WorldWideScience

Sample records for water-level downhole pressure

  1. Downhole pressure sensor

    Science.gov (United States)

    Berdahl, C. M.

    1980-01-01

    Sensor remains accurate in spite of varying temperatures. Very accurate, sensitive, and stable downhole pressure measurements are needed for vaiety of reservoir engineering applications, such as deep petroleum reservoirs, especially gas reservoirs, and in areas of high geothermal gradient.

  2. Delay Pressure Detection Method to Eliminate Pump Pressure Interference on the Downhole Mud Pressure Signals

    Directory of Open Access Journals (Sweden)

    Yue Shen

    2013-01-01

    Full Text Available The feasibility of applying delay pressure detection method to eliminate mud pump pressure interference on the downhole mud pressure signals is studied. Two pressure sensors mounted on the mud pipe in some distance apart are provided to detect the downhole mud continuous pressure wave signals on the surface according to the delayed time produced by mud pressure wave transmitting between the two sensors. A mathematical model of delay pressure detection is built by analysis of transmission path between mud pump pressure interference and downhole mud pressure signals. Considering pressure signal transmission characteristics of the mud pipe, a mathematical model of ideal low-pass filter for limited frequency band signal is introduced to study the pole frequency impact on the signal reconstruction and the constraints of pressure sensor distance are obtained by pole frequencies analysis. Theoretical calculation and numerical simulation show that the method can effectively eliminate mud pump pressure interference and the downhole mud continuous pressure wave signals can be reconstructed successfully with a significant improvement in signal-to-noise ratio (SNR in the condition of satisfying the constraints of pressure sensor distance.

  3. Early Detection and Localization of Downhole Incidents in Managed Pressure Drilling

    DEFF Research Database (Denmark)

    Willersrud, Anders; Imsland, Lars; Blanke, Mogens

    2015-01-01

    Downhole incidents such as kick, lost circulation, pack-off, and hole cleaning issues are important contributors to downtime in drilling. In managed pressure drilling (MPD), operations margins are typically narrower, implying more frequent incidents and more severe consequences. Detection...... and handling of symptoms of downhole drilling contingencies at an early stage are therefore crucial for the reliability and safety of MPD operations. In this paper we describe a method for early detection and localization of such incidents, based on a fit for purpose model of the downhole pressure hydraulics...... successfully been tested on experimental data from a medium-scale horizontal flow loop in Sta- vanger, Norway. The flow loop represents a 700 m borehole with emulation of the following downhole contingencies: drillstring washout, drill bit nozzle plugging, gas influx and fluid loss. In the tests...

  4. The study and improvement of water level control of pressurizer

    International Nuclear Information System (INIS)

    Gao Peng; Zhang Qinshun

    2006-01-01

    The PI controller which is used widely in water level control of pressurizer in reactor control system usually leads dynamic overshoot and long setting time. The improvement project for intelligent fuzzy controller to take the place of PI controller is advanced. This paper researches the water level control of pressurizer in reactor control system of Daya Bay Phase I, and describes the method of intelligent fuzzy control in practice. Simulation indicates that the fuzzy control has advantages of small overshoot and short settling time. It can also improve control system's real time property and anti-interference ability. Especially for non-linear and time-varying complicated control systems, it can obtain good control results. (authors)

  5. An improved fiber optic pressure and temperature sensor for downhole application

    International Nuclear Information System (INIS)

    Aref, S H; Zibaii, M I; Latifi, H

    2009-01-01

    We report on the fabrication of a high pressure extrinsic Fabry–Perot interferometric (EFPI) fiber optic sensor for downhole applications by using a mechanical transducer. The mechanical transducer has been used for increasing the pressure sensitivity and the possibility of installation of the sensor downhole. The pressure–temperature cross-sensitivity (PTCS) problem has been solved by replacing the reflecting fiber with a metal microwire in the EFPI sensor. In this way the PTCS coefficient of the sensor was decreased from 47.25 psi °C −1 to 7 psi °C −1 . By using a new EFPI design, a temperature sensor was fabricated. Further improvement in the pressure and temperature sensor has been done by developing fabrication technique and signal processing

  6. Production of natural gas from methane hydrate by a constant downhole pressure well

    International Nuclear Information System (INIS)

    Ahmadi, Goodarz; Ji, Chuang; Smith, Duane H.

    2007-01-01

    Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied

  7. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, J., E-mail: j-sadeghi@sbu.ac.ir; Chenari, Z.; Ziaee, F. [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Latifi, H., E-mail: latifi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Santos, J. L., E-mail: josantos@fc.up.pt [INESC Porto—Instituto de Engenharia de Sistemas e Computadores do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Física, da Faculdade de Ciências, da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2014-02-17

    Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 × 10{sup −5} nm/psi at 1480 nm to 1.3 × 10{sup −3} nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from −3.4 × 10{sup −6} 1/psi to −1.3 × 10{sup −6} 1/psi and from −5 × 10{sup −6} 1/psi to −1.8 × 10{sup −6} 1/psi, respectively, which were in a good accordance with each other.

  8. The nuclear physical method for high pressure steam manifold water level gauging and its error

    International Nuclear Information System (INIS)

    Li Nianzu; Li Beicheng; Jia Shengming

    1993-10-01

    A new method, which is non-contact on measured water level, for measuring high pressure steam manifold water level with nuclear detection technique is introduced. This method overcomes the inherent drawback of previous water level gauges based on other principles. This method can realize full range real time monitoring on the continuous water level of high pressure steam manifold from the start to full load of boiler, and the actual value of water level can be obtained. The measuring errors were analysed on site. Errors from practical operation in Tianjin Junliangcheng Power Plant and in laboratory are also presented

  9. Type GQS-1 high pressure steam manifold water level monitoring system

    International Nuclear Information System (INIS)

    Li Nianzu; Li Beicheng; Jia Shengming

    1993-10-01

    The GQS-1 high pressure steam manifold water level monitoring system is an advanced nuclear gauge that is suitable for on-line detecting and monitor in high pressure steam manifold water level. The physical variable of water level is transformed into electrical pulses by the nuclear sensor. A computer is equipped for data acquisition, analysis and processing and the results are displayed on a 14 inch color monitor. In addition, a 4 ∼ 20 mA output current is used for the recording and regulation of water level. The main application of this gauge is for on-line measurement of high pressure steam manifold water level in fossil-fired power plant and other industries

  10. The effect of pressurizer-water-level on the low frequency component of the pressure spectrum in a PWR

    International Nuclear Information System (INIS)

    Por, G.; Izsak, E.; Valko, J.

    1984-09-01

    The pressure fluctuations were measured in the cooling system of the Paks-1 reactor. A shift of the peak was detected in low frequency component of the pressure fluctuation spectrum which is due to the fluctuations of water level in the pressurizer. Using the model of Katona and Nagy (1983), the eigenfrequencies, the magnitude of the shift and the sensitivity to the pressurizer water level were reproduced in good accordance with the experimental data. (D.Gy.)

  11. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  12. Data quality assurance in pressure transducer-based automatic water level monitoring

    Science.gov (United States)

    Submersible pressure transducers integrated with data loggers have become relatively common water-level measuring devices used in flow or well water elevation measurements. However, drift, linearity, hysteresis and other problems can lead to erroneous data. Researchers at the USDA-ARS in Watkinsvill...

  13. Use of inexpensive pressure transducers for measuring water levels in wells

    Science.gov (United States)

    Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.

    1997-01-01

    Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.

  14. Structural integrity investigation for RPV with various cooling water levels under pressurized melting pool

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-03-01

    Full Text Available The strategy denoted as in-vessel retention (IVR is widely used in severe accident (SA management by most advanced nuclear power plants. The essence of IVR mitigation is to provide long-term external water cooling in maintaining the reactor pressure vessel (RPV integrity. Actually, the traditional IVR concept assumed that RPV was fully submerged into the water flooding, and the melting pool was depressurized during the SA. The above assumptions weren't seriously challenged until the occurrence of Fukushima accident on 2011, suggesting the structural behavior had not been appropriately assessed. Therefore, the paper tries to address the structure-related issue on determining whether RPV safety can be maintained or not with the effect of various water levels and internal pressures created from core meltdown accident. In achieving it, the RPV structural behaviors are numerically investigated in terms of several field parameters, such as temperature, deformation, stress, plastic strain, creep strain, and total damage. Due to the presence of high temperature melt on the inside and water cooling on the outside, the RPV failure is governed by the failure mechanisms of creep, thermal-plasticity and plasticity. The creep and plastic damages are interacted with each other, which further accelerate the failure process. Through detailed investigation, it is found that the internal pressure as well as water levels plays an important role in determining the RPV failure time, mode and site.

  15. Fuzzy logic control of steam generator water level in pressurized water reactors

    International Nuclear Information System (INIS)

    Kuan, C.C.; Lin, C.; Hsu, C.C.

    1992-01-01

    In this paper a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical mode of the object to be controlled. The design is based on a set of linguistic rules that were adopted from the human operator's experience. After off-line fuzzy computation, the controller is a lookup table, and thus, real-time control is achieved. Shrink-and-swell phenomena are considered in the linguistic rules, and the simulation results show that their effect is dramatically reduced. The performance of the control system can also be improved by changing the input and output scaling factors, which is convenient for on-line tuning

  16. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    OpenAIRE

    Yuji Nishi; Tsuneo Ishido

    2012-01-01

    In order to appraise the utility of self-potential (SP) measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulati...

  17. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    Directory of Open Access Journals (Sweden)

    Yuji Nishi

    2012-01-01

    Full Text Available In order to appraise the utility of self-potential (SP measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulations of electrokinetic phenomena in MINC (multiple interacting continua double-porosity media, was observed near the fractures. Semilog plots of the ratio of SP change to pressure change observed in one of the two wells show obvious transition from intermediate time increasing to late time stable trends, which indicate that the time required for pressure equilibration between the fracture and matrix regions is about 800 seconds. Fracture spacing was estimated to be a few meters assuming several micro-darcies (10-18 m2 of the matrix region permeability, which is consistent with geological and hydrological observations.

  18. Water level measurement system in reactor pressure vessel of BWR and hydrogen concentration monitoring system for severe accident

    International Nuclear Information System (INIS)

    Kuroda, Hidehiko; Okazaki, Koki; Shiraishi, Fujio; Kenjyo, Hiroaki; Isoda, Koichiro

    2013-01-01

    TEPCO's Fukushima Daiichi Nuclear Power Station Accident caused severe accident to lose functions of many instrumentation systems. As a result, many important plant parameters couldn't be monitored. In order to monitor plant parameters in the case of severe accident, new instrumentation systems available in the severe conditions are being developed. Water level in reactor pressure vessel and hydrogen concentration in primary containment vessel are one of the most important parameters. Performance test results about water level measurement sensor and hydrogen sensor in severe environmental conditions are described. (author)

  19. Comparison Of Vented And Absolute Pressure Transducers For Water-Level Monitoring In Hanford Site Central Plateau Wells

    International Nuclear Information System (INIS)

    Mcdonald, J.P.

    2011-01-01

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  20. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Science.gov (United States)

    2010-10-01

    ... § 52.01-110 Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure... 46 Shipping 2 2010-10-01 2010-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST...

  1. Downhole seismic monitoring with Virtual Sources

    Science.gov (United States)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Huge quantities of remaining oil and gas reserves are located in very challenging geological environments covered by salt, basalt or other complex overburdens. Conventional surface seismology struggles to deliver images necessary to economically explore them. Even if those reserves are found by drilling successful production critically depends on our ability to ``see" in real time where fluids are drawn from and how pressure changes throughout the reservoirs. For relatively simple overburdens surface time-lapse (4D) seismic monitoring became industry choice for aerial reservoir surveillance. For complex overburdens, 4D seismic does not have enough resolution and repeatability to answer the questions of reservoir engineers. For instance, often reservoir changes are too small to be detected from surface or these changes occur in such pace that all wells will be placed before we can detect them which greatly reduces the economical impact. Two additional challenges are present in real life that further complicate active monitoring: first, near-surface condition do change between the surveys (water level movement, freezing/thawing, tide variations etc) and second, repeating exact same acquisition geometry at the surface is difficult in practice. Both of these things may lead to false 4D response unrelated to reservoir changes. Virtual Source method (VSM) has been recently proposed as a way to eliminate overburden distortions for imaging and monitoring. VSM acknowledges upfront that our data inversion techniques are unable to unravel the details of the complex overburdens to the extent necessary to remove the distortions caused by them. Therefore VSM advocates placing permanent downhole geophones below that most complex overburden while still exciting signals with a surface sources. For instance, first applications include drilling instrumented wells below complicated near-surface, basalt or salt layer. Of course, in an ideal world we would prefer to have both downhole

  2. In situ stress and pore pressure in the Kumano Forearc Basin, offshore SW Honshu from downhole measurements during riser drilling

    Science.gov (United States)

    Saffer, D. M.; Flemings, P. B.; Boutt, D.; Doan, M.-L.; Ito, T.; McNeill, L.; Byrne, T.; Conin, M.; Lin, W.; Kano, Y.; Araki, E.; Eguchi, N.; Toczko, S.

    2013-05-01

    situ stress and pore pressure are key parameters governing rock deformation, yet direct measurements of these quantities are rare. During Integrated Ocean Drilling Program (IODP) Expedition #319, we drilled through a forearc basin at the Nankai subduction zone and into the underlying accretionary prism. We used the Modular Formation Dynamics Tester tool (MDT) for the first time in IODP to measure in situ minimum stress, pore pressure, and permeability at 11 depths between 729.9 and 1533.9 mbsf. Leak-off testing at 708.6 mbsf conducted as part of drilling operations provided a second measurement of minimum stress. The MDT campaign included nine single-probe (SP) tests to measure permeability and in situ pore pressure and two dual-packer (DP) tests to measure minimum principal stress. Permeabilities defined from the SP tests range from 6.53 × 10-17 to 4.23 × 10-14 m2. Pore fluid pressures are near hydrostatic throughout the section despite rapid sedimentation. This is consistent with the measured hydraulic diffusivity of the sediments and suggests that the forearc basin should not trap overpressures within the upper plate of the subduction zone. Minimum principal stresses are consistently lower than the vertical stress. We estimate the maximum horizontal stress from wellbore failures at the leak-off test and shallow MDT DP test depths. The results indicate a normal or strike-slip stress regime, consistent with the observation of abundant active normal faults in the seaward-most part of the basin, and a general decrease in fault activity in the vicinity of Site C0009.

  3. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  4. Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.B.

    1983-07-01

    A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

  5. Downhole adjustable bent assemblies

    International Nuclear Information System (INIS)

    Askew, W.E.

    1992-01-01

    This patent describes downhole adjustable apparatus for creating a bend angle in order to affect the inclination of a drilled borehole. It comprises an upper tubular member having an upper portion and a lower portion; lower tubular member having an upper portion and a lower portion; one of the portions being received within the other for relative rotational movement about an axis that is inclined with respect to the the longitudinal axes of the members, whereby in a first rotational position the longitudinal axes have one geometrical relationship, and in a second rotational position the longitudinal axes have a second, different geometrical relationship

  6. Water level indicator

    International Nuclear Information System (INIS)

    Murase, Michio; Araki, Hidefumi.

    1996-01-01

    A difference of pressure between a standard pressure conduit in communication with a gas phase of a reactor pressure vessel and a water level pressure conduit in communication with a liquid phase of the pressure vessel is detected by a pressure difference gage. A communication pipe and a standard level vessel are disposed between the pressure vessel and the standard pressure conduit, and a standard liquid surface on the side of the standard pressure conduit is formed in the standard level vessel. A gas releaser is disposed to the gas phase portion of the standard level vessel. The gas releaser equipment is constituted by a porous material, a permeation membrane and a gas exhaustion hole. The gas phase of the standard level vessel is divided by a partition plate into a first gas phase being in contact with a connection portion with the communication pipe and a second gas phase in contact with the gas releaser. A gas flow channel hole and a condensate descending hole are disposed to the partition plate. Since incondensible gases accumulated to the standard level vessel are effectively exhausted, the incondensible gases are prevented from being dissolved into liquid. (I.N.)

  7. Water level detection pipeline

    International Nuclear Information System (INIS)

    Koshikawa, Yukinobu; Imanishi, Masatoshi; Niizato, Masaru; Takagi, Masahiro

    1998-01-01

    In the present invention, water levels of a feedwater heater and a drain tank in a nuclear power plant are detected at high accuracy. Detection pipeline headers connected to the upper and lower portions of a feedwater heater or a drain tank are connected with each other. The connection line is branched at appropriate two positions and an upper detection pipeline and a lower detection pipeline are connected thereto, and a gauge entrance valve is disposed to each of the detection pipelines. A diaphragm of a pressure difference generator is connected to a flange formed to the end portion. When detecting the change of water level in the feedwater heater or the drain tank as a change of pressure difference, gauge entrance valves on the exit side of the upper and lower detection pipelines are connected by a connection pipe. The gauge entrance valve is closed, a tube is connected to the lower detection pipe to inject water to the diaphragm of the pressure difference generator passing through the connection pipe thereby enabling to calibrate the pressure difference generator. The accuracy of the calibration of instruments is improved and workability thereof upon flange maintenance is also improved. (I.S.)

  8. Development of a PID-Fuzzy controller in the water level control of a pressurizer of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Thiago S.P.; Lira, Carlos A.B.O.; Vasconcelos, Wagner E., E-mail: thiago.brito86@yahoo.com.br, E-mail: cabol@ufpe.br, E-mail: wagner@unicap.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Centro de Ciencias e Tecnologia

    2017-11-01

    It is well known that safety in the operation of nuclear power plants is a primary requirement because a failure of this system can result in serious problems to the environment. A nuclear reactor has several systems that help keep it in normal operation, within safety margins. Many of these systems operate in the control of variable quantities in the primary circuit of a reactor. However, nuclear reactors are nonlinear physical systems, and this introduces a complexity in the control strategies. Among several mechanisms in the thermal-hydraulic system of a reactor that actuate as a controller, the pressurizer is the component responsible for absorbing pressure variations that occur in the primary circuit. This work aims at the development of a PID controller (Proportional Integral Derivative) based on fuzzy logic to operate in a pressurizer of a nuclear Pressurized Water Reactor. A Fuzzy Controller was developed using the process of fuzzification, inference, and defuzzification of the variables of interest to a pressurizer, then this controller was coupled to a PID Controller building a PID Controller, but oriented by Fuzzy logic. Subsequently, the PID-Fuzzy Controller was experimentally validated in a Simulation Plant in which transients like those in a PWR were conducted. The PID parameters were analyzed and adjusted for better responses and results. The results of the validation were also compared to simple controllers (on / off). (author)

  9. Development of a PID-Fuzzy controller in the water level control of a pressurizer of a nuclear reactor

    International Nuclear Information System (INIS)

    Brito, Thiago S.P.; Lira, Carlos A.B.O.; Vasconcelos, Wagner E.; Universidade Catolica de Pernambuco

    2017-01-01

    It is well known that safety in the operation of nuclear power plants is a primary requirement because a failure of this system can result in serious problems to the environment. A nuclear reactor has several systems that help keep it in normal operation, within safety margins. Many of these systems operate in the control of variable quantities in the primary circuit of a reactor. However, nuclear reactors are nonlinear physical systems, and this introduces a complexity in the control strategies. Among several mechanisms in the thermal-hydraulic system of a reactor that actuate as a controller, the pressurizer is the component responsible for absorbing pressure variations that occur in the primary circuit. This work aims at the development of a PID controller (Proportional Integral Derivative) based on fuzzy logic to operate in a pressurizer of a nuclear Pressurized Water Reactor. A Fuzzy Controller was developed using the process of fuzzification, inference, and defuzzification of the variables of interest to a pressurizer, then this controller was coupled to a PID Controller building a PID Controller, but oriented by Fuzzy logic. Subsequently, the PID-Fuzzy Controller was experimentally validated in a Simulation Plant in which transients like those in a PWR were conducted. The PID parameters were analyzed and adjusted for better responses and results. The results of the validation were also compared to simple controllers (on / off). (author)

  10. Challenges in Downhole Multiphase Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aspelund, A.; Midttveit, Oe.; Richards, A.

    1996-12-31

    Permanent downhole multi-phase monitoring (DMM) can have several advantages in field development, such as increased flexibility in the development of multi-lateral and horizontal wells, optimisation of artificial lift systems and monitoring of multi-layered wells. This paper gives an overview of existing permanent downhole measurement systems and a status of topside and subsea multi-phase flow meters (MFM). The main focus is on the challenges in downhole multi-phase measurements. Topics to be taken into consideration for realization of a downhole multi-phase meter are discussed, such as actual flow conditions occurring at the point of measurement, which quantities that need to be measured, sensor principles, data processing needs and signal transmission capability. 9 refs., 9 figs.

  11. Applications of the parity space technique to the validation of the water level measurement of pressurizer for steady state and transients

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Bath, L.

    1983-01-01

    During the design of disturbance analysis and surveillance systems, safety parameter display systems, computerized operator support systems or advanced control rooms, sensor signal validation is commonly considered as the first task to be performed. After an introduction of the anticipated benefits of the signal validation techniques and a brief survey of the methods under current practices, a signal validation technique based upon the parity space methodology is presented. The efficiency of the method applied to the detection and the identification of five types of failures is illustrated with two examples when three water level measurements of a pressurizer of a nuclear plant are redundant. In the first example the use of the analytical redundancy technique is presented when only two identical sensors are available. A detailed description of the dynamic model of the pressurizer is given. In the second example the case of the identical water level sensors is considered. Performances of the software developed on a computer DEC PDP 11 are finally given

  12. Numerical study on the influence of entrapped air bubbles on the time-dependent pore pressure distribution in soils due to external changes in water level

    Directory of Open Access Journals (Sweden)

    Ausweger Georg M.

    2016-01-01

    Full Text Available In practical geotechnical engineering soils below the groundwater table are usually regarded as a two-phase medium, consisting of solids and water. The pore water is assumed to be incompressible. However, under certain conditions soils below the groundwater table may exhibit a liquid phase consisting of water and air. The air occurs in form of entrapped air bubbles and dissolved air. Such conditions are named quasi-saturated and the assumption of incompressibility is no longer justified. In addition the entrapped air bubbles influence the hydraulic conductivity of soils. These effects are usually neglected in standard problems of geotechnical engineering. However, sometimes it is required to include the pore fluid compressibility when modelling the hydraulic behaviour of soils in order to be able to explain certain phenomena observed in the field. This is for example true for fast fluctuating water levels in reservoirs. In order to study these phenomena, numerical investigations on the influence of the pore fluid compressibility on the pore water pressure changes in a soil layer beneath a reservoir with fast fluctuating water levels were performed. Preliminary results of this study are presented and it could be shown that numerical analysis and field data are in good agreement.

  13. Water level monitoring device in nuclear reactor

    International Nuclear Information System (INIS)

    Miura, Kiyohide; Otake, Tomohiro.

    1988-01-01

    Purpose: To monitor the water level in a pressure vessel of BWR type nuclear reactors at high accuracy by improving the compensation functions. Constitution: In the conventional water level monitor in a nuclear reactor, if the pressure vessel is displaced by the change of the pressure in the reactor or the temperature of the reactor water, the relative level of the reference water head in a condensation vessel is changed to cause deviation between the actual water level and the indicated water level to reduce the monitoring accuracy. According to the invention, means for detecting the position of the reference water head and means for detection the position in the condensation vessel are disposed to the pressure vessel. Then, relative positional change between the condensation vessel and the reference water head is calculated based on detection sinals from both of the means. The water level is compensated and calculated by water level calculation means based on the relative positional change, water level signals from the level gage and the pressure signals from the pressure gage. As a result, if the pressure vessel is displaced due to the change of the temperature or pressure, it is possible to measure the reactor water level accurately thereby remakably improve the reliability for the water level control in the nuclear reactor. (Horiuchi, T.)

  14. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  15. An Overview of Downhole Imaging Tools

    Science.gov (United States)

    Luthi, S. M.

    In this presentation we give an overview of downhole imaging tools that can be used to image the borehole wall and its vicinity with a variety of physical methods. Among these are ultrasonic scans with a rotating transducer that performs a pulse-echo mea- surement in rapid succession. This gives a transit time and a reflected amplitude image of the borehole wall. Electrical imaging is done with a whole family of measurements that operate mostly in the low AC range. All of them feature a number of electrodes that is inversely proportional to the desired resolution and depth of investigation. They image layering, fracturing and other heterogeneities in the rocks traversed by the bore- hole. Some of these images can be recorded and transmitted to the surface in real-time while the well is being drilled. Imaging using nuclear methods is also possible, for ex- ample for the natural radioactivity, density, or neutron porosity of the rock. However, these devices have generally low spatial resolutions. Finally, optical imaging is pos- sible in translucent and slightly opaque muds with a downhole video camera. Recent developments have resulted in a device that can withstand high pressures and temper- atures and that transmits live video images to the surface in real-time. This method has the highest resolution but is of limited applicability in the oil industry where gener- ally opaque muds are used. These images can be successfully used to determined the structural and intrinsic properties of rock traversed by a borehole.

  16. Water level measurement uncertainty during BWR instability

    International Nuclear Information System (INIS)

    Torok, R.C.; Derbidge, T.C.; Healzer, J.M.

    1994-01-01

    This paper addresses the performance of the water-level measurement system in a boiling water reactor (BWR) during severe instability oscillations which, under some circumstances, can occur during an anticipated transient without SCRAM (ATWS). Test data from a prototypical mock-up of the water-level measurement system was used to refine and calibrate a water-level measurement system model. The model was then used to predict level measurement system response, using as boundary conditions vessel pressures calculated by ppercase RETRAN for an ATWS/instability event.The results of the study indicate that rapid pressure changes in the reactor pressure vessel which cause oscillations in downcomer water level, coupled with differences in instrument line lengths, can produce errors in the sensed water level. Using nominal parameters for the measurement system components, a severe instability transient which produced a 0.2 m peak-to-minimum water-level oscillation in the vessel downcomer was predicted to produce pressure difference equivalent to a 0.7 m level oscillation at the input to the differential pressure transmitter, 0.5 m oscillation at the output of the transmitter, and an oscillation of 0.3 m on the water-level indicator in the control room. The level measurement system error, caused by downcomer water-level oscillations and instrument line length differential, is mitigated by damping both in the differential pressure transmitter used to infer level and in the control room display instrument. ((orig.))

  17. Water Level Station History

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Images contain station history information for 175 stations in the National Water Level Observation Network (NWLON). The NWLON is a network of long-term,...

  18. Research on Overflow Monitoring Mechanism Based on Downhole Microflow Detection

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2014-01-01

    Full Text Available The flow rate variation of the drilling fluid and micro-overflow loss is difficult to analyze. The purpose to prevent the occurrence of kick, lost circulation, and other complex conditions is not easy to be achieved. Therefore, the microflow-induced annulus multiphase flow rate and annulus pressure field model were studied, and a downhole microflow measurement system has been developed. A differential pressure type flow measurement was used in the system, and real-time downhole information was obtained to achieve deep, narrow windows and other safety-density complex formation security. This paper introduced a new bottom-hole flow meter which can measure the annular flux while drilling and monitor overflow and circulation loss. The accuracy and reliability of the MPD (managed pressure drilling system can be improved obviously by applying the device; as a result, the safety of drilling is enhanced and the cost is reduced.

  19. Method of measuring reactor water level

    International Nuclear Information System (INIS)

    Shinohara, Kaoru.

    1979-01-01

    Purpose: To provide a water level measuring system so that a reactor water level detecting signal can be corrected in correspondence to a recirculation flow, thereby to carry out a correct water level detection in a wide range of the reactor. Method: According to the operation record of a precursor reactor, the ratio Δh of the lowering of the water level due to the recirculation flow is lowered in proportion to the ratiowith respect to the rated differential pressure of the recirculation flow. Accordingly, the flow of recirculation pump is measured by an elbow differential pressure generator utilizing an elbow of a pipe, and the measured value is multiplied by a gain by a ratio setter, and therefter, an addition computation is carried out by an adder for correcting the signal from a water level detector. When the signal from the water level detector is corrected in this manner, the influence of the lowering of the water level due to the recirculation flow can be removed, and an interlocker predetermined in the defined water level can be actuated, thus the influence of the dynamic pressure due to the recirculation flow acting on the instrumental pipe line detecting the reactor water level can be removed effectively. (Yoshino, Y.)

  20. Downhole interferometric illumination diagnosis and balancing

    OpenAIRE

    Van der Neut, J.

    2012-01-01

    With seismic interferometry or the virtual source method, controlled sources can be redatumed from the Earth’s surface to generate so-called virtual sources at downhole receiver locations. Generally this is done by crosscorrelation of the recorded down-hole data and stacking over source locations. By studying the retrieved data at zero time lag, downhole illumination conditions that determine the virtual source radi- ation pattern can be analyzed without a velocity model. This can be benefici...

  1. Is it cement to be? Downhole cement that uses zeolite additive may offer lightweight alternative

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-05-01

    C2C Zeolite Corporation produces zeolites from a large deposit near Cache Creek, British Columbia, and processes them for use as an additive in downhole cement well casings. Early research indicates that zeolites can significantly improve the way downhole cement is made in the oil industry. Zeolites are made up mostly of silicates of aluminum and calcium. They have a great ability to absorb water, resulting in a lighter and more fluid cement than is currently available. C2C claims that zeolites will reduce cement weight, column pressure and operator costs. The cost benefits of using lighter cement downhole includes easier moving, processing and handling of the mix. Initial research suggests that zeolites might prove to be viable alternatives to other cement lighteners such as silica fumes or flyash. Zeolite-based cement also performed reasonably well in freeze-thaw tests and showed good adhesion and no evidence of shrinkage in downhole tests. 3 figs.

  2. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  3. Tuning Fork Oscillators as Downhole Viscometers in Oilfield Applications

    Science.gov (United States)

    Gonzalez, Miguel; Bernero, Greg; Alvarez, Oliverio; Ham, Gregory; Max, Deffenbaugh; Sensors Development Team

    2015-03-01

    The commerciality of oil wells is greatly influenced by the physical properties of the fluids being produced. A key parameter in determining how producible the hydrocarbons are is their viscosity. Pressure and temperature changes in recovering a downhole sample to the surface can alter viscosity while accurate downhole measurement of this critical property remains a rudimentary effort in the industry. In this presentation we describe the challenges of measuring and quantifying the viscosity of reservoir fluids in situ at downhole conditions, as well as present an overview of some of the different measurement techniques currently used. Additionally, we show our characterization of a piezoelectric tuning fork oscillator used as a viscosity sensor. In an attempt to recreate the environment found in oil wells, its mechanical and electrical properties were studied while the device was immersed in different fluids and, separately, under different conditions of pressure and temperature. This device is a first step toward the development of an inexpensive, integrated, and miniaturized sensing platform for the in situ characterization of reservoir fluids.

  4. Water level measurements (bottom hydrostatic pressure) data from the Gulf of Alaska from 02 April 1983 to 25 October 1989 (NODC Accession 0000339)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Depth, pressure, and water temperature data were collected at fixed platforms in the Gulf of Mexico from April 2, 1983 to October 25, 1989. Data were submitted...

  5. Downhole Applications of Magnetic Sensors.

    Science.gov (United States)

    Gooneratne, Chinthaka P; Li, Bodong; Moellendick, Timothy E

    2017-10-19

    In this paper we present a review of the application of two types of magnetic sensors-fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors-in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.

  6. Downhole Applications of Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Chinthaka P. Gooneratne

    2017-10-01

    Full Text Available In this paper we present a review of the application of two types of magnetic sensors—fluxgate magnetometers and nuclear magnetic resonance (NMR sensors—in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.

  7. 275 C Downhole Microcomputer System

    Energy Technology Data Exchange (ETDEWEB)

    Chris Hutchens; Hooi Miin Soo

    2008-08-31

    An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessor ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry.

  8. 2750 C Downhole Microcomputer System

    International Nuclear Information System (INIS)

    Hutchens, Chris; Soo, Hooi Miin

    2008-01-01

    An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessor ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry

  9. Reactor water level control device

    International Nuclear Information System (INIS)

    Hiramatsu, Yohei.

    1980-01-01

    Purpose: To increase the rapid response of the waterlevel control converting a reactor water level signal into a non-linear type, when the water level is near to a set value, to stabilize the water level reducting correlatively the reactor water level variation signal to stabilize greatly from the set value, and increasing the variation signal. Constitution: A main vapor flow quality transmitter detects the vapor flow generated in a reactor and introduced into a turbine. A feed water flow transmitter detects the quantity of a feed water flow from the turbine to the reactor, this detected value is sent to an addition operating apparatus. On the other hand, the power signal of the reactor water level transmitter is sent to the addition operating apparatus through a non-linear water level signal converter. The addition operation apparatus generates a signal for requesting the feed water flow quantity from both signals. Upon this occasion, the reactor water level signal converter makes small the reactor water level variation when the reactor level is close the set value, and when the water level deviates greatly from the set value, the reactor water level variation is made large thereby to improve the rapid response of the reactor coater level control. (Yoshino, Y.)

  10. Downhole Elemental Analysis with LIBS

    Science.gov (United States)

    Moreschini, Paolo; Zacny, Kris; Rickman, Doug

    2011-01-01

    vertical stage; a second actuator at the top of the downhole probe allows radial scanning of the borehole. Analysis of iron and titanium in lunar simulant with LIBS was performed in air using the method of standard addition. The results for lunar simulant NU-LHT-2M show a value for the concentration of iron ranging between 2.29% and 3.05% depending on the atomic line selected. The accepted value for the sample analyzed is 2.83%, showing the capability for the system in development to provide qualitative and semi-quantitative analysis in real-time.

  11. Permanent downhole seismic sensors in flowing wells

    NARCIS (Netherlands)

    Jaques, P.; Ong, H.; Jupe, A.; Brown, I.; Jansenns, M.

    2003-01-01

    It is generally accepted that the 'Oilfield of the Future' will incorporate distributed permanent downhole seismic sensors in flowing wells. However the effectiveness of these sensors will be limited by the extent to which seismic signals can be discriminated, or de-coupled, from flow induced

  12. Reactor water level control device

    International Nuclear Information System (INIS)

    Utagawa, Kazuyuki.

    1993-01-01

    A device of the present invention can effectively control fluctuation of a reactor water level upon power change by reactor core flow rate control operation. That is, (1) a feedback control section calculates a feedwater flow rate control amount based on a deviation between a set value of a reactor water level and a reactor water level signal. (2) a feed forward control section forecasts steam flow rate change based on a reactor core flow rate signal or a signal determining the reactor core flow rate, to calculate a feedwater flow rate control amount which off sets the steam flow rate change. Then, the sum of the output signal from the process (1) and the output signal from the process (2) is determined as a final feedwater flow rate control signal. With such procedures, it is possible to forecast the steam flow rate change accompanying the reactor core flow rate control operation, thereby enabling to conduct preceding feedwater flow rate control operation which off sets the reactor water level fluctuation based on the steam flow rate change. Further, a reactor water level deviated from the forecast can be controlled by feedback control. Accordingly, reactor water level fluctuation upon power exchange due to the reactor core flow rate control operation can rapidly be suppressed. (I.S.)

  13. Downhole transmission system comprising a coaxial capacitor

    Science.gov (United States)

    Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Hall, Jr., H. Tracy; Rawle, Michael [Springville, UT

    2011-05-24

    A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

  14. Numerical Study of Water Control with Downhole Oil-Water Separation Technology

    Directory of Open Access Journals (Sweden)

    Yin Khor Yin

    2014-07-01

    Full Text Available The maturing oil fields with increasing water production can pose a challenging produced water handling and disposal issues. This paper presents a numerical study of a motorless hydrocyclone to enhance understanding of the downhole oil-water separation. The turbulence of fluid flow is obtained using K-ε Realizable Turbulence model for complex swirl dominated flow, while the interface between hydrocarbon and water is described using the Discrete Phase model. In this approach, factors which contribute to the hydrocyclone separation instability were discussed. Discussion is then extended to the relationship of residence time with pressure difference between overflow and underflow. These pressure differences are able to relate to pressure condition for high water cut well which require downhole separation.

  15. Downhole dehydration - status report and implementation study; Downhole Dehydration - Statusbericht und Umsetzungsstudie

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D.; Schmidt, D. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    Downhole dehydration, i.e. in-situ separation of water and oil, is an interesting new technology. The contribution describes the technology and the results of a field experiment. (orig.) [Deutsch] Die Tail-End Foerderphase in der deutschen Erdoelproduktion, welche durch hohe Wasserhebekosten gekennzeichnet ist, erfordert zur Aufrechterhaltung der Wirtschaftlichkeit neue Gedankenansaetze. Ein aus wirtschaftlicher und technischer Sicht reizvoller Optimierungsgedanke ist die untertaegige Wasser/Oel Separation, auch Downhole Dehydration genannt. Unter Downhole Dehydration (DHD) versteht man also die untertaegige (teilweise) Separation des Lagerstaettenwassers vom Nassoel, kurz nachdem das Gemisch untertaegig in das Bohrloch eingetreten ist. Dabei wird das abgetrennte Lagerstaettenwasser untertage in einen geeigneten Horizont unmittelbar wieder injiziert und das Oel (wie bei der konventionellen Foerderung) zutage gepumpt, mit dem Ziel der Nutzung der daraus resultierenden Kosten- und Investitionsersparnis. Ziel dieses Vortrages ist es, einen kurzen Einblick in die erstmalig in Europa angewandte Technik zu geben und von den Erfahrungen des praktizierten Feldversuches zu berichten. (orig.)

  16. Development of reactor water level sensor for extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miura, K; Ogasawara, T [Sukegawa Electric Co., Ltd., Hitachi, Ibaraki (Japan); Shibata, Akira; Nakamura, Jinichi; Saito, Takashi; Tsuchiya, Kunihiko [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    In the Fukushima accident, measurement failure of water level was one of the most important factors which caused serious situation. The differential pressure type water level indicators are widely used in various place of nuclear power plant but after the accident of TMI-2, the need of other reliable method has been required. The BICOTH type and the TRICOTH type water level indicator for light water power reactors had been developed for in-pile water level indicator but currently those are not adopted to nuclear power plant. In this study, the development of new type water level indicator composed of thermocouple and heater is described. Demonstration test and characteristic evaluation of the water level indicator were performed and we had obtained satisfactory results. (author)

  17. Design, Installation, and Monitoring of a New Downhole Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Chiasson, A.D.; G.G. Culver (Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR, USA); Favata, D. (Alternative Geothermal Solutions, Oklahoma City, OK, USA); Keiffer, S. (Facilities Services, Oregon Institute of Technology, Klamath Falls, OR, USA)

    2005-01-01

    The downhole heat exchanger (DHE) is used to provide space heating and domestic hot water from a single geothermal well. The most common construction of DHEs has been black iron, which is subject to failure by corrosion. This paper describes the design, installation, and monitoring of a new type of DHE constructed of cross-linked polyethylene plastic (PEX), a material known for its relatively high temperature and pressure rating, durability, and chemical resistance. The PEX DHE was installed as a retrofit at a residence in Klamath Falls, OR and a data logger was used to record system temperatures at 5-minute intervals for the 2004-2005 heating season. Observations thus far show the PEX assembly to be an acceptable DHE.

  18. Water levels in the Yucca Mountain area, Nevada, 1993

    International Nuclear Information System (INIS)

    Tucci, P.; Goemaat, R.L.; Burkhardt, D.J.

    1996-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1993. Seventeen wells were monitored periodically, generally on a monthly basis, and 11 wells representing 18 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,034 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1993. Water levels were an average of about 0.04 meter lower than 1992 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  19. Water levels in the Yucca Mountain area, Nevada, 1995

    International Nuclear Information System (INIS)

    Graves, R.P.; Goemaat, R.L.

    1998-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1995. Seventeen wells representing 18 depth intervals were monitored periodically, generally on a monthly basis, 2 wells representing 3 depth intervals were monitored hourly, and 9 wells representing 15 depth intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and/or pressure transducers. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1995. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1995. Mean water level altitudes were only an average of about 0.01 meters higher than 1994 mean water level altitudes. A single-well aquifer test was conducted on well UE-25 WT number-sign 12 during August and September 1995. Well USW 0-2 was also pumped during October and November 1995, in preparation for single-well aquifer test at that well. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  20. A improved tidal method without water level

    Science.gov (United States)

    Luo, xiaowen

    2017-04-01

    Now most tide are obtained use water Level and pressure type water gage, but it is difficult to install them and reading is in low accuracy in this method . In view of above-mentioned facts, In order to improve tide accuracy, A improved method is introduced.sea level is obtained in given time using high-precision GNSS buoy combined instantaneous position from pressure gage. two steps are as following, (1) the GNSS time service is used as the source of synchronization reference in tidal measurement; (2) centimeter-level sea surface positions are obtained in real time using difference GNSS The improved method used in seafloor topography survey,in 145 cross points, 95% meet the requirements of the Hydrographic survey specification. It is effective method to obtain higher accuracy tide.

  1. Downhole drilling hammer. Marteau de forage

    Energy Technology Data Exchange (ETDEWEB)

    Techy, M.

    1987-07-28

    This invention concerns a drilling hammer of the downhole type, comprising a tubular body fed by compressed air, a drilling cutter and a hammer piston set into movement inside an interior cylinder by a compressed air distribution mechanism alternately above and below the piston. The hammer includes a gas-oil injection device in the chamber above the piston and a mechanism for initiating the injection during the rising of the piston; the additional compression provokes the combustion of the gas-oil-air mixture, which hurls the piston towards the cutter. This type of apparatus permits an important reduction in costs of materials and of operation, and permits at the same time an increase in drilling power and a reduction in energy consumption. 8 figs.

  2. Reactor water level measuring device

    International Nuclear Information System (INIS)

    Kuroki, Reiji; Asano, Tamotsu.

    1996-01-01

    A condensation vessel is connected to the upper portion of a reactor pressure vessel by way of a pipeline. The lower portion of the condensation vessel is connected to a low pressure side of a differential pressure transmission device by way of a reference leg pipeline. The high pressure side of the differential pressure transmission device is connected to the lower portion of the pressure vessel by way of a pipeline. The condensation vessel is equipped with a temperature sensor. When a temperature of a gas phase portion in the condensation vessel is lowered below a predetermined level, and incondensible gases in the condensation vessel starts to be dissolved in water, signals are sent from the temperature sensor to a control device and a control valve is opened. With such a constitution, CRD driving water flows into the condensation vessel, and water in which gases at the upper portion of the condensation vessel is dissolved flows into the pressure vessel by way of a pipeline. Then, gases dissolved in a reference water column in the reference leg pipeline are eliminated and the value of a reference water pressure does not change even upon abrupt lowering of pressure. (I.N.)

  3. Water levels in the Yucca Mountain Area, Nevada, 1996

    International Nuclear Information System (INIS)

    Graves, R.P.

    1998-01-01

    Water levels were monitored in 24 wells in the Yucca Mountain area, Nevada, during 1996. Twenty-two wells representing 28 depth intervals were monitored periodically, generally on a monthly basis, and 2 wells representing 3 depth intervals were monitored both hourly and periodically. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in paleozoic carbonate rocks. Water levels were measured using either calibrated steel tapes or a pressure sensor. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 727.86 to about 1,034.58 meters above sea level during 1996. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 752.57 meters above sea level during 1996. Mean water-level altitudes for 1996 were an average of about 0.06 meter lower than 1995 mean water-level altitudes and 0.03 meter lower than 1985--95 mean water-level altitudes. During 1996, water levels in the Yucca Mountain area could have been affected by long-term pumping at the C-hole complex that began on May 8, 1996. Through December 31, 1996, approximately 196 million liters were pumped from well UE-25 c number-sign 3 at the C-hole complex. Other ground-water pumpage in the Yucca Mountain area includes annual pumpage from water-supply wells UE-25 J-12 and UE-25 J-13 of approximately 163 and 105 million liters, respectively, and pumpage from well USW G-2 for hydraulic testing during February and April 1996 of approximately 6 million liters

  4. Development and Application of the Downhole Drilling String Shock-Absorption and Hydraulic Supercharging Device

    Directory of Open Access Journals (Sweden)

    Yongwang Liu

    2016-01-01

    Full Text Available It is a hot topic for deep/ultradeep wells to improve rock-breaking efficiency and drilling speed by available downhole energy. Based on different downhole energies and working conditions, specialized plunger pump is proposed to convert longitudinal vibration of drilling string into rock-breaking energy. Technical design is developed to generate high-pressure water jet. And then a simulation model is built to verify feasibility of the technical design. Through simulation, the influence law of key factors is obtained. On this basis, this device is tested in several wells. The result indicates this device can increase drilling speed as much as 136%. Meanwhile the harmful vibration can be absorbed. The energy from drilling string vibration is of high frequency and increases as well depth and formation anisotropy increase. By reducing adverse vibration, this device is able to increase the drilling speed and the service life also meets the demand of field application. The longest working time lasts for more than 130 hours. The performance of this device demonstrates great application prospect in deep/ultradeep resources exploration. To provide more equipment support for deep/ultradeep wells, more effort should be put into fundamental study on downhole drill string vibration and related equipment.

  5. Feasibility of using electrical downhole heaters in Faja heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.; Bashbush, J.L.; Rincon, A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Schlumberger, Sugar Land, TX (United States)

    2008-10-15

    Numerical models were used to examine the effect of downhole heaters in enhanced oil recovery (EOR) processes in Venezuela's Orinoco reservoir. The downhole heaters were equipped with mineral-insulated cables that allowed alternating currents to flow between 2 conductors packed in a resistive core composed of polymers and graphite. The heaters were used in conjunction with steam assisted gravity drainage (SAGD) processes and also used in horizontal wells for limited amounts of time in order to accelerate production and pressure declines. The models incorporated the petrophysical and fluid characteristics of the Ayacucho area in the Faja del Orinoco. A compositional-thermal simulator was used to describe heat and fluid flow within the reservoir. A total of 8 scenarios were used to examine the electrical heaters with horizontal and vertical wells with heaters of various capacities. Results of the study were then used in an economic analysis of capitalized and operating costs. Results of the study showed that downhole heaters are an economically feasible EOR option for both vertical and horizontal wells. Use of the heaters prior to SAGD processes accelerated production and achieved higher operational efficiencies. 5 refs., 9 tabs., 15 figs.

  6. Research on calibration method of downhole optical fiber temperature measurement and its application in SAGD well

    Science.gov (United States)

    Lu, Zhiwei; Han, Li; Hu, Chengjun; Pan, Yong; Duan, Shengnan; Wang, Ningbo; Li, Shijian; Nuer, Maimaiti

    2017-10-01

    With the development of oil and gas fields, the accuracy and quantity requirements of real-time dynamic monitoring data needed for well dynamic analysis and regulation are increasing. Permanent, distributed downhole optical fiber temperature and pressure monitoring and other online real-time continuous data monitoring has become an important data acquisition and transmission technology in digital oil field and intelligent oil field construction. Considering the requirement of dynamic analysis of steam chamber developing state in SAGD horizontal wells in F oil reservoir in Xinjiang oilfield, it is necessary to carry out real-time and continuous temperature monitoring in horizontal section. Based on the study of the principle of optical fiber temperature measurement, the factors that cause the deviation of optical fiber temperature sensing are analyzed, and the method of fiber temperature calibration is proposed to solve the problem of temperature deviation. Field application in three wells showed that it could attain accurate measurement of downhole temperature by temperature correction. The real-time and continuous downhole distributed fiber temperature sensing technology has higher application value in the reservoir management of SAGD horizontal wells. It also has a reference for similar dynamic monitoring in reservoir production.

  7. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Tubel

    2004-02-01

    The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

  8. Water levels in continuously monitored wells in the Yucca Mountain area, Nevada, 1985--88

    International Nuclear Information System (INIS)

    Luckey, R.R.; Lobmeyer, D.H.; Burkhardt, D.J.

    1993-01-01

    Water levels have been monitored hourly in 15 wells completed in 23 depth intervals in the Yucca Mountain area, Nevada. Water levels were monitored using pressure transducers and were recorded by data loggers. The pressure transducers were periodically calibrated by raising and lowering them in the wells. The water levels were normally measured at approximately the same time that the transducers were calibrated. Where the transducer output appeared reasonable, it was converted to water levels using the calibrations and manual water- level measurements. The amount of transducer output that was converted to water levels ranged from zero for several intervals to about 98 percent for one interval. Fourteen of the wells were completed in Tertiary volcanic rocks and one well was completed in Paleozoic carbonate rocks. Each well monitored from one to four depth intervals. Water-level fluctuation caused by barometric pressure changes and earth tides were observed

  9. Downhole television (DHTV) applications in borehole plugging

    International Nuclear Information System (INIS)

    Christensen, C.L.; Statler, R.D.; Peterson, E.W.

    1980-05-01

    The Borehole Plugging (BHP) Program is a part of the Sandia experimental program to support the Waste Isolation Pilot Plant (WIPP). The Sandia BHP program is an Office of Nuclear Waste Isolation (ONWI)-funded program designed to provide inputs to the generic plugging program while simultaneously acquiring WIPP-specific data. For this reason a close liaison is maintained between the Sandia WIPP project and the ONWI generic program. Useful technology developed within the Sandia BHP to support WIPP is made available and considered for further development and application to the generic Borehole Plugging and Repository Sealing Program at ONWI. The purpose of this report is to illustrate the usefulness of downhole television (DHTV) observations of a borehole to plan plugging operations. An indication of the wellbore conditions observed is provided. The equipment and setup procedure used in the evaluation of AEC-7 for the Bell Canyon test series are illustrated. A sequence of pictures at various depths as the DHTV rig is lowered through the wellbore is presented. Sample photographs taken with both dry and underwater lamps for illumination are included. The caliper logs for the same depth are included for comparison. General comments are provided on the illustrations

  10. The design and simulation of new downhole vibration device about acoustic oil recovery technology

    Directory of Open Access Journals (Sweden)

    Yongjun Hou

    2015-09-01

    Full Text Available More and more oilfields are using acoustic technology to enhance oil recovery. In order to know the mechanism of acoustic oil recovery technology, the sound radiator of a new downhole vibration device is modeled and analyzed. Based on the theoretical background, this paper firstly analyzes the acoustic mechanism for the oil reservoir and then makes a acoustic response analysis on the sound radiator model for frequency and time-domain investigation by using professional acoustic simulation software–LMS Virtual.lab Acoustics, finally calculates the acoustic transmission loss in the downhole oil reservoir. The research reveals that firstly, acoustic waves have influences on the oil & water fluidity in the oil reservoir, the oil pressure gradient and the interfacial tension of capillary; secondly, the acoustic radiation power and sound pressure of field point attain a peak on the natural frequency of the sound radiator; thirdly, with the acoustic impact, the sound pressure of oil reservoir would fluctuate so as to improve the oil recovery ratio; the last but not the least one is both the sound pressure of oil reservoir point and the transmission loss of rock have a positive correlation with the vibration frequency. Therefore, it is of great importance for the research of vibration frequency and structure optimization of sound radiator.

  11. A Quick Review on Steam Generator Water Level Tracking Methods and Its Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Moon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The tracking of the SG water level is important for maintaining the heat removal of the reactor and the power plant safety. In addition, the SG water level is important for the reactor trip and the actuation of SG back-up feedwater system as well. The SG water level is mainly controlled by the Feed Water Control System (FWCS) during either normal operation or transients therefore, the selection of the FWCS control parameters is also important. In this paper, methods of SG water level calculation are first reviewed and future works to perform sensitivity study of the SG water level calculation with a system analysis code will be identified. This is partially shown from Loss-of-feedwater experiments carried out in PACTEL and the LOF-10 experiment. The experiment was chosen to test the modeling capabilities of TRACE code for VVER SG. The experiment measured the water level with the pressure differential and the code calculated the water level directly from the code results. In this paper, three previously suggested parameters which can be used as an indicator of the SG water level are briefly introduced: (1) downcomer collapsed water level, (2) water mass inventory and (3) pressure differential. From the review of previous works, it was identified that most of the system analysis code calculates the SG water level directly by using the downcomer collapsed level. In contrast, the pressure difference is measured as used for the SG water level tracking in a real nuclear power plant or experiment.

  12. Short-time variations of the ground water level

    International Nuclear Information System (INIS)

    Nilsson, Lars Y.

    1977-09-01

    Investigations have demonstrated that the ground water level of aquifers in the Swedish bedrock shows shorttime variations without changing their water content. The ground water level is among other things affected by regular tidal movements occuring in the ''solid'' crust of the earth variations in the atmospheric pressure strong earthquakes occuring in different parts of the world These effects proves that the system of fissures in the bedrock are not stable and that the ground water flow is influenced by both water- and airfilled fissures

  13. Design of a Novel Electro-hydraulic Drive Downhole Tractor

    Science.gov (United States)

    Fang, Delei; Shang, Jianzhong; Yang, Junhong; Wang, Zhuo; Wu, Wei

    2018-02-01

    In order to improve the traction ability and the work efficiency of downhole tractor in oil field, a novel electro-hydraulic drive downhole tractor was designed. The tractor’s supporting mechanism and moving mechanism were analyzed based on the tractor mechanical structure. Through the introduction of hydraulic system, the hydraulic drive mechanism and the implementation process were researched. Based on software, analysis of tractor hydraulic drive characteristic and movement performance were simulated, which provide theoretical basis for the development of tractor prototype.

  14. Hydrostatic Water Level Systems At Homestake DUSEL

    Science.gov (United States)

    Stetler, L. D.; Volk, J. T.

    2009-12-01

    Two arrays of Fermilab-style hydrostatic water level sensors have been installed in the former Homestake gold mine in Lead, SD, the site of the new Deep Underground Science and Engineering Laboratory (DUSEL). Sensors were constructed at Fermilab from 8.5 cm diameter PVC pipe (housing) that was sealed on the ends and fit with a proximity sensor. The instrument have a height of 10 cm. Two ports in each sensor housing provide for connectivity, the upper port for air and the bottom port for water. Multiple instruments connected in series provide a precise water level and differences in readings between successive sensors provide for ground tilt to be resolved. Sensor resolution is 5 μm per count and has a range of approximately 1.25 cm. Data output from each sensor is relayed to a Fermilab-constructed readout card that also has temperature/relative humidity and barometric pressure sensors connected. All data are relayed out of the mine by fiber optic cable and can be recorded by Ethernet at remote locations. The current arrays have been installed on the 2000-ft level (610 m) and consist of six instruments in each array. Three sensors were placed in a N-S oriented drift and three in an E-W oriented drift. Using this orientation, it is anticipated that tilt direction may be resolved in addition to overall tilt magnitude. To date the data show passage of earth tides and frequency analysis has revealed five components to this signal, three associated with the semi-diurnal (~12.4 hr) and two with the diurnal (~24.9 hr) tides. Currently, installation methods are being analyzed between concrete pillar and rib-mounting using the existing setup on the 2000-ft level. Using these results, two additional arrays of Fermilab instruments will be installed on the 4550-ft and 4850-ft levels (1387 and 1478 m, respectively). In addition to Fermilab instruments, several high resolution Budker tiltmeters (1 μm resolution) will be installed in the mine workings in the near future, some

  15. Development of a novel vortex flow meter for downhole use

    NARCIS (Netherlands)

    Schiferli, W.; Cheng, L.K.

    2008-01-01

    Due to the increasing complexity of oil and gas wells, the demand for instrumentation to measure conditions inside well tubing below the surface is growing rapidly. A robust meter was designed to measure liquid flows at downhole conditions. The meter is based on a specially-designed bluff body to

  16. Forecasting Water Levels Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Shreenivas N. Londhe

    2011-06-01

    Full Text Available For all Ocean related activities it is necessary to predict the actual water levels as accurate as possible. The present work aims at predicting the water levels with a lead time of few hours to a day using the technique of artificial neural networks. Instead of using the previous and current values of observed water level time series directly as input and output the water level anomaly (difference between the observed water level and harmonically predicted tidal level is calculated for each hour and the ANN model is developed using this time series. The network predicted anomaly is then added to harmonic tidal level to predict the water levels. The exercise is carried out at six locations, two in The Gulf of Mexico, two in The Gulf of Maine and two in The Gulf of Alaska along the USA coastline. The ANN models performed reasonably well for all forecasting intervals at all the locations. The ANN models were also run in real time mode for a period of eight months. Considering the hurricane season in Gulf of Mexico the models were also tested particularly during hurricanes.

  17. PWR type reactor equipped with a primary circuit loop water level gauge

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro.

    1990-01-01

    The time of lowering a water level to less than the position of high temperature side pipeway nozzle has been rather delayed because of the swelling of mixed water level due to heat generation of the reactor core. Further, there has been a certain restriction for the installation, maintenance and adjustment of a water level gauge since it is at a position under high radiation exposure. Then, a differential pressure type water level gauge with temperature compensation is disposed at a portion below a water level gauge of a pressurizer and between the steam generator exit plenum and the lower end of the loop seal. Further, a similar water level system is disposed to all of the loops of the primary circulation circuits. In a case that the amount of water contained in a reactor container should decreased upon occurrence of loss of coolant accidents caused by small rupture and stoppage of primary circuit pumps, lowering of the water level preceding to the lowering of the water level in the reactor core is detected to ensure the amount of water. Since they are disposed to all of the loops and ensure the excess margin, reliability for the detection of the amount of contained water can be improved by averaging time for the data of the water level and averaging the entire systems, even when there are vibrations in the fluid or pressure in the primary circuit. (N.H.)

  18. Interpretation of changes in water level accompanying fault creep and implications for earthquake prediction.

    Science.gov (United States)

    Wesson, R.L.

    1981-01-01

    Quantitative calculations for the effect of a fault creep event on observations of changes in water level in wells provide an approach to the tectonic interpretation of these phenomena. For the pore pressure field associated with an idealized creep event having an exponential displacement versus time curve, an analytic expression has been obtained in terms of exponential-integral functions. The pore pressure versus time curves for observation points near the fault are pulselike; a sharp pressure increase (or decrease, depending on the direction of propagation) is followed by more gradual decay to the normal level after the creep event. The time function of the water level change may be obtained by applying the filter - derived by A.G.Johnson and others to determine the influence of atmospheric pressure on water level - to the analytic pore pressure versus time curves. The resulting water level curves show a fairly rapid increase (or decrease) and then a very gradual return to normal. The results of this analytic model do not reproduce the steplike changes in water level observed by Johnson and others. If the procedure used to obtain the water level from the pore pressure is correct, these results suggest that steplike changes in water level are not produced by smoothly propagating creep events but by creep events that propagate discontinuously, by changes in the bulk properties of the region around the well, or by some other mechanism.-Author

  19. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  20. Gamma-ray spectrometry applied to down-hole logging

    International Nuclear Information System (INIS)

    Dumesnil, P.; Umiastowsky, K.

    1983-11-01

    Gamma-ray spectrometry permits to improve the accuracy of natural gamma, gamma-gamma and neutron-gamma geophysical measurements. The probe developed at Centre d'Etudes Nucleaires de Saclay allows down-hole gamma-ray spectrometry. Among others, this probe can be applied to the uranium content determination by selective natural gamma method, down-hole determination of the ash content in the coal by gamma-gamma selective method and elemental analysis by neutron-gamma method. For the calibration and an exact interpretation of the measurements it is important to know the gamma-ray and neutron characteristics of the different kinds of rocks considered as probabilistic variables

  1. High power laser downhole cutting tools and systems

    Science.gov (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  2. Detailed evaluation of gas hydrate reservoir properties using JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well downhole well-log displays

    Science.gov (United States)

    Collett, T.S.

    1999-01-01

    The JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well project was designed to investigate the occurrence of in situ natural gas hydrate in the Mallik area of the Mackenzie Delta of Canada. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas-hydrate-bearing sediments. Downhole logging tool strings deployed in the Mallik 2L-38 well included the Schlumberger Platform Express with a high resolution laterolog, Array Induction Imager Tool, Dipole Shear Sonic Imager, and a Fullbore Formation Microlmager. The downhole log data obtained from the log- and core-inferred gas-hydrate-bearing sedimentary interval (897.25-1109.5 m log depth) in the Mallik 2L-38 well is depicted in a series of well displays. Also shown are numerous reservoir parameters, including gas hydrate saturation and sediment porosity log traces, calculated from available downhole well-log and core data. The gas hydrate accumulation delineated by the Mallik 2L-38 well has been determined to contain as much as 4.15109 m3 of gas in the 1 km2 area surrounding the drill site.

  3. Method for steam generator water level measurement

    International Nuclear Information System (INIS)

    Srinivasan, J.S.

    1991-01-01

    This paper describes a nuclear power plant, a method of controlling the steam generator water level, wherein the steam generator has an upper level tap corresponding to an upper level, a lower level, a riser positioned between the lower and upper taps, and level sensor means for indicating water level between a first range limit and a second range limit, the sensor means being connected to at least the lower tap. It comprises: calculating a measure of velocity head at about the lower level tap; calculating a measure of full water level as the upper level less the measure of velocity head; calibrating the level sensor means to provide an output at the first limit corresponding to an input thereto representative of the measure of full level; calculating a high level setpoint equal to the level of the riser less a bias amount which is a function of the position of the riser relative to the span between the taps; and controlling the water level when the sensor means indicates that the high level setpoint has been reached

  4. Water-level fluctuations influence sediment porewater ...

    Science.gov (United States)

    Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log Kd values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management a

  5. Air distribution system with the discharge action in the working cavity of downhole air hammer drills

    Science.gov (United States)

    Timonin, VV; Alekseev, SE; Kokoulin, DI; Kubanychbek, B.

    2018-03-01

    It is proposed to carry out pre-mine methane drainage using underground degassing holes made by downhole air hammer drills. The features of downhole air drills are described. The downhole air drill layout with the simple-shape striking part is presented with its pluses and minuses. The researchers point at available options to eliminate the shortcomings. The improved layout of the downhole air hammer drill is suggested. The paper ends with the test data on the prototype air hammer drill, its characteristics and trial drilling results.

  6. Topology Optimization of an Actively Cooled Electronics Section for Downhole Tools

    DEFF Research Database (Denmark)

    Soprani, Stefano; Klaas Haertel, Jan Hendrik; Lazarov, Boyan Stefanov

    2015-01-01

    Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration into the dow......Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration......, according to the topology optimization results and assembly constraints, and compared to the optimized cases....

  7. Reading Ground Water Levels with a Smartphone

    Science.gov (United States)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  8. Relations between vegetation and water level in groundwater dependent terrestrial ecosystems (GWDTEs)

    DEFF Research Database (Denmark)

    Munch Johansen, Ole; Andersen, Dagmar Kappel; Ejrnæs, Rasmus

    2018-01-01

    , management and conservation of fens are constrained by limited knowledge on the relations between vegetation and measurable hydrological conditions. This study investigates the relations between vegetation and water level dynamics in groundwater dependent wetlands in Denmark. A total of 35 wetland sites...... across Denmark were included in the study. The sites represent a continuum of wetlands with respect to vegetation and hydrological conditions. Water level was measured continuously using pressure transducers at each site. Metrics expressing different hydrological characteristics, such as mean water level...... and low and high water level periods, were calculated based on the water level time series. A complete plant species list was recorded in plots covering 78.5 m2 at each site. Community metrics such as total number of species and the number of bryophytes were generated from the species lists and Ellenberg...

  9. Passive thermal management system for downhole electronics in harsh thermal environments

    International Nuclear Information System (INIS)

    Shang, Bofeng; Ma, Yupu; Hu, Run; Yuan, Chao; Hu, Jinyan; Luo, Xiaobing

    2017-01-01

    Highlights: • A passive thermal management system is proposed for downhole electronics. • Electronics temperature can be maintained within 125 °C for six-hour operating time. • The result shows potential application for the logging tool in oil and gas industry. - Abstract: The performance and reliability of downhole electronics will degrade in high temperature environments. Various active cooling techniques have been proposed for thermal management of such systems. However, these techniques require additional power input, cooling liquids and other moving components which complicate the system. This study presents a passive Thermal Management System (TMS) for downhole electronics. The TMS includes a vacuum flask, Phase Change Material (PCM) and heat pipes. The thermal characteristics of the TMS is evaluated experimentally. The results show that the system maintains equipment temperatures below 125 °C for a six-hour operating period in a 200 °C downhole environment, which will effectively protect the downhole electronics.

  10. Return momentum effect on reactor coolant water level distribution during mid-loop conditions

    International Nuclear Information System (INIS)

    Seo, Jae Kwang; Yang, Jae Young; Park, Goon Cherl

    2001-01-01

    An accurate prediction of the Reactor Coolant System( RCS) water level is of importance in the determination of the allowable operating range to ensure safety during mid-loop operations. However, complex hydrualic phenomena induced by the Shutdown Cooling System (SCS) return momentum causes different water levels from those in the loop where the water level indicators are located. This was apparently observed at the pre-core cold hydro test of the Younggwang Nuclear Unit 3 (YGN 3) in Korea. In this study, in order to analytically understand the effect of the SCS return momentum on the RCS water level distribution, a model using a one-dimensional momentum and energy conservation for cylindrical channel, hydraulic jump in operating cold leg, water level build-up at the Reactor Vessel (RV) inlet nozzle, Bernoulli constant in downcomer region, and total water volume conservation has been developed. The model predicts the RCS water levels at various RCS locations during the mid-loop conditions and the calculation results were compared with the test data. The analysis shows that the hydraulic jump in the operating cold legs, in conjuction with the pressure drop throughout the RCS, is the main cause creating the water level differences at various RCS locations. The prediction results provide good explanations for the test data and show the significant effect of the SCS return momentum on the RCS water levels

  11. Evaluation and Design of Downhole Heat Exchangers for Direct Application

    Energy Technology Data Exchange (ETDEWEB)

    Culver, G [Oregon Institute of Technology, Klamath Falls, Oregon; Reistad, G M [Oregon State University, Corvallis, Oregon

    0000-12-30

    Over 400 wells with downhole heat exchangers are in use in Klamath Falls, Oregon. Some have been in use for nearly 30 years. Despite the large number and the long experience, the exact nature of the mechanism of heat exchange and, therefore, the maximum output was not known, except that it had been theorized that convection cells were established in the well. Oregon Institute of Technology and Oregon State University are jointly involved in a project to study the heat exchange process and economics of the downhole heat exchanger system. The existence of significant convection cell circulation has been established and measured using a “spinner,” hot film anemometer, and by energy balance calculations. Based on these measurements, analytical models have been developed which predict heat extraction rates within 15% of actual measured values. The existence of significant mixing of “new” and circulating well fluid has been established and can be calculated, although at this time not accurately predicted before testing a well. Based on the analytical models, multi-tube heat exchangers have been designed and very recently tested with outputs within 15% of predicted values. Economic analyses shows that for small to moderate extraction rates, about 300 kW thermal, and shallow wells, DHEs may be more economical than pumped systems when surface discharge is not acceptable.

  12. GNSS-Reflectometry based water level monitoring

    Science.gov (United States)

    Beckheinrich, Jamila; Schön, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this

  13. Surface-downhole and crosshole geoelectrics for monitoring of brine injection at the Ketzin CO2 storage site

    Science.gov (United States)

    Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia

    2016-04-01

    The Ketzin pilot site in Germany is the longest operating on-shore CO2 storage site in Europe. From June 2008 till August 2013, a total of ˜67,000 tonnes of CO2 were safely stored in a saline aquifer at depths of 630 m to 650 m. The storage site has now entered the abandonment phase, and continuation of the multi-disciplinary monitoring as part of the national project "CO2 post-injection monitoring and post-closure phase at the Ketzin pilot site" (COMPLETE) provides the unique chance to participate in the conclusion of the complete life cycle of a CO2 storage site. As part of the continuous evaluation of the functionality and integrity of the CO2 storage in Ketzin, from October 12, 2015 till January 6, 2015 a total of ˜2,900 tonnes of brine were successfully injected into the CO2 reservoir, hereby simulating in time-lapse the natural backflow of brine and the associated displacement of CO2. The main objectives of this brine injection experiment include investigation of how much of the CO2 in the pore space can be displaced by brine and if this displacement of CO2 during the brine injection differs from the displacement of formation fluid during the initial CO2 injection. Geophysical monitoring of the brine injection included continuous geoelectric measurements accompanied by monitoring of pressure and temperature conditions in the injection well and two adjacent observation wells. During the previous CO2 injection, the geoelectrical monitoring concept at the Ketzin pilot site consisted of permanent crosshole measurements and non-permanent large-scale surveys (Kiessling et al., 2010). Time-lapse geoelectrical tomographies derived from the weekly crosshole data at near-wellbore scale complemented by six surface-downhole surveys at a scale of 1.5 km showed a noticeable resistivity signature within the target storage zone, which was attributed to the CO2 plume (Schmidt-Hattenberger et al., 2011) and interpreted in terms of relative CO2 and brine saturations (Bergmann

  14. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1993-01-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p number-sign 1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p number-sign 1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells

  15. Climate-driven changes in water level

    DEFF Research Database (Denmark)

    Hansen, Rikke Bjerring; Olsen, Jesper; Jeppesen, Erik

    2013-01-01

    level rose. Moreover, Nymphaeaceae trichosclereids were abundant during the period of algal enrichment. Cladoceran taxa associated with floating leaved plants or benthic habitats responded in a complex way to changes in water level, but the cladoceran assemblages generally reflected deep lake conditions...... hydrology driven by precipitation. The isotopic, sedimentary and plant macrofossil records suggested that the lake level started to decrease around 8400 cal. yr BP, the decrease accelerating during 8350-8260 before an abrupt increase during 8260-8210. This pattern shows that the climate anomaly started...... rates of cladoceran subfossils and algal pigments, possibly due to increased turbidity and reduced nutrient input during this drier period. Pigment analysis also showed added importance of diatoms and cryptophytes during this climate anomaly, while cyanobacteria became more important when the water...

  16. Water levels shape fishing participation in flood-control reservoirs

    Science.gov (United States)

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  17. 275 C Downhole Switched-Mode Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Chris Hutchens; Vijay Madhuravasal

    2008-08-31

    A vee-square (V2) control based controller IC is developed for a switch mode power supply capable of operating at extreme temperature/harsh environment conditions. A buck type regulator with silicon carbide power junction field effect transistors (JFET) as power devices is used to analyze the performance of controller. Special emphases are made on the analog sub-blocks--voltage reference, operational transconductance amplifier and comparator as individual building blocks. Transformer coupled gate drives and high temperature operable magnetic cores and capacitors are identified and tested for use in the design. Conventional ceramic chip packaging of ICs combined with lead carrier type mounting of passive filter components is introduced for hybrid packaging of the complete product. The developed SMPS is anticipated to support the operation of down-hole microcontrollers and other electronics devices that require low/medium power filtered dc inputs over an operating temperature of 275 C.

  18. Numerical and experimental investigation of thermoelectric cooling in down-hole measuring tools; a case study

    Directory of Open Access Journals (Sweden)

    Rohitha Weerasinghe

    2017-09-01

    Full Text Available Use of Peltier cooling in down-hole seismic tooling has been restricted by the performance of such devices at elevated temperatures. Present paper analyses the performance of Peltier cooling in temperatures suited for down-hole measuring equipment using measurements, predicted manufacturer data and computational fluid dynamic analysis. Peltier performance prediction techniques is presented with measurements. Validity of the extrapolation of thermoelectric cooling performance at elevated temperatures has been tested using computational models for thermoelectric cooling device. This method has been used to model cooling characteristics of a prototype downhole tool and the computational technique used has been proven valid.

  19. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Tubel

    2003-10-14

    The fourth quarter of the project was dedicated to the manufacturing of the mechanical system for wireless communications and the power generation module and inspection pre assembly of the mechanical components. Another emphasis for the quarter was the development of filter control and signal detection software. The tasks accomplished during this report period were: (1) Dimensional issues were resolved and revised drawings for manufacturing of the wireless communications gauge and power generator were completed and sent to a machine shop for manufacturing. (2) Finalized the requirements and fittings and connections for testing the tool in the Halliburton flow loop. (3) The new acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly will be outsourced for plastic coating in preparation for hostile environment use. (4) The acoustic two-way communications development continued to progress. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the acoustic generator assembly was manufactured and was successfully tested. Spring mandrel design showed increased acoustic output on the pipe and was implemented. (6) PCBA board carrier with board set was tested for function and fit and is 100% complete. (7) Filter control software is complete and software to allow modification of communication parameters dynamically is 50% complete. (8) All mechanical parts to assemble the wireless gauge and power generator have been received and verified to be within specification. (9) Acoustic generator has been assembled in the tool mandrel and tested successfully. (10) The circuit required to harvest the power generated downhole has been designed and the power generator

  20. The role of duplex stainless steels for downhole tubulars

    International Nuclear Information System (INIS)

    Francis, R.

    1993-01-01

    In sour conditions there is an increasing trend to turn to corrosion resistant alloys for downhole tubulars. The most commonly used CRA tubular is 13Cr, and there are thousands of feet in service. However, there are limits to the use of 13Cr, ie., the risk of sulphide stress corrosion cracking at high H 2 S levels, and the possibility of pitting or high corrosion rates in waters with high chloride contents. Where the service conditions are felt to be too severe for 13Cr alloys it has been traditional to switch to nickel base alloys such as alloys 825 and C-276 (UNS N08825 and N10276). The alloys are much more expensive than 13Cr, and in recent years the duplex stainless steels have been selected as alloys with superior corrosion and SSCC resistance compared with 13Cr, and having lower cost than nickel alloys. Originally the 22Cr duplex alloy (UNS 31803) was used, but more recently the 25Cr super duplex alloys (UNS S32760 and S32750) have become more available. The present paper reviews the data available for 13Cr and the limits of applicability. Data is also presented for laboratory tests for both the 22Cr and 25Cr super duplex alloys. There is extensive service experience with both 22Cr and 25Cr super duplex in the North Sea, covering both downhole tubulars, manifold and post wellhead equipment. Data is presented showing some of the sour condition being experienced in the North Sea by super duplex alloys. These results show that there is a substantial gap between the limits of use for 13Cr and the 25Cr super duplex stainless steel alloys. This means that in many sour environments super duplex stainless steel provides a cost effective alternative to nickel-base alloys

  1. Lithostratigraphy from downhole logs in Hole AND-1B, Antarctica

    Science.gov (United States)

    Williams, Trevor; Morin, Roger H.; Jarrard, Richard D.; Jackolski, Chris L.; Henrys, Stuart A.; Niessen, Frank; Magens, Diana; Kuhn, Gerhard; Monien, Donata; Powell, Ross D.

    2012-01-01

    The ANDRILL (Antarctic Drilling Project) McMurdo Ice Shelf (MIS) project drilled 1285 m of sediment in Hole AND–1B, representing the past 12 m.y. of glacial history. Downhole geophysical logs were acquired to a depth of 1018 mbsf (meters below seafloor), and are complementary to data acquired from the core. The natural gamma radiation (NGR) and magnetic susceptibility logs are particularly useful for understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND–1B. NGR logs cover the entire interval from the seafloor to 1018 mbsf, and magnetic susceptibility and other logs covered the open hole intervals between 692 and 1018 and 237–342 mbsf. In the upper part of AND–1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamictite (containing K-bearing clays, K-feldspar, mica, and heavy minerals). In the lower open hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamictites (relatively high in magnetite). Sandstones can be distinguished by their high resistivity values in AND–1B. On the basis of these three downhole logs, diamictite, claystones, and sandstones can be predicted correctly for 74% of the 692–1018 mbsf interval. The logs were then used to predict facies for the 6% of this interval that was unrecovered by coring. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties and help refine parts of the lithostratigraphy, for example, the varying terrigenous content of diatomites and the transitions from subice diamictite to open-water diatomite.

  2. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    Science.gov (United States)

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  3. Effects of Barometric Fluctuations on Well Water-Level Measurements and Aquifer Test Data

    Energy Technology Data Exchange (ETDEWEB)

    FA Spane, Jr.

    1999-12-16

    The Pacific Northwest National Laboratory, as part of the Hanford Groundwater Monitoring Project, examines the potential for offsite migration of contamination within underlying aquifer systems. Well water-level elevation measurements from selected wells within these aquifer systems commonly form the basis for delineating groundwater-flow patterns (i.e., flow direction and hydraulic gradient). In addition, the analysis of water-level responses obtained in wells during hydrologic tests provides estimates of hydraulic properties that are important for evaluating groundwater-flow velocity and transport characteristics. Barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These barometric effects may lead to erroneous indications of hydraulic head within the aquifer. Total hydraulic head (i.e., sum of the water-table elevation and the atmospheric pressure at the water-table surface) within the aquifer, not well water-level elevation, is the hydrologic parameter for determining groundwater-flow direction and hydraulic gradient conditions. Temporal variations in barometric pressure may also adversely affect well water-level responses obtained during hydrologic tests. If significant, adjustments or removal of these barometric effects from the test-response record may be required for quantitative hydraulic property determination. This report examines the effects of barometric fluctuations on well water-level measurements and evaluates adjustment and removal methods for determining areal aquifer head conditions and aquifer test analysis. Two examples of Hanford Site unconfined aquifer tests are examined that demonstrate barometric response analysis and illustrate the predictive/removal capabilities of various methods for well water-level and aquifer total head values. Good predictive/removal characteristics were demonstrated with best corrective results provided by multiple-regression deconvolution methods.

  4. Report covering examination of parts from downhole steam generators. [Combustor head and sleeve parts

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, F. S.; Meier, G. H.

    1983-08-01

    Combustor head and sleeve parts were examined by using optical and scanning electron metallography after use in oxygen/diesel and air/diesel downhole steam generators. The degradation of the different alloy components is described in terms of reactions with oxygen, sulfur and carbon in the presence of cyclic stresses, all generated by the combustion process. Recommendations are presented for component materials (alloys and coatings) to extend component lives in the downhole steam generators. 9 references, 22 figures, 3 tables.

  5. Surface-Source Downhole Seismic Analysis in R

    Science.gov (United States)

    Thompson, Eric M.

    2007-01-01

    This report discusses a method for interpreting a layered slowness or velocity model from surface-source downhole seismic data originally presented by Boore (2003). I have implemented this method in the statistical computing language R (R Development Core Team, 2007), so that it is freely and easily available to researchers and practitioners that may find it useful. I originally applied an early version of these routines to seismic cone penetration test data (SCPT) to analyze the horizontal variability of shear-wave velocity within the sediments in the San Francisco Bay area (Thompson et al., 2006). A more recent version of these codes was used to analyze the influence of interface-selection and model assumptions on velocity/slowness estimates and the resulting differences in site amplification (Boore and Thompson, 2007). The R environment has many benefits for scientific and statistical computation; I have chosen R to disseminate these routines because it is versatile enough to program specialized routines, is highly interactive which aids in the analysis of data, and is freely and conveniently available to install on a wide variety of computer platforms. These scripts are useful for the interpretation of layered velocity models from surface-source downhole seismic data such as deep boreholes and SCPT data. The inputs are the travel-time data and the offset of the source at the surface. The travel-time arrivals for the P- and S-waves must already be picked from the original data. An option in the inversion is to include estimates of the standard deviation of the travel-time picks for a weighted inversion of the velocity profile. The standard deviation of each travel-time pick is defined relative to the standard deviation of the best pick in a profile and is based on the accuracy with which the travel-time measurement could be determined from the seismogram. The analysis of the travel-time data consists of two parts: the identification of layer-interfaces, and the

  6. Testing and use of radar water level sensors by the U.S. Geological Survey

    Science.gov (United States)

    Fulford, Janice M.

    2016-01-01

    The United States Geological Survey uses water-level (or stage) measurements to compute streamflow at over 8000 stream gaging stations located throughout the United States (waterwatch.usgs.gov, 2016). Streamflow (or discharge) is computed at five minute to hourly intervals from a relationship between water level and discharge that is uniquely determined for each station. The discharges are posted hourly to WaterWatch (waterwatch. usgs.gov) and are used by water managers to issue flood warnings and manage water supply and by other users of water information to make decisions. The accuracy of the water-level measurement is vital to the accuracy of the computed discharge. Because of the importance of water-level measurements, USGS has an accuracy policy of 0.02 ft or 0.2 percent of reading (whichever is larger) (Sauer and Turnipseed, 2010). Older technologies, such as float and shaft-encoder systems, bubbler systems and submersible pressure sensors, provide the needed accuracy but often require extensive construction to install and are prone to malfunctioning and damage from floating debris and sediment. No stilling wells or orifice lines need to be constructed for radar installations. During the last decade testing by the USGS Hydrologic Instrumentation Facility(HIF) found that radar water-level sensors can provide the needed accuracy for water-level measurements and because the sensor can be easily attached to bridges, reduce the construction required for installation. Additionally, the non-contact sensing of water level minimizes or eliminates damage and fouling from floating debris and sediment. This article is a brief summary of the testing efforts by the USGS HIF and field experiences with models of radar water-level sensors in streamflow measurement applications. Any use of trade names in this article is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  7. Suppression device for the reactor water level lowering

    International Nuclear Information System (INIS)

    Kasuga, Hajime; Kasuga, Hiroshi.

    1984-01-01

    Purpose: To suppress the lowering in the reactor water level so as to avoid unnecessary actuation of ECCS upon generation of transient changes which forecasts the lowering of the reactor water level in a BWR type reactor. Constitution: There are provided a water level suppression signal generator for generating a water level suppression signal upon generation of a transient change signal which forecasts the water level lowering in a nuclear reactor and a recycling flow rate controller that applies a recycling flow rate control signal to a recycling pump drive motor by the water level lowering suppression signal. The velocity of the recycling pump is controlled by a reactor scram signal by way of the water level lowering suppresion signal generator and a recycling flow rate controller. Then, the recycling reactor core flow rate is decreased and the void amount in the reactor is transiently increased where the water level tends to increase. Accordingly, the water level lowering by the scram is moderated by the increasing tendency of the water level. (Ikeda, J.)

  8. Preliminary Study of Steam Generator Water Level Tracking by Three Different Methods Using RELAP5/MOD3

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Moon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    It has been identified in the previous works that the tracking of a steam generator (SG) water level is important. However, three different parameters can be used as an indicator of the SG water level. These parameters are: (1) SG downcomer collapsed water level, (2) water mass inventory and (3) pressure differential between upper and low tap of SG. Instead the SG water level is calculated by either SG downcomer collapsed water level or water mass inventory. However, the pressure differential measurement is the most widely used method for estimating the SG water level in the experiment as well as in the industry In this paper, therefore, three events are analyzed to perform sensitivity study of the SG water level calculation with RELAP5/MOD3 and evaluate SG level difference by three parameters. In this paper, three events are analyzed using the system analysis code (RELAP5/MOD3) to check for the consistency among the downcomer collapsed water level, mass inventory and the pressure differential measurement methods. This is to identify the sensitivity of the nuclear power plant accident response when one of the above three parameters is selected as the representative parameter of the steam generator water level. It is confirmed that mass inventory method is not affected by shrinking and swelling effect and the reactor trip time is significantly different among three parameters during TLOFW. In addition, level recovery rate is different when LOMF occurs. Thus, the SG level sensitivity of SG water level tracking method using three parameters has to be further studied not only for the steady-state operation but also for understanding the nuclear power plant response under various transient scenarios.

  9. Lessons Learned From the Analysis of the SAFOD Downhole Instrument Package.

    Science.gov (United States)

    Johnson, Wade; Mencin, David; Mattioli, Glen

    2013-04-01

    In September of 2008 a downhole instrument package (DIP) consisting of a string of seismometers and tilt meters in isolated pressure vessels (PODs) was installed in the SAFOD main borehole. This package was designed to protect the sensors from the corrosive borehole environment and to operate for two years. The SAFOD borehole is not sealed at the bottom allowing borehole gasses and fluids infiltratration. Previous short-term installations of instruments in the SAFOD main borehole had also failed as a result of corrosion of the wireline cable head. The average failure time for these installations was two weeks. The use of stainless steel tubing connected to the pressure vessels through gas tight fittings was designed to block borehole fluid and gas infiltration of the individual instruments within the PODs. Unfortunately, the DIP completely failed within a month of its installation. In October of 2010, the DIP was removed from the borehole and a failure analysis was performed. This analysis involved to following steps: 1. Analysis of data to understand timeline of failure 2. Remove instrument safely, maintaining integrity of spliced section and documenting any external clues. Test instrument at surface 3. Open PODs in a way that allows for sampling and avoids damaging instruments. 4. Chemical analysis of fluids recovered from splices and PODs. 5. Instrument failure analysis by the instrument manufacturers. The analysis found that there were several design flaws in the DIP. This included the use of motor oil to take up air space in the individual PODs, use of a large number of gas tight seals, lack of internal seals, poorly done solder joints, use of non-temperature rated sensors, and lack of management oversight. The lessons learned from the attempts to instrument the SAFOD borehole are critical to the success of future deep borehole projects.

  10. Apparatus for deploying and energizing submersible electric motor downhole

    International Nuclear Information System (INIS)

    Conner, S.E.; Dwiggins, J.L.; Brookbank, E.B.

    1991-01-01

    This patent describes an apparatus for deploying and energizing a submergible electric motor downhole. It comprises a cable socket assembly and a cable connecting-and-sealing chamber assembly adapted to be arranged seriatim in the path of cable means and the motor, the assemblies having first and second housings, respectively, means for connecting a lower end of the first housing to an upper end of the second housing, a lower end of the second housing being adapted for connection to the motor, the cable socket assembly having an attachment portion including means for attaching a weight-bearing cable of the cable means to the first housing via a breakaway connection, the first housing having a passage therein adapted to pass an electrical cable of the cable means to the second housing, the second housing being divided by a body therein into first and second chambers sealed from each other, the first chamber being adapted to communicate sealingly with the passage and the second chamber being adapted to communicate sealingly with the interior of the motor, a first set of electrical conductors in the first chamber and a second set of electrical conductors in the second chamber, the body having feed-through means for electrically interconnecting conductors of the first set with corresponding conductors of the second set, the conductors of the first set having electrical connector parts adapted to connect releasably with corresponding electrical connector parts of the electrical cable, and the conductors of the second set having electrical connector parts adapted to connect with corresponding electrical connector parts of the motor, each of the chambers being adapted to be filled with fluid to exclude well fluid therefrom

  11. Down-hole catalytic upgrading of heavy crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, J.G.; Kessler, R.V.; Sawicki, R.A.; Belgrave, J.D.M.; Laureshen, C.J.; Mehta, S.A.; Moore, R.G.; Ursenbach, M.G. [University of Calgary, Calgary, AB (Canada). Dept. of Chemical and Petroleum Engineering

    1996-07-01

    Several processing options have been developed to accomplish near-well bore in-situ upgrading of heavy crude oils. These processes are designed to pass oil over a fixed bed of catalyst prior to entering the production well, the catalyst being placed by conventional gravel pack methods. The presence of brine and the need to provide heat and reactant gases in a down-hole environment provide challenges not present in conventional processing. These issues were addressed and the processes demonstrated by use of a modified combustion tube apparatus. Middle-Eastern heavy crude oil and the corresponding brine were used at the appropriate reservoir conditions. In-situ combustion was used to generate reactive gases and to drive fluids over a heated sand or catalysts bed, simulating the catalyst contacting portion of the proposed processes. The heavy crude oil was found to be amenable to in-situ combustion at anticipated reservoir conditions, with a relatively low air requirement. Forcing the oil to flow over a heated zone prior to production results in some upgrading of the oil, as compared to the original oil, due to thermal effects. Passing the oil over a hydroprocessing catalyst located in the heated zone results in a product that is significantly upgraded as compared to either the original oil or thermally processed oil. Catalytic upgrading is due to hydrogenation and the results in about a 50% sulfur removal and an 8{degree} API gravity increase. Additionally, the heated catalyst was found to be efficient at converting CO to additional H{sub 2}. While all of the technologies needed for a successful field trial of in-situ catalytic upgrading exist, a demonstration has yet to be undertaken. 27 refs., 5 figs., 5 tabs.

  12. GPS water level measurements for Indonesia's Tsunami Early Warning System

    Directory of Open Access Journals (Sweden)

    T. Schöne

    2011-03-01

    Full Text Available On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements.

    The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS (Rudloff et al., 2009 combines GPS technology and ocean bottom pressure (OBP measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information.

    The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  13. Design Enhancement and Performance Examination of External Rotor Switched Flux Permanent Magnet Machine for Downhole Application

    Science.gov (United States)

    Kumar, R.; Sulaiman, E.; Soomro, H. A.; Jusoh, L. I.; Bahrim, F. S.; Omar, M. F.

    2017-08-01

    The recent change in innovation and employments of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has turned out to be one of the suitable contenders for seaward boring, however, less intended for downhole because of high atmospheric temperature. Subsequently, this extensive review manages the design enhancement and performance examination of external rotor PMFSM for the downhole application. Preparatory, the essential design parameters required for machine configuration are computed numerically. At that point, the design enhancement strategy is actualized through deterministic technique. At last, preliminary and refined execution of the machine is contrasted and as a consequence, the yield torque is raised from 16.39Nm to 33.57Nm while depreciating the cogging torque and PM weight up to 1.77Nm and 0.79kg, individually. In this manner, it is inferred that purposed enhanced design of 12slot-22pole with external rotor is convenient for the downhole application.

  14. NOS CO-OPS Water Level Data, Verified, High Low

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has verified (quality-controlled), daily, high low water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and Services...

  15. NOS CO-OPS Water Level Data, Verified, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has verified (quality-controlled), 6-minute, water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS)....

  16. NOS CO-OPS Water Level Data, Preliminary, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has recent, preliminary (not quality-controlled), 6-minute, water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and...

  17. radio frequency based radio frequency based water level monitor

    African Journals Online (AJOL)

    eobe

    ABSTRACT. This paper elucidates a radio frequency (RF) based transmission and reception system used to remotely monitor and .... range the wireless can cover but in this prototype, it ... power supply to the system, the sensed water level is.

  18. NOS CO-OPS Water Level Data, Verified, Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has verified (quality-controlled), hourly, water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS)....

  19. NOS CO-OPS Water Level Data, Preliminary, 1-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has recent, preliminary (not quality-controlled), 1-minute, water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and...

  20. Feasibility evaluation of downhole oil/water separator (DOWS) technology.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Langhus, B. G.; Belieu, S.

    1999-01-31

    The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely

  1. Analysis of water-level fluctuations in Wisconsin wells

    Science.gov (United States)

    Patterson, G.L.; Zaporozec, A.

    1987-01-01

    More than 60 percent of the residents of Wisconsin use ground water as their primary water source. Water supplies presently are abundant, but ground-water levels continually fluctuate in response to natural factors and human-related stresses. A better understanding of the magnitude, duration, and frequency of past fluctuations, and the factors controlling these fluctuations may help anticipate future changes in ground-water levels.

  2. Denitrifying Bioreactors Resist Disturbance from Fluctuating Water Levels

    Directory of Open Access Journals (Sweden)

    Sarah K. Hathaway

    2017-06-01

    Full Text Available Nitrate can be removed from wastewater streams, including subsurface agricultural drainage systems, using woodchip bioreactors to promote microbial denitrification. However, the variations in water flow in these systems could make reliable performance from this microbially-mediated process a challenge. In the current work, the effects of fluctuating water levels on nitrate removal, denitrifying activity, and microbial community composition in laboratory-scale bioreactors were investigated. The performance was sensitive to changing water level. An average of 31% nitrate was removed at high water level and 59% at low water level, despite flow adjustments to maintain a constant theoretical hydraulic retention time. The potential activity, as assessed through denitrifying enzyme assays, averaged 0.0008 mg N2O-N/h/dry g woodchip and did not show statistically significant differences between reactors, sampling depths, or operational conditions. In the denitrifying enzyme assays, nitrate removal consistently exceeded nitrous oxide production. The denitrifying bacterial communities were not significantly different from each other, regardless of water level, meaning that the denitrifying bacterial community did not change in response to disturbance. The overall bacterial communities, however, became more distinct between the two reactors when one reactor was operated with periodic disturbances of changing water height, and showed a stronger effect at the most severely disturbed location. The communities were not distinguishable, though, when comparing the same location under high and low water levels, indicating that the communities in the disturbed reactor were adapted to fluctuating conditions rather than to high or low water level. Overall, these results describe a biological treatment process and microbial community that is resistant to disturbance via water level fluctuations.

  3. Evaluation of yield and water-level relations

    International Nuclear Information System (INIS)

    Cushman, R.L.; Purtymun, W.D.

    1975-10-01

    Yield and water relations in the Los Alamos supply wells were evaluated because of the increasing demand for water. Water-level declines were extrapolated for 10 yr, to 1983, on the basis of past records. On the basis of current pumpage, the extrapolations indicate that nonpumping water levels in individual wells will decline from 10 to 30 ft. Well characteristics were compiled to provide an individual history of each well, and recommendations for improving water production are presented

  4. Sub-tidal water-level oscillations in the Mandovi estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Vijith, V.

    of rainfall associated with the ISM and its interannual and intraseasonal variability. With most of the rainfall occurring during the wet ISM, most of the runoff into the estuaries is also during the same season. There is virtually no runoff... water level computed using the pressure sensor versus that using the tide pole shows that the high-frequency scatter is larger for the tide-pole measurements. However, the low-pass filtered variability is virtually identical in the tide...

  5. Geoelectric Monitoring of geological CO2 storage at Ketzin, Germany (CO2SINK project): Downhole and Surface-Downhole measurements

    Science.gov (United States)

    Kiessling, D.; Schuett, H.; Schoebel, B.; Krueger, K.; Schmidt-Hattenberger, C.; Schilling, F.

    2009-04-01

    images of the true resistivity distribution in the reservoir, which reflects the extent of the CO2 plume. The resistivity data provide information about the saturation state of the reservoir independently of seismic methods. Base data sets have been measured prior to the CO2 injection; monitoring data sets are registered while CO2 is being injected. Using combined 3D surface-downhole measurements (realized in cooperation with University of Leipzig) we got in addition an indication for effects of anisotropy in CO2 migration. We present an overview of the electrode installation, first examples for baseline and monitoring datasets and the corresponding tomograms that show indications of the CO2 migration.

  6. Analysis of the relationship between water level fluctuation and seismicity in the Three Gorges Reservoir (China

    Directory of Open Access Journals (Sweden)

    Lifen Zhang

    2017-03-01

    Full Text Available The Three Gorges Reservoir is a good site for the further researches on reservoir induced seismicity due to decades' seismic monitoring. After the first water impounding in 2003, seismic activity becomes more frequent than that before water impoundment. In order to quantitatively study, the relationship between the water level fluctuation and earthquakes in TGR, we introduced statistical methods to attain the goal. First of all, we relocated the earthquakes in TGR region with double difference method and divided the earthquakes into 5 clusters with clustering analysis method. Secondly, to examine the impacts of water level fluctuation in different water filling stages on the seismic activity in the 5 clusters, a series of statistical analyses are applied. Pearson correlation results show that only the 175 m water level fluctuation has significantly positive impacts on the seismic activity in clusters Ⅰ, Ⅱ, Ⅲ and Ⅴ with correlation coefficients of 0.44, 0.38, 0.66 and 0.63. Cross-correlation analysis demonstrates that 0, 1, 0 and 0 month time delay separately for the clusters Ⅰ, Ⅱ, Ⅲ and Ⅴ exists. It illustrated the influences of the water loading and pore pressure diffusion on induced earthquakes. Cointegration tests and impulse response analysis denoted that the 175 m water level only had long term and significant effects just on the seismic events in the intersection region of the Fairy Mount Fault and Nine-brook Fault. One standard deviation shock to 175 m water level increased the seismic activity in cluster Ⅴ for the first 3 months, and then the negative influence was shown. After 7 months, the negative impulse response becomes stable. The long-term effect of the 175 m water impoundment also proved the important role of pore pressure diffusion in RIS with time.

  7. Downhole multiphase metering in wells by means of soft-sensing

    NARCIS (Netherlands)

    Leskens, M.; Kruif, B. de; Belfroid, S.P.C.; Smeulers, J.P.M.; Gryzlov, A.

    2008-01-01

    Multiphase flow meters are indispensable tools for achieving optimal operation and control of wells as these meters deliver real-time information about their performance. For example, multiphase flow meters located downhole can improve the production of multilateral and multizone wells by timely

  8. Long-time water level observations at the HDR-testsite Soultz-sous-Forets

    Energy Technology Data Exchange (ETDEWEB)

    Dornstaedter, J; Heinemann-Glutsch, B; Zaske, J [GTC-Kappelmeyer GmbH, Karlsruhe (Germany)

    1997-12-01

    Pressure or water level measurements have been performed by GTC in different wells at the geothermal testsite Soultz-sous-Forets for six years now. The water lever variations are mainly influenced by earth tides, barometric pressure variations, hydraulic testing and stimulation. The small scale variations are influenced by tidal and barometric forcing functions, the large scale variations by hydraulic testing and stimulation. By analyzing such measurements it is possible to get important information about the hydrualic connections between the boreholes, as well as aquifer parameters. (orig./AKF)

  9. Reservoirs talk to pressure recorders

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1968-02-01

    Keeping pace with increased demand for efficiency in secondary recovery schemes is the widening use of downhole tools charged with supplying data before and during the operation of the projects. One of the most important of these is the pressure recorder. This highly sensitive instrument, housed in a tough, slim steel case and lowered by drill pipe or cable, accurately measures the pressure of its downhole environment. This information is instantly available at the surface whenever a pressure reading is required. Typical applications of surface recorders often contribute are: (1) production practices such as checking surface and subsurface equipment, and special lifting problems; (2) well conditions including regular productivity indices, data observations and for interference studies; (3) secondary recovery projects, in both producing and injection wells; and (4) reservoir conditions where oil-water contacts and damaged zones need close attention.

  10. Precision and accuracy of manual water-level measurements taken in the Yucca Mountain area, Nye County, Nevada, 1988--1990

    International Nuclear Information System (INIS)

    Boucher, M.S.

    1994-01-01

    Water-level measurements have been made in deep boreholes in the Yucca Mountain area, Nye County, Nevada, since 1983 in support of the US Department of Energy's Yucca Mountain Project, which is an evaluation of the area to determine its suit-ability as a potential storage area for high-level nuclear waste. Water-level measurements were taken either manually, using various water-level measuring equipment such as steel tapes, or they were taken continuously, using automated data recorders and pressure transducers. This report presents precision range and accuracy data established for manual water-level measurements taken in the Yucca Mountain area, 1988--90

  11. Development of a downhole tool measuring real-time concentration of ionic tracers and pH in geothermal reservoirs

    Science.gov (United States)

    Hess, Ryan F.; Boyle, Timothy J.; Limmer, Steven; Yelton, William G.; Bingham, Samuel; Stillman, Greg; Lindblom, Scott; Cieslewski, Grzegorz

    2014-06-01

    For enhanced or Engineered Geothermal Systems (EGS) geothermal brine is pumped to the surface via the production wells, the heat extracted to turn a turbine to generate electricity, and the spent brine re-injected via injection wells back underground. If designed properly, the subsurface rock formations will lead this water back to the extraction well as heated brine. Proper monitoring of these geothermal reservoirs is essential for developing and maintaining the necessary level of productivity of the field. Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the location of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring tracer concentrations and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave.

  12. Ground-water levels and quality data for Georgia

    Science.gov (United States)

    ,

    1979-01-01

    This report begins a publication format that will present annually both water-level and water-quality data in Georgia. In this format the information is presented in two-page units: the left page includes text which summarizes the information for an area or subject and the right page consists of one or more illustrations. Daily mean water-level fluctuations and trends are shown in hydrographs for the previous year and fluctuations for the monthly mean water level the previous 10 years for selected observation wells. The well data best illustrate the effects of changes in recharge and discharge in the various ground-water reservoirs in the State. A short narrative explains fluctuations and trends in each hydrograph. (Woodard-USGS)

  13. Water levels of the Ozark aquifer in northern Arkansas, 2013

    Science.gov (United States)

    Schrader, Tony P.

    2015-07-13

    The Ozark aquifer is the largest aquifer, both in area of outcrop and thickness, and the most important source of freshwater in the Ozark Plateaus physiographic province, supplying water to northern Arkansas, southeastern Kansas, southern Missouri, and northeastern Oklahoma. The study area includes 16 Arkansas counties lying completely or partially within the Ozark Plateaus of the Interior Highlands major physiographic division. The U.S. Geological Survey, in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey, conducted a study of water levels in the Ozark aquifer within Arkansas. This report presents a potentiometric-surface map of the Ozark aquifer within the Ozark Plateaus of northern Arkansas, representing water-level conditions for the early spring of 2013 and selected water-level hydrographs.

  14. Cosine components in water levels at Yucca Mountain

    International Nuclear Information System (INIS)

    Rice, J.; Lehman, L.; Keen, K.

    1990-01-01

    Water-level records from wells at Yucca Mountain, Nevada are analyzed periodically to determine if they contain periodic (cosine) components. Water-level data from selected wells are input to an iterative numerical procedure that determines a best fitting cosine function. The available water-level data, with coverage of up to 5 years, appear to be representative of the natural water-level changes. From our analysis of 9 water-level records, it appears that there may be periodic components (periods of 2-3 years) in the groundwater-level fluctuations at Yucca Mountain, Nevada, although some records are fit better than others by cosine functions. It also appears that the periodic behavior has a spatial distribution. Wells west of Yucca Mountain have different periods and phase shifts from wells on and east of Yucca Mountain. Interestingly, a similar spatial distribution of groundwater chemistry at Yucca Mountain is reported by Matuska (1988). This suggests a physical cause may underlie the different physical and chemical groundwater conditions. Although a variety of natural processes could cause water-level fluctuations, hydrologic processes are the most likely, because the periodicities are only a few years. A possible cause could be periodic recharge related to a periodicity in precipitation. It is interesting that Cochran et al., (1988), show a crude two-year cycle of precipitation for 1961 to 1970 in southern Nevada. Why periods and phase shifts may differ across Yucca Mountain is unknown. Different phase shifts could indicate different lag times of response to hydrologic stimuli. Difference in periods could mean that the geologic media is heterogeneous and displays heterogeneous response to a single stimulus, or that stimuli differ in certain regions, or that a hydraulic barrier separates the groundwater system into two regions having different water chemistry and recharge areas. 13 refs., 5 figs., 1 tab

  15. Units 3 and 4 steam generators new water level control system

    International Nuclear Information System (INIS)

    Dragoev, D.; Genov, St.

    2001-01-01

    The Steam Generator Water Level Control System is one of the most important for the normal operation systems, related to the safety and reliability of the units. The main upgrading objective for the SG level and SGWLC System modernization is to assure an automatic maintaining of the SG level within acceptable limits (below protections and interlocks) from 0% to 100% of the power in normal operation conditions and in case of transients followed by disturbances in the SG controlled parameters - level, steam flow, feedwater flow and/or pressure/temperature. To achieve this objective, the computerized controllers of new SG water level control system follows current computer control technology and is implemented together with replacement of the feedwater control valves and the needed I and C equipment. (author)

  16. Development and validation of the downhole freestanding shear device (DFSD) for measuring the dynamic properties of clay.

    Science.gov (United States)

    2008-12-01

    The Downhole Freestanding Shear Device (DFSD) is an innovative tool developed for in situ measurement of dynamic : properties (modulus and damping) of clay soils over a broad range of strains. The device essentially performs : laboratory-quality tors...

  17. Evaluate prevailing climate change on Great Lakes water levels

    International Nuclear Information System (INIS)

    Islam, M.

    2009-01-01

    'Full text:'In this paper, results of a comprehensive water mass balance modeling for the Great Lakes against prevailing and different anticipated climate change scenarios would be presented. Modeling is done in evaluating the changes in the lake storages and then changes in the lake's water level considering present condition, uncertainty and variability of climate and hydrologic conditions in the future. Inflow-outflow and consequent changes in the five Great Lake's storages are simulated for the last 30 years and then projected to evaluate the changes in the lake storages for the next 50 years. From the predicted changes in the lake storage data, water level is calculated using mass to linear conversion equation. Modeling and analysis results are expected to be helpful in understanding the possible impacts of the climate change on the Great Lakes water environment and preparing strategic plan for the sustainable management of lake's water resources. From the recent past, it is observed that there is a depleting trend in the lakes water level and hence there is a potential threat to lake's water environment and uncertainty of the availability of quality and quantity of water for the future generations, especially against prevailing and anticipated climate changes. For this reason, it is an urgent issue of understanding and quantifying the potential impacts of climate change on the Great Lake's water levels and storages. (author)

  18. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Bot...

  19. Water-Level Analysis for Cumberland Sound, Georgia

    National Research Council Canada - National Science Library

    Kraus, Nicholas

    1997-01-01

    .... The channel through St Marys Entrance is maintained at a 50-ft depth through significant dredging that occurred from 1986-1988 Questions arose as to whether this dredging had raised the water level in Cumberland Sound. The U.S...

  20. Lake St. Clair: Storm Wave and Water Level Modeling

    Science.gov (United States)

    2013-06-01

    R. A. Luettich, C. Dawson, V. J. Cardone , A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts. 2010. A high resolution coupled riverine flow...Storm Wave and Water Level Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tyler J. Hesser

  1. Operational Principle of Water Level Detector for Agricultural and ...

    African Journals Online (AJOL)

    This paper proposes a design to automatically detect the level of water in a reservoir (storage tank) at a preset level and initializes an information to the users in case of low water level. The functionality of this sensor depends basically on the electrical conductivity of water (probes) which varies, depending on the level of its ...

  2. Radio Frequency Based Water Level Monitor and Controller for ...

    African Journals Online (AJOL)

    Similarly, the control unit of the prototype performs automatic switching control of on and off on a single phase centrifugal water pump, 220volts, 0.5hp motor via a motor driver circuit (relay). It also incorporates a buzzer that beeps briefly when water level hits 100%, thus causing the pump to be switched off but when water ...

  3. Mechanical Design of Downhole Tractor Based on Two-Way Self-locking Mechanism

    Science.gov (United States)

    Fang, Delei; Shang, Jianzhong; Luo, Zirong; Wu, Guoheng; Liu, Yiying

    2018-03-01

    Based on the technology of horizontal well tractor, a kind of downhole tractor was developed which can realize Two-Way self-locking function. Aiming at the needs of horizontal well logging to realize the target of small size, high traction and high reliability, the tractor selects unique heart-shaped CAM as the locking mechanism. The motion principle of telescopic downhole tractor, the design of mechanical structure and locking principle of the locking mechanism are all analyzed. The mathematical expressions of traction are obtained by mechanical analysis of parallel support rod in the locking mechanism. The force analysis and contour design of the heart-shaped CAM are performed, which can lay the foundation for the development of tractor prototype.

  4. Integrated hydraulic booster/tool string technology for unfreezing of stuck downhole strings in horizontal wells

    Science.gov (United States)

    Tian, Q. Z.

    2017-12-01

    It is common to use a jarring tool to unfreeze stuck downhole string. However, in a horizontal well, influenced by the friction caused by the deviated section, jarring effect is poor; on the other hand, the forcing point can be located in the horizontal section by a hydraulic booster and the friction can be reduced, but it is time-consuming and easy to break downhole string using a large-tonnage and constant pull force. A hydraulic booster - jar tool string has been developed for unfreezing operation in horizontal wells. The technical solution involves three elements: a two-stage parallel spring cylinder structure for increasing the energy storage capacity of spring accelerators; multiple groups of spring accelerators connected in series to increase the working stroke; a hydraulic booster intensifying jarring force. The integrated unfreezing tool string based on these three elements can effectively overcome the friction caused by a deviated borehole, and thus unfreeze a stuck string with the interaction of the hydraulic booster and the mechanical jar which form an alternatively dynamic load. Experimental results show that the jarring performance parameters of the hydraulic booster-jar unfreezing tool string for the horizontal wells are in accordance with original design requirements. Then field technical parameters were developed based on numerical simulation and experimental data. Field application shows that the hydraulic booster-jar unfreezing tool string is effective to free stuck downhole tools in a horizontal well, and it reduces hook load by 80% and lessens the requirement of workover equipment. This provides a new technology to unfreeze stuck downhole string in a horizontal well.

  5. A Monte Carlo approach to constraining uncertainties in modelled downhole gravity gradiometry applications

    Science.gov (United States)

    Matthews, Samuel J.; O'Neill, Craig; Lackie, Mark A.

    2017-06-01

    Gravity gradiometry has a long legacy, with airborne/marine applications as well as surface applications receiving renewed recent interest. Recent instrumental advances has led to the emergence of downhole gravity gradiometry applications that have the potential for greater resolving power than borehole gravity alone. This has promise in both the petroleum and geosequestration industries; however, the effect of inherent uncertainties in the ability of downhole gravity gradiometry to resolve a subsurface signal is unknown. Here, we utilise the open source modelling package, Fatiando a Terra, to model both the gravity and gravity gradiometry responses of a subsurface body. We use a Monte Carlo approach to vary the geological structure and reference densities of the model within preset distributions. We then perform 100 000 simulations to constrain the mean response of the buried body as well as uncertainties in these results. We varied our modelled borehole to be either centred on the anomaly, adjacent to the anomaly (in the x-direction), and 2500 m distant to the anomaly (also in the x-direction). We demonstrate that gravity gradiometry is able to resolve a reservoir-scale modelled subsurface density variation up to 2500 m away, and that certain gravity gradient components (Gzz, Gxz, and Gxx) are particularly sensitive to this variation in gravity/gradiometry above the level of uncertainty in the model. The responses provided by downhole gravity gradiometry modelling clearly demonstrate a technique that can be utilised in determining a buried density contrast, which will be of particular use in the emerging industry of CO2 geosequestration. The results also provide a strong benchmark for the development of newly emerging prototype downhole gravity gradiometers.

  6. Downhole microseismic monitoring of shale deposits: Case study from Northern Poland

    Czech Academy of Sciences Publication Activity Database

    Swiech, E.; Wandycz, P.; Eisner, Leo; Pasternacki, A.; Mackowski, T.

    2017-01-01

    Roč. 14, č. 3 (2017), s. 297-304 ISSN 1214-9705 Grant - others:AV ČR(CZ) CNR-16-17 Program:Bilaterální spolupráce Institutional support: RVO:67985891 Keywords : Polish shale gas * downhole microseismic processing * anisotropy * microseismic events Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Geology Impact factor: 0.699, year: 2016

  7. Study on Dynamic Response of Downhole Tools under Perforation Impact Load

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2017-01-01

    Full Text Available A model of a multibody system is established to investigate the dynamic response of an oil tube-shock absorber-perforating gun system in downhole perforation-test joint operation. In the model, the oil tube and perforating gun are modeled as elastic rods and the shock absorber is modeled as single particle system with damping and a spring. Two force continuity conditions are used to simulate the interactions among the three components. The perforation impact load is determined by an experiment of underwater explosion of perforating bullets. Using the model, the effects of charge quantity of perforating bullet, the number of shock absorbers, and the length of oil tube on the dynamic response of oil tube and packer are investigated. On this basis, a basic principle of the combination design of shock absorber and oil tube is proposed to improve the mechanical state of downhole tools. The study results can provide theoretical support for the design of downhole perforation-test joint operation.

  8. Seismic Observations in the Taipei Metropolitan Area Using the Downhole Network

    Directory of Open Access Journals (Sweden)

    Win-Gee Huang

    2010-01-01

    Full Text Available Underlain by soft soils, the Taipei Metropolitan Area (TMA experienced major damage due to ground-motion amplification during the Hualien earthquake of 1986, the Chi-Chi earthquake of 1999, the Hualien earthquake of 2002 and the Taitung earthquake of 2003. To study how a local site can substantially change the characteristics of seismic waves as they pass through soft deposits below the free surface, two complementary downhole seismic arrays have been operated in the TMA, since 1991 and 2008. The accelerometer downhole array is composed of eight boreholes at depths in excess of 300 meters. The downhole array velocity sensor collocated with accelerometer composed of four boreholes at depths up to 90 meters. The integrated seismic network monitors potential earthquakes originating from faults in and around the TMA and provides wide-dynamic range measurement of data ranging in amplitude from seismic background noise levels to damage levels as a result of shaking. The data sets can be used to address on the response of soft-soil deposits to ground motions. One of the major considerations is the nonlinear response of soft soil deposits at different levels of excitation. The collocated acceloerometer and velocity sensors at boreholes give the necessary data for studies of non-linearity to be acquired. Such measurements in anticipation of future large, damaging earthquakes will be of special importance for the mitigation of earthquake losses.

  9. Identification of pumping influences in long-term water level fluctuations.

    Science.gov (United States)

    Harp, Dylan R; Vesselinov, Velimir V

    2011-01-01

    Identification of the pumping influences at monitoring wells caused by spatially and temporally variable water supply pumping can be a challenging, yet an important hydrogeological task. The information that can be obtained can be critical for conceptualization of the hydrogeological conditions and indications of the zone of influence of the individual pumping wells. However, the pumping influences are often intermittent and small in magnitude with variable production rates from multiple pumping wells. While these difficulties may support an inclination to abandon the existing dataset and conduct a dedicated cross-hole pumping test, that option can be challenging and expensive to coordinate and execute. This paper presents a method that utilizes a simple analytical modeling approach for analysis of a long-term water level record utilizing an inverse modeling approach. The methodology allows the identification of pumping wells influencing the water level fluctuations. Thus, the analysis provides an efficient and cost-effective alternative to designed and coordinated cross-hole pumping tests. We apply this method on a dataset from the Los Alamos National Laboratory site. Our analysis also provides (1) an evaluation of the information content of the transient water level data; (2) indications of potential structures of the aquifer heterogeneity inhibiting or promoting pressure propagation; and (3) guidance for the development of more complicated models requiring detailed specification of the aquifer heterogeneity. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  10. Support vector regression model based predictive control of water level of U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kavaklioglu, Kadir, E-mail: kadir.kavaklioglu@pau.edu.tr

    2014-10-15

    Highlights: • Water level of U-tube steam generators was controlled in a model predictive fashion. • Models for steam generator water level were built using support vector regression. • Cost function minimization for future optimal controls was performed by using the steepest descent method. • The results indicated the feasibility of the proposed method. - Abstract: A predictive control algorithm using support vector regression based models was proposed for controlling the water level of U-tube steam generators of pressurized water reactors. Steam generator data were obtained using a transfer function model of U-tube steam generators. Support vector regression based models were built using a time series type model structure for five different operating powers. Feedwater flow controls were calculated by minimizing a cost function that includes the level error, the feedwater change and the mismatch between feedwater and steam flow rates. Proposed algorithm was applied for a scenario consisting of a level setpoint change and a steam flow disturbance. The results showed that steam generator level can be controlled at all powers effectively by the proposed method.

  11. Using inferential sensors for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the

  12. Blade design and performance analysis on the horizontal axis tidal current turbine for low water level channel

    International Nuclear Information System (INIS)

    Chen, C C; Choi, Y D; Yoon, H Y

    2013-01-01

    Most tidal current turbine design are focused on middle and large scale for deep sea, less attention was paid in low water level channel, such as the region around the islands, coastal seas and rivers. This study aims to develop a horizontal axis tidal current turbine rotor blade which is applicable to low water level island region in southwest of Korea. The blade design is made by using BEMT(blade element momentum theory). The section airfoil profile of NACA63-415 is used, which shows good performance of lift coefficient and drag coefficient. Power coefficient, pressure and velocity distributions are investigated according to TSR by CFD analysis

  13. Reservoir water level forecasting using group method of data handling

    Science.gov (United States)

    Zaji, Amir Hossein; Bonakdari, Hossein; Gharabaghi, Bahram

    2018-06-01

    Accurately forecasted reservoir water level is among the most vital data for efficient reservoir structure design and management. In this study, the group method of data handling is combined with the minimum description length method to develop a very practical and functional model for predicting reservoir water levels. The models' performance is evaluated using two groups of input combinations based on recent days and recent weeks. Four different input combinations are considered in total. The data collected from Chahnimeh#1 Reservoir in eastern Iran are used for model training and validation. To assess the models' applicability in practical situations, the models are made to predict a non-observed dataset for the nearby Chahnimeh#4 Reservoir. According to the results, input combinations (L, L -1) and (L, L -1, L -12) for recent days with root-mean-squared error (RMSE) of 0.3478 and 0.3767, respectively, outperform input combinations (L, L -7) and (L, L -7, L -14) for recent weeks with RMSE of 0.3866 and 0.4378, respectively, with the dataset from https://www.typingclub.com/st. Accordingly, (L, L -1) is selected as the best input combination for making 7-day ahead predictions of reservoir water levels.

  14. The origin of elevated water levels in emplacement boreholes, Pahute Mesa, Nevada Test Site: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, G.G.; Brikowski, T.H.

    1993-12-01

    The origin of elevated water levels in emplacement boreholes at Pahute Mesa, Nevada Test Site, is uncertain. If the water is from naturally perched aquifers, then presumed ``above water table`` weapons tests may directly impact the groundwater quality. The purpose of this study is to determine the probable source of the elevated water in boreholes by comparing modeled seepage of infiltrated drilling fluids, and the seepage from a simulated naturally perched aquifer with the observed water level history. In the model, large volumes of water are infiltrated, yet return flow of fluids back into the hole stops within three days after the end of drilling and is insufficient to produce observed standing water. Return flow is limited for two reasons: (1) the volume of the saturated rock next to the borehole is small; (2) pressure head gradient direct unsaturated flow away from the borehole. Simulation of seepage from a naturally perched aquifer readily reproduces the observed water levels.

  15. Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Fenelon

    2005-10-05

    Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of

  16. New Developments in Long-Term Downhole Monitoring Arrays

    Directory of Open Access Journals (Sweden)

    Jochem Kück

    2006-03-01

    Full Text Available The long-term observation of active geological processes is a major research goal in an increasing number of scientific drilling projects. An extended monitoring phase within a potentially hostile environment (e.g., temperature, pressure, salinity requires new long-lasting and robust instrumentation currently unavailable from either industry or academia. Extended exposure of instrument packages to extreme conditions will typically cause seals to weaken and fail,electronic parts to break under permanent load, and sensors to degrade or develop strong drift. In the framework of scientific exploration, there are currently several major research projects targeting fault zone drilling and in situ measurements to monitor physical and chemical conditions before, during, and after seismic events. Planning has now begun for tool development, testing, and continuous long-term monitoring for the San Andreas Fault Zone Observatory at Depth, SAFOD (Parkfi eld, Calif., U.S.A.; See article on page 32..

  17. Better well control through safe drilling margin identification, influx analysis and direct bottom hole pressure control method for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Veeningen, Daan [National Oilwell Varco IntelliServ (NOV), Houston, TX (United States)

    2012-07-01

    Currently, well control events are almost exclusively detected by using surface measurements. Measuring a volume increase in the 'closed loop' mud circulation system; a standpipe pressure decrease; or changes in a variety of drilling parameters provide indicators of a kick. Especially in deep water, where the riser comprises a substantial section of the well bore, early kick detection is paramount for limiting the severity of a well bore influx and improve the ability to regain well control. While downhole data is presently available from downhole tools nearby the bit, available data rates are sparse as mud pulse telemetry bandwidth is limited and well bore measurements compete with transmission of other subsurface data. Further, data transfer is one-directional, latency is significant and conditions along the string are unknown. High-bandwidth downhole data transmission system, via a wired or networked drill string system, has the unique capability to acquire real-time pressure and temperature measurement at a number of locations along the drill string. This system provides high-resolution downhole data available at very high speed, eliminating latency and restrictions that typically limit the availability of downhole data. The paper describes well control opportunities for deep water operations through the use of downhole data independent from surface measurements. First, the networked drill string provides efficient ways to identify pore pressure, fracture gradient, and true mud weight that comprise the safe drilling margin. Second, the independent measurement capability provides early kick detection and improved ability to analyze an influx even with a heterogeneous mud column through distributed along-string annular pressure measurements. Third, a methodology is proposed for a direct measurement method using downhole real-time pressure for maintaining constant bottom hole pressure during well kills in deep water. (author)

  18. Formal specification and animation of a water level monitoring system

    International Nuclear Information System (INIS)

    Jackson, P.S.; Stokes, P.A.

    1993-03-01

    This report describes the Vienna Development Method (VDM), which is a formal method for software specification and development. VDM evolved out of attempts to use mathematics in programming language specifications in order to avoid ambiguities in specifications written in natural language. This report also describes the use of VDM for a real-time application, where it is used to formally specify the requirements of a water level monitoring system. The procedures and techniques used to produce an executable form (animation) of the specification are covered. (Author)

  19. Water level control for a nuclear steam generator

    International Nuclear Information System (INIS)

    Wen Tan

    2011-01-01

    Research highlights: → A water level control system for a nuclear steam generator (SG) is proposed. → The parameters of the control system are directly related to those of the plant model thus scheduling is easy to implement in practice. → The proposed gain-scheduled controller can achieve good performance at both low and high power levels. - Abstract: A water level control system for a nuclear steam generator (SG) is proposed. The control system consists of a feedback controller and a feedforward controller. The feedback controller is of first order, the feedforward controller is of second order, and parameters of the two controllers are directly related to the parameters of plant model thus scheduling is easy to implement in practice. Robustness and performance of the feedback and the feedforward controllers are analyzed in details and tuning of the two parameters of the controllers are discussed. Comparisons among a single robust controller, a multi-model controller and a gain-scheduled controller are studied. It is shown that the proposed gain-scheduled controller can achieve good performance at both low and high power levels.

  20. Comparison of shear-wave velocity measurements by crosshole, downhole and seismic cone penetration test methods

    Energy Technology Data Exchange (ETDEWEB)

    Suthaker, N.; Tweedie, R. [Thurber Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    Shear wave velocity measurements are an integral part of geotechnical studies for major structures and are an important tool in their design for site specific conditions such as site-specific earthquake response. This paper reported on a study in which shear wave velocities were measured at a proposed petrochemical plant site near Edmonton, Alberta. The proposed site is underlain by lacustrine clay, glacial till and upper Cretaceous clay shale and sandstone bedrock. The most commonly used methods for determining shear wave velocity include crosshole seismic tests, downhole seismic tests, and seismic cone penetration tests (SCPT). This paper presented the results of all 3 methods used in this study and provided a comparison of the various test methods and their limitations. The crosshole test results demonstrated a common trend of increasing shear wave velocity with depth to about 15 m, below which the velocities remained relatively constant. An anomaly was noted at one site, where the shear wave velocity was reduced at a zone corresponding to clay till containing stiff high plastic clay layers. The field study demonstrated that reasonable agreement in shear wave velocity measurements can be made using crosshole, downhole and seismic tests in the same soil conditions. The National Building Code states that the shear wave velocity is the fundamental method for determining site classification, thus emphasizing the importance of obtaining shear wave velocity measurements for site classification. It was concluded that an SCPT program can be incorporated into the field program without much increase in cost and can be supplemented by downhole or crosshole techniques. 5 refs., 2 tabs., 10 figs.

  1. Accessing SAFOD data products: Downhole measurements, physical samples and long-term monitoring

    Science.gov (United States)

    Weiland, C.; Zoback, M.; Hickman, S. H.; Ellsworth, W. L.

    2005-12-01

    Many different types of data were collected during SAFOD Phases 1 and 2 (2004-2005) as part of the National Science Foundation's EarthScope program as well as from the SAFOD Pilot Hole, drilled in 2002 and funded by the International Continental Drilling Program (ICDP). Both SAFOD and the SAFOD Pilot Hole are being conducted as a close collaboration between NSF, the U.S. Geological Survey and the ICDP. SAFOD data products include cuttings, core and fluid samples; borehole geophysical measurements; and strain, tilt, and seismic recordings from the multilevel SAFOD borehole monitoring instruments. As with all elements of EarthScope, these data (and samples) are openly available to members of the scientific and educational communities. This paper presents the acquisition, storage and distribution plan for SAFOD data products. Washed and unwashed drill cuttings and mud samples were collected during Phases 1 and 2, along with three spot cores at depths of 1.5, 2.5, and 3.1 km. A total of 52 side-wall cores were also collected in the open-hole interval between 2.5 and 3.1 km depth. The primary coring effort will occur during Phase 3 (2007), when we will continuously core up to four, 250-m-long multilaterals directly within and adjacent to the San Andreas Fault Zone. Drill cuttings, core, and fluid samples from all three Phases of SAFOD drilling are being curated under carefully controlled conditions at the Integrated Ocean Drilling Program (IODP) Gulf Coast Repository in College Station, Texas. Photos of all physical samples and a downloadable sample request form are available on the ICDP website (http://www.icdp-online.de/sites/sanandreas/index/index.html). A suite of downhole geophysical measurements was conducted during the first two Phases of SAFOD drilling, as well as during drilling of the SAFOD Pilot Hole. These data include density, resistivity, porosity, seismic and borehole image logs and are also available via the ICDP website. The SAFOD monitoring program

  2. Ruggedized downhole tool for real-time measurements and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Ryan Falcone; Lindblom, Scott C.; Yelton, William G.; Limmer, Steven J.; Boyle, Timothy J.; Cieslewski, Grzegorz

    2018-01-09

    The present invention relates to ruggedized downhole tools and sensors, as well as uses thereof. In particular, these tools can operate under extreme conditions and, therefore, allow for real-time measurements in geothermal reservoirs or other potentially harsh environments. One exemplary sensor includes a ruggedized ion selective electrode (ISE) for detecting tracer concentrations in real-time. In one embodiment, the ISE includes a solid, non-conductive potting material and an ion selective material, which are disposed in a temperature-resistant electrode body. Other electrode configurations, tools, and methods are also described.

  3. Disposal of oil cuttings by downhole fracturing injections : slurry product specifications issues

    International Nuclear Information System (INIS)

    Radzuan Junin

    1994-01-01

    The technique of using on-site injection of oil contaminated drill cuttings is attracting considerable attention as a cost effective means of complying with environmental legislation concerning discharges of drilling wastes. The slurrification and injection of oil based cuttings into a casing annulus, a process developed in 1989 by a major oil and gas producer/ operator, has proven to be a significant step toward reduction of such environmental waste. This paper discusses the development of the cuttings reinjection, slurrification, slurry properties and benefits of quality slurry, and behaviour of solid laden slurries in a fracture in conjunction with down-hole disposal operations

  4. Total Water Level Fun Facts: The Relative Contribution of Extreme Total Water Levels Along the US West Coast

    Science.gov (United States)

    Serafin, K.; Ruggiero, P.; Stockdon, H. F.

    2016-02-01

    In the fall of 2014, parts of the US West Coast endured some of the highest monthly mean sea level anomalies on record, likely due to the presence of "the blob" (Bond et al., 2015), an anomalously warm water mass in the NE Pacific. However, despite the significantly above average water levels, the coastline experienced only marginal coastal flooding and erosion hazards because the ensuing winter lacked significant storms, underscoring the fact that extreme total water levels (TWLs) are compound events. To better understand how several individual processes combine to cause devastating coastal hazards, we investigate the relative contribution that each component (waves, tides, and non-tidal residuals) has on extreme TWLs on sandy beaches. Water level records along the US West Coast are decomposed into mean sea level, astronomical tide, and non-tidal residuals (NTRs). The NTR is further split into an intra-annual seasonal signal, monthly mean sea level anomalies (inter-annual variability), and meteorological surge. TWL time series are then generated by combining water levels with wave runup, computed using wave data and beach morphology. We use this data-driven, structural function approach to investigate the spatial variability of the relative contribution of each component to the maximum TWL event on record. We also use a probabilistic, full simulation TWL model (Serafin and Ruggiero, 2014) to generate multiple, synthetic TWL records, to explore the relative contribution of each component to extreme TWL return levels. We assess the sensitivity to local beach morphology by computing TWLs for a range of observed beach slopes. Extreme TWLs are higher in Oregon and Washington than in California. Wave runup typically comprises > 50% of the TWL signal, while NTRs often compose < 5%, illustrating the importance wave climate has on the potential for extreme TWLs. While waves are typically larger in the North, California experiences greater contributions to extreme TWLs from

  5. Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments

    Directory of Open Access Journals (Sweden)

    François Garnier

    2011-04-01

    Full Text Available An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels… showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance.

  6. Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon

    Directory of Open Access Journals (Sweden)

    A. Torres-Freyermuth

    2012-12-01

    Full Text Available Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon are investigated by means of a phase-resolving non-hydrostatic wave model (SWASH. This model solves the nonlinear shallow water equations including non-hydrostatic pressure. The one-dimensional version of the model is implemented in order to investigate wave transformation in fringing reefs. Firstly, the numerical model is validated with (i laboratory experiments conducted on a physical model (Demirbilek et al., 2007and (ii field observations (Coronado et al., 2007. Numerical results show good agreement with both experimental and field data. The comparison against the physical model results, for energetic wave conditions, indicates that high- and low-frequency wave transformation is well reproduced. Moreover, extreme water-level conditions measured during the passage of Hurricane Ivan in Puerto Morelos are also estimated by the numerical tool. Subsequently, the model is implemented at different along-reef locations in Puerto Morelos. Extreme water levels, wave-induced setup, and infragravity wave energy are estimated inside the reef lagoon for different storm wave conditions (Hs >2 m. The numerical results revealed a strong correlation between the offshore sea-swell wave energy and the setup. In contrast, infragravity waves are shown to be the result of a more complex pattern which heavily relies on the reef geometry. Indeed, the southern end of the reef lagoon provides evidence of resonance excitation, suggesting that the reef barrier may act as either a natural flood protection morphological feature, or as an inundation hazard enhancer depending on the incident wave conditions.

  7. Fluctuations of Lake Orta water levels: preliminary analyses

    Directory of Open Access Journals (Sweden)

    Helmi Saidi

    2016-04-01

    Full Text Available While the effects of past industrial pollution on the chemistry and biology of Lake Orta have been well documented, annual and seasonal fluctuations of lake levels have not yet been studied. Considering their potential impacts on both the ecosystem and on human safety, fluctuations in lake levels are an important aspect of limnological research. In the enormous catchment of Lake Maggiore, there are many rivers and lakes, and the amount of annual precipitation is both high and concentrated in spring and autumn. This has produced major flood events, most recently in November 2014. Flood events are also frequent on Lake Orta, occurring roughly triennially since 1917. The 1926, 1951, 1976 and 2014 floods were severe, with lake levels raised from 2.30 m to 3.46 m above the hydrometric zero. The most important event occurred in 1976, with a maximum level equal to 292.31 m asl and a return period of 147 years. In 2014 the lake level reached 291.89 m asl and its return period was 54 years. In this study, we defined trends and temporal fluctuations in Lake Orta water levels from 1917 to 2014, focusing on extremes. We report both annual maximum and seasonal variations of the lake water levels over this period. Both Mann-Kendall trend tests and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes, and logistic regression was used to detect trends in the number of flood events. Lake level decreased during winter and summer seasons, and a small but statistically non-significant positive trend was found in the number of flood events over the period. We provide estimations of return period for lake levels, a metric which could be used in planning lake flood protection measures.

  8. Mercury and water level fluctuations in lakes of northern Minnesota

    Science.gov (United States)

    Larson, James H.; Maki, Ryan P; Christensen, Victoria G.; Sandheinrich, Mark B.; LeDuc, Jaime F.; Kissane, Claire; Knights, Brent C.

    2017-01-01

    Large lake ecosystems support a variety of ecosystem services in surrounding communities, including recreational and commercial fishing. However, many northern temperate fisheries are contaminated by mercury. Annual variation in mercury accumulation in fish has previously been linked to water level (WL) fluctuations, opening the possibility of regulating water levels in a manner that minimizes or reduces mercury contamination in fisheries. Here, we compiled a long-term dataset (1997-2015) of mercury content in young-of-year Yellow Perch (Perca flavescens) from six lakes on the border between the U.S. and Canada and examined whether mercury content appeared to be related to several metrics of WL fluctuation (e.g., spring WL rise, annual maximum WL, and year-to-year change in maximum WL). Using simple correlation analysis, several WL metrics appear to be strongly correlated to Yellow Perch mercury content, although the strength of these correlations varies by lake. We also used many WL metrics, water quality measurements, temperature and annual deposition data to build predictive models using partial least squared regression (PLSR) analysis for each lake. These PLSR models showed some variation among lakes, but also supported strong associations between WL fluctuations and annual variation in Yellow Perch mercury content. The study lakes underwent a modest change in WL management in 2000, when winter WL minimums were increased by about 1 m in five of the six study lakes. Using the PLSR models, we estimated how this change in WL management would have affected Yellow Perch mercury content. For four of the study lakes, the change in WL management that occurred in 2000 likely reduced Yellow Perch mercury content, relative to the previous WL management regime.

  9. NOAA tsunami water level archive - scientific perspectives and discoveries

    Science.gov (United States)

    Mungov, G.; Eble, M. C.; McLean, S. J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Currently, NGDC archives and processes high-resolution data recorded by the Deep-ocean Assessment and Reporting of Tsunami (DART) network, the coastal-tide-gauge network from the National Ocean Service (NOS) as well as tide-gauge data recorded by all gauges in the two National Weather Service (NWS) Tsunami Warning Centers' (TWCs) regional networks. The challenge in processing these data is that the observations from the deep-ocean, Pacific Islands, Alaska region, and United States West and East Coasts display commonalities, but, at the same time, differ significantly, especially when extreme events are considered. The focus of this work is on how time integration of raw observations (10-seconds to 1-minute) could mask extreme water levels. Analysis of the statistical and spectral characteristics obtained from records with different time step of integration will be presented. Results show the need to precisely calibrate the despiking procedure against raw data due to the significant differences in the variability of deep-ocean and coastal tide-gauge observations. It is shown that special attention should be drawn to the very strong water level declines associated with the passage of the North Atlantic cyclones. Strong changes for the deep ocean and for the West Coast have implications for data quality but these same features are typical for the East Coast regime.

  10. Advanced Data Communications for Downhole Data Logging and Control Applications in the Oil Industry

    International Nuclear Information System (INIS)

    Spracklen, C T; Aslam, Tariq

    2013-01-01

    We present details of 'Mercury', a high-speed downhole communications system that utilizes the (metallic) wall of a gas or oil pipeline or a drill 'string' as the communications 'channel' to control or monitor equipment or sensors used in the oil industry. Conventional downhole communication systems typically use 'mud pulse' telemetry for 'Measurement While Drilling' (MWD) operations. Current mud pulse telemetry technology offers bandwidths of up to 40 bit/s. However the data rate drops with increasing length of the wellbore and is typically as low as 1.5 bit/s – 3.0 bit/s at a depth of 35,000 ft. – 40,000 ft. The system described, by contrast, offers data rates of several megabits per second over distances of many kilometres and uses Orthogonal Frequency Division Multiplexing (OFDM) coupled with Wideband Frequency Division Multiple Access (W-CDMA). This paper presents details of our system; results of several trials undertaken on actual gas pipelines in the UK will be presented at the Conference

  11. Future extreme water levels and floodplains in Gironde Estuary considering climate change

    Science.gov (United States)

    Laborie, V.; Hissel, F.; Sergent, P.

    2012-04-01

    Within THESEUS European project, an overflowing model of Gironde Estuary has been used to evaluate future surge levels at Le Verdon and future water levels at 6 specific sites of the estuary : le Verdon, Richard, Laména, Pauillac, Le Marquis and Bordeaux. It was then used to study the evolution of floodplains' location and areas towards 2100 in the entire Estuary. In this study, no breaching and no modification in the elevation of the dike was considered. The model was fed by several data sources : wind fields at Royan and Mérignac interpolated from the grid of the European Climatolologic Model CLM/SGA, a tide signal at Le Verdon, the discharges of Garonne (at La Réole), the Dordogne (at Pessac) and Isle (at Libourne). A simplified mathematical model of surge levels has been adjusted at Le Verdon with 10 surge storms and by using wind and pressure fields given by CLM/SGA. This adjustment was led so that the statistical analysis of the global signal at Le Verdon gives the same quantiles as the same analysis driven on maregraphic observations for the period [1960 ; 2000]. The assumption used for sea level rise was the pessimistic one of the French national institute for climate change: 60 cm in 2100. The model was then used to study the evolution of extreme water levels towards 2100. The analysis of surge levels at Le Verdon shows a decrease in quantiles which is coherent with the analysis of climatologic fields. The analysis of water levels shows that the increase in mean water levels quantiles represents only a part of sea level rise in Gironde Estuary. Moreover this effect seems to decrease from the maritime limit of the model towards upstream. Concerning floodplains, those corresponding to return periods from 2 to 100 years for present conditions and 3 slices [2010; 2039], [2040; 2069] and [2070; 2099] have been mapped for 3 areas in Gironde Estuary : around Le Verdon, at the confluence between Garonne and Dordogne, and near Bordeaux. Concerning the evolution

  12. Ex-vessel water-level and fission-product monitoring for LWR

    International Nuclear Information System (INIS)

    DeVolpi, A.; Markoff, D.

    1988-01-01

    Given that the need for direct measurement of reactor coolant inventory under operational or abnormal conditions remains unsatisfied, a high-energy gamma-ray detection system is described for ex-vessel monitoring. The system has been modeled to predict response in a PWR, and the model has been validated with a LOFT LOCA sequence. The apparatus, situated outside the pressure vessel, would give relative water level and density over the entire vessel height and distinguish differing levels in the downcomer and core. It would also have significant sensitivity after power shutdown because of high-energy gamma rays from photoneutron capture, the photoneutrons being the result of fission-product decay in the core. Fission-products released to the coolant and accumulated in the top of a PWR vessel would also be theoretically detectable

  13. Evaluation of selected martensitic stainless steels for use in downhole tubular expansion - Results of a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Robert [Shell International E and P, b.v. Kessler Park 1, Postbus 60, 2280 AB Rijswijk (Netherlands)

    2004-07-01

    A laboratory program was performed to evaluate the potential of selected martensitic stainless steels for downhole cladding applications. The evaluation of the effects of tubular expansion on mechanical properties, defects, and resistance to environmentally assisted cracking demonstrated that some steels were acceptable for the intended application. The results were used to qualify and select the stainless steel for the intended sweet cladding applications. (authors)

  14. Effects of reservoirs water level variations on fish recruitment

    Directory of Open Access Journals (Sweden)

    Fabíula T. de Lima

    2017-10-01

    Full Text Available ABSTRACT The construction of hydroelectric power plants has many social and environmental impacts. Among them, the impacts on fish communities, which habitats are drastically modified by dams, with consequences across the ecosystem. This study aimed to assess the influence of water level (WL variations in the reservoirs of the Itá and Machadinho hydroelectric plants on the recruitment of fish species from the upper Uruguay River in southern Brazil. The data analyzed resulted from the WL variation produced exclusively by the hydroelectric plants generation and were collected between the years 2001 and 2012. The results showed significant correlations between the abundance of juvenile fish and the hydrological parameters only for some reproductive guilds. The species that spawn in nests showed, in general, a clear preference for the stability in the WL of the reservoirs, while the species that spawn in macrophytes or that release demersal eggs showed no significant correlation between the abundance of juvenile fish and hydrological parameters. A divergence of results between the two reservoirs was observed between the species that release semi-dense eggs; a positive correlation with a more stable WL was only observed in the Machadinho reservoir. This result can be driven by a wider range of WL variation in Machadinho reservoir.

  15. A Receding Horizon Controller for the Steam Generator Water Level

    International Nuclear Information System (INIS)

    Na, Man Gyun; Lee, Yoon Joon

    2003-01-01

    In this work, the receding horizon control method was used to control the water level of nuclear steam generators and applied to two linear models and also a nonlinear model of steam generators. A receding horizon control method is to solve an optimization problem for finite future steps at current time and to implement the first optimal control input as the current control input. The procedure is then repeated at each subsequent instant. The dynamics of steam generators is very different according to power levels. The receding horizon controller is designed by using a reduced linear steam generator model fixed over a certain power range and applied to a Westinghouse-type (U-tube recirculating type) nuclear steam generator. The proposed controller designed at a fixed power level shows good performance for any other power level within this power range. The steam generator shows actually nonlinear characteristics. Therefore, the proposed algorithm is implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also shows good responses

  16. Aquaponic Growbed Water Level Control Using Fog Architecture

    Science.gov (United States)

    Asmi Romli, Muhamad; Daud, Shuhaizar; Raof, Rafikha Aliana A.; Awang Ahmad, Zahari; Mahrom, Norfadilla

    2018-05-01

    Integrated Multi-Trophic Aquaculture (IMTA) is an advance method of aquaculture which combines species with different nutritional needs to live together. The combination between aquatic live and crops is called aquaponics. Aquatic waste that normally removed by biofilters in normal aquaculture practice will be absorbed by crops in this practice. Aquaponics have few common components and growbed provide the best filtration function. In growbed a siphon act as mechanical structure to control water fill and flush process. Water to the growbed comes from fish tank with multiple flow speeds based on the pump specification and height. Too low speed and too fast flow rate can result in siphon malfunctionality. Pumps with variable speed do exist but it is costly. Majority of the aquaponic practitioner use single speed pump and try to match the pump speed with siphon operational requirement. In order to remove the matching requirement some control need to be introduced. Preliminarily this research will show the concept of fill-and-flush for multiple pumping speeds. The final aim of this paper is to show how water level management can be done to remove the speed dependency. The siphon tried to be controlled remotely since wireless data transmission quite practical in vast operational area. Fog architecture will be used in order to transmit sensor data and control command. This paper able to show the water able to be retented in the growbed within suggested duration by stopping the flow in once predefined level.

  17. Investigation of permanent magnet machines for downhole applications: Design, prototype and testing of a flux-switching permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Anyuan

    2011-01-15

    The current standard electrical downhole machine is the induction machine which is relatively inefficient. Permanent magnet (PM) machines, having higher efficiencies, higher torque densities and smaller volumes, have widely employed in industrial applications to replace conventional machines, but few have been developed for downhole applications due to the high ambient temperatures in deep wells and the low temperature stability of PM materials over time. Today, with the development of variable speed drives and the applications of high temperature magnet materials, it is increasingly interesting for oil and gas industries to develop PM machines for downhole applications. Recently, some PM machines applications have been presented for downhole applications, which are normally addressed on certain specific downhole case. In this thesis the focus has been put on the performance investigation of different PM machines for general downhole cases, in which the machine outer diameter is limited to be small by well size, while the machine axial length may be relatively long. The machine reliability is the most critical requirement while high torque density and high efficiency are also desirable. The purpose is to understand how the special constraints in downhole condition affect the performances of different machines. First of all, three basic machine concepts, which are the radial, axial and transverse flux machines, are studied in details by analytical method. Their torque density, efficiency, power factor and power capability are investigated with respect to the machine axial length and pole number. The presented critical performance comparisons of the machines provide an indication of machines best suitable with respect to performance and size for downhole applications. Conventional radial flux permanent magnet (RFPM) machines with the PMs on the rotor can provide high torque density and high efficiency. This type of machine has been suggested for several different

  18. Preliminary analysis of downhole logging data from ICDP Lake Junin drilling Project, Peru

    Science.gov (United States)

    Pierdominici, Simona; Kück, Jochem; Rodbell, Donald T.; Abbott, Mark B.

    2016-04-01

    The International Continental Drilling Programm (ICDP) has supported a scientific drilling campaign in Peru during the summer season 2015. The Lake Junin Drilling Project mainly aims at obtaining high-resolution paleoclimate records from lacustrine sediments to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is located at 4000 m a.s.l. in the tropical Andes of Peru, and is characterized by a thick (> 125 m) sediment package deposited at a high rate (0.2 to 1.0 mm yr-1). Lake Junín is one of the few lakes in the tropical Andes that predates the maximum extent of glaciation and is in a geomorphic position to record the waxing and waning of glaciers in nearby cordillera, hence making the lake a key site for the investigation of the Quaternary climate evolution in the inner-tropics of the Southern Hemisphere. Continous coring was performed at three sites in overall 11 boreholes on the lake with at least two overlapping boreholes per site to avoid core gaps. The depth of the boreholes varied between approx. 30 m and 110 m depending on the drill site. The core bit had a bit size of 122.6 mm and yielded a core diameter of 85 mm. Upon completion of coring operations downhole geophysical logging was performed in five of the 11 boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. The main objective was to record in-situ the physical properties of the lacustrine sediments of Lake Junin. Downhole logs provide a powerful tool to fill in information at intervals with core gaps and as depth reference for depth matching of the discontinous cores. Furthermore it will be used for the lithological reconstruction and interpretation. The OSG downhole logging comprised total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic P-wave velocity. Unstable and collapsing borehole walls made it neccessary to carry out logging in several sections instead of in one run. The

  19. Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations

    Science.gov (United States)

    Graizer, V.

    2017-12-01

    Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt

  20. Impacts of water level fluctuation on mesotrophic rich fens: acidification versus eutrophication

    NARCIS (Netherlands)

    Cusell, C.; Lamers, L.P.M.; van Wirdum, G.; Kooijman, A.

    2013-01-01

    Water levels in areas with intensive agriculture have often been strictly controlled for decades. Recently, more natural fluctuating water levels have been propagated to improve the ecological quality of wetlands in these areas. This study investigated the effects of water levels on protected

  1. ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Robert Westermark; J. Ford Brett

    2003-11-01

    This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well

  2. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    International Nuclear Information System (INIS)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis; Ho-Young Cha; Jim Rose; Kevin Durocher; Robert Lyons; Bob Pieciuk; Jim Williams; David O'Connor

    2007-01-01

    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements as a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program

  3. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis; Ho-Young Cha; Jim Rose; Kevin Durocher; Robert Lyons; Bob Pieciuk; Jim Williams; David O' Connor

    2007-08-10

    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements as a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.

  4. Downhole microseismic signal-to-noise ratio enhancement via strip matching shearlet transform

    Science.gov (United States)

    Li, Juan; Ji, Shuo; Li, Yue; Qian, Zhihong; Lu, Weili

    2018-04-01

    Shearlet transform has been proved effective in noise attenuation. However, because of the low magnitude and high frequency of downhole microseismic signals, the coefficient values of valid signals and noise are similar in the shearlet domain. As a result, it is hard to suppress the noise. In this paper, we present a novel signal-to-noise ratio enhancement scheme called strip matching shearlet transform. The method takes into account the directivity of microseismic events and shearlets. Through strip matching, the matching degree in direction between them has been promoted. Then the coefficient values of valid signals are much larger than those of the noise. Consequently, we can separate them well with the help of thresholding. The experimental results on both synthetic records and field data illustrate that our proposed method preserves the useful components and attenuates the noise well.

  5. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    Science.gov (United States)

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  6. Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Directory of Open Access Journals (Sweden)

    M. Carlini

    2012-01-01

    Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.

  7. Theoretical background and the flow fields in downhole liquid-liquid hydrocyclone (LLHC

    Directory of Open Access Journals (Sweden)

    Osei Harrison

    2014-07-01

    Full Text Available Hydrocyclone system for downhole oil-water separation provides an effective technique of enhancing the economic viability of higher water-cut wells while at the same time reducing the risk of environmental pollution. This paper describes the hydrodynamics of the liquid-liquid hydrocyclones and the flow fields within it are paramount for achieving successful separation process. Some of the important hydrodynamic flow phenomenon within the liquid-liquid hydrocyclone and how they influence the separation efficiency of water/oil was analyzed through analytical solution. The properties of the liquids were based on Bayan offshore field measured properties. The results indicated that there are two swirling zones separated by stagnant flow field. The inner is the light liquid zone, while the outer is the heavy liquid zone.

  8. Holy grail: Pioneering acoustic telemetry technology set to revolutionize downhole communication

    Energy Technology Data Exchange (ETDEWEB)

    Greenaway, R.

    2003-12-01

    Acoustic telemetry, a faster and more efficient downhole-to-surface-communication technology, is the latest development in downhole communication systems. The system has been developed by Extreme Engineering Limited of Calgary, led by Derek Logan, founder and one-time senior vice-president of Ryan Energy Technologies that developed the original measurement -while-drilling (MWD) and logging-while-drilling )LWD) tools. The company predicts that acoustic telemetry will cause a massive transformation of the drilling industry in Western Canada once the technology is commercialized. Conventional MWD techniques, based on mud-pulse technology, have been industry standard since the 1970s, but mud-pulse technology is now considered extremely slow. In the 1980s industry came up electromagnetic telemetry, as an alternative to mud-pulse. Today, the need to transmit ever more data, the need for a faster communications system and greater wellbore control, has become even more pressing. Logan believes that acoustic technology is the answer. It is not only capable of transmitting data 20 to 30 times faster than mud-pulse telemetries, it can also communicate massive amounts of data. It can be used in drilling, completion production, drillstem testing, frac monitoring and any other wellbore process requiring wireless real-time telemetry. Acoustic telemetry is also the only wireless system that can perform MWD and LWD in offshore underbalanced drilling. Notwithstanding its great promise, Extreme Engineering Limited had considerable difficulty raising funds for developing and commercializing XAcT (the trade name for acoustic telemetry). Prospects are reported to have been substantially improved by recent infusion of funds by the federal Industrial Research Assistance Program (IRAP) , and XAcT's recognition by R and D Magazine with one of the R and D 100 awards for 2003. 3 figs.

  9. Measurement of Streaming Potential in Downhole Application: An Insight for Enhanced Oil Recovery Monitoring

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2017-01-01

    Full Text Available Downhole monitoring using streaming potential measurement has been developing in order to respond to actual reservoir condition. Most studies have emphasized on monitoring water flooding at various reservoir condition and improving the approaches of measurement. Enhanced Oil Recovery (EOR could significantly improve oil recovery and the efficiency of the process should be well-monitored. Alkaline-surfactant-polymer (ASP flooding is the most promising chemical EOR method due to its synergy of alkaline, surfactant and polymer, which could enhance the extraction of residual oil. However, limited studies have been focused on the application of streaming potential in EOR processes, particularly ASP. Thus, this paper aims to review the streaming potential measurement in downhole monitoring with an insight for EOR application and propose the potential measurement in monitoring ASP flooding. It is important for a preliminary study to investigate the synergy in ASP and the effects on oil recovery. The behaviour of streaming potential should be investigated when the environment of porous media changes with respect to ASP flooding. Numerical model can be generated from the experimental data to forecast the measured streaming potential signal during production associated with ASP flooding. Based on the streaming potential behaviour on foam assisted water alternate gas (FAWAG and water alternate gas (WAG processes, it is expected that the streaming potential could change significantly when ASP flooding alters the environment and surface properties of porous media. The findings could provide new prospect and knowledge in the relationship between streaming potential and ASP mechanisms, which could be a potential approach in monitoring the efficiency of the process.

  10. Water levels in wells J-11 and J-12, 1989-91, Yucca Mountain Area, Nevada

    International Nuclear Information System (INIS)

    Boucher, M.S.

    1994-01-01

    Water levels have been measured in the Yucca Mountain area, Nevada, since 1981 in order to gain a better understanding of the ground-water flow system in the area. Water levels in wells J-11 and J-12 have been periodically measured using calibrated reeled steel tapes since 1989, however, calculation of water-level altitude was not possible prior to 1993 due to missing reference elevations. These elevations were determined in 1993 by the U.S. Geological Survey. During 1989-91, water-level altitudes for well J-11 ranged from 732.09 to 732.40 meters and the mean water-level altitude was 732.19 meters. During 1989-91, water-level altitudes for well J-12 ranged from 727.84 to 728.03 meters, and the mean water-level altitude was 727.95 meters

  11. Research for Preseismic Phenomena on the Underground Water Level and Temperature in Selected Areas of Greece

    Science.gov (United States)

    Contadakis, M. E.; Asteriadis, G.

    1997-08-01

    A comprehensive study of the tectonic activity require the contribution of a variety of methods, geological, seismic, geodetic, satellite etc., being currently available in our days. On the other hand, the risk evaluation in areas of high seismicity, like this one of the South Balkan Peninsula, is of vital importance. To this purpose an interdisciplinary following up of the tectonic activity in the area may provide the best provision to the administration for an effective confrontation and intervention for the elimination of the possible disastrous effects in human life cost, financial and social cost of the communities, to which may result a strong earthquake. Among the various methods of indirect monitoring of the tectonic activity in an area, which in addition is of a low cost, is that of the following up of the underground water level and temperature changes in the area of interest. This method is based on the fact that tectonic activity is expected to result to tectonic stresses producing alterations to the local water table which in its turn is expected is expected to be observed as variation of the underground water level and temperature. The method of the following up of the underground water and temperature changes has been applied, among others by the Department of Geodesy and Surveying of the University of Thessaloniki in two areas of high seismicity in Greece: (a) The seismic zone of the lake Volvi in North Greece (40.5 deg N and 23.5 deg E) for ten years (1983-1992) and (b) the area of South Thessaly (39.2 deg N and 21 deg E) for three years (1994-1996). The statistical analysis of the observations, shows that the low frequency constituent (Sa,Ssa,Mf,Mm) of the earth tides and the barometric pressure have a small influence on the water level measurements. The shallow underground water network of South Thessaly is more sensitive to the non tectonic factors than the network of Volvi. Tentative correlation of the underground wat! er and temperature

  12. A distributed water level network in ephemeral river reaches to identify hydrological processes within anthropogenic catchments

    Science.gov (United States)

    Sarrazin, B.; Braud, I.; Lagouy, M.; Bailly, J. S.; Puech, C.; Ayroles, H.

    2009-04-01

    In order to study the impact of land use change on the water cycle, distributed hydrological models are more and more used, because they have the ability to take into account the land surface heterogeneity and its evolution due to anthropogenic pressure. These models provide continuous distributed simulations of streamflow, runoff, soil moisture, etc, which, ideally, should be evaluated against continuous distributed measurements, taken at various scales and located in nested sub-catchments. Distributed network of streamflow gauging stations are in general scarce and very expensive to maintain. Furthermore, they can hardly be installed in the upstream parts of the catchments where river beds are not well defined. In this paper, we present an alternative to these standard streamflow gauging stations network, based on self powered high resolution water level sensors using a capacitive water height data logger. One of their advantages is that they can be installed even in ephemeral reaches and from channel head locations to high order streams. Furthermore, these innovative and easily adaptable low cost sensors offer the possibility to develop in the near future, a wireless network application. Such a network, including 15 sensors has been set up on nested watersheds in small and intermittent streams of a 7 km² catchment, located in the mountainous "Mont du Lyonnais" area, close to the city of Lyon, France. The land use of this catchment is mostly pasture, crop and forest, but the catchment is significantly affected by human activities, through the existence of a dense roads and paths network and urbanized areas. The equipment provides water levels survey during precipitation events in the hydrological network with a very accurate time step (2 min). Water levels can be related to runoff production and catchment response as a function of scale. This response will depend, amongst other, on variable soil water storage capacity, physiographic data and characteristics of

  13. Subsurface Rock Physical Properties by Downhole Loggings - Case Studies of Continental Deep Drilling in Kanto Distinct, Japan

    Science.gov (United States)

    Omura, K.

    2014-12-01

    In recent years, many examples of physical logging have been carried out in deep boreholes. The loggings are direct in-situ measurements of rock physical properties under the ground. They provide significant basic data for the geological, geophysical and geotechnical investigations, e.g., tectonic history, seismic wave propagation, and ground motion prediction. Since about 1980's, Natl. Res. Inst. for Earth Sci. and Disast. Prev. (NIED) dug deep boreholes (from 200m to 3000m depth) in sedimentary basin of Kanto distinct, Japan, for purposes of installing seismographs and hydrological instruments, and in-situ stress and pore pressure measurements. At that time, downhole physical loggings were conducted in the boreholes: spontaneous potential, electrical resistance, elastic wave velocity, formation density, neutron porosity, total gamma ray, caliper, temperature loggings. In many cases, digital data values were provided every 2m or 1m or 0.1m. In other cases, we read printed graphs of logging plots and got digital data values. Data from about 30 boreholes are compiled. Especially, particular change of logging data at the depth of an interface between a shallow part (soft sedimentary rock) and a base rock (equivalent to hard pre-Neogene rock) is examined. In this presentation, the correlations among physical properties of rock (especially, formation density, elastic wave velocity and electrical resistance) are introduced and the relation to the lithology is discussed. Formation density, elastic wave velocity and electric resistance data indicate the data are divide in two groups that are higher or lower than 2.5g/cm3: the one correspond to a shallow part and the other correspond to a base rock part. In each group, the elastic wave velocity and electric resistance increase with increase of formation density. However the rates of increases in the shallow part are smaller than in the base rock part. The shallow part has lower degree of solidification and higher porosity

  14. Precursory changes in well water level prior to the March, 2000 eruption of Usu Volcano, Japan

    Science.gov (United States)

    Shibata, Tomo; Akita, Fujio

    The height of water levels in two wells located near Usu volcano, Japan, changed in a systematic fashion for several months prior to the eruption of Usu volcano on 31 March 2000. In one well, water-level decrease relative to normal levels was first observed at the beginning of October 1999. The decreasing water-level is postulated to result from groundwater flow into cracks widened by intruding magma during dike formation. From the beginning of January 2000, the rate of decrease became higher. During this time, the water level of the second well increased by 0.05 m and then gradually decreased. The water-level changes are consistent with volumetric expansion of magma inside the magma chamber, followed by intrusion of magma into the fracture system associated with widening of cracks. We conclude that water-level observations can provide information that may potentially be used to predict further volcanic eruptions.

  15. Fuzzy logic controller architecture for water level control in nuclear power plant steam generator using ANFIS training method

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Ekrami, AmirHasan; Naseri, Zahra

    2003-01-01

    Since suitable control of water level can greatly enhance the operation of a power station, a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical model of the object to be controlled. It is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial membership functions will be trained and appropriate functions are generated to control water level inside the steam generator while using the stated rules. The proposed architecture can construct an input-output mapping based on both human knowledge (in the from of fuzzy if - then rules) and stipulated input-output data. This fuzzy logic controller is applied to the steam generator level control by computer simulations. The simulation results confirm the excellent performance of this control architecture in compare with a well-turned PID controller. (author)

  16. Evaluation of the lithology contents and types of clay minerals using downhole spectral analyzer of natural gamma radiation

    International Nuclear Information System (INIS)

    Zivanov, M.; Savicic, M.; Grbovic, G.

    1992-01-01

    The microprocessor downhole spectrum analyzer of natural gamma radiation is an important part of the new generation of geophysical well logging systems. This instrument produces complete energy spectra of the penetrated formations. here physical principles of logging are shown. based on the logging results from one of the wells complex lithology was identified, together with shale contents in the formation and types of clay and minerals. (author)

  17. Identification and simulation for steam generator water level based on Kalman Filter

    International Nuclear Information System (INIS)

    Deng Chen; Zhang Qinshun

    2008-01-01

    In order to effectively control the water level of the steam generator (SG), this paper has set about the state-observer theory in modern control and put forward a method to detect the 'false water level' based on Kalman Filter. Kalman Filter is a efficient tool to estimate state-variable by measured value including noise. For heavy measurement noise of steam flow, constructing a 'false water level' observer by Kalman Filter could availably obtain state variable of 'false water level'. The simulation computing for the dynamics characteristic of nuclear SG water level process under several typically running power was implemented by employing the simulation model. The result shows that the simulation model accurately identifies the 'false water level' produced in the reverse thermal-dynamic effects of nuclear SG water level process. The simulation model can realize the precise analysis of dynamics characteristic for the nuclear SG water level process. It can provide a kind of new ideas for the 'false water level' detecting of SG. (authors)

  18. Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Yangdong Pan

    2018-03-01

    Full Text Available Excessive water level fluctuation may affect physico-chemical characteristics, and consequently ecosystem function, in lakes and reservoirs. In this study, we assessed the changes of phytoplankton assemblages in response to water level increase in Danjiangkou Reservoir, one of the largest drinking water reservoirs in Asia. The water level increased from a low of 137 m to 161 m in 2014 as a part of the South–North Water Diversion Project. Phytoplankton assemblages were sampled four times per year before, during and after the water level increase, at 10 sites. Environmental variables such as total nitrogen as well as phytoplankton biomass decreased after the water level increase. Non-metric multi-dimensional scaling analysis indicated that before the water level increase, phytoplankton assemblages showed distinct seasonal variation with diatom dominance in both early and late seasons while such seasonal variation was much less evident after the water level increase. Month and year (before and after explained 13% and 6% of variance in phytoplankton assemblages (PERMANOVA, p < 0.001 respectively, and phytoplankton assemblages were significantly different before and after the water level increase. Both chlorophytes and cyanobacteria became more abundant in 2015. Phytoplankton compositional change may largely reflect the environmental changes, such as hydrodynamics mediated by the water level increase.

  19. Digitization and simulation realization of full range control system for steam generator water level

    International Nuclear Information System (INIS)

    Qian Hong; Ye Jianhua; Qian Fei; Li Chao

    2010-01-01

    In this paper, a full range digital control system for the steam generator water level is designed by a control scheme of single element control and three-element cascade feed-forward control, and the method to use the software module configuration is proposed to realize the water level control strategy. This control strategy is then applied in the operation of the nuclear power simulation machine. The simulation result curves indicate that the steam generator water level maintains constant at the stable operation condition, and when the load changes, the water level changes but finally maintains the constant. (authors)

  20. Three-dimensional site response at KiK-net downhole arrays

    Science.gov (United States)

    Thompson, Eric M.; Tanaka, Yasuo; Baise, Laurie G.; Kayen, Robert E.

    2010-01-01

    Ground motions at two Kiban-Kyoshin Network (KiK-net) strong motion downhole array sites in Hokkaido, Japan (TKCH08 in Taiki and TKCH05 in Honbetsu) illustrate the importance of three-dimensional (3D) site effects. These sites recorded the M8.0 2003 Tokachi-Oki earthquake, with recorded accelerations above 0.4 g at both sites as well as numerous ground motions from smaller events. Weak ground motions indicate that site TKCH08 is well modeled with the assumption of plane SH waves traveling through a 1D medium (SH1D), while TKCH05 is characteristic of a poor fit to the SH1D theoretical response. We hypothesized that the misfit at TKCH05results from the heterogeneity of the subsurface. To test this hypothesis, we measured four S-wave velocity profiles in the vicinity (KiK-net site pair is ideal for assessing the relative importance of 3D site effects and nonlinear site effects. The linear ground motions at TKCH05 isolate the 3D site effects, as we hypothesized from the linear ground motions and confirmed with our subsequent SASW surveys. The Tokachi-Oki time history at TKCH08 isolates the effects of nonlinearity from spatial heterogeneity because the 3D effects are negligible. The Tokachi-Oki time history at TKCH05 includes both nonlinear and 3D site effects. Comparisons of the accuracy of the SH1D model predictions of these surface time histories from the downhole time histories indicates that the 3D site effects are at least as important as nonlinear effects in this case. The errors associated with the assumption of a 1D medium and 1D wave propagation will be carried into a nonlinear analysis that relies on these same assumptions. Thus, the presence of 3D effects should be ruled out prior to a 1D nonlinear analysis. The SH1D residuals show that 3D effects can be mistaken for nonlinear effects.

  1. Imaging Fracking Zones by Microseismic Reverse Time Migration for Downhole Microseismic Monitoring

    Science.gov (United States)

    Lin, Y.; Zhang, H.

    2015-12-01

    Hydraulic fracturing is an engineering tool to create fractures in order to better recover oil and gas from low permeability reservoirs. Because microseismic events are generally associated with fracturing development, microseismic monitoring has been used to evaluate the fracking process. Microseismic monitoring generally relies on locating microseismic events to understand the spatial distribution of fractures. For the multi-stage fracturing treatment, fractures created in former stages are strong scatterers in the medium and can induce strong scattering waves on the waveforms for microseismic events induced during later stages. In this study, we propose to take advantage of microseismic scattering waves to image fracking zones by using seismic reverse time migration method. For downhole microseismic monitoring that involves installing a string of seismic sensors in a borehole near the injection well, the observation geometry is actually similar to the VSP (vertical seismic profile) system. For this reason, we adapt the VSP migration method for the common shot gather to the common event gather. Microseismic reverse-time migration method involves solving wave equation both forward and backward in time for each microseismic event. At current stage, the microseismic RTM is based on 2D acoustic wave equation (Zhang and Sun, 2008), solved by the finite-difference method with PML absorbing boundary condition applied to suppress the reflections of artificial boundaries. Additionally, we use local wavefield decomposition instead of cross-correlation imaging condition to suppress the imaging noise. For testing the method, we create a synthetic dataset for a downhole microseismic monitoring system with multiple fracking stages. It shows that microseismic migration using individual event is able to clearly reveal the fracture zone. The shorter distance between fractures and the microseismic event the clearer the migration image is. By summing migration images for many

  2. Summary evaluation of Yucca Mountain surface transects with implications for downhole sampling. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Mckenna, S.A.; Rautman, C.A.

    1995-06-01

    The results of previously completed vertical outcrop sampling transacts are summarized with respect to planning downhole sampling. The summary includes statistical descriptions and descriptions of the spatial variability of the sampled parameters. Descriptions are made on each individual transect, each thermal/mechanical unit and each previously defined geohydrologic unit. Correlations between parameters indicate that saturated hydraulic conductivity is not globally correlated to porosity. The correlation between porosity and saturated hydraulic conductivity is both spatially and lithologically dependent. Currently, there are not enough saturated hydraulic conductivity and sorptivity data to define relationships between these properties and porosity on a unit by unit basis. Also, the Prow Pass member of the Crater Flat Tuff and stratigraphically lower units have gone essentially unsampled in these outcrop transacts. The vertical correlation length for hydrologic properties is not constant across the area of the transacts. The average sample spacing within the transacts ranges from 1.25 to 2.1 meters. It appears that, with the exception of the Topopah Spring member units, a comparable sample spacing will give adequate results in the downhole sampling campaign even with the nonstationarity of the vertical correlation. The properties within the thermal/mechanical units and geohydrologic units of the Topopah Spring member appear to have a spatial correlation range less than or equal to the current sample spacing within these units. For the downhole sampling, a sample spacing of less than 1.0 meters may be necessary within these units

  3. A study on water level control of PWR steam generator at low power and the self-tuning of its fuzzy controller

    International Nuclear Information System (INIS)

    Na, N.; Kwon, K.; Ham, C.; Bien, Z.

    1994-01-01

    The water level control system of a steam generator in a pressurized water reactor and its control problems during the operation at low power is analysed. In particular, a strategy for a water level control system, which is based on the use of a fuzzy logic controller, is proposed. The control strategy includes dynamic tuning for the large transient. The fuzzy variable of the flow rate during the power operation is obtained from the bypass valve opening and not from the incorrect measured signal at the low flow rate. The practical self-tuning algorithm is based on the optimal control performance

  4. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    Science.gov (United States)

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  5. Linking downhole logging data and clay mineralogy analysis in the ICDP Lake Junín drilling Project, Peru

    Science.gov (United States)

    Pierdominici, S.; Schleicher, A.; Kueck, J.; Rodbell, D. T.; Abbott, M. B.

    2017-12-01

    The lake Junin drilling project, co-funded by the International Continental Drilling Program (ICDP), is located at 4000 m a.s.l. in the tropical Andes of Peru. Several boreholes were drilled with the goal to obtain both high-resolution paleoclimate records from lacustrine sediments and to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is characterized by a thick package of lacustrine sediments (> 125 m) deposited at a high rate (0.2 to 1.0 mm yr-1), and it is one of the few lakes in the tropical Andes that is hundreds of thousands of years old with a continuous sedimentation rate preserving a very long and continuous record of past ice age cycles. The boreholes reached a maximum depth of 110.08 m and continuous coring was performed at three sites with 11 boreholes. Additionally, an extensive geophysical downhole logging campaign was performed on five boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. Downhole logging measurements comprise total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic p-wave velocity. In order to fit the downhole logging depths to the composite profile depths, each borehole was depth-matched with the core data. Interpreting the downhole logging data permits to establish a complete lithological log, to characterize the in-situ physical properties of drilled lacustrine sediments, to determine sedimentary structures and to obtain evidences about palaeoclimatic conditions during up to 200 ka. Th and K values are used as a proxy for a first estimate and characterization of clay content in the sediments, which are present as montmorillonite, smectite, illite, and kaolinite in different amounts. Linking the clay minerals that occur in the core material with the downhole logging data allows assessing the geological history of the lake and the relationship to climate change processes. Additional laboratory analysis will be

  6. SNR enhancement for downhole microseismic data based on scale classification shearlet transform

    Science.gov (United States)

    Li, Juan; Ji, Shuo; Li, Yue; Qian, Zhihong; Lu, Weili

    2018-06-01

    Shearlet transform (ST) can be effective in 2D signal processing, due to its parabolic scaling, high directional sensitivity, and optimal sparsity. ST combined with thresholding has been successfully applied to suppress random noise. However, because of the low magnitude and high frequency of a downhole microseismic signal, the coefficient values of valid signals and noise are similar in the shearlet domain. As a result, it is difficult to use for denoising. In this paper, we present a scale classification ST to solve this problem. The ST is used to decompose noisy microseismic data into serval scales. By analyzing the spectrum and energy distribution of the shearlet coefficients of microseismic data, we divide the scales into two types: low-frequency scales which contain less useful signal and high-frequency scales which contain more useful signal. After classification, we use two different methods to deal with the coefficients on different scales. For the low-frequency scales, the noise is attenuated using a thresholding method. As for the high-frequency scales, we propose to use a generalized Gauss distribution model based a non-local means filter, which takes advantage of the temporal and spatial similarity of microseismic data. The experimental results on both synthetic records and field data illustrate that our proposed method preserves the useful components and attenuates the noise well.

  7. Method and apparatus for determining the spontaneous earth potential log from downhole gradient measurements

    International Nuclear Information System (INIS)

    Maciejewski, W. J.

    1985-01-01

    A method and apparatus for measuring the differential or gradient of an earth variable within a well bore (e.g., the spontaneous earth potential) and producing improved logs of this gradient or differential and its integral variable essentially free of any accumulated instrument and base line drift or error. The differential spontaneous potential of an earth formation traversed by a well bore is measured at repeated multiple depths by moving a pair of closely spaced electrodes through the well bore wherein each electrode is electrically insulated externally from the other and from a third downhole local ground (such as the well tool cable) to which each is internally resistively referenced. The measured electrical potential across the closely spaced electrodes is amplified and digitized before being transmitted to the earth's surface, whereupon an averaged value of such differential measurements within a traveling data window of predetermined length and adjacent to each successive measurement is used to adjust for base line drift, noise and instrument induced error. The resulting compensated differential logs are integrated, resulting in spontaneous potential logs of improved character

  8. Fast and objective detection and analysis of structures in downhole images

    Science.gov (United States)

    Wedge, Daniel; Holden, Eun-Jung; Dentith, Mike; Spadaccini, Nick

    2017-09-01

    Downhole acoustic and optical televiewer images, and formation microimager (FMI) logs are important datasets for structural and geotechnical analyses for the mineral and petroleum industries. Within these data, dipping planar structures appear as sinusoids, often in incomplete form and in abundance. Their detection is a labour intensive and hence expensive task and as such is a significant bottleneck in data processing as companies may have hundreds of kilometres of logs to process each year. We present an image analysis system that harnesses the power of automated image analysis and provides an interactive user interface to support the analysis of televiewer images by users with different objectives. Our algorithm rapidly produces repeatable, objective results. We have embedded it in an interactive workflow to complement geologists' intuition and experience in interpreting data to improve efficiency and assist, rather than replace the geologist. The main contributions include a new image quality assessment technique for highlighting image areas most suited to automated structure detection and for detecting boundaries of geological zones, and a novel sinusoid detection algorithm for detecting and selecting sinusoids with given confidence levels. Further tools are provided to perform rapid analysis of and further detection of structures e.g. as limited to specific orientations.

  9. Development of a downhole seismic source with controlled waveform; Hakei seigyogata kochu shingen no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T; Ikawa, T [Japex Jeoscience Institute, Tokyo (Japan); Sato, T [Meiho Engineering Co. Ltd., Tokyo (Japan); Kakuma, H [Akashi Corp., Tokyo (Japan); Onuma, H [Engineering Advancement Association of Japan, Tokyo (Japan)

    1997-05-27

    A downhole seismic source which can output continuous waves having arbitrary waveforms was developed. The development was targeted to make tomographic exploration purposed to evaluate geological properties of a ground bed before and after constructing a building in a ground several hundred meters deep from the ground surface. The source is considered to be used in an environment consisting of soft rocks or more robust rocks and having no casing. It can be used in a well hole having a diameter of 100 mm, is capable of measuring P and S waves in a distance between well holes of up to 100 m, can be used at a depth of up to 500 m, and can output waveforms having seismic source spectra of up to 1000 Hz. An oscillation actuator using laminated piezo-electric elements was used for the oscillation element. The seismic source consists of a hydraulic device to clamp the equipment onto hole walls, piezo-electric elements as the oscillation element, and an inertia weight for applying vibration from above and below. To make an oscillation, the main body is first clamped on the hole wall. For horizontal oscillation, the piezo-electric elements contained in a clamping device provide the horizontal oscillation. For vertical oscillation, the piezo-electric elements placed below the main body oscillates the inertia weight. The initially targeted specifications have been achieved. 3 refs., 4 figs., 1 tab.

  10. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    Science.gov (United States)

    Noble, Donald T.; Braymen, Steven D.; Anderson, Marvin S.

    1996-10-01

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point mad a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained.

  11. Fault diagnosis of downhole drilling incidents using adaptive observers and statistical change detection

    DEFF Research Database (Denmark)

    Willersrud, Anders; Blanke, Mogens; Imsland, Lars

    2015-01-01

    Downhole abnormal incidents during oil and gas drilling causes costly delays, any may also potentially lead to dangerous scenarios. Dierent incidents willcause changes to dierent parts of the physics of the process. Estimating thechanges in physical parameters, and correlating these with changes ...... expectedfrom various defects, can be used to diagnose faults while in development.This paper shows how estimated friction parameters and ow rates can de-tect and isolate the type of incident, as well as isolating the position of adefect. Estimates are shown to be subjected to non......-Gaussian,t-distributednoise, and a dedicated multivariate statistical change detection approach isused that detects and isolates faults by detecting simultaneous changes inestimated parameters and ow rates. The properties of the multivariate di-agnosis method are analyzed, and it is shown how detection and false alarmprobabilities...... are assessed and optimized using data-based learning to obtainthresholds for hypothesis testing. Data from a 1400 m horizontal ow loop isused to test the method, and successful diagnosis of the incidents drillstringwashout (pipe leakage), lost circulation, gas in ux, and drill bit plugging aredemonstrated....

  12. Assessment and interpretation of cross- and down-hole seismograms at the Paducah Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.; Wang, J.C. (Oak Ridge National Lab., TN (United States)); Selfridge, R.J. (Automated Sciences Group, (United States))

    1991-09-01

    This paper is an assessment and interpretation of cross-and down-hole seismograms recorded at four sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP). Arrival times of shear (S-) and compressional (P-) waves are recorded on these seismograms in milliseconds. Together with known distances between energy sources and seismometers lowered into boreholes, these arrival times are used to calculate S- and P-wave velocities in unconsolidated soils and sediments that overlie bedrock approximately 320 ft beneath PGDP. The soil columns are modified after an earlier draft by ERC Environmental and Energy Services Company (ERCE), 1990. In addition to S- and P- wave velocity estimates from this paper, the soil columns contain ERCE's lithologic and other geotechnical data for unconsolidated soils and sediments from the surface to bedrock. Soil columns for Sites 1 through 4 and a site location map are in Plates 1 through 5 of Appendix 6. The velocities in the four columns are input parameters for the SHAKE computer program, a nationally recognized computer model that simulates ground response of unconsolidated materials to earthquake generated seismic waves. The results of the SHAKE simulation are combined with predicted ground responses on rock foundations (caused by a given design earthquake) to predict ground responses of facilities with foundations placed on unconsolidated materials. 3 refs.

  13. Characterization of hydraulic connections between mine shaft and caprock based on time series analysis of water level changes for the flooded Asse I salt mine in northern Germany

    International Nuclear Information System (INIS)

    Brauchler, Ralf; Mettier, Ralph; Schulte, Peter; Fuehrboeter, Jens Fred

    2015-01-01

    In the context of safe enclosure of nuclear waste in salt formations, one of the main challenges is potential water inflow into the excavations. In this context, the hydraulic relationship between the abandoned Asse I salt mine and the salt dissolution network at the base of the caprock of the Asse salt structure in northern Germany is characterized by utilizing time series analysis of water level changes. The data base comprises a time series of water level measurements over eight years with a temporal resolution of 15 minutes (in general) and up to 2 minutes for specific intervals. The water level measurements were collected in the shaft of the flooded mine, which is filled with ground rock salt until a depth of 140 m, and a deep well, which is screened in 240 m depth at the salt dissolution zone at the base of the caprock. The distance between the well and the shaft is several hundred meters. Since the beginning of the continuous observations in the 1970s, the shaft has shown periodically abrupt declines of the water level of several meters occurring in intervals of approx. 8 to 10 years. The time series analysis consists of trend, Fourier-, autocorrelation and cross-correlation analysis. The analysis showed that during times with small water level changes the measured water level in the well and the shaft are positively correlated whereas during the abrupt water level drops in the shaft, the measured water levels between the shaft and the well are negatively correlated. A potential explanation for this behavior is that during times with small changes, the measured water levels in the well and in the shaft are influenced by the same external events with similar response times. In contrast, during the abrupt water level decline events in the shaft, a negatively correlated pressure signal is induced in the well, which supports the assumption of a direct hydraulic connection between the shaft and the well via flooded excavations and the salt dissolution network

  14. Characterization of hydraulic connections between mine shaft and caprock based on time series analysis of water level changes for the flooded Asse I salt mine in northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, Ralf; Mettier, Ralph; Schulte, Peter [AF-Consult Switzerland AG, Baden (Switzerland); Fuehrboeter, Jens Fred [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2015-07-01

    In the context of safe enclosure of nuclear waste in salt formations, one of the main challenges is potential water inflow into the excavations. In this context, the hydraulic relationship between the abandoned Asse I salt mine and the salt dissolution network at the base of the caprock of the Asse salt structure in northern Germany is characterized by utilizing time series analysis of water level changes. The data base comprises a time series of water level measurements over eight years with a temporal resolution of 15 minutes (in general) and up to 2 minutes for specific intervals. The water level measurements were collected in the shaft of the flooded mine, which is filled with ground rock salt until a depth of 140 m, and a deep well, which is screened in 240 m depth at the salt dissolution zone at the base of the caprock. The distance between the well and the shaft is several hundred meters. Since the beginning of the continuous observations in the 1970s, the shaft has shown periodically abrupt declines of the water level of several meters occurring in intervals of approx. 8 to 10 years. The time series analysis consists of trend, Fourier-, autocorrelation and cross-correlation analysis. The analysis showed that during times with small water level changes the measured water level in the well and the shaft are positively correlated whereas during the abrupt water level drops in the shaft, the measured water levels between the shaft and the well are negatively correlated. A potential explanation for this behavior is that during times with small changes, the measured water levels in the well and in the shaft are influenced by the same external events with similar response times. In contrast, during the abrupt water level decline events in the shaft, a negatively correlated pressure signal is induced in the well, which supports the assumption of a direct hydraulic connection between the shaft and the well via flooded excavations and the salt dissolution network

  15. Automatic control of the water level of steam generators from 0% to 100% of the load

    International Nuclear Information System (INIS)

    Hocepied, R.; Debelle, J.; Timmermans, A.; Lams, J.-L.; Baeyens, R.; Eussen, G.; Bassem, G.

    1978-01-01

    The water level of a steam generator is hard to control manually and it is practically impossible for a human operator to react correctly to every important perturbation. These phenomena are further accentuated during the start-up at low load and at low feedwater temperature. The control schemes traditionally provided do not permit satisfactory automatic level control during all operating circumstances. Adaptions of the control system permit all the problems encountered to be solved: automatic control of the level in the steam generators is possible from 0% to 100% of the load and also when large-scale perturbations occur. Such a result has been obtained by use of systematic methods for the analysis of the steam generator's behaviour. These methods have also been used to verify the performance of the control system. The control system installed at the Doel nuclear power station prevents most of the reactor or turbine trip-outs caused by level deviations occurring during start-up and low-load operation. It also minimizes the effects on the unit of incidents such as tripping the unit on house load, safety tripping, fast run-back on reduced load, etc. The principles used are applicable to the control of steam generators of all pressurized water reactor power stations. (author)

  16. Evaluating changes to reservoir rule curves using historical water-level data

    Science.gov (United States)

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Flood control reservoirs are typically managed through rule curves (i.e. target water levels) which control the storage and release timing of flood waters. Changes to rule curves are often contemplated and requested by various user groups and management agencies with no information available about the actual flood risk of such requests. Methods of estimating flood risk in reservoirs are not easily available to those unfamiliar with hydrological models that track water movement through a river basin. We developed a quantile regression model that uses readily available daily water-level data to estimate risk of spilling. Our model provided a relatively simple process for estimating the maximum applicable water level under a specific flood risk for any day of the year. This water level represents an upper-limit umbrella under which water levels can be operated in a variety of ways. Our model allows the visualization of water-level management under a user-specified flood risk and provides a framework for incorporating the effect of a changing environment on water-level management in reservoirs, but is not designed to replace existing hydrological models. The model can improve communication and collaboration among agencies responsible for managing natural resources dependent on reservoir water levels.

  17. Water level affects availability of optimal feeding habitats for threatened migratory waterbirds

    DEFF Research Database (Denmark)

    Aharon-Rotman, Yaara; McEvoy, John; Zheng Zhaoju

    2017-01-01

    within the lake. Changing the natural hydrological system will affect waterbirds dependent on water level changes for food availability and accessibility. We tracked two goose species with different feeding behaviors (greater white-fronted geese Anser albifrons [grazing species] and swan geese Anser......Extensive ephemeral wetlands at Poyang Lake, created by dramatic seasonal changes in water level, constitute the main wintering site for migratory Anatidae in China. Reductions in wetland area during the last 15years have led to proposals to build a Poyang Dam to retain high winter water levels...... cygnoides [tuber-feeding species]) during two winters with contrasting water levels (continuous recession in 2015; sustained high water in 2016, similar to those predicted post-Poyang Dam), investigating the effects of water level change on their habitat selection based on vegetation and elevation. In 2015...

  18. Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system

    Science.gov (United States)

    Toumi, S.; Beji, L.; Mlayeh, R.; Abichou, A.

    2018-01-01

    To address security issues in oilwell drillstring system, the drilling operation handling which is in generally not autonomous but ensured by an operator may be drill bit destructive or fatal for the machine. To control of stick-slip phenomenon, the drillstring control at the right speed taking only the drillstring vibration is not sufficient as the mud dynamics and the pressure change around the drill pipes cannot be neglected. A coupled torsional vibration and pressure model is presented, and the well-posedness problem is addressed. As a Partial Differential Equation-Ordinary Differential Equation (PDE-ODE) coupled system, and in order to maintain a non destructive downhole pressure, we investigate the control stability with and without the damping term in the wave PDE. In terms of, the torsional variable, the downhole pressure, and the annulus pressure, the coupled system equilibrium is shown to be exponentially stable.

  19. Effects of water level on three wetlands soil seed banks on the Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Miaojun Ma

    Full Text Available BACKGROUND: Although the effect of water level on germination in soil seed banks has been documented in many ecosystems, the mechanism is not fully understood, and to date no empirical studies on this subject exist. Further, no work has been done on the effect of water level on seed banks of drying and saline-alkaline wetlands in alpine areas on the Tibetan Plateau. METHODOLOGY: We examined the effects of water level (0 cm, 5 cm and 10 cm on seed germination and seedling establishment from soil seed banks at 0-5 cm and 5-10 cm depths in typical, drying, and saline-alkaline wetlands. We also explore the potential role of soil seed bank in restoration of drying and saline-alkaline wetlands. PRINCIPAL FINDINGS: Species richness decreased with increase in water level, but there almost no change in seed density. A huge difference exists in species composition of the seed bank among different water levels in all three wetlands, especially between 0 cm and 5 cm and 0 cm and 10 cm. Similarity of species composition between seed bank and plant community was higher in 0 cm water level in drying wetland than in the other two wetlands. The similarity was much higher in 0 cm water level than in 5 cm and 10 cm water levels in all three wetlands. Species composition of the alpine wetland plant community changed significantly after drying and salinization, however, species composition of the seed bank was unchanged regardless of the environment change. CONCLUSIONS/SIGNIFICANCE: Water level greatly affects seed bank recruitment and plant community establishment. Further, different water levels in restored habitats are likely to determine its species composition of the plant community. The seed bank is important in restoration of degraded wetlands. Successful restoration of drying and salinization wetlands could depend on the seed bank.

  20. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Science.gov (United States)

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  1. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Directory of Open Access Journals (Sweden)

    Mo-Zhu Wang

    Full Text Available Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  2. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Science.gov (United States)

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions. PMID:26735689

  3. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  4. Subsurface multidisciplinary research results at ICTJA-CSIC downhole lab and test site

    Science.gov (United States)

    Jurado, Maria Jose; Crespo, Jose; Salvany, Josep Maria; Teixidó, Teresa

    2017-04-01

    Two scientific boreholes, Almera-1 and Almera-2 were drilled in the Barcelona University campus area in 2011. The main purpose for this drilling was to create a new geophysical logging and downhole monitoring research facility and infrastructure. We present results obtained in the frame of multidisciplinary studies and experiments carried out since 2011 at the ICTJA "Borehole Geophysical Logging Lab - Scientific Boreholes Almera" downhole lab facilities. First results obtained from the scientific drilling, coring and logging allowed us to characterize the urban subsurface geology and hydrology adjacent to the Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) in Barcelona. The subsurface geology and structural picture has been completed with recent geophysical studies and monitoring results. The upper section of Almera-1 214m deep hole was cased with PVC after drilling and after the logging operations. An open hole interval was left from 112m to TD (Paleozoic section). Almera-2 drilling reached 46m and was cased also with PVC to 44m. Since completion of the drilling in 2011, both Almera-1 and Almera-2 have been extensively used for research purposes, tests, training, hydrological and geophysical monitoring. A complete set of geophysical logging measurements and borehole oriented images were acquired in open hole mode of the entire Almera-1 section. Open hole measurements included acoustic and optical imaging, spectral natural gamma ray, full wave acoustic logging, magnetic susceptibility, hydrochemical-temperature logs and fluid sampling. Through casing (PVC casing) measurements included spectral gamma ray logging, full wave sonic and acoustic televiewer. A Quaternary to Paleozoic section was characterized based on the geophysical logging and borehole images interpretation and also on the complete set of (wireline) cores of the entire section. Sample availability was intended for geological macro and micro-facies detailed characterization, mineralogical and

  5. DATA QUALIFICATION REPORT: WATER-LEVEL DATA FROM THE NYE COUNTY EARLY WARNING DRILLING PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    F. H. Dove, P. Sanchez, and L. Saraka

    2000-04-21

    The objective of this work is to evaluate unqualified, water-level data gathered under the Nye County Early Warning Drilling Program (EWDP) and to determine whether the status of the data should be changed to ''qualified'' data in accordance with AP-SIII.2Q (Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data). The corroboration method (as defined in Attachment 2 of AP-SIII.2Q) was implemented to qualify water-level data from Nye County measurements obtained directly from the Nye County Nuclear Waste Repository Program Office (NWRPO). Comparison of United States Geological Survey (USGS) measurements contained in DTN GS990608312312.003 with the Nye County water-level data has shown that the differences in water-level altitudes for the same wells are significantly less than 1 meter. This is an acceptable finding. Evaluation and recommendation criteria have been strictly applied to qualify Nye County measurements of water levels in selected wells measured by the USGS. However, the process of qualifying measured results by corroboration also builds confidence that the Nye County method for measurement of water levels is adequate for the intended use of the data (which is regional modeling). Therefore, it is reasonable to extend the term of ''qualified'' to water-level measurements in the remaining Nye County Phase I wells on the basis that the method has been shown to produce adequate results for the intended purpose of supporting large-scale modeling activities for the Yucca Mountain Project (YMP). The Data Qualification Team recommends the Nye County, water-level data contained in Appendix D of this report be designated as ''qualified''. These data document manual measurements of water-levels in eight (8) EWDP Phase I drillholes that were obtained prior to the field installation of continuous monitoring equipment.

  6. DATA QUALIFICATION REPORT: WATER-LEVEL DATA FROM THE NYE COUNTY EARLY WARNING DRILLING PROGRAM

    International Nuclear Information System (INIS)

    F. H. Dove, P. Sanchez, and L. Saraka

    2000-01-01

    The objective of this work is to evaluate unqualified, water-level data gathered under the Nye County Early Warning Drilling Program (EWDP) and to determine whether the status of the data should be changed to ''qualified'' data in accordance with AP-SIII.2Q (Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data). The corroboration method (as defined in Attachment 2 of AP-SIII.2Q) was implemented to qualify water-level data from Nye County measurements obtained directly from the Nye County Nuclear Waste Repository Program Office (NWRPO). Comparison of United States Geological Survey (USGS) measurements contained in DTN GS990608312312.003 with the Nye County water-level data has shown that the differences in water-level altitudes for the same wells are significantly less than 1 meter. This is an acceptable finding. Evaluation and recommendation criteria have been strictly applied to qualify Nye County measurements of water levels in selected wells measured by the USGS. However, the process of qualifying measured results by corroboration also builds confidence that the Nye County method for measurement of water levels is adequate for the intended use of the data (which is regional modeling). Therefore, it is reasonable to extend the term of ''qualified'' to water-level measurements in the remaining Nye County Phase I wells on the basis that the method has been shown to produce adequate results for the intended purpose of supporting large-scale modeling activities for the Yucca Mountain Project (YMP). The Data Qualification Team recommends the Nye County, water-level data contained in Appendix D of this report be designated as ''qualified''. These data document manual measurements of water-levels in eight (8) EWDP Phase I drillholes that were obtained prior to the field installation of continuous monitoring equipment

  7. The effect of water level in a prey-predator interactions: A nonlinear analysis study

    International Nuclear Information System (INIS)

    Chiboub Fellah, N.; Bouguima, S.M.; Moussaoui, A.

    2012-01-01

    Highlights: ► A new model describing the interaction between predator and prey in Parloup Lake. ► Existence of periodic solution is proved. ► Seasonal variation in water level is an important factor for persitence. - Abstract: Water level may influence local community dynamics. We examine how seasonal variations in water level affect the outcome of prey-predator interactions in Parloup Lake in the south of France. We propose a new model to describe the annual cycle of persistence by using continuation theorem of coincidence degree.

  8. Monitoring the ground water level change during the pump test by using the Electric resistivity tomography

    Science.gov (United States)

    Hsu, H.; Chang, P. Y.; Yao, H. J.

    2017-12-01

    For hydrodynamics study of the unconfined aquifer in gravel formation, a pumping test was established to estimate the hydraulic conductivity in the midstream of Zhoushui River in Taiwan. The hydraulic parameters and the cone of depression could be estimated by monitoring the groundwater drawdown in an observation well which was in a short distance far from the pumping well. In this study we carried out the electric resistivity image monitoring during the whole pumping test. The electric resistivity data was measured with the surface and downhole electrodes which would produce a clear subsurface image of groundwater level through a larger distance than the distance between pumping and observation wells. The 2D electric image could also describe how a cone of depression truly created at subsurface. The continuous records could also show the change of groundwater level during the whole pumping test which could give a larger scale of the hydraulic parameters.

  9. Development of a Regional Neural Network for Coastal Water Level Predictions

    National Research Council Canada - National Science Library

    Huang, Wenrui; Murray, Catherine; Kraus, Nicholas; Rosati, Julie

    2003-01-01

    .... Fortunately, the US National Oceanographic and Atmospheric Administration (NOAA) has a national network of water level monitoring stations distributed in regional scale that has been operating for several decades...

  10. Relationships among gender, cognitive style, academic major, and performance on the Piaget water-level task.

    Science.gov (United States)

    Hammer, R E; Hoffer, N; King, W L

    1995-06-01

    Many researchers have found that more college-age adults than would be expected fail Piaget's water-level task, with women failing more frequently than men. It has been hypothesized that differences in cognitive style may account for performance differences on the water-level task. In the present study, 27 male and 27 female architectural students and 27 male and 27 female liberal-arts students were assessed for their performance on both Piaget's Water-level Task and Witkin's Group Embedded Figures Test. No difference was found in performance of male and female architectural students on either task, but male liberal-arts students scored significantly higher than female liberal-arts students on both measures. A disembedding cognitive style predicted success on the water-level task for the architectural students but not for the liberal arts students.

  11. An analysis of the water-level monitoring system for a boiling-water reactor

    International Nuclear Information System (INIS)

    Carlson, R.W.; Belblidia, L.A.; Russell, J.L. Jr.

    1985-01-01

    The water-level instrumentation system is very important to the overall safety of a BWR. This system is being monitored by the Safety Parameter Display System (SPDS) that is being installed in Georgia Power Company's Plant Hatch. One of the most significant functions of the SPDS is the comparison of redundant instrument readings and formation of the best estimate of each parameter from those readings which are consistent. When comparing water-level instrument readings, it is necessary to correct the individual readings for differences between current and calibration conditions as well as for differences between calibration conditions for the multiple instruments. This paper documents the examination of the water-level instrumentation system at Plant Hatch and presents the development of the equations that were used to determine the differences between indicated and actual water levels. (author)

  12. Great Lakes Daily Ice Observations at NOAA Water Level Gauge Sites, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains daily visual ice observations taken yearly from 1 November to 30 April at NOAA/National Ocean Service water level gauge sites in the Great...

  13. Water level influences on body condition of Geophagus brasiliensis (Perciformes: Cichlidae in a Brazilian oligotrophic reservoir

    Directory of Open Access Journals (Sweden)

    Alejandra Filippo Gonzalez Neves dos Santos

    Full Text Available Effects of water level fluctuations on body condition of Geophagus brasiliensis were studied in a 30 km² Brazilian oligotrophic reservoir. Physiological condition (K and gonadosomatic index (GSI were compared according to water level (low and high. Females' best conditions were associated to higher resources availability during high water, since gonad development did not change between low and high water. Males' condition did not change between water levels, while the highest gonad development occurred in low water. Females presented higher reproductive investment than males, which allocated most of energy for somatic development. This strategy could be a mechanism to undergo the stress caused by oligotrophic characteristics of the reservoir enhanced during low water level.

  14. Preliminary Assessment of Water Levels in Bedrock Wells in New Hampshire, 1984 to 2007

    Science.gov (United States)

    Ayotte, Joseph D.; Kernen, Brandon M.; Wunsch, David R.; Argue, Denise M.; Bennett, Derek S.; Mack, Thomas J.

    2010-01-01

    Analysis of nearly 60,000 reported values of static water level (SWL, as depth below land surface) in bedrock wells in New Hampshire, aggregated on a yearly basis, showed an apparent deepening of SWL of about 13 ft (4 m) over the period 1984–2007. Water-level data were one-time measurements at each well and were analyzed, in part, to determine if they were suitable for analysis of trends in groundwater levels across the state. Other well characteristics, however, also have been changing over time, such as total well depth, casing length, the length of casing in bedrock, and to some extent, well yield. Analyses indicated that many of the well construction variables are significantly correlated; the apparent declines in water levels may have been caused by some of these factors. Information on changes in water use for the period was not available, although water use may be an important factor affecting water levels.

  15. Great Lakes Daily Ice Observations at NOAA Water Level Gauge Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains daily visual ice observations taken yearly from 1 November to 30 April at NOAA/National Ocean Service water level gauge sites in the Great...

  16. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Directory of Open Access Journals (Sweden)

    Ren Peng

    2016-01-01

    Full Text Available In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  17. Observations and estimates of wave-driven water level extremes at the Marshall Islands

    Science.gov (United States)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-10-01

    Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.

  18. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Science.gov (United States)

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  19. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    International Nuclear Information System (INIS)

    Tucci, P.

    2001-01-01

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M and O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment

  20. Impact of water-level changes to aquatic vegetation in small oligotrophic lakes

    Directory of Open Access Journals (Sweden)

    Egert VANDEL

    2016-06-01

    Full Text Available This study demonstrates the effect of drastic water-level changes to the aquatic vegetation in three small oligotrophic lakes situated in Kurtna Kame Field in north-eastern Estonia. The area holds around 40 lakes in 30 km2 of which 18 lakes are under protection as Natura Habitat lakes (Natura 2000 network. The area is under a strong human impact as it is surrounded by oil shale mines, sand quarry, peat harvesting field etc. The most severe impact comes from the groundwater intake established in 1972 in the vicinity of three studied lakes. The exploitation of groundwater led to drastic water-level drops. In 1980s the water-level drops were measured to be up to 3 to 4 meters compared to the levels of 1946. Lake Martiska and Lake Kuradijärv were severely affected and only 29% and 45% of lake area respectively and 21% of initial volume remained. Both lakes were described as oligotrophic lakes before severe human impact and held characteristic macrophytes such as Isoëtes lacustris L., Sparganium angustifolium Michx and Lobelia dortmanna L. As the water level declined the lakes lost their rare characteristic species and can now be described more as a meso- or even eutrophic lakes. When the volume of groundwater abstraction decreased in the 1990s the water levels started to recover but did not reach the natural levels of pre-industrialized era. Also the vegetation did not show any signs of recovery. In 2012 the pumping rates increased again causing a new rapid decline in water levels which almost exceed the previous minimum levels. The water-level monitoring alongside with the macrophyte monitoring data gives us a good case study on how the long term abrupt water-level changes can affect the aquatic vegetation

  1. Monitoring Vertical Crustal Deformation and Gravity Variations during Water Level Changes at the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    WANG Wei

    2017-06-01

    Full Text Available Monitoring vertical crustal deformation and gravity changes during water level changes at the Three Gorges reservoir is important for the safe operation of the Three Gorges Dam and for the monitoring and prevention of a regional geological disaster. In this study, we determined vertical crustal deformation and gravity changes during water level variations of the Three Gorges reservoir from direct calculations and actual measurements and a comprehensive solution. We used water areas extracted image data from the ZY-3 satellite and water level data to calculate gravity changes and vertical crustal deformation caused by every 5 m change in the water level due to storage and drainage of the Three Gorges reservoir from 145 m to 175 m. The vertical crustal deformation was up to 30 mm. The location of gravity change above 20 μ Gal(1 Gal=10-2 m/s2 was less than 2 km from the centerline of the Yangtze River. The CORS ES13 in Badong, near the reservoir, measured the vertical crustal deformation during water level changes. Because of the small number of CORS and gravity stations in the Three Gorges reservoir area, monitoring deformation and gravity related to changes in the Three Gorges reservoir water level cannot be closely followed. Using 26 CORS and some of the gravity stations in the Three Gorges area and based on loading deformation and the spherical harmonic analysis method, an integrated solution of vertical deformation and gravity variations during water level changes of the reservoir was determined, which is consistent with the actual CORS monitoring results. By comparison, we found that an integrated solution based on a CORS network can effectively enhance the capability of monitoring vertical crustal deformation and gravity changes during water level variations of the reservoir.

  2. Preliminary assessment of the impact of fluctuating water levels on northern pike in Reindeer Lake

    International Nuclear Information System (INIS)

    Chen, M.

    1993-03-01

    Reindeer Lake in north eastern Saskatchewan regulates water levels for the Island Falls hydroelectric power plant. Since inception of the Whitesand Dam on the lake, there have been concerns that fluctuating water levels could be adversely impacting the habitat and population of northern pike in the lake. The extent of water level fluctuations during the pike spawning period of Reindeer Lake and its effect on spawning success was investigated. Since construction of the Whitesand Dam in 1942 Reindeer Lake water levels have averaged ca 1.71 m higher than had the dam not existed, creating ca 430 km 2 of new surface area. Much of this area is shallow water and prone to growth of aquatic vegetation, which is suitable spawning and nursery habitat for northern pike. Annual and periodic water level fluctuations of Reindeer Lake have been higher than under natural conditions. During northern pike spawning and nursing periods, water levels in the lake have generally increased, in 60 out of 64 y. It is concluded that operation of the dam has not caused any direct negative impacts on the northern pike habitat in the lake. 2 refs., 4 figs., 4 tabs

  3. Observations and a linear model of water level in an interconnected inlet-bay system

    Science.gov (United States)

    Aretxabaleta, Alfredo; Ganju, Neil K.; Butman, Bradford; Signell, Richard

    2017-01-01

    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (∼0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.

  4. Projections of extreme water level events for atolls in the western Tropical Pacific

    Science.gov (United States)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-12-01

    Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.

  5. Lithological controls on gas hydrate saturation: Insights from signal classification of NMR downhole data

    Science.gov (United States)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2016-04-01

    Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal

  6. Application of multi-stage, multi-disk type downhole seismic source; Tadanshiki taso enbangata koseinai shingen no tekiyosei

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, N [Japan National Oil Corp., Tokyo (Japan); Shoji, Y [Oyo Corp., Tokyo (Japan)

    1997-05-27

    A multi-stage, multi-disk type seismic source was developed as a downhole seismic source. The seismic source is an improved version of the downhole seismic source of a system in which an elastic wave is generated by a weight accelerated by restitutive force of a spring striking the upper part of a laminated structure consisted of metal disks and elastic bodies installed in water in a well. Enhancing the vibration exciting efficiency requires impedance radiated from the disks to be increased. The multi-disk structure was adopted because of restrictions on the disk area under the limiting condition of being inside the well. Further limitation has still existed, which led to finally structuring the multi-disk type to a multi-stage construction to increase the radiated impedance. In order to increase average velocity on the radiation surface, mass relationship between the hammer and the anvil was sought so that the maximum velocity is achieved at the process of converting motion energies among the hammer, anvil and disks. The anvil mass may sufficiently be 50% to 100% of the hammer mass. The equipment was installed in an actual oil well for testing. This seismic source was verified to have sufficient applicability in the cross hole measurement. 5 refs., 7 figs., 1 tab.

  7. Application of surface–downhole combined microseismic monitoring technology in the Fuling shale gas field and its enlightenment

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2017-01-01

    Full Text Available The Fuling shale gas field in the Sichuan Basin, as a national shale gas demonstration area, is the largest commercially developed shale gas field in the world except those in North America. The fracturing technology in the mode of “well factory” has been applied widely in the gas field, but it is necessary to perform further investigation on the way to evaluate effectively the fracturing effect of multi-well platform “well factory” and the distribution laws of its induced fracture networks. In this paper, the fractures induced by the “well factory” at the JY 48 platform were real-time monitored by a surface–downhole combined microseismic monitoring technology. The geometric size and extension direction of artificial fractures induced in the model of “well factory” fracturing in the Jiaoshiba block of Fuling Shale Gas Field were preliminarily understood. Moreover, the fracturing parameters under the mode of “well factory” were recognized by using the comprehensive interpretation results of surface–downhole combined microseismic monitoring technology, together with the SRV fracturing prediction chart. Eventually, the distribution laws of artificial fractures during the “well-factory-zipper” fracturing in the Fuling Shale Gas Field were clarified definitely. This paper provides guidance for the optimization of fracturing parameters at the later stage.

  8. Analysis of environmental issues related to small-scale hydroelectric development. III. Water level fluctuation

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, S.G. (ed.)

    1980-10-01

    Potential environmental impacts in reservoirs and downstream river reaches below dams that may be caused by the water level fluctuation resulting from development and operation of small scale (under 25MW) hydroelectric projects are identified. The impacts discussed will be of potential concern at only those small-scale hydroelectric projects that are operated in a store and release (peaking) mode. Potential impacts on physical and chemical characteristics in reservoirs resulting from water level fluctuation include resuspension and redistribution of bank and bed sediment; leaching of soluble organic matter from sediment in the littoral zone; and changes in water quality resulting from changes in sediment and nutrient trap efficiency. Potential impacts on reservoir biota as a result of water level fluctuation include habitat destruction and the resulting partial or total loss of aquatic species; changes in habitat quality, which result in reduced standing crop and production of aquatic biota; and possible shifts in species diversity. The potential physical effects of water level fluctuation on downstream systems below dams are streambed and bank erosion and water quality problems related to resuspension and redistribution of these materials. Potential biological impacts of water level fluctuation on downstream systems below dams result from changes in current velocity, habitat reduction, and alteration in food supply. These alterations, either singly or in combination, can adversely affect aquatic populations below dams. The nature and potential significance of adverse impacts resulting from water level fluctuation are discussed. Recommendations for site-specific evaluation of water level fluctuation at small-scale hydroelectric projects are presented.

  9. Characterising Bedrock Aquifer Systems in Korea Using Paired Water-Level Monitoring Data

    Directory of Open Access Journals (Sweden)

    Jae Min Lee

    2017-06-01

    Full Text Available This study focused on characterising aquifer systems based on water-level changes observed systematically at 159 paired groundwater monitoring wells throughout Korea. Using spectral analysis, principal component analysis (PCA, and cross-correlation analysis with linear regression, aquifer conditions were identified from the comparison of water-level changes in shallow alluvial and deep bedrock monitoring wells. The spectral analysis could identify the aquifer conditions (i.e., unconfined, semi-confined and confined of 58.5% of bedrock wells and 42.8% of alluvial wells: 93 and 68 wells out of 159 wells, respectively. Even among the bedrock wells, 50 wells (53.7% exhibited characteristics of the unconfined condition, implying significant vulnerability of the aquifer to contaminants from the land surface and shallow depths. It appears to be better approach for deep bedrock aquifers than shallow alluvial aquifers. However, significant portions of the water-level changes remained unclear for categorising aquifer conditions due to disturbances in data continuity. For different aquifer conditions, PCA could show typical pattern and factor scores of principal components. Principal component 1 due to wet-and-dry seasonal changes and water-level response time was dominant covering about 55% of total variances of each aquifer conditions, implying the usefulness of supplementary method of aquifer characterisation. Cross-correlation and time-lag analysis in the water-level responses to precipitations clearly show how the water levels in shallow and deep wells correspond in time scale. No significant differences in time-lags was found between shallow and deep wells. However, clear time-lags were found to be increasing from unconfined to confined conditions: from 1.47 to 2.75 days and from 1.78 to 2.75 days for both shallow alluvial and deep bedrock wells, respectively. In combination of various statistical methods, three types of water-level fluctuation

  10. Water level fluctuations due to earth tides in a well pumping from slightly fractured crystalline rock

    International Nuclear Information System (INIS)

    Marine, I.W.

    1975-01-01

    J At the Savannah River plant of the Atomic Energy Commission near Aiken, South Carolina, there are three distinct groundwater systems: the coastal plain sediments, the crystalline metamorphic rocks, and a buried Triassic basin. The coastal plain sediments include several Cretaceous and Tertiary granular aquifers and aquicludes, the total thickness being about 305 m. Below these sediments, water occurs in small fractures in crystalline metamorphic rock (hornblende schist and gneiss with lesser amounts of quartzite). Water level fluctuations due to earth tides are recorded in the crystalline metamorphic rock system and in the coastal plain sediments. No water level fluctuations due to earth tides have been observed in wells in the Triassic rock because of the very low permeability. The water level fluctuations due to earth tides in the crystalline rock are about 10 cm, and those in the sediments are about 1.8 cm. The use of water level fluctuations due to earth tides to calculate porosity appears to present practical difficulties both in the crystalline metamorphic rock system and in the coastal plain sediments. In a 1-yr pumping test on a well in the crystalline metamorphic rock the flow was controlled to within 0.1 percent of the total discharge, which was 0.94 1/s. The water level fluctuations due to earth tides in the pumping well were 10 cm, the same as when this well was not being pumped. (U.S.)

  11. Water Level Fluctuations in the Congo Basin Derived from ENVISAT Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Mélanie Becker

    2014-09-01

    Full Text Available In the Congo Basin, the elevated vulnerability of food security and the water supply implies that sustainable development strategies must incorporate the effects of climate change on hydrological regimes. However, the lack of observational hydro-climatic data over the past decades strongly limits the number of studies investigating the effects of climate change in the Congo Basin. We present the largest altimetry-based dataset of water levels ever constituted over the entire Congo Basin. This dataset of water levels illuminates the hydrological regimes of various tributaries of the Congo River. A total of 140 water level time series are extracted using ENVISAT altimetry over the period of 2003 to 2009. To improve the understanding of the physical phenomena dominating the region, we perform a K-means cluster analysis of the altimeter-derived river level height variations to identify groups of hydrologically similar catchments. This analysis reveals nine distinct hydrological regions. The proposed regionalization scheme is validated and therefore considered reliable for estimating monthly water level variations in the Congo Basin. This result confirms the potential of satellite altimetry in monitoring spatio-temporal water level variations as a promising and unprecedented means for improved representation of the hydrologic characteristics in large ungauged river basins.

  12. Inferring time‐varying recharge from inverse analysis of long‐term water levels

    Science.gov (United States)

    Dickinson, Jesse; Hanson, R.T.; Ferré, T.P.A.; Leake, S.A.

    2004-01-01

    Water levels in aquifers typically vary in response to time‐varying rates of recharge, suggesting the possibility of inferring time‐varying recharge rates on the basis of long‐term water level records. Presumably, in the southwestern United States (Arizona, Nevada, New Mexico, southern California, and southern Utah), rates of mountain front recharge to alluvial aquifers depend on variations in precipitation rates due to known climate cycles such as the El Niño‐Southern Oscillation index and the Pacific Decadal Oscillation. This investigation examined the inverse application of a one‐dimensional analytical model for periodic flow described by Lloyd R. Townley in 1995 to estimate periodic recharge variations on the basis of variations in long‐term water level records using southwest aquifers as the case study. Time‐varying water level records at various locations along the flow line were obtained by simulation of forward models of synthetic basins with applied sinusoidal recharge of either a single period or composite of multiple periods of length similar to known climate cycles. Periodic water level components, reconstructed using singular spectrum analysis (SSA), were used to calibrate the analytical model to estimate each recharge component. The results demonstrated that periodic recharge estimates were most accurate in basins with nearly uniform transmissivity and the accuracy of the recharge estimates depends on monitoring well location. A case study of the San Pedro Basin, Arizona, is presented as an example of calibrating the analytical model to real data.

  13. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  14. SHORT-TERM AND LONG-TERM WATER LEVEL PREDICTION AT ONE RIVER MEASUREMENT LOCATION

    Directory of Open Access Journals (Sweden)

    Rudolf Scitovski

    2012-12-01

    Full Text Available Global hydrological cycles mainly depend on climate changes whose occurrence is predominantly triggered by solar and terrestrial influence, and the knowledge of the high water regime is widely applied in hydrology. Regular monitoring and studying of river water level behavior is important from several perspectives. On the basis of the given data, by using modifications of general approaches known from literature, especially from investigation in hydrology, the problem of long- and short-term water level forecast at one river measurement location is considered in the paper. Long-term forecasting is considered as the problem of investigating the periodicity of water level behavior by using linear-trigonometric regression and short-term forecasting is based on the modification of the nearest neighbor method. The proposed methods are tested on data referring to the Drava River level by Donji Miholjac, Croatia, in the period between the beginning of 1900 and the end of 2012.

  15. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    Roshan GholamReza

    2012-12-01

    Full Text Available Abstract The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  16. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations.

    Science.gov (United States)

    Roshan, Gholamreza; Moghbel, Masumeh; Grab, Stefan

    2012-12-12

    The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  17. Assessment of impacts from water level fluctuations on fish in the Hanford Reach, Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.D.; Fickeisen, D.H.; Montgomery, J.C.

    1981-05-01

    Observations on the effects of water level fluctuations in the Hanford Reach of the Columbia River, Washington, were made in 1976 and 1977. The two years provided contrasting flow regimes: high water and fluctuations of greater magnitude prevailed in 1976; low water and higher temperatures prevailed in 1977. Situations where fish and other aquatic organisms were destroyed by changing water levels were observed and evaluated each year in three study areas: Hanford, F-Area, and White Bluffs sloughs. Losses primarily were due to stranding, entrapment (with or without complete dewatering), and predation. Juvenile fish were more susceptible to entrapment and stranding than were adult fish. Estimates of actual losses were biased and conservative because relatively few fish could be found after each decline of water level and dewatering. The most valued species of fish affected by water level fluctuations at Hanford were the anadromus fall chinook salmon (Oncorhynchus tshawytscha) and the resident smallmouth bass (Micropterus dolomieui). Crucial periods for chinook salmon occurred during winter when incubating eggs were in the gravel of the main channel, and before and during seaward migration in the spring when fry were abundant in shoreline zones. The crucial period for smallmouth bass was during spring and early summer when adults were spawning in warmed sloughs and shoreline zones. Chinook salmon and smallmouth bass fry were vulnerable to stranding and entrapment, and smallmouth bass nests were susceptible to exposure and temperature changes resulting from repeated water level fluctuations. Thus, flow manipulation may be crucial to their survival. The extent to which other species of riverine fish were affected by water level fluctuations depended upon their use of shoreline zones for spawning and rearing young.

  18. A Spaceborne Multisensory, Multitemporal Approach to Monitor Water Level and Storage Variations of Lakes

    Directory of Open Access Journals (Sweden)

    Alireza Taravat

    2016-10-01

    Full Text Available Lake Urmia, the second largest saline Lake on earth and a highly endangered ecosystem, is on the brink of a serious environmental disaster similar to the catastrophic death of the Aral Sea. Progressive drying has been observed during the last decade, causing dramatic changes to Lake Urmia’s surface and its regional water supplies. The present study aims to improve monitoring of spatiotemporal changes of Lake Urmia in the period 1975–2015 using the multi-temporal satellite altimetry and Landsat (5-TM, 7-ETM+ and 8-OLI images. In order to demonstrate the impacts of climate change and human pressure on the variations in surface extent and water level, Lake Sevan and Van Lake with different characteristics were studied along with the Urmia Lake. Normalized Difference Water Index-Principal Components Index (NDWI-PCs, Normalized Difference Water Index (NDWI, Modified NDWI (MNDWI, Normalized Difference Moisture Index (NDMI, Water Ratio Index (WRI, Normalized Difference Vegetation Index (NDVI, Automated Water Extraction Index (AWEI, and MultiLayer Perceptron Neural Networks (MLP NNs classifier were investigated for the extraction of surface water from Landsat data. The presented results revealed that MLP NNs has a better performance in the cases where the other models generate poor accuracy. The results show that the area of Lake Sevan and Van Lake have increased while the area of Lake Urmia has decreased by ~65.23% in the past decades, far more than previously reported (~25% to 50%. Urmia Lake’s shoreline has been receding severely between 2010 and 2015 with no sign of recovery, which has been partly blamed on prolonged droughts, aggressive regional water resources development plans, intensive agricultural activities, and anthropogenic changes to the system. The results also indicated that (among the proposed factors changes in inflows due to overuse of surface water resources and constructing dams (mostly during 1995–2005 are the main reasons

  19. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    International Nuclear Information System (INIS)

    K. Rehfeldt

    2004-01-01

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized

  20. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In

  1. Radar Based Flow and Water Level Forecasting in Sewer Systems:a danisk case study

    OpenAIRE

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.; Neve, S. L.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promis...

  2. On the predictability of high water level along the US East Coast: can the Florida Current measurement be an indicator for flooding caused by remote forcing?

    Science.gov (United States)

    Ezer, Tal; Atkinson, Larry P.

    2017-06-01

    Recent studies show that in addition to wind and air pressure effects, a significant portion of the variability of coastal sea level (CSL) along the US East Coast can be attributed to non-local factors such as variations in the Gulf Stream and the North Atlantic circulation; these variations can cause unpredictable coastal flooding. The Florida Current transport (FCT) measurement across the Florida Straits monitors those variations, and thus, the study evaluated the potential of using the FCT as an indicator for anomalously high water level along the coast. Hourly water level data from 12 tide gauge stations over 12 years are used to construct records of maximum daily water levels (MDWL) that are compared with the daily FCT data. An empirical mode decomposition (EMD) approach is used to divide the data into high-frequency modes (periods T anti-correlated with MDWL in high-frequency modes but positively correlated with MDWL in low-frequency modes. FCC on the other hand is always anti-correlated with MDWL for all frequency bands, and the high water signal lags behind FCC for almost all stations, thus providing a potential predictive skill (i.e., whenever a weakening trend is detected in the FCT, anomalously high water is expected along the coast over the next few days). The MDWL-FCT correlation in the high-frequency modes is maximum in the lower Mid-Atlantic Bight, suggesting influence from the meandering Gulf Stream after it separates from the coast. However, the correlation in low-frequency modes is maximum in the South Atlantic Bight, suggesting impact from variations in the wind pattern over subtropical regions. The middle-frequency and low-frequency modes of the FCT seem to provide the best predictor for medium to large flooding events; it is estimated that ˜10-25% of the sea level variability in those modes can be attributed to variations in the FCT. An example from Hurricane Joaquin (September-October, 2015) demonstrates how an offshore storm that never made

  3. A small-volume PVTX system for broadband spectroscopic calibration of downhole optical sensors

    Science.gov (United States)

    Jones, Christopher Michael; Pelletier, Michael T.; Atkinson, Robert; Shen, Jing; Moore, Jeff; Anders, Jimmy; Perkins, David L.; Myrick, Michael L.

    2017-07-01

    An instrument is presented that is capable of measuring the optical spectrum (long-wave ultraviolet through short-wave mid-infrared) of fluids under a range of temperature and pressure conditions from ambient pressure up to 138 MPa (20 000 psi) and 422 K (300 °F) using ˜5 ml of fluid. Temperature, pressure, and density are measured in situ in real-time, and composition is varied by adding volatile and nonvolatile components. The stability and accuracy of the conditions are reported for pure ethane, and the effects of temperature and pressure on characteristic regions of the optical spectrum of ethane are illustrated after correction for temperature and pressure effects on the optical cell path length, as well as normalization to the measured density. Molar absorption coefficients and integrated molar absorption coefficients for several vibrational combination bands are presented.

  4. Interannual water-level fluctuations and the vegetation of prairie potholes: Potential impacts of climate change

    Science.gov (United States)

    van der Valk, Arnold; Mushet, David M.

    2016-01-01

    Mean water depth and range of interannual water-level fluctuations over wet-dry cycles in precipitation are major drivers of vegetation zone formation in North American prairie potholes. We used harmonic hydrological models, which require only mean interannual water depth and amplitude of water-level fluctuations over a wet–dry cycle, to examine how the vegetation zones in a pothole would respond to small changes in water depth and/or amplitude of water-level fluctuations. Field data from wetlands in Saskatchewan, North Dakota, and South Dakota were used to parameterize harmonic models for four pothole classes. Six scenarios in which small negative or positive changes in either mean water depth, amplitude of interannual fluctuations, or both, were modeled to predict if they would affect the number of zones in each wetland class. The results indicated that, in some cases, even small changes in mean water depth when coupled with a small change in amplitude of water-level fluctuations can shift a prairie pothole wetland from one class to another. Our results suggest that climate change could alter the relative proportion of different wetland classes in the prairie pothole region.

  5. Water level changes of high altitude lakes in Himalaya–Karakoram ...

    Indian Academy of Sciences (India)

    2Department of Geology, University of Pune, Pune 411 007, India. 3Chhattisgarh Council of .... influenced by three climate patterns as categorized by precipitation regime: (1) ... Water level changes of high altitude lakes in Himalaya–Karakoram. 1535 ...... mate warming and growth of high elevation inland lakes on the ...

  6. Detecting drawdowns masked by environmental stresses with water-level models

    Science.gov (United States)

    Garcia, C.A.; Halford, K.J.; Fenelon, J.M.

    2013-01-01

    Detecting and quantifying small drawdown at observation wells distant from the pumping well greatly expands the characterized aquifer volume. However, this detection is often obscured by water level fluctuations such as barometric and tidal effects. A reliable analytical approach for distinguishing drawdown from nonpumping water-level fluctuations is presented and tested here. Drawdown is distinguished by analytically simulating all pumping and nonpumping water-level stresses simultaneously during the period of record. Pumping signals are generated with Theis models, where the pumping schedule is translated into water-level change with the Theis solution. This approach closely matched drawdowns simulated with a complex three-dimensional, hypothetical model and reasonably estimated drawdowns from an aquifer test conducted in a complex hydrogeologic system. Pumping-induced changes generated with a numerical model and analytical Theis model agreed (RMS as low as 0.007 m) in cases where pumping signals traveled more than 1 km across confining units and fault structures. Maximum drawdowns of about 0.05 m were analytically estimated from field investigations where environmental fluctuations approached 0.2 m during the analysis period.

  7. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes

    NARCIS (Netherlands)

    Geest, van G.J.; Coops, H.; Roijackers, R.M.M.; Buijse, A.D.; Scheffer, M.

    2005-01-01

    In recent years, interest has grown in restoring floodplain function of regulated rivers. Successful rehabilitation of riparian systems requires knowledge of how regulation of river flow affects biodiversity and ecosystem function. The effects of changes in the river's low water-level regime on

  8. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes

    NARCIS (Netherlands)

    Van Geest, G.J.; Coops, H.; Roijackers, R.; Buijse, A.D.; Scheffer, M.

    2005-01-01

    1. In recent years, interest has grown in restoring floodplain function of regulated rivers. Successful rehabilitation of riparian systems requires knowledge of how regulation of river flow affects biodiversity and ecosystem function. The effects of changes in the river's low water-level regime on

  9. Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations

    NARCIS (Netherlands)

    Cai, H.; Savenije, H.H.G.; Jiang, C.

    2014-01-01

    As the tidal wave propagates into an estuary, the tidally averaged water level tends to rise in landward direction due to the density difference between saline and fresh water and the asymmetry of the friction. The effect of friction on the residual slope is even more remarkable when accounting for

  10. Flow Forecasting using Deterministic Updating of Water Levels in Distributed Hydrodynamic Urban Drainage Models

    DEFF Research Database (Denmark)

    Hansen, Lisbet Sneftrup; Borup, Morten; Moller, Arne

    2014-01-01

    drainage models and reduce a number of unavoidable discrepancies between the model and reality. The latter can be achieved partly by inserting measured water levels from the sewer system into the model. This article describes how deterministic updating of model states in this manner affects a simulation...

  11. Effects of Training on the Concepts of Water Level and Horizontality in the Classroom.

    Science.gov (United States)

    Weinstein, Melissa Starbuck

    This experiment was designed to see if classroom instruction in the concept of water level and horizontality can improve students' knowledge of these concepts. The sample consisted of a kindergarten and a second grade class from one school and a first grade class from another school. Each class was divided into three groups. The first group was…

  12. A simple procedure to model water level fluctuations in partially inundated wetlands

    NARCIS (Netherlands)

    Spieksma, JFM; Schouwenaars, JM

    When modelling groundwater behaviour in wetlands, there are specific problems related to the presence of open water in small-sized mosaic patterns. A simple quasi two-dimensional model to predict water level fluctuations in partially inundated wetlands is presented. In this model, the ratio between

  13. Littoral zones in shallow lakes. Contribution to water quality in relation to water level regime

    NARCIS (Netherlands)

    Sollie, S.

    2007-01-01

    Littoral zones with emergent vegetation are very narrow or even lacking in Dutch shallow lakes due to a combination of changed water level regime and unfavorable shore morphometry. These zones are important as a habitat for plants and animals, increasing species diversity. It has also been

  14. Response of littoral macrophytes to water level fluctuations in a storage reservoir

    Directory of Open Access Journals (Sweden)

    Krolová M.

    2013-05-01

    Full Text Available Lakes and reservoirs that are used for water supply and/or flow regulations have usually poorly developed littoral macrophyte communities, which impairs ecological potential in terms of the EU Water Framework Directive. The aim of our study was to reveal controlling factors for the growth of littoral macrophytes in a storage reservoir with fluctuating water level (Lipno Reservoir, Czech Republic. Macrophytes occurred in this reservoir only in the eulittoral zone i.e., the shoreline region between the highest and the lowest seasonal water levels. Three eulittoral sub-zones could be distinguished: the upper eulittoral with a stable community of perennial species with high cover, the middle eulittoral with relatively high richness of emergent and amphibious species present at low cover values, and the lower eulittoral devoid of permanent vegetation. Cover and species composition in particular sub-zones were primarily influenced by the duration and timing of flooding, followed by nutrient limitation and strongly reducing conditions in the flooded organic sediment. Our results stress the ecological importance of eulittoral zone in reservoirs with fluctuating water levels where macrophyte growth can be supported by targeted management of water level, thus helping reservoir managers in improving the ecological potential of this type of water bodies.

  15. Flood Finder: Mobile-based automated water level estimation and mapping during floods

    International Nuclear Information System (INIS)

    Pongsiriyaporn, B; Jariyavajee, C; Laoharawee, N; Narkthong, N; Pitichat, T; Goldin, S E

    2014-01-01

    Every year, Southeast Asia faces numerous flooding disasters, resulting in very high human and economic loss. Responding to a sudden flood is difficult due to the lack of accurate and up-to- date information about the incoming water status. We have developed a mobile application called Flood Finder to solve this problem. Flood Finder allows smartphone users to measure, share and search for water level information at specified locations. The application uses image processing to compute the water level from a photo taken by users. The photo must be of a known reference object with a standard size. These water levels are more reliable and consistent than human estimates since they are derived from an algorithmic measuring function. Flood Finder uploads water level readings to the server, where they can be searched and mapped by other users via the mobile phone app or standard browsers. Given the widespread availability of smartphones in Asia, Flood Finder can provide more accurate and up-to-date information for better preparation for a flood disaster as well as life safety and property protection

  16. The effect of applying different water levels and irrigation frequencies in propagating rosemary (Rosmarinus officinalis L.

    Directory of Open Access Journals (Sweden)

    Javier Giovanni Álvarez Herrera

    2010-01-01

    Full Text Available Rosemary seedlings are obtained by vegetative propagation because the seeds present low viability. Despite being an expanding crop, there is little information on water consumption during the propagation stage. Water levels and irrigation frequencies were therefore applied using a completely randomised design having a 4 x 2 factorial arrangement. The first factor concerned irrigation frequency (4 and 8 days and the second concerned water level (0.6, 0.8, 1.0 and 1.2 evaporation inside the greenhouse. A 1.0 coefficient combined with 4-day irrigation frequency presented the best results regarding height (39.3 cm, fresh weight, dry weight and branch length (146 cm. Water level affected the fresh and dry weight of leaves regardless of frequency. Relative water content in leaves did not present differences due to environmental conditions minimising treatment effect. Rooting percent- tage showed no significant differences regarding irrigation frequency or water level. Irrigation frequency did not affect rosemary growing pattern because sphagnum retains high moisture content. The best branch number (34 was obtained with 1.0 coefficient and 4-day frequency, this being important from the production point of view because this is the material which is sold. Water management changes photoassimilate distribution in rosemary plants.

  17. Determination of PWR core water level using ex-core detectors signals

    International Nuclear Information System (INIS)

    Bernal, Alvaro; Abarca, Agustin; Miro, Rafael; Verdu, Gumersindo

    2013-01-01

    The core water level provides relevant neutronic and thermalhydraulic information of the reactor such as power, k eff and cooling ability; in fact, core water level monitoring could be used to predict LOCA and cooling reduction which may deal with core damage. Although different detection equipment is used to monitor several parameters such as the power, core water level monitoring is not an evident task. However, ex-core detectors can measure the fast neutrons leaking the core and several studies demonstrate the existence of a relationship between fast neutron leakage and core water level due to the shielding effect of the water. In addition, new ex-core detectors are being developed, such as silicon carbide semiconductor radiation detectors, monitoring the neutron flux with higher accuracy and in higher temperatures conditions. Therefore, a methodology to determine this relationship has been developed based on a Monte Carlo calculation using MCNP code and applying variance reduction with adjoint functions based on the adjoint flux obtained with the discrete ordinates code TORT. (author)

  18. Laboratory and field tests of the Sutron RLR-0003-1 water level sensor

    Science.gov (United States)

    Fulford, Janice M.; Bryars, R. Scott

    2015-01-01

    Three Sutron RLR-0003-1 water level sensors were tested in laboratory conditions to evaluate the accuracy of the sensor over the manufacturer’s specified operating temperature and distance-to-water ranges. The sensor was also tested for compliance to SDI-12 communication protocol and in field conditions at a U.S. Geological Survey (USGS) streamgaging site. Laboratory results were compared to the manufacturer’s accuracy specification for water level and to the USGS Office of Surface Water (OSW) policy requirement that water level sensors have a measurement uncertainty of no more than 0.01 foot or 0.20 percent of the indicated reading. Except for one sensor, the differences for the temperature testing were within 0.05 foot and the average measurements for the sensors were within the manufacturer’s accuracy specification. Two of the three sensors were within the manufacturer’s specified accuracy and met the USGS accuracy requirements for the laboratory distance to water testing. Three units passed a basic SDI-12 communication compliance test. Water level measurements made by the Sutron RLR-0003-1 during field testing agreed well with those made by the bubbler system and a Design Analysis Associates (DAA) H3613 radar, and they met the USGS accuracy requirements when compared to the wire-weight gage readings.

  19. Size of age-0 crappies (Pomoxis spp.) relative to reservoir habitats and water levels

    Science.gov (United States)

    Kaczka, Levi J.; Miranda, Leandro E.

    2014-01-01

    Variable year-class strength is common in crappie Pomoxis spp. populations in many reservoirs, yet the mechanisms behind this variability are poorly understood. Size-dependent mortality of age-0 fishes has long been recognized in the population ecology literature; however, investigations about the effects of environmental factors on age-0 crappie size are lacking. The objective of this study was to determine if differences existed in total length of age-0 crappies between embayment and floodplain habitats in reservoirs, while accounting for potential confounding effects of water level and crappie species. To this end, we examined size of age-0 crappies in four flood-control reservoirs in northwest Mississippi over 4years. Age-0 crappies inhabiting uplake floodplain habitats grew to a larger size than fish in downlake embayments, but this trend depended on species, length of time a reservoir was dewatered in the months preceding spawning, and reservoir water level in the months following spawning. The results from our study indicate that water-level management may focus not only on allowing access to quality nursery habitat, but that alternating water levels on a multiyear schedule could increase the quality of degraded littoral habitats.

  20. Velocity flow field and water level measurements in shoaling and breaking water waves

    CSIR Research Space (South Africa)

    Mukaro, R

    2010-01-01

    Full Text Available In this paper we report on the laboratory investigations of breaking water waves. Measurements of the water levels and instantaneous fluid velocities were conducted in water waves breaking on a sloping beach within a glass flume. Instantaneous water...

  1. Estimation Of Height Of Oil -Water Contact Above Free Water Level ...

    African Journals Online (AJOL)

    An estimate of oil-water contact (OWC) and the understanding of the capillary behaviour of hydrocarbon reservoirs are vital for optimum reservoir characterization, hydrocarbon exploration and production. Hence, the height of oil-water contact above free water level for different rock types from some Niger Delta reservoirs ...

  2. Subseasonal to Seasonal Predictions of U.S. West Coast High Water Levels

    Science.gov (United States)

    Khouakhi, A.; Villarini, G.; Zhang, W.; Slater, L. J.

    2017-12-01

    Extreme sea levels pose a significant threat to coastal communities, ecosystems, and assets, as they are conducive to coastal flooding, coastal erosion and inland salt-water intrusion. As sea levels continue to rise, these sea level extremes - including occasional minor coastal flooding experienced during high tide (nuisance floods) - are of concern. Extreme sea levels are increasing at many locations around the globe and have been attributed largely to rising mean sea levels associated with intra-seasonal to interannual climate processes such as the El Niño-Southern Oscillation (ENSO). Here, intra-seasonal to seasonal probabilistic forecasts of high water levels are computed at the Toke Point tide gage station on the US west coast. We first identify the main climate drivers that are responsible for high water levels and examine their predictability using General Circulation Models (GCMs) from the North American Multi-Model Ensemble (NMME). These drivers are then used to develop a probabilistic framework for the seasonal forecasting of high water levels. We focus on the climate controls on the frequency of high water levels using the number of exceedances above the 99.5th percentile and above the nuisance flood level established by the National Weather Service. Our findings indicate good forecast skill at the shortest lead time, with the skill that decreases as we increase the lead time. In general, these models aptly capture the year-to-year variability in the observational records.

  3. Influence of Closing Storm Surge Barrier on Extreme Water Levels and Water Exchange; The Limfjord, Denmark

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck; Bentzen, Thomas Ruby; Larsen, Torben

    2014-01-01

    the increased risk of flooding in the estuary has revitalized the discussion whether this connection should be closed. In this paper, it is shown by numerical simulation that the establishment of a storm surge barrier across Thyborøn Channel can significantly reduce the peak water levels in the central...

  4. Downhole logs of natural gamma radiation and magnetic susceptibility and their use in interpreting lithostratigraphy in AND-1B, Antarctica

    Science.gov (United States)

    Williams, T.; Morin, R. H.; Jarrard, R. D.; Jackolski, C. L.; Henrys, S. A.; Niessen, F.; Magens, D.; Kuhn, G.; Monien, D.; Powell, R. D.

    2010-12-01

    The ANDRILL McMurdo Ice Shelf (MIS) project drilled 1285 metres of sediment representing the last 14 million years of glacial history. Downhole geophysical logs were acquired to a depth of 1018 metres, and are complementary to data acquired from the core itself. We describe here the natural gamma radiation (NGR) and magnetic susceptibility logs, and their application to understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND-1B. Natural gamma radiation logs cover the whole interval from the sea floor to 1018 metres, and magnetic susceptibility and other logs covered the open-hole intervals between 692-1018 and 237-342 metres. NGR logs were stacked and corrected for signal attenuation through the drill pipe, and magnetic susceptibility logs were corrected for drift. In the upper part of AND-1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamict (containing K-bearing clays, K-feldspar, and heavy minerals). In the lower open-hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamicts (relatively high in magnetite), while sandstones generally have high resistivity log values at AND-1B. On the basis of these three downhole logs, three sets of facies can be predicted correctly for 74% of the 692-1018m interval. The logs were then used to predict facies for the 7% of this interval that was unrecovered by coring. Similarly, the NGR log provides the best information on the lithology of the poorly recovered top 25m of AND-1B. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties, and help refine parts of the lithostratigraphy (for example, the varying terrigenous content of diatomites).

  5. Analysis of changes in water-level dynamics at selected sites in the Florida Everglades

    Science.gov (United States)

    Conrads, Paul; Benedict, Stephen T.

    2013-01-01

    The historical modification and regulation of the hydrologic patterns in the Florida Everglades have resulted in changes in the ecosystem of South Florida and the Florida Everglades. Since the 1970s, substantial focus has been given to the restoration of the Everglades ecosystem. The U.S. Geological Survey through its Greater Everglades Priority Ecosystem Science and National Water-Quality Assessment Programs has been providing scientific information to resource managers to assist in the Everglades restoration efforts. The current investigation included development of a simple method to identify and quantify changes in historical hydrologic behavior within the Everglades that could be used by researchers to identify responses of ecological communities to those changes. Such information then could be used by resource managers to develop appropriate water-management practices within the Everglades to promote restoration. The identification of changes in historical hydrologic behavior within the Everglades was accomplished by analyzing historical time-series water-level data from selected gages in the Everglades using (1) break-point analysis of cumulative Z-scores to identify hydrologic changes and (2) cumulative water-level frequency distribution curves to evaluate the magnitude of those changes. This analytical technique was applied to six long-term water-level gages in the Florida Everglades. The break-point analysis for the concurrent period of record (1978–2011) identified 10 common periods of changes in hydrologic behavior at the selected gages. The water-level responses at each gage for the 10 periods displayed similarity in fluctuation patterns, highlighting the interconnectedness of the Florida Everglades hydrologic system. While the patterns were similar, the analysis also showed that larger fluctuations in water levels between periods occurred in Water Conservation Areas 2 and 3 in contrast to those in Water Conservation Area 1 and the Everglades

  6. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    Science.gov (United States)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  7. Development of capacitive sensor for automatically measuring tumbler water level with FEA simulation.

    Science.gov (United States)

    Wei, Qun; Kim, Mi-Jung; Lee, Jong-Ha

    2018-01-01

    Drinking water has several advantages that have already been established, such as improving blood circulation, reducing acid in the stomach, etc. However, due to people not noticing the amount of water they consume every time they drink, most people drink less water than the recommended daily allowance. In this paper, a capacitive sensor for developing an automatic tumbler to measure water level is proposed. Different than in previous studies, the proposed capacitive sensor was separated into two sets: the main sensor for measuring the water level in the tumbler, and the reference sensor for measuring the incremental level unit. In order to confirm the feasibility of the proposed idea, and to optimize the shape of the sensor, a 3D model of the capacitive sensor with the tumbler was designed and subjected to Finite Element Analysis (FEA) simulation. According to the simulation results, the electrodes were made of copper and assembled in a tumbler manufactured by a 3D printer. The tumbler was filled with water and was subjected to experiments in order to assess the sensor's performance. The comparison of experimental results to the simulation results shows that the measured capacitance value of the capacitive sensor changed linearly as the water level varied. This proves that the proposed sensor can accurately measure the water level in the tumbler. Additionally, by use of the curve fitting method, a compensation algorithm was found to match the actual level with the measured level. The experimental results proved that the proposed capacitive sensor is able to measure the actual water level in the tumbler accurately. A digital control part with micro-processor will be designed and fixed on the bottom of the tumbler for developing a smart tumbler.

  8. Does water-level fluctuation affect mercury methylation in wetland soils?

    Energy Technology Data Exchange (ETDEWEB)

    Branfireun, B.A.; Mitchell, C.P.J.; Iraci, J.M. [Toronto Univ., ON (Canada). Dept. of Geography; Krabbenhoft, D.P. [United States Geological Survey, Middleton, WI (United States); Fowle, D.A. [Kansas Univ., Lawrence, KS (United States). Dept. of Geology; Neudahl, L. [Minnesota Power, Duluth, MN (United States)

    2006-07-01

    Mercury (Hg) concentrations in fish vary considerably in freshwater lakes and reservoirs. However, the variations are not generally consistent with physical factors such as basin characteristics, wetland cover or lake chemistry. Pronounced differences in Hg concentrations in fish have been noted in the reservoirs of the St. Louis River system near Duluth Minnesota. The differences were observed between headwater reservoir systems with seasonal flooding and drawdown, and a peaking reservoir with approximately daily water level fluctuations during seasonal lower flow periods. It was suggested that these differences could be attributed to water level fluctuations in the reservoir which influenced the actual production of methylmercury (MeHg) in the surrounding wetland soils. In response to this hypothesis, the authors investigated the role of water level fluctuation in the production and mobilization of MeHg in sediments from wetlands that lie adjacent to a headwater reservoir, a peaking reservoir, and a nearby natural flowage lake used as a control. Preliminary field surveys of the wetland soils revealed that although the average MeHg concentrations in the headwater and peaking reservoir wetlands were not considerably different, both were much higher than the natural lake. Each site demonstrated high variability, but maximum MeHg concentrations ranged from 29.2 ng/g for the peaking reservoir to 4.44 ng/g at the natural lake. A laboratory experiment was therefore performed in which sediments from each wetland were subjected to different water level regimes. The purpose was to assess Hg methylation potential. Stable Hg isotopes were used at the beginning and end of the experiment. In order to determine if water level fluctuation can significantly change the methylation potential of wetland soils on its own, the microbial consortia will also be assessed during the laboratory experiment.

  9. Wetland Ecohydrology: stochastic description of water level fluctuations across the soil surface

    Science.gov (United States)

    Tamea, S.; Muneepeerakul, R.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.

    2009-12-01

    Wetlands provide a suite of social and ecological critical functions such as being habitats of disease-carrying vectors, providing buffer zones against hurricanes, controlling sediment transport, filtering nutrients and contaminants, and a repository of great biological diversity. More recently, wetlands have also been recognized as crucial for carbon storage in the context of global climate change. Despite such importance, quantitative approaches to many aspects of wetlands are far from adequate. Therefore, improving our quantitative understanding of wetlands is necessary to our ability to maintain, manage, and restore these invaluable environments. In wetlands, hydrologic factors and ecosystem processes interplay and generate unique characteristics and a delicate balance between biotic and abiotic elements. The main hydrologic driver of wetland ecosystems is the position of the water level that, being above or below ground, determines the submergence or exposure of soil. When the water level is above the soil surface, soil saturation and lack of oxygen causes hypoxia, anaerobic functioning of microorganisms and anoxic stress in plants, that might lead to the death of non-adapted organisms. When the water level lies below the soil surface, the ecosystem becomes groundwater-dependent, and pedological and physiological aspects play their role in the soil water balance. We propose here a quantitative description of wetland ecohydrology, through a stochastic process-based water balance, driven by a marked compound Poisson noise representing rainfall events. The model includes processes such as rainfall infiltration, evapotranspiration, capillary rise, and the contribution of external water bodies, which are quantified in a simple yet realistic way. The semi-analytical steady-state probability distributions of water level spanning across the soil surface are validated with data from the Everglades (Florida, USA). The model and its results allow for a quantitative

  10. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    Science.gov (United States)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  11. Instrumentation for determining rock mass permeability by hydro-pneumatic pressure testing

    International Nuclear Information System (INIS)

    Miller, W.O.

    1981-01-01

    In order to eliminate the problems encountered with existing pressure test equipment, a downhole control unit was designed for conducting tests in NX boreholes. The unit maintains a preset minimum differential pressure between the packers and the test section, and controls inflation and deflation of the packers. The packer response to inflation and deflation commands is greatly increased in deep borings since the control unit is located downhole, and inflation is accomplished with the testing fluid (which is normally either water or air). For increased flexibility, the control unit was designed with the capacity for operating as either a single- or double-packer system by the use of simple ground surface control commands

  12. Advanced methods for modeling water-levels and estimating drawdowns with SeriesSEE, an Excel add-in

    Science.gov (United States)

    Halford, Keith; Garcia, C. Amanda; Fenelon, Joe; Mirus, Benjamin B.

    2012-12-21

    Water-level modeling is used for multiple-well aquifer tests to reliably differentiate pumping responses from natural water-level changes in wells, or “environmental fluctuations.” Synthetic water levels are created during water-level modeling and represent the summation of multiple component fluctuations, including those caused by environmental forcing and pumping. Pumping signals are modeled by transforming step-wise pumping records into water-level changes by using superimposed Theis functions. Water-levels can be modeled robustly with this Theis-transform approach because environmental fluctuations and pumping signals are simulated simultaneously. Water-level modeling with Theis transforms has been implemented in the program SeriesSEE, which is a Microsoft® Excel add-in. Moving average, Theis, pneumatic-lag, and gamma functions transform time series of measured values into water-level model components in SeriesSEE. Earth tides and step transforms are additional computed water-level model components. Water-level models are calibrated by minimizing a sum-of-squares objective function where singular value decomposition and Tikhonov regularization stabilize results. Drawdown estimates from a water-level model are the summation of all Theis transforms minus residual differences between synthetic and measured water levels. The accuracy of drawdown estimates is limited primarily by noise in the data sets, not the Theis-transform approach. Drawdowns much smaller than environmental fluctuations have been detected across major fault structures, at distances of more than 1 mile from the pumping well, and with limited pre-pumping and recovery data at sites across the United States. In addition to water-level modeling, utilities exist in SeriesSEE for viewing, cleaning, manipulating, and analyzing time-series data.

  13. Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions

    Directory of Open Access Journals (Sweden)

    Shehzad Ahmed

    2018-03-01

    Full Text Available High-quality supercritical CO2 (sCO2 foam as a fracturing fluid is considered ideal for fracturing shale gas reservoirs. The apparent viscosity of the fracturing fluid holds an important role and governs the efficiency of the fracturing process. In this study, the viscosity of sCO2 foam and its empirical correlations are presented as a function of temperature, pressure, and shear rate. A series of experiments were performed to investigate the effect of temperature, pressure, and shear rate on the apparent viscosity of sCO2 foam generated by a widely used mixed surfactant system. An advanced high pressure, high temperature (HPHT foam rheometer was used to measure the apparent viscosity of the foam over a wide range of reservoir temperatures (40–120 °C, pressures (1000–2500 psi, and shear rates (10–500 s−1. A well-known power law model was modified to accommodate the individual and combined effect of temperature, pressure, and shear rate on the apparent viscosity of the foam. Flow indices of the power law were found to be a function of temperature, pressure, and shear rate. Nonlinear regression was also performed on the foam apparent viscosity data to develop these correlations. The newly developed correlations provide an accurate prediction of the foam’s apparent viscosity under different fracturing conditions. These correlations can be helpful for evaluating foam-fracturing efficiency by incorporating them into a fracturing simulator.

  14. Reproductive success of Whiskered Tern Chlidonias hybrida in eastern Spain in relation to water level variation.

    Science.gov (United States)

    Ortiz Lledó, Álvaro; Vidal Mateo, Javier; Urios Moliner, Vicente

    2018-01-01

    A study on the Whiskered Tern Chlidonias hybrida was carried out between 2002 and 2009 in wetlands of eastern Spain to evaluate how water level fluctuation affects its reproductive success (hatching, fledgling and breeding success). This species is catalogued as Vulnerable in Spain and has an unfavorable conservation status in Europe. Our study includes 18 sampling areas from five wetlands, covering a total of 663 nests, 1,618 eggs, 777 nestlings and 225 fledglings. The colonies were visited at least twice per week in breeding period. The number of eggs and/or nestlings present in each nest were annotated each time the colonies were visited with the aim to compare the evolution of these parameters with time. Hatching success was calculated as the proportion of egg that hatched successfully. Fledgling success and breeding success were calculated as the proportion of chicks that fledged successfully and the proportion of eggs that produced fledglings. We used the Kruskal-Wallis test to analyze the differences in the dependent variables hatching, fledgling and breeding success among the wetlands and the sampling areas. We explored the relationship between the different reproductive success with the average fluctuation rate and the anchoring depth of nests, using statistics of the linear regression. It was observed that the reproductive success varied significantly in the interaction among the different categories of water level fluctuation and the different areas (using the Kruskal-Wallis test). Our records showed that pronounced variations in water level destroyed several nests, which affected the Whiskered Tern reproductive success. Considering all events that occurred in 18 areas, the mean (±SD) of nests, eggs and nestlings that were lost after water level fluctuations were of 25.60 ± 21.79%, 32.06 ± 27.58% and 31.91 ± 21.28% respectively, also including the effects of rain and predation. Unfavorable climatic events, such as strong wind, rain or hail, also

  15. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel Haugård

    2017-01-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts...... complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors......, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric...

  16. Ensemble-based evaluation of extreme water levels for the eastern Baltic Sea

    Science.gov (United States)

    Eelsalu, Maris; Soomere, Tarmo

    2016-04-01

    The risks and damages associated with coastal flooding that are naturally associated with an increase in the magnitude of extreme storm surges are one of the largest concerns of countries with extensive low-lying nearshore areas. The relevant risks are even more contrast for semi-enclosed water bodies such as the Baltic Sea where subtidal (weekly-scale) variations in the water volume of the sea substantially contribute to the water level and lead to large spreading of projections of future extreme water levels. We explore the options for using large ensembles of projections to more reliably evaluate return periods of extreme water levels. Single projections of the ensemble are constructed by means of fitting several sets of block maxima with various extreme value distributions. The ensemble is based on two simulated data sets produced in the Swedish Meteorological and Hydrological Institute. A hindcast by the Rossby Centre Ocean model is sampled with a resolution of 6 h and a similar hindcast by the circulation model NEMO with a resolution of 1 h. As the annual maxima of water levels in the Baltic Sea are not always uncorrelated, we employ maxima for calendar years and for stormy seasons. As the shape parameter of the Generalised Extreme Value distribution changes its sign and substantially varies in magnitude along the eastern coast of the Baltic Sea, the use of a single distribution for the entire coast is inappropriate. The ensemble involves projections based on the Generalised Extreme Value, Gumbel and Weibull distributions. The parameters of these distributions are evaluated using three different ways: maximum likelihood method and method of moments based on both biased and unbiased estimates. The total number of projections in the ensemble is 40. As some of the resulting estimates contain limited additional information, the members of pairs of projections that are highly correlated are assigned weights 0.6. A comparison of the ensemble-based projection of

  17. Application of Wavelet Decomposition to Removing Barometric and Tidal Response in Borehole Water Level

    Institute of Scientific and Technical Information of China (English)

    Yan Rui; Huang Fuqiong; Chen Yong

    2007-01-01

    Wavelet decomposition is used to analyze barometric fluctuation and earth tidal response in borehole water level changes. We apply wavelet analysis method to the decomposition of barometric fluctuation and earth tidal response into several temporal series in different frequency ranges. Barometric and tidal coefficients in different frequency ranges are computed with least squares method to remove barometric and tidal response. Comparing this method with general linear regression analysis method, we find wavelet analysis method can efficiently remove barometric and earth tidal response in borehole water level. Wavelet analysis method is based on wave theory and vibration theories. It not only considers the frequency characteristic of the observed data but also the temporal characteristic, and it can get barometric and tidal coefficients in different frequency ranges. This method has definite physical meaning.

  18. Reproductive success of Whiskered Tern Chlidonias hybrida in eastern Spain in relation to water level variation

    Directory of Open Access Journals (Sweden)

    Álvaro Ortiz Lledó

    2018-04-01

    Full Text Available Background A study on the Whiskered Tern Chlidonias hybrida was carried out between 2002 and 2009 in wetlands of eastern Spain to evaluate how water level fluctuation affects its reproductive success (hatching, fledgling and breeding success. This species is catalogued as Vulnerable in Spain and has an unfavorable conservation status in Europe. Methods Our study includes 18 sampling areas from five wetlands, covering a total of 663 nests, 1,618 eggs, 777 nestlings and 225 fledglings. The colonies were visited at least twice per week in breeding period. The number of eggs and/or nestlings present in each nest were annotated each time the colonies were visited with the aim to compare the evolution of these parameters with time. Hatching success was calculated as the proportion of egg that hatched successfully. Fledgling success and breeding success were calculated as the proportion of chicks that fledged successfully and the proportion of eggs that produced fledglings. We used the Kruskal–Wallis test to analyze the differences in the dependent variables hatching, fledgling and breeding success among the wetlands and the sampling areas. We explored the relationship between the different reproductive success with the average fluctuation rate and the anchoring depth of nests, using statistics of the linear regression. Results It was observed that the reproductive success varied significantly in the interaction among the different categories of water level fluctuation and the different areas (using the Kruskal–Wallis test. Our records showed that pronounced variations in water level destroyed several nests, which affected the Whiskered Tern reproductive success. Considering all events that occurred in 18 areas, the mean (±SD of nests, eggs and nestlings that were lost after water level fluctuations were of 25.60 ± 21.79%, 32.06 ± 27.58% and 31.91 ± 21.28% respectively, also including the effects of rain and predation. Discussion Unfavorable

  19. Forecasting Sea Water Levels at Mukho Station, South Korea Using Soft Computing Techniques

    Directory of Open Access Journals (Sweden)

    Ozgur Kisi

    2014-12-01

    Full Text Available The accuracy of three different data-driven methods, namely, Gene Expression Programming (GEP, Adaptive Neuro-Fuzzy Inference System (ANFIS and Artificial Neural Networks (ANN, is investigated for hourly sea water level prediction at the Mukho Station in the East Sea (Sea of Japan. Current and four previous level measurements are used as input variables to predict sea water levels up to 1, 24, 48, 72, 96 and 120 hours ahead. Three statistical evaluation parameters, namely, the correlation coefficient, the root mean square error and the scatter index are used to assess how the models perform. Investigation results indicate that, when compared to measurements, for +1h prediction interval, all three models perform well (with average values of R = 0.993, RMSE = 1.3 cm and SI = 0.04, with slightly better results produced by the ANNs and ANFIS, while increasing the prediction interval degrades model performance.

  20. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers

    DEFF Research Database (Denmark)

    Villadsen, Heidi; Deng, Xiaoli; Andersen, Ole Baltazar

    2016-01-01

    with in situdata in Lake Vänern and Lake Okeechobee are in the order of 2–5 cm for well-behaved waveforms. Combining the physical and empirical retrackers did not offer significantly improved mean track standarddeviations or RMSEs. Based on these studies, it is suggested that future SAR derived water levels......Satellite altimetry has proven a valuable resource of information on river and lake levels where in situ data are sparse or non-existent. In this study several new methods for obtaining stable inland water levels from CryoSat-2 Synthetic Aperture Radar (SAR) altimetry are presented and evaluated....... In addition, the possible benefits from combining physical and empirical retrackers are investigated.The retracking methods evaluated in this paper include the physical SAR Altimetry MOde Studies andApplications (SAMOSA3) model, a traditional subwaveform threshold retracker, the proposed Multiple...

  1. Application of Artificial Neural Network into the Water Level Modeling and Forecast

    Directory of Open Access Journals (Sweden)

    Marzenna Sztobryn

    2013-06-01

    Full Text Available The dangerous sea and river water level increase does not only destroy the human lives, but also generate the severe flooding in coastal areas. The rapidly changes in the direction and velocity of wind and associated with them sea level changes could be the severe threat for navigation, especially on the fairways of small fishery harbors located in the river mouth. There is the area of activity of two external forcing: storm surges and flood wave. The aim of the work was the description of an application of Artificial Neural Network (ANN methodology into the water level forecast in the case study field in Swibno harbor located is located at 938.7 km of the Wisla River and at a distance of about 3 km up the mouth (Gulf of Gdansk - Baltic Sea.

  2. Climate change and prairie pothole wetlands: mitigating water-level and hydroperiod effects through upland management

    Science.gov (United States)

    Renton, David A.; Mushet, David M.; DeKeyser, Edward S.

    2015-01-01

    Prairie pothole wetlands offer crucial habitat for North America’s waterfowl populations. The wetlands also support an abundance of other species and provide ecological services valued by society. The hydrology of prairie pothole wetlands is dependent on atmospheric interactions. Therefore, changes to the region’s climate can have profound effects on wetland hydrology. The relevant literature related to climate change and upland management effects on prairie pothole wetland water levels and hydroperiods was reviewed. Climate change is widely expected to affect water levels and hydroperiods of prairie pothole wetlands, as well as the biota and ecological services that the wetlands support. In general, hydrologic model projections that incorporate future climate change scenarios forecast lower water levels in prairie pothole wetlands and longer periods spent in a dry condition, despite potential increases in precipitation. However, the extreme natural variability in climate and hydrology of prairie pothole wetlands necessitates caution when interpreting model results. Recent changes in weather patterns throughout much of the Prairie Pothole Region have been in increased precipitation that results in increased water inputs to wetlands above losses associated with warmer temperatures. However, observed precipitation increases are within the range of natural climate variability and therefore, may not persist. Identifying management techniques with the potential to affect water inputs to prairie pothole wetlands would provide increased options for managers when dealing with the uncertainties associated with a changing climate. Several grassland management techniques (for example, grazing and burning) have the potential to affect water levels and hydroperiods of prairie pothole by affecting infiltration, evapotranspiration, and snow deposition.

  3. Origin of elevated water levels encountered in Pahute Mesa emplacement boreholes: Preliminary investigations

    International Nuclear Information System (INIS)

    Brikowski, T.; Chapman, J.; Lyles, B.; Hokett, S.

    1993-11-01

    The presence of standing water well above the predicted water table in emplacement boreholes on Pahute Mesa has been a recurring phenomenon at the Nevada Test Site (NTS). If these levels represent naturally perched aquifers, they may indicate a radionuclide migration hazard. In any case, they can pose engineering problems in the performance of underground nuclear tests. The origin of these elevated waters is uncertain. Large volumes of water are introduced during emplacement drilling, providing ample source for artificially perched water, yet elevated water levels can remain constant for years, suggesting a natural origin instead. In an effort to address the issue of unexpected standing water in emplacement boreholes, three different sites were investigated in Area 19 on Pahute Mesa by Desert Research Institute (DRI) staff from 1990-93. These sites were U-19az, U-19ba, and U-19bh. As of this writing, U-19bh remains available for access; however, nuclear tests were conducted at the former two locations subsequent to this investigations. The experiments are discussed in chronological order. Taken together, the experiments indicate that standing water in Pahute Mesa emplacement holes originates from the drainage of small-volume naturally perched zones. In the final study, the fluids used during drilling of the bottom 100 m of emplacement borehole U-19bh were labeled with a chemical tracer. After hole completion, water level rose in the borehole, while tracer concentration decreased. In fact, total mass of tracer in the borehole remained constant, while water levels rose. After water levels stabilized in this hole, no change in tracer mass was observed over two years, indicating that no movement of water out of the borehole is taking place (as at U- 19ba). Continued labeling tests of standing water are recommended to confirm the conclusions made here, and to establish their validity throughout Pahute Mesa

  4. Dependency of high coastal water level and river discharge at the global scale

    Science.gov (United States)

    Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.

    2017-12-01

    It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.

  5. Environmental factors related to water level regulation - a comparative study in northern Finland

    International Nuclear Information System (INIS)

    Hellsten, S.K.

    1997-01-01

    The environmental conditions of the littoral zone were studied in the regulated Lake Ontojaervi and the unregulated Lake Lentua in northern Finland. The general aims of the study were to analyse the environmental factors related to water level regulation in the littoral zone and to produce information for assessing the effects of hydroelectric development in northern lakes. The study was basically carried out by comparing the littoral environments of the two study lakes. The most visible effects of water level regulation were related to the raised water level, which yielded erosion of sandy shores at the beginning of the regulation. Another effect of lake regulation was the altered fluctuation of the water level, which led to bottom instability and increased the size of the frozen and ice penetration zones. The effect of ice penetration was also easy to recognize on the shores of Lake Ontojaervi, where the surface sediment was frozen to a greater depth and across wider areas than in Lake Lentua. Below the freezing zone, the ice just pressed down on the sediment. The shores of Lake Ontojaervi were steeper than those of Lake Lentua, which affected the distribution of bottom types, with sandy bottoms being more common in Lake Lentua than in Lake Ontojaervi. The factors related to site exposure included effective fetch and the shape of the shoreline. The sedimentation level correlated only with the slope and was not predicted by the fetch or shape. The vertical reduction of light was estimated on the basis of water colour. The main environmental factors from the two lakes were used in a discriminant analysis to predict the bottom type distribution of the littoral (r 2 = 0.41). (orig.) 66 refs

  6. Environmental factors related to water level regulation - a comparative study in northern Finland

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, S K [VTT Communities and Infrastructure. Water Engineering and Ecotechnology, Oulu (Finland)

    1998-12-31

    The environmental conditions of the littoral zone were studied in the regulated Lake Ontojaervi and the unregulated Lake Lentua in northern Finland. The general aims of the study were to analyse the environmental factors related to water level regulation in the littoral zone and to produce information for assessing the effects of hydroelectric development in northern lakes. The study was basically carried out by comparing the littoral environments of the two study lakes. The most visible effects of water level regulation were related to the raised water level, which yielded erosion of sandy shores at the beginning of the regulation. Another effect of lake regulation was the altered fluctuation of the water level, which led to bottom instability and increased the size of the frozen and ice penetration zones. The effect of ice penetration was also easy to recognize on the shores of Lake Ontojaervi, where the surface sediment was frozen to a greater depth and across wider areas than in Lake Lentua. Below the freezing zone, the ice just pressed down on the sediment. The shores of Lake Ontojaervi were steeper than those of Lake Lentua, which affected the distribution of bottom types, with sandy bottoms being more common in Lake Lentua than in Lake Ontojaervi. The factors related to site exposure included effective fetch and the shape of the shoreline. The sedimentation level correlated only with the slope and was not predicted by the fetch or shape. The vertical reduction of light was estimated on the basis of water colour. The main environmental factors from the two lakes were used in a discriminant analysis to predict the bottom type distribution of the littoral (r{sup 2} = 0.41). (orig.) 66 refs.

  7. Environmental impacts of rapid water level changes; Miljoekonsekvenser av raske vannstandsendringer

    Energy Technology Data Exchange (ETDEWEB)

    Arnekleiv, Jo Vegar; Bakken, Tor Haakon; Bogen, Jim; Boensnes, Truls Erik; Elster, Margrethe; Harby, Atle; Kutznetsova, Yulia; Saltveit, Svein Jakob; Sauterleute, Julian; Stickler, Morten; Sundt, Haakon; Tjomsland, Torulv; Ugedal, Ola

    2012-07-01

    This report summarizes the state of knowledge of the environmental impacts of power driving and rapid water level changes and describes possible mitigation measures. The report assesses the environmental effects of possible increased power installation in Mauranger and Tonstad power plants, based on existing data and knowledge. At Straumsmo plants in Barduelva there are collected some physical data and the environmental impact of existing power driving is considered. (eb)

  8. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    OpenAIRE

    Jun-He Yang; Ching-Hsue Cheng; Chia-Pan Chan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting m...

  9. Water level fluctuations in the Congo basin derived from ENVISAT satellite altimetry

    OpenAIRE

    Becker, M.; da Silva, J. S.; Calmant, Stéphane; Robinet, V.; Linguet, L.; Seyler, Frédérique

    2014-01-01

    In the Congo Basin, the elevated vulnerability of food security and the water supply implies that sustainable development strategies must incorporate the effects of climate change on hydrological regimes. However, the lack of observational hydro-climatic data over the past decades strongly limits the number of studies investigating the effects of climate change in the Congo Basin. We present the largest altimetry-based dataset of water levels ever constituted over the entire Congo Basin. This...

  10. Measurement of the heavy water level in the fuel channels of the RA reactor - Annex 11

    International Nuclear Information System (INIS)

    Nikolic, M.

    1964-01-01

    The objective of measuring the heavy water level in the reactor channels was to verify experimentally the possibilities of reactor cooling with parallel operation of heavy water pumps od 1500 rotations/min at nominal power of 6.5 MW. Measurements were done in 2 periphery and 2 central fuel channels with pumps speed 1500, 1800 and 3000 rotations/min by a contact probe with electric resistance measuring device. precision of the measurement was ±1 cm

  11. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    Science.gov (United States)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  12. Wave Height and Water Level Variability on Lakes Michigan and St Clair

    Science.gov (United States)

    2012-10-01

    Observations: http://www.ssec.wisc.edu/sose/glwx_activity.html 4. NASA Atlas of Extratropical Storm Tracks: http://data.giss.nasa.gov/stormtracks...term meteorological, ice, wave, and water level measurements. 15. SUBJECT TERMS Base flood elevation Coastal flood Extratropical storms Great...Box 1027 Detroit, MI 48231-1027 ERDC/CHL TR-12-23 ii Abstract The Great Lakes are subject to coastal flooding as a result of severe storms

  13. Estimation of bias shifts in a steam-generator water-level controller

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1983-01-01

    A method for detecting and estimating the value of sudden bias shifts in a U-tube steam-generator water-level controller is described and evaluated. Generalized likelihood ratios (GLR) are used to perform both the bias detection and bias estimation. Simulation results using a seventh-order, linear, discrete steam-generator model demonstrate the capabilities of the GLR detection/estimation approach

  14. Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.

    1996-01-01

    We evaluated water-level fluctuation (maximum water depth - minimum water depth/catchment size) in 12 temporary, 12 seasonal, and 12 semipermanent wetlands equally distributed among landscapes dominated by tilled agricultural lands and landscapes dominated by grassland. Water levels fluctuated an average of 14.14 cm in wetlands within tilled agricultural landscapes, while water levels in wetlands within grassland landscapes fluctuated an average of only 4.27 cm. Tillage reduces the natural capacity of catch meets to mitigate surface flow into wetland basins during precipitation events, resulting in greater water-level fluctuations in wetlands with tilled catchments. In addition, water levels in temporary and seasonal wetlands fluctuated an average of 13.74 cm and 11.82 cm, respectively, while water levels in semipermanent wetlands fluctuated only 2.77 cm. Semipermanent wetlands receive a larger proportion of their water as input from ground water than do either temporary or seasonal wetlands. This input of water from the ground has a stabilizing effect on water-levels of semipermanent wetlands. Increases in water-level fluctuation due to tillage or due to alteration of ground-water hydrology may ultimately affect the composition of a wetland's flora and fauna. In this paper, we also describe an inexpensive device for determining absolute maximum and minimum water levels in wetlands.

  15. Aquatic treadmill water level influence on pelvic limb kinematics in cranial cruciate ligament-deficient dogs with surgically stabilised stifles.

    Science.gov (United States)

    Bertocci, G; Smalley, C; Brown, N; Bialczak, K; Carroll, D

    2018-02-01

    To compare pelvic limb joint kinematics and temporal gait characteristics during land-based and aquatic-based treadmill walking in dogs that have undergone surgical stabilisation for cranial cruciate ligament deficiency. Client-owned dogs with surgically stabilised stifles following cranial cruciate ligament deficiency performed three walking trials consisting of three consecutive gait cycles on an aquatic treadmill under four water levels. Hip, stifle and hock range of motion; peak extension; and peak flexion were assessed for the affected limb at each water level. Gait cycle time and stance phase percentage were also determined. Ten client-owned dogs of varying breeds were evaluated at a mean of 55·2 days postoperatively. Aquatic treadmill water level influenced pelvic limb kinematics and temporal gait outcomes. Increased stifle joint flexion was observed as treadmill water level increased, peaking when the water level was at the hip. Similarly, hip flexion increased at the hip water level. Stifle range of motion was greatest at stifle and hip water levels. Stance phase percentage was significantly decreased when water level was at the hip. Aquatic treadmill walking has become a common rehabilitation modality following surgical stabilisation of cranial cruciate ligament deficiency. However, evidence-based best practice guidelines to enhance stifle kinematics do not exist. Our findings suggest that rehabilitation utilising a water level at or above the stifle will achieve the best stifle kinematics following surgical stifle stabilisation. © 2017 British Small Animal Veterinary Association.

  16. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William [General Electric Company, Niskayuna, NY (United States)

    2015-02-10

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

  17. Regulation of the water level in the steam generator using modal control

    International Nuclear Information System (INIS)

    Benoit, Guy.

    1981-11-01

    The nuclear power reactors type P.W.R. (900 MWe) have three steam generators (S.G.). The problem of the water level in the S.G. is analogous to that for a system with non-minimum phase. This causes a serious trouble for the stability of the regulation, which is actually realized by using the PID regulator. The first part of this study is devoted to construct a mathematical model which represents the S.G. This model is simulated on a digital computer, which order is six. The validity of this model is checked using actual measured signals which have been collected from the BUGEY III power reactor. In the second part, the mathematical representation for simulating the regulation of the level in the S.G. using the modal control is given. The simulation of the actual system is given in the third part. This actual system is composed from the S.G. as well as the PI and PID for regulating the water level. As results from this study, it can be concluded that, the modal control improves the regulation of the water level. The accuracy of the steam flow measurement at low rate is poor. So, the actual regulating system using the measurements has a reduced performance performance. The control modal which is represented in this study overcome this problem [fr

  18. Application of environmental isotopes to determine the cause of rising water levels in Lake Beseka, Ethiopia

    International Nuclear Information System (INIS)

    Zemedagegnehu, E.; Travi, Y.; Aggarwal, P.

    1999-01-01

    Water level in Lake Beskea, located in the Ethiopian Rift Valley, has been rising continuously for the last about 30 years. The surface area of the lake has increased from about 6 Km 2 to the present 40 Km 2 and has posed serious problems for environmental management, including inundation of grazing and cultivated lands and, potentially, railway tracks. Historically, the lake received recharge from precipitation, surface runoff in the catchment, groundwater discharge, surface runoff from nearby thermal springs. As the lake levels have risen, the thermal springs are now submerged. An increase in the discharge form these thermal springs may be the original cause of lake water rise, or they may have been submerged as a result of the rising water level. An initial study conducted in the 1970s attributed the rising lake levels to increased runoff from adjoining irrigated areas. However, stricter controls on irrigation runoff failed to check the rising lake levels. A multi-disciplinary study, including geophysical, hydrological, geochemical, isotopic, and modeling techniques was then initiated to determine the cause(s) of lake level rise. Results of piezometric and geophysical surveys indicate that the principal cause of rising water levels may be the increased inflow from submerged springs in the southwestern portion of the lake

  19. The application of a Grey Markov Model to forecasting annual maximum water levels at hydrological stations

    Science.gov (United States)

    Dong, Sheng; Chi, Kun; Zhang, Qiyi; Zhang, Xiangdong

    2012-03-01

    Compared with traditional real-time forecasting, this paper proposes a Grey Markov Model (GMM) to forecast the maximum water levels at hydrological stations in the estuary area. The GMM combines the Grey System and Markov theory into a higher precision model. The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values, and thus gives forecast results involving two aspects of information. The procedure for forecasting annul maximum water levels with the GMM contains five main steps: 1) establish the GM (1, 1) model based on the data series; 2) estimate the trend values; 3) establish a Markov Model based on relative error series; 4) modify the relative errors caused in step 2, and then obtain the relative errors of the second order estimation; 5) compare the results with measured data and estimate the accuracy. The historical water level records (from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin, China are utilized to calibrate and verify the proposed model according to the above steps. Every 25 years' data are regarded as a hydro-sequence. Eight groups of simulated results show reasonable agreement between the predicted values and the measured data. The GMM is also applied to the 10 other hydrological stations in the same estuary. The forecast results for all of the hydrological stations are good or acceptable. The feasibility and effectiveness of this new forecasting model have been proved in this paper.

  20. Spatial Distribution of Ground water Level Changes Induced by the 2006 Hengchun Earthquake Doublet

    Directory of Open Access Journals (Sweden)

    Yeeping Chia

    2009-01-01

    Full Text Available Water-level changes were ob served in 107 wells at 67 monitoring stations in the southern coastal plain of Tai wan during the 2006 Mw 7.1 Hengchun earthquake doublet. Two consecutive coseismic changes induced by the earth quake doublet can be observed from high-frequency data. Obervations from multiple-well stations indicate that the magnitude and direction of coseismic change may vary in wells of different depths. Coseismic rises were dominant on the south east side of the costal plain; whereas, coseismic falls prevailed on the north west side. In the transition zone, rises appeared in shallow wells whilst falls were evident in deep wells. As coseismic ground water level changes can reflect the tectonic strain field, tectonic extension likely dominates the deep subsurface in the transition area, and possibly in the en tire southern coastal plain. The coseismic rises in water level showed a tendency to de crease with distance from the hypocenter, but no clear trend was found for the coseismic falls.

  1. PERSISTENT HIGH WATER LEVELS AROUND ANDAMAN & NICOBAR ISLANDS FOLLOWING THE 26 DECEMBER 2004 TSUNAMI

    Directory of Open Access Journals (Sweden)

    A.D. Rao

    2006-01-01

    Full Text Available During the tsunami of 26th December 2004 in the Indian Ocean, media reports suggested that high water levels persisted around the Andaman & Nicobar Islands for several days. These persistent high water levels can be explained by invoking the existence of trapped and partially leaky modes on the shelves surrounding these islands. It has been known in the studies of tides in the global oceans, that there are two distinct types of oscillations, separated in their frequencies by the period of the pendulum day. One species are the gravity waves, and the others are the rotational waves, associated with earth's rotation. Both these species can be found in tidal records around islands as well as near coastlines. Essentially these are either trapped or partly leaky modes, partly trapped on the continental shelves. These two types of modes are usually found in the tsunami records on tide gauges. The tide gauge records as well as visual descriptions of the water levels during and after the occurrence of a tsunami clearly show the presence of these oscillations.

  2. Relationship of Rainfall Distribution and Water Level on Major Flood 2014 in Pahang River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Nur Hishaam Sulaiman

    2017-01-01

    Full Text Available Climate change gives impact on extreme hydrological events especially in extreme rainfall. This article discusses about the relationship of rainfall distribution and water level on major flood 2014 in Pahang River Basin, Malaysia in helping decision makers to flood management system. Based on DID Malaysia rainfall station, 56 stations have being use as point in this research and it is including Pahang, Terengganu, Kelantan and Perak. Data set for this study were analysed with GIS analysis using interpolation method to develop Isohyet map and XLstat statistical software for PCA and SPC analyses. The results that were obtained from the Isohyet Map for three months was mid-November, rainfall started to increase about in range of 800mm-1200mm and the intensity keep increased to 2200mm at mid-December 2014. The high rainfall intensity sense at highland that is upstream of Pahang River. The PCA and SPC analysis also indicates the high relationship between rainfall and water level of few places at Pahang River. The Sg. Yap station and Kg. Serambi station obtained the high relationship of rainfall and water level with factor loading value at 0.9330 and 0.9051 for each station. Hydrological pattern and trend are extremely affected by climate such as north east monsoon season that occurred in South China Sea and affected Pahang during November to March. The findings of this study are important to local authorities by providing basic data as guidelines to the integrated river management at Pahang River Basin.

  3. Water Level Loggers as a Low-Cost Tool for Monitoring of Stormwater Control Measures

    Directory of Open Access Journals (Sweden)

    Laura Toran

    2016-08-01

    Full Text Available Stormwater control measures (SCMs are a key component of watershed health in urbanized areas. SCMs are used to increase infiltration and reduce discharge to streams or storm sewer systems during rain events. Monitoring is important for the evaluation of design and causes of failure in SCMs. However, the expense of monitoring means it is not always included in stormwater control planning. This study shows how low-cost water level loggers can be used to answer certain questions about SCM performance. Five case studies are presented that use water level loggers to evaluate the overflow of basins, compare a traditional stormpipe trench with an infiltration trench, monitor timing of blue roof storage, show the effects of retrofitting a basin, and provide long term performance data. Water level loggers can be used to answer questions about the timing and location of stormwater overflows, which helps to evaluate the effectiveness of SCMs. More expensive monitoring and modeling can be used as a follow up if needed to more thoroughly assess a site. Nonetheless, low-cost monitoring can be a first step in identifying sites that need improvement or additional monitoring.

  4. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    Science.gov (United States)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  5. Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data

    Science.gov (United States)

    El-Shirbeny, Mohammed A.; Abutaleb, Khaled A.

    2018-05-01

    Apart from the Renaissance Dam and other constructed dams on the River Nile tributaries, Egypt is classified globally as a state of scarce water. Egypt's water resources are very limited and do not contribute a significant amount to its water share except the River Nile (55.5 billion m3/year). While the number of population increases every year, putting more stress on these limited resources. This study aims to use remote-sensing data to assess the change in surface area and water-level variation in Lake Nasser using remote-sensing data from Landsat-8 and altimetry data. In addition, it investigates the use of thermal data from Landsat-8 to calculate water loss based on evaporation from Lake Nasser. The eight Landsat-8 satellite images were used to study the change in surface area of Lake Nasser representing winter (January) and summer (June/July) seasons in two consecutive years (2015 and 2016). Time series analyses for 10-day temporal resolution water-level data from Jason-2/OSTM and Jason-3 altimetry was carried out to investigate water-level trends over the long term (1993 and 2016) and short term (2015-2016) in correspondence with the change of the surface area. Results indicated a shrink in the lake surface area in 2016 of approximately 14% compared to the 2015 area. In addition, the evaporation rate in the lake is very high causing a loss of approximately 20% of the total water share from the river Nile.

  6. Evolution of extreme Total Water Levels along the northern coast of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    D. F. Rasilla Álvarez

    2011-02-01

    Full Text Available This paper assesses the evolution of storminess along the northern coast of the Iberian Peninsula through the calculation of extreme (1% Total Water Levels (eTWL on both observed (tide gauge and buoy data and hindcasted (SIMAR-44 data. Those events were first identified and then characterized in terms of oceanographic parameters and atmospheric circulation features. Additionally, an analysis of the long-term trends in both types of data was performed. Most of the events correspond to a rough wave climate and moderate storm surges, linked to extratropical disturbances following a northern track. While local atmospheric conditions seem to be evolving towards lesser storminess, their impact has been balanced by the favorable exposure of the northern coast of the Iberian Peninsula to the increasing frequency and strength of distant disturbances crossing the North Atlantic. This evolution is also correctly reproduced by the simulated long-term evolution of the forcing component (meteorological sea level residuals and wave run up of the Total Water Level values calculated from the SIMAR 44 database, since sea level residuals have been experiencing a reduction while waves are arriving with longer periods. Finally, the addition of the rate of relative sea level trend to the temporal evolution of the atmospheric forcing component of the Total Water Level values is enough to simulate more frequent and persistent eTWL.

  7. Simulation of Water Level Fluctuations in a Hydraulic System Using a Coupled Liquid-Gas Model

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2015-08-01

    Full Text Available A model for simulating vertical water level fluctuations with coupled liquid and gas phases is presented. The Preissmann implicit scheme is used to linearize the governing equations for one-dimensional transient flow for both liquid and gas phases, and the linear system is solved using the chasing method. Some classical cases for single liquid and gas phase transients in pipelines and networks are studied to verify that the proposed methods are accurate and reliable. The implicit scheme is extended using a dynamic mesh to simulate the water level fluctuations in a U-tube and an open surge tank without consideration of the gas phase. Methods of coupling liquid and gas phases are presented and used for studying the transient process and interaction between the phases, for gas phase limited in a chamber and gas phase transported in a pipeline. In particular, two other simplified models, one neglecting the effect of the gas phase on the liquid phase and the other one coupling the liquid and gas phases asynchronously, are proposed. The numerical results indicate that the asynchronous model performs better, and are finally applied to a hydropower station with surge tanks and air shafts to simulate the water level fluctuations and air speed.

  8. Identification and robust water level control of horizontal steam generators using quantitative feedback theory

    International Nuclear Information System (INIS)

    Safarzadeh, O.; Khaki-Sedigh, A.; Shirani, A.S.

    2011-01-01

    Highlights: → A robust water level controller for steam generators (SGs) is designed based on the Quantitative Feedback Theory. → To design the controller, fairly accurate linear models are identified for the SG. → The designed controller is verified using a developed novel global locally linear neuro-fuzzy model of the SG. → Both of the linear and nonlinear models are based on the SG mathematical thermal-hydraulic model developed using the simulation computer code. → The proposed method is easy to apply and guarantees desired closed loop performance. - Abstract: In this paper, a robust water level control system for the horizontal steam generator (SG) using the quantitative feedback theory (QFT) method is presented. To design a robust QFT controller for the nonlinear uncertain SG, control oriented linear models are identified. Then, the nonlinear system is modeled as an uncertain linear time invariant (LTI) system. The robust designed controller is applied to the nonlinear plant model. This nonlinear model is based on a locally linear neuro-fuzzy (LLNF) model. This model is trained using the locally linear model tree (LOLIMOT) algorithm. Finally, simulation results are employed to show the effectiveness of the designed QFT level controller. It is shown that it will ensure the entire designer's water level closed loop specifications.

  9. Identification and robust water level control of horizontal steam generators using quantitative feedback theory

    Energy Technology Data Exchange (ETDEWEB)

    Safarzadeh, O., E-mail: O_Safarzadeh@sbu.ac.ir [Shahid Beheshti University, P.O. Box: 19839-63113, Tehran (Iran, Islamic Republic of); Khaki-Sedigh, A. [K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shirani, A.S. [Shahid Beheshti University, P.O. Box: 19839-63113, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: {yields} A robust water level controller for steam generators (SGs) is designed based on the Quantitative Feedback Theory. {yields} To design the controller, fairly accurate linear models are identified for the SG. {yields} The designed controller is verified using a developed novel global locally linear neuro-fuzzy model of the SG. {yields} Both of the linear and nonlinear models are based on the SG mathematical thermal-hydraulic model developed using the simulation computer code. {yields} The proposed method is easy to apply and guarantees desired closed loop performance. - Abstract: In this paper, a robust water level control system for the horizontal steam generator (SG) using the quantitative feedback theory (QFT) method is presented. To design a robust QFT controller for the nonlinear uncertain SG, control oriented linear models are identified. Then, the nonlinear system is modeled as an uncertain linear time invariant (LTI) system. The robust designed controller is applied to the nonlinear plant model. This nonlinear model is based on a locally linear neuro-fuzzy (LLNF) model. This model is trained using the locally linear model tree (LOLIMOT) algorithm. Finally, simulation results are employed to show the effectiveness of the designed QFT level controller. It is shown that it will ensure the entire designer's water level closed loop specifications.

  10. Ecological impacts of winter water level drawdowns on lake littoral zones: A review

    Science.gov (United States)

    Roy, Allison

    2017-01-01

    Freshwater littoral zones harbor diverse ecological communities and serve numerous ecosystem functions that are controlled, in part, by natural water level fluctuations. However, human alteration of lake hydrologic regimes beyond natural fluctuations threaten littoral zone ecological integrity. One type of hydrologic alteration in lakes is winter water level drawdowns, which are frequently employed for hydropower, flood control, and macrophyte control, among other purposes. Here, we synthesize the abiotic and biotic responses to annual and novel winter water level drawdowns in littoral zones of lakes and reservoirs. The dewatering, freezing, and increased erosion of exposed lakebeds drive changes in the littoral zone. Shoreline-specific physicochemical conditions such as littoral slope and shoreline exposure further induce modifications. Loss of fine sediment decreases nutrient availability over time, but desiccation may promote a temporary nutrient pulse upon re-inundation. Annual winter drawdowns can decrease taxonomic richness of macrophytes and benthic invertebrates and shift assemblage composition to favor taxa with r-selected life history strategies and with functional traits resistant to direct and indirect drawdown effects. Fish assemblages, though less directly affected by winter drawdowns (except where there is critically low dissolved oxygen), experience negative effects via indirect pathways like decreased food resources and spawning habitat. We identify eight general research gaps to guide future research that could improve our understanding about the complex effects of winter drawdowns on littoral zone ecology.

  11. Reliability assessment of permanent downhole monitoring systems (PDG/TPT) in Marlim Field; Avaliacao da confiabilidade de sistemas de monitoramento permanente de fundo de pocos (PDG/TPT) no Campo de Marlim

    Energy Technology Data Exchange (ETDEWEB)

    Frota, Helder Mamede; Destro, Wagner [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This work is related to the reliability engineering, specifically, to the analysis of data lifetime and to the failure modeling of Permanent Downhole Gauge monitoring systems (PDG/TPT) in Marlim field, Campos Basin. These systems are composed of pressure and temperature sensors installed in oil wells and connected, by umbilicals, to their production platforms. The raising of the main failure causes in these systems, in 12-year operation, served as the basis to describe their driving parameters, foreseeing their behavior for the following years, considering the reliability theory of systems. It was obtained the pattern of the operations and extracted the wanted information: types and failure modeling, systems survival time and the Mean Time Between Failures (MTBF). This methodology permits the comparison among the components performance from several manufacturers. The results can be used in economical analysis, in oil field management, in maintenance prediction and in reliability studies. The area of failure modeling in association with these systems lifetime is the focus of this study. (author)

  12. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    Science.gov (United States)

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  13. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    Directory of Open Access Journals (Sweden)

    Philipp Emanuel Hirsch

    Full Text Available Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity. Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  14. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    Science.gov (United States)

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  15. Design and construction of AT89C2051 micro controller based water level indicator for poly tank manufacturers

    International Nuclear Information System (INIS)

    Ashong, Cynthia Ama

    2011-08-01

    This project is aimed at designing and constructing an AT89C2051 Micro controller Based Water level Indicator by programming a micro controller that has high frequency, logic, clock circuitry and 2.7V to 6V operating range with 5V volts being logic level 1 and 0 Volts being logic level 0 using Assembler language and programming the AT89C2051 Microcontroller using Galep 4 programmer. The device component and assembly includes A T89C2051 Micro controller, sensor (copper probe), bread board, electric bell for alarm to indicate low water level and a bulb to indicate high water level (that is the water tank is full). The AT89C2051 Micro controller Based Water Level Indicator works by sounding a bell when the tank is empty or the water level is low and light a bulb when the poly tank is full. The boundary within which the device operates is at the upper water level and the lower water level of the device (tank). That is it can operate within the levels of high to low limit. The result is very useful since it will help in ensuring water security. It is satisfactory since the project is working and indicating that the water level is low or high (that is the tank is empty or full). (au)

  16. The ecological effects of water level fluctuation and phosphate enrichment in mesotrophic peatlands are strongly mediated by soil chemistry

    NARCIS (Netherlands)

    Mettrop, I.S.; Rutte, M.D.; Kooijman, A.M.; Lamers, L.P.M.

    2015-01-01

    Since the re-establishment of a more natural water regime is considered by water management in wetlands with artificially stable water levels, the biogeochemical and ecological effects of water level fluctuation with different nutrient loads should be investigated. This is particularly important for

  17. Water level management of lakes connected to regulated rivers: An integrated modeling and analytical methodology

    Science.gov (United States)

    Hu, Tengfei; Mao, Jingqiao; Pan, Shunqi; Dai, Lingquan; Zhang, Peipei; Xu, Diandian; Dai, Huichao

    2018-07-01

    Reservoir operations significantly alter the hydrological regime of the downstream river and river-connected lake, which has far-reaching impacts on the lake ecosystem. To facilitate the management of lakes connected to regulated rivers, the following information must be provided: (1) the response of lake water levels to reservoir operation schedules in the near future and (2) the importance of different rivers in terms of affecting the water levels in different lake regions of interest. We develop an integrated modeling and analytical methodology for the water level management of such lakes. The data-driven method is used to model the lake level as it has the potential of producing quick and accurate predictions. A new genetic algorithm-based synchronized search is proposed to optimize input variable time lags and data-driven model parameters simultaneously. The methodology also involves the orthogonal design and range analysis for extracting the influence of an individual river from that of all the rivers. The integrated methodology is applied to the second largest freshwater lake in China, the Dongting Lake. The results show that: (1) the antecedent lake levels are of crucial importance for the current lake level prediction; (2) the selected river discharge time lags reflect the spatial heterogeneity of the rivers' impacts on lake level changes; (3) the predicted lake levels are in very good agreement with the observed data (RMSE ≤ 0.091 m; R2 ≥ 0.9986). This study demonstrates the practical potential of the integrated methodology, which can provide both the lake level responses to future dam releases and the relative contributions of different rivers to lake level changes.

  18. Understanding Variability in Beach Slope to Improve Forecasts of Storm-induced Water Levels

    Science.gov (United States)

    Doran, K. S.; Stockdon, H. F.; Long, J.

    2014-12-01

    The National Assessment of Hurricane-Induced Coastal Erosion Hazards combines measurements of beach morphology with storm hydrodynamics to produce forecasts of coastal change during storms for the Gulf of Mexico and Atlantic coastlines of the United States. Wave-induced water levels are estimated using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon et al. (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. Seasonal and storm-induced changes in beach slope can lead to differences on the order of a meter in wave runup elevation, making accurate specification of this parameter essential to skillful forecasts of coastal change. Spatial variation in beach slope is accounted for through alongshore averaging, but temporal variability in beach slope is not included in the final computation of the likelihood of coastal change. Additionally, input morphology may be years old and potentially very different than the conditions present during forecast storm. In order to improve our forecasts of hurricane-induced coastal erosion hazards, the temporal variability of beach slope must be included in the final uncertainty of modeled wave-induced water levels. Frequently collected field measurements of lidar-based beach morphology are examined for study sites in Duck, North Carolina, Treasure Island, Florida, Assateague Island, Virginia, and Dauphin Island, Alabama, with some records extending over a period of 15 years. Understanding the variability of slopes at these sites will help provide estimates of associated water level uncertainty which can then be applied to other areas where lidar observations are infrequent, and improve the overall skill of future forecasts of storm-induced coastal change. Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger Jr, A. H. (2006). Empirical parameterization of setup

  19. Design and implementation of a wireless sensor network-based remote water-level monitoring system.

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).

  20. Hands-on repair of component with a lowered pool water level

    International Nuclear Information System (INIS)

    Perfect, J.F.

    1984-01-01

    The repair of a broken positioner mechanism on a TRIGA Reactor neutron collimator, with a lowered pool water level, presented a unique challenge. Radiation dose measurements were made which indicated the repair could be done safely with only 3 feet of water providing shielding over the reactor core. The entire repair project went quite well, due in large part to extensive preplanning. Repair was done safely and radiation exposures were kept well below allowable levels. Savings were significant using this method of repair compared to the alternative of dismantling the facility. (author)

  1. Hands-on repair of component with a lowered pool water level

    International Nuclear Information System (INIS)

    Perfect, J.F.

    1984-01-01

    The repair of a broken positioner mechanism on a TRIGA Reactor neutron collimator, with a lowered pool water level, presented a unique challenge. Radiation dose measurements were made which indicated the repair could be done safetly with only 3 feet of water providing shielding over the reactor core. The entire repair project went quite well, due in large part to extensive preplanning. Repair was done safely and radiation exposures were kept well below allowable levels. Savings were significant using this method of repair compared to the alternative of dismantling the facility

  2. The Water Level and Transport Regimes of the Lower Columbia River

    Science.gov (United States)

    Jay, D. A.

    2011-12-01

    Tidal rivers are vital, spatially extensive conduits of material from land to sea. Yet the tidal-fluvial regime remains poorly understood relative to the bordering fluvial and estuarine/coastal regimes with which it interacts. The 235km-long Lower Columbia River (LCR) consists of five zones defined by topographic constrictions: a 5km-long ocean-entrance, the lower estuary (15km), an energy-minimum (67km), the tidal river (142km), and a landslide zone (5km). Buoyant plume lift-off occurs within the entrance zone, which is dominated by tidal and wave energy. The lower estuary is strongly tidally, amplifies the semidiurnal tide, and has highly variable salinity intrusion. Tidal and fluvial influences are balanced in the wide energy-minimum, into which salinity intrudes during low-flow periods. It has a turbidity maximum and a dissipation minimum at its lower end, but a water-level variance minimum at its landward end. The tidal river shows a large increase in the ratio of fluvial-to-tidal energy in the landward direction and strong seasonal variations in tidal properties. Because tidal monthly water level variations are large, low waters are higher on spring than neap tides. The steep landslide zone has only weak tides and is the site of the most seaward hydropower dam. Like many dammed systems, the LCR has pseudo-tides: daily and weakly hydropower peaking waves that propagate seaward. Tidal constituent ratios vary in the alongchannel direction due to frictional non-linearities, the changing balance of dissipation vs. propagation, and power peaking. Long-term changes to the system have occurred due to climate change and direct human manipulation. Flood control, hydropower regulation, and diversion have reduced peak flows, total load and sand transport by ~45, 50 and 80%, respectively, causing a blue-shift in the flow and water level power spectra. Overbank flows have been largely eliminated through a redundant combination of diking and flow regulation. Export of sand

  3. Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377

  4. Response of littoral macrophytes to water level fluctuations in a storage reservoir

    Czech Academy of Sciences Publication Activity Database

    Krolová, Monika; Čížková, Hana; Hejzlar, Josef; Poláková, S.

    2013-01-01

    Roč. 408, May (2013), 07p1-07p21 ISSN 1961-9502 R&D Projects: GA ČR(CZ) GA206/09/1764; GA MŠk(CZ) 7E11059 Grant - others:EC ENV(CZ) FP7 244121 Program:FP7 Institutional research plan: CEZ:AV0Z60170517 Institutional support: RVO:60077344 ; RVO:67179843 Keywords : littoral macrophytes * eulittoral * water level fluctuation * European Water Framework Directive * ecophases Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.622, year: 2013

  5. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  6. Water-level altitudes 2009 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973-2008 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Houston, Natalie A.; Ramage, Jason K.

    2009-01-01

    This report, done in cooperation with the Harris-Galveston Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District, is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region, Texas. The report (excluding appendixes) contains 16 sheets and 15 tables: 3 sheets are maps showing current-year (2009) water-level altitudes for each aquifer, respectively; 3 sheets are maps showing 1-year (2008-09) water-level changes for each aquifer, respectively; 3 sheets are maps showing 5-year (2004-09) water-level changes for each aquifer, respectively; 4 sheets are maps showing long-term (1990-2009 and 1977-2009) water-level changes for the Chicot and Evangeline aquifers, respectively; 1 sheet is a map showing long-term (2000-2009) water-level change for the Jasper aquifer; 1 sheet is a map showing site locations of borehole extensometers; and 1 sheet comprises graphs showing measured compaction of subsurface material at the sites from 1973 or later through 2008, respectively. Tables listing the data used to construct the aquifer-data maps and the compaction graphs are included.

  7. Water-level altitudes 2015 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2014 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Houston, Natalie A.; Johnson, Michaela R.; Schmidt, Tiffany S.

    2015-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2015 water-level altitudes (represented by measurements made during December 2014–March 2015) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2014–15) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2010–15) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2015 and 1977–2015) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–15) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2014. Three tables listing the water-level data used to construct each water-level map for each aquifer and a table listing the measured cumulative compaction data for each extensometer site and graphs are included.

  8. Assessment of the Water Levels and Currents at the Mississippi Bight During Hurricane Katrina.

    Science.gov (United States)

    Nwankwo, U. C.; Howden, S. D.; Dodd, D.; Wells, D. E.

    2017-12-01

    In an effort to extend the length of GPS baselines further offshore, the Hydrographic Science Research Center at the University of Southern Mississippi deployed a buoy which had a survey grade GPS receiver, an ADPC and a motion sensor unit in the Mississippi Bight in late 2004. The GPS data were initially processed using the Post Processed Kinematic technique with data from a nearby GPS base station on Horn Island. This processing technique discontinued when the storm (Hurricane Katrina) destroyed the base station in late August of 2005. However, since then a stand-alone positioning technique termed Precise Point Positioning (PPP) matured and allowed for the reprocessing of the buoy GPS data throughout Katrina. The processed GPS data were corrected for buoy angular motions using Tait Bryan transformation model. Tidal datums (Epoch 1983-2001) were transferred from the National Oceanic and Atmospheric Administration (NOAA) National Water Level at Waveland, Mississippi (Station ID 8747766) to the buoy using the Modified Range Ratio method. The maximum water level during the storm was found to be about 3.578m, relative to the transferred Mean Sea Level datum. The storm surge built over more than 24 hours, but fell back to normal levels in less than 3 hours. The maximum speed of the current with respect to the seafloor was recorded to be about 4knots towards the southeast as the storm surge moved back offshore.

  9. Model estimation of land-use effects on water levels of northern Prairie wetlands

    Science.gov (United States)

    Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.

    2007-01-01

    Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.

  10. Characteristics of a Sensitive Well Showing Pre-Earthquake Water-Level Changes

    Science.gov (United States)

    King, Chi-Yu

    2018-04-01

    Water-level data recorded at a sensitive well next to a fault in central Japan between 1989 and 1998 showed many coseismic water-level drops and a large (60 cm) and long (6-month) pre-earthquake drop before a rare local earthquake of magnitude 5.8 on 17 March 1997, as well as 5 smaller pre-earthquake drops during a 7-year period prior to this earthquake. The pre-earthquake changes were previously attributed to leakage through the fault-gouge zone caused by small but broad-scaled crustal-stress increments. These increments now seem to be induced by some large slow-slip events. The coseismic changes are attributed to seismic shaking-induced fissures in the adjacent aquitards, in addition to leakage through the fault. The well's high-sensitivity is attributed to its tapping a highly permeable aquifer, which is connected to the fractured side of the fault, and its near-critical condition for leakage, especially during the 7 years before the magnitude 5.8 earthquake.

  11. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    Science.gov (United States)

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  12. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    Directory of Open Access Journals (Sweden)

    Jun-He Yang

    2017-01-01

    Full Text Available Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir’s water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir’s water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  13. Low-Cost Alternative for the Measurement of Water Levels in Surface Water Streams

    Directory of Open Access Journals (Sweden)

    Luis E. PEÑA

    2017-11-01

    Full Text Available Flood risk management and water resources planning involve a deep knowledge of surface streams so that mitigation strategies and climate change adaptations can be implemented. Commercially, there is a wide range of technologies for the measurement of hydroclimatic variables; however, many of these technologies may not be affordable for institutions with limited budgets. This paper has two main objectives: 1 Present the design of an ultrasound-based water level measurement system, and 2 Propose a methodological alternative for the development of instruments, according to the needs of institutions conducting monitoring of surface waterbodies. To that end, the proposed methodology is based on selection processes defined according to the specific needs of each waterbody. The prototype was tested in real-world scale, with the potential to obtain accurate measurements. Lastly, we present the design of the ultrasound-based water level measurement instrument, which can be built at a low cost. Low-cost instruments can potentially contribute to the sustainable instrumental autonomy of environmental entities and help define measurement and data transmission standards based on the specific requirements of the monitoring.

  14. Water level effects on breaking wave setup for Pacific Island fringing reefs

    Science.gov (United States)

    Becker, J. M.; Merrifield, M. A.; Ford, M.

    2014-02-01

    The effects of water level variations on breaking wave setup over fringing reefs are assessed using field measurements obtained at three study sites in the Republic of the Marshall Islands and the Mariana Islands in the western tropical Pacific Ocean. At each site, reef flat setup varies over the tidal range with weaker setup at high tide and stronger setup at low tide for a given incident wave height. The observed water level dependence is interpreted in the context of radiation stress gradients specified by an idealized point break model generalized for nonnormally incident waves. The tidally varying setup is due in part to depth-limited wave heights on the reef flat, as anticipated from previous reef studies, but also to tidally dependent breaking on the reef face. The tidal dependence of the breaking is interpreted in the context of the point break model in terms of a tidally varying wave height to water depth ratio at breaking. Implications for predictions of wave-driven setup at reef-fringed island shorelines are discussed.

  15. TSUNAMI HAZARD MITIGATION AND THE NOAA NATIONAL WATER LEVEL OBSERVATION NETWORK

    Directory of Open Access Journals (Sweden)

    James R. Hubbard

    2002-01-01

    Full Text Available With the renewed interest in regional Tsunami Warning Systems and the potential tsunami threats throughout the Caribbean and West coast of the United States, the National Ocean Service (NOS, National Water Level Observation Network (NWLON consisting of 175 primary stations, is well situated to play a role in the National Hazard Mitigation effort. In addition, information regarding local mean sea level trends and GPS derived geodetic datum relationships at numerous coastal locations is readily available for tsunami hazard assessment and mapping applications.Tsunami inundation maps and modeling are just two of the more important products which may be derived from NWLON data. In addition to the seven water level gauges that are hardwired into the West Coast and Alaska Tsunami Warning Center (WClATWC, NOS has a significant number of gauges with real-time satellite telemetry capabilities located along the Pacific Northwest coastline, the Gulf of Mexico and the Caribbean. These gauges, in concert with near shore buoy systems, have the potential for increasing the effectiveness of the existing tsunami warning system.The recent expansion of the Caribbean Sea Level Gauge Network through the NOS regional partnerships with Central American and Caribbean countries have opened an opportunity for a basin-wide tsunami warning network in a region which is ill prepared for a major tsunami event.

  16. Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers

    Science.gov (United States)

    Sheremet, Vitalii A.; Mora, Jordan W.

    2016-04-01

    Several salt pannes and pools in the Sage Lot tidal marsh of Waquoit Bay system, MA were instrumented with newly developed Arm-and-Float water level gauges (utilizing accelerometer tilt logger) permitting to record water level fluctuations with accuracy of 1 mm and submillimeter resolution. The methodology of the instrument calibration, deployment, and elevation control are described. The instrument performance was evaluated. Several month long deployments allowed us to analyze the marsh flooding and draining processes, study differences among the salt pannes. The open channel flow flooding-draining mechanism and slower seepage were distinguished. From the drain curve the seepage rate can be quantified. The seepage rate remains approximately constant for all flooding draining episodes, but varies from panne to panne depending on bottom type and location. Seasonal differences due to the growth of vegetation are also recorded. The analysis of rain events allows us to estimate the catch area of subbasins in the marsh. The implication for marsh ecology and marsh accretion are discussed. The gradual sea level rise coupled with monthly tidal datum variability and storm surges result in migration and development of a salt marsh. The newly developed low cost instrumentation allows us to record and analyze these changes and may provide guidance for the ecological management.

  17. Predicting the Water Level Fluctuation in an Alpine Lake Using Physically Based, Artificial Neural Network, and Time Series Forecasting Models

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Young

    2015-01-01

    Full Text Available Accurate prediction of water level fluctuation is important in lake management due to its significant impacts in various aspects. This study utilizes four model approaches to predict water levels in the Yuan-Yang Lake (YYL in Taiwan: a three-dimensional hydrodynamic model, an artificial neural network (ANN model (back propagation neural network, BPNN, a time series forecasting (autoregressive moving average with exogenous inputs, ARMAX model, and a combined hydrodynamic and ANN model. Particularly, the black-box ANN model and physically based hydrodynamic model are coupled to more accurately predict water level fluctuation. Hourly water level data (a total of 7296 observations was collected for model calibration (training and validation. Three statistical indicators (mean absolute error, root mean square error, and coefficient of correlation were adopted to evaluate model performances. Overall, the results demonstrate that the hydrodynamic model can satisfactorily predict hourly water level changes during the calibration stage but not for the validation stage. The ANN and ARMAX models better predict the water level than the hydrodynamic model does. Meanwhile, the results from an ANN model are superior to those by the ARMAX model in both training and validation phases. The novel proposed concept using a three-dimensional hydrodynamic model in conjunction with an ANN model has clearly shown the improved prediction accuracy for the water level fluctuation.

  18. The analysis of SCS return momentum effects on the RCS water level during mid-loop operations

    Energy Technology Data Exchange (ETDEWEB)

    swang Seo, J.; Young Yang, J.; Tack Hwang, S. [Seoul National Univ. (Korea, Republic of)

    1995-09-01

    An accurate prediction of Reactor Coolant System (RCS) water levels is of importance in the determination of allowable operating range to ensure the safety during the mid-loop operations. However, complex hydraulic phenomena induced by Shutdown Cooling System (SCS) return momentum cause different water levels from those in the loop where the water level indicators are located. This was apparantly observed at the pre-core cold hydro test of the Younggwang Nuclear Unit 3 (YGN 3) in Korea. In this study, in order to analytically understand the effect of the SCS return momentum on the RCS water level and its general trend, a model using one-dimensional momentum equation, hydraulic jump, Bernoulli equation, flow resistance coefficient, and total water volume conservation has been developed to predict the RCS water levels at various RCS locations during the mid-loop conditions and the simulation results were compared with the test data. The analysis shows that the hydraulic jump in the operating cold legs in conjunction with the momentum loss throughout the RCS is the main cause creating the water level differences at various RCS locations. The prediction results provide good explanations for the test data and show the significant effect of the SCS return momentum on the RCS water levels.

  19. Toward Estimating Wetland Water Level Changes Based on Hydrological Sensitivity Analysis of PALSAR Backscattering Coefficients over Different Vegetation Fields

    Directory of Open Access Journals (Sweden)

    Ting Yuan

    2015-03-01

    Full Text Available Synthetic Aperture Radar (SAR has been successfully used to map wetland’s inundation extents and types of vegetation based on the fact that the SAR backscatter signal from the wetland is mainly controlled by the wetland vegetation type and water level changes. This study describes the relation between L-band PALSAR  and seasonal water level changes obtained from Envisat altimetry over the island of Île Mbamou in the Congo Basin where two distinctly different vegetation types are found. We found positive correlations between and water level changes over the forested southern Île Mbamou whereas both positive and negative correlations were observed over the non-forested northern Île Mbamou depending on the amount of water level increase. Based on the analysis of sensitivity, we found that denser vegetation canopy leads to less sensitive  variation with respect to the water level changes regardless of forested or non-forested canopy. Furthermore, we attempted to estimate water level changes which were then compared with the Envisat altimetry and InSAR results. Our results demonstrated a potential to generate two-dimensional maps of water level changes over the wetlands, and thus may have substantial synergy with the planned Surface Water and Ocean Topography (SWOT mission.

  20. The analysis of SCS return momentum effects on the RCS water level during mid-loop operations

    International Nuclear Information System (INIS)

    swang Seo, J.; Young Yang, J.; Tack Hwang, S.

    1995-01-01

    An accurate prediction of Reactor Coolant System (RCS) water levels is of importance in the determination of allowable operating range to ensure the safety during the mid-loop operations. However, complex hydraulic phenomena induced by Shutdown Cooling System (SCS) return momentum cause different water levels from those in the loop where the water level indicators are located. This was apparantly observed at the pre-core cold hydro test of the Younggwang Nuclear Unit 3 (YGN 3) in Korea. In this study, in order to analytically understand the effect of the SCS return momentum on the RCS water level and its general trend, a model using one-dimensional momentum equation, hydraulic jump, Bernoulli equation, flow resistance coefficient, and total water volume conservation has been developed to predict the RCS water levels at various RCS locations during the mid-loop conditions and the simulation results were compared with the test data. The analysis shows that the hydraulic jump in the operating cold legs in conjunction with the momentum loss throughout the RCS is the main cause creating the water level differences at various RCS locations. The prediction results provide good explanations for the test data and show the significant effect of the SCS return momentum on the RCS water levels

  1. Water-level altitudes 2014 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2013 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2014-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained clay and silt layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate 2014 water-level altitudes (represented by measurements made during December 2013–March 2014) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2013–14) water-level changes for each aquifer; maps depicting contoured 5-year (2009–14) water-level changes for each aquifer; maps depicting contoured long-term (1990–2014 and 1977–2014) water-level changes for the Chicot and Evangeline aquifers; a map depicting contoured long-term (2000–14) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2013. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  2. Water-level altitudes 2013 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973--2012 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2013-01-01

    Most of the subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction mostly in the clay and silt layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate water-level altitudes for 2013 (represented by measurements made during December 2012-February 2013) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2012-13) water-level changes for each aquifer; maps depicting 5-year (2008--13) water-level changes for each aquifer; maps depicting long-term (1990-2013 and 1977-2013) water-level changes for the Chicot and Evangeline aquifers; a map depicting long-term (2000-13) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured compaction of subsurface sediments at the extensometers during 1973-2012. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  3. Water-level altitudes 2012 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2011 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2012-01-01

    Most of the subsidence in the Houston–Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers and caused compaction of the clay layers of the aquifer sediments. This report—prepared by the U.S. Geological Survey in cooperation with the Harris– Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District—is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing approximate water-level altitudes for 2012 (calculated from measurements of water levels in wells made during December 2011–February 2012) for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2011–12) water-level-altitude changes for each aquifer; maps showing 5-year (2007–12) water-levelaltitude changes for each aquifer; maps showing long-term (1990–2012 and 1977–2012) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–12) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface sediments at the extensometers from 1973 (or later) through 2011. Tables listing the data that were used to construct each water-level map for each aquifer and the cumulative compaction graphs are included.

  4. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  5. Fuzzifying historical peak water levels: case study of the river Rhine at Basel

    Science.gov (United States)

    Salinas, Jose Luis; Kiss, Andrea; Blöschl, Günter

    2016-04-01

    Hydrological information comes from a variety of sources, which in some cases might be non-precise. In particular, this is an important issue for the available information on water stages during historical floods. An accurate estimation of the water level profile, together with an elevation model of the riverbed and floodplain areas is fundamental for the hydraulic reconstruction of historical flood events, allowing the back calculation of flood peak discharges, velocity and erosion fields, damages, among others. For the greatest floods during the last 1700 years, Wetter et al. (2011) reconstructed the water levels and historical discharges at different locations in the old city centre from a variety of historical sources (stone marks, official documents, paintings, etc). This work presents a model for the inherent unpreciseness of these historical water levels. This is, with the arithmetics of fuzzy numbers, described by their membership functions, in a similar fashion as the probability density function describes the uncertainty of a random variable. Additional to the in-site collected water stages from floodmarks and other documentary evidence (e.g. preserved in narratives and newspaper flood reports) are prone to be modeled in a fuzzy way. This study presents the use of fuzzy logic to transform historical information from different sources, in this case of flood water stages, into membership functions. This values might then introduced in the mathematical framework of Fuzzy Bayesian Inference to perform the statistical analyses with the rules of fuzzy numbers algebra. The results of this flood frequency analysis, as in the traditional non-fuzzy way, link discharges with exceedance probabilities or return periods. The main difference is, that the modeled discharge quantiles are not precise values, but fuzzy numbers instead, represented by their membership functions explicitly including the unpreciseness of the historical information used. Wetter, O., Pfister, C

  6. Relative Sea Level, Tidal Range, and Extreme Water Levels in Boston Harbor from 1825 to 2016

    Science.gov (United States)

    Talke, S. A.; Kemp, A.; Woodruff, J. D.

    2017-12-01

    Long time series of water-level measurements made by tide gauges provide a rich and valuable observational history of relative sea-level change, the frequency and height of extreme water levels and evolving tidal regimes. However, relatively few locations have available tide-gauge records longer than 100 years and most of these places are in northern Europe. This spatio-temporal distribution hinders efforts to understand global-, regional- and local-scale trends. Using newly-discovered archival measurements, we constructed a 200 year, instrumental record of water levels, tides, and storm surges in Boston Harbor. We detail the recovery, datum reconstruction, digitization, quality assurance, and analysis of this extended observational record. Local, decadally-averaged relative sea-level rose by 0.28 ± 0.05 m since the 1820s, with an acceleration of 0.023 ±0.009 mm/yr2. Approximately 0.13 ± 0.02 m of the observed RSL rise occurred due to ongoing glacial isostatic adjustment, and the remainder occurred due to changes in ocean mass and volume associated with the onset of modern mean sea-level rise. Change-point analysis of the new relative sea level record confirms that anthropogenic rise began in 1924-1932, which is in agreement with global mean sea level estimates from the global tide gauge network. Tide range decreased by 5.5% between 1830 and 1910, likely due in large part to anthropogenic development. Storm tides in Boston Harbor are produced primarily by extratropical storms during the November-April time frame. The three largest storm tides occurred in 1851, 1909, and 1978. Because 90% of the top 20 storm tides since 1825 occurred during a spring tide, the secular change in tide range contributes to a slight reduction in storm tide magnitudes. However, non-stationarity in storm hazard was historically driven primarily by local relative sea-level rise; a modest 0.2 m increase in relative sea level reduces the 100 year high water mark to a once-in-10 year event.

  7. Estimation of combined sewer overflow discharge: a software sensor approach based on local water level measurements.

    Science.gov (United States)

    Ahm, Malte; Thorndahl, Søren; Nielsen, Jesper E; Rasmussen, Michael R

    2016-12-01

    Combined sewer overflow (CSO) structures are constructed to effectively discharge excess water during heavy rainfall, to protect the urban drainage system from hydraulic overload. Consequently, most CSO structures are not constructed according to basic hydraulic principles for ideal measurement weirs. It can, therefore, be a challenge to quantify the discharges from CSOs. Quantification of CSO discharges are important in relation to the increased environmental awareness of the receiving water bodies. Furthermore, CSO discharge quantification is essential for closing the rainfall-runoff mass-balance in combined sewer catchments. A closed mass-balance is an advantage for calibration of all urban drainage models based on mass-balance principles. This study presents three different software sensor concepts based on local water level sensors, which can be used to estimate CSO discharge volumes from hydraulic complex CSO structures. The three concepts were tested and verified under real practical conditions. All three concepts were accurate when compared to electromagnetic flow measurements.

  8. Stability numerical analysis of soil cave in karst area to drawdown of underground water level

    Science.gov (United States)

    Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei

    2018-05-01

    With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.

  9. Estimating aquifer properties from the water level response to Earth tides.

    Science.gov (United States)

    Cutillo, Paula A; Bredehoeft, John D

    2011-01-01

    Water level fluctuations induced by tidal strains can be analyzed to estimate the elastic properties, porosity, and transmissivity of the surrounding aquifer material. We review underutilized methods for estimating aquifer properties from the confined response to earth tides. The earth tide analyses are applied to an open well penetrating a confined carbonate aquifer. The resulting range of elastic and hydraulic aquifer properties are in general agreement with that determined by other investigators for the area of the well. The analyses indicate that passive monitoring data from wells completed in sufficiently stiff, low porosity formations can provide useful information on the properties of the surrounding formation. Journal compilation © 2010 National Ground Water Association. No claim to original US government works.

  10. Extreme water level and wave estimation for nearshore of Ningde City

    Science.gov (United States)

    Jin, Y. D.; Wang, E. K.; Xu, G. Q.

    2017-08-01

    The high and low design water levels are calculated by observation tidal data in sea areas of Ningde offshore wind power project from September 2010 to August 2011, with the value 318 cm and -246 cm, respectively. The extreme high and low levels are also calculated using synchronous difference ratio method based on station data from 1973 to 2005 at Sansha station. The value is 431 cm and -378 cm respectively. The design wave elements are estimated using the wave data from Beishuang Station and Pingtan station. On this basis, the SWAN wave model is applied to calculating the design wave elements in the engineering sea areas. The results show that the southern sea area is mainly affected by the wave effect on ESE, and the northern is mainly affected by the E waves. This paper is helpful and useful for design and construction of offshore and coastal engineering.

  11. Multi-model predictive control method for nuclear steam generator water level

    International Nuclear Information System (INIS)

    Hu Ke; Yuan Jingqi

    2008-01-01

    The dynamics of a nuclear steam generator (SG) is very different according to the power levels and changes as time goes on. Therefore, it is an intractable as well as challenging task to improve the water level control system of the SG. In this paper, a robust model predictive control (RMPC) method is developed for the level control problem. Based on a multi-model framework, a combination of a local nominal model with a polytopic uncertain linear parameter varying (LPV) model is built to approximate the system's non-linear behavior. The optimization problem solved here is based on a receding horizon scheme involving the linear matrix inequality (LMI) technique. Closed loop stability and constraints satisfaction in the entire operating range are guaranteed by the feasibility of the optimization problem. Finally, simulation results show the effectiveness and the good performance of the proposed method

  12. Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo

    -navigable rivers and overpass obstacles (e.g. river structures). Computer vision, autopilot system and beyond visual line-of-sight (BVLOS) flights will ensure the possibility to retrieve hyper-spatial observations of water depth, without requiring the operator to access the area. Surface water speed can......The planet faces several water-related threats, including water scarcity, floods, and pollution. Satellite and airborne sensing technology is rapidly evolving to improve the observation and prediction of surface water and thus prevent natural disasters. While technological developments require....... Although UAV-borne measurements of surface water speed have already been documented in the literature, a novel approach was developed to avoid GCPs. This research is the first demonstration that orthometric water level can be measured from UAVs with a radar system and a GNSS (Global Navigation Satellite...

  13. Windows of opportunity for germination of riparian species after restoring water level fluctuations: a field experiment with controlled seed banks

    NARCIS (Netherlands)

    Sarneel, J.M.; Janssen, R.H.; Rip, W.J.; Bender, I.; Bakker, E.S.

    2014-01-01

    Restoration activities aiming at increasing vegetation diversity often try to stimulate both dispersal and germination. In wetlands, dispersal and germination are coupled as water and water level fluctuations (WLF) simultaneously influence seed transport and germination conditions (soil moisture).

  14. NOAA Water Level Predictions Stations for the Coastal United States and Other Non-U.S. Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Ocean Service (NOS) maintains a long-term database containing water level measurements and derived tidal data for coastal waters of the United States...

  15. Poster abstract: Water level estimation in urban ultrasonic/passive infrared flash flood sensor networks using supervised learning

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    floods occur very rarely, we use a supervised learning approach to estimate the correction to the ultrasonic rangefinder caused by temperature fluctuations. Preliminary data shows that water level can be estimated with an absolute error of less than 2 cm

  16. Sea Levels Online: Sea Level Variations of the United States Derived from National Water Level Observation Network Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water level records are a combination of the fluctuations of the ocean and the vertical land motion at the location of the station. Monthly mean sea level (MSL)...

  17. Mechanisms of wave‐driven water level variability on reef‐fringed coastlines

    Science.gov (United States)

    Buckley, Mark L.; Lowe, Ryan J.; Hansen, Jeff E; van Dongeren, Ap R.; Storlazzi, Curt

    2018-01-01

    Wave‐driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef‐fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms, which can violate assumptions in conventional models applied to open sandy coastlines. To investigate the mechanisms of wave‐driven water level variability on a reef‐fringed coastline, we performed a set of laboratory flume experiments on an along‐shore uniform bathymetric profile with and without bottom roughness. Wave setup and waves at frequencies lower than the incident sea‐swell forcing (infragravity waves) were found to be the dominant components of runup. These infragravity waves were positively correlated with offshore wave groups, signifying they were generated in the surf zone by the oscillation of the breakpoint. On the reef flat and at the shoreline, the low‐frequency waves formed a standing wave pattern with energy concentrated at the natural frequencies of the reef flat, indicating resonant amplification. Roughness elements used in the flume to mimic large reef bottom roughness reduced low frequency motions on the reef flat and reduced wave run up by 30% on average, compared to the runs over a smooth bed. These results provide insight into sea‐swell and infragravity wave transformation and wave setup dynamics on steep‐sloped coastlines, and the effect that future losses of reef bottom roughness may have on coastal flooding along reef‐fringed coasts.

  18. Assessing the value of the ATL13 inland water level product for the Global Flood Partnership

    Science.gov (United States)

    Schumann, G.; Pappenberger, F.; Bates, P. D.; Neal, J. C.; Jasinski, M. F.

    2015-12-01

    This paper reports on the activities and first results of an our ICESat-2 Early Adopter (EA) project for inland water observations. Our team will assess the value of the ICESat-2 water level product using two flood model use cases, one over the California Bay Delta and one over the Niger Inland Delta. Application of the ALT13 product into routine operations will be ensured via an ALT13 database integrated into the pillar "Global Flood Service and Toolbox" (GFST) of the Global Flood Partnership (GFP). GFP is a cooperation framework between scientific organizations and flood disaster managers worldwide to develop flood observational and modelling infrastructure, leveraging on existing initiatives for better predicting and managing flood disaster impacts and flood risk globally. GFP is hosted as an Expert Working Group by the Global Disaster Alert and Coordination System (GDACS). The objective of this EA project is to make the ICESat-2 water level data available to the international GFP community. The EA team believes that the ALT13 product, after successful demonstration of its value in model calibration/validation and monitoring of large floodplain inundation dynamics, should be made easily accessible to the GFP. The GFST will host data outputs and tools from different flood models and for different applications and regions. All these models can benefit from ALT13 if made available to GFP through GFST. Here, we will introduce both test cases and their model setups and report on first preliminary "capabilities" test runs with the Niger model and ICESat-1 as well as radar altimeter data. Based on our results, we will also reflect on expected capabilities and potential of the ICESat-2 mission for river observations.

  19. OPTIMIZATION OF TRANSIEN PROCESSES OF WATER LEVEL VARIATION IN DRUM OF STEAM BOILERS

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2014-01-01

    Full Text Available The work of regulator in general three-impulse automatic control system of water level in drum of boiler doesn’t supply quality of internal and external disturbance attack (presentation of regulation mistakes. That is why it is needed to improve. Different methods of proportional plus reset controller regulation of three-phase automatic feed control system are considered. There were suggested new methods to improve the quality of regulation of water level in boilers. Here the step system of automatic regulation was determined, on the base of transfer function.It is noticed that optimal transient processes supply calculation of numerical value of transmission factor of regulator at g =2,618, it is more then was recommended, but statistic mistakes remain. The transient simulation method in fast-time scale is recommended, this allow to determine early the value of statistic mistake of regulation by disturbances of reheated steam consumption and properly change the task to compensating device of step automatic control system. And numerical value of time constant criteria  should be calculated on the base of numbers of golden section(Phi, taking into account the definite time constant of lead section and time-lag, time-lag on controlled influence channel, and also taking into account maximum value of controlled influence. This method allow to reduce in two times the total time of regulation, to decrease absolute mistake of regulation in three times, and maximum value of regulation influence by feedwater in 1,7 times.

  20. Evaluation of long-term water-level declines in basalt aquifers near Mosier, Oregon

    Science.gov (United States)

    Burns, Erick R.; Morgan, David S.; Lee, Karl K.; Haynes, Jonathan V.; Conlon, Terrence D.

    2012-01-01

    The Mosier area lies along the Columbia River in northwestern Wasco County between the cities of Hood River and The Dalles, Oregon. Major water uses in the area are irrigation, municipal supply for the city of Mosier, and domestic supply for rural residents. The primary source of water is groundwater from the Columbia River Basalt Group (CRBG) aquifers that underlie the area. Concerns regarding this supply of water arose in the mid-1970s, when groundwater levels in the orchard tract area began to steadily decline. In the 1980s, the Oregon Water Resources Department (OWRD) conducted a study of the aquifer system, which resulted in delineation of an administrative area where parts of the Pomona and Priest Rapids aquifers were withdrawn from further appropriations for any use other than domestic supply. Despite this action, water levels continued to drop at approximately the same, nearly constant annual rate of about 4 feet per year, resulting in a current total decline of between 150 and 200 feet in many wells with continued downward trends. In 2005, the Mosier Watershed Council and the Wasco Soil and Water Conservation District began a cooperative investigation of the groundwater system with the U.S. Geological Survey. The objectives of the study were to advance the scientific understanding of the hydrology of the basin, to assess the sustainability of the water supply, to evaluate the causes of persistent groundwater-level declines, and to evaluate potential management strategies. An additional U.S. Geological Survey objective was to advance the understanding of CRBG aquifers, which are the primary source of water across a large part of Oregon, Washington, and Idaho. In many areas, significant groundwater level declines have resulted as these aquifers were heavily developed for agricultural, municipal, and domestic water supplies. Three major factors were identified as possible contributors to the water-level declines in the study area: (1) pumping at rates that

  1. Water-level altitudes 2017 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973–2016 in the Chicot and Evangeline Aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.

    2017-08-16

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. This report contains regional-scale maps depicting approximate 2017 water-level altitudes (represented by measurements made during December 2016 through March 2017) and long-term water-level changes for the Chicot, Evangeline, and Jasper aquifers; a map depicting locations of borehole-extensometer (hereinafter referred to as “extensometer”) sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2016.In 2017, water-level-altitude contours for the Chicot aquifer ranged from 200 feet (ft) below the North American Vertical Datum of 1988 (hereinafter referred to as “datum”) in two localized areas in southwestern and northwestern Harris County to 200 ft above datum in west-central Montgomery County. The largest water-level-altitude decline (120 ft) depicted by the 1977–2017 water-level-change contours for the Chicot aquifer was in northwestern Harris County. A broad area where water-level altitudes declined in the Chicot aquifer extends from northwestern, north-central, and southwestern Harris County

  2. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    Science.gov (United States)

    Xiao, Ke; Griffis, Timothy J.; Baker, John M.; Bolstad, Paul V.; Erickson, Matt D.; Lee, Xuhui; Wood, Jeffrey D.; Hu, Cheng; Nieber, John L.

    2018-06-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. White Bear Lake (WBL) is a notable example. Its water level declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The estimated annual evaporation losses for years 2014 through 2016 were 559 ± 22 mm, 779 ± 81 mm, and 766 ± 11 mm, respectively. The higher evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicate that WBL evaporation increased during this time by about 3.8 mm year-1, which was driven by increased wind speed and lake-surface vapor pressure gradient. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm year-1 over this century, largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.

  3. Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells

    Directory of Open Access Journals (Sweden)

    Dan Sui

    2018-04-01

    Full Text Available Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD. The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.

  4. Seismic velocities and geologic logs from boreholes at three downhole arrays in San Francisco, California

    Science.gov (United States)

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Warrick, Richard E.; Liu, Hsi-Ping; Westerlund, Robert E.

    1994-01-01

    The Loma Prieta earthquake of October 17, 1989 (1704 PST), has reinforced observations made by Wood and others (1908) after the 1906 San Francisco earthquake, that poor ground conditions (soft soil) increase the likelihood of shaking damage to structures. Since 1908 many studies (for example Borcherdt, 1970, Borcherdt and Gibbs, 1976, Borcherdt and Glassmoyer, 1992) have shown that soft soils amplify seismic waves at frequencies that can be damaging to structures. Damage in the City of San Francisco from the Loma Prieta earthquake was concentrated in the Marina District, the Embarcadero, and the China Basin areas. Each of these areas, to some degree, is underlain by soft soil deposits. These concentrations of damage raise important questions regarding the amplification effects of such deposits at damaging levels of motion. Unfortunately, no strong-motion recordings were obtained in these areas during the Loma Prieta earthquake and only a limited number (< 10) have been obtained on other soft soil sites in the United States. Consequently, important questions exist regarding the response of such deposits during damaging earthquakes, especially questions regarding the nonlinear soil response. Towards developing a data set to address these important questions, borehole strong-motion arrays have been installed at three locations. These arrays consist of groups of wide-dynamic-range pore-pressure transducers and three-component accelerometers, the outputs of which are recorded digitally. The arrays are designed to provide an integrated set of data on ground shaking, liquifaction-induced ground failure, and structural response. This report describes the detailed geologic, seismic, and material-property determinations derived at each of these sites.

  5. Potential Effects of Climate Change on the Water Level, Flora and Macro-fauna of a Large Neotropical Wetland

    OpenAIRE

    ?beda, B?rbara; Di Giacomo, Adrian S.; Neiff, Juan Jos?; Loiselle, Steven A.; Guadalupe Poi, Alicia S.; G?lvez, Jos? ?ngel; Casco, Silvina; C?zar, Andr?s

    2013-01-01

    Possible consequences of climate change in one of the world?s largest wetlands (Ibera, Argentina) were analysed using a multi-scale approach. Climate projections coupled to hydrological models were used to analyse variability in wetland water level throughout the current century. Two potential scenarios of greenhouse gas emissions were explored, both resulting in an increase in the inter-annual fluctuations of the water level. In the scenario with higher emissions, projections also showed a l...

  6. Hydrographs Showing Ground-Water Level Changes for Selected Wells in the Lower Skagit River Basin, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2009-01-01

    Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  7. Long-Term Temporal Variability of the Freshwater Discharge and Water Levels at Patos Lagoon, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    G. P. Barros

    2012-01-01

    Full Text Available The aim of this study is to investigate the importance of freshwater discharge as a physical forcing in Patos Lagoon at timescales longer than one year, as well as identify the temporal variability of the dominant processes in freshwater discharge and water levels along the Patos Lagoon. Due to its proximity to the mouth, the water level at the estuary is influenced by the remote effects associated with the adjacent ocean circulation and wave climatology, reducing the observed correlation. At the lagoonar region a high correlation is expected because interannual data is being used, reducing the influence of the wind. Cross wavelet technique is applied to examine the coherence and phase between interannual time-series (South Oscillation Index, freshwater discharge and water levels. The freshwater discharge of the main tributaries and water levels in Patos Lagoon are influenced by ENSO on interannual scales (cycles between 3.8 and 6 years. Therefore, El Niño events are associated with high mean values of freshwater discharge and water levels above the mean. On the other hand, La Niña events are associated with low mean values of freshwater discharge and water levels below the mean.

  8. Observations and Predictions of Wave Runup, Extreme Water Levels, and Medium-Term Dune Erosion during Storm Conditions

    Directory of Open Access Journals (Sweden)

    Serge Suanez

    2015-07-01

    Full Text Available Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France over the past decade (2004–2014 has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i astronomic tide; (ii storm surge; and (iii vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide water level—HTWL data sets obtained from high frequency field surveys. The aim was to quantify in-situ environmental conditions and dimensional swash parameters for the best calibration of Battjes [1] runup formula. In addition, an empirical equation based on observed tidal water level and offshore wave height was produced to estimate extreme water levels over the whole period of dune morphological change monitoring. A good correlation between this empirical equation (1.01Hmoξo and field runup measurements (Rmax was obtained (R2 85%. The goodness of fit given by the RMSE was about 0.29 m. A good relationship was noticed between dune erosion and high water levels when the water levels exceeded the dune foot elevation. In contrast, when extreme water levels were below the height of the toe of the dune sediment budget increased, inducing foredune recovery. These erosion and accretion phases may be related to the North Atlantic Oscillation Index.

  9. Real-time Geographic Information System (GIS) for Monitoring the Area of Potential Water Level Using Rule Based System

    Science.gov (United States)

    Anugrah, Wirdah; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    Management of water resources based on Geographic Information System can provide substantial benefits to water availability settings. Monitoring the potential water level is needed in the development sector, agriculture, energy and others. In this research is developed water resource information system using real-time Geographic Information System concept for monitoring the potential water level of web based area by applying rule based system method. GIS consists of hardware, software, and database. Based on the web-based GIS architecture, this study uses a set of computer that are connected to the network, run on the Apache web server and PHP programming language using MySQL database. The Ultrasound Wireless Sensor System is used as a water level data input. It also includes time and geographic location information. This GIS maps the five sensor locations. GIS is processed through a rule based system to determine the level of potential water level of the area. Water level monitoring information result can be displayed on thematic maps by overlaying more than one layer, and also generating information in the form of tables from the database, as well as graphs are based on the timing of events and the water level values.

  10. Contribution of the Surface and Down-Hole Seismic Networks to the Location of Earthquakes at the Soultz-sous-Forêts Geothermal Site (France)

    Science.gov (United States)

    Kinnaert, X.; Gaucher, E.; Kohl, T.; Achauer, U.

    2018-03-01

    Seismicity induced in geo-reservoirs can be a valuable observation to image fractured reservoirs, to characterize hydrological properties, or to mitigate seismic hazard. However, this requires accurate location of the seismicity, which is nowadays an important seismological task in reservoir engineering. The earthquake location (determination of the hypocentres) depends on the model used to represent the medium in which the seismic waves propagate and on the seismic monitoring network. In this work, location uncertainties and location inaccuracies are modeled to investigate the impact of several parameters on the determination of the hypocentres: the picking uncertainty, the numerical precision of picked arrival times, a velocity perturbation and the seismic network configuration. The method is applied to the geothermal site of Soultz-sous-Forêts, which is located in the Upper Rhine Graben (France) and which was subject to detailed scientific investigations. We focus on a massive water injection performed in the year 2000 to enhance the productivity of the well GPK2 in the granitic basement, at approximately 5 km depth, and which induced more than 7000 earthquakes recorded by down-hole and surface seismic networks. We compare the location errors obtained from the joint or the separate use of the down-hole and surface networks. Besides the quantification of location uncertainties caused by picking uncertainties, the impact of the numerical precision of the picked arrival times as provided in a reference catalogue is investigated. The velocity model is also modified to mimic possible effects of a massive water injection and to evaluate its impact on earthquake hypocentres. It is shown that the use of the down-hole network in addition to the surface network provides smaller location uncertainties but can also lead to larger inaccuracies. Hence, location uncertainties would not be well representative of the location errors and interpretation of the seismicity

  11. Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)

    Science.gov (United States)

    Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.

    2018-04-01

    The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.

  12. Mapping Water Level Dynamics over Central Congo River Using PALSAR Images, Envisat Altimetry, and Landsat NDVI Data

    Science.gov (United States)

    Kim, D.; Lee, H.; Jung, H. C.; Beighley, E.; Laraque, A.; Tshimanga, R.; Alsdorf, D. E.

    2016-12-01

    Rivers and wetlands are very important for ecological habitats, and it plays a key role in providing a source of greenhouse gases (CO2 and CH4). The floodplains ecosystems depend on the process between the vegetation and flood characteristics. The water level is a prerequisite to an understanding of terrestrial water storage and discharge. Despite the lack of in situ data over the Congo Basin, which is the world's third largest in size ( 3.7 million km2), and second only to the Amazon River in discharge ( 40,500 m3 s-1 annual average between 1902 and 2015 in the main Brazzaville-Kinshasa gauging station), the surface water level dynamics in the wetlands have been successfully estimated using satellite altimetry, backscattering coefficients (σ0) from Synthetic Aperture Radar (SAR) images and, interferometric SAR technique. However, the water level estimation of the Congo River remains poorly quantified due to the sparse orbital spacing of radar altimeters. Hence, we essentially have limited information only over the sparsely distributed the so-called "virtual stations". The backscattering coefficients from SAR images have been successfully used to distinguish different vegetation types, to monitor flood conditions, and to access soil moistures over the wetlands. However, σ0 has not been used to measure the water level changes over the open river because of very week return signal due to specular scattering. In this study, we have discovered that changes in σ0 over the Congo River occur mainly due to the water level changes in the river with the existence of the water plants (macrophytes, emergent plants, and submersed plant), depending on the rising and falling stage inside the depression of the "Cuvette Centrale". We expand the finding into generating the multi-temporal water level maps over the Congo River using PALSAR σ0, Envisat altimetry, and Landsat Normalized Difference Vegetation Index (NDVI) data. We also present preliminary estimates of the river

  13. Water-level and recoverable water in storage changes, High Plains aquifer, predevelopment to 2015 and 2013–15

    Science.gov (United States)

    McGuire, Virginia L.

    2017-06-01

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). This report presents water-level changes and change in recoverable water in storage in the High Plains aquifer from predevelopment (about 1950) to 2015 and from 2013 to 2015.The methods to calculate area-weighted, average water-level changes; change in recoverable water in storage; and total recoverable water in storage used geospatial data layers organized as rasters with a cell size of 500 meters by 500 meters, which is an area of about 62 acres. Raster datasets of water-level changes are provided for other uses.Water-level changes from predevelopment to 2015, by well, ranged from a rise of 84 feet to a decline of 234 feet. Water-level changes from 2013 to 2015, by well, ranged from a rise of 24 feet to a decline of 33 feet. The area-weighted, average water-level changes in the aquifer were an overall decline of 15.8 feet from predevelopment to 2015 and a decline of 0.6 feet from 2013 to 2015. Total recoverable water in storage in the aquifer in 2015 was about 2.91 billion acre-feet, which was a decline of about 273.2 million acre-feet since predevelopment and a decline of 10.7 million acre-feet from 2013 to 2015.

  14. Hydrologic influences on water-level changes in the Eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho, 1949-2014

    Science.gov (United States)

    Bartholomay, Roy C.; Twining, Brian V.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, has maintained a water-level monitoring program at the Idaho National Laboratory (INL) since 1949 to systematically measure water levels to provide long-term information on groundwater recharge, discharge, movement, and storage in the eastern Snake River Plain (ESRP) aquifer. During 2014, water levels in the ESRP aquifer reached all-time lows for the period of record, prompting this study to assess the effect that future water-level declines may have on pumps and wells. Water-level data were compared with pump-setting depth to determine the hydraulic head above the current pump setting. Additionally, geophysical logs were examined to address changes in well productivity with water-level declines. Furthermore, hydrologic factors that affect water levels in different areas of the INL were evaluated to help understand why water-level changes occur.

  15. Water-level altitudes 2016 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973–2015 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Johnson, Michaela R.

    2016-10-07

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2016 water-level altitudes (represented by measurements made during December 2015–March 2016) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2015–16) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2011–16) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2016 and 1977–2016) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–16) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2015. Tables listing the water-level data used to construct each water-level map for each aquifer and the measured long-term cumulative compaction data for each extensometer site are included. Graphs depicting water-level measurement data also are included; these graphs can be used to approximate

  16. Digital control system of a steam generator water level by LQG optimal method

    International Nuclear Information System (INIS)

    Lee, Yoon Joon

    1993-01-01

    A digital control system for the steam generator water level control is developed using LQG optimal design method. To describe the more realistic situaton, a feedwater valve actuator is assumed to be of the first order lagger and is included in the overall control system. By composing the digital control circuit in such a way that the overall control system consists of two sub-systems of feedwater station and feedback loop digital controller, the design procedure is divided into two independent steps. The feedwater station system is described in the error dynamics of an ordinary regulator system. The optimal gains are obtained by LQ method which imposes the constraints of the feedwater valve motion as well as on the output deviations. Developed also is a Kalman observer on account of the flow measurement uncertainty at low power. Then a digital controller on the feedback loop is designed so that the system maintains the same stability margins for all power ranges. The simulation results show thst the optimal digital system has a good control characteristics despite the adverse dynamics of a steam generator at low power. (Author)

  17. Voyageurs National Park: Water-level regulation and effects on water quality and aquatic biology

    Science.gov (United States)

    Christensen, Victoria G.; Maki, Ryan P.; LeDuc, Jaime F.

    2018-01-01

    Following dam installations in the remote Rainy Lake Basin during the early 1900s, water-level fluctuations were considered extreme (1914–1949) compared to more natural conditions. In 1949, the International Joint Commission (IJC), which sets rules governing dam operation on waters shared by the United States and Canada, established the first rule curves to regulate water levels on these waterbodies. However, rule curves established prior to 2000 were determined to be detrimental to the ecosystem. Therefore, the IJC implemented an order in 2000 to change rule curves and to restore a more natural water regime. After 2000, measured chlorophyll-a concentrations in the two most eutrophic water bodies decreased whereas concentrations in oligotrophic lakes did not show significant water-quality differences. Fish mercury data were inconclusive, due to the variation in water levels and fish mercury concentrations, but can be used by the IJC as part of a long term data set.

  18. Coupling of sea level and tidal range changes, with implications for future water levels.

    Science.gov (United States)

    Devlin, Adam T; Jay, David A; Talke, Stefan A; Zaron, Edward D; Pan, Jiayi; Lin, Hui

    2017-12-05

    Are perturbations to ocean tides correlated with changing sea-level and climate, and how will this affect high water levels? Here, we survey 152 tide gauges in the Pacific Ocean and South China Sea and statistically evaluate how the sum of the four largest tidal constituents, a proxy for the highest astronomical tide (HAT), changes over seasonal and interannual time scales. We find that the variability in HAT is significantly correlated with sea-level variability; approximately 35% of stations exhibit a greater than ±50 mm tidal change per meter sea-level fluctuation. Focusing on a subset of three stations with long records, probability density function (PDF) analyses of the 95% percentile exceedance of total sea level (TSL) show long-term changes of this high-water metric. At Hong Kong, the increase in tides significantly amplifies the risk caused by sea-level rise. Regions of tidal decrease and/or amplification highlight the non-linear response to sea-level variations, with the potential to amplify or mitigate against the increased flood risk caused by sea-level rise. Overall, our analysis suggests that in many regions, local flood level determinations should consider the joint effects of non-stationary tides and mean sea level (MSL) at multiple time scales.

  19. Water Level and Fire Regulate Carbon Sequestration in a Subtropical Peat Marsh

    Science.gov (United States)

    Graham, S.; Sumner, D.; Shoemaker, B.; Benscoter, B.; Hinkle, C. R.

    2014-12-01

    Managed wetlands provide valuable ecosystem services, including carbon storage. Management practices, such as water-level manipulation and prescribed fire, can have a profound effect on the carbon dynamics of these ecosystems. Fluxes of carbon dioxide have been measured by eddy covariance methods over a subtropical peat marsh in Florida, USA since 2009. During this 5-year period, the site has experienced hydroperiods ranging from nine to twelve months. Hydroperiod was found to affect net ecosystem productivity, which was relatively low (70-130 grams carbon per square meter) in years with periodic drying events and much higher (300-600 grams carbon per square meter) during years with constant marsh inundation. The site experienced a prescribed fire in Spring of 2014, which consumed approximately 80% of the aboveground biomass (800 grams carbon per square meter). In addition to the carbon released by the fire, photosynthetic uptake during what would normally be the most productive part of the year was reduced relative to previous years due to low leaf area. These results illustrate how management practices can affect carbon sequestration, which is important for both atmospheric greenhouse gas concentrations and maintenance of peat topography.

  20. Wavelet denoising method; application to the flow rate estimation for water level control

    International Nuclear Information System (INIS)

    Park, Gee Young; Park, Jin Ho; Lee, Jung Han; Kim, Bong Soo; Seong, Poong Hyun

    2003-01-01

    The wavelet transform decomposes a signal into time- and frequency-domain signals and it is well known that a noise-corrupted signal could be reconstructed or estimated when a proper denoising method is involved in the wavelet transform. Among the wavelet denoising methods proposed up to now, the wavelets by Mallat and Zhong can reconstruct best the pure transient signal from a highly corrupted signal. But there has been no systematic way of discriminating the original signal from the noise in a dyadic wavelet transform. In this paper, a systematic method is proposed for noise discrimination, which could be implemented easily into a digital system. For demonstrating the potential role of the wavelet denoising method in the nuclear field, this method is applied to the steam or feedwater flow rate estimation of the secondary loop. And the configuration of the S/G water level control system is proposed for incorporating the wavelet denoising method in estimating the flow rate value at low operating powers

  1. Photosynthetic metabolism and quality of Eugenia pyriformis Cambess. seedlings on substrate function and water levels.

    Science.gov (United States)

    Scalon, Silvana P Q; Jeromini, Tatiane S; Mussury, Rosilda M; Dresch, Daiane M

    2014-12-01

    The aim of this research was to evaluate the quality and photosynthetic metabolism of "uvaia" seedlings (Eugenia pyriformis Cambess.) on different substrates and water regimes. The seeds were sown in tubes of 50 x 190 mm in the following substrates: Sand (S), Latosol + Sand (L + S) (1:1), Latosol + Sand + Semi Decomposed Poultry Litter (L + S1 + PL) ( 1:1:0.5), Latosol + Sand + Semi Decomposed Poultry Litter (L + S2 + PL) (1:2:0.5), Latosol + Bioplant® (L + B) (1:1), and the water levels assessed were 50, 75 and 100% of water retention capacity. At 60, 90, 120 and 150 days the seedlings were evaluated according to their chlorophyll index, leaf area (cm2) and Dickson Quality Index (DQI) and at 150 days their internal concentration of carbon (mol m-2 s-1), stomatal conductance (mol m-2 s-1), transpiration rate (mmol m-2 s-1), photosynthesis (µmol m-2 s-1) and efficiency of water use (µmol de CO2 / mmol de H2O). Until their 150th days, the seedlings had higher quality and photosynthetic metabolism when cultured with substrates containing latosol + sand + poultry litter on the two variations assessed and water retention capacity of 50%.

  2. Photosynthetic metabolism and quality of Eugenia pyriformis Cambess. seedlings on substrate function and water levels

    Directory of Open Access Journals (Sweden)

    SILVANA P.Q. SCALON

    2014-12-01

    Full Text Available The aim of this research was to evaluate the quality and photosynthetic metabolism of “uvaia” seedlings (Eugenia pyriformis Cambess. on different substrates and water regimes. The seeds were sown in tubes of 50 x 190 mm in the following substrates: Sand (S, Latosol + Sand (L + S (1:1, Latosol + Sand + Semi Decomposed Poultry Litter (L + S1 + PL ( 1:1:0.5, Latosol + Sand + Semi Decomposed Poultry Litter (L + S2 + PL (1:2:0.5, Latosol + Bioplant® (L + B (1:1, and the water levels assessed were 50, 75 and 100% of water retention capacity. At 60, 90, 120 and 150 days the seedlings were evaluated according to their chlorophyll index, leaf area (cm2 and Dickson Quality Index (DQI and at 150 days their internal concentration of carbon (mol m–2 s–1, stomatal conductance (mol m–2 s–1, transpiration rate (mmol m–2 s–1, photosynthesis (µmol m–2 s–1 and efficiency of water use (µmol de CO2 / mmol de H2O. Until their 150th days, the seedlings had higher quality and photosynthetic metabolism when cultured with substrates containing latosol + sand + poultry litter on the two variations assessed and water retention capacity of 50%.

  3. Dendrochronological evaluation of historic changes in Lake Stirniai (Lithuania) water level

    International Nuclear Information System (INIS)

    Stasytyte, I.; Pakalnis, R.

    2005-01-01

    Full text: Dendrochronological research was carried out on Pinus sylvestris L. timber extracted from Lake Stirniai (55 o 15'04'' latitude (N) and 25 o 38'49'' longitude (E)). As a result, the tree ring width floating chronology spanning 213 years was compiled. Radiocarbon dating of the samples indicated that pines grew from 1103 ± 80 AD to 1315 ± 80 AD. Fragments of stems and roots of pines were found waterlogged in 1 m water layer. It means that in the Medieval Warm Period, the ground water level in the habitat of archaeological pines was below the nowadays lake level for at least by 1 m. The growth conditions became unfavourable in ∼ 1270 ± 80 AD. At the end of the 13 th century the climate became damper, lake transgression started, the trees of Scots pine became dry. The basic cause of transgression seems to be the bogged bed of the rivulet Stirna flowing out of the lake. This phenomenon was caused by the changed climate conditions. The formant analysis of the radial increase of the stems of archaeological Scots pine in Lake Stirniai revealed 52.9; 30.3; 21.1; 17.5; 15.0; 11.2 year long-term fluctuation cycles. Comparison of the obtained data with the present cycles is foreseen. (author)

  4. MPC-based auto-tuned PID controller for the steam generator water level

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    In this work, proportional-integral-derivative (PID) control gains are automatically tuned by using a model predictive control (MPC) method. The MPC has received much attention as a powerful tool for the control of industrial process systems. An MPC-based PID controller can be derived from the second order linear model of a process. The steam generator is usually described by the well-known 4 th order linear model which consists of the mass capacity, reverse dynamics and mechanical oscillations terms. But the important terms in this linear model are the mass capacity and reverse dynamics terms, both of which can be described by a 2 nd order linear system. The proposed auto-tuned PID controller was applied to a linear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The proposed controller showed good performance for the water level deviation and sudden steam flow disturbances that are typical in the existing power plants by changing only the input-weighting factor according to the power level

  5. Can we use Earth Observations to improve monthly water level forecasts?

    Science.gov (United States)

    Slater, L. J.; Villarini, G.

    2017-12-01

    Dynamical-statistical hydrologic forecasting approaches benefit from different strengths in comparison with traditional hydrologic forecasting systems: they are computationally efficient, can integrate and `learn' from a broad selection of input data (e.g., General Circulation Model (GCM) forecasts, Earth Observation time series, teleconnection patterns), and can take advantage of recent progress in machine learning (e.g. multi-model blending, post-processing and ensembling techniques). Recent efforts to develop a dynamical-statistical ensemble approach for forecasting seasonal streamflow using both GCM forecasts and changing land cover have shown promising results over the U.S. Midwest. Here, we use climate forecasts from several GCMs of the North American Multi Model Ensemble (NMME) alongside 15-minute stage time series from the National River Flow Archive (NRFA) and land cover classes extracted from the European Space Agency's Climate Change Initiative 300 m annual Global Land Cover time series. With these data, we conduct systematic long-range probabilistic forecasting of monthly water levels in UK catchments over timescales ranging from one to twelve months ahead. We evaluate the improvement in model fit and model forecasting skill that comes from using land cover classes as predictors in the models. This work opens up new possibilities for combining Earth Observation time series with GCM forecasts to predict a variety of hazards from space using data science techniques.

  6. Development of a Health-Protective Drinking Water Level for Perchlorate

    Science.gov (United States)

    Ting, David; Howd, Robert A.; Fan, Anna M.; Alexeeff, George V.

    2006-01-01

    We evaluated animal and human toxicity data for perchlorate and identified reduction of thyroidal iodide uptake as the critical end point in the development of a health-protective drinking water level [also known as the public health goal (PHG)] for the chemical. This work was performed under the drinking water program of the Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency. For dose–response characterization, we applied benchmark-dose modeling to human data and determined a point of departure (the 95% lower confidence limit for 5% inhibition of iodide uptake) of 0.0037 mg/kg/day. A PHG of 6 ppb was calculated by using an uncertainty factor of 10, a relative source contribution of 60%, and exposure assumptions specific to pregnant women. The California Department of Health Services will use the PHG, together with other considerations such as economic impact and engineering feasibility, to develop a California maximum contaminant level for perchlorate. We consider the PHG to be adequately protective of sensitive subpopulations, including pregnant women, their fetuses, infants, and people with hypothyroidism. PMID:16759989

  7. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    Science.gov (United States)

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  8. Seasonal Variability of Ground Water Levels in the Puszcza Zielonka Forest

    Directory of Open Access Journals (Sweden)

    Grajewski Sylwester

    2014-07-01

    Full Text Available The paper presents results of studies on seasonal variability of ground water tables recorded in long-term observations of water levels in the Puszcza Zielonka forest complex. The Puszcza Zielonka Forest is located in the middle part of the Warta basin in the central part of the Wielkopolska region. Its western boundary is located approx. 6 km north-east of Poznań. The area is situated in the western part of the Wielkopolska-Mazovian climatic region. The natural landscape is of young glacial type of Pleistocene and Holocene formation. For this reason parent materials for soils in this area were mainly postglacial drifts, deposits coming from the Poznań stage of the Würm glaciation. In terms of granulometric composition these were mainly low clayey sands deposited on loose sands with an admixture of gravel and eroded sandy clay. Scots pine is the dominant species. Oaks, alders, larches and scarce spruces are also found in this area. Predominant sites include fresh mixed forest, fresh mixed coniferous forest, fresh broadleaved forest and alder swamp forest.

  9. Comparison of 1972 and 1996 water levels in the Goleta central ground-water subbasin, Santa Barbara County, California

    Science.gov (United States)

    Kaehler, Charles A.; Pratt, David A.; Paybins, Katherine S.

    1997-01-01

    Ground-water levels for 1996 were compared with 1972 water levels to determine if a "drought buffer" currently exists. The drought buffer was defined previously, in a litigated settlement involving the Goleta Water District, as the 1972 water level in the Central ground-water subbasin. To make this deter mination, a network of 15 well sites was selected, water levels were measured monthly from April through December 1996, and the 1996 water-level data were compared with1972 data. The study was done in cooperation with the Goleta Water District. The 1972-1996 water-level-altitude changes for corresponding months of the comparison years were averaged for each network well. These averaged changes ranged from a rise of 9.4 ft for well 2N2 to a decline of 45.0 ft for well 8K8. The results of the comparison indicate a rise in water level at 1 site (well 2N2) and a decline at 14 sites. The mean of the 14 negative average values was a decline of 24.0 ft. The altitude of the bottom of well 2N2 was higher than the bottom altitudes at the other network sites, and this well is located a few feet from a fault that acts as a hydrologic barrier. The results of the water-level comparison for the Central subbasin were influenced to some unknown degree by the areal distribution of the set of wells selected for the network and the vertical dis tribution of the perforated intervals of the wells. For this reason, the mean water-level change--a decline of 21.8 ft--calculated from the averages of the month-to-month changes for the 15 network sites, should be used with caution. In addition, the number of usable individual monthly comparison measurements available for an individual site ranged from one to nine, and averaged six. Therefore, a weighted mean of the monthly averages was calculated on the basis of the number of comparison measurements available for each site. The weighted mean is a decline of 20.9 ft. All Central subbasin wells that were idle (that is, were not being pumped

  10. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells.

    Science.gov (United States)

    Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang

    2016-10-14

    First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  11. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells

    Directory of Open Access Journals (Sweden)

    Yanjun Wang

    2016-10-01

    Full Text Available First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  12. Biomass, productivity and relative rate of photosynthesis of sphagnum at different water levels on a South Swedish peat bog

    International Nuclear Information System (INIS)

    Wallen, B.; Falkengren-Grerup, U.; Malmer, N.

    1988-01-01

    The distribution pattern of Spaghnum species on bogs follows a hummock-hollow gradient. S. Sect. Acutifolia (that is in this study S. Fuscum and S. rubellum combined) dominates hummock tops, ca 20 cm above the maximum water level with a green biomass of 50 g m --2 , S. magellanicum dominates at a lower level, about 5 cm above the water level with a green biomass of 75 g m -2 and S. cuspidatum dominates in the wettest hollows with a green biomass of about 50 g m -2 . In situ measurements of length growth of S. Sect. Acutifolia and S. magelanicum using a 14 CO 2 -labelling technique during three consecutive years, revealed an unexpectedly high between-year variation in length growth of 7-23 mm yr -1 , and 16-22 mm yr -1 , respectively. Consequently the dominating producer in the transition between hummock and hollow changes from year to year, probably depending on climatic conditions. In vitro experiments on the effects of different water levels of 2, 5, 10 and 20 cm below the moss surface, on photosynthetic activity of S. Sect. Acutifolia and S. magellanicum, measured by a second 14 CO 2 -technique, indicate optimal conditions for S. magellanicum at 10 cm above water level, and for S. Sect, Acutofolia at 20 cm above water level. Differences in capillary water transport capability between the species are more important than the sensitivity of photosynthesis to water stress in explaining field patterns of productivity and distribution

  13. Water level response measurement in a steel cylindrical liquid storage tank using image filter processing under seismic excitation

    Science.gov (United States)

    Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min

    2018-02-01

    Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.

  14. Water-level fluctuations due to Earth tides in a well pumping from slightly fractured crystalline rock

    International Nuclear Information System (INIS)

    Marine, I.W.

    1975-01-01

    At the Savannah River plant of the Atomic Energy Commission near Aiken, South Carolina, there are three distinct groundwater systems: the coastal plain sediments, the crystalline metamorphic rocks, and a buried Triassic basin. The coastal plain sediments include several Cretaceous and Tertiary granular aquifers and aquicludes, the total thickness being about 305 m. Below these sediments, water occurs in small fractures in crystalline metamorphic rock (hornblende schist and gneiss with lesser amounts of quartzite). Water level fluctuations due to earth tides are recorded in the crystalline metamorphic rock system and in the coastal plain sediments. No water level fluctuations due to earth tides have been observed in wells in the Triassic rock because of the very low permeability. The water level fluctuations due to earth tides in the crystalline rock are about 10 cm, and those in the sediments are about 1.8 cm. The use of water level fluctuations due to earth tides to calculate porosity appears to present practical difficulties both in the crystalline metamorphic rock system and in the coastal plain sediments. In a 1-yr pumping test on a well in the crystalline metamorphic rock the flow was controlled to within 0.1 per cent of the total discharge, which was 0.94 l/s. The water level fluctuations due to earth tides in the pumping well were 10 cm, the same as when this well was not being pumped. (U.S.)

  15. BWR [boiling water reactor] core criticality versus water level during an ATWS [anticipated transient without scram] event

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Peng, C.M.; Maly, J.

    1988-01-01

    The BWR [boiling water reactor] emergency procedures guidelines recommend management of core water level to reduce the power generated during an anticipated transient without scram (ATWS) event. BWR power level variation has traditionally been calculated in the system codes using a 1-D [one-dimensional] 2-group neutron kinetics model to determine criticality. This methodology used also for calculating criticality of the partially covered BWR cores has, however, never been validated against data. In this paper, the power level versus water level issues in an ATWS severe accident are introduced and the accuracy of the traditional methodology is investigated by comparing with measured data. It is found that the 1-D 2-group treatment is not adequate for accurate predictions of criticality and therefore the system power level for the water level variations that may be encountered in a prototypical ATWS severe accident. It is believed that the current predictions for power level may be too high

  16. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    Directory of Open Access Journals (Sweden)

    Zhihua Cui

    Full Text Available The shear swirling flow vibration cementing (SSFVC technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1 the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2 the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  17. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    Science.gov (United States)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-01-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500–10,000 m3s−1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  18. Modeling caspian sea water level oscilLations Under Diffrent Scenarioes of Increasing Atmospheric Carbon Dioxide Concentrations

    Directory of Open Access Journals (Sweden)

    GholamReza Roshan

    2012-12-01

    Full Text Available The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in thecoastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was stimulated. Variations in environmentalparameters such as temperature, precipitation, evaporation, tmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for bothpast (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software(version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17ºC per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increasedby ca. +36 mm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64ºC and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin,temperatures are projected to increase by ca. 4.78ºC and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels projectfuture water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  19. Potential effects of climate change on the water level, flora and macro-fauna of a large neotropical wetland.

    Directory of Open Access Journals (Sweden)

    Bárbara Úbeda

    Full Text Available Possible consequences of climate change in one of the world's largest wetlands (Ibera, Argentina were analysed using a multi-scale approach. Climate projections coupled to hydrological models were used to analyse variability in wetland water level throughout the current century. Two potential scenarios of greenhouse gas emissions were explored, both resulting in an increase in the inter-annual fluctuations of the water level. In the scenario with higher emissions, projections also showed a long-term negative trend in water-level. To explore the possible response of biota to such water-level changes, species-area relationships of flora and aerial censuses of macro-fauna were analysed during an extraordinary dry period. Plant species richness at the basin scale was found to be highly resistant to hydrological changes, as the large dimension of the wetland acts to buffer against the water-level variations. However, local diversity decreased significantly with low water levels, leading to the loss of ecosystem resilience to additional stressors. The analysis of macro-fauna populations suggested that wetland provides refuge, in low water periods, for the animals with high dispersal ability (aquatic and migratory birds. On the contrary, the abundance of animals with low dispersal ability (mainly herbivorous species was negatively impacted in low water periods, probably because they are required to search for alternative resources beyond the wetland borders. This period of resource scarcity was also related to increased mortality of large mammals (e.g. marsh deer around water bodies with high anthropogenic enrichment and cyanobacteria dominance. The synergy between recurrent climatic fluctuations and additional stressors (i.e. biological invasions, eutrophication presents an important challenge to the conservation of neotropical wetlands in the coming decades.

  20. Potential effects of climate change on the water level, flora and macro-fauna of a large neotropical wetland.

    Science.gov (United States)

    Úbeda, Bárbara; Di Giacomo, Adrian S; Neiff, Juan José; Loiselle, Steven A; Poi, Alicia S Guadalupe; Gálvez, José Ángel; Casco, Silvina; Cózar, Andrés

    2013-01-01

    Possible consequences of climate change in one of the world's largest wetlands (Ibera, Argentina) were analysed using a multi-scale approach. Climate projections coupled to hydrological models were used to analyse variability in wetland water level throughout the current century. Two potential scenarios of greenhouse gas emissions were explored, both resulting in an increase in the inter-annual fluctuations of the water level. In the scenario with higher emissions, projections also showed a long-term negative trend in water-level. To explore the possible response of biota to such water-level changes, species-area relationships of flora and aerial censuses of macro-fauna were analysed during an extraordinary dry period. Plant species richness at the basin scale was found to be highly resistant to hydrological changes, as the large dimension of the wetland acts to buffer against the water-level variations. However, local diversity decreased significantly with low water levels, leading to the loss of ecosystem resilience to additional stressors. The analysis of macro-fauna populations suggested that wetland provides refuge, in low water periods, for the animals with high dispersal ability (aquatic and migratory birds). On the contrary, the abundance of animals with low dispersal ability (mainly herbivorous species) was negatively impacted in low water periods, probably because they are required to search for alternative resources beyond the wetland borders. This period of resource scarcity was also related to increased mortality of large mammals (e.g. marsh deer) around water bodies with high anthropogenic enrichment and cyanobacteria dominance. The synergy between recurrent climatic fluctuations and additional stressors (i.e. biological invasions, eutrophication) presents an important challenge to the conservation of neotropical wetlands in the coming decades.

  1. What caused the decline of China's largest freshwater lake? Attribution analysis on Poyang Lake water level variations in recent years

    Science.gov (United States)

    Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi

    2017-04-01

    In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.

  2. Tide-surge historical assessment of extreme water levels for the St. Johns River: 1928-2017

    Science.gov (United States)

    Bacopoulos, Peter

    2017-10-01

    An historical storm population is developed for the St. Johns River, located in northeast Florida-US east coast, via extreme value assessment of an 89-year-long record of hourly water-level data. Storm surge extrema and the corresponding (independent) storm systems are extracted from the historical record as well as the linear and nonlinear trends of mean sea level. Peaks-over-threshold analysis reveals the top 16 most-impactful (storm surge) systems in the general return-period range of 1-100 years. Hurricane Matthew (2016) broke the record with a new absolute maximum water level of 1.56 m, although the peak surge occurred during slack tide level (0.00 m). Hurricanes and tropical systems contribute to return periods of 10-100 years with water levels in the approximate range of 1.3-1.55 m. Extratropical systems and nor'easters contribute to the historical storm population (in the general return-period range of 1-10 years) and are capable of producing extreme storm surges (in the approximate range of 1.15-1.3 m) on par with those generated by hurricanes and tropical systems. The highest astronomical tide is 1.02 m, which by evaluation of the historical record can contribute as much as 94% to the total storm-tide water level. Statically, a hypothetical scenario of Hurricane Matthew's peak surge coinciding with the highest astronomical tide would yield an overall storm-tide water level of 2.58 m, corresponding to an approximate 1000-year return period by historical comparison. Sea-level trends (linear and nonlinear) impact water-level return periods and constitute additional risk hazard for coastal engineering designs.

  3. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    Science.gov (United States)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-06-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500-10,000 m3s-1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  4. [Distribution of Mercury in Plants at Water-Level-Fluctuating Zone in the Three Gorges Reservoir].

    Science.gov (United States)

    Liang, Li; Wang, Yong-min; Li, Xian-yuan; Tang, Zhen-ya; Zhang, Xiang; Zhang, Cheng; WANG, Ding-yong

    2015-11-01

    The mercury (Hg) distribution and storage in plants at water-level-fluctuating zone (WLFZ) in the Three Gorges Reservoir were investigated by analyzing the total mercury(THg) and methylmercury ( MeHg) levels in different parts of plants collected from three typical sites including Shibaozhai, Zhenxi and Hanfeng Lake in WLFZ. The results indicated that THg and MeHg concentrations in plants ranged from (1.62 ± 0.57) to (49.42 ± 3.93) μg x kg(-1) and from (15.27 ± 7.09) to (1 974.67 ± 946.10) ng x kg(-1), respectively. In addition, THg levels in different plant parts followed the trend: root > leaf > stem, and similar trend for MeHg was observed with the highest level in root. An obvious spatial distribution was also found with the THg and MeHg levels in plants in Hanfeng higher than those in the same plants in the other two sampling sites (Shibaozhai and Zhenxi), and there was a difference of THg and MeHg storage in plants in various attitudes. The corresponding THg and MeHg storages were 145.3, 166.4, 124.3 and 88.2 mg x hm(-2), and 1.9, 2.7, 3.6 and 3.2 mg x hm(-2) in 145-150, 150-160, 160-170 and 170-175 m attitudes. The accumulation ability of dominant plants in WLFZ for THg (bioaccumulation factor, BAF 1).

  5. Reconstructing water level in Hoyo Negro, Quintana Roo, Mexico, implications for early Paleoamerican and faunal access

    Science.gov (United States)

    Collins, S. V.; Reinhardt, E. G.; Rissolo, D.; Chatters, J. C.; Nava Blank, A.; Luna Erreguerena, P.

    2015-09-01

    The skeletal remains of a Paleoamerican (Naia; HN5/48) and extinct megafauna were found at -40 to -43 mbsl in a submerged dissolution chamber named Hoyo Negro (HN) in the Sac Actun Cave System, Yucatan Peninsula, Mexico. The human remains were dated to between 12 and 13 Ka, making these remains the oldest securely dated in the Yucatan. Twelve sediment cores were used to reconstruct the Holocene flooding history of the now phreatic cave passages and cenotes (Ich Balam, Oasis) that connect to HN. Four facies were found: 1. bat guano and Seed (SF), 2. lime Mud (MF), 3. Calcite Rafts (CRF) and 4. Organic Matter/Calcite Rafts (OM/CRF) which were defined by their lithologic characteristics and ostracod, foraminifera and testate amoebae content. Basal radiocarbon ages (AMS) of aquatic sediments (SF) combined with cave bottom and ceiling height profiles determined the history of flooding in HN and when access was restricted for human and animal entry. Our results show that the bottom of HN was flooded at least by 9850 cal yr BP but likely earlier. We also found, that the pit became inaccessible for human and animal entry at ≈8100 cal yr BP, when water reaching the cave ceiling effectively prevented entry. Water level continued to rise between ≈6000 and 8100 cal yr BP, filling the cave passages and entry points to HN (Cenotes Ich Balam and Oasis). Analysis of cave facies revealed that both Holocene sea-level rise and cave ceiling height determined the configuration of airways and the deposition of floating and bat derived OM (guano and seeds). Calcite rafts, which form on the water surface, are also dependent on the presence of airways but can also form in isolated air domes in the cave ceiling that affect their loci of deposition on the cave bottom. These results indicated that aquatic cave sedimentation is transient in time and space, necessitating extraction of multiple cores to determine a limit after which flooding occurred.

  6. Modal Analysis of a Steel Radial Gate Exposed to Different Water Levels

    Science.gov (United States)

    Brusewicz, Krzysztof; Sterpejkowicz-Wersocki, Witold; Jankowski, Robert

    2017-06-01

    With the increase in water retention needs and planned river regulation, it might be important to investigate the dynamic resistance of vulnerable elements of hydroelectric power plants, including steelwater locks. The most frequent dynamic loads affecting hydroengineering structures in Poland include vibrations caused by heavy road and railway traffic, piling works and mining tremors. More destructive dynamic loads, including earthquakes, may also occur in our country, although their incidence is relatively low. However, given the unpredictable nature of such events, as well as serious consequences they might cause, the study of the seismic resistance of the steel water gate, as one of the most vulnerable elements of a hydroelectric power plant, seems to be important. In this study, a steel radial gate has been analyzed. As far as water gates are concerned, it is among the most popular solutions because of its relatively small weight, compared to plain gates. A modal analysis of the steel radial gate was conducted with the use of the FEM in the ABAQUS software. All structural members were modelled using shell elements with detailed geometry representing a real structure.Water was modelled as an added mass affecting the structure. Different water levels were used to determine the most vulnerable state of the working steel water gate. The results of the modal analysis allowed us to compare the frequencies and their eigenmodes in response to different loads, which is one of the first steps in researching the dynamic properties of steel water gates and their behaviour during extreme dynamic loads, including earthquakes.

  7. Contribution of piezometric measurement on knowledge and management of low water levels

    Science.gov (United States)

    Bessiere, Hélène; Stollsteiner, Philippe; Allier, Delphine; Nicolas, Jérôme; Gourcy, Laurence

    2014-05-01

    This article is based on a BRGM study on piezometric indicators, threshold values of discharges and groundwater levels for the assessment of potentially pumpable volumes of chalky watersheds. A method for estimating low water levels from groundwater levels is presented from three examples of chalk aquifer; the first one is located in Picardy and the two other in the Champagne Ardennes region. Piezometers with "annual" cycles, used in these examples, are supposed to be representative of the aquifer hydrodynamics. The analysis leads to relatively precise and satisfactory relationships between groundwater levels and observed discharges for this chalky context. These relationships may be useful for monitoring, validation, extension or reconstruction of the low water flow. On the one hand, they allow defining the piezometric levels corresponding to the different alert thresholds of river discharges. On the other hand, they clarify the distribution of low water flow from runoff or the draining of the aquifer. Finally, these correlations give an assessment of the minimum flow for the coming weeks using of the rate of draining of the aquifer. Nevertheless the use of these correlations does not allow to optimize the value of pumpable volumes because it seems to be difficult to integrate the amount of the effective rainfall that may occur during the draining period. In addition, these relationships cannot be exploited for multi-annual cycle systems. In these cases, the solution seems to lie on the realization of a rainfall-runoff-piezometric level model. Therefore, two possibilities are possible. The first one is to achieve each year, on a given date, a forecast for the days or months to come with various frequential distributions rainfalls. However, the forecast must be reiterated each year depending on climatic conditions. The principle of the second method is to simulate forecasts for different rainfall intensities and following different initial conditions. The results

  8. A Simplified Solution for Calculating the Phreatic Line and Slope Stability during a Sudden Drawdown of the Reservoir Water Level

    Directory of Open Access Journals (Sweden)

    Guanhua Sun

    2018-01-01

    Full Text Available On the basis of the Boussinesq unsteady seepage differential equation, a new simplified formula for the phreatic line of slopes under the condition of decreasing reservoir water level is derived by means of the Laplacian matrix and its inverse transform. In this context, the expression of normal stress on the slip surface under seepage forces is deduced, and a procedure for obtaining the safety factors under hydrodynamic forces is proposed. A case study of the Three Gorges Reservoir is used to analyze the influences of the water level, decreasing velocity and the permeability coefficient on slope stability.

  9. Numerical analysis of the reactivity for the dry lattices above the water level of the critical fuel cores

    International Nuclear Information System (INIS)

    Nauchi, Yasushi; Kameyama, Takanori

    2003-01-01

    Criticality analysis has been performed for dozens of tank type cores in which fuel lattices are loaded vertically and partially immersed in light water. The reactivity effect of dry part of lattices stuck above the critical water level has been calculated using the continuous energy Monte Carlo method. The reactivity effect exceeds 0.8% both for MOX and UOX fuel lattices of large buckling (B z 2 > 0.0025 cm -2 ). It is evaluated that at least 20 cm length of fuel rods above the critical water level has significant reactivity effect. (author)

  10. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  11. Modelling Water Level Influence on Habitat Choice and Food Availability for Zostera Feeding Brent Geese Branta bernicla in Non-Tidal Areas

    DEFF Research Database (Denmark)

    Clausen, P.

    2000-01-01

    of water level fluctuations on the habitat use. A second model was developed to estimate the impact of water level on Zostera availability. The first model was successful in demonstrating that fluctuations in water levels had considerable influence on habitat use by the brent geese, i.e. they fed...... on Zostera at low water levels and on saltmarshes during high water levels, particularly so in early spring, and that the switch between habitats occurred within a narrow water level span of ca 30 cm. The second model demonstrated that the switch between habitats could be explained by lowered availability...... of Zostera as water levels increased. By combining the output from the two models, differences between years could partly be explained by differences in Zostera availability in the early spring period (21 March - 25 April), whereas a more complicated situation was detected later in spring (26 April - 31 May...

  12. Aerobic carbon-cycle related microbial communities in boreal peatlands: responses to water-level drawdown

    Energy Technology Data Exchange (ETDEWEB)

    Peltoniemi, K

    2010-07-01

    Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO{sub 2} and CH{sub 4}). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH{sub 4} oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal

  13. Verification of Dinamika-5 code on experimental data of water level behaviour in PGV-440 under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Beljaev, Y.V.; Zaitsev, S.I.; Tarankov, G.A. [OKB Gidropress (Russian Federation)

    1995-12-31

    Comparison of the results of calculational analysis with experimental data on water level behaviour in horizontal steam generator (PGV-440) under the conditions with cessation of feedwater supply is presented in the report. Calculational analysis is performed using DIMANIKA-5 code, experimental data are obtained at Kola NPP-4. (orig.). 2 refs.

  14. Verification of Dinamika-5 code on experimental data of water level behaviour in PGV-440 under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Beljaev, Y V; Zaitsev, S I; Tarankov, G A [OKB Gidropress (Russian Federation)

    1996-12-31

    Comparison of the results of calculational analysis with experimental data on water level behaviour in horizontal steam generator (PGV-440) under the conditions with cessation of feedwater supply is presented in the report. Calculational analysis is performed using DIMANIKA-5 code, experimental data are obtained at Kola NPP-4. (orig.). 2 refs.

  15. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    Science.gov (United States)

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  16. Occurrence of organotin compounds in river sediments under the dynamic water level conditions in the Three Gorges Reservoir Area, China.

    Science.gov (United States)

    Gao, Jun-Min; Zhang, Ke; Chen, You-Peng; Guo, Jin-Song; Wei, Yun-Mei; Jiang, Wen-Chao; Zhou, Bin; Qiu, Hui

    2015-06-01

    The Three Gorges Project is the largest hydro project in the world, and the water level of the Three Gorges Reservoir (TGR) is dynamic and adjustable with the aim of flood control and electrical power generation. It is necessary to investigate the pollutants and their underlying contamination processes under dynamic water levels to determine their environmental behaviors in the Three Gorges Reservoir Area (TGRA). Here, we report the assessment of organotin compounds (OTs) pollution in the river sediments of the TGRA. Surface sediment samples were collected in the TGRA at low and high water levels. Tributyltin (TBT), triphenyltin (TPhT), and their degradation products in sediments were quantified by gas chromatography-mass spectrometry. Butyltins (BTs) and phenyltins (PhTs) were detected in sediments, and BTs predominated over PhTs in the whole study area under dynamic water level conditions. The concentrations of OTs in sediments varied markedly among locations, and significant concentrations were found in river areas with high levels of boat traffic and wastewater discharge. Sediments at all stations except Cuntan were lightly contaminated with TBT, and total organic carbon (TOC) was a significant factor affecting the fate of TBT in the TGRA. The butyltin and phenyltin degradation indices showed no recent inputs of TBT or TPhT into this region, with the exception of fresh TPhT input at Xiakou Town. Shipping activity, wastewater discharge, and agriculture are the most likely sources of OTs in the TGRA.

  17. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes

    Directory of Open Access Journals (Sweden)

    Meryem Beklioğlu

    2017-02-01

    Full Text Available Eutrophication continues to be the most important problem preventing a favorable environmental state and detrimentally impacting the ecosystem services of lakes. The current study describes the results of analyses of 20 year monitoring data from two interconnected Anatolian lakes, Lakes Mogan and Eymir, receiving sewage effluents and undergoing restoration. The first step of restoration in both lakes was sewage effluent diversion. Additionally, in hypertrophic Lake Eymir, biomanipulation was conducted, involving removal of benthi-planktivorous fish and prohibition of pike fishing. The monitoring period included high (H and low (L water levels (WL enabling elucidation of the effects of hydrological changes on lake restoration. In shallower Lake Mogan, macrophyte abundance increased after the sewage effluent diversion in periods with low water levels even at turbid water. In comparatively deeper Lake Eymir, the first biomanipulation led to a clear water state with abundant macrophyte coverage. However, shortly after biomanipulation, the water clarity declined, coinciding with low water level (LWL periods during which nutrient concentrations increased. A second biomanipulation was conducted, mostly during high water level (HWL period, resulting in a major decrease in nutrient concentrations and clearer water, but without an expansion of macrophytes. We conclude that repetitive fish removal may induce recovery but its success may be confounded by high availability of nutrients and adverse hydrological conditions.

  18. Investigation of the Effect of Water Removal from Wells Surrounding Parishan Lake on Groundwater and Surface Water Levels

    International Nuclear Information System (INIS)

    Shafiei, M.; Raini Sarjaz, M.; Fazloli, R.; Gholami Sefidkouhi, M. A.

    2017-01-01

    In recent decades the human impacts on global warming and, its consequences, climate change, stirred up earth ecosystems balance and has created many problems all over the world. Unauthorized underground water removal, especially in arid and semi-arid regions of Iran, along with recent decade drought occurrences significantly lowered underground and surface water levels. To investigate the impacts of water removal from surrounding wells in Parishan Lake water level, during 1996 to 2009 interval, 8 buffer layers surrounding the lake were mapped in ArcGIS 9.3 environment. Each buffer layer wells and their total annual discharges were determined. Using SPSS 16 software, the regression equations between wells water levels and water discharges were computed. By employing Thiessen function and creating Thiessen network (TIN) around observation wells, decline of groundwater levels was evaluated. Finally regression equations between wells discharges and groundwater level declines were created. The findings showed that there are highly significant correlations (p ≤ 0.01), in all buffer layers, between water levels and wells discharges. Investigation of the observation wells surrounding lake showed that severe groundwater level declines has been started since the beginning of the first decade of the 21st century. Using satellite images in ArcGIS 9.3 environment it was confirmed that lake’s area has been reduced significantly. In conclusion, it is obvious that human interferences on lake’s natural ecosystem by digging unauthorized wells and removing underground water more than annual recharges significantly impacted surface and groundwater levels.

  19. Design of fuzzy learning control systems for steam generator water level control

    International Nuclear Information System (INIS)

    Park, Gee Yong

    1996-02-01

    A fuzzy learning algorithm is developed in order to construct the useful control rules and tune the membership functions in the fuzzy logic controller used for water level control of nuclear steam generator. The fuzzy logic controllers have shown to perform better than conventional controllers for ill-defined or complex processes such as nuclear steam generator. Whereas the fuzzy logic controller does not need a detailed mathematical model of a plant to be controlled, its structure is to be made on the basis of the operator's linguistic information experienced from the plant operations. It is not an easy work and also there is no systematic way to translate the operator's linguistic information into quantitative information. When the linguistic information of operators is incomplete, tuning the parameters of fuzzy controller is to be performed for better control performance. It is the time and effort consuming procedure that controller designer has to tune the structure of fuzzy logic controller for optimal performance. And if the number of control inputs is many and the rule base is constructed in multidimensional space, it is very difficult for a controller designer to tune the fuzzy controller structure. Hence, the difficulty in putting the experimental knowledge into quantitative (or numerical) data and the difficulty in tuning the rules are the major problems in designing fuzzy logic controller. In order to overcome the problems described above, a learning algorithm by gradient descent method is included in the fuzzy control system such that the membership functions are tuned and the necessary rules are created automatically for good control performance. For stable learning in gradient descent method, the optimal range of learning coefficient not to be trapped and not to provide too slow learning speed is investigated. With the optimal range of learning coefficient, the optimal value of learning coefficient is suggested and with this value, the gradient

  20. Water-level altitudes 2011 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2010 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ramage, Jason K.; Kasmarek, Mark C.

    2011-01-01

    Most of the subsidence in the Houston–Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris–Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing 2011 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2010–11) water-level-altitude changes for each aquifer; maps showing 5-year (2006–11) water-level-altitude changes for each aquifer; maps showing long-term (1990–2011 and 1977–2011) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–11) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2010. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included.Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2010–February 2011. In 2011, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 40-foot decline to a 33-foot rise (2010–11), from a 10-foot

  1. Water-level altitudes 2010 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2009 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2010-01-01

    Most of the subsidence in the Houston-Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps showing 2010 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers, respectively; maps showing 1-year (2009-10) water-level-altitude changes for each aquifer; maps showing 5-year (2005-10) water-level-altitude changes for each aquifer; maps showing long-term (1990-2010 and 1977-2010) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000-10) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2009. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included. Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2009-March 2010. In 2010, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below National Geodetic Vertical Datum of 1929 or North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 49-foot decline to a 67

  2. Pressure grouting of fractured basalt flows

    International Nuclear Information System (INIS)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material

  3. Pressure grouting of fractured basalt flows

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.

  4. Drilling and testing hot, high-pressure wells

    Energy Technology Data Exchange (ETDEWEB)

    MacAndrew, R. (Ranger Oil Ltd, Aberdeen (United Kingdom)); Parry, N. (Phillips Petroleum Company United Kingdom Ltd, Aberdeen (United Kingdom)); Prieur, J.M. (Conoco UK Ltd, Aberdeen (United Kingdom)); Wiggelman, J. (Shell UK Exploration and Production, Aberdeen (United Kingdom)); Diggins, E. (Brunei Shell Petroleum (Brunei Darussalam)); Guicheney, P. (Sedco Forex, Montrouge (France)); Cameron, D.; Stewart, A. (Dowell Schlumberger, Aberdeen (United Kingdom))

    Meticulous planning and careful control of operations are needed to safely drill and test high-temperature, high-pressure (HTHP) wells. Techniques, employed in the Central Graben in the UK sector of the North Sea, where about 50 HTHP wells have been drilled, are examined. Three main areas of activity are covered in this comprehensive review: drilling safety, casing and cementation, and testing. The three issues at the heart of HTHP drilling safety are kick prevention, kick detection and well control. Kicks are influxes of reservoir fluid into the well. Test equipment and operations are divided into three sections: downhole, subsea and surface. Also details are given of how this North Sea experience has been used to help plan a jackup rig modification for hot, high-pressure drilling off Brunei. 16 figs., 32 refs.

  5. SEISMIC BEHAVIOR OF THE TOKYO BAY AREA DURING THE 2011 OFF THE PACIFIC COAST OF TOHOKU EARTHQUAKE USING DOWNHOLE ARRAY RECORDS

    Science.gov (United States)

    Ikeda, Takaaki; Konagai, Kazuo; Katagiri, Toshihiko

    Underground motions within a hard diluvial stratum were obtained in the March 11th 2011 Great East Japan Earthquake at a downhole in the Tokyo Bay area, which has suffered serious sand-liquefaction over its long 42km2 stretch. The motions in the diluvial sand deposit are characterized by their (1) long dura-tion times with 6 to 8s components surpassing others, (2) moderate amplitude of 51.1 cm/s2 in PGA, which is estimated to have resulted in moderate average strains of 8 to 9 × 10-4 and 5 to 7 × 10-4 over shal-low -2 to -30m and deep -30 to -77m soil deposits, respectively. The peak strain reached in the interior of soil was estimated to be about 1.3 × 10-3.

  6. Statistical analysis and mapping of water levels in the Biscayne aquifer, water conservation areas, and Everglades National Park, Miami-Dade County, Florida, 2000–2009

    Science.gov (United States)

    Prinos, Scott T.; Dixon, Joann F.

    2016-02-25

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000–2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000–2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990–1999 and 2000–2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974–2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer.

  7. Inferring the lithology of borehole rocks by applying neural network classifiers to downhole logs: an example from the Ocean Drilling Program

    Science.gov (United States)

    Benaouda, D.; Wadge, G.; Whitmarsh, R. B.; Rothwell, R. G.; MacLeod, C.

    1999-02-01

    In boreholes with partial or no core recovery, interpretations of lithology in the remainder of the hole are routinely attempted using data from downhole geophysical sensors. We present a practical neural net-based technique that greatly enhances lithological interpretation in holes with partial core recovery by using downhole data to train classifiers to give a global classification scheme for those parts of the borehole for which no core was retrieved. We describe the system and its underlying methods of data exploration, selection and classification, and present a typical example of the system in use. Although the technique is equally applicable to oil industry boreholes, we apply it here to an Ocean Drilling Program (ODP) borehole (Hole 792E, Izu-Bonin forearc, a mixture of volcaniclastic sandstones, conglomerates and claystones). The quantitative benefits of quality-control measures and different subsampling strategies are shown. Direct comparisons between a number of discriminant analysis methods and the use of neural networks with back-propagation of error are presented. The neural networks perform better than the discriminant analysis techniques both in terms of performance rates with test data sets (2-3 per cent better) and in qualitative correlation with non-depth-matched core. We illustrate with the Hole 792E data how vital it is to have a system that permits the number and membership of training classes to be changed as analysis proceeds. The initial classification for Hole 792E evolved from a five-class to a three-class and then to a four-class scheme with resultant classification performance rates for the back-propagation neural network method of 83, 84 and 93 per cent respectively.

  8. Transient dynamics study on casing deformation resulted from lost circulation in low-pressure formation in the Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Chen Shen

    2015-10-01

    Full Text Available In the course of completion of an ultra-deep well newly drilled in the Yuanba Gasfield, Sichuan Basin, long-section and large-scale deformation occurred in the heavy casing section and nickel base alloy casing section of the sealing Triassic limestone interval, so a new hole had to be sidetracked, which impels us to rediscover the applicability of conventional drilling and completion technology in ultra-deep wells. In this paper, based on the borehole condition and field operation data of this well, the borehole pressure field variation initiated by lost circulation in the low-pressure formation was analyzed from the perspective of dynamics, then, the variation pattern of differential pressure inside and outside the well bore at different time intervals was depicted, and the primary cause of such complication was theoretically revealed, i.e., the pressure wave generated by instant lost circulation in low-pressure formation would result in redistribution of pressure inside the downhole confined space, and then the crush of casing in the vicinity of local low-pressure areas. Pertinent proposals for avoiding these kinds of engineering complexities were put forward: ① when downhole sealing casing operation is conducted in open hole completion, liner completion or perforated hole, the potential damage of lost circulation to casing should be considered; ② the downhole sealing point and sealing mode should be selected cautiously: the sealing point had better be selected in the section with good cementing quality or as close to the casing shoe as possible, and the sealing mode can be either cement plug or mechanical bridge plug. This paper finally points out that good cementing quality plays an important role in preventing this type of casing deformation.

  9. Poster abstract: Water level estimation in urban ultrasonic/passive infrared flash flood sensor networks using supervised learning

    KAUST Repository

    Mousa, Mustafa

    2014-04-01

    This article describes a machine learning approach to water level estimation in a dual ultrasonic/passive infrared urban flood sensor system. We first show that an ultrasonic rangefinder alone is unable to accurately measure the level of water on a road due to thermal effects. Using additional passive infrared sensors, we show that ground temperature and local sensor temperature measurements are sufficient to correct the rangefinder readings and improve the flood detection performance. Since floods occur very rarely, we use a supervised learning approach to estimate the correction to the ultrasonic rangefinder caused by temperature fluctuations. Preliminary data shows that water level can be estimated with an absolute error of less than 2 cm. © 2014 IEEE.

  10. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  11. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    Science.gov (United States)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2018-06-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  12. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    Science.gov (United States)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2017-07-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  13. Observations and predictions of wave runup, extreme water levels, and medium-term dune erosion during storm conditions

    OpenAIRE

    Suanez , Serge ,; Cancouët , Romain; Floc'h , France; Blaise , Emmanuel; Ardhuin , Fabrice; Filipot , Jean-François; Cariolet , Jean-Marie; Delacourt , Christophe

    2015-01-01

    Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France) over the past decade (2004–2014) has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i) astronomic tide; (ii) storm surge; and (iii) vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide wa...

  14. Deep bore well water level fluctuations in the Koyna region, India: the presence of a low order dynamical system in a seismically active environment

    Directory of Open Access Journals (Sweden)

    D. V. Ramana

    2009-05-01

    Full Text Available Water level fluctuations in deep bore wells in the vicinity of seismically active Koyna region in western India provides an opportunity to understand the causative mechanism underlying reservoir-triggered earthquakes. As the crustal porous rocks behave nonlinearly, their characteristics can be obtained by analysing water level fluctuations, which reflect an integrated response of the medium. A Fractal dimension is one such measure of nonlinear characteristics of porous rock as observed in water level data from the Koyna region. It is inferred in our study that a low nonlinear dynamical system with three variables can predict the water level fluctuations in bore wells.

  15. Conceptual framework and trend analysis of water-level responses to hydrologic stresses, Pahute Mesa–Oasis Valley groundwater basin, Nevada, 1966-2016

    Science.gov (United States)

    Jackson, Tracie R.; Fenelon, Joseph M.

    2018-05-31

    This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.

  16. An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate

    Directory of Open Access Journals (Sweden)

    A. Sterl

    2009-09-01

    Full Text Available The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.

  17. Long-Term Ground-Water Levels and Transmissivity in the Blackstone River Basin, Northern Rhode Island

    Science.gov (United States)

    Eggleston, Jack R.; Church, Peter E.; Barbaro, Jeffrey R.

    2007-01-01

    Ground water provides about 7.7 million gallons per day, or 28 percent of total water use in the Rhode Island part of the Blackstone River Basin. Primary aquifers in the basin are stratified glacial deposits, composed mostly of sand and gravel along valley bottoms. The ground-water and surface-water system in the Blackstone River Basin is under stress due to population growth, out-of-basin water transfers, industrialization, and changing land-use patterns. Streamflow periodically drops below the Aquatic Base Flow standard, and ground-water withdrawals add to stress on aquatic habitat during low-flow periods. Existing hydrogeologic data were reviewed to examine historical water-level trends and to generate contour maps of water-table altitudes and transmissivity of the sand and gravel aquifer in the Blackstone River Basin in Rhode Island. On the basis of data from four long-term observation wells, water levels appear to have risen slightly in the study area during the past 55 years. Analysis of available data indicates that increased rainfall during the same period is a likely contributor to the water-level rise. Spatial patterns of transmissivity are shown over larger areas and have been refined on the basis of more detailed data coverage as compared to previous mapping studies.

  18. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  19. Modal-split effects of climate change: The effects of low water levels on the competitive position of inland waterway transport in the River Rhine area

    NARCIS (Netherlands)

    Jonkeren, O.E.; Jourquin, B.; Rietveld, P.

    2011-01-01

    Future climate change is expected to affect inland waterway transport in most main natural waterways in Europe. For the river Rhine it is expected that, in summer, more and longer periods with low water levels will occur. In periods of low water levels inland waterway vessels have to reduce their

  20. Human impacts on tides overwhelm the effect of sea level rise on extreme water levels in the Rhine-Meuse delta

    NARCIS (Netherlands)

    Vellinga, N. E.; Hoitink, A. J F; van der Vegt, M.; Zhang, W.; Hoekstra, P.

    2014-01-01

    With the aim to link tidal and subtidal water level changes to human interventions, 70. years of water level data for the Rhine-Meuse tidal river network is analysed using a variety of statistical methods. Using a novel parameterization of probability density functions, mean high and low water

  1. Water pressure control device for control rod drive

    International Nuclear Information System (INIS)

    Sato, Hideyuki.

    1981-01-01

    Purpose: To minimize the fluctuations in the reactor water level upon occurrence of abnormality by inputting the level signal of the reactor to an arithmetic unit for controlling the pressure of control rod drive water to thereby enable effective reactor level control. Constitution: Signal from a flow rate transmitter is inputted into an arithmetic unit to perform constant flow rate control upon normal operation. While on the other hand, if abnormality occurs such as feedwater pump trips, the arithmetic unit is switched from the constant flow rate control to the reactor water level control. Reactor water level signal is inputted into the arithmetic unit and the control valve is most suitably controlled, whereby water is fed from CST to the reactor by way of control rod drive water system to secure the reactor water level if feedwater to the reactor is interrupted by loss of coolants on the feedwater system. Since this enables to minimize the fluctuations in the reactor water level upon abnormality, the reactor water level can be controlled most suitably by the reactor water level signal. (Moriyama, K.)

  2. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park

    Science.gov (United States)

    Ritter, A.; Muñoz-Carpena, R.

    2006-02-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the interaction between the shallow aquifer and surface water is a key component for fine-tuning the process. The Frog Pond is an intensively instrumented agricultural 2023 ha area adjacent to ENP. The interactions among 21 multivariate daily time series (ground and surface water elevations, rainfall and evapotranspiration) available from this area were studied by means of dynamic factor analysis, a novel technique in the field of hydrology. This method is designed to determine latent or background effects governing variability or fluctuations in non-stationary time series. Water levels in 16 wells and two drainage ditch locations inside the area were selected as response variables, and canal levels and net recharge as explanatory variables. Elevations in the two canals delimiting the Frog Pond area were found to be the main factors explaining the response variables. This influence of canal elevations on water levels inside the area was complementary and inversely related to the distance between the observation point and each canal. Rainfall events do not affect daily water levels significantly but are responsible for instantaneous or localized groundwater responses that in some cases can be directly associated with the risk of flooding. This close coupling between surface and groundwater levels, that corroborates that found by other authors using different methods, could hinder on-going environmental restoration efforts in the area by bypassing the function of wetlands and other surface features. An empirical model with a reduced set of parameters was successfully developed and validated in the area by interpolating the results from the dynamic factor analysis across the spatial domain (coefficient of efficiency across the domain: 0.66-0.99). Although

  3. Multi variate regression model of the water level and production rate time series of the geothermal reservoir Waiwera (New Zealand)

    Science.gov (United States)

    Kühn, Michael; Schöne, Tim

    2017-04-01

    Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a water management plan was deployed. The "Auckland Council" established guidelines to enable a sustainable management of the resource [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. For a sustainable water management, it is necessary to be able to forecast the water level as a function of the production rates in the production wells. The best predictions are provided by a multivariate regression model of the water level and production rate time series, which takes into account the production rates of individual wells. It is based on the inversely proportional relationship between the independent variable (production rate) and the dependent variable (measured water level). In production scenarios, a maximum total production rate of approx. 1,100 m3 / day is determined in order to comply with the guidelines of the "Auckland Council". [1] Kühn M., Stöfen H. (2005) A reactive flow model of the geothermal reservoir Waiwera, New Zealand. Hydrogeology Journal 13, 606-626, doi: 10.1007/s10040-004-0377-6 [2] Kühn M., Altmannsberger C. (2016) Assessment of data driven and process based water management tools for

  4. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  5. Mud pressure simulation on large horizontal directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Rafael R.; Avesani Neto, Jose O.; Martins, Pedro R.R.; Rocha, Ronaldo [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo (IPT), Sao Paulo, SP (Brazil)

    2009-07-01

    Horizontal Directional Drilling (HDD) is being extensively used in Brazil for installation of oil and gas pipelines. This trenchless technology is currently used in crossings of water bodies, environmental sensitive areas, densely populated areas, areas prone to mass movement and anywhere the traditional technology is not suitable because of the risks. One of the unwanted effects of HDD is collapsing of the soil surrounding the bore-hole, leading to loss of fluid. This can result in problems such as reducing the drilling efficiency, ground heave, structures damage, fluid infiltration and other environmental problems. This paper presents four simulations of down-hole fluid pressures which represents two different geometrical characteristics of the drilling and two different soils. The results showed that greater depths are needed in longer drillings to avoid ground rupture. Thus the end section of the drilling often represents the critical stage. (author)

  6. A three-region model for tracking a two-phase mixture water level in the micro-simulator

    International Nuclear Information System (INIS)

    Seok, Ho

    1994-02-01

    -site transient analysis, and engineering studies. The present simulator consists of three functional modules: plant module, graphic module, and man-machine interaction module. The plant module includes models for core kinetics, reactor coolant system, steam generator, main steam line, BOP, and control and protection system. Each of the model is optimized to obtain the capability of real-time simulation. For simulating the thermal-hydraulic behavior of reactor coolant system in the plant module, FISA-2/WS (Fully-Implicit Safety Analysis-2/WorkStation) is developed, which adopts an implicit algorithms for their inherent stability and efficiency in solving the stiff set of equations resulted from component models. It allows the use of a larger time-step than the Courant limit without any numerical instability, and it also guarantees reasonable accuracy. And the level tracking logic and the peak cladding temperature calculation model on the basis of the simple analytical model are used to track the two-phase water level in the core and to predict the cladding temperature in the uncovered region of the core under accidents, respectively. The graphic module is designed to provide the user with more information at a glance by dynamically displaying schematic diagrams of the systems, symbols indicating the operating status of each component, trend curves, and the main control room. Especially, the CONTROL ROOM menu is designed to enable user to perform his specific actions through the schematic diagrams of the main control panels in the similar way in which operators do them in the main control room for the KO-RI nuclear power plant unit 2. In each schematic diagram of 5 sections the indicators and alarms display the various operating parameter, alarm signals, and trip signals, and the user can control the various components by operating the corresponding switches in each section through the mouse. Also, user can initiate his actions through various system diagrams. As tools for the man

  7. Water level effect on herbaceous plant assemblages at an artificial reservoir-Lago Azul State Park, Southern Brazil

    Directory of Open Access Journals (Sweden)

    D. C. Souza

    Full Text Available This study presents the effect of water level variation on the assemblages of herbaceous species in Mourão I Reservoir, Lago Azul State Park, Southern Brazil. The structure and distribution of populations was examined in February (dry period and April (rainy period, 2011, in two transects. These transects started at the forest edge towards the center of the lake. The end of the transect coincided with the end of the plants within the lake. On every two meters along of the transects we sampled a wooden square of 0.25 m2 for species biomass analysis.The macrophyte stand was composed entirely of emergent species. Considering the periods, most species were less frequent in the rainy period (April, but Ipomea ramosissima (Poir. Choisy, Commelina nudiflora L., Eleocharis acuntagula (Roxb. Schult. and Verbena litorales (Kunth. had their frequency increased during this period, probably due to their resistance. The influence of flood as measured by the NMDS point out that both before and after the flood, there are plots with distinct compositions and biomass. The water level variation affects the dynamics of plant composition and structure in marginal areas of the Reservoir.

  8. Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level

    Science.gov (United States)

    Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki

    2017-10-01

    Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.

  9. Accuracy Enhancement for Forecasting Water Levels of Reservoirs and River Streams Using a Multiple-Input-Pattern Fuzzification Approach

    Directory of Open Access Journals (Sweden)

    Nariman Valizadeh

    2014-01-01

    Full Text Available Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS is one of the most accurate models used in water resource management. Because the membership functions (MFs possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.

  10. Accuracy enhancement for forecasting water levels of reservoirs and river streams using a multiple-input-pattern fuzzification approach.

    Science.gov (United States)

    Valizadeh, Nariman; El-Shafie, Ahmed; Mirzaei, Majid; Galavi, Hadi; Mukhlisin, Muhammad; Jaafar, Othman

    2014-01-01

    Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.

  11. Optimal choice: assessing the probability of additional damage to buildings caused by water level changes of larger areas

    Science.gov (United States)

    Bijnagte, J. L.; Luger, D.

    2012-12-01

    In the Northern parts of the Netherlands exploration of natural gas reservoirs causes subsidence over large areas. As a consequence, the water levels in canals and polders have to be adjusted over time in order to keep the groundwater levels at a constant depth relative to the surface level. In the middle of the subsidence area it is relatively easy to follow the settlements by a uniform lowering of the water level. This would however result in a relative lowering of the groundwater table at the edges of the subsidence area. Given the presence of soft compressible soils, this would result in induced settlements. For buildings in these areas this will increase the chance of damage. A major design challenge lies therefore in the optimisation of the use of compartments. The more compartments the higher the cost therefore the aim is to make compartments in the water management system that are as large as possible without causing inadmissible damage to buildings. In order to asses expected damage from different use of compartments three tools are needed. The first is a generally accepted method of damage determination, the second a method to determine the contribution to damage of a new influence, e.g. a groundwater table change. Third, and perhaps most importantly, a method is needed to evaluate effects not for single buildings but for larger areas. The first need is covered by established damage criteria like those of Burland & Wroth or Boscardin & Cording. Up until now the second and the third have been problematic. This paper presents a method which enables to assign a contribution to the probability of damage of various recognised mechanisms such as soil and foundation inhomogeneity, uneven loading, ground water level changes. Shallow subsidence due to peat oxidation and deep subsidence due to reservoir depletion can be combined. In order to address the third issue: evaluation of effects for larger areas, the method uses a probabilistic approach. Apart from a

  12. The Coupling Effect of Rainfall and Reservoir Water Level Decline on the Baijiabao Landslide in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Nenghao Zhao

    2017-01-01

    Full Text Available Rainfall and reservoir level fluctuation are two of the main factors contributing to reservoir landslides. However, in China’s Three Gorges Reservoir Area, when the reservoir water level fluctuates significantly, it comes at a time of abundant rainfall, which makes it difficult to distinguish which factor dominates the deformation of the landslide. This study focuses on how rainfall and reservoir water level decline affect the seepage and displacement field of Baijiabao landslide spatially and temporally during drawdown of reservoir water level in the Three Gorges Reservoir Area, thus exploring its movement mechanism. The monitoring data of the landslide in the past 10 years were analyzed, and the correlation between rainfall, reservoir water level decline, and landslide displacement was clarified. By the numerical simulation method, the deformation evolution mechanism of this landslide during drawdown of reservoir water level was revealed, respectively, under three conditions, namely, rainfall, reservoir water level decline, and coupling of the above two conditions. The results showed that the deformation of the Baijiabao landslide was the coupling effect of rainfall and reservoir water level decline, while the latter effect is more pronounced.

  13. Blood pressure

    Science.gov (United States)

    Normal blood pressure is important for proper blood flow to the body's organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...

  14. Water-level trends and potentiometric surfaces in the Nacatoch Aquifer in northeastern and southwestern Arkansas and in the Tokio Aquifer in southwestern Arkansas, 2014–15

    Science.gov (United States)

    Rodgers, Kirk D.

    2017-09-20

    The Nacatoch Sand in northeastern and southwestern Arkansas and the Tokio Formation in southwestern Arkansas are sources of groundwater for agricultural, domestic, industrial, and public use. Water-level altitudes measured in 51 wells completed in the Nacatoch Sand and 42 wells completed in the Tokio Formation during 2014 and 2015 were used to create potentiometric-surface maps of the two areas. Aquifers in the Nacatoch Sand and Tokio Formation are hereafter referred to as the Nacatoch aquifer and the Tokio aquifer, respectively.Potentiometric surfaces show that groundwater in the Nacatoch aquifer flows southeast toward the Mississippi River in northeastern Arkansas. Groundwater flow direction is towards the south and southeast in Hempstead, Little River, and Nevada Counties in southwestern Arkansas. An apparent cone of depression exists in southern Clark County and likely alters groundwater flow from a regional direction toward the depression.In southwestern Arkansas, potentiometric surfaces indicate that groundwater flow in the Tokio aquifer is towards the city of Hope. Northwest of Hope, an apparent cone of depression exists. In southwestern Pike, northwestern Nevada, and northeastern Hempstead Counties, an area of artesian flow (water levels are at or above land surface) exists.Water-level changes in wells were identified using two methods: (1) linear regression analysis of hydrographs from select wells with a minimum of 20 years of water-level data, and (2) a direct comparison between water-level measurements from 2008 and 2014–15 at each well. Of the six hydrographs analyzed in the Nacatoch aquifer, four indicated a decline in water levels. Compared to 2008 measurements, the largest rise in water levels was 35.14 feet (ft) in a well in Clark County, whereas the largest decline was 14.76 ft in a well in Nevada County, both located in southwestern Arkansas.Of the four hydrographs analyzed in the Tokio aquifer, one indicated a decline in water levels, while

  15. Impact of maintenance of floodplains of the Vistula River on high water levels on the section from Włocławek to Toruń

    Directory of Open Access Journals (Sweden)

    Dariusz Gąsiorowski

    2013-09-01

    Full Text Available This article describes the methodology of hydraulic calculations to estimate the water levels in open channels for steady gradually varied flow. The presented method has been used to analyse the water level on the Vistula River from Włocławek cross-section to Toruń cross-section. The HEC-RAS modelling system has been used for parameterization of the river channel and floodplains, as well as for flow simulation. The results obtained have been the basis for assessing the impact of maintenance of floodplains on water level during maximum discharges.

  16. A multi-source satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data

    Directory of Open Access Journals (Sweden)

    N. M. Velpuri

    2012-01-01

    Full Text Available Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of inter- and intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellite-driven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE of 0.80 during the validation period (2004–2009. Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1–2 m. The lake level fluctuated in the range up to 4 m between the years 1998–2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated

  17. Water level, vegetation composition, and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation

    Science.gov (United States)

    Minke, Merten; Augustin, Jürgen; Burlo, Andrei; Yarmashuk, Tatsiana; Chuvashova, Hanna; Thiele, Annett; Freibauer, Annette; Tikhonov, Vitalij; Hoffmann, Mathias

    2016-07-01

    Peat extraction leaves a land surface with a strong relief of deep cutover areas and higher ridges. Rewetting inundates the deep parts, while less deeply extracted zones remain at or above the water level. In temperate fens the flooded areas are colonized by helophytes such as Eriophorum angustifolium, Carex spp., Typha latifolia or Phragmites australis dependent on water depth. Reeds of Typha and Phragmites are reported as large sources of methane, but data on net CO2 uptake are contradictory for Typha and rare for Phragmites. Here, we analyze the effect of vegetation, water level and nutrient conditions on greenhouse gas (GHG) emissions for representative vegetation types along water level gradients at two rewetted cutover fens (mesotrophic and eutrophic) in Belarus. Greenhouse gas emissions were measured campaign-wise with manual chambers every 2 to 4 weeks for 2 years and interpolated by modelling. All sites had negligible nitrous oxide exchange rates. Most sites were carbon sinks and small GHG sources. Methane emissions generally increased with net ecosystem CO2 uptake. Mesotrophic small sedge reeds with water table around the land surface were small GHG sources in the range of 2.3 to 4.2 t CO2 eq. ha-1 yr-1. Eutrophic tall sedge - Typha latifolia reeds on newly formed floating mats were substantial net GHG emitters in the range of 25.1 to 39.1 t CO2 eq. ha-1 yr. They represent transient vegetation stages. Phragmites reeds ranged between -1.7 to 4.2 t CO2 eq. ha-1 yr-1 with an overall mean GHG emission of 1.3 t CO2 eq. ha-1 yr-1. The annual CO2 balance was best explained by vegetation biomass, which includes the role of vegetation composition and species. Methane emissions were obviously driven by biological activity of vegetation and soil organisms. Shallow flooding of cutover temperate fens is a suitable measure to arrive at low GHG emissions. Phragmites australis establishment should be promoted in deeper flooded areas and will lead to moderate, but

  18. Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué

    Directory of Open Access Journals (Sweden)

    Sakaros Bogning

    2018-02-01

    Full Text Available Radar altimetry is now commonly used for the monitoring of water levels in large river basins. In this study, an altimetry-based network of virtual stations was defined in the quasi ungauged Ogooué river basin, located in Gabon, Central Africa, using data from seven altimetry missions (Jason-2 and 3, ERS-2, ENVISAT, Cryosat-2, SARAL, Sentinel-3A from 1995 to 2017. The performance of the five latter altimetry missions to retrieve water stages and discharges was assessed through comparisons against gauge station records. All missions exhibited a good agreement with gauge records, but the most recent missions showed an increase of data availability (only 6 virtual stations (VS with ERS-2 compared to 16 VS for ENVISAT and SARAL and accuracy (RMSE lower than 1.05, 0.48 and 0.33 and R² higher than 0.55, 0.83 and 0.91 for ERS-2, ENVISAT and SARAL respectively. The concept of VS is extended to the case of drifting orbits using the data from Cryosat-2 in several close locations. Good agreement was also found with the gauge station in Lambaréné (RMSE = 0.25 m and R2 = 0.96. Very good results were obtained using only one year and a half of Sentinel-3 data (RMSE < 0.41 m and R2 > 0.89. The combination of data from all the radar altimetry missions near Lamabréné resulted in a long-term (May 1995 to August 2017 and significantly improved water-level time series (R² = 0.96 and RMSE = 0.38 m. The increase in data sampling in the river basin leads to a better water level peak to peak characterization and hence to a more accurate annual discharge over the common observation period with only a 1.4 m3·s−1 difference (i.e., 0.03% between the altimetry-based and the in situ mean annual discharge.

  19. A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data

    Science.gov (United States)

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2012-01-01

    Lake Turka