studied and used for decades, the mechanism behind their voltage sensitivity is still obscure. We ask whether the voltage response is due to electrochromism as a result of direct field interaction on the chromophore or to solvatochromism, which is the focus of this study, as result of changed environment or molecular alignment in the membrane. The spectral properties of three styryl dyes, di-4-ANEPPS, di-8-ANEPPS, and RH421, were investigated in solvents of varying polarity and in model membranes using spectroscopy. Using quantum mechanical calculations, the spectral dependence of monomer and dimer ANEPPS on solvent properties was modeled. Also, the kinetics of binding to lipid membranes and the binding geometry of the probe molecules were found relevant to address. The spectral properties of all three probes were found to be highly sensitive to the local environment, and the probes are oriented nearly parallel with the membrane normal. Slow binding kinetics and scattering in absorption spectra indicate, especially for di-8-ANEPPS, involvement of aggregation. On the basis of the experimental spectra and time-dependent density functional theory calculations, we find that aggregate formation may contribute to the blue-shifts seen for the dyes in decanol and when bound to membrane models. In conclusion, solvatochromic and other intermolecular interactions effects also need to be included when considering electrochromic response voltage-sensitive dyes. © 2012 American Chemical Society.

  4. Hardiness, psychosocial factors and shift work tolerance among nurses - a 2-year follow-up study.

    Science.gov (United States)

    Saksvik-Lehouillier, Ingvild; Bjorvatn, Bjørn; Magerøy, Nils; Pallesen, Ståle

    2016-08-01

    To examine the predictive power of the subfactors of hardiness (commitment, control and challenge) on shift work tolerance (measured with sleepiness, fatigue, anxiety and depression) over 2 years in nurses working shifts. We also investigated the direct effects of psychosocial variables such as role conflict, social support and fair leadership on shift work tolerance, as well as their moderating role on the relationship between hardiness and shift work tolerance. Several scholars have discussed the role of individual differences and psychosocial variables in predicting shift work tolerance. The conclusions are not clear. Longitudinal questionnaire study. A sample of Norwegian nurses employed in shift work including nights participated in this longitudinal questionnaire study: 1877 at baseline, 1228 at 1-year follow-up and 659 nurses at 2-year follow-up. Data were collected in three waves, first wave in 2008 and third in 2011 and were analysed with a series of hierarchical multiple regression analyses. We found that the subfactor commitment could predict fatigue over 1 year and anxiety and depression over 2 years. Challenge could predict anxiety over 1 year. Control was unrelated to shift work intolerance. Hardiness did not predict sleepiness. Social support, role conflict and fair leadership were important for some aspects of shift work tolerance; however, hardiness seemed to be more eminent for shift work tolerance than the psychosocial variables. Social support moderated the relationship between hardiness and shift work tolerance to some degree, but this interaction was weak. Hardiness can to some degree predict shift work tolerance over 2 years among nurses. © 2016 John Wiley & Sons Ltd.

  5. Neutron transport from targets to moderators

    International Nuclear Information System (INIS)

    Taylor, A.D.

    1980-01-01

    The title of this meeting is 'Targets for Neutron Beam Spallation Sources', but so far all the emphasis in the talks has been on how to produce the fast neutron flux. I would like to stress that that is just the beginning of the story. What we are required to produce are beams of thermal and epithermal neutrons with time and spectral characteristics tailored to the instrumental requirements. The real source of our neutrons is not uranium arrays or thorium cylinders but a small volume of hydrogenous material, some 10 x 10 x 5 cm 3 . This is really what the whole thing is about - the target produces a copious field of fast neutrons, but if we fail to moderate them with the right energy and time characteristics, we will not match to what is happening downstream. In this talk, I am going to deal specifically with what we have done for SNS to optimise the target-moderator-reflector and decoupler system in this respect. (orig.)

  6. Role of Re in Pt-Re/TiO2 catalyst for water gas shift reaction: A mechanistic and kinetic study.

    NARCIS (Netherlands)

    Azzam, K.G.H.; Babych, Igor V.; Seshan, Kulathuiyer; Lefferts, Leonardus

    2008-01-01

    Transient kinetic studies and in situ FTIR spectroscopy were used to follow the reaction sequences that occur during water gas shift (WGS) reaction over Pt–Re/TiO2 catalyst. Results pointed to contributions of an associative formate route with redox regeneration and two classical redox routes

  7. Application of noise analysis technique for monitoring the moderator temperature coefficient of reactivity in pressurized water reactors

    International Nuclear Information System (INIS)

    Shieh, D.J.; Upadhyaya, B.R.; Sweeney, F.J.

    1987-01-01

    A new technique, based on the noise analysis of neutron detector and core-exit coolant temperature signals, is developed for monitoring the moderator temperature coefficient of reactivity in pressurized water reactors (PWRs). A detailed multinodal model is developed and evaluated for the reactor core subsystem of the loss-of-fluid test (LOFT) reactor. This model is used to study the effect of changing the sign of the moderator temperature coefficient of reactivity on the low-frequency phase angle relationship between the neutron detector and the core-exit temperature noise signals. Results show that the phase angle near zero frequency approaches - 180 deg for negative coefficients and 0 deg for positive coefficients when the perturbation source for the noise signals is core coolant flow, inlet coolant temperature, or random heat transfer

  8. Investigation on the combined operation of water gas shift and preferential oxidation reactor system on the kW scale

    NARCIS (Netherlands)

    O'Connell, M.; Kolb, G.A.; Schelhaas, K.P.; Schuerer, J.; Tiemann, D.; Keller, S.; Reinhard, D.; Hessel, V.

    2010-01-01

    A 5 kWel water gas shift reactor was integrated with a 5 kWel preferential oxidation reactor for the purposes of reducing the carbon monoxide levels in a reformate exit stream to levels below 100 ppm. The integrated system worked best at partial load with CO concentrations being reduced to 40 ppm at

  9. Stokes shift spectroscopy for breast cancer diagnosis

    Science.gov (United States)

    Jeyasingh, Ebenezar; Prakashrao, Aruna; Singaravelu, Ganesan

    2010-02-01

    The objective of this study is to assess the diagnostic potential of stokes shift (SS) spectroscopy (SSS) for normal and different pathological breast tissues such as fibroadenoma and infiltrating ductal carcinoma. The SS spectra is measured by simultaneously scanning both the excitation and emission wavelengths while keeping a fixed wavelength interval Δλ=20 nm between them. Characteristic, highly resolved peaks and significant spectral differences between normal and different pathological breast tissues were observed. The SS spectra of normal and different pathological breast tissues shows the distinct peaks around 300, 350, 450, 500 and 600 nm may be attributed to tryptophan, collagen, NADH, flavin and porphyrin respectively. Using SSS technique one can obtain all the key fluorophores in a single scan and hence they can be targeted as a tumor markers in this study. In order to quantify the altered spectral differences between normal and different pathological breast tissues are verified by different ratio parameters.

  10. Spectral-Domain Measurement of Strain Sensitivity of a Two-Mode Birefringent Side-Hole Fiber

    Directory of Open Access Journals (Sweden)

    Waclaw Urbanczyk

    2012-09-01

    Full Text Available The strain sensitivity of a two-mode birefringent side-hole fiber is measured in the spectral domain. In a simple experimental setup comprising a broadband source, a polarizer, a two-mode birefringent side-hole fiber under varied elongations, an analyzer and a compact spectrometer, the spectral interferograms are resolved. These are characterized by the equalization wavelength at which spectral interference fringes have the highest visibility (the largest period due to the zero group optical path difference between the fundamental, the LP01 mode and the higher-order, the LP11 mode. The spectral interferograms with the equalization wavelength are processed to retrieve the phase as a function of the wavelength. From the retrieved phase functions corresponding to different elongations of a two-mode birefringent side-hole fiber under test, the spectral strain sensitivity is obtained. Using this approach, the intermodal spectral strain sensitivity was measured for both x and y polarizations. Moreover, the spectral polarimetric sensitivity to strain was measured for the fundamental mode when a birefringent delay line was used in tandem with the fiber. Its spectral dependence was also compared with that obtained from a shift of the spectral interferograms not including the equalization wavelength, and good agreement was confirmed.

  11. Average spectral efficiency analysis of FSO links over turbulence channel with adaptive transmissions and aperture averaging

    Science.gov (United States)

    Aarthi, G.; Ramachandra Reddy, G.

    2018-03-01

    In our paper, the impact of adaptive transmission schemes: (i) optimal rate adaptation (ORA) and (ii) channel inversion with fixed rate (CIFR) on the average spectral efficiency (ASE) are explored for free-space optical (FSO) communications with On-Off Keying (OOK), Polarization shift keying (POLSK), and Coherent optical wireless communication (Coherent OWC) systems under different turbulence regimes. Further to enhance the ASE we have incorporated aperture averaging effects along with the above adaptive schemes. The results indicate that ORA adaptation scheme has the advantage of improving the ASE performance compared with CIFR under moderate and strong turbulence regime. The coherent OWC system with ORA excels the other modulation schemes and could achieve ASE performance of 49.8 bits/s/Hz at the average transmitted optical power of 6 dBm under strong turbulence. By adding aperture averaging effect we could achieve an ASE of 50.5 bits/s/Hz under the same conditions. This makes ORA with Coherent OWC modulation as a favorable candidate for improving the ASE of the FSO communication system.

  12. Shifted excitation Raman difference spectroscopy for authentication of cheese and cheese analogues

    Science.gov (United States)

    Sowoidnich, Kay; Kronfeldt, Heinz-Detlef

    2016-04-01

    Food authentication and the detection of adulterated products are recent major issues in the food industry as these topics are of global importance for quality control and food safety. To effectively address this challenge requires fast, reliable and non-destructive analytical techniques. Shifted Excitation Raman Difference Spectroscopy (SERDS) is well suited for identification purposes as it combines the chemically specific information obtained by Raman spectroscopy with the ability for efficient fluorescence rejection. The two slightly shifted excitation wavelengths necessary for SERDS are realized by specially designed microsystem diode lasers. At 671 nm the laser (optical power: 50 mW, spectral shift: 0.7 nm) is based on an external cavity configuration whereas an emission at 783 nm (optical power: 110 mW, spectral shift: 0.5 nm) is achieved by a distributed feedback laser. To investigate the feasibility of SERDS for rapid and nondestructive authentication purposes four types of cheese and three different cheese analogues were selected. Each sample was probed at 8 different positions using integration times of 3-10 seconds and 10 spectra were recorded at each spot. Principal components analysis was applied to the SERDS spectra revealing variations in fat and protein signals as primary distinction criterion between cheese and cheese analogues for both excitation wavelengths. Furthermore, to some extent, minor compositional differences could be identified to discriminate between individual species of cheese and cheese analogues. These findings highlight the potential of SERDS for rapid food authentication potentially paving the way for future applications of portable SERDS systems for non-invasive in situ analysis.

  13. Isotope shift studies in the spectra of gadolinium in UV region and term shifts of high even levels of Gd I

    International Nuclear Information System (INIS)

    Afzal, S.M.; Venugopalan, A.; Ahmad, S.A.

    1997-01-01

    Isotope shift Δσ( 156 Gd- 160 Gd) is reported in 70 spectral lines of neutral gadolinium atom (Gd I) in the 3290-3920 A region providing isotope shift data in UV lines of Gd I spectrum for the first time. The measurements were carried out on a photoelectric recording Fabry-Perot Spectrometer using highly enriched isotopic samples of gadolinium. Term isotope shifts ΔT( 156 Gd- 160 Gd) have been evaluated for 48 high lying even parity energy levels of Gd I using this data; new ΔT values have been obtained for 24 levels. Electronic configurations 4f 7 5d6s6p, 4f 7 5d 2 6p and 4f 8 5d6s assigned earlier to these even levels have been either confirmed or configuration mixing pointed out in some of these levels. Probable assignment of 4f 8 5d6s configuration to 8 even levels between 32930 and 35500 cm -1 have been confirmed. (orig.)

  14. Spectral studies of ocean water with space-borne sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS

    Directory of Open Access Journals (Sweden)

    M. Vountas

    2007-09-01

    Full Text Available Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm. The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS in liquid water and in situ measured phytoplankton absorption reference spectra to optical depths measured by SCIAMACHY. Spectral structures of VRS and phytoplankton absorption were clearly found in these optical depths. Both fitting approaches lead to consistent results. DOAS fits correlate with estimates of chlorophyll concentrations: low fit factors for VRS retrievals correspond to large chlorophyll concentrations and vice versa; large fit factors for phytoplankton absorption correspond with high chlorophyll concentrations and vice versa. From these results a simple retrieval technique taking advantage of both measurements is shown. First maps of global chlorophyll concentrations were compared to the corresponding MODIS measurements with very promising results. In addition, results from this study will be used to improve atmospheric trace gas DOAS-retrievals from visible wavelengths by including these oceanographic signatures.

  15. REDSHANK I and GREENSHANK I (comprehensive point reactivity programmes for liquid moderated UO{sub 2} lattices)

    Energy Technology Data Exchange (ETDEWEB)

    Alpiar, R A [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-08-15

    A recently issued programme (SANDPIPER I) enables few group diffusion parameters and reactivities to be derived for liquid moderated UO{sub 2} lattices. The present programmes investigate the life history of such lattices. Burn up equations recalculate the fuel isotopic composition, in a series of steps. At each step, new few group constants and reactivity are recalculated for the new fuel composition. In addition, at each step, the control required to keep the reactivity of the reactor within a given deadband is recalculated. This control is effected by control rod withdrawal in Redshank, and by heavy water spectrum shift in Greenshank. The programme continues until the reactivity of the uncontrolled reactor falls below the deadband. (author)

  16. A study of the tritium behavior in coolant and moderator system of heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. P.; Song, S. S.; Chae, K. S. and others [Chosun Univ., Gwangju (Korea, Republic of)

    1993-12-15

    The objectives of this report is to present a regulatory policy on the environmental impact and personnel exposure by understanding the generation, accumulation, environmental release and management of tritium in heavy water reactors. By estimating the tritium concentration at Wolsong nuclear plant site by estimating and forecasting the generation and accumulation of tritium in coolant and moderator systems at Wolsong unit 1, we will study the management and release of tritium at Wolsong units 3 and 4 which are ready for construction. The major activities of this study are as follows : tritium generation and accumulation in heavy water reactor, a quantitative assessment of the accumulation and release of tritium at Wolsong nuclear plant site, heavy water management at Wolsong nuclear plants. The tritium concentration and accumulation trends in the systems at Wolsong unit 1 was estimated. A quantitative assessment of the tritium accumulation and release for Wolsong 2, 3 and 4 based on data from Wolsong 1 was performed. The tritium removal schemes and its long-term management plan were made.

  17. The production of hydrogen through the use of a 77 wt% Pd 23 wt% Ag membrane water gas shift reactor

    CSIR Research Space (South Africa)

    Baloyi, Liberty N

    2016-12-01

    Full Text Available stainless steel (PSS) is evaluated for the production of hydrogen and the potential replacement of the current two-stage Water-Gas Shift (WGS) reaction by a single stage reaction. The permeability of a 20 µm Pd–Ag membrane reactor was examined at 320 °C, 380...

  18. Counterion influence on chemical shifts in strychnine salts

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  19. Reactor and fuel assembly

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Bessho, Yasunori; Sano, Hiroki; Yokomizo, Osamu; Yamashita, Jun-ichi.

    1990-01-01

    The present invention realizes an effective spectral operation by applying an optimum pressure loss coefficient while taking the characteristics of a lower tie plate into consideration. That is, the pressure loss coefficient of the lower tie plate is optimized by varying the cross sectional area of a fuel assembly flow channel in the lower tie plate or varying the surface roughness of a coolant flow channel in the lower tie plate. Since there is a pressure loss coefficient to optimize the moderator density over a flow rate change region, the effect of spectral shift rods can be improved by setting the optimum pressure loss coefficient of the lower tie plate. According to the present invention, existent fuel assemblies can easily be changed successively to fuel assemblies having spectral shift rods of a great spectral shift effect by using existent reactor facilities as they are. (I.S.)

  20. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 3: Quantification of the mid- and near-infrared water vapor continuum in the 2500 to 7800 cm−1 spectral range under atmospheric conditions

    Directory of Open Access Journals (Sweden)

    A. Reichert

    2016-09-01

    Full Text Available We present a first quantification of the near-infrared (NIR water vapor continuum absorption from an atmospheric radiative closure experiment carried out at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.. Continuum quantification is achieved via radiative closure using radiometrically calibrated solar Fourier transform infrared (FTIR absorption spectra covering the 2500 to 7800 cm−1 spectral range. The dry atmospheric conditions at the Zugspitze site (IWV 1.4 to 3.3 mm enable continuum quantification even within water vapor absorption bands, while upper limits for continuum absorption can be provided in the centers of window regions. Throughout 75 % of the 2500 to 7800 cm−1 spectral range, the Zugspitze results agree within our estimated uncertainty with the widely used MT_CKD 2.5.2 model (Mlawer et al., 2012. In the wings of water vapor absorption bands, our measurements indicate about 2–5 times stronger continuum absorption than MT_CKD, namely in the 2800 to 3000 cm−1 and 4100 to 4200 cm−1 spectral ranges. The measurements are consistent with the laboratory measurements of Mondelain et al. (2015, which rely on cavity ring-down spectroscopy (CDRS, and the calorimetric–interferometric measurements of Bicknell et al. (2006. Compared to the recent FTIR laboratory studies of Ptashnik et al. (2012, 2013, our measurements are consistent within the estimated errors throughout most of the spectral range. However, in the wings of water vapor absorption bands our measurements indicate typically 2–3 times weaker continuum absorption under atmospheric conditions, namely in the 3200 to 3400, 4050 to 4200, and 6950 to 7050 cm−1 spectral regions.

  1. Analysis of neutron parameters in light water moderated lattices of ThO2 and UO2 fuel rods

    International Nuclear Information System (INIS)

    Onusic Junior, J.; Oosterkamp, W.J.

    1977-01-01

    A large number of light water moderated lattices of UO 2 and ThO 2 fuel rods were analyzed with the code HAMMER. The purpose of the study was to compare experimental results with computer calculated values. The model employed is described and some modification were introduced in the resonance parameters of Th-232 to increase the agreement with the experimental value [pt

  2. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2

    Directory of Open Access Journals (Sweden)

    J. Joiner

    2013-10-01

    Full Text Available Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2. The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT. GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0

  3. Shift work, fetal development and course of pregnancy.

    Science.gov (United States)

    Nurminen, T

    1989-12-01

    Information on 1475 mothers of infants with selected structural malformations and an equal number of mothers of "normal" babies was analyzed for a possible relationship between shift work and adverse pregnancy outcome or a complicated course of pregnancy. The primary data were obtained from the Finnish Register of Congenital Malformations supplemented by special interviews on the mothers' work conditions. No signs of a teratogenic risk were observed. The relationship between course of pregnancy and outcomes other than malformations was determined from the noncase mothers' experience. Threatened abortion and pregnancy-induced hypertension were not associated with rotating shift work alone, but in a noisy work environment moderate risks could not be ruled out. Rotating shift work was associated with a slight excess of babies small for their gestational age independently of noise exposure. The results suggest that further studies on the effects of different work schedules on pregnancy are worth consideration.

  4. Evaluation of water-use efficiency in foxtail millet (Setaria italica) using visible-near infrared and thermal spectral sensing techniques.

    Science.gov (United States)

    Wang, Meng; Ellsworth, Patrick Z; Zhou, Jianfeng; Cousins, Asaph B; Sankaran, Sindhuja

    2016-05-15

    Water limitations decrease stomatal conductance (g(s)) and, in turn, photosynthetic rate (A(net)), resulting in decreased crop productivity. The current techniques for evaluating these physiological responses are limited to leaf-level measures acquired by measuring leaf-level gas exchange. In this regard, proximal sensing techniques can be a useful tool in studying plant biology as they can be used to acquire plant-level measures in a high-throughput manner. However, to confidently utilize the proximal sensing technique for high-throughput physiological monitoring, it is important to assess the relationship between plant physiological parameters and the sensor data. Therefore, in this study, the application of rapid sensing techniques based on thermal imaging and visual-near infrared spectroscopy for assessing water-use efficiency (WUE) in foxtail millet (Setaria italica (L.) P. Beauv) was evaluated. The visible-near infrared spectral reflectance (350-2500 nm) and thermal (7.5-14 µm) data were collected at regular intervals from well-watered and drought-stressed plants in combination with other leaf physiological parameters (transpiration rate-E, A(net), g(s), leaf carbon isotopic signature-δ(13)C(leaf), WUE). Partial least squares regression (PLSR) analysis was used to predict leaf physiological measures based on the spectral data. The PLSR modeling on the hyperspectral data yielded accurate and precise estimates of leaf E, gs, δ(13)C(leaf), and WUE with coefficient of determination in a range of 0.85-0.91. Additionally, significant differences in average leaf temperatures (~1°C) measured with a thermal camera were observed between well-watered plants and drought-stressed plants. In summary, the visible-near infrared reflectance data, and thermal images can be used as a potential rapid technique for evaluating plant physiological responses such as WUE. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.

    Science.gov (United States)

    Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P

    2016-01-15

    Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.

  6. Behaviour of spectral entropy, spectral edge frequency 90%, and alpha and beta power parameters during low-dose propofol infusion.

    LENUS (Irish Health Repository)

    Mahon, P

    2012-02-03

    BACKGROUND: In this study we analyse the behaviour, potential clinical application and optimal cortical sampling location of the spectral parameters: (i) relative alpha and beta power; (ii) spectral edge frequency 90%; and (iii) spectral entropy as monitors of moderate propofol-induced sedation. METHODS: Multi-channel EEG recorded from 12 ASA 1 (American Society of Anesthesiologists physical status 1) patients during low-dose, target effect-site controlled propofol infusion was used for this analysis. The initial target effect-site concentration was 0.5 microg ml(-1) and increased at 4 min intervals in increments of 0.5 to 2 microg ml(-1). EEG parameters were calculated for 2 s epochs in the frequency ranges 0.5-32 and 0.5-47 Hz. All parameters were calculated in the channels: P4-O2, P3-O1, F4-C4, F3-C3, F3-F4, and Fp1-Fp2. Sedation was assessed clinically using the OAA\\/S (observer\\'s assessment of alertness\\/sedation) scale. RESULTS: Relative beta power and spectral entropy increased with increasing propofol effect-site concentration in both the 0.5-47 Hz [F(18, 90) = 3.455, P<0.05 and F(18, 90) = 3.33, P<0.05, respectively] and 0.5-32 Hz frequency range. This effect was significant in each individual channel (P<0.05). No effect was seen of increasing effect-site concentration on relative power in the alpha band. Averaged across all channels, spectral entropy did not outperform relative beta power in either the 0.5-32 Hz [Pk=0.79 vs 0.814 (P>0.05)] or 0.5-47 Hz range [Pk=0.81 vs 0.82 (P>0.05)]. The best performing indicator in any single channel was spectral entropy in the frequency range 0.5-47 Hz in the frontal channel F3-F4 (Pk=0.85). CONCLUSIONS: Relative beta power and spectral entropy when considered over the propofol effect-site range studied here increase in value, and correlate well with clinical assessment of sedation.

  7. Pressure drop characteristics in tight-lattice bundles for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Kureta, Masatoshi; Yoshida, Hiroyuki; Akimoto, Hajime

    2004-01-01

    The reduced-moderation water reactor (RMWR) consists of several distinctive structures; a triangular tight-lattice configuration and a double-flat core. In order to design the RMWR core from the point of view of thermal-hydraulics, an evaluation method on pressure drop characteristics in the rod bundles at the tight-lattice configuration is required. In this study, calculated results by the Martinelli-Nelson's and Hancox's correlations were compared with experimental results in 4 x 5 rod bundles and seven-rod bundles. Consequently, the friction loss in two-phase flows becomes smaller at the tight-lattice configuration with the hydraulic diameter less than about 3 mm. This reason is due to the difference of the configuration between the multi-rod bundle and the circular tube and due to the effect of the small hydraulic diameter on the two-phase multiplier. (author)

  8. Status and perspective of development of cold moderators at the IBR-2 reactor

    International Nuclear Information System (INIS)

    Kulikov, S; Shabalin, E

    2012-01-01

    The modernized IBR-2M reactor will start its operation with three water grooved moderators in 2011. Afterwards, they will be exchanged by a new complex of moderators. The complex consists of three so-called kombi-moderators, each of them containing a pre-moderator, a cold moderator, grooved ambient water moderators and post-moderators. They are mounted onto three moveable trolleys that serve to deliver and install moderators near the reactor core. The project is divided in three stages. In 2012 the first stage of development of complex of moderators will be finished. The water grooved moderator will be replaced with the new kombi-moderator for beams nos. 7, 8, 10, 11. Main parameters of moderators for this direction will be studied then. The next stages will be done for beams nos. 2-3 and for beams nos. 1, 9, 4-6, consequently. Cold moderator chambers at the modernized IBR-2 reactor are filled with thousands of beads (∼3.5 - 4 mm in diameter) of moderating material. The cold helium gas flow delivers beads from the charging device to the moderator during the fulfillment process and cools down them during the reactor cycle. The mixture of aromatic hydrocarbons (mesithylen and m-xylen) has been chosen as moderating material. The explanation of the choice of material for novel cold neutron moderators, configuration of moderator complex for the modernized IBR-2 reactor and the main results of optimization of moderator complex for the third stage of moderator development are discussed in the article.

  9. Status and perspective of development of cold moderators at the IBR-2 reactor

    Science.gov (United States)

    Kulikov, S.; Shabalin, E.

    2012-03-01

    The modernized IBR-2M reactor will start its operation with three water grooved moderators in 2011. Afterwards, they will be exchanged by a new complex of moderators. The complex consists of three so-called kombi-moderators, each of them containing a pre-moderator, a cold moderator, grooved ambient water moderators and post-moderators. They are mounted onto three moveable trolleys that serve to deliver and install moderators near the reactor core. The project is divided in three stages. In 2012 the first stage of development of complex of moderators will be finished. The water grooved moderator will be replaced with the new kombi-moderator for beams #7, 8, 10, 11. Main parameters of moderators for this direction will be studied then. The next stages will be done for beams #2-3 and for beams #1, 9, 4-6, consequently. Cold moderator chambers at the modernized IBR-2 reactor are filled with thousands of beads (~3.5 - 4 mm in diameter) of moderating material. The cold helium gas flow delivers beads from the charging device to the moderator during the fulfillment process and cools down them during the reactor cycle. The mixture of aromatic hydrocarbons (mesithylen and m-xylen) has been chosen as moderating material. The explanation of the choice of material for novel cold neutron moderators, configuration of moderator complex for the modernized IBR-2 reactor and the main results of optimization of moderator complex for the third stage of moderator development are discussed in the article.

  10. LANDSAT digital data for water pollution and water quality studies in Southern Scandinavia

    Science.gov (United States)

    Hellden, U.; Akersten, I.

    1977-01-01

    Spectral diagrams, illustrating the spectral characteristics of different water types, were constructed by means of simple statistical analysis of the various reflectance properties of water areas in Southern Scandinavia as registered by LANDSAT-1. There were indications that water whose spectral reproduction is dominated by chlorophyllous matter (phytoplankton) can be distinguished from water dominated by nonchlorophyllous matter. Differences between lakes, as well as the patchiness of individual lakes, concerning secchi disc transparency could be visualized after classification and reproduction in black and white and in color by means of line printer, calcomp plotter (CRT), and ink jet plotter respectively.

  11. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  12. Proteorhodopsin in living color: diversity of spectral properties within living bacterial cells.

    Science.gov (United States)

    Kelemen, Bradley R; Du, Mai; Jensen, Rasmus B

    2003-12-03

    Proteorhodopsin is a family of over 50 proteins that provide phototrophic capability to marine bacteria by acting as light-powered proton pumps. The potential importance of proteorhodopsin to global ocean ecosystems and the possible applications of proteorhodopsin in optical data storage and optical signal processing have spurred diverse research in this new family of proteins. We show that proteorhodopsin expressed in Escherichia coli is functional and properly inserted in the membrane. At high expression levels, it appears to self-associate. We present a method for determining spectral properties of proteorhodopsin in intact E. coli cells that matches results obtained with detergent-solubilized, purified proteins. Using this method, we observe distinctly different spectra for protonated and deprotonated forms of 21 natural proteorhodopsin proteins in intact E. coli cells. Upon protonation, the wavelength maxima red shifts between 13 and 53 nm. We find that pKa values between 7.1 and 8.5 describe the pH-dependent spectral shift for all of the 21 natural variants of proteorhodopsin. The wavelength maxima of the deprotonated forms of the 21 natural proteorhodopsins cluster in two sequence-related groups: blue proteorhodopsins (B-PR) and green proteorhodopsins (G-PR). The site-directed substitution Leu105Gln in Bac31A8 proteorhodopsin shifts this G-PR's wavelength maximum to a wavelength maximum the same as that of the B-PR Hot75m1 proteorhodopsin. The site-directed substitution Gln107Leu in Hot75m1 proteorhodopsin shifts this B-PR's wavelength maximum to a wavelength maximum as that of Bac31A8 proteorhodopsin.

  13. Raman spectral and electrochemical studies of lithium/electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Odziemkowski, M

    1922-01-01

    Cyclic voltammetry, corrosion potential-time transients and Normal Raman spectroscopy have been employed to characterize the lithium-lithium salt, organic solvent, interfacial region. An in-situ cutting technique was developed to expose lithium metal. In-situ optical and ex-situ scanning electron microscopy (SEM) have been used to examine the morphology of the lithium electrode surface during exposure at open circuit and after anodic polarization. The main reaction product detected by in-situ Raman spectroscopy in the system/lithium/LiAsF[sub 6], tetrahydrofuran (THF) electrolyte was polytetrahydrofuran (PTHF). The conditions for the polymerization reaction in the presence of lithium metal have been determined. Tetrahydrofuran (THF) decomposition reaction mechanisms are discussed. Decomposition reaction products have been determined as arsenic (II) oxide, As[sub 2]O[sub 3] (arsenolite) and arsenious oxyfluoride AsF[sub 2]-O-AsF[sub 2]. Potentiodynamic polarization measurements revealed a substantial shift of the corrosion potential towards positive values and only a moderate increase of anodic dissolution current for in-situ cut lithium metal. Corrosion potential-time merits have been measured. The following electrolytes have been investigated: LiAsF[sub 6], LiPF[sub 6], LiClO[sub 4], and Li(CF[sub 3]SO[sub 2])[sub 2]N in THF, 2Me-THF, and propylene carbonate (PC). The transients permit the ranking of the reactivity of the electrolytes. These measurements have shed light on understanding the stability of various stability and and solvents in contact with lithium. Compared to purified electrolytes, small amounts of water shift the corrosion potential towards even more positive values. Intensive anodic cycling of a Li electrode in unpurified LiAsF[sub 6]/THF electrolyte leads to the breakdown of a surface film/films. While at the open circuit potential (OCP), water in this same electrolyte leads to crack formation in the bulk lithium electrode.

  14. [Night work, shift work: Breast cancer risk factor?].

    Science.gov (United States)

    Benabu, J-C; Stoll, F; Gonzalez, M; Mathelin, C

    2015-12-01

    The aim of this review was to determine the link between night/shift work and breast cancer. The analysed articles were taken from the PUBMED database between 1996 and 2015. The keywords used were "breast cancer risk", "night work" and "shift work". In total, 25 articles were selected. Night/shift workers are more at risk to develop a breast cancer (relative risk (RR) between 1.09; 95% CI: 1.02-1.20 and 1.48; 95% CI: 1.36-1.61 in the meta-analyses). However, this risk is not found by some cohort and case-control studies. The circadian rhythm disruption, responsible of disorderliness of melatonin secretion, could be one of the mechanisms involved in the increase of that risk. Hormonal status of night/shift workers, their geographic origin, their lifestyle and their vitamin D deficiency appear as other mechanisms potentially responsible for increased risk of cancer in this professional population. Moreover, a dose-effect connection may exist, with an increase of the risk with the number of years of night/shift work. Night/shift work is associated with a moderate increased risk of breast cancer, especially among women who worked over 20 years. Recommendations concerning the breast monitoring in this population could be diffused. The benefit of melatonin supplementation remains to be assessed. Copyright © 2015. Published by Elsevier SAS.

  15. Fluid distribution and tissue thickness changes in 29 men during 1 week at moderate altitude (2,315 m).

    Science.gov (United States)

    Gunga, H C; Kirsch, K; Baartz, F; Steiner, H J; Wittels, P; Röcker, L

    1995-01-01

    To quantify fluid distribution at a moderate altitude (2,315 m) 29 male subjects were studied with respect to tissue thickness changes [front (forehead), sternum, tibia], changes of total body water, changes of plasma volume, total protein concentrations (TPC), colloid osmotic pressure (COP), and electrolytes. Tissue thickness at the forehead showed a significant increase from 4.14 mm to 4.41 mm 48 h after ascent to the Rudolfshuette (2,315 m) (P Rudolf-shuette in Saalfelden (744 m) COP was back to the control values. The TPC also showed an initial drop from 7.75 g.dl-1 to 7.48 g.dl-1 after 48 h at altitude and remained below the control value during the whole week (P < 0.01). It seems from our study that even with exposure to moderate altitude measurable fluid shifts to the upper part of the body occurred which were detected by our ultrasound method.

  16. A Technique For Remote Sensing Of Suspended Sediments And Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    Science.gov (United States)

    Li, R.; Kaufman, Y.

    2002-12-01

    ABSTRACT We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 æm that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  17. Consumption of low-moderate level arsenic contaminated water does not increase spontaneous pregnancy loss: a case control study.

    Science.gov (United States)

    Bloom, Michael S; Neamtiu, Iulia A; Surdu, Simona; Pop, Cristian; Lupsa, Ioana Rodica; Anastasiu, Doru; Fitzgerald, Edward F; Gurzau, Eugen S

    2014-10-13

    Previous work suggests an increased risk for spontaneous pregnancy loss linked to high levels of inorganic arsenic (iAs) in drinking water sources (>10 μg/L). However, there has been little focus to date on the impact of low-moderate levels of iAs in drinking water (control study in Timis County, Romania. We recruited women with incident spontaneous pregnancy loss of 5-20 weeks completed gestation as cases (n = 150), and women with ongoing pregnancies matched by gestational age (±1 week) as controls (n = 150). Participants completed a physician-administered questionnaire and we collected water samples from residential drinking sources. We reconstructed residential drinking water exposure histories using questionnaire data weighted by iAs determined using hydride generation-atomic absorption spectrometry (HG-AAS). Logistic regression models were used to generate odds ratios (OR) and 95% confidence intervals (CI) for associations between iAs exposure and loss, conditioned on gestational age and adjusted for maternal age, cigarette smoking, education and prenatal vitamin use. We explored potential interactions in a second set of models. Drinking water arsenic concentrations ranged from 0.0 to 175.1 μg/L, with median 0.4 μg/L and 90th%tile 9.4 μg/L. There were no statistically significant associations between loss and average or peak drinking water iAs concentrations (OR 0.98, 95% CI 0.96-1.01), or for daily iAs intake (OR 1.00, 95% CI 0.98-1.02). We detected modest evidence for an interaction between average iAs concentration and cigarette smoking during pregnancy (P = 0.057) and for daily iAs exposure and prenatal vitamin use (P = 0.085). These results suggest no increased risk for spontaneous pregnancy loss in association with low to moderate level drinking water iAs exposure. Though imprecise, our data also raise the possibility for increased risk among cigarette smokers. Given the low exposures overall, these data should reassure pregnant

  18. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA.

    Science.gov (United States)

    Jenerette, G Darrel; Harlan, Sharon L; Stefanov, William L; Martin, Chris A

    2011-10-01

    benefits, costs, spatial structure, and temporal trajectory for the use of ecosystem services to moderate climate extremes. Increasing vegetation is one strategy for moderating regional climate changes in urban areas and simultaneously providing multiple ecosystem services. However, vegetation has economic, water, and social equity implications that vary dramatically across neighborhoods and need to be managed through informed environmental policies.

  19. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2017-09-01

    Full Text Available The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow. Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C.In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S, λ2 = 1650 nm (sensitive to τ, and λ3 = 2100 nm (sensitive to reff, C are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012 were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice

  20. Cardiovascular risk factors and primary selection into shift work

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Kirsten; Garde, Anne Helene; Tüchsen, Finn

    2008-01-01

    OBJECTIVES: This study examined differences between future shift workers and future day workers as regards cardiovascular risk factors before they began different work schedules and the differences that remained after control for sociodemographic factors and general self-efficacy. METHODS......: In the unadjusted analyses, baseline obesity was associated with fixed evening work at follow-up. Minimal or light-to-moderate leisure-time physical activity was associated with a decrease in the odds ratio (OR) for two or three shifts including night work. Smoking status was associated with fixed evening work......, fixed night work, and two- or three- shift work including night work. After adjustment for sociodemographic factors and general self-efficacy, smoking was prospectively associated with fixed evening work [OR 1.56, 95% confidence interval (95% CI) 1.21-2.02] and fixed night work (OR 1.64, 95% CI 1...

  1. Study on the effect of moderator density reactivity for Kartini reactor

    International Nuclear Information System (INIS)

    Budi Rohman; Widarto

    2009-01-01

    One of important characteristics of water-cooled reactors is the change of reactivity due to change in the density of coolant or moderator. This parameter generally has negative value and it has significant role in preventing the excursion of power during operation. Many thermal-hydraulic codes for nuclear reactors require this parameter as the input to account for reactivity feedback due to increase in moderator voids and the subsequent decrease in moderator density during operation. Kartini reactor is cooled and moderated by water, therefore, it is essential to study the effect of the change in moderator density as well as to determine the value of void or moderator density reactivity coefficient in order to characterize its behavior resulting from the presence of vapor or change of moderator density during operation. Analysis by MCNP code shows that the reactivity of core is decreasing with the decrease in moderator density. The analysis estimates the void or moderator density reactivity coefficient for Kartini Reactor to be -2.17×10-4 Δρ/ % void . (author)

  2. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    Science.gov (United States)

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  3. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    Science.gov (United States)

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  4. Effects of irregular-shift work and physical activity on cardiovascular risk factors in truck drivers

    Directory of Open Access Journals (Sweden)

    Elaine Cristina Marqueze

    2013-06-01

    Full Text Available OBJECTIVE: To analyze the putative effect of type of shift and its interaction with leisure-time physical activity on cardiovascular risk factors in truck drivers. METHODS: A cross-sectional study was undertaken on 57 male truck drivers working at a transportation company, of whom 31 worked irregular shifts and 26 worked on the day-shift. Participants recorded their physical activity using the International Physical Activity Questionnaire along with measurements of blood pressure, body mass index and waist-hip ratio. Participants also provided a fasting blood sample for analysis of lipid-related outcomes. Data were analyzed using a factorial model which was covariate-controlled for age, smoking, work demand, control at work and social support. RESULTS: Most of the irregular-shift and day-shift workers worked more than 8 hours per day (67.7% and 73.1%, respectively. The mean duration of experience working the irregular schedule was 15.7 years. Day-shift workers had never engaged in irregular-shift work and had been working as a truck driver for 10.8 years on average. The irregular-shift drivers had lower work demand but less control compared to day-shift drivers (p < 0.05. Moderately-active irregular-shift workers had higher systolic and diastolic arterial pressures (143.7 and 93.2 mmHg, respectively than moderately-active day-shift workers (116 and 73.3 mmHg, respectively (p < 0.05 as well as higher total cholesterol concentrations (232.1 and 145 mg/dl, respectively (p = 0.01. Irrespective of their physical activity, irregular-shift drivers had higher total cholesterol and LDL-cholesterol concentrations (211.8 and 135.7 mg/dl, respectively than day-shift workers (161.9 and 96.7 mg/dl, respectively (ANCOVA, p < 0.05. CONCLUSIONS: Truck drivers are exposed to cardiovascular risk factors due to the characteristics of the job, such as high work demand, long working hours and time in this profession, regardless of shift type or leisure-time physical

  5. Is suicidal ideation linked to working hours and shift work in Korea?

    Science.gov (United States)

    Yoon, Chang-Gyo; Bae, Kyu-Jung; Kang, Mo-Yeol; Yoon, Jin-Ha

    2015-01-01

    This study attempted to use the community health survey (CHS) to identify the effect of long working hours (long WHs) and night/shift work on suicidal ideation among the employed population of Korea. This study used data from 67,471 subjects who were administered the 2008 CHS which obtained information regarding sociodemographic characteristics, health behaviors and working environment, using structured questionnaires and personal interviews. We adopted multiple logistic regression models for gender and employment stratification. Among male employees, suicidal ideation was significantly associated with only moderately long WHs (51-60 hours), after controlling covariates (adjusted odds ratio [aOR], 1.30; 95% confidence interval [95%CI], 1.07 to 1.57). Self-employed/male employer populations had higher suicidal ideation when they had moderately long WHs (aOR, 1.23; 95%CI, 1.01 to 1.50) and very long WHs (over 60 hours) (aOR, 1.31; 95%CI, 1.08 to 1.59). Among the female population, suicidal ideation was significantly association with moderately long WHs in the employee group (aOR, 1.31; 95%CI, 1.08 to 1.58) and moderately (aOR, 1.35; 95%CI, 1.08 to 1.69) and very (aOR, 1.33; 95%CI, 1.07 to 1.65) long WHs in the self-employed/employer group. Shift work was a significant predictor only in the female population in the employee groups (aOR, 1.45; 95%CI, 1.23 to 1.70). Long WHs and shift work were associated with suicidal ideation when taking into account gender and employment differences. The harmful effects of exceptionally long WHs in Korea, among other Organization for Economic Co-operation and Development (OECD) countries, raise concerns about public and occupational health. To address the issue of long WHs, labor policies that reduce maximum working hours and facilitate job stability are needed.

  6. The legacy of large regime shifts in shallow lakes.

    Science.gov (United States)

    Ramstack Hobbs, Joy M; Hobbs, William O; Edlund, Mark B; Zimmer, Kyle D; Theissen, Kevin M; Hoidal, Natalie; Domine, Leah M; Hanson, Mark A; Herwig, Brian R; Cotner, James B

    2016-12-01

    Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. We examine the modern and historical stability of 11 shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 yr suggest that (1) the diatom assemblage is characteristic of either clear or turbid lakes, (2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state, (3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 yr and have since remained in a regime where turbid-water predominates, and (4) top-down impacts to the lake food-web from fish introductions appear to be the dominant driver of strong regime shifts and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention. © 2016 by the Ecological Society of America.

  7. Water ice and sub-micron ice particles on Tethys and Mimas

    Science.gov (United States)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side

  8. Natural uranium fueled light water moderated breeding hybrid power reactors: a feasibility study

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    1978-06-01

    The first part of the study consists of a thorough investigation of the properties of subcritical thermal lattices for hybrid reactor applications. Light water is found to be the best moderator for (fuel-self-sufficient) FSS hybrid reactors for power generation. Several lattice geometries and compositions of particular promise for LWHRs are identified. Using one of these lattices, fueled with natural uranium, the performance of several concepts of LWHR blankets is investigated, and optimal blanket designs are identified. The effect of blanket coverage efficiency and the feasibility of separating the functions of tritium breeding and of power generation to different blankets are investigated. Optimal iron-water shields for LWHRs are also determined. The performance of generic types of LWHRs is evaluated. The evolution of the blanket properties with burnup is evaluated and fuel management schemes are briefly examined. The feasibility of using the lithium system of the blanket to control the blanket power amplitude and shape is also investigated. A parametric study of the energy balance of LWHR power plants is carried out, and performance parameters expected from LWHRs are estimated. Discussions are given of special features of LWHRs and their fuel cycle

  9. Development of cold source moderator structure

    International Nuclear Information System (INIS)

    Aso, Tomokaze; Ishikura, Syuichi; Terada, Atsuhiko; Teshigawara, Makoto; Watanabe, Noboru; HIno, Ryutaro

    1999-01-01

    The cold and thermal neutrons generated at the target (which works as a spallation neutron source under a 5MW proton beam condition) is filtered with cold source moderators using supercritical hydrogen. Preliminary structural analysis was carried out to clarify technical problems on the concept of the thin-walled structure for the cold source moderator. Structural analytical results showed that the maximum stress of 1 12MPa occurred on the moderator surface, which exceeded the allowable design stresses of ordinary aluminum alloys. Flow patterns measured by water flow experiments agreed well with hydraulic analytical results, which showed that an impinging jet flow from an inner pipe of the moderator caused a recirculation flow on a large scale. Based on analytical and experimental results, new moderator structures with minute frames, blowing flow holes etc. were proposed to keep its strength and to suppress the recirculation flow. (author)

  10. Spectral interferometric length measurement and tomography

    International Nuclear Information System (INIS)

    Pinkl, W.

    1998-01-01

    This work presents a new method for optical length measurement using the principles of spectral interferometry. Results of thickness measurements on glass plates, the human cornea in vivo and human finger and toe nails in vivo and in vitro are discussed. It could be demonstrated that the absorption coefficient of red and green ink can be measured depth sensitive. Another chapter describes a new technique to measure a thickness profile of a sample within the illuminating beam. It could be demonstrated that a thickness profile over a distance of a few millimeters can be measured with one single measurement. At the Institute of Medical Physics of the University of Vienna a method to measure intraocular distances by the means of interferometry has been developed during the last ten years. Basing on this method (dual beam interferometry) an optical in vivo tomography experiment could be established. A thickness map of the retina of a human eye in vivo can be easily measured. The dual beam technique uses a Michelson interferometer with a moving mirror to adjust the length of the interferometer arms. The mirror is moved by a stepper motor. This movement induces vibrations, misalignment and other disadvantages. So mechanically moved parts as reasons for possible errors should be eliminated. This work shows one possible solution - using the principle of spectral interferometry. A spectral interferometry experiment is a static experiment, no moving parts are used. A spectral interferometry experiment has been used to measure the thickness of glass plates and stacks of glass plates. Using two light sources of different wavelengths spectral absorption properties of a sample can be measured depth sensitive. This could be demonstrated with stacks of glass plates and the use of red and green ink between two plates. The obtained results are compared to the results of a computer simulation. To demonstrate the ability of spectral interferometry to measure the thickness of biologic

  11. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-05-13

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  12. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    International Nuclear Information System (INIS)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-01-01

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  13. Subsurface water parameters: optimization approach to their determination from remotely sensed water color data.

    Science.gov (United States)

    Jain, S C; Miller, J R

    1976-04-01

    A method, using an optimization scheme, has been developed for the interpretation of spectral albedo (or spectral reflectance) curves obtained from remotely sensed water color data. This method used a two-flow model of the radiation flow and solves for the albedo. Optimization fitting of predicted to observed reflectance data is performed by a quadratic interpolation method for the variables chlorophyll concentration and scattering coefficient. The technique is applied to airborne water color data obtained from Kawartha Lakes, Sargasso Sea, and Nova Scotia coast. The modeled spectral albedo curves are compared to those obtained experimentally, and the computed optimum water parameters are compared to ground truth values. It is shown that the backscattered spectral signal contains information that can be interpreted to give quantitative estimates of the chlorophyll concentration and turbidity in the waters studied.

  14. Blood pressure hyperreactivity: an early cardiovascular risk in normotensive men exposed to low-to-moderate inorganic arsenic in drinking water.

    Science.gov (United States)

    Kunrath, Julie; Gurzau, Eugen; Gurzau, Anca; Goessler, Walter; Gelmann, Elyssa R; Thach, Thu-Trang; McCarty, Kathleen M; Yeckel, Catherine W

    2013-02-01

    Essential hypertension is associated with chronic exposure to high levels of inorganic arsenic in drinking water. However, early signs of risk for developing hypertension remain unclear in people exposed to chronic low-to-moderate inorganic arsenic. We evaluated cardiovascular stress reactivity and recovery in healthy, normotensive, middle-aged men living in an arsenic-endemic region of Romania. Unexposed (n = 16) and exposed (n = 19) participants were sampled from communities based on WHO limits for inorganic arsenic in drinking water (Water sources and urine samples were collected and analyzed for inorganic arsenic and its metabolites. Functional evaluation of blood pressure included clinical, anticipatory, cold pressor test, and recovery measurements. Blood pressure hyperreactivity was defined as a combined stress-induced change in SBP (> 20 mmHg) and DBP (>15 mmHg). Drinking water inorganic arsenic averaged 40.2 ± 30.4 and 1.0 ± 0.2 μg/l for the exposed and unexposed groups, respectively (P pressure hyperreactivity to both anticipatory stress (47.4 vs. 12.5%; P = 0.035) and cold stress (73.7 vs. 37.5%; P = 0.044). Moreover, the exposed group exhibited attenuated blood pressure recovery from stress and a greater probability of persistent hypertensive responses (47.4 vs. 12.5%; P = 0.035). Inorganic arsenic exposure increased stress-induced blood pressure hyperreactivity and poor blood pressure recovery, including persistent hypertensive responses in otherwise healthy, clinically normotensive men. Drinking water containing even low-to-moderate inorganic arsenic may act as a sympathetic nervous system trigger for hypertension risk.

  15. Heart rate variability changes in business process outsourcing employees working in shifts.

    Science.gov (United States)

    Kunikullaya, Kirthana U; Kirthi, Suresh K; Venkatesh, D; Goturu, Jaisri

    2010-10-31

    Irregular and poor quality sleep is common in business process outsourcing (BPO) employees due to continuous shift working. The influence of this on the cardiac autonomic activity was investigated by the spectral analysis of heart rate variability (HRV). 36 night shift BPO employees (working from 22:00 to 06:00h) and 36 age and sex matched day shift BPO employees (working from 08:00 to 16:00h) were recruited for the study. Five minute electrocardiogram (ECG) was recorded in all the subjects. Heart rate variability was analyzed by fast Fourier transformation using RMS Vagus HRV software. The results were analyzed using Mann Whitney U test, Student t-test, Wilcoxon signed rank test and were expressed as mean ± SD. Sleepiness was significantly higher among night shift workers as measured by Epworth Sleepiness Scale (p<0.001). Night shift BPO employees were found to have a trend towards lower values of vagal parameters - HF power (ms(2)), and higher values of sympathovagal parameters like LF Power (ms(2)) and the LF/HF power (%) suggesting decreased vagal activity and sympathetic over activity, when compared to day shift employees. However, HRV parameters did not vary significantly between the day shift employees and night shift workers baseline values, and also within the night shift group. Night shift working increased the heart rate and shifted the sympathovagal balance towards sympathetic dominance and decreased vagal parameters of HRV. This is an indicator of unfavorable change in the myocardial system, and thus shows increased risk of cardiovascular disease among the night shift employees.

  16. Tapered amplifier laser with frequency-shifted feedback

    Directory of Open Access Journals (Sweden)

    A. Bayerle, S. Tzanova, P. Vlaar, B. Pasquiou, F. Schreck

    2016-10-01

    Full Text Available We present a frequency-shifted feedback (FSF laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.

  17. Moderator behaviour and reactor internals integrity at Atucha I NPP

    International Nuclear Information System (INIS)

    Berra, S.; Guala, M.; Herzovich, P.; Chocron, M.; Lorenzo, A.; Raffo Calderon, Ma. C. del; Urrutia, G.

    1996-01-01

    Atucha I is a Pressure Vessel Heavy Water Cooled Heavy Water Moderator Reactor. In this kind of reactor the moderator tank is physically connected to the primary coolant. Since neutron economy requires the moderator to be as cold as possible, it is necessary that even when physically connected, it should have a separated cooling system, which in this case is also used as a feed-water preheater, and also heat mass transfer with primary coolant should be minimized. This condition requires that some reactor internals are designed in principle to last the whole life of the plant. However, in 1988 the failure of one internal produced a 16 month shut down. This incident could have been prevented but the idea that reactor internals would not have failures due to aging was dominant at that time avoiding the early detection of the failure. However, the analysis of the records after the incident showed that some process variables had changed previously to the incident, i.e., power exchanged at the moderator heat exchanger had increased. Since the station restart up some changes in the moderator process variables and a flow rate reduction of about 10% through the primary side of one moderator cooler were observed. In order to understand the flow reduction and the overall behaviour of moderators parameters, two models were developed that predict moderator and moderator cooler behavior under the new conditions. The present paper refers to these models, which together with the improvement of process variables measurements mentioned in another paper presented at this meeting permits to understand current moderator behaviour and helps to early diagnostic of an eventual reactor internal failure. (author). 2 refs, 4 figs, 1 tab

  18. Moderator behaviour and reactor internals integrity at Atucha I NPP

    Energy Technology Data Exchange (ETDEWEB)

    Berra, S; Guala, M; Herzovich, P [Central Nuclear Atucha I, Nucleoelectrica Argentina, Lima, Buenos Aires (Argentina); Chocron, M; Lorenzo, A; Raffo Calderon, Ma. C. del; Urrutia, G [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Constituyentes

    1997-12-31

    Atucha I is a Pressure Vessel Heavy Water Cooled Heavy Water Moderator Reactor. In this kind of reactor the moderator tank is physically connected to the primary coolant. Since neutron economy requires the moderator to be as cold as possible, it is necessary that even when physically connected, it should have a separated cooling system, which in this case is also used as a feed-water preheater, and also heat mass transfer with primary coolant should be minimized. This condition requires that some reactor internals are designed in principle to last the whole life of the plant. However, in 1988 the failure of one internal produced a 16 month shut down. This incident could have been prevented but the idea that reactor internals would not have failures due to aging was dominant at that time avoiding the early detection of the failure. However, the analysis of the records after the incident showed that some process variables had changed previously to the incident, i.e., power exchanged at the moderator heat exchanger had increased. Since the station restart up some changes in the moderator process variables and a flow rate reduction of about 10% through the primary side of one moderator cooler were observed. In order to understand the flow reduction and the overall behaviour of moderators parameters, two models were developed that predict moderator and moderator cooler behavior under the new conditions. The present paper refers to these models, which together with the improvement of process variables measurements mentioned in another paper presented at this meeting permits to understand current moderator behaviour and helps to early diagnostic of an eventual reactor internal failure. (author). 2 refs, 4 figs, 1 tab.

  19. Estimation of time delay and wavelength shift for highly nonlinear multilayer waveguide by using time transformation approach

    Science.gov (United States)

    Chatterjee, Roshmi; Basu, Mousumi

    2018-02-01

    The well known time transformation method is used here to derive the temporal and spectral electric field distribution at the output end of a multilayer waveguide which consists of different layers of Kerr nonlinear media. A highly nonlinear CS 3-68 glass is considered as one of the materials of the waveguide which mainly comprises of different chalcogenide glass layers. The results indicate that there is sufficient time delay as well as frequency shift between the input and output pulses which is associated with the phenomenon of adiabatic wavelength conversion (AWC). Depending on different arrangements of materials, the time delay and frequency shift can be changed. As a result an input pulse in visible green region can be blue-shifted or red-shifted according to the choices of refractive index of the non-dispersive Kerr nonlinear media. The results show that under certain conditions the input pulse is broadened or compressed for different combinations of materials. This process of AWC also includes the variation of temporal and spectral phase, time delay, temporal peak power etc. For different input pulse shapes the change in time delay is also presented. The study may be useful to find applications of AWC in optical resonators or optical signal processing to be applicable to different photonic devices.

  20. A Conceptual Supercritical Water Cooled Reactor Design Using a Cruciform Solid Moderator

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Bae, Kang Mok; Yoo, Jae Woon; Lee, Hyun Chul; Noh, Jae Man; Bae, Yoon Yong

    2006-01-15

    A Super Critical Water-Cooled Reactor(SCWR) concept proposed by Gen-IV has an advantage of a high thermal efficiency. However, there are some difficulties in neutronic core design for a SCWR due to lower moderator density resulting from the high operating temperature over the pseudo-critical temperature. In this report, the design concepts for the fuel assembly and the core for a SCWR were described as a feasibility study on the SCWR core design. HELIOS lattice code which will be used for group constants generation was verified for the application to the low coolant density condition of a SCWR. The TAF module for a thermal hydraulic feedback in MASTER was modified to consider high pressure and temperature of the supercritical coolant with single-phase fluid. A cruciform ZrH{sub 2} solid moderator was proposed for the SCWR fuel assembly design to compensate the lower coolant density. The axial zoning concept with three different enrichments for a fuel rod was used for the axial power shape control. Gadolinia burnable poison rods were used to reduce excess reactivity. Control rod system was grouped into 6 banks to control the excess reactivity of the core during normal operation. An orifice concept for each assembly was applied to control a coolant flow rate individually. As a result of the neutronic analysis for the equilibrium SCWR core, the maximum linear heat generation rete limit was satisfied and the maximum coolant temperature of the core outlet was {approx}590 .deg. C which is lower than 620 .deg. C of the maximum clad temperature limit.