WorldWideScience

Sample records for water-insoluble functional copolymers

  1. Improving the controlled release of water-insoluble emodin from amino-functionalized mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yunqiang; Wang Chunfeng [Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry, Shandong Polytechnic University, Jinan 250353, Shandong (China); Zhou Guowei, E-mail: guoweizhou@hotmail.com [Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry, Shandong Polytechnic University, Jinan 250353, Shandong (China); Wu Yue; Chen Jing [Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry, Shandong Polytechnic University, Jinan 250353, Shandong (China)

    2012-06-15

    Several types of amino-functionalized mesoporous silica, including F5-SBA-15, F10-SBA-15, and F15-SBA-15 were prepared through co-condensation of tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES) in varying molar ratios (5 mol%, 10 mol%, and 15 mol%) via a hydrothermal process. The materials obtained were characterized by means of small-angle X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, N{sub 2} adsorption-desorption, Fourier transformed infrared spectra, and X-ray photoelectron spectroscopy. Increasing APTES molar ratios decreased the degree of orderliness of the functionalized mesoporous silica. Pure and amino-functionalized SBA-15 samples were employed as supports for the controlled release of water-insoluble drug emodin. Loading experiments showed that drug loading capacities mainly depended on the surface areas and pore diameters of the carriers. Controlled release profiles of emodin-loaded samples were studied in phosphate buffered saline (PBS, pH 7.4), and results indicated that the emodin release rate could be controlled by surface amino-functionalized carriers. Emodin loaded on functionalized mesoporous supports exhibited a lower release rate than that of loaded on pure SBA-15, emodin loaded on F10-SBA-15 showed the smallest release amount (71.74 wt%) after stirring in PBS for 60 h. Findings suggest that functionalized mesoporous SBA-15 is a promising carrier for achieving prolonged release time periods.

  2. Effects of sulfation on the physicochemical and functional properties of a water-insoluble polysaccharide preparation from Ganoderma lucidum.

    Science.gov (United States)

    Liu, Wei; Wang, Hengyu; Yao, Wenbing; Gao, Xiangdong; Yu, Liangli Lucy

    2010-03-24

    The sulfation of a water-insoluble Ganoderma lucidum polysaccharide (GLP) was successfully carried out with chlorosulfonic acid-pyridine in dimethyl formamide to prepare three sulfated GLP derivatives, named sGLP1, sGLP2, and sGLP3. The chemical structure of the sulfated GLP was confirmed by Fourier transform infrared and (13)C NMR analyses. The sGLPs were evaluated for their water solubility, degree of substitution (DS), antioxidant properties, and bile acid-binding capacities. The results showed that sulfation improved the water solubility of GLP and increased its scavenging capacities against hydroxyl and superoxide anion radicals, hydrogen peroxide-scavenging activity, Fe(II) chelating ability, reducing power, and bile acid-binding capacities. It was also observed that the DS may influence the physicochemical and functional properties of sGLPs. For instance, the sulfated GLP with the lowest DS had the greatest bile acid-binding capacity, and the sGLP that had the highest DS showed the lowest bile acid-binding ability under the experimental conditions. The results from this study suggested that sulfation is a possible approach to obtain novel water-soluble derivatives of GLP with improved physicochemical, functional, and biological properties for potential utilization in functional foods or supplemental products.

  3. Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid.

    Science.gov (United States)

    Tu, Wenwen; Lei, Jianping; Ju, Huangxian

    2009-01-01

    A functional composite of single-walled carbon nanotubes (SWNTs) with hematin, a water-insoluble porphyrin, was first prepared in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the Fe(III)/Fe(II) couple. The composite-[BMIM][PF(6)]-modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF(6)], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0x10(-7) to 1.4x10(-4) M. The detection limit was 3.8x10(-7) M at a signal-to-noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water-insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.

  4. Water-insoluble fiber-rich fraction from pineapple peel improves intestinal function in hamsters: evidence from cecal and fecal indicators.

    Science.gov (United States)

    Huang, Ya-Ling; Tsai, Yung-Hsiang; Chow, Chau-Jen

    2014-04-01

    Pineapple peel, a byproduct of agricultural processing, contains high levels of water-insoluble fiber-rich fraction (WIFF) (~42%, wt/wt). Our previous work has demonstrated that cellulose, hemicellulose (xylan and xyloglucan), and pectic substances are the major polysaccharides of pineapple-peel WIFF. Based on its chemical composition and unique characteristics, we hypothesized that daily consumption of WIFF would improve intestinal function in hamsters. Male Golden Syrian hamsters were fed a diet supplemented with either 5% cellulose or various amounts of WIFF (2.5%, 5%, or 10%). Activities of fecal bacterial enzymes, short-chain fatty acid concentrations, and microbial number in the cecal content, and also biochemical indicators in the cecal and feces of hamsters, were evaluated in all groups. The supplementation of WIFF in a diet at a level of 2.5% significantly (P pineapple-peel WIFF could be a promising candidate for a functional ingredient beneficial to human intestinal function and health. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-04-01

    Full Text Available Lihua Zhang,1 Wufu Zhu,2 Qisi Lin,1 Jin Han,1 Liqun Jiang,1 Yanzhuo Zhang1,3 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People’s Republic of China; 2School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People’s Republic of China; 3Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical College, Xuzhou, People’s Republic of China Abstract: The objective of the present study was to demonstrate that a novel hydroxypropyl-β-cyclodextrin functionalized calcium carbonate (HP-β-CD/CC based amorphous solid dispersion (ASD can be used to increase the solubility and oral bioavailability of water-insoluble drugs. Irbesartan (IRB was selected as a model compound and loaded into the nanoporous HP-β-CD/CC matrix using an immersion method. The IRB-loaded HP-β-CD/CC formulation was characterized by various analytical techniques, such as specific surface area analysis, scanning electron microscopy (SEM, dynamic light scattering (DLS, powder X-ray diffraction (PXRD, and differential scanning calorimetry (DSC. Analyses with PXRD and DSC confirmed that IRB was fully converted into the amorphous form in the nanopores of HP-β-CD/CC. From the solubility and dissolution tests, it was observed that the aqueous solubility and dissolution rate of IRB-loaded HP-β-CD/CC were increased significantly compared with those of pure IRB and IRB-loaded mesoporous silica. Likewise, the IRB-loaded HP-β-CD/CC formulation exhibited better absorption compared with that of the commercially available IRB capsules in beagle dogs. The mean peak plasma concentration (Cmax and the area under the mean plasma concentration–time curve (AUC[0→48] of IRB-loaded HP-β-CD/CC were 1.56- and 1.52-fold higher than that of the commercial product, respectively. Furthermore, the IRB-loaded HP-β-CD/CC formulation exhibited excellent stability against re-crystallization. These results clearly

  6. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and

  7. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  8. NANOSTRUCTURES OF FUNCTIONAL BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Guojun Liu

    2000-01-01

    Nanostructure fabrication from block copolymers in my group normally involves polymer design, synthesis, selfassembly, selective domain crosslinking, and sometimes selective domain removal. Preparation of thin films with nanochannels was used to illustrate the strategy we took. In this particular case, a linear triblock copolymer polyisopreneblock-poly(2-cinnamoylethyl methacrylate)-block-poly(t-butyl acrylate), PI-b-PCEMA-b-PtBA, was used. Films, 25 to50μm thick, were prepared from casting on glass slides a toluene solution of PI-b-PCEMA-b-PtBA and PtBA homopolymer,hPtBA, where hPtBA is shorter than the PtBA block. At the hPtBA mass fraction of 20% relative to the triblock or the total PtBA (hPtBA and PtBA block) volume fraction of 0.44, hPtBA and PtBA formed a seemingly continuous phase in the matrix of PCEMA and PI. Such a block segregation pattern was locked in by photocrosslinking the PCEMA domain. Nanochannels were formed by extracting out hPtBA with solvent. Alternatively, larger channels were obtained from extracting out hPtBA and hydrolyzing the t-butyl groups of the PtBA block. Such membranes were not liquid permeable but had gas permeability constants ~6 orders of magnitude higher than that of low-density polyethylene films.

  9. 21 CFR 177.1400 - Hydroxyethyl cellulose film, water-insoluble.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydroxyethyl cellulose film, water-insoluble. 177... cellulose film, water-insoluble. Water-insoluble hydroxyethyl cellulose film may be safely used for... cellulose film consists of a base sheet manufactured by the ethoxylation of cellulose under...

  10. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed...... functional nanoporous polymers based on nanoporous 1,2- polybuatdiene 1,2-PB, which is derived from a 1,2-PB-b-PDMS diblock copolymer precursor. As a result, nanoporous 1,2-PB with pores decorated of polyacrylates, sulfonated polymers and poly(ethylene glycol) are created. A method of vapor phase deposition...... has also been generated to obtain nanoporous polymers with functional coatings on pore walls. Vapor phase polymerization of pyrrole is performed to incorporate an ultra thin film of polypyrrole into nanoporous 1,2-PB. The preliminary test shows that nanoporous 1,2-PB gains conductivity. Generally...

  11. Water-insoluble Silk Films with Silk I Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  12. Polymeric Nanosuspensions for Enhanced Dissolution of Water Insoluble Drugs

    Directory of Open Access Journals (Sweden)

    Roya Yadollahi

    2013-01-01

    Full Text Available The aim of the present research is to formulate and evaluate polymeric nanosuspensions containing three model water insoluble drugs, nifedipine (NIF, carbamazepine (CBZ, and ibuprofen (IBU with various physicochemical properties. The nanosuspensions were prepared from hydroxypropyl methylcellulose (HPMC and polyvinylpyrrolidone (PVP by a cosolvent technique with polyethylene glycol (PEG-300 and water as the cosolvents. Physicochemical and morphological characteristics of the nanosuspensions (particle size, polydispersity index, and crystallinity have been correlated with the drug release behaviour. The effects of polymer, drug ratio on the physical, morphological, and dissolution characteristics of the drugs are reported. Drug release is significantly enhanced from the nanosuspensions; for example, the maximum NIF, IBU, and CBZ concentrations after 8-hour dissolution are increased approximately 37, 2, and 1.2 times, respectively, in comparison with the pure powdered drugs. Based on this solubilization enhancement performance, the nanosuspensions have potential for increasing the orally dosed bioavailability of NIF, IBU, and CBZ.

  13. Functional silicone elastomers via novel siloxane copolymers and chain extenders

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    of siloxane copolymers[1] (via the tris(pentafluorophenyl)borane catalysed Piers-Rubinsztajn reaction[2]), which allows for the attachment of functional molecules through copper-catalysed azide-alkyne 1,3-dipolar cycloaddition (CuAAC)[3]. The synthesised copolymers allow for a high degree of chemical freedom...

  14. New adhesive systems based on functionalized block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Kent, M.; Saunders, R.; Hurst, M.; Small, J.; Emerson, J.; Zamora, D.

    1997-05-01

    The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has inherently poor bonding, such as the nickel/silicone interface, and for systems involving metals and alloys which form oxides very rapidly, such as aluminum and stainless steel, where bonding strategies involve stabilizing the native oxide.

  15. Sulfated modification, characterization and property of a water-insoluble polysaccharide from Ganoderma atrum.

    Science.gov (United States)

    Zhang, Hui; Wang, Jun-Qiao; Nie, Shao-Ping; Wang, Yuan-Xing; Cui, Steve W; Xie, Ming-Yong

    2015-08-01

    Sulfated modification was carried out to modify a water-insoluble polysaccharide from Ganoderma atrum (AGAP). The effects of sulfation on structure, physicochemical and functional properties of AGAP were investigated. Three sulfated derivatives were prepared, designated as S-1, S-2 and S-3 with degree of substitution (DS) of 0.35, 0.74 and 1.14, respectively. AGAP was elucidated as an α-(1→3)-glucan with few branches terminated by single mannose or xylose residues. The molecular weight (Mw) and radius of gyration (Rg) were estimated to be 1665 kDa and 65.49 nm, respectively. After sulfated modification, non-selective sulfation occurred preferably at O-6, partially at O-2 and O-4 positions of the glucosyl residues. The water-solubility of the derivatives was significantly improved in a DS-dependent manner. Mw of the derivatives showed a sharp decrease, and the chain conformation was estimated to be expanded stiff in phosphate buffer. In vitro tests showed that sulfated modification improved its antioxidant activities and anti-proliferative ability against S-180 tumor cells. This study suggested that sulfated modification was an effective approach to improve the water-solubility and functional properties of insoluble polysaccharides.

  16. Liposomes as vehicles for water insoluble platinum-based potential drug

    DEFF Research Database (Denmark)

    Kaluđerović, Goran N; Dietrich, Andrea; Kommera, Harish

    2012-01-01

    Formulation of liposome delivery system loaded with water insoluble 2-(4-(tetrahydro-2H-pyran-2-yloxy)-undecyl)-propane-1,3-diamminedichloroplatinum(II), LipoTHP-C11 was carried out. The particle size distributions were determined by dynamic light scattering and asymmetrical flow field-flow fract...

  17. Control of Block Copolymer Morphology through End-functional Groups

    Science.gov (United States)

    Jo, Gyuha; Park, Moon Jeong

    2014-03-01

    Recently, poly(ethylene oxide) (PEO)-containing polymer electrolytes have attracted significant attention to be applied for lithium batteries. As the realization of high mechanical strength from the polymer electrolyte becomes of critical importance in high-energy lithium batteries, much effort has been devoted to developing PEO-based block copolymers comprising mechanically robust polymer chains. Interest in this topic has been further stimulated by multiple observations of significant electrolytic conductivity enhancement imparted by microphase separation of block copolymers. In the present study, we report an intriguing methodology for modulating the morphology of poly(styrene-ethylene oxide) (PS-PEO) block copolymers with a single ionic group tethered at the chain end of PEO. Unique intra- and inter-chain interactions deduced from the end functional group afforded enriched nanostructures, i.e. disorder, lamellae, hexagonal cylinder, and gyroid, with significant differences in conductivities depending on lithium salt concentration. In particular, a gyorid morphology with a twofold-enhanced lithium ion transport efficiency was found for the end-functionalized PS-PEO block copolymer, attributed to the structural advantages of the gyroid having co-continuous ionic channels.

  18. Application of water-insoluble polymers to orally disintegrating tablets treated by high-pressure carbon dioxide gas.

    Science.gov (United States)

    Ito, Yoshitaka; Maeda, Atsushi; Kondo, Hiromu; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-09-10

    The phase transition of pharmaceutical excipients that can be induced by humidifying or heating is well-known to increase the hardness of orally disintegrating tablets (ODTs). However, these conditions are not applicable to drug substances that are chemically unstable against such stressors. Here, we describe a system which enhances the hardness of tablets containing water-insoluble polymers by using high-pressure carbon dioxide (CO2). On screening of 26 polymeric excipients, aminoalkyl methacrylate copolymer E (AMCE) markedly increased tablet hardness (+155N) when maintained in a high-pressure CO2 environment. ODTs containing 10% AMCE were prepared and treatment with 4.0MPa CO2 gas at 25°C for 10min increased the hardness to +30N, whose level corresponded to heating at 70°C for 720min. In addition, we confirmed the effects of CO2 pressure, temperature, treatment time, and AMCE content on the physical properties of ODTs. Optimal pressure of CO2 gas was considered to be approximately 3.5MPa for an AMCE formula, as excessive pressure delayed the disintegration of ODTs. Combination of high-pressure CO2 gas and AMCE is a prospective approach for increasing the tablet hardness for ODTs, and can be conducted without additional heat or moisture stress using a simple apparatus. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Functional materials derived from block copolymer self-assembly

    DEFF Research Database (Denmark)

    Li, Tao

    is to fabricate interconnected and highly ordered metal oxide films by using a nano-porous polymer with gyroid morphology as the template. This unique structure is ideal for the solar cell application where a mesoscopic metal oxide scaffold functions as the electron collection and transport material. Two......The main objective of this project is to explore block copolymer self-assembly for generating functional materials with well-defined morphology on sub-20 nanometer length scale, which can be utilized in many important applications such as solar cells and nanolithography. One of the specific targets......-casting, the block copolymer self-organizes into monolayer packed sphere pattern, without any surface treatment of the substrate and annealing process. Arrays of nano-pillars and nanowells of various materials are fabricated in dry etch processes over wafer scale without defects. We also show an in situ Al2O3 hard...

  20. Rapid Screen for Bacteria Degrading Water-Insoluble, Solid Hydrocarbons on Agar Plates

    OpenAIRE

    1982-01-01

    A rapid procedure was devised for detecting on solid media bacteria able to degrade water-insoluble, solid hydrocarbons such as the polycyclic aromatic hydrocarbons phenanthrene, anthracene, and biphenyl. After Alcaligenes faecalis AFK2 was inoculated on a plate containing mineral salts agar, an ethereal solution of phenanthrene (about 10%, wt/vol) was sprayed on the surface of the plate, and the plate was incubated at 30°C for 2 to 3 days. Colonies showing degradation were surrounded with cl...

  1. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  2. DNA block copolymers: functional materials for nanoscience and biomedicine.

    Science.gov (United States)

    Schnitzler, Tobias; Herrmann, Andreas

    2012-09-18

    We live in a world full of synthetic materials, and the development of new technologies builds on the design and synthesis of new chemical structures, such as polymers. Synthetic macromolecules have changed the world and currently play a major role in all aspects of daily life. Due to their tailorable properties, these materials have fueled the invention of new techniques and goods, from the yogurt cup to the car seat belts. To fulfill the requirements of modern life, polymers and their composites have become increasingly complex. One strategy for altering polymer properties is to combine different polymer segments within one polymer, known as block copolymers. The microphase separation of the individual polymer components and the resulting formation of well defined nanosized domains provide a broad range of new materials with various properties. Block copolymers facilitated the development of innovative concepts in the fields of drug delivery, nanomedicine, organic electronics, and nanoscience. Block copolymers consist exclusively of organic polymers, but researchers are increasingly interested in materials that combine synthetic materials and biomacromolecules. Although many researchers have explored the combination of proteins with organic polymers, far fewer investigations have explored nucleic acid/polymer hybrids, known as DNA block copolymers (DBCs). DNA as a polymer block provides several advantages over other biopolymers. The availability of automated synthesis offers DNA segments with nucleotide precision, which facilitates the fabrication of hybrid materials with monodisperse biopolymer blocks. The directed functionalization of modified single-stranded DNA by Watson-Crick base-pairing is another key feature of DNA block copolymers. Furthermore, the appropriate selection of DNA sequence and organic polymer gives control over the material properties and their self-assembly into supramolecular structures. The introduction of a hydrophobic polymer into DBCs

  3. Controlled Functionalization of Olefin/styrene Copolymers through Free Radical Processes

    NARCIS (Netherlands)

    Passaglia, Elisa; Aglietto, Mauro; Ciardelli, Francesco; Picchioni, Francesco

    2000-01-01

    The functionalization of styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS) and styrene-co-butadiene (SBR) random copolymer by free radical processes is presented. SEBS was functionalized in the melt with diethyl maleate (DEM) and dicumyl peroxide (DCP) as initiator. The functional

  4. A new technique for the encapsulation of water insoluble drugs using ethyl cellulose.

    Science.gov (United States)

    Sheorey, D S; Sai, M S; Dorle, A K

    1991-01-01

    A new technique for encapsulation of water insoluble drugs has been developed utilizing ethyl cellulose as a wall forming material. Ethyl cellulose was dissolved in a water immiscible, volatile organic solvent, containing sulphadiazine as a model drug. This dispersion was emulsified into an aqueous bentonite suspension and phase separation was induced by solvent evaporation. The effect of bentonite concentration, core to coat ratio, organic solvent, speed of agitation and temperature was studied with respect to the microcapsule size and size distribution, drug content, in vitro release and surface characteristics.

  5. Block copolymers : controlling nanostructure to generate functional materials : synthesis, characterization, and engineering

    OpenAIRE

    Epps, Thomas H.; O'Reilly, Rachel K.

    2016-01-01

    n this perspective, we survey recent advances in the synthesis and characterization of block copolymers, discuss several key materials opportunities enabled by block copolymers, and highlight some of the challenges that currently limit further realization of block copolymers in promising nanoscale applications. One significant challenge, especially as the complexity and functionality of designer macromolecules increases, is the requirement of multiple complementary techniques to fully charact...

  6. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    Science.gov (United States)

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances.

  7. Functional silicone copolymers and elastomers with high dielectric permittivity

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    . This was done trough the synthesis of new functionalizable siloxane copolymers [2] that allow for the attachment of high dielectric permittivity molecules through copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions. The synthesised siloxane copolymers were prepared via the tris...

  8. Brain Targeting of a Water Insoluble Antipsychotic Drug Haloperidol via the Intranasal Route Using PAMAM Dendrimer.

    Science.gov (United States)

    Katare, Yogesh K; Daya, Ritesh P; Sookram Gray, Christal; Luckham, Roger E; Bhandari, Jayant; Chauhan, Abhay S; Mishra, Ram K

    2015-09-01

    Delivery of therapeutics to the brain is challenging because many organic molecules have inadequate aqueous solubility and limited bioavailability. We investigated the efficiency of a dendrimer-based formulation of a poorly aqueous soluble drug, haloperidol, in targeting the brain via intranasal and intraperitoneal administration. Aqueous solubility of haloperidol was increased by more than 100-fold in the developed formulation. Formulation was assessed via different routes of administration for behavioral (cataleptic and locomotor) responses, and for haloperidol distribution in plasma and brain tissues. Dendrimer-based formulation showed significantly higher distribution of haloperidol in the brain and plasma compared to a control formulation of haloperidol administered via intraperitoneal injection. Additionally, 6.7 times lower doses of the dendrimer-haloperidol formulation administered via the intranasal route produced behavioral responses that were comparable to those induced by haloperidol formulations administered via intraperitoneal injection. This study demonstrates the potential of dendrimer in improving the delivery of water insoluble drugs to brain.

  9. Characterization and formation mechanism of water-insoluble DNA-matrix induced by UV irradiation.

    Science.gov (United States)

    Yamada, M; Satoh, S; Nomizu, M; Ohkawa, K; Yamamoto, H; Nishi, N

    2001-01-01

    We have prepared water-insoluble and nuclease resistant DNA-matrixes by UV irradiation. The UV-irradiated DNA-matrix could effectively accumulate and condense harmful DNA-intercalating compounds, such as acridine orange (AO) and ethidium bromide (EB), from diluted aqueous solutions. The binding constant of AO and EB for UV-irradiated DNA were determined to be 1.0 (+/- 0.2) x 10(5) M-1 and 6.8 (+/- 0.3) x 10(4) M-1, respectively; values consisted with reported results for non-irradiated DNA. In addition, the agarose gel electrophoresis and AFM measurements indicate that DNA matrix forms an intermolecular cross-linking structure with the radical reaction. The UV-irradiated DNA-matrixes have potential uses as a biomaterial filter for the removal of harmful DNA intercalating compounds.

  10. Fabrication of Bioactive Surfaces by Functionalization of Electroactive and Surface-Active Block Copolymers

    Directory of Open Access Journals (Sweden)

    Omotunde Olubi

    2014-08-01

    Full Text Available Biofunctional block copolymers are becoming increasingly attractive materials as active components in biosensors and other nanoscale electronic devices. We have described two different classes of block copolymers with biofuctional properties. Biofunctionality for block copolymers is achieved through functionalization with appropriate biospecific ligands. We have synthesized block copolymers of electroactive poly(3-decylthiophene and 2-hydroxyethyl methacrylate by atom transfer radical polymerization. The block copolymers were functionalized with the dinitrophenyl (DNP groups, which are capable of binding to Immunoglobulin E (IgE on cell surfaces. The block copolymers were shown to be redox active. Additionally, the triblock copolymer of α, ω-bi-biotin (poly(ethylene oxide-b-poly (styrene-b-poly(ethylene oxide was also synthesized to study their capacity to bind fluorescently tagged avidin. The surface-active property of the poly(ethylene oxide block improved the availability of the biotin functional groups on the polymer surfaces. Fluorescence microscopy observations confirm the specific binding of biotin with avidin.

  11. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein

    NARCIS (Netherlands)

    de Folter, J.W.J.; van Ruijven, M.W.M.; Velikov, K.

    2012-01-01

    Few fully natural and biocompatible materials are available for the effective particle-stabilization of emulsions since strict requirements, such as insolubility in both fluid phases and intermediate wettability, need to be met. In this paper, we demonstrate the first use of water-insoluble proteins

  12. Biodegradable amphiphilic block copolymers containing functionalized PEO blocks:Controlled synthesis and biomedical potentials

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of controllable amphiphilic block copolymers composed of poly(ethylene oxide)(PEO) as the hydrophilic block and poly(ε-caprolactone)(PCL) as the hydrophobic block with the amino terminal group at the end of the PEO chain(PCL-b-PEO-NH2) were synthesized.Based on the further reaction of reactive amino groups,diblock copolymers with functional carboxyl groups(PCL-b-PEO-COOH) and functional compounds RGD(PCL-b-PEO-RGD) as well as the triblock copolymers with thermosensitive PNIPAAm blocks(PCL-b-PEO-b-PNIPAAM) were synthesized.The well-controlled structures of these copolymers with functional groups and blocks were characterized by gel permeation chromatography(GPC) and 1H NMR spectroscopy.These copolymers with functionalized hydrophilic blocks were fabricated into microspheres for the examination of biofunctions via cell culture experiments and in vitro drug release.The results indicated the significance of introducing functional groups(e.g.,NH2,COOH and RGD) into the end of the hydrophilic block of amphiphilic block copolymers for biomedical potentials in tissue engineering and controlled drug release.

  13. Surface functionalization of carbon nanotubes by direct encapsulation with varying dosages of amphiphilic block copolymers

    Science.gov (United States)

    Yao, Xueping; Li, Jie; Kong, Liang; Wang, Yong

    2015-08-01

    Encapsulation of carbon nanotubes (CNTs) by amphiphilic block copolymers is an efficient way to stabilize CNTs in solvents. However, the appropriate dosages of copolymers and the assembled structures are difficult to predict and control because of the insufficient understanding on the encapsulation process. We encapsulate multiwalled CNTs with polystyrene-block-poly (4-vinyl pyridine) (PS-b-P4VP) by directly mixing them in acetic acid under sonication. The copolymer forms a lamellar structure along the surface of CNTs with the PS blocks anchoring on the tube wall and the P4VP blocks exposed to the outside. The encapsulated CNTs achieve good dispersibility in polar solvents over long periods. To increase our understanding of the encapsulation process we investigate the assembled structures and stability of copolymer/CNTs mixtures with changing mass ratios. Stable dispersions are obtained at high mass ratios between the copolymer and CNTs, i.e. 2 or 3, with the presence of free spherical micelles. Transmission electron microscopy and thermal gravimetric analysis determine that the threshold for the complete coverage of CNTs by the copolymer occurs at the mass ratio of 1.5. The coated copolymer layer activates the surface of CNTs, enabling further functionalization of CNTs. For instance, atomic layer deposition of TiO2 produces conformal thin layers on the encapsulated CNTs while isolated TiO2 bumps are produced on the pristine, inert CNTs.

  14. Water-Insoluble Photosensitizer Nanocolloids Stabilized by Supramolecular Interfacial Assembly towards Photodynamic Therapy

    Science.gov (United States)

    Liu, Yamei; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Shen, Guizhi; Yan, Xuehai

    2017-02-01

    Nanoengineering of hydrophobic photosensitizers (PSs) is a promising approach for improved tumor delivery and enhanced photodynamic therapy (PDT) efficiency. A variety of delivery carriers have been developed for tumor delivery of PSs through the enhanced permeation and retention (EPR) effect. However, a high-performance PS delivery system with minimum use of carrier materials with excellent biocompatibility is highly appreciated. In this work, we utilized the spatiotemporal interfacial adhesion and assembly of supramolecular coordination to achieve the nanoengineering of water-insoluble photosensitizer Chlorin e6 (Ce6). The hydrophobic Ce6 nanoparticles are well stabilized in a aqueous medium by the interfacially-assembled film due to the coordination polymerization of tannic acid (TA) and ferric iron (Fe(III)). The resulting Ce6@TA-Fe(III) complex nanoparticles (referenced as Ce6@TA-Fe(III) NPs) significantly improves the drug loading content (~65%) and have an average size of 60 nm. The Ce6@TA-Fe(III) NPs are almost non-emissive as the aggregated states, but they can light up after intracellular internalization, which thus realizes low dark toxicity and excellent phototoxicity under laser irradiation. The Ce6@TA-Fe(III) NPs prolong blood circulation, promote tumor-selective accumulation of PSs, and enhanced antitumor efficacy in comparison to the free-carrier Ce6 in vivo evaluation.

  15. Functional Block Copolymers as Compatibilizers for Nanoclays in Polypropylene Nanocomposites

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Daugaard, Anders Egede; Stribeck, Norbert

    of Kraton L-1203 from Kuraray Co., Japan with molecular weight 7000 and PDI=1.05, and a hydrophilic block of quaternized dimethylaminoethyl methacrylate (DMAEMA). The size of the hydrophilic block was varied, which increasingly caused better dispersibility of the block copolymer in water. This was essential...... for the exchange of the Na+ ions of the used NCl (3.8 wt.-% aq. dispersion of montmorillonite, MMT from Laviosa Chimica Mineralia, Italy) by the synthesized charged block copolymer, which was performed in water. Modified nanoclays with 2.5 to 8.0 wt.-% of the quaternized PEB-b-PDMAEMA35 were prepared....... The exfoliation and intercalation was studied by XRD. Rheological measurements of either aq. solutions of the charged block copolymers or PP master batches with various amounts of the modified MMT were performed. Tensile tests of NCs show similar behaivor, but SAXS reveals change in the nanostructure. According...

  16. Synthesis and physicochemical characterization of copolymers of 3-octylthiophene and thiophene functionalized with azo chromophore

    Energy Technology Data Exchange (ETDEWEB)

    Nicho, M.E., E-mail: menicho@uaem.mx [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (Mexico); Garcia-Carvajal, S.; Marquez-Aguilar, P.A.; Gueizado-Rodriguez, M. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (Mexico); Escalante-Garcia, J. [Centro de Investigaciones Quimicas, UAEM, C.P. 62210, Cuernavaca, Morelos (Mexico); Medrano-Baca, G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (Mexico)

    2011-10-03

    Highlights: {yields} Azo chromophore in the copolymer showed an additional color to the P3OT. {yields} Non-linear optical properties by Z-scan technique in states: neutral and oxidized. {yields} The copolymers showed a change of non-linearity sign when the films were doped. {yields} We determined that the nonlinearity of the polymer films was a Kerr type. {yields} This study is the first report of NLO characterization of this material. - Abstract: Polythiophene derivatives with azo chromophore were synthesized via copolymerization of 3-octylthiophene (3OT) and 2-[N-ethyl-N-[4-[(4-nitrophenyl)azo]phenyl]amino]ethyl 3-thienylacetate (3-DRT). This copolymer has interesting optoelectronic properties and a variety of applications such as electrochromic and electronic devices. The polymerization process of 3OT and the functionalized thiophene was carried out via FeCl{sub 3} oxidative polymerization. Thin films of poly(3OT-co-3-DRT) copolymer were prepared by spin-coating technique from toluene. FTIR and {sup 1}H NMR spectroscopy revealed the presence of chromophore groups in the copolymer chain. Molecular weight and polydispersity of the polymers were measured by size exclusion chromatography. Changes in the surface topography of copolymers were analyzed by atomic force microscopy; the results showed that the copolymers presented some protuberances of variable size unlike the homogeneous granular morphology of P3OT. It is believed that these changes appeared by the incorporation of 3-DRT in the polymer. P3ATs are electrochromic materials that show color change upon oxidation-reduction process. We report that electrochemical characterization of poly(3OT-co-3-DRT) copolymer films synthesized chemically on indium-tin oxide (ITO) glass substrates showed an additional color to the P3OT homopolymer. Optical absorption properties of the polymer films were analyzed in the undoped and doped states and as a function of 3-DRT concentration in the copolymer. The nonlinear optical

  17. Synthesis And Properties Of Functional Ultra-High Molecular Weight Transparent Styrene-Butadiene Block Copolymer

    Institute of Scientific and Technical Information of China (English)

    GONG Guang-bi; ZHAO Xu-tao; WANG Gui-lun

    2004-01-01

    Functional ultra-high molecular weight transparent styrene-butadiene block copolymer possesses both high transparency and impact resistance and has excellent comprehensive properties prior to other transparent resins. In this paper we not only use anionic polymerization process which includes 1 time addition of initiator and 3 time addition of monomers, but also introduce functional coupling agent for the fist time to prepare mentioned functional block copolymer.The typical preparation process is described as the following: (a) Adding cyclohexane, styrene and initiator to the polymerizer, the polymerization is carried out at 50~75℃; (b) adding a mixture of styrene, butadiene and cyclohexane, the polymerization is carried out at 50~70℃ ;(c) adding a mixture of butadiene and cyclohexane, the polymerization is finished at 60~70℃ ;(d) adding coupling agent which is a substituted trimethoxysilane being expressed as N-silane, O-silane and being converted into a functional group (-NH, -OH) of mentioned block copolymer, coupling at 75~90℃ for 1 hr; (e) The amounts of coupling agent are about one sixth to one third of the initiator; (f) treating the prepared copolymer solution with some water and Carbon dioxide at 50~70℃ for 15 min.The copolymer is from three-arm to six-arm mono-modal radial block copolymer having 75~90%styrene, 10~25% butadiene and functional group of-NH or-OH. of the copolymer, Mw is from 30×104 to 120×104, Mw/Mn from 2.0 to 2.5, Izod notched impact strength 50~65 J/m,light transmission not less 87.5%, tensile strength not less 45 Mpa.The exploratory research shows that the mole ratio and feed rate of the random copolymerized styrene-butadiene, as well as the total ratio of styrene-butadiene have greater influence on the properties of the copolymer. The following model is established:Y=bo +∑3j=1 bjxj+∑3j=1bkjxkxj+∑3j=1bjjx2j (k<j)Where: Y is the light transmission, tensile strength, elongation, Izod notched impact

  18. "Click-functional" block copolymers provide precise surface functionality via spin coating.

    Science.gov (United States)

    Rengifo, Hernán R; Chen, Lu; Grigoras, Cristian; Ju, Jingyue; Koberstein, Jeffrey T

    2008-07-15

    There are few existing methods for the quantitative functionalization of surfaces, especially for polymeric substrates. We demonstrate that alkyne end-functional diblock copolymers can be used to provide precise areal densities of reactive functionality on both hard (e.g., glass and silicon oxide) and soft (i.e., polymeric) substrates. Alkyne functionality is extremely versatile because the resultant functional surfaces are reactive toward azide functional molecules by Sharpless click chemistry. Spin-coated films of alpha-alkyne-omega-Br-poly( tert-butylacrylate- b-methylmethacrylate) (poly( tBA-MMA)) spontaneously self-assemble on the aforementioned substrates to present a surface monolayer of PtBA with a thickness in the range of 1 to 9 nm. The PMMA block physisorbs to provide multivalent anchoring onto hard substrates and is fixed onto polymer surfaces by interpenetration with the substrate polymer. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The reactivity of surface-bound alkynes, in 1,3-dipolar cycloaddition reactions or by so-called "click chemistry", is demonstrated by covalent surface immobilization of fluorescently labeled azides. The modificed surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. Microarrays of covalently bound fluorescent molecules are created to demonstrate the approach and their performance is evaluated by determining their fluorescence signal-to-noise ratios.

  19. Functional polymer library through post-polymerization modification of copolymers having oleate and pentafluorophenyl pendants.

    Science.gov (United States)

    Maiti, Binoy; Haldar, Ujjal; Rajasekhar, Tota; De, Priyadarsi

    2017-08-29

    Herein we have synthesized poly(2-(methacryloyloxy)ethyl oleate-co-pentafluorophenyl methacrylate) (P(MAEO-co-PFPMA)) random copolymers with oleate and pentafluorophenyl side-chain pendants. These copolymers were utilized as dual reactive polymeric scaffolds in a range of post-polymerization modification strategies involving thiol-ene, para-fluoro-thiol substitution, amidation, trans-esterification and epoxidation followed by amidation reaction. The 2-(methacryloyloxy)ethyl oleate (MAEO) functional handle in the copolymer is labile to functionalization via its internal double bond through thermally initiated thiol-ene reaction, whereas pentafluorophenyl moiety from pentafluorophenyl methacrylate (PFPMA) unit undergoes para-fluoro-thiol substitution under basic condition at room temperature. Exploring these modification approaches, the P(MAEO-co-PFPMA) copolymer was orthogonally ligated with thiol compounds having alkyl, hydroxyl, protected amine functionalities, etc. Furthermore, different functionalities such as benzyl, allyl, methacrylate, pyrene and water soluble poly(ethylene glycol) moiety were easily introduced to the side chain of the P(MAEO-co-PFPMA) copolymer using amidation, trans-esterification and epoxidation followed by amidation reactions. Functionalization of both the reactive pendants with the various organic substituents were confirmed by 1H and 19F NMR, gel permeation chromatography (GPC) and fluorescence spectroscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Antimicrobial films obtained from latex particles functionalized with quaternized block copolymers.

    Science.gov (United States)

    Alvarez-Paino, Marta; Juan-Rodríguez, Rafael; Cuervo-Rodríguez, Rocío; Tejero, Rubén; López, Daniel; López-Fabal, Fátima; Gómez-Garcés, José L; Muñoz-Bonilla, Alexandra; Fernández-García, Marta

    2016-04-01

    New amphiphilic block copolymers with antimicrobial properties were obtained by atom transfer radical polymerization (ATRP) and copper catalyzed cycloaddition following two approaches, a simultaneous strategy or a two-step synthesis, which were proven to be very effective methods. These copolymers were subsequently quaternized using two alkyl chains, methyl and butyl, to amplify their antimicrobial properties and to investigate the effect of alkyl length. Antimicrobial experiments in solution were performed with three types of bacteria, two gram-positive and one gram-negative, and a fungus. Those copolymers quaternized with methyl iodide showed better selectivities on gram-positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, against red blood cells, demonstrating the importance of the quaternizing agent chosen. Once the solution studies were performed, we prepared poly(butyl methacrylate) latex particles functionalized with the antimicrobial copolymers by emulsion polymerization of butyl methacrylate using such copolymers as surfactants. The characterization by various techniques served to test their effectiveness as surfactants. Finally, films were prepared from these emulsions, and their antimicrobial activity was studied against the gram-positive bacteria. The results indicate that the antimicrobial efficiency of the films depends not only on the copolymer activity but also on other factors such as the surface segregation of the antimicrobial agent to the interface.

  1. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein

    OpenAIRE

    de Folter, J.W.J.; van Ruijven, M.W.M.; Velikov, K.

    2012-01-01

    Few fully natural and biocompatible materials are available for the effective particle-stabilization of emulsions since strict requirements, such as insolubility in both fluid phases and intermediate wettability, need to be met. In this paper, we demonstrate the first use of water-insoluble proteins, employing the corn protein zein as a representative of this family, as effective particle-stabilizers of oil-in-water emulsions of natural oils and water. For this purpose, we synthesized zein co...

  2. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    Directory of Open Access Journals (Sweden)

    Shunji Oshima

    2015-11-01

    Full Text Available Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF of 18 kinds of botanical foods to maintain 15% (v/v ethanol solution was examined using easily handled filtration. A simple linear regression analysis was performed to examine the correlation between the filtered volumes and blood ethanol concentration (BEC in F344 rats 4 h after the ingestion of 4.0 g/kg of ethanol following dosage of 2.5% (w/v WIF of the experimental botanical foods. Furthermore, the supernatant (6.3 Brix; water-soluble fraction and precipitate (WIF of tomato, with a strong ethanol-maintaining ability, were obtained and BEC and the residual gastric ethanol in rats were determined 2 h after the administration of 4.0 g/kg of ethanol and the individuals fractions. Results: The filtered volumes of dropped ethanol solutions containing all the botanical foods tested except green peas were decreased compared with the ethanol solution without WIF (control. There was a significant correlation between the filtered volumes and blood ethanol concentration (BEC. There was no significant difference in the residual gastric ethanol between controls and the supernatant group; however, it was increased significantly in the WIF group than in controls or the supernatant group. Consistent with this, BEC reached a similar level in controls and the supernatant group but significantly decreased in the WIF group compared with controls or the supernatant group. Conclusions: These findings suggest that WIFs of botanical foods, which are mostly water-insoluble dietary fibers, possess the ability to absorb ethanol-containing solutions, and this ability correlates

  3. A novel strategy to produce highly stable and transparent aqueous 'nanosolutions' of water-insoluble drug molecules

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiexin; Zhang Zhibing; Le Yuan; Chen Jianfeng [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Zhao Hong, E-mail: chenjf@mail.buct.edu.cn [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-07-29

    A surprisingly large proportion of new drug candidates emerging from drug discovery programmes are water-insoluble and, as a result, have poor oral bioavailability. To overcome insolubility, the drug particles are usually dispersed in a medium during product formation, but large particles that are formed may affect product performance and safety. Many techniques have been used to produce nanodispersions-dispersions with nanometre-scale dimensions-that have properties similar to solutions. However, making nanodispersions requires complex processing, and it is difficult to achieve stability over long periods. In this paper, we report a generic method for preparing drug nanoparticles with a combination of antisolvent precipitation in the presence of water-soluble matrices and spray-drying. The spray-dried powder composites (solid dispersion) are microspherical, highly stable and thus form transparent nanodispersions or so-called 'nanosolutions' of water-insoluble drug when simply added to water. Aqueous nanodispersions of silybin (a kind of water-insoluble drug for liver protection) with an average size of 25 nm produced with this approach display a 10 times faster dissolution rate than that of raw drug. This has great potential to offer a novel solution for innovative drugs of the future.

  4. Thymine-functionalized amphiphilic biodegradable copolymers for high-efficiency loading and controlled release of methotrexate.

    Science.gov (United States)

    Cheng, Dong-Bing; Li, You-Mei; Cheng, Yin-Jia; Wu, Yan; Chang, Xiu-Peng; He, Feng; Zhuo, Ren-Xi

    2015-12-01

    In this study, a novel thymine-functionalized six-membered cyclic carbonate monomer (TAC) was synthesized by the Michael-addition reaction between thymine and acryloyl carbonate (AC). The corresponding functional amphiphilic block copolymer mPEG-b-PTAC was further successfully synthesized by ring-opening polymerization using immobilized porcine pancreas lipase (IPPL) as the catalyst and mPEG as the macroinitiator. Meanwhile, mPEG-b-P(TAC-co-DTC) and mPEG-b-PDTC were also synthesized by the same enzymatic methods for comparison on different TAC contents. The structures of monomer and copolymers were characterized by (1)H-NMR, (13)C-NMR and FTIR. All the amphiphilic block copolymers could self-assemble to form nano-sized micelles in aqueous solution. Transmission electron microscopy (TEM) observation showed that the micelles dispersed in spherical shape with nano-size before and after MTX loading. (1)H-NMR and FTIR results confirmed the successful formation of multiple hydrogen-bonding interactions between exposed thymine groups of hydrophobic PTAC segments and 2,6-diaminopyridine (DAP) groups of MTX molecules, which resulting in the higher drug loading capacity and the pH-sensitive drug release behavior. MTT assays also indicated lower toxicity of copolymer but higher potent cytotoxic activity of MTX-loaded copolymer against HeLa cells.

  5. Synthesis and functionalization of coumarin-containing copolymers for second order optical nonlinearities

    Science.gov (United States)

    Essaïdi, Zacaria; Krupka, Oksana; Iliopoulos, Konstantinos; Champigny, Emilie; Sahraoui, Bouchta; Sallé, Marc; Gindre, Denis

    2013-01-01

    The second-order nonlinear optical properties of photocross-linkable coumarin-based copolymers were investigated using the optical second harmonic generation (SHG) with the Maker fringes technique. High quality and transparent spin-deposited thin films of various methacrylic copolymers containing 4-methylcoumarin pendant chromophores were prepared and the coumarin units were ordered and oriented by the corona poling technique. Nonlinear optical investigations were performed using a picosecond Q-switched Nd:YAG laser working at the fundamental wavelength (λ = 1064 nm) and the second order nonlinear optical susceptibilities of the functionalized polymers were determined. The samples were irradiated using two wavelengths (λ = 254 nm and λ > 300 nm) promoting the reversible photo-induced dimerisation of coumarin moieties within the film. The latter is shown to have a significant impact on the nonlinear optical response of the corresponding material. A large SHG response of photocross-linkable coumarin-based copolymers is obtained.

  6. Correlation hole effect in comblike copolymer systems obtained by hydrogen bonding between homopolymers and end-functionalized oligomers

    NARCIS (Netherlands)

    Huh, J; Ikkala, O; tenBrinke, G

    1997-01-01

    This paper addresses concentration fluctuations in comblike copolymer systems obtained by hydrogen bonding between polymers and end-functionalized oligomers. Monodisperse block copolymer systems in the homogeneous melt exhibit small-angle X-ray scattering peaks at finite nonzero angle due to

  7. Microphase separation of diblock copolymers consisting of polystyrene and acid-functionalized poly(propylene imine) dendrimers

    NARCIS (Netherlands)

    Román, C.; Fischer, H.R.; Meijer, E.W.

    1999-01-01

    Diblock copolymers consisting of polystyrene and acid-functionalized poly(propylene imine) dendrimers have been found to self-assemble spontaneously into regular microdomains. The hybride dendrimer-linear chain block copolymers yield highly asymmetric molecules which display an aggregation behavior

  8. Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry

    Science.gov (United States)

    Mapkar, Javed A.; Iyer, Ganesh; Coleman, Maria R.

    2009-02-01

    Surface functionalization of carbon nanofibers (CNFs) with aminopropyl terminated polydimethylsiloxane [(PDMS-NH 2)] and other organic diamines was achieved using carbodiimide chemistry. The carbodiimide chemistry provides faster reaction rate so that the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. CNF functionalized with PDMS-NH 2 fibers were further functionalized with oligomer of polyimide (6FDA-BisP) using imidization reaction. The formation of block copolymer on the surface of CNF is proposed as an effective method to engineer the interphase between the fiber and the polymer, which is essential to modulate and enhance the properties of the nanocomposite. The efficiency of the carbodiimide chemistry to functionalize amine terminated groups on CNF and the functionalization of block copolymer was characterized using thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy.

  9. Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation

    Science.gov (United States)

    Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher

    2016-11-01

    Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy--combining sequential and modular concepts--enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain.

  10. Platform Approach to Produce Polymer Nanoparticles with Modular Functionality from Amphiphilic Block Copolymer Stabilizers

    Science.gov (United States)

    2014-04-01

    functionality, an amphiphilic BCP scaffold was devised to serve as an emulsion polymerization stabilizer. The PS-b-P(EO-co-AGE) BCP contained a PS...synthesized via emulsion polymerization using an amphiphilic block copolymer (BCP) surfactant. The polystyrene-block-poly(ethylene oxide-co-allyl...glycidyl ether) BCPs with various lengths and functional monomer incorporation were synthesized using anionic polymerization . Modification of the allyl

  11. Role of Acid Functionality and Placement on Morphological Evolution and Strengthening of Acid Copolymers

    Science.gov (United States)

    Middleton, Luri Robert; Schwartz, Eric; Winey, Karen

    Functional polymers with specific interactions produce hierarchical morphologies that directly impact mechanical properties. We recently reported that the formation of acid-rich layered morphologies in precise poly(ethylene-co-acrylic acid) copolymers improves tensile strength. We now explore the generality of this phenomenon through variations in pendant acid chemistries, acid content and precision in placement of acid groups in polyethylene-based copolymers. In situ X-ray scattering measurements during tensile deformation reveal that the precision in acid group placement is critical to forming well-defined layered morphologies. This phenomenon was observed in both semi-crystalline and amorphous precise acid copolymers with varied acid chemistries (acrylic, geminal acrylic and phosphonic acids). Compositionally identical polymers but with pseudo random acid placement do not form layered morphologies. Acid chemistry and acid content influence morphological evolution predominately though modification of the copolymer Tg and crystallinity. Our results indicate that hierarchical layered structures, commensurate with improved mechanical properties, form in the presence of uniformity in chemical structure and sufficient chain mobility to strongly align during deformation.

  12. Theory and Simulation Studies of Copolymer Functionalized Nanoparticles in Polymer Nanocomposites

    Science.gov (United States)

    Jayaraman, Arthi; Nair, Nitish; Seifpour, Arezou; Spicer, Philip

    2010-03-01

    Significant interest has grown around the ability to create polymer nanocomposites with controlled spatial arrangement of nanoparticles mediated by a polymer matrix. By functionalizing or grafting polymers on to nanoparticle surfaces and systematically tuning the composition, chemistry, molecular weight and grafting density of the functionalized polymers we can tailor the inter-particle interactions and precisely control the assembly/dispersion of the particles in the polymer matrix. While prior experimental and theoretical work in this area has mostly been on homopolymer grafted particles at high brush-like grafting densities, we study copolymer grafted nanoparticles at low grafting densities in a homopolymer matrix. Using an integrated approach involving Polymer Reference Interaction Site Model (PRISM) theory and Monte Carlo simulations we will present the effect of monomer sequence and molecular weight of the grafted copolymer, compatibility of the graft and matrix polymers, and nanoparticle size on the conformations of the grafted polymers, and the effective interactions between the grafted nanoparticles in the matrix.

  13. Ultraviolet-irradiation induced and spontaneous mutation of Rhizobium trifolii 11B in relation to water-soluble and water-insoluble polysaccharide production ability

    Energy Technology Data Exchange (ETDEWEB)

    Ghai, J.; Ghai, S.K.; Kalra, M.S. (Punjab Agricultural Univ., Ludhiana (India))

    1985-02-01

    Rhizobium trifolii 11B was u.v. irradiated and nine u.v. mutants have been isolated. Among the mutants, only one, R. trifolii 21M11B, produced more (752 mg/100 ml) water-soluble polysaccharide than the parent (704 mg/100 ml). The composition of water-soluble polysaccharide from u.v. mutants differed from that of the parent, R. trifolii 11B, and none of its u.v. mutants produced water-insoluble polysaccharide as detected by the Aniline Blue method. Storage of u.v. mutants for 2 months at 5/sup 0/C gave four spontaneous variants which acquired the ability to produce water-insoluble polysaccharide. The spontaneous mutants also retained their water-soluble polysaccharide producing ability. The water-soluble polysaccharide produced by these mutants was characterized as curdlan type. The chemistry of water-soluble and water-insoluble polysaccharides was also ascertained.

  14. Ionic conductivity of mesoporous block copolymer membranes in liquid electrolyte as a function of copolymer and homopolymer molecular weight

    Science.gov (United States)

    Wong, David; Mullin, Scott; Stone, Greg; Battaglia, Vincent; Balsara, Nitash

    2011-03-01

    Mesoporous block copolymer membranes have been synthesized using poly(styrene-block-ethylene-block-polystyrene) (SES). A series of symmetric SES copolymers and PS homopolymers have been studied at different blending fractions. Ionic conductivities of the porous films in a liquid electrolyte, 1.0 M Li PF6 in ethylene carbonate/diethyl carbonate, compare favorably to conventional battery separators and generally increase with internal surface area, as measured by nitrogen adsorption. Characterization of the effects of pore structure and SES morphology on conductivity will be presented. Support from the U.S. Department of Energy Office of Vehicles Technologies (FCVT) under the Batteries for Advanced Transportation Technologies (BATT) Program.

  15. Synthesis of Polystyrene-Based Random Copolymers with Balanced Number of Basic or Acidic Functional Groups

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    Pairs of polystyrene-based random copolymers with balanced number of pendant basic or acidic groups were synthesized utilizing the template strategy. The same poly[(4-hydroxystyrene)-ran-styrene] was used as a template backbone for modification. Two different synthetic approaches for the function......Pairs of polystyrene-based random copolymers with balanced number of pendant basic or acidic groups were synthesized utilizing the template strategy. The same poly[(4-hydroxystyrene)-ran-styrene] was used as a template backbone for modification. Two different synthetic approaches...... by copper-catalyzed 1,3 cycloaddition of aliphatic sulfonate- or amine-contaning azides. Both synthetic approaches proved to be highly efficient as evidenced by H-1-NMR analyses. The thermal properties were evaluated by differential scanning calorimetry and thermal gravimetric analyses and were influenced...

  16. Synthesis of Functional Polyethylene Copolymers via Reactive Monomer

    Institute of Scientific and Technical Information of China (English)

    Hua-yi Li; Shu-qing Zhang; Ling-zhi Wang; You-liang Hu

    2005-01-01

    @@ 1Introduction Polyolefins are used widely due to their good performance and low price, but the poor compatibility and adhesion with other materials limits their applications in broader areas. Reactive monomer approach is effective to synthesize functional polyolefins[1]. In this case, olefin is copolymerized with a reactive comonomer to produce reactive intermediary which is then converted to functional group or initiator to initiate graft-from polymerization of polar monomer.

  17. Synthesis of star-shaped pyrrole and thiophene functionalized monomers and optoelectrochemical properties of corresponding copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Ak, Metin [Middle East Technical University, Department of Chemistry, 06531 Ankara (Turkey); Pamukkale University, Department of Chemistry, 20020 Denizli (Turkey); Toppare, Levent [Middle East Technical University, Department of Chemistry, 06531 Ankara (Turkey)], E-mail: toppare@metu.edu.tr

    2009-04-15

    Star-shaped thiophene and pyrrole functionalized monomers namely 2,4,6-tris(4-(1H-pyrrol-1-yl)phenoxy)-1,3,5-triazine (TriaPy) and 2,4,6-tris(4-(1H-pyrrol-1-yl)phenoxy)-1,3,5-triazine (TriaTh) were synthesized from 2,4,6-trichloro-1,3,5-triazine, thiophen-3-ylmethanol and 4-(1H-pyrrol-1-yl)phenol. Electrochemical copolymerization of monomers with thiophene and pyrrole was achieved in tetrabutylammonium tetrafluoroborate/acetonitrile (TBAFB/AN). Resulting copolymers were characterized by Fourier transform infrared (FTIR) spectrometer, cyclic voltammetry (CV) and conductivity measurements. Spectroelectrochemical analysis reflected that copolymer films have low {lambda}{sub max} for {pi}-{pi}* electronic transitions accompanied with a rather high band gap compared to polythiophene and polypyrrole. Switching abilities of copolymer films were evaluated by a kinetic study via measuring the transmittance (%T) at the maximum contrast.

  18. Ion Transport Properties of Mechanically Stable symmetric ABCBA Pentablock Copolymers with Quaternary Ammonium Functionalized Midblock

    Energy Technology Data Exchange (ETDEWEB)

    Ertem, S. Piril; Caire, Benjamin R.; Tsai, Tsung-Han; Zeng, Di; Vandiver, Melissa A.; Kusoglu, Ahmet; Seifert, Soenke; Hayward, Ryan C.; Weber, Adam Z.; Herring , Andrew M.; Coughlin, E. Bryan; Liberatore, Matthew W.

    2017-01-01

    Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ion exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.

  19. LOW DENSITY POLYETHYLENE/CLAY NANOCOMPOSITES MODIFIED BY ETHYLENE COPOLYMERS: EFFECTS OF FUNCTIONALIZED SEGMENTS ON MORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    Bo Xu; Yi-hu Song; Yong-gang ShangGuan; Qiang Zheng

    2006-01-01

    Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the structure of the clay phase and the morphology of the nanocomposites. Influences of the comonomer in the copolymer and the content of the copolymer on the morphology of the resulting nanocomposites were discussed. The binary and the trinary composites may form intercalated or exfoliated structures depending on the interaction between the copolymer and the clay layers and the content of the copolymer.

  20. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue.

    Science.gov (United States)

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Jiang, Ziqiao; Wang, Ce

    2015-12-01

    A novel water-insoluble sericin/β-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and β-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/β-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment.

  1. Evaluation of some natural water-insoluble cellulosic material as lost circulation control additives in water-based drilling fluid

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Alsabagh

    2015-12-01

    In this work, three natural water-insoluble cellulosic materials; peanut hulls, bagasse and sawdust were investigated as lost circulation control materials. One hundred and eight different LCM samples made of various materials were tested with mud. The experiments were conducted in a permeability plugging apparatus (PPA at a differential pressure of 100 psi and 300 psi, using 10, 60 and 90 ceramic discs. The performance of each LCM sample was determined based on the amount of spurt loss and total fluid loss of the mud according to the American Petroleum Institute (API standard. The obtained results showed that, the amount of the fluid loss depends on the LCM material, concentration and size distribution, testing results show that, the peanut gives the best results among the bagasse and sawdust, especially fine size which exhibited better results in the filtration characteristics due to the better filling properties of this size. Peanut hulls, bagasse and sawdust show a slight effect on the rheological properties of the mud. The results were discussed on light of particle size distribution.

  2. Aqueous nonionic copolymer-functionalized laponite clay. A thermodynamic and spectrophotometric study to characterize its behavior toward an organic material.

    Science.gov (United States)

    De Lisi, R; Lazzara, G; Milioto, S; Muratore, N

    2006-09-12

    The affinity of functionalized Laponite clay toward an organic material in the aqueous phase was explored. Functionalization was performed by using triblock copolymers based on ethylene oxide (EO) and propylene oxide (PO) units that are EO(11)PO(16)EO(11) (L35) and PO(8)EO(23)PO(8) (10R5). Phenol (PhOH) was chosen as organic compound, which represents a contaminant prototype. To this purpose, densities and enthalpies of mixing as well as PhOH UV-absorption spectra were determined. The enthalpy and the spectrophotometry revealed PhOH-Laponite interactions whereas the volume did not. It emerged that the area occupied by PhOH on the Laponite surface is equal to that computed from the partial molar volume of PhOH in water, corroborating the insensitivity of the experimental volumes to the adsorption process. The situation where both PhOH and copolymer are simultaneously present in the aqueous Laponite suspension was also investigated. It turned out that the copolymer replaces PhOH from the water/Laponite clay interface, resulting in L35 being the more efficient. Moreover, the lateral copolymer-phenol interactions enhance the anchoring of PhOH to the solid surface. The reverse copolymer exercises the most important relevant effect. The UV-absorption spectra of PhOH in the water + copolymer + Laponite mixtures provided information that is consistent with those given by the calorimetric experiments. In conclusion, the aqueous copolymer-functionalized Laponite presents surface properties very different from the bare Laponite, favoring the removal of the organic compound from the solid surface.

  3. Synthesis of well-defined functional PE graft copolymers via ATRP process

    Institute of Scientific and Technical Information of China (English)

    CAO Chengang; DONG Jinyong; HU Youliang

    2005-01-01

    @@ Polyethylene (PE) is one of the most important polymeric materials. It has excellent physical mechanical properties and thus a widespread range of applications. However, due to the lack of polar functional groups on its polymer chain, PE usually suffers from poor adhesion to and incompatibility with other polymers or materials, which has significantly limited many of its end uses. To resolve this problem, one of the established approaches is to introduce a second functional polymeric component as side chains to synthesize PE graft copolymers that not only provide a large quantity of functional groups to impart polarity to PE but also preserve the original desired PE properties, such as crystallinity, melting point, and hydrophobicity[1].

  4. Poly (γ-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy.

    Science.gov (United States)

    Seth, Anushree; Heo, Min Beom; Lim, Yong Taik

    2014-09-01

    Advanced anti-cancer regimens are being introduced for more effective cancer treatment with improved life expectancy. In this research, immuno-stimulating agent toll-like receptor-7 (TLR-7) agonist-imiquimod and low dose chemotherapeutic agent-paclitaxel were synergized to demonstrate tumor therapy along with anti-tumor memory effect. Both therapeutic agents being water insoluble were dispersed in water with the help of water soluble polymer: poly (γ-glutamic acid) (γ-PGA) using a co-solvent systems leading to formation of micro-dispersions of drugs. Paclitaxel and imiquimod formed crystalline microstructures in the size range of 2-3 μm and were stably dispersed in γ-PGA matrix for more than 6 months. Paclitaxel and combination of paclitaxel and imiquimod had significant tumor killing effect in-vitro on various tumor cell lines, while antigen presenting cells (dendritic cells-DCs) treated with the same concentration of imiquimod along with the combination led to enhanced proliferation (250%). In DCs, enhanced secretion of pro-inflammatory and Th1 cytokines was observed in cells co-treated with paclitaxel and imiquimod dispersed in γ-PGA. When administered by intra-tumoral injection in mouse melanoma tumor model, the treatment with combination exemplified drastic inhibition of tumor growth leading to 70% survival as compared to individual components with 0% survival at day 41. The anti-tumor response generated was also found to have systemic memory response since the vaccinated mice significantly deferred secondary tumor development at distant site 6 weeks after treatment. The relative number and activation status of DCs in-vivo was found to be dramatically increased in case of mice treated with combination. The dramatic inhibition of tumor treated with combination is expected to be mediated by both chemotherapeutic killing of tumor cells followed by uptake of released antigen by the DCs and due to enhanced proliferation and activation of the DCs.

  5. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Energy Technology Data Exchange (ETDEWEB)

    Brisset, Florian, E-mail: florian.brisset@etu.univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Vieillard, Julien, E-mail: julien.vieillard@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Berton, Benjamin, E-mail: benjamin.berton@univ-rouen.fr [EA 3233 SMS, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Morin-Grognet, Sandrine, E-mail: sandrine.morin@univ-rouen.fr [EA 3829 MERCI, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Duclairoir-Poc, Cécile, E-mail: cecile.duclairoir@univ-rouen.fr [EA 4312 LMSM, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Le Derf, Franck, E-mail: franck.lederf@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France)

    2015-02-28

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  6. Desalination membranes from functional block copolymer via non-solvent induced phase inversion

    Science.gov (United States)

    Sung, Hyemin; Poelma, Justin; Leibfarth, Frank; Hawker, Craig; Bang, Joona

    2012-02-01

    Commercially available reverse osmosis (RO) and forward osmosis (FO) membranes are most commonly derived from materials such as polysulfone, polyimide, and cellulose acetate. While these membranes have improved the efficiency of the desalination process, they suffer from mechanical and chemical stability, fouling issues, and low fluxes. In this study, we combine a well-established membrane formation method, non-solvent-induced phase separation, with the self-assembly of a functional amphiphilic block copolymersAn amine and acid functional polystyrene-block-poly(ethylene oxide-co-allyl glycidyl ether) were chosen for the membranes. Membranes were formed by casting a concentrated polymer solution (12 to 25 wt% polymer) on PET fabric followed by immersion in a non-solvent bath. Scanning electron microscopy revealed an asymmetric porous structure consisting of a dense skin layer on top of a highly porous layer. Membrane performance was investigating using an FO test cell under the seawater condition.

  7. Functionalized isothianaphthene monomers that promote quinoidal character in donor-acceptor copolymers for organic photovoltaics

    KAUST Repository

    Douglas, Jessica D.

    2012-05-22

    A series of low band gap isothianaphthene-based (ITN) polymers with various electron-withdrawing substituents and intrinsic quinoidal character were synthesized, characterized, and tested in organic photovoltaic (OPV) devices. The three investigated ITN cores contained either ester, imide, or nitrile functionalities and were each synthesized in only four linear steps. The relative electron-withdrawing strength of the three substituents on the ITN moiety was evaluated and correlated to the optical and electronic properties of ITN-based copolymers. The ester- and imide-containing p-type polymers reached device efficiencies as high as 3% in bulk heterojunction blends with phenyl C 61-butyric acid methyl ester (PC 61BM), while the significantly electron-deficient nitrile-functionalized polymer behaved as an n-type material with an efficiency of 0.3% in bilayer devices with poly(3-(4-n-octyl)phenylthiophene) (POPT). © 2012 American Chemical Society.

  8. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    Science.gov (United States)

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-01

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation.

  9. Water-insoluble material from apple pomace makes changes in intracellular NAD⁺/NADH ratio and pyrophosphate content and stimulates fermentative production of hydrogen.

    Science.gov (United States)

    Sato, Osamu; Suzuki, Yuma; Sato, Yuki; Sasaki, Shinsuke; Sonoki, Tomonori

    2015-05-01

    Apple pomace is one of the major agricultural residues in Aomori prefecture, Japan, and it would be useful to develop effective applications for it. As apple pomace contains easily fermentable sugars such as glucose, fructose and sucrose, it can be used as a feedstock for the fermentation of fuels and chemicals. We previously isolated a new hydrogen-producing bacterium, Clostridium beijerinckii HU-1, which could produce H2 at a production rate of 14.5 mmol of H2/L/h in a fed-batch culture at 37 °C, pH 6.0. In this work we found that the HU-1 strain produces H2 at an approximately 20% greater rate when the fermentation medium contains the water-insoluble material from apple pomace. The water-insoluble material from apple pomace caused a metabolic shift that stimulated H2 production. HU-1 showed a decrease of lactate production, which consumes NADH, accompanied by an increase of the intracellular pyrophosphate content, which is an inhibitor of lactate dehydrogenase. The intracellular NAD(+)/NADH ratios of HU-1 during H2 fermentation were maintained in a more reductive state than those observed without the addition of the water insoluble material. To correct the abnormal intracellular redox balance, caused by the repression of lactate production, H2 production with NADH oxidation must be stimulated.

  10. Effect of Small Molecule Osmolytes on the Self-Assembly and Functionality of Globular Protein-Polymer Diblock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Carla S.; Xu, Liza; Olsen, Bradley D. [MIT

    2013-12-05

    Blending the small molecule osmolytes glycerol and trehalose with the model globular protein–polymer block copolymer mCherry-b-poly(N-isopropyl acrylamide) (mCherry-b-PNIPAM) is demonstrated to improve protein functionality in self-assembled nanostructures. The incorporation of either additive into block copolymers results in functionality retention in the solid state of 80 and 100% for PNIPAM volume fractions of 40 and 55%, respectively. This represents a large improvement over the 50–60% functionality observed in the absence of any additive. Furthermore, glycerol decreases the thermal stability of block copolymer films by 15–20 °C, while trehalose results in an improvement in the thermal stability by 15–20 °C. These results suggest that hydrogen bond replacement is responsible for the retention of protein function but suppression or enhancement of thermal motion based on the glass transition of the osmolyte primarily determines thermal stability. While both osmolytes are observed to have a disordering effect on the nanostructure morphology with increasing concentration, this effect is less pronounced in materials with a larger polymer volume fraction. Glycerol preferentially localizes in the protein domains and swells the nanostructures, inducing disordering or a change in morphology depending on the PNIPAM coil fraction. In contrast, trehalose is observed to macrophase separate from the block copolymer, which results in nanodomains becoming more disordered without changing significantly in size.

  11. Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2016-04-01

    Full Text Available Acrylonitrile-Styrene co-polymer was prepared by solution polymerization and fabricated into nanofibers using the electrospinning technique. The nanofiber polarization was enhanced through its surface functionalization with carboxylic acid groups by simple chemical modification. The carboxylic groups’ presence was dedicated using the FT-IR technique. SEM showed that the nanofiber attains a uniform and porous structure. The equilibrium and kinetic behaviors of basic violet 14 dye sorption onto the nanofibers were examined. Both Langmuir and Temkin models are capable of expressing the dye sorption process at equilibrium. The intraparticle diffusion and Boyd kinetic models specified that the intraparticle diffusion step was the main decolorization rate controlling the process.

  12. Density functional theory of equilibrium random copolymers: application to surface adsorption of aggregating peptides

    Science.gov (United States)

    Wang, Haiqiang; Forsman, Jan; Woodward, Clifford E.

    2016-06-01

    We generalize a recently developed polymer density functional theory (PDFT) for polydisperse polymer fluids to the case of equilibrium random copolymers. We show that the generalization of the PDFT to these systems allows us to obtain a remarkable simplification compared to the monodispersed polymers. The theory is used to treat a model for protein aggregation into linear filaments in the presence of surfaces. Here we show that, for attractive surfaces, there is evidence of significant enhancement of protein aggregation. This behaviour is a consequence of a surface phase transition, which has been shown to occur with ideal equilibrium polymers in the presence of sufficiently attractive surfaces. For excluding monomers, this transition is suppressed, though an echo of the underlying ideal transition is present in the sudden change in the excess adsorption.

  13. Synthesis and characterization of functional copolymer/organo-silicate nanoarchitectures through interlamellar complex-radical (coterpolymerization

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available The functional copolymers, having a combination of rigid/flexible linkages and an ability of complex-formation with interlayered surface of organo-silicate, and their nanocomposites have been synthesized by interlamellar complex-radical (coterpolymerization of intercalated monomer complexes of maleic anhydride (MA and itaconic acid (IA with dimethyl dodecylamine surface modified montmorillonite (organo-MMT (MA…DMDA-MMT and IA…DMDA-MMT n-butyl methacrylate (BMA and/or BMA/styrene monomer mixtures. The results of nanocomposite structure–composition– property relationship studies indicate that interlamellar complex-formation between anhydride/acid units and surface alkyl amine and rigid/flexible linkage balance in polymer chains are important factors providing the effective intercalation/ exfoliation of the polymer chains into the silicate galleries, the formation of nanostructural hybrids with higher thermal stability, dynamic mechanical behaviour and well dispersed morphology.

  14. Polystyrene Chain Growth from Di-End-Functional Polyolefins for Polystyrene-Polyolefin-Polystyrene Block Copolymers

    Directory of Open Access Journals (Sweden)

    Chung Sol Kim

    2017-10-01

    Full Text Available Triblock copolymers of polystyrene (PS and a polyolefin (PO, e.g., PS-block-poly(ethylene-co-1-butene-block-PS (SEBS, are attractive materials for use as thermoplastic elastomers and are produced commercially by a two-step process that involves the costly hydrogenation of PS-block-polybutadiene-block-PS. We herein report a one-pot strategy for attaching PS chains to both ends of PO chains to construct PS-block-PO-block-PS directly from olefin and styrene monomers. Dialkylzinc compound containing styrene moieties ((CH2=CHC6H4CH2CH22Zn was prepared, from which poly(ethylene-co-propylene chains were grown via “coordinative chain transfer polymerization” using the pyridylaminohafnium catalyst to afford di-end functional PO chains functionalized with styrene and Zn moieties. Subsequently, PS chains were attached at both ends of the PO chains by introduction of styrene monomers in addition to the anionic initiator Me3SiCH2Li·(pmdeta (pmdeta = pentamethyldiethylenetriamine. We found that the fraction of the extracted PS homopolymer was low (~20% and that molecular weights were evidently increased after the styrene polymerization (ΔMn = 27–54 kDa. Transmission electron microscopy showed spherical and wormlike PS domains measuring several tens of nm segregated within the PO matrix. Optimal tensile properties were observed for the sample containing a propylene mole fraction of 0.25 and a styrene content of 33%. Finally, in the cyclic tensile test, the prepared copolymers exhibited thermoplastic elastomeric properties with no breakage up over 10 cycles, which is comparable to the behavior of commercial-grade SEBS.

  15. Polyisobutylene chain end transformations: Block copolymer synthesis and click chemistry functionalizations

    Science.gov (United States)

    Magenau, Andrew Jackson David

    The primary objectives of this research were twofold: (1) development of synthetic procedures for combining quasiliving carbocationic polymerization (QLCCP) of isobutylene (IB) and reversible addition fragmentation chain transfer (RAFT) polymerization for block copolymer synthesis; (2) utilization of efficient, robust, and modular chemistries for facile functionalization of polyisobutylene (PIB). In the first study block copolymers consisting of PIB, and either PMMA or PS block segments, were synthesized by a site transformation approach combining living cationic and reversible addition-fragmentation chain transfer (RAFT) polymerizations. The initial PIB block was synthesized via quasiliving cationic polymerization using the TMPCl/TiCl4 initiation system and was subsequently converted into a hydroxylterminated PIB. Site transformation of the hydroxyl-terminated PIB into a macro chain transfer agent (PIB-CTA) was accomplished by N,N'-dicyclohexylcarbodiimide/dimethylaminopyridine-catalyzed esterification with 4-cyano-4-(dodecylsulfanylthiocarbonylsulfanyl)pentanoic acid. In the second study another site transformation approach was developed to synthesize a novel block copolymer, composed of PIB and PNIPAM segments. The PIB block was prepared via quasiliving cationic polymerization and end functionalized by in-situ quenching to yield telechelic halogen-terminated PIB. Azido functionality was obtained by displacement of the terminal halogen through nucleophilic substitution, which was confirmed by both 1H and 13C NMR. Coupling of an alkyne-functional chain transfer agent (CTA) to azido PIB was successfully accomplished through a copper catalyzed click reaction. Structure of the resulting PIB-based macro-CTA was verified with 1H NMR, FTIR, and GPC; whereas coupling reaction kinetics were monitored by real time variable temperature (VT) 1H NMR. In a third study, a click chemistry functionalization procedure was developed based upon the azide-alkyne 1,3-dipolar

  16. Perfluorinated carbon-chain copolymers with functional groups and cation exchange membranes based on them: synthesis, structure and properties

    Science.gov (United States)

    Kirsh, Yu E.; Smirnov, S. A.; Popkov, Yu M.; Timashev, Sergei F.

    1990-06-01

    The review is devoted to perfluorinated polymers with sulphonic and carboxylic acid groups and to cation exchange membranes based on them. The synthesis is described of copolymers of tetrafluoroethylene with perfluorovinyl ethers containing functional groups by radical copolymerisation in an organic medium and in aqueous emulsions. Special features of the copolymerisation and approaches to obtaining copolymers with set characteristics are discussed. Data are presented on the structure and physicochemical properties of the polymeric films. Attempts to form membranes from the polymers obtained, the means of strengthening them and methods for chemical modification are described. Data are correlated on the influence of structure and polymer composition and the nature of the functional groups on the electrochemical characteristics of membranes. Special features of the functioning of perfluorinated membranes in the process for making chlorine and alkali by the electrolysis of sodium chloride solution are considered. The bibliography has 104 references.

  17. Optical Sensing Properties of Dithiocarbamate-Functionalized Microspheres, Using a Polyvinylpyridine-Polyvinylbenzyl Chloride Copolymer

    Directory of Open Access Journals (Sweden)

    Ziad M. Shakhsher

    2010-10-01

    Full Text Available In this study, a new modified optical chemical sensor based on swellable polymer microspheres is developed using a 5% copolymer of polyvinylpyridine-polyvinyl -benzyl chloride microspheres functionalized as the corresponding dithiocarbamate. This sensor demonstrated significant enhancements in sensitivity, dynamic range and response time. These improvements are related to the presence of pyridine in the polymer backbone, which is believed to increase the space between the groups, thus decreasing steric hindrance, and hence increasing substitution of the dithiocarbamate group. The hydrophilicity of pyridine also allows free movement of the solvent and analyte to and from the inside of the microspheres. These dithiocarbamate-derivatized polymer microspheres were embedded in a hydrogel matrix of polyvinylalcohol cross-linked with glutaraldehyde. This sensor responded selectively to Hg2+ solutions of different concentrations (1 × 10−5 M to 0.1 M. The observed turbidity measured as absorbance varied between 1.05 and 1.75 units at a wavelength of 700 nm. The response is based on the interaction between the metal cations with the negative charges of the deprotonated dithiocarbamate functional group, which led to neutratization of the charges and thus to polymer shrinking. As a result, an increase in the turbidity of the sensing element due to a change in the refractive index between the hydrogel and the polymer microspheres occured. The changes in the turbidity of the sensing element were measured as absorbance using a conventional spectrophotometer.

  18. Optical sensing properties of dithiocarbamate-functionalized microspheres, using a polyvinylpyridine-polyvinylbenzyl chloride copolymer.

    Science.gov (United States)

    Shakhsher, Ziad M; Odeh, Imad M A; Rajabi, Inas M S; Khatib, Mahmoud K

    2010-01-01

    In this study, a new modified optical chemical sensor based on swellable polymer microspheres is developed using a 5% copolymer of polyvinylpyridine-polyvinyl-benzyl chloride microspheres functionalized as the corresponding dithiocarbamate. This sensor demonstrated significant enhancements in sensitivity, dynamic range and response time. These improvements are related to the presence of pyridine in the polymer backbone, which is believed to increase the space between the groups, thus decreasing steric hindrance, and hence increasing substitution of the dithiocarbamate group. The hydrophilicity of pyridine also allows free movement of the solvent and analyte to and from the inside of the microspheres. These dithiocarbamate-derivatized polymer microspheres were embedded in a hydrogel matrix of polyvinylalcohol cross-linked with glutaraldehyde. This sensor responded selectively to Hg(2+) solutions of different concentrations (1 × 10(-5) M to 0.1 M). The observed turbidity measured as absorbance varied between 1.05 and 1.75 units at a wavelength of 700 nm. The response is based on the interaction between the metal cations with the negative charges of the deprotonated dithiocarbamate functional group, which led to neutratization of the charges and thus to polymer shrinking. As a result, an increase in the turbidity of the sensing element due to a change in the refractive index between the hydrogel and the polymer microspheres occurred. The changes in the turbidity of the sensing element were measured as absorbance using a conventional spectrophotometer.

  19. Living cationic polymerization and polyhomologation: an ideal combination to synthesize functionalized polyethylene–polyisobutylene block copolymers

    KAUST Repository

    Zhang, Hefeng

    2015-12-17

    A series of hydroxyl-terminated polyisobutylene-b-polyethylene (PIB-b-PE-OH) copolymers were synthesized by combining living cationic polymerization and polyhomologation. Allyl-terminated PIBs, synthesized by living cationic polymerization, were hydroborated with BH3·THF to produce 3-arm boron-linked stars, PIB3B, which served as macroinitiators for the in situ polyhomologation of dimethylsulfoxonium methylide. The resulting 3-arm star block copolymers, (PIB-b-PE)3B, were oxidized/hydrolysed to afford PIB-b-PE-OH. Characterization of all intermediates and final products by high temperature gel permeation chromatography (HT-GPC) and proton nuclear magnetic resonance spectroscopy (1H NMR) revealed the well-defined character of the copolymers. The thermal properties of the copolymers were studied by differential scanning calorimetry (DSC).

  20. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

    Science.gov (United States)

    Lindhoud, Simon; Carvalho, Vanessa; Pronk, Joachim W; Aubin-Tam, Marie-Eve

    2016-04-11

    Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can dissolve integral membrane proteins from biological membranes into nanosized discs. Within these nanoparticles, proteins are embedded in a patch of their native lipid bilayer that is stabilized in solution by the amphipathic polymer that wraps the disc like a bracelet. This approach for detergent-free purification of membrane proteins has the potential to greatly simplify purification but does not facilitate conjugation of functional compounds to the membrane proteins. Often, such functionalization involves laborious preparation of protein variants and optimization of labeling procedures to ensure only minimal perturbation of the protein. Here, we present a strategy that circumvents several of these complications through modifying SMA by grafting the polymer with cysteamine. The reaction results in SMA that has solvent-exposed sulfhydrils (SMA-SH) and allows tuning of the coverage with SH groups. Size exclusion chromatography, dynamic light scattering, and transmission electron microscopy demonstrate that SMA-SH dissolves lipid bilayer membranes into lipid nanodiscs, just like SMA. In addition, we demonstrate that, just like SMA, SMA-SH solubilizes proteoliposomes into protein-loaded nanodiscs. We covalently modify SMA-SH-lipid nanodiscs using thiol-reactive derivatives of Alexa Fluor 488 and biotin. Thus, SMA-SH promises to simultaneously tackle challenges in purification and functionalization of membrane proteins.

  1. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  2. Temperature-Responsive Biocompatible Copolymers Incorporating Hyperbranched Polyglycerols for Adjustable Functionality

    Directory of Open Access Journals (Sweden)

    Alan J. House

    2011-08-01

    Full Text Available Temperature-triggered copolymers are proposed for a number of bio-applications but there is no ideal material platform, especially for injectable drug delivery. Options are needed for degradable biomaterials that not only respond to temperature but also easily accommodate linkage of active molecules. A first step toward realizing this goal is the design and synthesis of the novel materials reported herein. A multifunctional macromer, methacrylated hyperbranched polyglycerol (HPG-MA with an average of one acrylate unit per copolymer, was synthesized and copolymerized with N-isopropylacrylamide (NIPAAm, hydroxyethyl methacrylate-polylactide (HEMAPLA and acrylic acid (AAc. The potential to fully exploit the copolymers by modification of the multiple HPG hydroxyl groups will not be discussed here. Instead, this report focuses on the thermoresponsive, biocompatible, and degradation properties of the material. Poly(NIPAAm-co-HEMAPLA-co-AAc-co-HPG-MA displayed increasing lower critical solution temperatures (LCST as the HPG content increased over a range of macromer ratios. For the copolymer with the maximum HPG incorporation (17%, the LCST was ~30 °C. In addition, this sample showed no toxicity when human uterine fibroid cells were co-cultured with the copolymer for up to 72 h. This copolymer lost approximately 92% of its mass after 17 hours at 37 °C. Thus, the reported biomaterials offer attractive properties for the design of drug delivery systems where orthogonally triggered mechanisms of therapeutic release in relatively short time periods would be attractive.

  3. Electrospun functionalized polyaniline copolymer-based nanofibers with potential application in tissue engineering.

    Science.gov (United States)

    Gizdavic-Nikolaidis, Marija; Ray, Sudip; Bennett, Jared R; Easteal, Allan J; Cooney, Ralph P

    2010-12-08

    Nanofibrous blends of HCl-doped poly(aniline-co-3-aminobenzoic acid) (3ABAPANI) copolymer and poly(lactic acid) (PLA) were fabricated by electrospinning solutions of the polymers, in varying relative proportions, in dimethyl sulfoxide/tetrahydrofuran mixture. The morphology, mechanical and electrical properties of the nanofibers were characterized and an assessment of their bioactivity performed. To assess cell morphology and biocompatibility, pure PLA and 3ABAPANI-PLA nanofibrous mats were deposited in the form of three-dimensional networks with a high degree of connectivity, on glass substrates, and their ability to promote proliferation of COS-1 fibroblast cells was determined. The nanofibrous electrospun 3ABAPANI-PLA blends gave enhanced cell growth, potent antimicrobial capability against Staphylococcus aureus and electrical conductivity. This new class of nanofibrous blends can potentially be employed as tissue engineering scaffolds, and in particular have showed promise as the basis of a new generation of functional wound dressings that may eliminate deficiencies of currently available antimicrobial dressings.

  4. Structural elucidation of a water-insoluble glucan produced by a glucosyltransferase of Streptococcus mutans 6715 by chemical and instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H.M.

    1985-01-01

    The structure of a water-insoluble polysaccharide produced by the glucosyltransferase of Streptococcus mutans 6715 has been elucidated through the use of periodate oxidation, Smith degradation, dextranase digestion, concanavalin A binding studies, methylation followed by methanolysis, reductive cleavage and gas chromatographic-mass spectroscopic analysis, carbon-13 nuclear magnetic resonance and fast atom bombardment mass spectroscopy. These studies show that the water-insoluble glucan is comprised of 67% ..cap alpha..-(1-3) linkages in a contiguous backbone with the remaining 33% existing as ..cap alpha..-(1-6) linkages possibly as linear residues extending from ..cap alpha..-(1-6) branch points. 14% of the residues exist as branch points and the ratio of linear extending ..cap alpha..-(1-3) residues in the backbone to linear extending ..cap alpha..-(1-6) residues in the side chain was found to be 5:2. Dextranase digestion and Smith degradation both gave rise to a high molecular weight fraction which is only ..cap alpha..-(1-3) linked. In addition, the average length of the side chains was shown to not exceed 3 residues.

  5. INFLUENCE OF THE COMPOSITION OF PHOSPHATE ROCK ON THE AMOUNT OF WATER-INSOLUBLE PHOSPHATE IMPURITIES IN SEMI-HYDRATE PHOSPHOGYPSUM

    Directory of Open Access Journals (Sweden)

    Nora Kybartiene

    2015-03-01

    Full Text Available In this work a chemical and mineral composition of phosphate rock and phosphogypsum was investigated in order to identify which impurities of phosphate rock prevent natural phosphates from decomposing in full during the production of phosphoric acid and increase the amount of water-insoluble phosphate impurities in phosphogypsum. The analysis of X-ray diffraction (XRF, X-ray fluorescence (XRD, scanning electron microscopy with energy dispersive X-Ray spectrometry (SEM-EDS and granulometry was carried out. The results showed that phosphate rocks (Kovdor and Kirovsk apatites and the semi-hydrate phosphogypsums differ by their chemical composition. The apatites and phosphogypsums differ in the amount of the major components, as well as other components (MgO, Al2O3, SrO, BaO, ZrO2, Ln2O3. In phosphate rock, Ln2O3 can be found in the composition of the mineral monazite. The SEM-EDS analysis revealed that the minerals of the apatite group and monazite form aggregate crystals. Monazite dissolves in sulphuric and phosphoric acids very marginal, therefore it prevents the apatites from full decomposition, thus influencing the quantity of insoluble phosphates in semi-hydrate phosphogypsum. The higher is the amount of minerals containing Ln2O3 in phosphate rock, the more water-insoluble phosphates remain in phosphogypsum. It was found that influence of Ln2O3 impurity is significant higher than influence of particles size of apatite.

  6. Low-Temperature Processable Block Copolymers That Preserve the Function of Blended Proteins.

    Science.gov (United States)

    Iwasaki, Yasuhiko; Takemoto, Kyohei; Tanaka, Shinya; Taniguchi, Ikuo

    2016-07-11

    Low-temperature processable polymers have attracted increasing interest as ecological materials because of their reduced energy consumption during processing and suitability for making composites with heat-sensitive biomolecules at ambient temperature. In the current study, low-temperature processable biodegradable block copolymers were synthesized by ring-opening polymerization of l-lactide (LLA) using polyphosphoester as a macroinitiator. The polymer films could be processed under a hydraulic pressure of 35 MPa. The block copolymer films swelled in water because the polyphosphoester block was partially hydrated. Interestingly, the swelling ratio of the films changed with temperature. The pressure-induced order-to-disorder transition of the block copolymers was characterized by small-angle X-ray scattering; a crystallinity reduction in the block copolymers was observed after application of pressure. The crystallinity of the block copolymers was recovered after removing the applied pressure. The Young's modulus of the block copolymer films increased as the LLA unit content increased. Moreover, the modulus did not change after multiple processing cycles and the recyclability of the block copolymers was also confirmed. Finally, polymer films with embedded proteinase K as a model protein were prepared. The activity of catalase loaded into the polymer films was evaluated after processing at different temperatures. The activity of catalase was preserved when the polymer films were processed at room temperature but was significantly reduced after high-temperature processing. The suitability of low-temperature processable biodegradable polymers for making biofunctional composites without reducing protein activity was clarified. These materials will be useful for biomedical and therapeutic applications.

  7. Morphological Evolution During Tensile Deformation in Semi-Crystalline Precise Functional Copolymers via Fitting of In Situ Xray Scattering

    Science.gov (United States)

    Trigg, Edward B.; Middleton, L. Robert; Aitken, Brian S.; Azoulay, Jason; Murtagh, Dustin; Wagener, Kenneth B.; Cordaro, Joseph; Winey, Karen I.

    Morphological evolution during tensile deformation of semi-crystalline polymers is often described qualitatively. The layered crystal structures of precise copolymers, in which functional groups are bonded at precise intervals along the polymer backbone, allow for quantitative fitting of oriented X-ray scattering peaks to provide additional information. The crystallites in precise poly(ethylene-co-acrylic acid) align with the acid group layers' normal vector parallel to the tensile direction, while those in precise poly(ethylene-co-imidazolium bromide) align with the layers' normal vector perpendicular to the tensile direction. We present fits of in situ X-ray scattering during tensile deformation of semi-crystalline precise copolymers, to quantify the size, shape, and degree of orientation of the crystallites during the deformation process. Mathematical descriptions of the X-ray scattering in these two cases is explored, and a physical explanation for the difference in alignment direction is proposed.

  8. Functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers and their drug release properties.

    Science.gov (United States)

    He, Xiaohua; Wu, Xiaomeng; Cai, Xin; Lin, Shaoliang; Xie, Meiran; Zhu, Xinyuan; Yan, Deyue

    2012-08-14

    Novel water-soluble dendritic-linear-brush-like triblock copolymer polyamidoamine-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (PAMAM-b-PDMAEMA-b-PPEGMA)-grafted superparamagnetic iron oxide nanoparticles (SPIONs) were successfully prepared via a two-step copper-mediated atom transfer radical polymerization (ATRP) method. The macroinitiators were immobilized on the surface of Fe(3)O(4) nanoparticles via effective ligand exchange of oleic acid with the propargyl focal point PAMAM-typed dendron (generation 2.0, denoted as propargyl-D(2.0)) containing four carboxyl acid end groups, following a click reaction with 2'-azidoethyl-2-bromoisobutylate (AEBIB). PDMAEMA and PPEGMA were grown gradually from nanoparticle surfaces using the "grafting from" approach, which rendered the SPIONs soluble in water and reversed aggregation. To the best of our knowledge, this is the first report that describes the functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers. The modified nanoparticles were systematically studied via TEM, FT-IR, DLS, XRD, NMR, TGA, and magnetization measurements. DLS measurement confirmed that the obtained dendritic-linear-brush-like triblock copolymer-grafted SPIONs had a uniform hydrodynamic particle size of average diameter less than 30 nm. The dendritic-linear-brush-like triblock copolymer-grafted SPIONs possessed excellent biocompatibility by methyl tetrazolium (MTT) assays against NIH3T3 cells and hemolysis assays with rabbit erythrocytes. Furthermore, an anticancer drug, doxorubicin (Dox), was used as a model drug and loaded into the dendritic-linear-brush-like triblock copolymer-grafted SPIONs, and subsequently, the drug releases were performed in phosphoric acid buffer solution pH = 4.7, 7.4, or 11.0 at 37 °C. The results verify that the dendritic-linear-brush-like triblock copolymer-grafted SPIONs possess pH-responsive drug release behavior. The Dox dose

  9. A Molecular-level Approach for Characterizing Water-insoluble Components of Organic Aerosols Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    Priest, A. S.; Wozniak, A. S.; Hatcher, P. G.

    2011-12-01

    There is strong evidence that suggests emissions from human activities have played a substantial role in changing the chemical composition of the atmosphere, resulting in negative effects on climate and human and environmental health. Theory suggests that the molecular composition of organic aerosols plays a role in the specific impacts; however, due to the lack of suitable analytical methods for characterizing the inherently complex aerosol organic matter (OM), our molecular level understanding of the nature and reactivity of this material has been limited. Ultra-high resolution mass spectrometry has provided molecular formula information for thousands of species present in the water-soluble fraction of organic aerosols. However, fewer studies have examined the water-insoluble fraction, which typically accounts for 30-70% of aerosol OM. Here we employ pyridine, with its high solvating power for natural OM, as a suitable solvent for examining the water-insoluble fraction of field-collected organic aerosols using ultra-high resolution mass spectrometry. The molecular composition of the water-soluble organic matter (WSOM) and pyridine-soluble organic matter (PSOM) of organic aerosols was evaluated using negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Ambient aerosol samples were collected from rural sites in New York and Virginia in 2007. The mass spectral distribution of the ions detected using ESI FT-ICR MS allowed for the determination of molecular formulas for the thousands of peaks detected in each extract. Approximately 40% of the aerosol OM was WSOM, and the spectra were dominated by compounds with only carbon, hydrogen and oxygen (~45% of assigned formulas), with relatively smaller contributions from nitrogen- and sulfur-containing formulas. Pyridine, on the other hand, extracts a molecularly unique portion of aerosol OM. Approximately 25% of the formulas are unique to PSOM, and the

  10. DYNAMIC DENSITY-FUNCTIONAL THEORY FOR MICROPHASE SEPARATION KINETICS OF BLOCK-COPOLYMER MELTS

    NARCIS (Netherlands)

    FRAAIJE, JGEM

    1993-01-01

    In this paper, we describe a numerical method for the calculation of collective diffusion relaxation mechanisms in quenched block copolymer melts. The method entails the repeated calculation of two opposing fields-an external potential field U, conjugate to the density field rho, and an energetic

  11. Block copolymer self-assembly and co-assembly : shape function and application

    NARCIS (Netherlands)

    Li, F.

    2009-01-01

    Amphiphilic block copolymers can, in selective solvents such as water, assemble into various shapes and architectures. Among those, polymer vesicles, polymer micelles and polymer fibers are very popular structures in current nanotechnology. These objects each have their own particular properties and

  12. Directing Hybrid Structures by Combining Self-Assembly of Functional Block Copolymers and Atomic Layer Deposition: A Demonstration on Hybrid Photovoltaics.

    Science.gov (United States)

    Moshonov, Moshe; Frey, Gitti L

    2015-11-24

    The simplicity and versatility of block copolymer self-assembly offers their use as templates for nano- and meso-structured materials. However, in most cases, the material processing requires multiple steps, and the block copolymer is a sacrificial building block. Here, we combine a self-assembled block copolymer template and atomic layer deposition (ALD) of a metal oxide to generate functional hybrid films in a simple process with no etching or burning steps. This approach is demonstrated by using the crystallization-induced self-assembly of a rod-coil block copolymer, P3HT-b-PEO, and the ALD of ZnO. The block copolymer self-assembles into fibrils, ∼ 20 nm in diameter and microns long, with crystalline P3HT cores and amorphous PEO corona. The affinity of the ALD precursors to the PEO corona directs the exclusive deposition of crystalline ZnO within the PEO domains. The obtained hybrid structure possesses the properties desired for photovoltaic films: donor-acceptor continuous nanoscale interpenetrated networks. Therefore, we integrated the films into single-layer hybrid photovoltaics devices, thus demonstrating that combining self-assembly of functional block copolymers and ALD is a simple approach to direct desired complex hybrid morphologies.

  13. Fruiting bodies of Hericium erinaceus (Bull. Pers. – a new source of water-insoluble (1→3-α-d-glucan

    Directory of Open Access Journals (Sweden)

    Adrian Wiater

    2016-09-01

    Full Text Available A water-insoluble polysaccharide (WIP was isolated from the fruiting bodies of Hericium erinaceus HE01 by an alkaline solution with the yield of 5%. Structural and compositional analyses by total acid hydrolysis, methylation analysis, FT-IR, FT-Raman, and 1H NMR spectroscopy as well as other instrumental techniques showed predominantly glucose linked by α-glycosidic bonds and small amounts of mannose, xylose, rhamnose, galactose, and ribose. The methylation analysis showed that (1→3-linked Glcp is the major constituent (70.8% of the polymer, while the 3,4 substituted d-Glcp represents the main branching residue of the glucan. The presence of (1→3-α-d-glucan in the hyphae of H. erinaceus was additionally confirmed by the use of specific fluorophore-labeled antibodies.

  14. Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel.

    Science.gov (United States)

    Chou, James J; Kaufman, Joshua D; Stahl, Stephen J; Wingfield, Paul T; Bax, Ad

    2002-03-20

    The structure of a water-insoluble fragment encompassing residues 282-304 of the HIV envelope protein gp41 is studied when solubilized by dihexanoyl phosphatidylcholine (DHPC) and by small bicelles, consisting of a 4:1 molar ratio of DHPC and dimyristoyl phosphatidylcholine (DMPC). Weak alignment with the magnetic field was accomplished in a stretched polyacrylamide gel, permitting measurement of one-bond (1)H-(15)N, (13)Ca-(13)C', and (13)C'-(15)N dipolar couplings, which formed the basis for determining the peptide structure. In both detergent systems, the peptide adopts an alpha-helical conformation from residue 4 through 18. In the presence of the DHPC micelles the helix is strongly curved towards the hydrophobic surface, whereas in the presence of bicelles a much weaker curvature in the opposite direction is observed.

  15. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    Science.gov (United States)

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Functionalization of poly(dimethylsiloxane) surfaces with maleic anhydride copolymer films.

    Science.gov (United States)

    Cordeiro, Ana L; Zschoche, Stefan; Janke, Andreas; Nitschke, Mirko; Werner, Carsten

    2009-02-01

    Combining advantageous bulk properties of polymeric materials with surface-selective chemical conversions is required in numerous advanced technologies. For that aim, we investigate strategies to graft maleic anhydride (MA) copolymer films onto poly(dimethylsiloxane) (PDMS) precoatings. Amino groups allowing the covalent attachment of the MA copolymer films to the PDMS (Sylgard 184) surface were introduced either by low-pressure ammonia plasma treatment, or by attachment of 3-aminopropyltriethoxysilane (APTES) onto air plasma-treated PDMS. The resultant coatings were extensively characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), contact angle measurements, and atomic force microscopy (AFM). The results show that the impact of the plasma treatment on the physical properties on the topmost surface of the PDMS is critically important for the characteristics of the layered coatings.

  17. Microelectrode Arrays and the Use of PEG-Functionalized Diblock Copolymer Coatings

    Directory of Open Access Journals (Sweden)

    Sakshi Uppal

    2014-09-01

    Full Text Available PEG-modified diblock copolymer surfaces have been examined for their compatibility with microelectrode array based analytical methods. The use of PEG-modified polymer surfaces on the arrays was initially problematic because the redox couples used in the experiments were adsorbed by the polymer. This led the current measured by cyclic voltammetry for the redox couple to be unstable and increase with time. However, two key findings allow the experiments to be successful. First, after multiple cyclic voltammograms the current associated with the redox couple does stabilize so that a good baseline current can be established. Second, the rate at which the current stabilizes is consistent every time a particular coated array is used. Hence, multiple analytical experiments can be conducted on an array coated with a PEG-modified diblock copolymer and the data obtained is comparable as long as the data for each experiment is collected at a consistent time point.

  18. Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    El Fissi, Lamia, E-mail: lamia.elfissi@uclouvain.be [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium); Vandormael, Denis [SIRRIS Liege Science Park, 4102 Seraing (Belgium); Houssiau, Laurent [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Francis, Laurent A. [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium)

    2016-02-15

    Highlights: • TiO{sub 2}/COC (cyclic olefin copolymer) hybrid material for BioMEMS applications. • Thin layer of TiO{sub 2} was deposed on cyclic olefin copolymer using physical vapor deposition (PVD) technique. • The coating possess the highest level of adhesion with an excellent morphology of the hybrid material (TiO{sub 2}/COC). - Abstract: Cyclic olefin copolymer (COC) is a new class of thermoplastic polymers used for a variety of applications ranging from bio-sensing to optics. However, the hydrophobicity of native COC hampers the further development and application of this material [1]. In this work, we report the structural, morphological, and optical properties of the TiO{sub 2}/COC hybrid material, which provides a desirable substrate for optical devices and subsequent surface modifications. The TiO{sub 2} film on COC substrate was deposited by the evaporation method, and it was characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), profilometry and atomic force microscope (AFM). Using an UV-vis spectrophotometer, we found that the transmittance of the TiO{sub 2}/COC hybrid material in the visible domain reached 80%. The TiO{sub 2}/COC hybrid appeared to be stable in most of the assessed polar solvents and acid/basic solutions. The new TiO{sub 2}/COC hybrid material and the robust fabrication method are expected to enable a variety of BioMEMS applications.

  19. Functionalized Nanofiber Meshes Enhance Immunosorbent Assays.

    Science.gov (United States)

    Hersey, Joseph S; Meller, Amit; Grinstaff, Mark W

    2015-12-01

    Three-dimensional substrates with high surface-to-volume ratios and subsequently large protein binding capacities are of interest for advanced immunosorbent assays utilizing integrated microfluidics and nanosensing elements. A library of bioactive and antifouling electrospun nanofiber substrates, which are composed of high-molecular-weight poly(oxanorbornene) derivatives, is described. Specifically, a set of copolymers are synthesized from three 7-oxanorbornene monomers to create a set of water insoluble copolymers with both biotin (bioactive) and triethylene glycol (TEG) (antifouling) functionality. Porous three-dimensional nanofiber meshes are electrospun from these copolymers with the ability to specifically bind streptavidin while minimizing the nonspecific binding of other proteins. Fluorescently labeled streptavidin is used to quantify the streptavidin binding capacity of each mesh type through confocal microscopy. A simplified enzyme-linked immunosorbent assay (ELISA) is presented to assess the protein binding capabilities and detection limits of these nanofiber meshes under both static conditions (26 h) and flow conditions (1 h) for a model target protein (i.e., mouse IgG) using a horseradish peroxidase (HRP) colorimetric assay. Bioactive and antifouling nanofiber meshes outperform traditional streptavidin-coated polystyrene plates under flow, validating their use in future advanced immunosorbent assays and their compatibility with microfluidic-based biosensors.

  20. Mucoadhesive Amphiphilic Methacrylic Copolymer-Functionalized Poly(ε-caprolactone) Nanocapsules for Nose-to-Brain Delivery of Olanzapine.

    Science.gov (United States)

    Fonseca, Francisco N; Betti, Andresa H; Carvalho, Flávia C; Gremião, Maria P D; Dimer, Frantiescoli A; Guterres, Sílvia S; Tebaldi, Marli L; Rates, Stela M K; Pohlmann, Adriana R

    2015-08-01

    Nose-to-brain drug delivery has been proposed to overcome the low absorption of drugs in central nervous system due to the absence of brain-blood barrier in the olfactory nerve pathway. However, the presence of a mucus layer and quick clearance limit the use of this route. Herein, amphiphilic methacrylic copolymer-functionalized poly(ε-caprolactone) nanocapsules were proposed as a mucoadhesive system to deliver olanzapine after intranasal administration. In vitro evaluations showed that these nanocapsules were able to interact with mucin (up to 17% of increment in particle size and 30% of reduction of particle concentration) and nasal mucosa (2-fold higher force for detaching), as well as to increase the retention of olanzapine (about 40%) on the nasal mucosa after continuous wash. The olanzapine-loaded amphiphilic methacrylic copolymer-functionalized PCL nanocapsules enhanced the amount of drug in the brain of rats (1.5-fold higher compared to the drug solution). In accordance with this finding, this formulation improved the prepulse inhibition impairment induced by apomorphine, which is considered as an operational measure of pre-attentive sensorimotor gating impairment present in schizophrenia. Besides, nanoencapsulated olanzapine did not affect the nasal mucosa integrity after repeated doses. These data evidenced that the designed nanocapsules are a promising mucoadhesive system for nose-to-brain delivery of drugs.

  1. Cationic nanoparticles with quaternary ammonium-functionalized PLGA-PEG-based copolymers for potent gene transfection

    Science.gov (United States)

    Wang, Yan-Hsung; Fu, Yin-Chih; Chiu, Hui-Chi; Wang, Chau-Zen; Lo, Shao-Ping; Ho, Mei-Ling; Liu, Po-Len; Wang, Chih-Kuang

    2013-11-01

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA- phe-PEG- qDETA (PPD), phe-PEG- qDETA-PLGA (PDP), and PLGA- phe-PEG- qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH2), phenylalanine ( phe), and poly(lactic- co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of 217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  2. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Hsung [Kaohsiung Medical University, School of Dentistry, College of Dental Medicine (China); Fu, Yin-Chih [Kaohsiung Medical University, Graduate Institute of Medicine, College of Medicine (China); Chiu, Hui-Chi [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Wang, Chau-Zen [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Lo, Shao-Ping [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Ho, Mei-Ling [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Liu, Po-Len [Kaohsiung Medical University, Department of Respiratory Therapy, College of Medicine (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China)

    2013-11-15

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH{sub 2}), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  3. Synthesis of Functional Block Copolymers Carrying One Poly( p -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure

    KAUST Repository

    Menk, Florian

    2016-02-29

    Block copolymers composed of a MEH-PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60-95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optical properties depending on the polymer composition and the micellization procedure. Furthermore, the reactive ester carrying block copolymers enabled the introduction of anchor groups which facilitated the preparation of nanocomposites with CdSe/CdZnS core-shell QDs. The obtained composites were studied using time-resolved photoluminescence measurements. The results revealed an increased interaction based on an accelerated decay of the QD emission for composites as compared to the mixture of the QDs with unfunctionalized polymers. © 2016 American Chemical Society.

  4. The use of surfactants to enhance the solubility and stability of the water-insoluble anticancer drug SN38 into liquid crystalline phase nanoparticles.

    Science.gov (United States)

    Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru

    2016-12-30

    Cubosomes were used to increase the aqueous solubility of the water insoluble anticancer drug SN38. The results showed that the use of a common cubosome formulation consisting of phytantriol (PHYT) as the matrix amphiphile (PHYT-cubosome) led to a 6-fold increase in the solubility of SN38. However, mean hydrodynamic diameter (DH) and polydispersity index (PDI) of these PHYT-cubosome particles were 345±49nm and 0.37±0.05, respectively, making them unsuitable for intravenous applications. Several additives were investigated to increase the solubility of SN38 and reduce the DH and PDI values of the resulting particles. Charged additives such as didodecyldimethyl ammonium bromide (DDAB) and sodium dodecyl sulfate (SDS) led to improvements in the physiochemical properties of the cubosomes. Notably, the PHYT-DDAB and PHT-SDS cubosomes led to 15- and 14-fold increases in the aqueous solubility of SN38, respectively. Moreover, the SN38 loaded into the PHYT-DDAB and PHYT-SDS cubosomes was found to be highly stable, with very little hydrolysis to its inactive acid form. In summary, the addition of DDAB and SDS to PHYT-cubosome nanoparticle drug delivery systems not only led to considerable improvements in their physiochemical properties, but also enhanced the aqueous solubility of SN38 and increased its chemical stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A molecular-level approach for characterizing water-insoluble components of ambient organic aerosol particulates using ultra-high resolution mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. S. Willoughby

    2014-04-01

    Full Text Available The chemical composition of organic aerosols in the atmosphere is strongly influenced by human emissions, and the effect these have on the environment, human health, and climate change is determined by the molecular nature of these chemical species. The complexity of organic aerosol samples limits the ability to study the chemical composition, and, therefore, the associated properties and the impacts they have. Many studies address the water-soluble fraction of organic aerosols, and have had much success in identifying specific molecular formulas for thousands of compounds present. However, little attention is given to the water-insoluble portion, which can contain most of the fossil material that is emitted through human activity. Here we compare the organic aerosols present in water extracts and organic solvent extracts (pyridine and acetonitrile of an ambient aerosol sample collected in a rural location that is impacted by natural and anthropogenic emission sources. A semi-quantitative method was developed using proton nuclear magnetic resonance spectroscopy to determine that the amount of organic matter extracted by pyridine is comparable to that of water. Electrospray ionization Fourier transform ion cyclotron resonance mass spectra show that pyridine extracts a molecularly unique fraction of organic matter compared to water or acetonitrile, which extract chemically similar organic matter components. The molecular formulas unique to pyridine were less polar, more aliphatic, and reveal formulas containing sulfur to be an important component of insoluble aerosol organic matter.

  6. Peroxidase-like catalytic activity of water-insoluble complex linked Fe(III)-thiacalix[4]arenetetrasulfonate with tetrakis(1-methylpyridinium-4-yl)porphine via ionic interaction.

    Science.gov (United States)

    Odo, Junichi; Sumihiro, Manabu; Okadome, Takuma; Inoguchi, Masahiko; Akashi, Haruo; Nakagoe, Kazunori

    2009-12-01

    A new water-insoluble Fe(3+)-TCAS[4]/TMPyP complex linked tetraanionic Fe(III)-thiacalix[4]arenetetrasulfonate (Fe(3+)-TCAS[4]) with tetracationic tetrakis(1-methylpyridinium-4-yl)porphine (TMPyP) via ionic interaction was prepared. The peroxidase-like catalytic activity of the Fe(3+)-TCAS[4]/TMPyP complex was investigated based on the dye formation reaction by oxidation of 4-aminoantipyrine and phenol with H(2)O(2) catalyzed by peroxidase. This Fe(3+)-TCAS[4]/TMPyP complex showed the highest activity in pH 5.5 acetate buffer solutions, and it was applied to the photometric determination of trace amounts of H(2)O(2). The calibration curve was linear over the range from 1.0 to 35 microg of H(2)O(2) in a 1.0 ml sample solution. Moreover, the method using glucoseoxidase and the Fe(3+)-TCAS[4]/TMPyP complex was applied to the determination of glucose, and the results were satisfactory even in control sera. The Fe(3+)-TCAS[4]/TMPyP complex can be applied to a practical sample, such as blood or urine, as an analytical reagent for the photometric determination of H(2)O(2) in place of peroxidase.

  7. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    Science.gov (United States)

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively.

  8. Synthesis, Characterization and Properties of Chain Terminated Polyhedral Oligomeric Silsesquioxane-Functionalized Perfluorocyclobutyl Aryl Ether Copolymers (Postprint)

    Science.gov (United States)

    2007-01-01

    TGA analysis of POSS PFCB copolymers showed step-wise decomposition of copolymers resulting from the initial degradation of the POSS cages at 297−355...fluorinated 2,2-bis(4-trifluorovinyloxybiphenyl)-1,1,1,3,3,3-hexafluoropropane monomer. TGA analysis of POSS PFCB copolymers showed step-wise decomposition of...hexafluorocyclobutene from the PFCB ring. This has been previously shown by Babb et al. based on the thermal degradation of PFCB polymers [10]. TGA analysis showed a

  9. Synthesis, Characterization and Properties of Chain Terminated Polyhedral Oligomeric Silsesquioxane-Functionalized Perfluorocyclobutyl Aryl Ether Copolymers (Preprint)

    Science.gov (United States)

    2007-10-17

    the more fluorinated 2,2-bis(4- trifluorovinyloxybiphenyl)-1,1,1,3,3,3-hexafluoropropane monomer. TGA analysis of POSS PFCB copolymers showed step...1,1,1,3,3,3-hexafluoropropane monomer. TGA analysis of POSS PFCB copolymers showed step-wise decomposition of copolymers resulting from the initial...the PFCB ring. This has been previously shown by Babb based on the thermal degradation of PFCB polymers [10]. TGA analysis showed a significant

  10. 红薯渣中不溶性膳食纤维提取工艺的优化%Research on extraction and property of the water insoluble dietary fiber from sweet potato

    Institute of Scientific and Technical Information of China (English)

    李泽珍; 狄建兵; 李治

    2016-01-01

    [目的]优化红薯渣中不溶性膳食纤维的提取工艺,以提高红薯渣的综合利用。[方法]以红薯渣为原料,利用碱化学法制备不溶性膳食纤维,研究料液比、碱浓度、提取时间和提取温度对不溶性膳食纤维提取率的影响,由正交实验确定红薯渣中不溶性膳食纤维的最佳提取工艺。[结果]在料液比为1∶6,碱浓度为10.0 g·L-1,提取温度为75℃,提取时间为45 min 的条件下,红薯渣中不溶性膳食纤维的提取率为70.25%,持水力为4.16 g·g-1,溶胀性为20.6 mL·g-1。[结论]碱化学法可有效提取红薯渣中的不溶性膳食纤维。%Objective]In order to propel comprehensive utilization of sweet potato residue,the extraction process of the water insoluble dietary fiber from sweet potato residue was studied.[Methods]The alkali solution was used to extract the water insoluble dietary fiber from sweet potato residue.With the solid-liquid ratio,alkali concentration,extraction time and extraction temperature for single-factor experiments,the best extraction condition of the water insoluble dieta-ry fibre was determined by orthogonal experiment.[Results]The results showed the best extraction condition of the water insoluble dietary fibre was the ratio of material to water 1∶6,alkali concentration 10.0 g·L-1 ,the extraction tem-perature 75 ℃,the extraction time 45 min.The extraction ratio of the water insoluble dietary fiber was 70.25%.The water holding was 4.1 6 g·g-1 ,and the expansibility was 20.6 mL·g-1 .[Conculusion]Alkali extraction of the water insoluble dietary fiber from sweet potato residue was effective.

  11. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  12. Correlation hole effect in comblike copolymer systems obtained by hydrogen bonding between homopolymers and end-functionalized oligomers

    NARCIS (Netherlands)

    Huh, J; Ikkala, O.; ten Brinke, G.

    Monodisperse block copolymer systems in the homogeneous melt exhibit small angle X-ray scattering peaks at finite nonzero angle due to characteristic correlation hole concentration fluctuations. Here we will address these fluctuations for comblike copolymer systems obtained by strong association

  13. In vitro synergism of a water insoluble fraction of Uncaria tomentosa combined with fluconazole and terbinafine against resistant non-Candida albicans isolates.

    Science.gov (United States)

    Moraes, Renata Cougo; Carvalho, Anderson Ramos; Lana, Aline Jacobi Dalla; Kaiser, Samuel; Pippi, Bruna; Fuentefria, Alexandre Meneghello; Ortega, George González

    2017-12-01

    Uncaria tomentosa D.C. (Rubiaceae) has several biological activities, including activity against resistant Candida strains. The synergistic interaction with terbinafine or fluconazole can be an important alternative to overcome this resistance. The potential synergy between a water insoluble fraction (WIF) from Uncaria tomentosa bark and the antifungals terbinafine (TRB) and fluconazole (FLZ) against non-Candida albicans resistant strains was investigated. TRB and FLZ, alone and combined with WIF, were tested by the checkerboard procedure using the micro-dilution technique against seven isolates of Candida glabrata and C. krusei. The molecular interactions occurring outside the cell wall were evaluated by scanning electron microscopy, Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) analysis. The checkerboard inhibitory assay demonstrated synergy for WIF:TRB and WIF:FLZ combinations, respectively. The best synergistic cell damage was demonstrated unequivocally for the associations of WIF and TRB (1.95:4.0 μg/mL) and WIF and FLZ (1.95:8.0 μg/mL). The comparison of the FT-IR spectra of the antifungal alone, and in combination with WIF, allows recognizing clear differences in 3000, 1600, 1400, and 700-800 cm(-1) bands. Additionally, modifications on TRB and FLZ thermograms were clearly noticed after their combination with WIF. DSC and infrared analysis demonstrated intermolecular interactions between WIF and either TRB or FLZ. Hence, quite likely the synergistic effect is related to interaction events occurring outside the cell wall between antifungal and cat's claw proanthocyanidins. A direct action on the cell wall is suggested, without connection with the ABC efflux pump mechanism.

  14. Copolymer-1 promotes neurogenesis and improves functional recovery after acute ischemic stroke in rats.

    Directory of Open Access Journals (Sweden)

    Yolanda Cruz

    Full Text Available Stroke triggers a systemic inflammatory response that exacerbates the initial injury. Immunizing with peptides derived from CNS proteins can stimulate protective autoimmunity (PA. The most renowned of these peptides is copolymer-1 (Cop-1 also known as glatiramer acetate. This peptide has been approved for use in the treatment of multiple sclerosis. Cop-1-specific T cells cross the blood-brain barrier and secrete neurotrophins and anti-inflammatory cytokines that could stimulate proliferation of neural precursor cells and recruit them to the injury site; making it an ideal therapy for acute ischemic stroke. The aim of this work was to evaluate the effect of Cop-1 on neurogenesis and neurological recovery during the acute phase (7 days and the chronic phase of stroke (60 days in a rat model of transient middle cerebral artery occlusion (tMCAo. BDNF and NT-3 were quantified and infarct volumes were measured. We demonstrated that Cop-1 improves neurological deficit, enhances neurogenesis (at 7 and 60 days in the SVZ, SGZ, and cerebral cortex through an increase in NT-3 production. It also decreased infarct volume even at the chronic phase of tMCAo. The present manuscript fortifies the support for the use of Cop-1 in acute ischemic stroke.

  15. The Process Optimization of the Water Insoluble Dietary Fiber Extracted from Hawthorn%山楂中水不溶性膳食纤维提取工艺的优化

    Institute of Scientific and Technical Information of China (English)

    刘钊; 施斯畅; 赵建芬

    2014-01-01

    Fresh hawthorn fruit as raw material, the use of enzymes in chemical extraction of hawthorn fruit water-insoluble dietary fiber by single factor test and orthogonal test optimization of process conditions. The results showed that when the base is added to the amount of 0.50%(sample mass fraction), alkaline hydrolysis temperature 45℃, liquefying amylase was 0.10%(sample mass fraction), enzymatic hydrolysis time 35 min, the resulting water-insoluble dietary fiber, high purity, total impurity removal rate was 97.8 %, water insoluble dietary fiber extraction rate of 3.52%. The extracted water-insoluble dietary fiber holding capacity of 5.27 g/g , expansive force of 5.10 mL/g.%以新鲜山楂果实为原料,采用酶化学法提取山楂果实中的水不溶性膳食纤维,通过单因素试验和正交试验优化工艺条件。结果表明,当碱加入量0.50%(样品质量分数),碱解温度45℃,液化淀粉酶用量为0.10%(样品质量分数),酶解时间35 min时,得到的水不溶性膳食纤维纯度高,总杂质去除率为97.8%,水不溶性膳食纤维的提取率为3.52%。所提取的水不溶性膳食纤维持水力为5.27 g/g、膨胀力为5.10 mL/g。

  16. Optimization of the extraction of water insoluble dietary fiber from rapeseed hull%菜籽皮不溶性膳食纤维提取工艺优化

    Institute of Scientific and Technical Information of China (English)

    王顺民; 薛正莲; 方玉双

    2012-01-01

    以菜籽皮为原料,采用氢氧化钠溶液为溶剂,通过单因素实验和响应面法研究了料液比、氢氧化钠浓度、温度和时间对碱法提取菜籽皮不溶性膳食纤维得率的影响。结果表明当料液比为1:17(g/mL)、氢氧化钠浓度为2.0mol/L、温度为50℃、时间为45min时,菜籽皮不溶性膳食纤维的得率最高,达到65.92%。%Water insoluble dietary fiber extracted from rapeseed hull by alkaline hydrolysis method and by using Sodium hydroxide(NaOH) as solution was studied.Effects of four crucial parameters(the ratio of material to solution,alkali concentration,temperature and time) on extraction yield of water insoluble dietary fiber were investigated trough single-factor experiment method.Subsequently,a central composition experimental design was performed to attain the maximum extraction yield of water insoluble dietary fiber.Under the optimized conditions as follows:the ratio of material to solution 1:17(g/mL),alkali concentration 2.0mol/L,temperature 50℃ and time 45min,the yield of water insoluble dietary fiber was found to be 65.92%.

  17. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  18. A library of strictly linear poly(ethylene glycol)-poly(ethylene imine) diblock copolymers to perform structure-function relationship of non-viral gene carriers.

    Science.gov (United States)

    Bauhuber, Sonja; Liebl, Renate; Tomasetti, Luise; Rachel, Reinhard; Goepferich, Achim; Breunig, Miriam

    2012-09-10

    A library of 39 strictly linear poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) diblock copolymers was synthesized for the delivery of plasmid DNA using PEG of 2, 5, or 10 kDa in combination with linear PEI with a molecular weight (MW) ranging from 1.5 to 10.8 kDa. In contrast to other approaches, the copolymers demonstrated a clear separation between the hydrophilic PEG and the nucleic acid condensing PEI moieties. Hence, the hypothesis was that PEG may not sterically counteract the interaction between the nucleic acid and PEI and that consequently, the copolymers are perfectly suited to build small and stable polyplexes. Analysis of the polyplexes revealed structure-function relationships and the general guideline was that the PEG domain had a greater influence on the physicochemical properties of the polyplexes than PEI. A PEG content higher than 50% led to small (application of the corresponding degradable copolymer, which involved a redox triggerable PEG domain. In conclusion, valuable design criteria for the optimization of gene delivery carriers, which is only possible through the screening of such a large library, were gained. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Functionalized macroporous copolymer of glycidyl methacrylate: The type of ligand and porosity parameters influence on Cu(II ion sorption from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Sandić Zvjezdana P.

    2009-01-01

    Full Text Available The removal of heavy metals from hydro-metallurgical and other industries' wastewaters, their safe storage and possible recovery from waste- water streams is one of the greater ecological problems of modern society. Conventional methods, like precipitation, adsorption and biosorption, electrowinning, membrane separation, solvent extraction and ion exchange are often ineffective, expensive and can generate secondary pollution. On the other hand, chelating polymers, consisting of crosslinked copolymers as a solid support and functional group (ligand, are capable of selectively loading different metal ions from aqueous solutions. In the relatively simple process, the chelating copolymer is contacted with the contaminated solution, loaded with metal ions, and stripped with the appropriate eluent. Important properties of chelating polymers are high capacity, high selectivity and fast kinetics combined with mechanical stability and chemical inertness. Macroporous hydrophilic copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate modified by different amines show outstanding efficiency and selectivity for the sorption of precious and heavy metals from aqueous solutions. In this study poly(GMA-co-EGDMA copolymers were synthesized with different porosity parameters and functionalized in reactions with ethylene diamine (EDA, diethylene triamine (DETA and triethylene tetramine (TETA. Under non-competitive conditions, in batch experiments at room temperature, the rate of sorption of Cu(II ions from aqueous solutions and the influence of pH on it was determined for four samples of amino-functionalized poly(GMA-co-EGDMA. The sorption of Cu(II for both amino-functionalized samples was found to be very rapid. The sorption half time, t1/2, defined as the time required to reach 50% of the total sorption capacity, was between 1 and 2 min. The maximum sorption capacity for copper (2.80 mmol/g was obtained on SGE-10/12-deta sample. The sorption

  20. Supramolecular assemblies of alkane functionalized poly ethylene glycol copolymer for drug delivery

    Science.gov (United States)

    Zhu, Lida

    The therapeutic effects of many modern drugs were limited owing to their physical properties and half-life in the blood stream. The purpose of this research is to study the relationship between drug delivery performances and chemical properties of the polymer micelle drug carriers. Polyethylene glycol (PEG) based alternating copolymer poly[(polyoxyethylene)-oxy-5-hydroxyisophthalic] (Ppeg) with PEG molecular weights of 600 and 1000 were synthesized and modified with different alkanes to study the effects of altering the hydrophobic and hydrophilic chain lengths. The nuclear magnetic resonance (NMR) spectrum, critical micelle concentration (CMC), micelle size, and micelle zeta potential of the synthesized polymers were measured. The resulting polymer particles were able to form micelles in aqueous solution with CMCs lower than 0.04 wt%. Drug delivery studies were performed with a model hydrophobic drug, pyrene. Drug loading data showed the polymer particles were able to encapsulate pyrene and has a loading capacity up to 8 wt%. The sustain release ability was measured and the pyrene release was extended over 5 days. Both loading capacity and sustain release ability were found to be highly dependent on CMC. Cell culture study was implemented with RAW 264.7 cells in order to determine the polymer micelle's cytocompatibility, Most Ppeg polymer micelles showed more than 85% cell viability with and without pyrene loading. Cell internalization of the micelles encapsulated drug was measured both quantitatively and qualitatively and was enhanced comparing to unencapsulated drug. The results indicated that the internalization enhancement effect of polymer micelle was mainly affected by hydrophilic chain length; neither hydrophobic chain length nor loading capacity has significant influence on internalization.

  1. Preparation of Transparent Water-Insoluble Silk Fibroin Films%水不溶性透明丝素蛋白膜的制备及性能

    Institute of Scientific and Technical Information of China (English)

    罗敏清; 张岑岑; 毛丽; 吴锡龙; 卢神州

    2011-01-01

    为了得到用于角膜修复的材料,将再生丝素蛋白与D-山梨醇或肌醇共混,用流延法制备共混膜。用X射线衍射、红外光谱法对共混膜的结构进行分析,结果显示,共混膜主要以丝素I型结晶结构为主;SEM测试显示,共混膜表面在湿态下形成了纳米孔洞。考察了共混膜的热水溶失率,力学性能及透光率,发现丝素蛋白的热水溶失率均小于2%。D-山梨醇丝素共混膜表现出很好的韧性,而肌醇丝素共混膜表现出一定的脆性。六元醇含量小于40%的共混膜,力学性能均达到了人角膜的性能;透光性良好,与人的角膜相似,有望应用于角膜修复材料。%The transparent water-insoluble Silk fibroin(SF) films were casted from the mixture solution of Silk fibroin and D-sorbitol or inositol.The structure,surfaces,solubility,mechanical properties and light transmittance of the blend films were measured.Fourier transform infrared spectrum(FT-IR),X-ray diffraction indicate that the films are mainly composed of the crystalline structure of Silk Ⅰ.scanning electron microscope(SEM) shows D-sorbitol/SF blend films are miscible,whereas inositol and SF are phase separated;in the wet state,there are lots of nanoporous in the blend films.The D-sorbitol/SF films which are insoluble have excellent mechanical properties while the inositol/SF films are brittle.the mechanical property of hexitols/SF blend films is consistent with the human cornea in wet state.When the m(D-sorbitol)/m(SF) is from 1/10 to 2/10,the blends films have high light transmittance which are similar to human cornea.In summary,both of the above-mentioned D-sorbitol/SF films provide a great potential to act as repairing materials for cornea.

  2. Synthesis and Characterization of a Novel Functional Biodegradable Copolymer-Poly(lactic acid-4-hydroxyproline-polyethylene glycol)

    Institute of Scientific and Technical Information of China (English)

    Jiu Fang DUAN; Yu Bin ZHENG

    2006-01-01

    A series of poly(lactic acid-4-hydroxyproline-polyethylene glycol) (PLA-Hpr-PEG) copolymers were synthesized by direct melt copolymerization of D,L-lactic acid and 4-hydroxyproline with different feed amount of polyethylene glycol (PEG) 0.1%, 0.5%, 1% and 5%, respectively. The properties of these copolymers were characterized by using IR spectroscopy, proton nuclear magnetic resonance (1H-NMR) spectroscopy, gel permeation chromatography (GPC), X-ray diffraction and differential scaning calorimetry (DSC). PLA-Hpr-PEG are amorphous copolymers. Copolymers showed increasing water uptake capacity with increasing PEG percentage in the feed, which result in an increasing degradable rate in phosphate buffer solution (pH 7.4) at 37℃.

  3. SYNTHESIS OF NOVEL BI-FUNCTIONAL COPOLYMER BEA RING STERICALLY HINDERED PHENOL AND HINDERED AMINE GROUPS VIA RING-OPENING METATHESIS POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Bo-yong Xue; Kenichi Ogata; Akinori Toyota

    2008-01-01

    Norbornene derivatives exo,endo-2-[2-(3,5-di-tert-butyl-4-hydroxyphenoxy)-acetoxy]methyl-5-norbornene(M1) and 3,3,5,5-tetramethyl-4-piperidinyl 5-norbornene-exo,endo-2-carboxylate(M2)were synthesized and polymerized by RuCl2(=CHPh)(PCy3)2 to prepare a novel kind of bi-functional polymer bearing sterically hindered phenol (SHP) and hindered amine(HLAS)groups via ring-opening metathesis polymerization(ROMP).The resulting copolymers were characterized by gel permeation chromatography(GPC),'H-NMR and differential scanning calorimetry (DSC).The number average molecular weight(Mn)and functional unit content of the resulting copolymer could be regulated by varying the concentration of catalyst and monomer feed.

  4. One-pot phase transfer and surface modification of CdSe-ZnS quantum dots using a synthetic functional copolymer.

    Science.gov (United States)

    Finetti, Chiara; Colombo, Miriam; Prosperi, Davide; Alessio, Giulia; Morasso, Carlo; Sola, Laura; Chiari, Marcella

    2014-01-07

    We present a facile, one-pot procedure for the organic-to-water phase transfer and biofunctionalization of semiconductor nanocrystals (quantum dots, or QDs) which employs a synthetic functional copolymer, namely poly(DMA-NAS-MAPS), consisting of three components: a surface interacting monomer, N,N-dimethylacrylamide (DMA), a chemically reactive monomer, N-acryloyloxysuccinimide (NAS), and a silane monomer, [3-(methacryloyloxy)-propyl]-trimethoxysilane (MAPS). The nanocrystals were transferred to water by exploiting the amphiphilic character of the copolymer backbone. Hydrolyzed MAPS units contributed to improve the solubility of QDs in water, whereas NAS exhibited reactivity toward biomolecules. A solution of streptavidin in phosphate buffer exhibited good dispersion ability leading to a clear and transparent colloidal suspension, indicative of good QD dispersion during phase transfer and purification. Unlike most of the published methods, the proposed functionalization approach does not require coupling agents and multistep reactions.

  5. Functionalization of Cellulose Nanocrystals with PEG-Metal-Chelating Diblock Copolymers via Controlled Conjugation in Aqueous Medium

    Science.gov (United States)

    Guo, Melinda

    The surface of cellulose nanocrystals (CNCs) was successfully functionalized with metal chelating diblock copolymers via HyNic-4FB conjugation. Two types of PEG-metal-chelating block polymers with hydrazinonicotinate acetone hydrazine (HyNic) end groups were synthesized: mPEG-PGlu(DTPA) 18-HyNic and mPEG-PGlu(DTPA)25-HyNic. These two polymers both had a methoxy PEG (M ˜ 2000 Da) block that differed in the mean degree of polymerization of the metal-chelating block. They were characterized by 1H NMR spectroscopy and gel-permeation chromatography (GPC). 4-Formylbenzamide (4FB) groups were introduced onto the surface of CNCs and quantified through their reaction with 2-hydrazinopyridine. The polymers were grafted onto the surface of CNCs via bis-aryl hydrazone bond formation, and the kinetics of this reaction was explored by UV/Vis spectroscopy. The CNCs were also labeled with rhodamine and Alexa FluorRTM 488 dyes. Students in our collaborator's group in Pharmacy are examining applications of these materials as radiotherapeutic agents for cancer treatment.

  6. Direct Functionalization of Kevlar (registered trademark) with Copolymers Containing Sulfonyl Nitrene

    Science.gov (United States)

    2016-01-01

    Riverbend Rd., Athens, GA 30602 14. ABSTRACT Generating innovative methods to functionalize fibers and interfaces are important strategies for... TEXTILES DEGRADATION AMBIENT TEMPERATURE SURFACES MODIFICATION U.S. Army Natick Soldier Research, Development and Engineering...A. Sherman,b Shaun F. Filocamob and Jason Locklin*a Generating innovative methods to functionalize fibers and interfaces are important strategies for

  7. Thin Film Morphology of Block Copolymers Containing Polydimethylsiloxane as a Function of the Surface Tension of the Opposing Block

    Science.gov (United States)

    Wadley, Maurice; Cavicchi, Kevin

    2008-03-01

    The self-assembly of block copolymers into ordered nanostructures such as spheres, cylinders, and lamellae in the range of 10-100 nm makes them interesting materials for patterning surfaces. Thin films of block copolymers containing poly(dimethylsiloxane) (PDMS) are attractive for patterning due to their high oxygen etch resistance compared to other polymers. The main disadvantage of these polymers for patterning is the low surface tension of PDMS. This causes the preferential migration of PDMS to the air/film interface driving the formation of domains parallel to the interface and surface wetting layers. In this work a series of AB block copolymers containing PDMS have been prepared where the surface tension of the opposing block was varied. The effect of changing the surface tension mismatch between the blocks on the thin film morphology will be discussed.

  8. Optical recording of stable holographic grating in a low Tg statistical copolymer covalently functionalized with an azo-dye

    Science.gov (United States)

    Cambiasso, Javier; Garate, Hernan; D'Accorso, Norma; Ledesma, Silvia; Goyanes, Silvia

    2015-11-01

    A novel photoaddressable copolymer with low glass transition temperature was synthesised and its optical properties were studied. The photoresponsive material was obtained from chemical modification of a poly(styrene-co-acrylic acid) copolymer. A holographic polarization grating was recorded in the material and was monitored by measuring its diffraction efficiency. It is shown that the holographic grating stored in the material is highly stable in time, despite the fact that the polymer glass transition temperature is near room temperature. This stability is a consequence of electrostatic interactions between the azo-groups and the carboxylic substituent group of the main polymer chain.

  9. 酶碱法提取梨渣水不溶性膳食纤维的研究%Research on extraction of water insoluble dietary fiber from pear residue by alkali enzymic hydrolysis

    Institute of Scientific and Technical Information of China (English)

    高晓丽; 宿娅

    2014-01-01

    Water insoluble dietary fiber extracted and decoloration from pear residue by using enzyme method and al-kali extraction method was studied. Effects of enzyme dosage, the ratio of material to solution, alkali concentration, temperature and time on extraction yield of water insoluble dietary fiber were investigated trough single-factor experi-ment method. Subsequently,a central composition experimental design was performed to attain the optimum decoloring project of water insoluble dietary fiber. The optimized conditions were as follows:amylase (4 U/g) at the conditions of pH6.0, and then with the ratio of material to solution 1 g∶15 mL,NaOH concentration 1.0 mol/L,temperature 50℃and time 1 h,the yield of water insoluble dietary fiber was found to be 12.9%. The optimum decoloring conditions were:the concentration of H2O2 8%,the reaction temperature 60℃,the reaction time 3 h. Under the optimal conditions, the expansibility,water-holding capability were 7.1 mL/g,6.167 g/g,respectively.%以梨渣为原料,用酶与碱结合提取的方法,探讨了酶用量、料液比、氢氧化钠溶液浓度、温度和时间对酶碱法提取梨渣水不溶性膳食纤维得率的影响,并对其脱色工艺进行了研究。结果表明,用淀粉酶4 U/g在pH6.0下处理后,在料液比1 g∶15 mL、氢氧化钠溶液浓度1.0 mol/L,温度50℃,时间1 h的条件下提取,梨渣水不溶性膳食纤维的得率最高,达到12.9%。最优的脱色条件是H2O2溶液体积浓度8%,温度60℃,时间3 h。产品的膨胀力、持水力分别达到6.167 g/mL、7.1 g/g。

  10. Analysis of the formation mechanism for thermoresponsive-type coacervate with functional copolymers consisting of N-isopropylacrylamide and 2-hydroxyisopropylacrylamide.

    Science.gov (United States)

    Maeda, Tomohiro; Takenouchi, Miki; Yamamoto, Kazuya; Aoyagi, Takao

    2006-07-01

    We now report the formation mechanism of the thermoresponsive-type coacervate with the novel functional temperature-sensitive polymer, poly(N-isopropylacrylamide-co-2-hydroxyisopropylacrylamide) (poly(NIPAAm-co-HIPAAm)), synthesized in our laboratory. The effects of introducing the hydrophilic comonomer (HIPAAm) into the copolymer chains and adding salts on the behaviors of the coacervate droplets induced in the poly(NIPAAm-co-HIPAAm) aqueous solutions were investigated. Not only the particle sizes of the coacervate droplets but also the cloud points of the copolymer solutions could be modulated by the HIPAAm content incorporated in the copolymers. Moreover, the particle sizes of the coacervate droplets were also changed by adding salts. Namely, the particle sizes increased with the decreasing HIPAAm composition and increasing NaCl concentration. In addition, the 1H NMR and differential scanning calorimetric measurements suggested that as the HIPAAm content decreased or NaCl concentration increased, dehydration of the copolymers induced in the phase transition and/or separation became much easier. Therefore, on the basis of the findings obtained from these measurements, we determined that the particle sizes of the coacervate droplets induced in the temperature-sensitive polymers increased as the number of the water molecules, which are dissociated from the polymeric chains during the phase transition and/or separation, increased. Besides, to examine the separation of the model solutes, the aqueous two-phase separation with the coacervate droplets of poly(NIPAAm-co-HIPAAm) was carried out. The partitions of Methyl Orange as a model solute under both acidic (pH 2) and basic (pH 12) conditions were performed. The amount of Methyl Orange partitioned into the coacervate droplets at pH 12 is much greater than that at pH 2, which indicated that the coacervate droplets could recognize a slight difference in the polarity or structure between the model solutes.

  11. Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins

    DEFF Research Database (Denmark)

    Gonzalez-Perez, A.; Jensen, Karin Bagger Stibius; Vissing, Thomas

    2009-01-01

    , we avoid low molecular weight solvents such as chloroform and toluene, which are strong protein denaturants. The membranes show a low ionic conductance and a long lifetime at room temperature. Contrast phase microscopy shows the presence of a polymer region delimited by a Plateau-Gibbs border similar...... to what is observed in black lipid membranes. The ion-channel gramicidin A was successfully incorporated into the membrane in a functional form....

  12. Molybdenum-Doped PdPt@Pt Core-Shell Octahedra Supported by Ionic Block Copolymer-Functionalized Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst.

    Science.gov (United States)

    Cho, Kie Yong; Yeom, Yong Sik; Seo, Heun Young; Kumar, Pradip; Lee, Albert S; Baek, Kyung-Youl; Yoon, Ho Gyu

    2017-01-18

    Development of highly active and durable electrocatalysts that can effectively electrocatalyze oxygen reduction reactions (ORR) still remains one important challenge for high-performance electrochemical conversion and storage applications such as fuel cells and metal-air batteries. Herein, we propose the combination of molybdenum-doped PdPt@Pt core-shell octahedra and the pyrene-functionalized poly(dimethylaminoethyl methacrylate)-b-poly[(ethylene glycol) methyl ether methacrylate] ionic block copolymer-functionalized reduced graphene oxide (Mo-PdPt@Pt/IG) to effectively augment the interfacial cohesion of both components using a tunable ex situ mixing strategy. The rationally designed Mo-PdPt@Pt core-shell octahedra have unique compositional benefits, including segregation of Mo atoms on the vertexes and edges of the octahedron and 2-3 shell layers of Pt atoms on a PdPt alloy core, which can provide highly active sites to the catalyst for ORR along with enhanced electrochemical stability. In addition, the ionic block copolymer functionalized graphene can facilitate intermolecular charge transfer and good stability of metal NPs, which arises from the ionic block copolymer interfacial layer. When the beneficial features of the Mo-PdPt@Pt and IG are combined, the Mo-PdPt@Pt/IG exhibits substantially enhanced activity and durability for ORR relative to those of commercial Pt/C. Notably, the Mo-PdPt@Pt/IG shows mass activity 31-fold higher than that of Pt/C and substantially maintains high activities after 10 000 cycles of intensive durability testing. The current study highlights the crucial strategies in designing the highly active and durable Pt-based octahedra and effective combination with functional graphene supports toward the synergetic effects on ORR.

  13. Long-term sustained-released in situ gels of a water-insoluble drug amphotericin B for mycotic arthritis intra-articular administration: preparation, in vitro and in vivo evaluation.

    Science.gov (United States)

    Shan-Bin, Guo; Yue, Tian; Ling-Yan, Jian

    2015-04-01

    Amphotericin B (AMB) was often used in intra-articular injection administration for fungal arthritis, because it could often bring a satisfactory therapeutic efficacy and a minimum systemic toxic side effect. However, because of the multiple operations and the frequent injections, the compliance of the patients was bad. Therefore, to develop a long-term sustained-released preparation of AMB for mycotic arthritis intra-articular administration is of great significance. The purpose of present study was to develop a long-term sustained-released in situ gel of a water-insoluble drug AMB for mycotic arthritis intra-articular administration. Based on the evaluations of the in vitro properties of the formulations, the formulation containing 10% (w/w) ethanol, 15% (w/w) PG, 0.75% (w/w) HA, 5% (w/w) purified soybean oil, 0.03% (w/w) α-tocopherol, 15% (w/w) water and 55% (w/w) glyceryl monooleate was selected as a suitable intra-articular injectable in situ gel drug delivery system for water-insoluble drug AMB. Furthermore, the results of the in vivo study on rabbits showed that the selected formulation was a safe and effective long-term sustained-released intra-articular injectable AMB preparation. Therefore, the presented in situ AMB gel could reduce the frequency of the administration in the AMB treatment of fungal arthritis, and then would get a good patient compliance.

  14. Microstructured Polymer Blend Surfaces Produced by Spraying Functional Copolymers and Their Blends

    Directory of Open Access Journals (Sweden)

    Nelson Vargas-Alfredo

    2016-05-01

    Full Text Available We described the fabrication of functional and microstructured surfaces from polymer blends by spray deposition. This simple technique offers the possibility to simultaneously finely tune the microstructure as well as the surface chemical composition. Whereas at lower polymer concentration, randomly distributed surface micropatterns were observed, an increase of the concentration leads to significant changes on these structures. On the one hand, using pure homopolystyrene fiber-like structures were observed when the polymer concentration exceeded 30 mg/mL. Interestingly, the incorporation of 2,3,4,5,6-pentafluorostyrene changed the morphology, and, instead of fibers, micrometer size particles were identified at the surface. These fluorinated microparticles provide superhydrophobic properties leading to surfaces with contact angles above 165°. Equally, in addition to the microstructures provided by the spray deposition, the use of thermoresponsive polymers to fabricate interfaces with responsive properties is also described. Contact angle measurements revealed variations on the surface wettability upon heating when blends of polystyrene and polystyrene-b-poly(dimethylaminoethyl methacrylate are employed. Finally, the use of spraying techniques to fabricate gradient surfaces is proposed. Maintaining a constant orientation, the surface topography and thus the contact angle varies gradually from the center to the edge of the film depending on the spray angle.

  15. Lysozyme immobilization via adsorption process using sulphonic acid functionalized silane grafted copolymer.

    Science.gov (United States)

    Anirudhan, T S; Rauf, Tharun A

    2013-07-01

    A unique silane based adsorbent material, [stearyl alcohol (SA)-grafted-epichlorohydrin (E)]-grafted-aminoproypyl silanetriol (APST) was synthesized and functionalized with sulphonyl groups via sulphonation process [(SA-g-E)-g-APST/SO3H]. The adsorbent material characterization was done by FTIR, XRD, and TGA analysis. Immobilization of protein Lysozyme (LYZ) using batch adsorption process was carried out for studying the protein-particle interaction. The most suitable pH for maximum adsorption was found to be 7.0. Pseudo-second-order kinetic model was found to be the best fit and the adsorption equilibrium was attained within 3h. Studies on diffusion parameters explained that the adsorption mechanism was controlled by film diffusion mode. The adsorption process was then evaluated using the various isotherm models and the Sips isotherm model proved to be the best fit with a maximum adsorption capacity of 37.68 mg/g. The isotherm favorability of the adsorption process was calculated by calculating the separation factor (R(L)) and the values confirmed the favorability of the adsorption process. Studies on adsorption percentage with respect to temperature and thermodynamic studies revealed that adsorption process is exothermic, spontaneous with maximum entropy. Batch adsorption/desorption studies in acidic medium, for over six cycles showed the repeatability and regeneration capability of the adsorbent material (SA-g-E)-g-APST/SO3H.

  16. Conjugated Polymer Chains Confined in Vertical Nanocylinders of a Block-Copolymer Film: Preparation, Characterization, and Optoelectronic Function

    KAUST Repository

    Dong, Ban Xuan

    2013-01-15

    Hybrid materials composed of phase-separated block copolymer films and conjugated polymers of the phenylenevinylene family (PPV) are prepared. The PPV chains are embedded in vertical cylinders of nanometer diameter in the block-copolymer films. The cylinders span continuously the whole film thickness of 70 nm. Incorporation of the PPV chains into the one-dimensional cylinders leads to modified photoluminescence spectra and to large absorption anisotropy. The hybrid films show electroluminescence from the PPV chains in a simple light-emitting device at minute doping concentrations, and also exhibit a factor of 19 increase in electron transport efficiency along the single PPV chains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. pH-driven wetting switchability of electrodeposited superhydrophobic copolymers of pyrene bearing acid functions and fluorinated chains.

    Science.gov (United States)

    Ramos Chagas, Gabriela; Kiryanenko, Denis; Godeau, Guilhem; Guittard, Frédéric; Darmanin, Thierry

    2017-08-30

    A smart stimuli responsive surface is fabricated by the subsequent electro-copolymerization of pyrene monomers followed by a basic and acid treatment, respectively. Copolymers of fluorinated pyrenes and pyreneacetic acid were produced with different molar concentration of each monomer (0, 25, 50, 75 and 100% of Py-nF6 vs. Py-COOH) by an electrochemical process. Two different perfluorinated pyrenes containing ester and amide groups are used to reach superhydrophobic properties. The relation of those bonds with the final properties of the surface is reported. The pH-sensitive group of the Py-COOH allows the surfaces to be reversibly switched from superhydrophobic (w > 150º and very low hysteresis) to a hydrophilic behavior (w superhydrophobic properties with ultra-low water adhesion, the recovery of the original wettability for the copolymers is much more important with amide bonds due to their lower pH-sensitivity. This strategy offers the opportunity to access superhydrophobic films with switchable wettability by a simple pH treatment. The films showed to be a good tool to use towards biological applications as bacterial-resistant film when superhydrophobic or bacterial-adherent film when hydrophilic, for example. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  19. Amphiphilic diblock copolymers for molecular recognition

    OpenAIRE

    Nehring, Rainer

    2009-01-01

    In this thesis, the synthesis and the characterization of poly(butadiene)-blockpoly( ethylene oxide) copolymers with terminal Me2+-NTA groups (copper or nickel) is described for the first time. A convenient “one-pot” procedure that allows control over the individual block lengths of the copolymer and the end-group functionalization was successfully established. The formation of the metal-polymer complex has been confirmed by EPR and UV/VIS spectroscopy. Mixing of the Ni2+-NT...

  20. Interaction of Curcumin with PEO-PPO-PEO block copolymers: a molecular dynamics study.

    Science.gov (United States)

    Samanta, Susruta; Roccatano, Danilo

    2013-03-21

    Curcumin, a naturally occurring drug molecule, has been extensively investigated for its various potential usages in medicine. Its water insolubility and high metabolism rate require the use of drug delivery systems to make it effective in the human body. Among various types of nanocarriers, block copolymer based ones are the most effective. These polymers are broadly used as drug-delivery systems, but the nature of this process is poorly understood. In this paper, we propose a molecular dynamics simulation study of the interaction of Curcumin with block copolymer based on polyethylene oxide (PEO) and polypropylene oxide (PPO). The study has been conducted considering the smallest PEO and PPO oligomers and multiple chains of the block copolymer Pluronic P85. Our study shows that the more hydrophobic 1,2-dimethoxypropane (DMP) molecules and PPO block preferentially coat the Curcumin molecule. In the case of the Pluronic P85, simulation shows formation of a drug-polymer aggregate within 50 ns. This process leaves exposed the PEO part of the polymers, resulting in better solvation and stability of the drug in water.

  1. Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropyl acrylamide).

    Science.gov (United States)

    Chang, Yung; Chen, Wen-Yih; Yandi, Wetra; Shih, Yu-Ju; Chu, Wan-Ling; Liu, Ying-Ling; Chu, Chih-Wei; Ruaan, Ruoh-Chyu; Higuchi, Akon

    2009-08-10

    Thermoresponsive statistical copolymers of zwitterionic sulfobetaine methacrylate (SBMA) and nonionic N-isopropylacrylamide (NIPAAm) were prepared with an average molecular weight of about 6.0 kDa via homogeneous free radical copolymerization. The aqueous solution properties of poly(SBMA-co-NIPAAm) were measured using a UV--visible spectrophotometer. The copolymers exhibited controllable lower and upper critical solution temperatures in aqueous solution and showed stimuli-responsive phase transition in the presence of salts. Regulated zwitterionic and nonionic molar mass ratios led to poly(SBMA-co-NIPAAm) copolymers having double-critical solution temperatures, where the water-insoluble polymer microdomains are generated by the zwitterionic copolymer region of polySBMA or nonionic copolymer region of polyNIPAAm depending on temperature. A high content of the nonionic polyNIPAAm in poly(SBMA-co-NIPAAm) exhibits nonionic aggregation at high temperatures due to the desolvation of polyNIPAAm, whereas relatively low content of polyNIPAAm in poly(SBMA-co-NIPAAm) exhibits zwitterionic aggregation at low temperatures due to the desolvation of polySBMA. Plasma protein adsorption on the surface coated with poly(SBMA-co-NIPAAm) was measured with a surface plasmon resonance (SPR) sensor. The copolymers containing polySBMA above 29 mol % showed extremely low protein adsorption and high anticoagulant activity in human blood plasma. The tunable and switchable thermoresponsive phase behavior of poly(SBMA-co-NIPAAm), as well as its high plasma protein adsorption resistance and anticoagulant activity, suggests a potential for blood-contacting applications.

  2. Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ye; Zhang, Bingzi; Kinsinger, Corey L.; Yang, Yuan; Seifert, Soenke; Yan, Yushan; Mark Maupin, C.; Liberatore, Matthew W.; Herring, Andrew M.

    2016-05-01

    A random copolymer, tris(2,4,6-trimethoxyphenyl) phosphonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-TPQP) was cast from three different solvents: dimethyl sulfoxide (DMSO), ethyl lactate, or a 41:59 vol% mixture of DMSO and ethyl lactate. Solvents were selected via analysis of the Hansen solubility parameters to vary the phase separation of the polymer in the films. An optimized mixture of DMSO and ethyl lactate chosen for film fabrication and this film was contrasted with films cast from the neat constituent solvents. Atomic force microscopy identified domains from nanometer to tens of nanometer sizes, while the light microscopy showed features on the order of micron. SAXS revealed a cation scattering peak with a d-spacing from 7 to 15 A. Trends in conductivity and water diffusion for the membranes vary depending on the solvent from which they are cast. The mixed solvent cast membrane shows a linear Arrhenius behavior indicating fully dissociated cationic/anionic groups, and has the highest bromide conductivity of 3 mS/cm at 95% RH, 90 degrees C. The ethyl lactate cast membrane shows a linear Arrhenius relation in conductivity, but a Vogel-Tamman-Fulcher behavior in its water self-diffusion. While water increases bromide dissociation, water and bromide transport in these films seems to be decoupled. This is particularly true for the film cast from ethyl lactate.

  3. Controlled Architecture of Dual-Functional Block Copolymer Brushes on Thin-Film Composite Membranes for Integrated "Defending" and "Attacking" Strategies against Biofouling.

    Science.gov (United States)

    Ye, Gang; Lee, Jongho; Perreault, François; Elimelech, Menachem

    2015-10-21

    We report a new macromolecular architecture of dual functional block copolymer brushes on commercial thin-film composite (TFC) membranes for integrated "defending" and "attacking" strategies against biofouling. Mussel-inspired catechol chemistry is used for a convenient immobilization of initiator molecules to the membrane surface with the aid of polydopamine (PDA). Zwitterionic polymer brushes with strong hydration capacity and quaternary ammonium salt (QAS) polymer brushes with bactericidal ability are sequentially grafted on TFC membranes via activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP), an environmentally benign and controlled polymerization method. Measurement of membrane intrinsic transport properties in reverse osmosis experiments shows that the modified TFC membrane maintains the same water permeability and salt selectivity as the pristine TFC membrane. Chemical force microscopy and protein/bacterial adhesion studies are carried out for a comprehensive evaluation of the biofouling resistance and antimicrobial ability, demonstrating low biofouling propensity and excellent bacterial inactivation for the modified TFC membrane. We conclude that this polymer architecture, with complementary "defending" and "attacking" capabilities, can effectively prevent the attachment of biofoulants and formation of biofilms and thereby significantly mitigate biofouling on TFC membranes.

  4. Photocontrol over the disorder-to-order transition in thin films of polystyrene-block-poly(methyl methacrylate) block copolymers containing photodimerizable anthracene functionality.

    Science.gov (United States)

    Chen, Wei; Wang, Jia-Yu; Zhao, Wei; Li, Le; Wei, Xinyu; Balazs, Anna C; Matyjaszewski, Krzysztof; Russell, Thomas P

    2011-11-02

    Reversible photocontrol over the ordering transition of block copolymers (BCPs) from a disordered state to an ordered state, namely the disorder-to-order transition (DOT), can be used to create long-range ordered nanostructures in self-assembled BCPs over macroscopic distances by photocombing, similar to the classic zone refining used to produce highly pure, large single crystals. Here, we have designed and synthesized an anthracene-functionalized tri-BCP containing deuterated polystyrene (d(8)-PS) and poly(methyl methacrylate) (PMMA) blocks, as well as a short middle block of poly(2-hydroxyethyl methacrylates) (PHEMA) that is randomly functionalized by anthracene. This tri-BCP maintains the order-to-disorder transition-type phase behavior of its parent d(8)-PS-b-PMMA di-BCPs. Under 365 nm UV irradiation, the junction between d(8)-PS and PMMA blocks is photocoupled through the anthracene photodimers, leading to a significant increase in the total molecular weight of the tri-BCP. As a consequence, when the tri-BCP is phase-mixed but close to the boundary of the ordering transition, it undergoes the DOT, as evidenced by small-angle neutron scattering and transmission electron microscopy. The tri-BCP could be reversibly brought through the DOT in thin films by taking advantage of photodimerization and thermal dissociation of anthracene. Currently, anthracene-functionalized d(8)-PS-b-PMMA BCP is one of the most promising candidates for the photocombing process to promote long-range laterally ordered nanostructures over macroscopic distances in a noninvasive manner.

  5. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration.

    Science.gov (United States)

    Xu, Guohui; Wang, Xiaolin; Deng, Chao; Teng, Xiaomei; Suuronen, Erik J; Shen, Zhenya; Zhong, Zhiyuan

    2015-03-01

    Injectable biodegradable hybrid hydrogels were designed and developed based on thiolated collagen (Col-SH) and multiple acrylate containing oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) (OAC-PEG-OAC) copolymers for functional cardiac regeneration. Hydrogels were readily formed under physiological conditions (37°C and pH 7.4) from Col-SH and OAC-PEG-OAC via a Michael-type addition reaction, with gelation times ranging from 0.4 to 8.1 min and storage moduli from 11.4 to 55.6 kPa, depending on the polymer concentrations, solution pH and degrees of substitution of Col-SH. The collagen component in the hybrid hydrogels retained its enzymatic degradability against collagenase, and the degradation time of the hydrogels increased with increasing polymer concentration. In vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) exhibited rapid cell spreading and extensive cellular network formation on these hybrid hydrogels. In a rat infarction model, the infarcted left ventricle was injected with PBS, hybrid hydrogels, BMSCs or BMSC-encapsulating hybrid hydrogels. Echocardiography demonstrated that the hybrid hydrogels and BMSC-encapsulating hydrogels could increase the ejection fraction at 28 days compared to the PBS control group, resulting in improved cardiac function. Histology revealed that the injected hybrid hydrogels significantly reduced the infarct size and increased the wall thickness, and these were further improved with the BMSC-encapsulating hybrid hydrogel treatment, probably related to the enhanced engraftment and persistence of the BMSCs when delivered within the hybrid hydrogel. Thus, these injectable hybrid hydrogels combining intrinsic bioactivity of collagen, controlled mechanical properties and enhanced stability provide a versatile platform for functional cardiac regeneration.

  6. Additive-driven assembly of block copolymers

    Science.gov (United States)

    Lin, Ying; Daga, Vikram; Anderson, Eric; Watkins, James

    2011-03-01

    One challenge to the formation of well ordered hybrid materials is the incorporation of nanoscale additives including metal, semiconductor and dielectric nanoparticles at high loadings while maintaining strong segregation. Here we describe the molecular and functional design of small molecule and nanoparticle additives that enhance phase segregation in their block copolymer host and enable high additive loadings. Our approach includes the use of hydrogen bond interactions between the functional groups on the additive or particle that serve as hydrogen bond donors and one segment of the block copolymer containing hydrogen bond acceptors. Further, the additives show strong selectively towards the targeted domains, leading to enhancements in contrast between properties of the phases. In addition to structural changes, we explore how large changes in the thermal and mechanical properties occur upon incorporation of the additives. Generalization of this additive-induced ordering strategy to various block copolymers will be discussed.

  7. Influência da estrutura de diferentes copolímeros de etileno e a-olefinas na funcionalização com anidrido maleico Influence of structure of ethylene a-olefins copolymers in functionalization with maleic anhydride

    Directory of Open Access Journals (Sweden)

    Carlota H. F. Maurano

    1998-01-01

    Full Text Available A funcionalização de copolímeros de etileno e a-olefinas com anidrido maleico (AM foi realizada em solução de xileno com peróxido de dibenzoíla (DBP como iniciador. Foi estudado o efeito das diferentes estruturas dos copolímeros, como número e comprimento de ramificação, na incorporação do AM. A funcionalização também foi realizada em estado fundido utilizando-se um misturador Rheomix 600 e uma extrusora Rheocord 9000 da Haake. A funcionalidade foi determinada por titulometria de neutralização e os produtos foram caracterizados por espectroscopia na região do infravermelho (FT-IR e por cromatografia de permeação em gel (GPC. A funcionalidade dos copolímeros de etileno com 1-hexeno aumentou com o aumento do teor de comonômero e dos copolímeros com 1-octeno e 1-deceno aumentou com o aumento do teor de a-olefina até um máximo, decrescendo e mantendo-se constante.Chemical modification of ethylene a-olefins copolymers with maleic anhydride was studied by radical reaction in solution, melt mixing and extrusion. The effect of copolymer structure, as the amount and length of the branches, was evaluated on the MA incorporation. The reactions were also achieved in Rheomix 600 (Haake mixer and Rheocord 9000 (Haake extruder. Functionalization was determinated by titration and modified ethylene a-olefins copolymers were characterized by Infrared Spectroscopy and Gel Permeation Chromatography. The maleic anhydride incorporation in the ethylene-hexene copolymers increases with the amount of a-olefin. Functionalization of ethylene-octene and ethylene-decene comonomers increases with increasing peroxide concentration until a maximum and then decreases up to a constant value.

  8. Molar mass characterization of cationic methyl methacrylate-ethyl acrylate copolymers using size-exclusion chromatography with online multi-angle light scattering and refractometric detection.

    Science.gov (United States)

    Wittgren, Bengt; Welinder, Anette; Porsch, Bedrich

    2003-06-20

    Size-exclusion chromatography (SEC) combined with online multi-angle light scattering (MALS) and refractometric (RI) detection has been employed for the molar mass characterisation of water-insoluble cationic methyl methacrylate-ethyl acrylate copolymers (Eudragit RS and RL). Due to their positive charge, cationic polymers are particularly difficult to separate on a SEC column, in worst cases being completely adsorbed on the oppositely charged packing material. This work has examined how a careful addition of salt (LiCl) to the copolymer solution in ethanol decreases the electrostatic interactions, clearly seen as a decrease in elution volume from the SEC column as well as an improved recovery. At a certain level of ionic strength, typically about 50 mM, the copolymer recovery from the SEC column reached 100% and molar mass distributions corresponding to the complete sample could be obtained. The combined MALS/RI detection gives the opportunity to measure the absolute molar mass independent of recovery and retention. Thus, in this study, it turned out to be a favourable tool for tracing the changes in elution behaviour of the charged copolymer as the ionic strength was increased.

  9. Sulfomethylated graft copolymers of xanthan gum and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, I.W.; Empey, R.A.; Racciato, J.S.

    1978-08-08

    A water-soluble anionic graft copolymer of xanthan gum and polyacrylamide is described in which at least part of the amide function of the acrylamide portion of the copolymer is sulfomethylated and the xanthan gum portion of the copolymer is unreacted with formaldehyde. The copolymer is sulfomethylated by reaction with formaldehyde and sodium metabisulfite. The formaldehyde does not cause any appreciable cross-linking between hydroxyl groups of the xanthan moieties. The sulfomethylation of the acrylamido group takes place at temperatures from 35 to 70 C. The pH is 10 or higher, typically from 12 to 13. The degree of anionic character may be varied by adjusting the molar ratio of formaldehyde and sodium metabisulfite with respect to the copolymer. 10 claims.

  10. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    Science.gov (United States)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  11. Optical properties of coumarins containing copolymers

    Science.gov (United States)

    Skowronski, L.; Krupka, O.; Smokal, V.; Grabowski, A.; Naparty, M.; Derkowska-Zielinska, B.

    2015-09-01

    We investigate the optical properties such as absorption coefficient, refractive index, real and imaginary parts of dielectric function and energy band gap of coumarin-containing copolymers thin films by means of spectroscopic ellipsometry (SE) combined with transmittance measurements (T) and atomic force microscopy (AFM). We found that the optical properties of coumarin-containing copolymers strongly depend from length of alkyl spacer as well as the type of substitution in coumarin moiety. In our case the refractive index as well as the energy band gap of coumarin-containing copolymer decrease with increase the length of alkyl spacer. Additionally, the lengthening of the alkyl spacer brings the bathochromic shifts of the absorption spectra towards longer wavelengths.

  12. Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability

    NARCIS (Netherlands)

    Swainsbury, David J K; Scheidelaar, Stefan; Van Grondelle, Rienk; Killian, J. Antoinette; Jones, Michael R.

    2014-01-01

    Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opp

  13. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts

    NARCIS (Netherlands)

    Fraaije, JGEM; vanVlimmeren, BAC; Maurits, NM; Postma, M; Evers, OA; Hoffmann, C; Altevogt, P; GoldbeckWood, G

    1997-01-01

    In this paper we discuss a new generalized time-dependent Ginzburg-Landau theory for the numerical calculation of polymer phase separation kinetics in 3D. The thermodynamic forces are obtained by a mean-field density functional method, using a Gaussian chain as a molecular model. The method is

  14. Towards developing an efficient sensitive element for trinitrotoluene detection: TiO2 thin films functionalized with molecularly imprinted copolymer films

    Science.gov (United States)

    Lazau, Carmen; Iordache, Tanta-Verona; Florea, Ana-Mihaela; Orha, Corina; Bandas, Cornelia; Radu, Anita-Laura; Sarbu, Andrei; Rotariu, Traian

    2016-10-01

    In this study, TiO2 films were successfully grown in-situ onto a FTO substrate by a hydrothermal method, using TiCl4 as Ti precursor, and further on functionalized with a 2,4,6-trinitrotoluene-molecularly imprinted polymer (TNT-MIP) film as a preliminary step in developing a trinitrotoluene (TNT) reusable sensor to overcome the international security issues. For investigating the TiO2 film thickness, crystalline structure and morphology, the films were autoclaved at 200 °C at different times. The X-ray diffraction showed that TiO2 films possessed a rutile structure, with no cracks visible by atomic force microscopy (AFM), and the films morphology observed by scanning electron microscopy (SEM) was highly dependent upon the hydrothermal treatment time. Yet, the TiO2 films with a more porous surface were more suitable for TNT-MIP film deposit. Rheology of precursor polymer film solutions, based on poly (acrylonitrile-co-acrylic acid), poly (acrylonitrile-co-methacrylic acid) or poly (acrylonitrile- co-itaconic acid), and the structure and adherence of TNT-MIP films were investigated in order to establish the correct recipe of the MIP. The removal yield of TNT from the imprinted films, the thickness, the porosity and the compatibility with the inorganic TiO2 film were adequate for the poly (acrylonitrile-co-acrylic acid) system with an acrylonitrile: acrylic acid practical ratio of 86.1:13.9 (wt./wt.). Farmore, AFM morphology corroborated with SEM results highlighted the effect of TNT imprinting in the copolymer matrix as the surface of the imprinted layer was quite different from that of the non-imprinted layer.

  15. Nanoscale silicon substrate patterns from self-assembly of cylinder forming poly(styrene)-block-poly(dimethylsiloxane) block copolymer on silane functionalized surfaces

    Science.gov (United States)

    Borah, Dipu; Cummins, Cian; Rasappa, Sozaraj; Watson, Scott M. D.; Pike, Andrew R.; Horrocks, Benjamin R.; Fulton, David A.; Houlton, Andrew; Liontos, George; Ntetsikas, Konstantinos; Avgeropoulos, Apostolos; Morris, Michael A.

    2017-01-01

    Poly(styrene)-block-poly(dimethylsiloxane) (PS-b-PDMS) is an excellent block copolymer (BCP) system for self-assembly and inorganic template fabrication because of its high Flory-Huggins parameter (χ ˜ 0.26) at room temperature in comparison to other BCPs, and high selective etch contrast between PS and PDMS block for nanopatterning. In this work, self-assembly in PS-b-PDMS BCP is achieved by combining hydroxyl-terminated poly(dimethylsiloxane) (PDMS-OH) brush surfaces with solvent vapor annealing. As an alternative to standard brush chemistry, we report a simple method based on the use of surfaces functionalized with silane-based self-assembled monolayers (SAMs). A solution-based approach to SAM formation was adopted in this investigation. The influence of the SAM-modified surfaces upon BCP films was compared with polymer brush-based surfaces. The cylinder forming PS-b-PDMS BCP and PDMS-OH polymer brush were synthesized by sequential living anionic polymerization. It was observed that silane SAMs provided the appropriate surface chemistry which, when combined with solvent annealing, led to microphase segregation in the BCP. It was also demonstrated that orientation of the PDMS cylinders may be controlled by judicious choice of the appropriate silane. The PDMS patterns were successfully used as an on-chip etch mask to transfer the BCP pattern to underlying silicon substrate with sub-25 nm silicon nanoscale features. This alternative SAM/BCP approach to nanopattern formation shows promising results, pertinent in the field of nanotechnology, and with much potential for application, such as in the fabrication of nanoimprint lithography stamps, nanofluidic devices or in narrow and multilevel interconnected lines.

  16. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke

    2016-04-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (abbreviated as PS-b-P2VP-b-PEO).

  17. Phase Transition Induced by Small Molecules in Confined Copolymer Films

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling

    2007-01-01

    We investigate the phase transition induced by small molecules in confined copolymer films by using density functional theory.It is found that the addition of small molecules can effectively promote the phase separation of copolymers.In a symmetric diblock copolymer film,the affinity and concentration of small molecules play an important role in the structure transjtions.The disordered-lamellar transitions lamellar-lamellar transitions and the re-entrant transitions of the same structures are observed.Our results have potential applications in the fabrication of new functional materials.

  18. Block copolymer/ferroelectric nanoparticle nanocomposites

    Science.gov (United States)

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-08-01

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were

  19. Desenvolvimento de sistemas líquido-cristalinos empregando silicone fluido de co-polímero glicol e poliéter funcional siloxano Development of liquid-crystalline systems using silicon glycol copolymer and polyether functional siloxane

    Directory of Open Access Journals (Sweden)

    Marlus Chorilli

    2009-01-01

    Full Text Available For the construction of the phase diagrams, the method of the aqueous titration was used. There were prepared 5 ternary diagrams, varying the surfactant and the oil phase. The liquid-crystalline phases were identified by polarized light microscopy. The formulations prepared with silicon glycol copolymer, polyether functional siloxane (PFS and water (S1 and with diisopropyl adipate, PFS and water (S4 presented liquid-crystalline phases with lamellar arrangement. Moreover, after 15 days in hot oven (37 ºC, the formulations presented hexagonal arrangement, evidencing the influence of the temperature in the organization of the system.

  20. New Polytetrahydrofuran Graft Copolymers.

    Science.gov (United States)

    1979-03-15

    chioroprene) , chiorobutyl - ~~~~~ rubber , bromobutyl rubber , chlorinated EPDM , chlorinated poly(buta— diene) and chlorinated butadiene styrene copolymer...for initial detailed studies (3 ,4 , 6 , 7 — 9 ) . Many soluble metal salts with cations capable of stabilizing an on].um ion polymerization (SO3CF 3

  1. Design and Concept of Polyzwitterionic Copolymer Microgel Drug Delivery Systems In Situ Loaded with Non-steroidal Anti-inflammatory Ibuprofen.

    Science.gov (United States)

    Kostova, Bistra; Kamenska, Elena; Georgieva, Dilyana; Balashev, Konstantin; Rachev, Dimitar; Georgiev, George

    2017-01-01

    Nowadays, the modern pharmaceutical investigations are directed toward obtaining of new polymer micro- and nano-sized drug delivery carriers. In this respect, the use of hydrogel carriers based on polyzwitterions (PZIs) is an opportunity in the preparation of polymer drug delivery systems with desired characteristics. This paper describes the synthesis and characterization of micro-structured p(VA-co-DMAPS) systems with different compositions in situ loaded with Ibuprofen by emulsifier-free emulsion copolymerization (EEC) in water. The mean size of the prepared microparticles was measured by SEM and particles have been visualized by AFM. The inclusion of Ibuprofen in the polyzwitterionic copolymer microgel systems was established by using DSC. In vitro drug release experiments were carried out in order to estimate the ability of the obtained microgels to modify the release of water-insoluble Ibuprofen.

  2. Towards developing an efficient sensitive element for trinitrotoluene detection: TiO{sub 2} thin films functionalized with molecularly imprinted copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Lazau, Carmen [National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, 1 P. Andronescu Street, 300224 Timisoara (Romania); Iordache, Tanta-Verona [National Research and Development Institute for Chemistry and Petrochemistry INCDCP-ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021 Bucharest (Romania); Florea, Ana-Mihaela [National Research and Development Institute for Chemistry and Petrochemistry INCDCP-ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021 Bucharest (Romania); University Politehnica of Bucharest, The Faculty of Applied Chemistry and Materials Science, Bioresources and Polymer Science Department, 1-7 Polizu, 011061 Bucharest (Romania); Orha, Corina [National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, 1 P. Andronescu Street, 300224 Timisoara (Romania); Bandas, Cornelia, E-mail: cornelia.bandas@gmail.com [National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, 1 P. Andronescu Street, 300224 Timisoara (Romania); Radu, Anita-Laura; Sarbu, Andrei [National Research and Development Institute for Chemistry and Petrochemistry INCDCP-ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021 Bucharest (Romania); Rotariu, Traian [Technical Military Academy, Chemistry Department, Bucharest (Romania)

    2016-10-30

    Highlights: • A new concept for creating reusable and more sensitive sensors for trinitrotoluene. • Titanium oxide thin films as transducers deposited by a new hydrothermal process. • Trinitrotoluene-molecularly imprinted receptors obtained by a two-step procedure. - Abstract: In this study, TiO{sub 2} films were successfully grown in-situ onto a FTO substrate by a hydrothermal method, using TiCl{sub 4} as Ti precursor, and further on functionalized with a 2,4,6-trinitrotoluene-molecularly imprinted polymer (TNT-MIP) film as a preliminary step in developing a trinitrotoluene (TNT) reusable sensor to overcome the international security issues. For investigating the TiO{sub 2} film thickness, crystalline structure and morphology, the films were autoclaved at 200 °C at different times. The X-ray diffraction showed that TiO{sub 2} films possessed a rutile structure, with no cracks visible by atomic force microscopy (AFM), and the films morphology observed by scanning electron microscopy (SEM) was highly dependent upon the hydrothermal treatment time. Yet, the TiO{sub 2} films with a more porous surface were more suitable for TNT-MIP film deposit. Rheology of precursor polymer film solutions, based on poly (acrylonitrile-co-acrylic acid), poly (acrylonitrile-co-methacrylic acid) or poly (acrylonitrile- co-itaconic acid), and the structure and adherence of TNT-MIP films were investigated in order to establish the correct recipe of the MIP. The removal yield of TNT from the imprinted films, the thickness, the porosity and the compatibility with the inorganic TiO{sub 2} film were adequate for the poly (acrylonitrile-co-acrylic acid) system with an acrylonitrile: acrylic acid practical ratio of 86.1:13.9 (wt./wt.). Farmore, AFM morphology corroborated with SEM results highlighted the effect of TNT imprinting in the copolymer matrix as the surface of the imprinted layer was quite different from that of the non-imprinted layer.

  3. STUDY ON PET-PA66 COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    WU Rongrui; SHI Weitong

    1992-01-01

    In this work the PET-PA66 copolymers are obtained. The characterization of chemical structure of copolymer chain by NMR method is also given . It is shown that when the 66 Nylon salt is added in the copolycondensation, the adipic acid and hexamethylenediamine reacted mainly by itself and the obtained copolymer is a random copolymer, and when the Nylon 66 oligomer is added, the obtained copolymer is a block copolymer. The result of NMR analysis is demonstrated by properties investigation.

  4. Block copolymer battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  5. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  6. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.

    Science.gov (United States)

    Zhao, Junqiang; Wang, Haiyang; Liu, Jinjian; Deng, Liandong; Liu, Jianfeng; Dong, Anjie; Zhang, Jianhua

    2013-11-11

    The pH-responsive micelles have enormous potential as nanosized drug carriers for cancer therapy due to their physicochemical changes in response to the tumor intracellular acidic microenvironment. Herein, a series of comb-like amphiphilic copolymers bearing acetal-functionalized backbone were developed based on poly[(2,4,6-trimethoxybenzylidene-1,1,1-tris(hydroxymethyl) ethane methacrylate-co-poly(ethylene glycol) methyl ether methacrylate] [P(TTMA-co-mPEGMA)] as effective nanocarriers for intracellular curcumin (CUR) release. P(TTMA-co-mPEGMA) copolymers with different hydrophobic-hydrophilic ratios were prepared by one-step reversible addition fragmentation chain transfer (RAFT) copolymerization of TTMA and mPEGMA. Their molecular structures and chemical compositions were confirmed by (1)H NMR, Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). P(TTMA-co-mPEGMA) copolymers could self-assemble into nanosized micelles in aqueous solution and displayed low critical micelle concentration (CMC). All P(TTMA-co-mPEGMA) micelles displayed excellent drug loading capacity, due to the strong π-π conjugate action and hydrophobic interaction between the PTTMA and CUR. Moreover, the hydrophobic PTTMA chain could be selectively hydrolyzed into a hydrophilic backbone in the mildly acidic environment, leading to significant swelling and final disassembly of the micelles. These morphological changes of P(TTMA-co-mPEGMA) micelles with time at pH 5.0 were determined by DLS and TEM. The in vitro CUR release from the micelles exhibited a pH-dependent behavior. The release rate of CUR was significantly accelerated at mildly acidic pH of 4.0 and 5.0 compared to that at pH 7.4. Toxicity test revealed that the P(TTMA-co-mPEGMA) copolymers exhibited low cytotoxicity, whereas the CUR-loaded micelles maintained high cytotoxicity for HepG-2 and EC-109 cells. The results indicated that the novel P(TTMA-co-mPEGMA) micelles with low CMC, small and tunable

  7. New amphiphilic glycopolymers by click functionalization of random copolymers – application to the colloidal stabilisation of polymer nanoparticles and their interaction with concanavalin A lectin

    Directory of Open Access Journals (Sweden)

    Otman Otman

    2010-06-01

    Full Text Available Glycopolymers with mannose units were readily prepared by click chemistry of an azido mannopyranoside derivative and a poly(propargyl acrylate-co-N-vinyl pyrrolidone. These glycopolymers were used as polymer surfactants, in order to obtain glycosylated polycaprolactone nanoparticles. Optimum stabilization for long time storage was achieved by using a mixture of glycopolymers and the non-ionic triblock copolymer Pluronic® F-68. The mannose moieties are accessible at the surface of nanoparticles and available for molecular recognition by concanavalin A lectin. Interaction of mannose units with the lectin were evaluated by measuring the changes in nanoparticles size by dynamic light scattering in dilute media.

  8. Studies on Preparation of Poly(3,4-Dihydroxyphenylalanine-Polylactide Copolymers and the Effect of the Structure of the Copolymers on Their Properties

    Directory of Open Access Journals (Sweden)

    Dongjian Shi

    2016-03-01

    Full Text Available Properties of copolymers are generally influenced by the structure of the monomers and polymers. For the purpose of understanding the effect of polymer structure on the properties, two kinds of copolymers, poly(3,4-dihydroxyphenylalanine-g-polylactide and poly(3,4-dihydroxyphenylalanine-b-polylactide (PDOPA-g-PLA and PDOPA-b-PLA were designed and prepared by ring-opening polymerization of lactide with pre-prepared PDOPA as the initiator and the amidation of the functional PLA and PDOPA oligomer, respectively. The molecular weight and composition of the copolymers could be adjusted by changing the molar ratio of LA and DOPA and were confirmed by gel permeation chromatography (GPC and proton nuclear magnetic resonance (1H NMR spectra. The obtained copolymers with graft and block structures showed high solubility even in common organic solvents. The effects of the graft and block structures on the thermal and degradation properties were also detected. The PDOPA-g-PLA copolymers showed higher thermal stability than the PDOPA-b-PLA copolymers, due to the PDOPA-g-PLA copolymers with regular structure and strong π-π stacking interactions among the intermolecular and intramolecular chains. In addition, the degradation results showed that the PDOPA-g-PLA copolymers and the copolymers with higher DOPA composition had quicker degradation speeds. Interestingly, both two kinds of copolymers, after degradation, became undissolved in the organic solvents because of the oxidation and crosslinking formation of the catechol groups in the DOPA units during degradation in alkaline solution. Moreover, fluorescent microscopy results showed good biocompatibility of the PDOPA-g-PLA and PDOPA-b-PLA copolymers. The PDOPA and PLA copolymers have the potential applications to the biomedical and industrial fields.

  9. Polyether/Polyester Graft Copolymers

    Science.gov (United States)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  10. 基于RAFT聚合策略合成功能化聚烯烃嵌段聚合物的研究进展%Progress of synthesis of functional polyolefin block copolymers via strategy based on RAFT polymerization

    Institute of Scientific and Technical Information of China (English)

    毛国梁; 王欣; 宁英男; 马志

    2012-01-01

    首先介绍了可逆加成-断裂链转移聚合(RAFT)的聚合机理及其常用的RAFT试剂,并与其它两种活性可控自由基聚合[氮氧化合物媒介的自由基聚合(NMP)和原子转移自由基聚合(ATRP)]进行了简单的优缺点对比。其次,介绍了近些年在基于RAFT聚合制备功能化聚烯烃嵌段聚合物研究中取得的进展,重点综述了制备功能化聚烯烃嵌段聚合物时所采用的6种方法,包括①烯烃配位聚合与RAFT聚合相结合;②阴离子聚合与RAFT聚合相结合;③阳离子聚合与RAFT聚合相结合;④Click反应与RAFT聚合相结合;⑤开环聚合与RAFT聚合相结合;⑥叶立德活性聚合与RAFT聚合相结合。最后,对基于RAFT聚合策略设计合成功能化聚烯烃嵌段聚合物的研究前景与实际应用进行了展望。%The paper briefly describes the general polymerization mechanism of reversible addition-fragmentation chain transfer(RAFT) polymerization and some common RAFT agents.The RAFT polymerization is compared with other two kinds of active controlled radical polymerizations [nitrogen oxide mediated free radical polymerization(NMP) and atom transfer radical polymerization(ATRP)].The recent progress of synthesis of functional polyolefin block copolymers on the basis of RAFT polymerization is reviewed.Six kinds of combined methodologies based on RAFT polymerization aiming at the synthesis of functional polyolefin block copolymers are introduced:① Combination of olefin coordination polymerization and RAFT polymerization,②Combination of living anionic polymerization and RAFT polymerization,③Combination of cationic polymerization and RAFT polymerization,④ Combination of Click chemistry and RAFT polymerization,⑤ Combination of ring-opening polymerization and RAFT polymerization,⑥Combination of living polymerization of Ylides and RAFT polymerization.Finally,the prospect of the design and synthesis of functional polyolefin block copolymers via

  11. Polyhedral Oligomeric Silsesquioxane-Functionalized Perfluorocyclobutyl Aryl Ether Polymers: An Overview of the Synthesis and Properties of Polyhedral Oligomeric Silsesquioxanes (POSS) Functionalized with Perfluorocyclobutyl (PFCB) Aryl Ether Polymer Blends and Copolymers (Preprint)

    Science.gov (United States)

    2007-10-17

    hexadecane contact angles of 95° and 27°. FD8T8 POSS loadings up to 15 wt% developed a water repellency plateau; the blend shows an overall 32% increase in...with increasing POSS content. The highest increase in water repellency was 16% for 20 wt% POSS copolymer 4-co-7 with an average contact angle of...RESERVE THIS SPACE Furthermore, block copolymer 4-b-7 also showed a similar increase in water repellency compared with that of homopolymer poly4

  12. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  13. Block and Graft Copolymers of Polyhydroxyalkanoates

    Science.gov (United States)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  14. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    Science.gov (United States)

    Kent, M.S.; Saunders, R.

    1997-02-18

    Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.

  15. Polyhydroxyalkanoate copolymers from forest biomass.

    Science.gov (United States)

    Keenan, Thomas M; Nakas, James P; Tanenbaum, Stuart W

    2006-07-01

    The potential for the use of woody biomass in poly-beta-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07-0.67% (w/v)]. Yields of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, Mv) from 511-919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (Tm) and glass transition temperature (Tg) decreased as a function of 3HVcontent, with Tm demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25-0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16-52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w

  16. Controlling block copolymer phase behavior using ionic surfactant

    Science.gov (United States)

    Ray, D.; Aswal, V. K.

    2016-05-01

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO26PO39EO26)] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle-surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  17. Micro pore arrays in free standing cyclic olefin copolymer membranes: fabrication and surface functionalization strategies for in-vitro barrier tissue models

    Science.gov (United States)

    Gel, M.; Kandasamy, S.; Cartledge, K.; Be, C. L.; Haylock, D.

    2013-12-01

    In recent years there has been growing interest in micro engineered in-vitro models of tissues and organs. These models are designed to mimic the in-vivo like physiological conditions with a goal to study human physiology in an organ-specific context or to develop in-vitro disease models. One of the challenges in the development of these models is the formation of barrier tissues in which the permeability is controlled locally by the tissues cultured at the interface. In-vitro models of barrier tissues are typically created by generating a monolayer of cells grown on thin porous membranes. This paper reports a robust preparation method for free standing porous cyclic olefin copolymer (COC) membranes. We also demonstrate that gelatin coated membranes facilitate formation of highly confluent monolayer of HUVECs. Membranes with thickness in the range of 2-3 um incorporating micro pores with diameter approximately 20 um were fabricated and integrated with microfluidic channels. The performance of the device was demonstrated with a model system mimicking the endothelial barrier in bone marrow sinusoids.

  18. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    Science.gov (United States)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there is incredible freedom in designing the block copolymer architecture

  19. GRAFTED STYRENE-DIVINYLBENZENE COPOLYMERS CONTAINING BENZALDEHYDES AND THEIR WITTIG REACTIONS WITH VARIOUS PHOSPHONIUM SALTS

    Institute of Scientific and Technical Information of China (English)

    Adriana Popa; Gheorghe Ilia; Aurelia Pascariu; Smaranda Iliescu; Nicoleta Plesu

    2005-01-01

    A chloromethylated styrene-divinylbenzene copolymer support system functionalized with 4-benzaldehyde and 2-benzaldehyde was prepared. The degree of functionalization with aldehyde groups is well suited for the subsequent use of the products as Wittig reagents. The polymer bound aldehyde was reacted with Wittig reagents to give olefin groups grafted on styrene-divinylbenzene copolymers. The reactions were carried out in phase transfer catalysis conditions. A simple procedure for the calculation of the degree of functionalization and the statistical modeling of the structural repetitive unit of the copolymer are reported.

  20. Design of block copolymer membranes using segregation strength trend lines

    KAUST Repository

    Sutisna, Burhannudin

    2016-05-18

    Block copolymer self-assembly and non-solvent induced phase separation are now being combined to fabricate membranes with narrow pore size distribution and high porosity. The method has the potential to be used with a broad range of tailor-made block copolymers to control functionality and selectivity for specific separations. However, the extension of this process to any new copolymer is challenging and time consuming, due to the complex interplay of influencing parameters, such as solvent composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous membranes, obtained by computing solvent properties, interactions and copolymer block sizes for a set of successful systems and using it as a guide to select the preparation conditions for new membranes. We applied the method to membranes based on poly(styrene-b-ethylene oxide) diblocks and extended it to newly synthesized poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) terpolymers. The trend line method can be generally applied to other new systems and is expected to dramatically shorten the path of isoporous membrane manufacture. The PS-b-P2VP-b-PEO membrane formation was investigated by in situ Grazing Incident Small Angle X-ray Scattering (GISAXS), which revealed a hexagonal micelle order with domain spacing clearly correlated to the membrane interpore distances.

  1. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Determan, Michael Duane [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    -responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.

  2. BARRIER PROPERTIES OF VINYLIDENE CHLORIDE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    LI Yuesheng; WENG Zhixue; HUANG Zhiming; PAN Zuren

    1996-01-01

    The permeability coefficients of a series of copolymers of vinylidene chloride (VDC)with methyl acrylate (MA), butyl acrylate (BA) or vinyl chloride (VC) (as comonomer)to oxygen and carbon dioxide have been measured at 1.0 MPa and 30℃, while those to water vapor have been measured at 30℃ and 100% relative humidity. All the copolymers are semicrystalline. VDC/MA copolymers have lower melting temperature compared with VDC/BA copolymers, while that melting temperature of VDC/VC copolymer is higher than that of VDC/acrylate copolymers with the same VDC content. The barrier property of the copolymers is predominantly controlled by crystallite, free volume fraction, and cohesive energy. The permeability coefficients of VDC/MA copolymers to oxygen, carbon dioxide, and water vapor were successfully correlated with the ratio of free volume to cohesive energy.

  3. Lignin poly(lactic acid) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  4. Polymers and block copolymers of fluorostyrenes by ATRP

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Borkar, Sachin; Abildgaard, Lillian;

    2002-01-01

    Fully or partly fluorinated polymers have many desirable and intriguing properties. In the framework of a larger program on design and control of new functional block copolymers we recently employed the Atom Transfer Radical Polymerization (ATRP) protocol on 2,3,4,5,6-pentafluorostyrene (FS). We...... materials based on 2,3,5,6-tetrafiuoro-4-methoxy-styrene (TFMS). TFMS homopolymers as well as diblock copolymers with FS are produced by ATRP. Both types of novel polymers were subsequently demethylated and different side chains introduced on the resulting hydroxy sites....

  5. Poly(ortho-phenylenediamine-co-aniline) based copolymer with improved capacitance

    Science.gov (United States)

    Olmedo-Martínez, Jorge L.; Farías-Mancilla, Bárbara I.; Vega-Rios, Alejandro; Zaragoza-Contreras, E. Armando

    2017-10-01

    A poly(ortho-phenylenediamine-co-aniline) copolymer is synthesized via the oxidative route, using a 1:1 M ratio of aniline to ortho-phenylenediamine (oPDA) and ammonium persulfate as the oxidizing agent. Infrared spectroscopy indicates that the copolymer contains the functional groups typically present in polyaniline and poly(ortho-phenylenediamine); whereas UV-vis-NIR spectroscopy shows that the copolymer adopts a phenazine-type structure. Cyclic voltammetry evidences the copolymer synthesis, as a redox peak at -65 mV, different from those exhibited by polyaniline (160 mV and 600 mV) or poly(o-phenylenediamine) (-240 mV) is observed. Finally, electrochemical impedance spectroscopy and the charge/discharge test provide support to propose the copolymer application in electrodes for supercapacitors.

  6. Structure of Block Copolymer Hydrogel Formed by Complex Coacervate Process

    Science.gov (United States)

    Choi, Soohyung; Ortony, Julia; Krogstad, Daniel; Spruell, Jason; Lynd, Nathaniel; Han, Songi; Kramer, Edward

    2012-02-01

    Complex coacervation occurs when oppositely charged polyelectrolytes associate in solution, forming dense micron-sized droplets. Hydrogels with coacervate block domains were formed by mixing two ABA and A'BA' triblock copolymer solutions in water where the A and A' blocks are oppositely charged. Small-angle neutron scattering (SANS) was used to investigate the structure of hydrogels formed by ABA triblock copolymers (A block: poly(allyl glycidyl ether) functionalized with guanidinium (A) or sulfonate (A'), B block: poly(ethylene oxide)). By using an appropriate fitting model, structural information such as coacervate core block radius and water volume fraction w can be extracted from SANS data. The results reveal that w in the coacervate core block was significantly higher than in conventional triblock copolymer hydrogels where microphase separation is driven by the hydrophobicity of the core-forming blocks.

  7. Self-assembly of semiflexible-flexible block copolymers

    Science.gov (United States)

    Kumar, Arun; Ganesan, Venkat

    2012-02-01

    We apply self-consistent Brownian dynamics simulations to study the self-assembly behavior of semiflexible-flexible block copolymers. A Maier-Saupe interaction model was applied for the orientational interactions between the semiflexible polymers, while the enthalpic interactions between semiflexible and flexible polymers were modeled through a standard Flory-Huggins approach. To develop a physical understanding of the phases and their regimes of occurrence as a function of varying persistence length of the semiflexible block, we computed the 2D phase diagram for our model. We quantify the progression of the self-assembly morphologies in transitioning from coil-coil block copolymers on the one hand to rod-coil block copolymers on the other hand. The results obtained are in qualitative agreement with the existing experimental and numerical results.

  8. Universality between Experiment and Simulation of a Diblock Copolymer Melt

    Science.gov (United States)

    Beardsley, Thomas M.; Matsen, Mark W.

    2016-11-01

    The equivalent behavior among analogous block copolymer systems involving chemically distinct molecules or mathematically different models has long hinted at an underlying universality, but only recently has it been rigorously demonstrated by matching results from different simulations. The profound implication of universality is that simple coarse-grained models can be calibrated so as to provide quantitatively accurate predictions to experiment. Here, we provide the first compelling demonstration of this by simulating a polyisoprene-polylactide diblock copolymer melt using a previously calibrated lattice model. The simulation successfully predicts the peak in the disordered-state structure function, the position of the order-disorder transition, and the latent heat of the transition in excellent quantitative agreement with experiment. This could mark a new era of precision in the field of block copolymer research.

  9. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Nicholas [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Topal, Ç. Özge [School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hikkaduwa Koralege, Rangika S. [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hartson, Steve [Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 (United States); Ranjan, Ashish; Liu, Jing; Pope, Carey [Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Ramsey, Joshua D., E-mail: josh.ramsey@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2016-05-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15–30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. - Highlights: • A 4–70 kDa range of PLL-g-PEG copolymers was able to encapsulate BSA into NPs. • Encapsulation of BSA by PLL-g-PEG not only retained but increased esterolytic activity. • NPs were stable against protease degradation and polyanion dissociation.

  10. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are industrially important copolymers often called Pluronics or Poloxamers. EPE copolymers form micelles with a core of P blocks and different micellar shapes depending on block leng...

  11. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are industrially important copolymers often called Pluronics or Poloxamers. EPE copolymers form micelles with a core of P blocks and different micellar shapes depending on block length...

  12. A NEW PLLA PCL COPOLYMER FOR NERVE REGENERATION

    NARCIS (Netherlands)

    DENDUNNEN, WFA; SCHAKENRAAD, JM; ZONDERVAN, GJ; PENNINGS, AJ; VANDERLEI, B; ROBINSON, PH

    1993-01-01

    The aim of this study is to evaluate the functional and cell biological applicability of a two-ply nerve guide constructed of a PLLA/PCL (i.e. poly-L-lactide and poly-epsilon-caprolactone) copolymer. To do so, we performed a cytotoxicity test, a subcutaneous biodegradation test and an in situ implan

  13. Multiple ordered phases in a block copolymer melt

    DEFF Research Database (Denmark)

    Almdal, K.; Koppi, K.A.; Bates, F.S.;

    1992-01-01

    A poly(ethylenepropylene)-poly(ethylethylene) (PEP-PEE) diblock copolymer containing 65% by volume PEP was investigated using small-angle neutron scattering (SANS) and rheological measurements. Four distinct phases have been identified as a function of temperature: three ordered phases at low tem...

  14. Biocompatibility of poly(DL-lactic acid/glycine) copolymers

    NARCIS (Netherlands)

    Schakenraad, J.M.; Dijkstra, Pieter J.

    1991-01-01

    In this review the authors discuss the polymer chemical, physical and cell biological aspects of poly (DL-lactic acid/glycine) copolymers, both in vitro and in vivo. The mechanism and rate of degradation and the degree of foreign body reaction were evaluated as a function of the molecular

  15. Phase behavior of block copolymer melts with arbitrary architecture

    NARCIS (Netherlands)

    Morozov, AN; Fraaije, JGEM

    2001-01-01

    The Leibler theory [L. Leibler, Macromolecules 13, 1602 (1980)] for microphase separation in AB block copolymer melts is generalized for systems with arbitrary topology of molecules. A diagrammatic technique for calculation of the monomeric correlation functions is developed. The free energies of va

  16. Phase behaviour of block copolymer melts with arbitrary architecture

    NARCIS (Netherlands)

    Morozov, A. N.; Fraaije, J. G. E. M.

    2000-01-01

    Abstract: The Leibler theory [L. Leibler, Macromolecules, v.13, 1602 (1980)] for microphase separation in AB block copolymer melts is generalized for systems with arbitrary topology of molecules. A diagrammatic technique for calculation of the monomeric correlation functions is developed. The free e

  17. Biocompatibility of poly (DL-lactic acid/glycine) copolymers

    NARCIS (Netherlands)

    Schakenraad, J.M.; Dijkstra, P.J.

    1991-01-01

    In this review the authors discuss the polymer chemical, physical and cell biological aspects of poly (DL-lactic acid/glycine) copolymers, both in vitro and in vivo. The mechanism and rate of degradation and the degree of foreign body reaction were evaluated as a function of the molecular compositi

  18. Copolymers For Capillary Gel Electrophoresis

    Science.gov (United States)

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  19. New routes to the synthesis of amylose-block-polystyrene rod-coil block copolymers

    NARCIS (Netherlands)

    Loos, Katja; Müller, Axel H.E.

    2002-01-01

    Hybrid block copolymers amylose-block-polystyrene were synthesized by covalent attachment of maltoheptaose derivatives to end-functionalized polystyrene and subsequent enzymatic grafting from polymerization. The maltoheptaose derivatives were attached by reductive amination or hydrosilation to amino

  20. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha

    2017-02-15

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser coupling reaction. The -OH groups of the 3-miktoarm star copolymers (PE-OH)-b-PS, synthesized by polyhomologation and ATRP, are transformed to alkyne groups by esterification with propiolic acid, followed by Glaser cyclization and removal of the unreacted linear with Merrifield\\'s resin-azide. The characterization results of intermediates and final products by high-temperature size exclusion chromatography, H NMR spectroscopy, and differential scanning calorimetry confirm the tadpole topology.

  1. Poly vinyl acetate and ammonio methacrylate copolymer as unconventional polymer blends increase the mechanical robustness of HPMC matrix tablets.

    Science.gov (United States)

    Ali, R; Dashevsky, A; Bodmeier, R

    2017-01-10

    The objective was to investigate poly vinyl acetate (Kollicoat(®) SR 30 D) and ammonio methacrylate copolymer (Eudragit(®) RL 30 D) blends as coatings to increase the mechanical robustness of hydroxypropyl methylcellulose (HPMC) matrix tablets. Poly vinyl acetate (Kollicoat(®) SR 30 D - KSR) was selected for its flexibility and ammonio methacrylate copolymer (Eudragit(®) RL 30 D - ERL) because of its high permeability. Films based on KSR:ERL blends were prepared by casting or spraying aqueous dispersions of these polymers and were characterized by water uptake, dry mass loss and mechanical properties. KSR:ERL blends were investigated as coating materials to improve the robustness, mechanical strength and drug release from the HPMC matrix tablets containing propranolol HCl, caffeine and carbamazepine as model drugs. Both HPMC and the polymer coating affected the propranolol release. The release and the mechanical properties could be easily adjusted by varying the polymer blend ratio. The flexibility increased with increasing KSR content. At an 8% w/w coating level, a force of 3.2N was required to rupture the coating of the swollen tablet after 16h in the release medium; the coated tablets were thus robust to withstand gastrointestinal forces. The coating level (6%-10%, w/w) and dissolution agitation rate (50rpm to 150rpm) had no effect on the drug release. The water-insoluble carbamazepine was not released from the coated tablets as HPMC erosion, which is necessary for the release of a poorly water-soluble drug was hindered by the coating. The release of the water-soluble propranolol increased with increasing drug content and decreased with increasing HPMC content.

  2. Responsive copolymers for enhanced petroleum recovery. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1995-05-01

    The authors describe second year efforts in synthesis, characterization, and rheology to develop polymers with significantly improved efficiency in mobility control and conformance. These advanced polymer systems would maintain high viscosities or behave as virtual gels under low shear conditions and at elevated electrolyte concentrations. At high fluid shear rates, associates would deaggregate yielding low viscosity solutions, reducing problems of shear degradation or face plugging during injection. Polymeric surfactants were also developed with potential for use in higher salt, higher temperature reservoirs for mobilization of entrapped oil. Chapters include: Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride; Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-methylpropane-dimethylammonio)-1-propanesulfonate; Copolymerization of maleic anhydride and N-vinylformamide; Reactivity ratio of N-vinylformamide with acrylamide, sodium acrylate, and n-butyl acrylate; Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers; Effect of surfactants on the solution properties of amphipathic copolymers of acrylamide and N,N-dimethyl-N-dodecyl-N-(2-acrylamidoethyl)ammonium bromide; Associative interactions and photophysical behavior of amphiphilic terpolymers prepared by modification of maleic anhydride/ethyl vinyl ether copolymers; Copolymer compositions of high-molecular-weight functional acrylamido water-soluble polymers using direct-polarization magic-angle spinning {sup 13}C NMR; Use of factorial experimental design in static and dynamic light scattering characterization of water soluble polymers; and Porous medium elongational rheometer studies of NaAMB/AM copolymer solutions.

  3. Polyether-polyester graft copolymer

    Science.gov (United States)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  4. Liquid ethylene-propylene copolymers

    Science.gov (United States)

    Rhein, R. A.; Ingham, J. D.; Humphrey, M. F.

    1975-01-01

    Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight.

  5. Covalent Attachment of the Water-insoluble Ni(P Cy 2 N Phe 2 ) 2 Electrocatalyst to Electrodes Showing Reversible Catalysis in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Maciá, Patricia [Max Planck Institute für Chemische Energiekonversion, Stiftstr. 34-36 45470 Mülheim an der Ruhr Germany; Priyadarshani, Nilusha [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland WA 99354 USA; Dutta, Arnab [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland WA 99354 USA; Chemistry Department, IIT Gandhinagar, Ahmedabad 382424 India; Weidenthaler, Claudia [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany; Lubitz, Wolfgang [Max Planck Institute für Chemische Energiekonversion, Stiftstr. 34-36 45470 Mülheim an der Ruhr Germany; Shaw, Wendy J. [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland WA 99354 USA; Rüdiger, Olaf [Max Planck Institute für Chemische Energiekonversion, Stiftstr. 34-36 45470 Mülheim an der Ruhr Germany

    2016-10-01

    Hydrogenases are a diverse group of metalloenzymes which catalyze the reversible conversion between molecular hydrogen and protons at high rates. The catalytic activity of these enzymes does not require overpotential because their active site has been evolutionarily optimized to operate fast and efficiently. These enzymes have inspired the development of molecular catalysts, which have dramatically improved in efficiency in recent years, to the point that some synthetic catalysts even outperform hydrogenases under certain conditions. In this work, we use a reversible noble-metal-free homogeneous catalyst, the [Ni(PCy2NPhe2)2]2+ complex, and we covalently immobilize it on a functionalized highly oriented pyrolytic graphite “edge” (HOPGe) electrode surface. This catalyst is not water soluble, but once it is surface-confined on the electrode, it maintains its catalytic properties in aqueous solutions, showing reversibility for H2 oxidation/reduction. Immobilization of the [Ni(PCy2NPhe2)2]2+ complex onto a multi-walled carbon nanotubes coated electrode leads to even higher catalytic current densities and enhanced stability.

  6. Chain exchange in triblock copolymer micelles

    Science.gov (United States)

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  7. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    Science.gov (United States)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  8. Block copolymer templated etching on silicon.

    Science.gov (United States)

    Qiao, Yinghong; Wang, Dong; Buriak, Jillian M

    2007-02-01

    The use of self-assembled polymer structures to direct the formation of mesoscopic (1-100 nm) features on silicon could provide a fabrication-compatible means to produce nanoscale patterns, supplementing conventional lithographic techniques. Here we demonstrate nanoscale etching of silicon, applying standard aqueous-based fluoride etchants, to produce three-dimensional nanoscale features with controllable shapes, sizes, average spacing, and chemical functionalization. The block copolymers serve to direct the silicon surface chemistry by controlling the spatial location of the reaction as well as concentration of reagents. The interiors of the resulting etched nanoscale features may be selectively functionalized with organic monolayers, metal nanoparticles, and other materials, leading to a range of ordered arrays on silicon.

  9. Block copolymer morphologies confined by square-shaped particle: Hard and soft confinement

    Science.gov (United States)

    Zhang, Qiyi; Yang, Wenyan; Hu, Kaiyan

    2016-11-01

    The self-assembly of diblock copolymers confined around one square-shaped particle is studied systematically within two-dimensional self-consistent field theory (SCFT). In this model, we assume that the thin block copolymer film is confined in the vicinity of a square-shaped particle by a homopolymer melt, which is equivalent to the poor solvents. Multiple sequences of square-shaped particle-induced copolymer aggregates with different shapes and self-assembled internal morphologies are predicted as functions of the particle size, the structural portion of the copolymer, and the volume fraction of the copolymer. A rich variety of aggregates are found with complex internal self-assembled morphologies including complex structures of the vesicle, with one or several inverted micelle surrounded by the outer monolayer with the particle confined in the core. These results demonstrate that the assemblies of diblock copolymers formed around the square-shaped particle in poor solvents are of immediate interest to the assembly of copolymer and the morphology of biomembrane in the confined environment, as well as to the transitions of vesicles to micelles. Project supported by the National Natural Science Foundation of China (Grant No. 20804060) and the Research Foundation of Chongqing University of Science and Technology, China (Grant No. CK2013B16).

  10. Synthesis and characterization of a novel PNIPAAm-based copolymer with hydrolysis-dependent thermosensitivity.

    Science.gov (United States)

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta; Giusti, Paolo

    2010-06-01

    The aim of this work was the synthesis and characterization of a novel poly(N-isopropylacrylamide)-based copolymer, with hydrolysis-dependent thermosensitivity, for bioengineering applications. For this purpose, N-isopropylacrylamide (NIPAAm) and 2-hydroxyethylmethacrylate-6-hydroxyhexanoate (HEMAHex) monomers were chosen. The poly(NIPAAm-co-HEMAHex) copolymer was synthesized by radical polymerization. The physicochemical, mechanical, functional and biological properties of the copolymer were investigated. The physicochemical characterization confirmed that the copolymerization was successfully carried out. In addition, the newly synthesized poly(NIPAAm-co-HEMAHex) copolymer showed temperature sensitivity, with a phase separation temperature under body temperature (at 23 °C). Fourier transform infrared spectroscopy and differential scanning calorimetry results after hydrolysis tests indicated that the incorporation of the HEMAHex ester groups provides the cleavage of the lateral chain, which leads to an increase in the hydrophilicity of the copolymer and, consequently, to an increase in the lower critical solution temperature (LCST) with time. Since the LCST increases above body temperature (up to 40.4 °C), the copolymer becomes soluble again and diffuses away. It was also demonstrated that the hydrolysis occurred on the peripheral ester bond of the lateral chain, with the release of 6-hydroxyhexanoic acid, whose bioresorbibility has been reported in the literature. Therefore, the properties of this copolymer are very interesting and make it particularly attractive for biomedical applications.

  11. Block copolymer-nanoparticle hybrid self-assembly

    KAUST Repository

    Hoheisel, Tobias N.

    2015-01-01

    © 2014 Published by Elsevier Ltd. Polymer-inorganic hybrid materials provide exciting opportunities as they may display favorable properties from both constituents that are desired in applications including catalysis and energy conversion and storage. For the preparation of hybrid materials with well-defined morphologies, block copolymer-directed nanoparticle hybrids present a particularly promising approach. As will be described in this review, once the fundamental characteristics for successful nanostructure formation at or close to the thermodynamic equilibrium of these nanocomposites are identified, the approach can be generalized to various materials classes. In addition to the discussion of recent materials developments based on the use of AB diblock copolymers as well as ABC triblock terpolymers, this review will therefore emphasize progress in the fundamental understanding of the underlying formation mechanisms of such hybrid materials. To this end, critical experiments for, as well as theoretical progress in the description of these nanostructured block copolymer-based hybrid materials will be discussed. Rather than providing a comprehensive overview, the review will emphasize work by the Wiesner group at Cornell University, US, on block copolymer-directed nanoparticle assemblies as well as their use in first potential application areas. The results provide powerful design criteria for wet-chemical synthesis methodologies for the generation of functional nanomaterials for applications ranging from microelectronics to catalysis to energy conversion and storage.

  12. Volatile organic compound detection using nanostructured copolymers.

    Science.gov (United States)

    Li, Bo; Sauvé, Genevieve; Iovu, Mihaela C; Jeffries-El, Malika; Zhang, Rui; Cooper, Jessica; Santhanam, Suresh; Schultz, Lawrence; Revelli, Joseph C; Kusne, Aaron G; Kowalewski, Tomasz; Snyder, Jay L; Weiss, Lee E; Fedder, Gary K; McCullough, Richard D; Lambeth, David N

    2006-08-01

    Regioregular polythiophene-based conductive copolymers with highly crystalline nanostructures are shown to hold considerable promise as the active layer in volatile organic compound (VOC) chemresistor sensors. While the regioregular polythiophene polymer chain provides a charge conduction path, its chemical sensing selectivity and sensitivity can be altered either by incorporating a second polymer to form a block copolymer or by making a random copolymer of polythiophene with different alkyl side chains. The copolymers were exposed to a variety of VOC vapors, and the electrical conductivity of these copolymers increased or decreased depending upon the polymer composition and the specific analytes. Measurements were made at room temperature, and the responses were found to be fast and appeared to be completely reversible. Using various copolymers of polythiophene in a sensor array can provide much better discrimination to various analytes than existing solid state sensors. Our data strongly indicate that several sensing mechanisms are at play simultaneously, and we briefly discuss some of them.

  13. Bioinspired catecholic copolymers for antifouling surface coatings.

    Science.gov (United States)

    Cho, Joon Hee; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2013-05-01

    We report here a synthetic approach to prepare poly(methyl methacrylate)-polydopamine diblock (PMMA-PDA) and triblock (PDA-PMMA-PDA) copolymers combining mussel-inspired catecholic oxidative chemistry and atom transfer radical polymerization (ATRP). These copolymers display very good solubility in a range of organic solvents and also a broad band photo absorbance that increases with increasing PDA content in the copolymer. Spin-cast thin films of the copolymer were stable in water and showed a sharp reduction (by up to 50%) in protein adsorption compared to those of neat PMMA. Also the peak decomposition temperature of the copolymers was up to 43°C higher than neat PMMA. The enhanced solvent processability, thermal stability and low protein adsorption characteristics of this copolymer makes it attractive for variety of applications including antifouling coatings on large surfaces such as ship hulls, buoys, and wave energy converters.

  14. CAVITATION PROPERTIES OF BLOCK COPOLYMER STABILIZED PHASE-SHIFT NANOEMULSIONS USED AS DRUG CARRIERS

    OpenAIRE

    Rapoport, Natalya; Christensen, Douglas A.; KENNEDY, ANNE M.; NAM, KWEONHO

    2010-01-01

    Cavitation properties of block copolymer stabilized perfluoropentane nanoemulsions have been investigated. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers differing in the structure of the hydrophobic block, poly(ethylene oxide)-co-poly(L-lactide) (PEG-PLLA) and poly(ethylene oxide)-co-polycaprolactone (PEG-PCL). Cavitation parameters were measured in liquid emulsions and gels as a function of ultrasound pressure for unfocused or focused 1-MHz ultrasound. A...

  15. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  16. Lowest excited states and optical absorption spectra of donor-acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals.

    Science.gov (United States)

    Pandey, Laxman; Doiron, Curtis; Sears, John S; Brédas, Jean-Luc

    2012-11-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated.

  17. Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fang; Qin, Xiaoshuai; Li, Yancai; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-08-30

    Highlights: • QAS-containing fluorosilicone multi-block copolymers were synthesized. • The block length of PHFBMA in the copolymers was tailored via RAFT polymerization. • Surface roughness of the copolymers decreased with the increased PHFBMA content. • A certain length of PHFBMA block enhanced C−N{sup +} percentage on the surface. - Abstract: Symmetrically structured fluorosilicone multi-block copolymers containing poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(hexafluorobutyl methacrylate) (PHFBMA) were sequentially synthesized via reversible addition–fragmentation chain transfer polymerization, using a polydimethylsiloxane (PDMS) chain transfer agent with dithiocarbonate groups at both ends. Then, the CBABC-type block copolymers were quaternized with n-octyliodide to tether quaternary ammonium salt (QAS) groups in the PDMAEMA blocks for the antimicrobial use. The obtained fluorosilicone copolymers showed clear variations in the C-N{sup +} composition and surface morphology on their films depending on the content of the PHFBMA blocks, which were characterized by X-ray photoelectron spectroscopy and atomic force microscopy, respectively. The results indicated that the symmetrical CBABC structure favored PDMS and QAS tethered blocks migrating to the film surface. With the mass percentage of the PHFBMA increased from 0 to 32.5%, the surface roughness of the copolymer film decreased gradually with a tendency to form a smooth surface. Owing to the surface properties, fluorosilicone multi-block copolymers containing a certain amount of PHFBMA with higher C-N{sup +} content and relatively smooth morphology demonstrated obvious antimicrobial activity against Gram-positive bacteria, Bacillus subtilis and Gram-negative bacteria, Escherichia coli. The functionalized multi-block copolymers based on fluorosilicone and QAS groups would have potential applications in antimicrobial coatings.

  18. The influence of chain stretching on the phase behavior of multiblock copolymer and comb copolymer melts

    NARCIS (Netherlands)

    Angerman, HJ; ten Brinke, G

    2003-01-01

    The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock copolym

  19. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    NARCIS (Netherlands)

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86 w

  20. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...... a viscoclastic rubber to a plastic fluid and from a plastic fluid to a viscoelastic liquid are shifted to more elevated temperatures when silica is added to the triblock copolymer gel. (C) 2004 Elsevier Ltd. All rights reserved....

  1. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  2. Synthesis and Surface Tension Properties of Polyethyleneimine—Polyethylene Oxide Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    张剑; LONNIE,Bryant

    2003-01-01

    This peper describes the synthesis,surface tension and dispersancy properties of block copolymer nonionic surfactants comprised of polyethyleneimine(PEI) and polyethlene oxide(PEO) blocks of selected lengths.These block copolymers were prepared by a threestep synthetic sequence.Firstly,PEO glycol was converted to its dimethanesulphonylester (dimesyl) derivative by reacting with methanesulphonyl chloride.Then a tri-block polymer was preparaed by the ring-opening polymerization of 2-methly-2-oxazoline(MeOZO)with the dimesyl PEO derivative.Lastly,linear PEI blocks were obtained by subsequent hydrolysis and purification.1H NMR spectra confirmed the structures of the intermediate,final products and their purities(>99%).The utility of these block copolymers is described in terms of their surface tension and clay dispersancy measurements as a function of copolymer chain and block length.

  3. Assembly of diblock copolymer grafted nanoparticles in a homopolymer blend matrix

    Science.gov (United States)

    Estridge, Cara; Jayaraman, Arthi

    2014-03-01

    Hybrid materials comprised of nanoscale fillers embedded in a polymer matrix, also terms polymer nanocomposites, are used in many applications, such as photovoltaics, photonics, automobile parts, where their macroscopic properties are governed by the nanocomposite morphology. The structure and composite morphology is controlled by the interactions of the nanoscale fillers and the polymer matrix. In this talk we show using molecular simulations that functionalization of the nanoparticle surface with AB diblock copolymer grafts is a way to tune the interactions between the grafted particle and the A and B homopolymer blend matrix. Specifically, our work demonstrates that by tailoring the copolymer composition and the copolymer grafting density one can tune the location of the copolymer grafted particles in the matrix, (e.g. within a domain versus interface of two domains). Additionally, in the case where the grafted particles locate themselves at the interface between the two domains, the interfacial tension is reduced below that possible with bare ungrafted particles at the interface.

  4. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Barbu, Eugen; Tsibouklis, John [School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom); Verestiuc, Liliana [Faculty of Medical Bioengineering, University of Medicine and Pharmacy ' Gr T Popa' , 9-13 Kogalniceanu Street, Iasi, 700454 (Romania); Iancu, Mihaela; Jatariu, Anca [Faculty of Chemical Engineering and Environmental Protection, Technical University' Gh Asachi' , Boulevard Mangeron, 71A, 700100, Iasi (Romania); Lungu, Adriana [Faculty of Applied Chemistry and Materials Science, Polytechnic University of Bucharest, Polizu Street 1-7, 011061, Bucharest (Romania)], E-mail: eugen@barbu@port.ac.uk

    2009-06-03

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  5. Hydrophilization of poly(caprolactone copolymers through introduction of oligo(ethylene glycol moieties.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wurth

    Full Text Available In this study, a new family of poly(ε-caprolactone (PCL copolymers that bear oligo(ethylene glycol (OEG moieties is described. The synthesis of three different oligo(ethylene glycol functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL to poly(CL-co-OEG-MPO copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ were observed. While unmodified PCL promoted elongated (anisotropic morphologies (Φ = 0.094, PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184 similar to those observed on glass controls (Φ = 0.151.

  6. Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Self-assembly of block copolymer/nanoparticle blends has promising applications in the design and fabrication of novel functional nanomaterials. Precise control of the spatial positions of nanoparticles within block copolymer-based nanomaterials is crucial to achieve some special physical properties and functions. Here, we employ the self-consistent field method to theoretically investigate the self-assembly of polymer grafted-nanoparticles in a diblock copolymer. It is found that by varying the size and selectivity of nanoparticles, one can not only produce various self-assembled nanostructures but also modulate the spatial positions of the nanoparticles, either at the copolymer interfaces or in the center of one copolymer phase, within the nanostructures. A denser grafted polymer brush plays a role of shielding effect on nanoparticles and can position them into the center of one copolymer phase. The nanostructural transition we observed is dictated by the competition between entropy and enthalpy. On the basis of a number of simulations, two phase diagrams of self-assembled nanostructures are constructed. This study may be helpful for optimal design of advanced materials with desired nanostructures and enhanced performance.

  7. A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries

    Science.gov (United States)

    Jiao, Yu; Chen, Wei; Lei, Tianyu; Dai, Liping; Chen, Bo; Wu, Chunyang; Xiong, Jie

    2017-03-01

    High energy density, low cost and environmental friendliness are the advantages of lithium-sulfur (Li-S) battery which is regarded as a promising device for electrochemical energy storage systems. As one of the important ingredients in Li-S battery, the binder greatly affects the battery performance. However, the conventional binder has some drawbacks such as poor capability of absorbing hydrophilic lithium polysulfides, resulting in severe capacity decay. In this work, we reported a multi-functional polar binder (AHP) by polymerization of hexamethylene diisocyanate (HDI) with ethylenediamine (EDA) bearing a large amount of amino groups, which were successfully used in electrode preparation with commercial sulfur powder cathodes. The abundant amide groups of the binder endow the cathode with multidimensional chemical bonding interaction with sulfur species within the cathode to inhibit the shuttling effect of polysulfides, while the suitable ductility to buffer volume change. Utilizing these advantageous features, composite C/S cathodes based the binder displayed excellent capacity retention at 0.5 C, 1 C, 1.5 C, and 3 C over 200 cycles. Accompany with commercial binder, AHP may act as an alternative feedstock to open a promising approach for sulfur cathodes in rechargeable lithium battery to achieve commercial application.

  8. Effect of pH on the flocculation behaviors of kaolin using a pH-sensitive copolymer.

    Science.gov (United States)

    Li, Shulei; Gao, Lihui; Cao, Yijun; Gui, Xiahui; Li, Zhen

    pH-sensitive copolymers have been widely introduced to achieve rapid dewatering and consolidation of solids in mining and oil sands processing wastes. But no more attention has been given to the flocculation efficiency of solid suspensions as a function of pH using pH-sensitive copolymer. In this study, a pH-sensitive copolymer was synthesized and employed to investigate the flocculation behaviors of kaolin by focused beam reflectance measurement (FBRM). A titration test was introduced to characterize the copolymer conformation transition. The results demonstrated that at pH ranging from 3 to 6, with the pH increase, the zeta potential magnitude of kaolin particles increased, resulting in the repulsive forces between particles increasing. However, the hydrophobicity of kaolin increased as the pH increased. Thus, the hydrophobic forces could neutralize a part of the repulsive forces between particles and result in good and similar flocculation performances. At the pH greater than 6, the zeta potential magnitude of kaolin particles and copolymer molecules increased significantly, and the repulsive force between kaolin particles increased after copolymer addition due to the kaolin particles being more negatively charged, which resulted in poor flocculation efficiency and cloudy supernatant. It was concluded that the pH-sensitive copolymer could achieve both perfect flocculation efficiency and low moisture of filter cake at the isoelectric point of copolymer.

  9. Micellization and Characterization of Block Copolymer Detergents

    DEFF Research Database (Denmark)

    Hvidt, Søren

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are used widely in industry as emulsifiers, anti-foaming agents, and in delayed drug release. EPE copolymers form micelles with a core of P blocks and different micellar shapes depen...

  10. Micellization and Characterization of Block Copolymer Detergents

    DEFF Research Database (Denmark)

    Hvidt, Søren

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are used widely in industry as emulsifiers, anti-foaming agents, and in delayed drug release. EPE copolymers form micelles with a core of P blocks and different micellar shapes...

  11. Copolymers at the solid - liquid interface

    NARCIS (Netherlands)

    Wijmans, C.M.

    1994-01-01

    Copolymers consisting of both adsorbing and nonadsorbing segments can show an adsorption behaviour which is very different from that of homopolymers. We have mainly investigated the adsorption of AB diblock copolymers, which have one adsorbing block (anchor) and one nonadsorbing block

  12. Drug targeting to tumors using HPMA copolymers

    NARCIS (Netherlands)

    Lammers, T.G.G.M.

    2009-01-01

    Copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized polymeric drug carriers that have been broadly implemented in the delivery of anticancer agents. HPMA copolymers circulate for prolonged periods of time, and by means of the Enhance Permeability and Re

  13. Process-Accessible States of Block Copolymers

    Science.gov (United States)

    Sun, De-Wen; Müller, Marcus

    2017-02-01

    Process-directed self-assembly of block copolymers refers to thermodynamic processes that reproducibly direct the kinetics of structure formation from a starting, unstable state into a selected, metastable mesostructure. We investigate the kinetics of self-assembly of linear A C B triblock copolymers after a rapid transformation of the middle C block from B to A . This prototypical process (e.g., photochemical transformation) converts the initial, equilibrium mesophase of the A B B copolymer into a well-defined but unstable, starting state of the A A B copolymer. The spontaneous structure formation that ensues from this unstable state becomes trapped in a metastable mesostructure, and we systematically explore which metastable mesostructures can be fabricated by varying the block copolymer composition of the initial and final states. In addition to the equilibrium mesophases of linear A B diblock copolymers, this diagram of process-accessible states includes 7 metastable periodic mesostructures, inter alia, Schoen's F-RD periodic minimal surface. Generally, we observe that the final, metastable mesostructure of the A A B copolymer possesses the same symmetry as the initial, equilibrium mesophase of the A B B copolymer.

  14. Thermochemical characteristics of chitosan-polylactide copolymers

    Science.gov (United States)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  15. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems ...

  16. Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers

    Science.gov (United States)

    Maceiras, A.; Costa, C. M.; Lopes, A. C.; San Sebastián, M.; Laza, J. M.; Vilas, J. L.; Ribelles, J. L. Gómez; Sabater i Serra, R.; Andrio Balado, A.; Lanceros-Méndez, S.; León, L. M.

    2015-08-01

    Polyimide copolymers have been prepared based on different diamines as comonomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed, and the dielectric complex function, ac conductivity and electric modulus of the copolymers were investigated as a function of CN group content in the frequency range from 0.1 to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150 °C, the dielectric constant increases with increasing temperature due to increasing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups, an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN group content present in the samples.

  17. STUDY ON POLYSULFONE-POLYESTER BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    DING Youjun; QI Daquan

    1988-01-01

    Synthesis and characterization of a series of Polysulfone (PSF)-Polyester (PEs) block copolymers were studied.The degree of randomness (B) of these block copolymers was calculated from the intensities of their proton signals in 1H NMR spectra and lies in the region of 0 < B < 1. It was shown that the degree of randomness (B) and the average sequence length (L) in block copolymers were relatively dependent on the reaction conditions, various feed ratios and structure of diols.The phenomenon was observed, when the PSF-PEs block copolymers dissolved in different solvents they had different viscosities and molecular conformations.The PSF-PEs block copolymers had better solvent resistance than homo-polysulfone.

  18. Supramolecular Multiblock Copolymers Featuring Complex Secondary Structures.

    Science.gov (United States)

    Elacqua, Elizabeth; Manning, Kylie B; Lye, Diane S; Pomarico, Scott K; Morgia, Federica; Weck, Marcus

    2017-09-06

    This contribution introduces main-chain supramolecular ABC and ABB'A block copolymers sustained by orthogonal metal coordination and hydrogen bonding between telechelic polymers that feature distinct secondary structure motifs. Controlled polymerization techniques in combination with supramolecular assembly are used to engineer heterotelechelic π-sheets that undergo high-fidelity association with both helical and coil-forming synthetic polymers. Our design features multiple advances to achieve our targeted structures, in particular, those emulating sheet-like structural aspects using poly(p-phenylenevinylene)s (PPVs). To engineer heterotelechelic PPVs in a sheet-like design, we engineer an iterative one-pot cross metathesis-ring-opening metathesis polymerization (CM-ROMP) strategy that affords functionalized Grubbs-II initiators that subsequently polymerize a paracyclophanediene. Supramolecular assembly of two heterotelechelic PPVs is used to realize a parallel π-sheet, wherein further orthogonal assembly with helical motifs is possible. We also construct an antiparallel π-sheet, wherein terminal PPV blocks are adjacent to a flexible coil-like poly(norbornene) (PNB). The PNB is designed, through supramolecular chain collapse, to expose benzene and perfluorobenzene motifs that promote a hairpin turn via charge-transfer-aided folding. We demonstrate that targeted helix-(π-sheet)-helix and helix-(π-sheet)-coil assemblies occur without compromising intrinsic helicity, while both parallel and antiparallel β-sheet-like structures are realized. Our main-chain orthogonal assembly approach allows the engineering of multiblock copolymer scaffolds featuring diverse secondary structures via the directional assembly of telechelic building blocks. The targeted assemblies, a mix of sequence-defined helix-sheet-coil and helix-sheet-helix architectures, are Nature-inspired synthetic mimics that expose α/β and α+β protein classes via de novo design and cooperative assembly

  19. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    DEFF Research Database (Denmark)

    Toušek, J.; Toušková, J.; Remeš, Z.;

    2015-01-01

    Measurements of electrical conductivity, electron work function, carrier mobility ofholes and the diffusion length of excitons were performed on samples of conjugatedpolymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazolebased conjugated copolymer (PBDTTHD − DTBTff...

  20. Aqueous-only, pH-induced nanoassembly of dual pKa-driven contraphilic block copolymers

    Science.gov (United States)

    Lee, Nam S.; Li, Yali; Ruda, C. Marcus

    2009-01-01

    pH-Responsive block copolymers, having two segments with functionalities of differing pKa, were prepared by NMP, providing a “green” route to the assembly of core/shell functionalizable nanostructures. PMID:18985203

  1. Synthesis and Thermosensitive Behavior of Polyacrylamide Copolymers and Their Applications in Smart Textiles

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-05-01

    Full Text Available We tuned the lower critical solution temperature (LCST of amphiphilic poly(N-isopropylacrylamide (PNIPAAm via copolymerization with a hydrophilic comonomer of N-hydroxymethyl acrylamide (NHMAAm. A series of copolymers P(NIPAAm-co-NHMAAm were synthesized by atom transfer radical polymerization (ATRP using CuBr/(N,N,N',N',N''-Pentamethyldiethylenetriamine (PMDETA as a catalyst system and 2-bromo ethyl isobutyrate (EBiB as an initiator. The copolymers were well characterized by Fourier transform infrared spectroscopy (FT-IR, 1H Nuclear magnetic resonance (NMR, and Thermogravimetric analysis (TGA. The copolymers followed a simple rule in their thermosensitive behaviors and have a linear increase in the LCST as a function of NHMAAm mol%. The thermosensitive properties of the copolymer films were investigated and demonstrated hydrophilic-hydrophobic transitions. Finally, the copolymer was grafted onto cotton fabrics using citric acid (CA as a crosslinking agent and sodium hypophosphite (SHP as a catalyst following a two dipping, two padding process. The large number of hydroxyl groups in the copolymer makes grafting convenient and firm. The grafted cotton fabrics show obvious thermosensitive behaviors. The results demonstrate that the cotton fabrics become more hydrophobic when the temperature is higher than the LCST. This study presents a valuable route towards temperature-responsive smart textiles and their potential applications.

  2. Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xiaoshuai; Li, Yancai; Zhou, Fang; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-02-15

    Highlights: • A series of PDMS-b-QPDMAEMA block copolymers were synthesized via RAFT polymerization. • The composition and morphology of the copolymer films strongly depended on the content of QPDMAEMA. • Migration of QPDMAEMA blocks toward surface was promoted when contacting with water. • Heterogeneous film surfaces with higher N{sup +} content exhibited more obvious antimicrobial activity. - Abstract: Block copolymers PDMS-b-PDMAEMA were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization involving N,N-dimethylaminoethyl methacrylate (DMAEMA) by using poly(dimethylsiloxane) (PDMS) macro-chain transfer agent. And, the tertiary amino groups in PDMAEMA were quaternized with n-octyliodide to provide quaternary ammonium salts (QPDMAEMA). The well-defined copolymers generated composition variation and morphology evolvement on film surfaces, which were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. The results indicated that the enrichment of QPDMAEMA brought about lower elemental ratios of Si/N on the film surfaces. The surface morphologies evolved with the variations of QPDMAEMA content, and the variation trend of film roughness was exactly opposite to that of water contact angle hysteresis. With regard to structure-antimicrobial relationships, the copolymer films had more evident antimicrobial activity against Gram-positive, Bacillus subtilis, and the surfaces with heterogeneous morphology and higher N{sup +} content presented better antimicrobial activity. The functionalized copolymers based PDMS and quaternary ammonium salts materials have the potential applications as antimicrobial coatings.

  3. Interfacial properties of statistical copolymer brushes in contact with homopolymer melts.

    Science.gov (United States)

    Trombly, David M; Pryamitsyn, Victor; Ganesan, Venkat

    2011-04-21

    We use polymer self-consistent field theory to quantify the interfacial properties of random copolymer brushes (AB) in contact with a homopolymer melt chemically identical to one of the blocks (A). We calculate the interfacial widths and interfacial energies between the melt and the brush as a function of the relative chain sizes, grafting densities, compositions of the random copolymer in the brush, and degree of chemical incompatibility between the A and B species. Our results indicate that the interfacial energies between the melt and the brush increase (signifying expulsion of the free chains from the brush) with increasing grafting density, chemical incompatibility between A and B components, and size of the free chains relative to the grafted chains. We also compare the interfacial energies of random copolymers of different sequence characteristics and find that, except for the case of very blocky or proteinlike chains, blockiness of the copolymer has only little effect on interfacial properties. Our results for interfacial energies are rationalized based on the concept of an "effective volume fraction" of the brush copolymers, f(eff), which quantifies the chemical composition of the brush segments in the interfacial zone between the brush and melt copolymers. Using this concept, we modify the strong-stretching theory of brush-melt interfaces to arrive at a simple model whose results qualitatively agree with our results from self-consistent field theory. We discuss the ramifications of our results for the design of neutral surfaces.

  4. NOVEL AMPHIPHILIC FLUORESCENT GRAFT COPOLYMER: SYNTHESIS,CHARACTERIZATION AND ENCAPSULATION OF A HYDROPHOBIC AGENT

    Institute of Scientific and Technical Information of China (English)

    Zhao-qiang Wu; Shu Yang; Wen-yan Liao; Ling-zhi Meng

    2006-01-01

    Novel amphiphilic fluorescent graft copolymer (PVP-PyAHy) was successfully synthesized by the free radical copolymerization of hydrophobic monomer N-(1-pyrenebutyryl)-N'-acryloyl hydrazide (PyAHy) with hydrophilic precursor polymers of vinyl-functionalized poly(N-vinylpyrrolidone) (PVP) in DMF. The copolymer is amphiphilic and has intrinsic fluorescence. FT-IR, 1H-NMR, TEM, gel permeation chromatography-multi-angle laser light scattering, UV-Vis spectroscopy and fluorescence spectroscopy were used to characterize this copolymer. The TEM observation shows that the copolymer PVP-PyAHy forms micelles in aqueous solution. Results of fluorometric measurements illustrate that the critical micelle concentration (CMC) value of PVP-PyAHy in aqueous solution is about 0.90 mg/mL. To examine the encapsulation ability of the copolymer in aqueous media, methyl yellow was employed as a model hydrophobic agent. The loading level of the polymer to methyl yellow is 8.8 mg/g. The cytotoxicity assays for Madin Darby Canine Kidney (MDCK) cells shows good biocompatibility of PVP-PyAHy in vitro. These results suggest the potential of this copolymer PVP-PyAHy as drugs delivery carrier and fluorescent tracer.

  5. Synthesis and Characterization of Acrylamide-Based Anionic Copolymer and Investigation of Solution Properties

    Directory of Open Access Journals (Sweden)

    H. Jamshidi

    2014-01-01

    Full Text Available The copolymer of acrylamide (AM and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS was synthesized through radical solution polymerization by potassium persulfate as initiator. By changing the AMPS feed ratio from 10 to 70%, and keeping other reaction conditions constant, different copolymers were synthesized. The techniques of Fourier transform infrared (FTIR and nuclear magnetic resonance (1H- 13C-NMR spectroscopy were used for identification of functional groups and confirmation of copolymers’ structure. Intrinsic and apparent viscosity of samples were measured in aqueous sodium chloride solution under standard conditions. The anionic degree of copolymers was determined by back titration method and by 13C-NMR spectroscopy. Molecular weight of copolymers was determined by the Mark-Houwink relationship. The measured molecular weight of samples showed that we have acquired a high molecular weight product. The effect of different range of shear rates on solution viscosity was evaluated. The copolymer solutions showed non-Newtonian shear thinning behavior. The performance of copolymers with respect to shear resistance and molecular weight was evaluated from industry application standpoint.

  6. Thermoreversible hydrogels based on triblock copolymers of poly(ethylene glycol) and carboxyl functionalized poly(ε-caprolactone): The effect of carboxyl group substitution on the transition temperature and biocompatibility in plasma.

    Science.gov (United States)

    Safaei Nikouei, Nazila; Vakili, Mohammad Reza; Bahniuk, Markian S; Unsworth, Larry; Akbari, Ali; Wu, Jianping; Lavasanifar, Afsaneh

    2015-01-01

    In this study we report on the development, characterization and plasma protein interaction of novel thermoresponsive in situ hydrogels based on triblock copolymers of poly(ethylene glycol) (PEG) and poly(α-carboxyl-co-benzyl carboxylate)-ε-caprolactone (PCBCL) having two different degrees of carboxyl group substitution on the PCBCL block. Block copolymers were synthesized through ring-opening polymerization of α-benzyl carboxylate-ε-caprolactone by dihydroxy PEG, leading to the production of poly(α-benzyl carboxylate-ε-caprolactone)-PEG-poly(α-benzyl carboxylate-ε-caprolactone) (PBCL-PEG-PBCL). This was followed by partial debenzylation of PBCL blocks under controlled conditions, leading to the preparation of PCBCL-PEG-PCBCL triblock copolymers with 30 and 54mol.% carboxyl group substitution. Prepared PCBCL-PEG-PCBCL block copolymers have been shown to have a concentration-dependent sol to gel transition as a result of an increase in temperature above ∼29°C, as evidenced by the inverse flow method, differential scanning calorimetry and dynamic mechanical analysis. The sol-gel transition temperature/concentration and dynamic mechanical properties of the gel were found to be dependent on the level of carboxyl group substitution. Both hydrogels (30 and 54mol.% carboxyl group substitution) showed similar amounts of protein adsorption but striking differences in the profiles of the adsorbed proteome. Additionally, the two systems showed similarities in their clot formation kinetics but substantial differences in clot endpoints. The results show great promise for the above-mentioned thermoreversible in situ hydrogels as biocompatible materials for biomedical applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. (Phenylen-carbazolylenes) copolymers: new soluble electroactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Faid, K. (Lab. de Recherches sur les Macromolecules, Univ. Paris-Nord, 93 - Villetaneuse (France)); Ades, D. (Lab. de Recherches sur les Macromolecules, Univ. Paris-Nord, 93 - Villetaneuse (France)); Chevrot, C. (Lab. de Recherches sur les Macromolecules, Univ. Paris-Nord, 93 - Villetaneuse (France)); Siove, A. (Lab. de Recherches sur les Macromolecules, Univ. Paris-Nord, 93 - Villetaneuse (France))

    1993-03-22

    (Phenylen-Carbazolylenes) copolymers with tunable compositions and properties have been prepared by electrocatalyzed dehalogenative polycondensation of 4,4' dihalobiphenyl and 3,6-dibromo-N-alkylcarbazole mixtures in the presence of zero valent nickel catalyst. The polymers are partly soluble in polar solvents and this solubility depends on the proportion of carbazolylen units in the materials. For a given composition, it increases with the length of the aliphatic substituent on the nitrogen. The conductivity upon doping varies between those of the homopolymers and is a function of the length of the alkyl substituents. Thin films of these materials can be prepared either by solvent casting or by direct electrodeposition on various supports. The electrochemical behavior is strongly dependent on the copolymer composition and reveals the existence of two distinct electronic states (two quantum-wells). The first one is related to the presence of the carbazolylen units while the second shows the presence of phenylen moieties. (orig.)

  8. Electrosynthesis and study of phenylene-carbazolylene copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Faid, K. (Lab. de Recherches sur les Macromolecules, Univ. Paris Nord, 93 - Villetaneuse (France)); Ades, D. (Lab. de Recherches sur les Macromolecules, Univ. Paris Nord, 93 - Villetaneuse (France)); Siove, A. (Lab. de Recherches sur les Macromolecules, Univ. Paris Nord, 93 - Villetaneuse (France)); Chevrot, C. (Lab. de Recherches sur les Macromolecules, Univ. Paris Nord, 93 - Villetaneuse (France))

    1994-03-31

    Phenylene-carbazolylene copolymers with variable composition and properties were prepared by electrocatalyzed dehalogenative polycondensation of 4,4'-dihalobiphenyl and N-alkyl-3,6-dibromocarbazole mixtures in the presence of a zero valent nickel catayst. The polymers are partly soluble in polar solvents and this solubility depends on the proportion of carbazolylene units in the materials. For a given composition, solubility increases with length of the aliphatic substituent linked to the nitrogen. The conductivity upon doping varies between those of the corresponding homopolymers and is a function of the length of the alkyl substituents. Thin films of these materials can be prepared either by solvent casting or by direct electrodeposition onto various supports. The electrochemical behavior is strongly dependent on the copolymer composition and reveals the existence of two distinct electronic states (two quantum wells): the first one is related to the presence of the carbaxolylene units, while the second shows the presence of phenylene moieties. (orig.)

  9. Communication: Self-assembly of semiflexible-flexible block copolymers

    Science.gov (United States)

    Kumar, N. Arun; Ganesan, Venkat

    2012-03-01

    We apply the methodology of self-consistent Brownian dynamics simulations to study the self-assembly behavior in melts of semiflexible-flexible diblock copolymers as a function of the persistence length of the semiflexible block. Our results reveal a novel progression of morphologies in transitioning from the case of flexible-coil to rod-coil copolymers. At even moderate persistence lengths, the morphologies in the semiflexible-block rich region of the phase diagram transform to liquid crystalline phases. In contrast, the phases in the flexible-block rich region of the phase diagram persist up to much larger persistence lengths. Our analysis suggests that the development of orientational order in the semiflexible block to be a critical factor influencing the morphologies of self-assembly.

  10. Rapid self-assembly of block copolymers to photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  11. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM.

  12. Coarse Grained Simulation of Lipid Membrane and Triblock Copolymers

    Science.gov (United States)

    Hatakeyama, Masaomi; Faller, Roland

    2008-02-01

    We investigated the interaction between DPPC (Dipalmitoyl phosphatidylcholine) bilayer and polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymers using coarse grained simulation. We simulated two systems of DPPC bilayer and PEO-PPO-PEO triblock copolymer containing different mole fractions, and simulated DPPC vesicle with the copolymers. We found different adsorption mechanisms of triblock copolymers depending on concentration. And we also observed docking process between a lipid vesicle and a micelle of the copolymers.

  13. Injectible bodily prosthetics employing methacrylic copolymer gels

    Science.gov (United States)

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  14. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    Science.gov (United States)

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  15. Microwave assisted synthesis of fluorene-based copolymers with different conjugate degreed quinoxaline segments from reactive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jixin; Song, Xiaohui; Feng, Ying [School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang 111003 (China); Wang, Zhiming, E-mail: wangzm2011@yahoo.com.cn [School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang 111003 (China); State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012 (China); Zhang, Xiaojuan [School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang 111003 (China); Shen, Fangzhong; Lu, Ping [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012 (China)

    2013-10-31

    In this work, we prepared three fluorene-based copolymers with different conjugate degreed quinoxaline segments from one reactive polymer by microwave assisted method. The obtained quinoxaline-based copolymers exhibited different bright color emissions, high photoluminescence quantum, low electron affinity and electron injection barrier. This approach not only simplified the steps of similar-structure polymers, but also avoided the monomer solubility problem. - Highlights: • Quinoxaline-based copolymers were prepared in microwave-assisted synthesis. • Polymer-synthesis containing different acceptors was simplified from reactive polymer. • Multi-functions were tuned by controlling reactive monomer structures.

  16. Controlled specific placement of nanoparticles into microdomains of block copolymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Joonwon, E-mail: joonwonbae@gmail.com [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of); Kim, Jungwook [Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742 (Korea, Republic of); Park, Jongnam, E-mail: jnpark@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2014-07-01

    Conceptually attractive hybrid materials composed of nanoparticles and elegant block copolymers have become important for diverse applications. In this work, controlled specific placement of nanoparticles such as gold (Au) and titania (TiO{sub 2}) into microphase separated domains in poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films was demonstrated. The effect of nanoparticle surface functionality on the spatial location of particles inside polymer film was observed by transmission electron microscopy. It was revealed that the location of nanoparticles was highly dependent on the surface ligand property of nanoparticle. In addition, the microphase separation behavior of thin block copolymer film was also affected by the nanoparticle surface functional groups. This study might provide a way to understand the properties and behaviors of numerous block copolymer/nanoparticle hybrid systems. - Highlights: • Controlled location of nanoparticles in the block copolymer matrix • Tailoring surface functionality of metal nanocrystals • Fabrication of homogeneous nanocomposites using organic inorganic components • Possibility for the preparation of nanohybrids.

  17. Surface Modification Using Photo-Crosslinkable Random Copolymers

    Science.gov (United States)

    Bae, Joonwon; Bang, Joona; Lowenhielm, Peter; Spiessberger, Christian; Russell, Thomas P.; Hawker, Craig J.

    2006-03-01

    We recently reported that poly(styrene-r-methyl methacrylate) (PS-r-PMMA) random copolymers containing benzocyclobutene (BCB) group can be used to modify the surface effectively by thermal crosslinking. It was demonstrated that this method is simple, rapid, and robust, and can be applied to various surfaces. However, it requires the large amount of heat for processing, and the BCB monomer itself involves a hard chemistry. An alternative way that can replace BCB with easier chemistry and lower cost, if possible, is highly desirable. We introduce the new functional group, azide group, which can be crosslinked simply by UV irradiation, for this purpose. PS-r-PMMA random copolymers, containing various amounts of azide groups, were synthesized via controlled living-radical polymerization. It was demonstrated that even after 1 minute of the UV irradiation can crosslink the materials effectively, so that they can be used as crosslinked random copolymer mat to control the surface energy. However, it was observed that the longer irradiation time causes the damages on the surface due to the other side reactions. Depending on the UV intensity, the UV irradiation time, and the amount of azide group, the effective processing window that leads to the crosslinking without any surface damages was optimized.

  18. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    Science.gov (United States)

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    Science.gov (United States)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  20. Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations

    Science.gov (United States)

    Zheng, Wang; Bao-Hui, Li

    2016-01-01

    Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanometers, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applications; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB diblock copolymers, junction point-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress. Project supported by the National Natural Science Foundation of China (Grant Nos. 20990234, 20925414, and 91227121), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1257), the Programme of Introducing Talents of Discipline to Universities, China, and by the Tianhe No. 1, China.

  1. MISCIBILITY IN COPOLYMER/HOMOPOLYMER BLENDS

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming

    1988-01-01

    In order to study the miscibility of a copolymer with its corresponding homopolymers, varieties of multicomponent polymers including simple graft, multibranch, diblock, triblock and four-arm block copolymers and so-called ABCPs were synthesized and characterized. The morphologies of the blends comprising the covolymers and the corresponding homopolymers were examined by electron microscopy. It is concluded that beeides molecular weight, architecture of a copolymers has apparent effect on the miscibility, i.e. the more complex is molecular architecture, the greater is conformation restriction in microdomain formation and the less is solubility of homopolymer in corresponding domains. In addition, a density gradient model is suggested for describing the segment distribution of the bound and free chains in block-homopolymer systems. Using this model, Helfand's theory is extended to the blends of copolymer and homopolymer predicting the miscibility which is in good agreement with the experimental results.

  2. Block Copolymers: Synthesis and Applications in Nanotechnology

    Science.gov (United States)

    Lou, Qin

    This study is focused on the synthesis and study of (block) copolymers using reversible deactivation radical polymerizations (RDRPs), including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, two primary areas of study are undertaken: (1) a proof-of-concept application of lithographic block copolymers, and (2) the mechanistic study of the deposition of titania into block copolymer templates for the production of well-ordered titania nanostructures. Block copolymers have the ability to undergo microphase separation, with an average size of each microphase ranging from tens to hundreds of nanometers. As such, block copolymers have been widely considered for nanotechnological applications over the past two decades. The development of materials for various nanotechnologies has become an increasingly studied area as improvements in many applications, such as those found in the semiconductor and photovoltaic industries are constantly being sought. Significant growth in developments of new synthetic methods ( i.e. RDRPs) has allowed the production of block copolymers with molecular (and sometimes atomic) definition. In turn, this has greatly expanded the use of block copolymers in nanotechnology. Herein, we describe the synthesis of statistical and block copolymers of 193 nm photolithography methacrylate and acrylate resist monomers with norbornyl and adamantyl moieties using RAFT polymerization.. For these resist (block) copolymers, the phase separation behaviors were examined by atomic force microscopy (AFM). End groups were removed from the polymers to avoid complications during the photolithography since RAFT end groups absorb visible light. Poly(glycidyl methacrylate-block-polystyrene) (PGMA-b-PS) was synthesize by ATRP and demonstrated that this block copolymer acts as both a lithographic UV (365 nm) photoresist and a self-assembly material. The PGMA segments can undergo cationic

  3. Silicone containing copolymers: Synthesis, properties and applications

    OpenAIRE

    Yılgör, Emel; Yılgör, İskender

    2013-01-01

    Accepted Manuscript Title: Silicone containing copolymers: Synthesis, properties and applications Author: Emel Yilgor Iskender Yilgor PII: S0079-6700(13)00141-X DOI: http://dx.doi.org/doi:10.1016/j.progpolymsci.2013.11.003 Reference: JPPS 848 To appear in: Progress in Polymer Science Received date: 1-8-2013 Revised date: 4-11-2013 Accepted date: 8-11-2013 Please cite this article as: Yilgor E, Yilgor I, Silicone containing copolymers: Synthesis, properties ...

  4. Drug targeting to tumors using HPMA copolymers

    OpenAIRE

    Lammers, T.G.G.M.

    2009-01-01

    Copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized polymeric drug carriers that have been broadly implemented in the delivery of anticancer agents. HPMA copolymers circulate for prolonged periods of time, and by means of the Enhance Permeability and Retention (EPR) effect, they localize to tumors both effectively and selectively. As a consequence, the concentrations of attached active agents in tumors can be increased, and their accumulation in ...

  5. Responsive Copolymers for Enhanced Petroleum Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  6. Structure and Function of Lipase

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Jakob

    Lipases are triacylglycerol hydrolases (EC 3.1.1.3) which are able to act on water-insoluble esters, butdisplay very low activity towards water-soluble, monomeric substrates. This is ascribed to theircharacteristic activation mechanism occurring at the boundary between water and lipid, i.e. the w......Lipases are triacylglycerol hydrolases (EC 3.1.1.3) which are able to act on water-insoluble esters, butdisplay very low activity towards water-soluble, monomeric substrates. This is ascribed to theircharacteristic activation mechanism occurring at the boundary between water and lipid, i.......e. the waterlipidinterface. For Thermomyces lanuginosus lipase (TlL) and related lipases, activation of the enzymeinvolves a rearrangement of a structural domain, called the “lid”, which covers the active site inhomogenous aqueous solution. At the water-lipid interface, the lid is displaced from the active site andmoves...... towards an open conformation enabling the substrate to gain access, thus initiating catalysis.Lipases have been studied for decades and their functional features have drawn much attention withinindustrial applications since their first discovery. However, given that their molecular action takes placeat...

  7. Nitrogen-based copolymers as wax dispersants for paraffinic gas oils

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, I.M.; Khidr, T.T.; Ghuiba, F.M. [Egyptian Petroleum Research Institute, Cairo (Egypt)

    1998-04-01

    n-Alkyl acrylates and n-alkyl methacrylates were prepared by esterification of acrylic and methacrylic acids with two linear long chain alcohol blends NAFOL 1822 and NAFOL 1822C. The four synthesized monomers were characterized and copolymerized with maleic anhydride in 1:1 molar ratio individually. The prepared copolymers were subjected to partial amidation with n-hexadecylamine. The amidated copolymers were purified, characterized, and then evaluated as wax dispersant flow improvers for improving the cold flow properties of a highly paraffinic gas oil G1 through cloud point (CP), cold filter plugging point (CFPP) and pour point (PP) tests. NAFOL 1822C methacrylate-n-hexadecylamine maleamic acid copolymer has achieved the highest CFPP and PP depression. Consequently, NAFOL 1822C methacrylate monomer was selected for further copolymerization with maleic anhydride in a molar ratio 1:4, respectively. The prepared copolymers were then submitted to partial and complete amidation with n-hexadecylamine, ditallowamine, tetraethylenepentamine and morpholine successively. In addition, combined esterification and amidation of the copolymer with NAFOL 1822C and morpholine, respectively, was carried out. Evaluation of the synthesized products as WDFIs in a less paraffinic gas oil G2 revealed that nitrogen and/or oxygen based functional groups of the copolymers are controlling parameters judging their dispersing effect and that NAFOL 1822C methacrylate-n-morpholine amide of NAFOL 1822C maleate copolymer has attained the optimum performance. Results also showed that no correlation is found between gas oil flowability improvements ({Delta}PP) and filterability amelioration ({Delta}CFPP). Stability of performance of the prepared additives as wax dispersants lasted for four weeks while for two weeks only as flow improvers. 18 refs., 8 figs., 9 tabs.

  8. The influence of chain stretching on the phase behavior of multiblock copolymer and comb copolymer melts

    NARCIS (Netherlands)

    Angerman, HJ; ten Brinke, G

    The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock

  9. Shape memory rubber bands & supramolecular ionic copolymers

    Science.gov (United States)

    Brostowitz, Nicole

    subject covered in this dissertation is supra-molecular ionic copolymers. Supramolecular interactions are non-covalent; e.g. hydrogen bonding, ionic interactions, van der Waals forces. Supramolecular interactions in polymers can be used to tailor the thermo-mechanical properties by controlling bond association and dissociation. Recent research has focused on hydrogen bonded systems due to established synthesis mechanisms. Reversibility of the supramolecular interactions can be triggered by environmental changes. Ionic interactions would provide greater bond strength and more control over operating conditions. Research has been limited on ionic copolymers due to complicated synthesis methods needed to include functionalization. Low molecular weight polymers were synthesized by atom transfer radical polymerization with post polymerization conversion to phosphonium end-groups. Both polystyrene and poly(methyl acrylate) were investigated with similar reaction conditions. Chromatography measured the molecular weight and indicated a low polydispersity consistent with controlled reactions. Copolymers were formed by interfacial mixing of the cationic polymers with multifunctional, anionic oligomers. Oligomers containing sulfonate groups were used to create linear or three-dimensional polymer networks. NMR and rheology was used to characterize the presence and effect of ionic groups when compared to the neat polymer.

  10. Influence of Rubrus Suarissimus S.Lee Dental Care Buccal Tablets on Glucosyltransferase and Water-insoluble Glucan%甜茶护齿含片对葡糖基转移酶和细胞外水不溶性多糖的影响

    Institute of Scientific and Technical Information of China (English)

    韦姗妮; 何克新; 黄丽微; 陈小芳

    2012-01-01

    目的 研究甜茶护齿含片对变形链球菌葡糖基转移酶和细胞外水不溶性多糖合成的影响.方法 将甜茶护齿含片磨成粉末,并采用二倍稀释法,用含1%蔗糖的胰蛋白胨-胰蛋白月示-酵母提取物(TTY)液体培养基,配制成5个浓度的实验组;并以含1%蔗糖的TTY液体培养基作为阴性对照组.加入变形链球菌菌液,厌氧培养48 h后离心,一份透析提取葡糖基转移酶,采用Somogyi法和考马斯亮蓝法分别测定还原糖和总蛋白含量,计算酶活性和比活力大小;另一份弃上清液留沉淀,采用蒽酮法测定水不溶性多糖的含量.结果 随着甜茶护齿含片混悬液浓度的升高,葡糖基转移酶活性和水不溶性多糖含量逐渐降低(P<0.05),除0.313 g/50 ml浓度组外,葡糖基转移酶各实验组与对照组酶活性及比活力之间差异有统计学意义(P<0.05),各实验组与对照组水不溶性多糖含量差异有统计学意义(P<0.05).结论 甜茶护齿含片对变形链球菌葡糖基转移酶和细胞外水不溶性多糖的合成具有显著抑制作用.%Objective To study the influence of Rubrus Suarissimus S. Lee dental care buccal tablets on glucosyltransferase( GTF ) and extra-cellular synthesis of water-insoluble glucan( WIG ) of Streptococcus mutans( S. Mutans ). Methods Rubrus Suarissimus S. Lee dental care buccal tablets were lapped into powder and used in the experimental group with 5 concentrations prepared with TTY which contained with 1% glucose,while TTY culture with 1% glucose as the negative control. S. Mutans was added into each group,and then centrifugation was performed after 48 hours' anaerobical culturing. One batch was that the supernatants were collected to extract GTF,which was used to measure the content of reducing sugar and total protein by Smoyi method and Bradford method,then figured out enzyme activity and the specific activity. The other batch was that the supernatants were abandoned and the

  11. Molecular Exchange Dynamics in Block Copolymer Micelles

    Science.gov (United States)

    Bates, Frank; Lu, Jie; Choi, Soohyung; Lodge, Timothy

    2012-02-01

    Poly(styrene-b-ethylene propylene) (PS-PEP) diblock copolymers were mixed with squalane (C30H62) at 1% by weight resulting in the formation of spherical micelles. The structure and dynamics of molecular exchange were characterized by synchrotron small-angle x-ray scattering (SAXS) and time resolved small-angle neutron scattering (TR-SANS), respectively, between 100 C and 160 C. TR-SANS measurements were performed with solutions initially containing deuterium labeled micelle cores and normal cores dispersed in a contrast matched squalane. Monitoring the reduction in scattering intensity as a function of time at various temperatures revealed molecular exchange dynamics highly sensitive to the core molecular weight and molecular weight distribution. Time-temperature superposition of data acquired at different temperatures produced a single master curve for all the mixtures. Experiments conducted with isotopically labeled micelle cores, each formed from two different but relatively mondisperse PS blocks, confirmed a simple dynamical model based on first order kinetics and core Rouse single chain relaxation. These findings demonstrate a dramatic transition to nonergodicity with increasing micelle core molecular weight and confirm the origins of the logarithmic exchange kinetics in such systems.

  12. Influence of maleic acid copolymers on calcium orthophosphates crystallization at low temperature

    Science.gov (United States)

    Pelin, Irina M.; Popescu, Irina; Suflet, Dana M.; Aflori, Magdalena; Bulacovschi, Victor

    2013-08-01

    The goal of this study was to investigate the maleic acid copolymers role on calcium orthophosphates crystallization at low temperature. In this respect, two maleic acid copolymers with different structures [poly(sodium maleate-co-vinyl acetate) and poly(sodium maleate-co-methyl methacrylate)] were used. The syntheses of the calcium orthophosphates in the absence and in the presence of the copolymers were performed through the wet chemical method using calcium nitrate, ammonium dihydrogen phosphate and ammonium hydroxide as reactants. The syntheses were monitored in situ by potentiometric and conductometric measurements. To ensure the transformation of less thermodynamically stable calcium orthophosphates into more stable forms, the samples were aged 30 days in mother solutions, at room temperature. The presence of the copolymers in the final products was evidenced by FTIR spectroscopy and thermogravimetric analysis. Scanning and transmission electron microscopy and laser light scattering measurements gave information about the composites morphology and the size of the formed structures. X-ray diffraction evidenced that, as a function of comonomer structure and of copolymer concentration, the products could contain hydroxyapatite with low crystallinity, calcium-deficient or carbonated hydroxyapatite. At high concentration of poly(sodium maleate-co-methyl methacrylate) the transformation of brushite into apatitic structures was inhibited.

  13. Surface Modification for Controlling the Orientation of Block Copolymers in thin film and in Cylindrical Nanopores

    Science.gov (United States)

    Lin, Xin-Guan; Lin, Feng-Cheng; Tung, Shih-Huang

    2012-02-01

    A series of benzocyclobutene-functionalized random copolymers of styrene and 4-vinylpyridine were synthesized by nitroxide-mediated controlled radical polymerization with BPO and TEMPO. Our research was to use these random copolymers of P(S-r-BCB-r-4VP) to control the orientation of microdomains in block copolymers(BCPs) of poly(styrene-b-4-vinylpyridine)(PS-b-P4VP) thin films and in cylindrical nanopores of anodized aluminum oxide (AAO) membranes. On P(S-r-BCB-r-4VP)-modified substrate,we found that in some particular compositions of random copolymer ,the parallel orientation of the microdomains is switched to be perpendicular in PS-b-P4VP thin film. We also introduced P(S-r-BCB-r-4VP) solution into the nanopores of the AAO and nanotubes formed after solvent evaporation and pyrolysis. And then BCPs of PS-b-P4VP were drawn into the P(S-r-BCB-r-4VP)-modified nanopores in the melt via capillary action to form P(S-r-BCB-r-4VP) coated nanorods of PS-b-P4VP.Similarly,in some particular compositions of random copolymer, we observed that the interactions of the blocks with the walls are not strong or if the interactions are balanced, then the orientation of the microdomains will change from being parallel to being perpendicular to the confining walls.

  14. Self-assembly of Asymmetric Dimer Particles in Supported Copolymer Bilayer

    Institute of Scientific and Technical Information of China (English)

    Xiao-chun Qin; Chun-lai Ren

    2011-01-01

    Using self-consistent field and density functional theories, we investigate the self-assembly behavior of asymmetric dimer particles in a supported AB block copolymer bilayer. Asymmetric dimer particles are amphiphilic molecules composed by two different spheres. One prefers to A block of copolymers and the other likes B block when they are introduced into the copolymer bilayer. The two layer structure of the dimer particles is formed within the bilayer.Due to the presence of the substrate surface, the symmetry of the two leaflets of the bilayer is broken, which may lead to two different layer structures of dimer particles within each leaflet of the bilayer. With the increasing concentration of the asymmetric dimer particles,in-plane structure of the dimer particles undergoes sparse square, hexagonal, dense square, and cylindrical structures. In a further condensed packing, a bending cylindrical structure comes into being. Here we verify that the entropic effect of copolymers, the enthalpy of the system and the steric repulsion of the dimer particles are three important factors determing the self-assembly of dimer particles within the supported copolymer bilayer.

  15. Multichromic conducting copolymer of 1-benzyl-2,5-di(thiophen-2-yl)-1H-pyrrole with EDOT

    Energy Technology Data Exchange (ETDEWEB)

    Camurlu, Pinar [Department of Chemistry, Akdeniz University, 07058 Antalya (Turkey); Tarkuc, Simge; Akhmedov, idris Mecidoglu; Tanyeli, Cihangir; Toppare, Levent [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Sahmetlioglu, Ertugrul [Department of Chemistry, Nigde University, 51100 Nigde (Turkey)

    2008-02-15

    Despite the significant progress made in the field of electrochromic polymers, the multichromic facility of current knowledge is restricted. Therefore, as previously proven, electrochemical copolymerization of 1-benzyl-2,5-di(thiophen-2-yl)-1H-pyrrole (SNBS) and 3,4-ethylenedioxythiophene (EDOT) was used as a strategy to achieve desired multichromic properties, where the resultant copolymer displayed distinct color changes between claret red, yellow, green, and blue colors with short switching times and high optical contrast. As an application, absorption/transmission type electrochromic device with indium tin oxide (ITO)/copolymer/gel electrolyte PEDOT/ITO configuration was constructed, where copolymer and PEDOT functioned as the anodically and the cathodically coloring layers, respectively. Results implied the successive use of this copolymer in electrochromic device applications, since the device exhibited short switching times with a wide color variation upon applied potential. (author)

  16. A self-consistent field study of diblock copolymer/charged particle system morphologies for nanofiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Ye, Xianggui; Edwards, Brian J., E-mail: bje@utk.edu [Materials Research and Innovation Laboratory (MRAIL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2013-12-28

    A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer.

  17. Polyamide copolymers having 2,5-furan dicarboxamide units

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Bret Ja; Samanta, Satyabrata

    2017-09-19

    Polyamide copolymers, and methods of making and using polyamide copolymers, having 2,5-furan dicarboxamide units are disclosed herein. Such polymers can be useful for engineering thermoplastics having advantageous physical and/or chemical properties.

  18. Third-order nonlinear optical characterization of side-chain copolymers

    Science.gov (United States)

    Norwood, Robert A.; Sounik, James R.; Popolo, J.; Holcomb, Douglas P.

    1991-12-01

    Third order nonlinear optical properties of side-chain methacrylate copolymers incorporating 4-amino-4'-nitrostilbene, 4-oxy-4'nitrostilbene, and functionalized silicon phthalocyanine chromophores are measured by picosecond degenerate four wave mixing at 598 nm. The nonresonant stilbene system exhibits a pulse limited ultrafast response, while the resonant phthalocyanine system has a large excited state nonlinearity. Comparison of silicon phthalocyanine copolymers with solubilized guest/host systems dispersed in polymethylmethacrylate illustrate the importance of aggregation and phthalocyanine ring interaction in determining the linear optical properties and the magnitude and speed of the nonlinear optical response.

  19. STRUCTURE EVOLUTION OF THE CYLINDRICAL PHASE OF DIBLOCK COPOLYMERS IN FILMS

    Institute of Scientific and Technical Information of China (English)

    Hong-ge Tan; Zi-yu Wang; Wen-fang Zhu; Qing-gong Song; Hui Li; Cui-qin Bai

    2008-01-01

    In the weak segregation limit,the structure evolution of the hexagonal cylindrical phase of diblock copolymers in films was investigated.Employing the Landau-Brazovskii mean field theory,we obtained three amplitude parameters as functions of temperature,surface field strength and film thickness.By controlling confinement size and surface field strength,lamellae and undulated lamellae appear in the cylindrical bulk phase of diblock copolymers."Phase diagrams" of confinement-induced structures are constructed at different surface field strengths.The obtained theoretical results are in agreement with relevant theoretical and experimental results.

  20. Synthesis of Norbornene Derived Helical Copolymer by Simple Molecular Marriage Approach to Produce Smart Nanocarrier

    Science.gov (United States)

    Mane, Shivshankar R.; Sathyan, Ashlin; Shunmugam, Raja

    2017-03-01

    A novel library of norbornene derived helical copolymer has been synthesized through the coupling of two homopolymers via Molecular Marriage Approach. The helicity is governed by the non-covalent interactions like hydrogen bonding, π-π stacking and the influence of hydrophobic and hydrophilic motifs. The detailed characterization of the copolymer (Copoly 1) has been provided and the super structures are confirmed through dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The observed size of the aggregates was about 200 nm. The density functional theory (DFT) is favorably supported for the formation of proposed structure of Copoly 1. Circular dichroism (CD) measurement has confirmed the one handed helical structure of the copolymer. Reservoir capability of this pH responsive polymer (Copoly 1) to encapsulate anti-cancer drug doxorubicin (DOX) warrants its potential applications in the field of bio-medical sciences.

  1. Biomimetic potential of some methacrylate-based copolymers: a comparative study.

    Science.gov (United States)

    Zecheru, Teodora; Filmon, Robert; Rusen, Edina; Mărculescu, Bogdan; Zerroukhi, Amar; Cincu, Corneliu; Chappard, Daniel

    2009-11-01

    Preparation of new biocompatible materials for bone recovery has consistently gained interest in the last few decades. Special attention was given to polymers that contain negatively charged groups, such as phosphate, carboxyl, and sulfonic groups toward calcification. This present paper work demonstrates that other functional groups present also potential application in bone pathology. New copolymers of 2-hydroxyethyl methacrylate with diallyldimethylammonium chloride (DADMAC), glycidyl methacrylate (GlyMA), methacrylic acid (MAA), 2-methacryloyloxymethyl acetoacetate (MOEAA), 2-methacryloyloxyethyltriethylammonium chloride (MOETAC), and tetrahydrofurfuryl methacrylate (THFMA) were obtained. The copolymers were characterized by FTIR, swelling potential, and they were submitted to in vitro tests for calcification and cytotoxicity evaluation. GlyMA and MOETAC-containing copolymers show promising results for further in vivo mineralization tests, as a potential alternative to the classical bone grafts, in bone tissue engineering.

  2. Modular synthesis of a block copolymer with a cleavable linkage via “click” chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A diblock copolymer poly(ethylene glycol)-block-polystyrene or PEG-b-PS with an olefinic double bond at the PEG and PS junction has been prepared by modular synthesis via"click"chemistry.This involved the synthesis of PS by atom transfer radical polymerization and the nucleophilic substitution of the terminal bromide group with azide to yield azide-terminated PS. PEG with an alkynyl terminal group was prepared from reacting carboxyl-end-functionalized PEG with 4-hydroxybut-2-enyl prop-2-ynyl succinate,which contained an alkynyl group as well as an olefin group.The PS and PEG polymers were linked via the 1,3-dipolar cycloaddition of the end azide and alkyne groups.The obtained copolymer was characterized by 1H NMR spectroscopy and size exclusion chromatography(SEC).SEC analysis indicated that the diblock copolymer produced could be readily cleaved by ozonolysis to regenerate the constituent homopolymers.

  3. Synthesis and Properties of Poly(l-lactide-b-poly (l-phenylalanine Hybrid Copolymers

    Directory of Open Access Journals (Sweden)

    Marc Planellas

    2014-07-01

    Full Text Available Hybrid materials constituted by peptides and synthetic polymers have nowadays a great interest since they can combine the properties and functions of each constitutive block, being also possible to modify the final characteristics by using different topologies. Poly(l-lactide-b-l-phenylalanine copolymers with various block lengths were synthesized by sequential ring-opening polymerization of l-lactide and the N-carboxyanhydride of l-phenylalanine. The resulting block copolymers were characterized by NMR spectrometry, IR spectroscopy, gel permeation chromatography, MALDI-TOF and UV-vis, revealing the successful incorporation of the polyphenylalanine (PPhe peptide into the previously formed poly(l-lactide (PLLA polymer chain. X-ray diffraction and DSC data also suggested that the copolymers were phase-separated in domains containing either crystalline PLLA or PPhe phases. A peculiar thermal behavior was also found by thermogravimetric analysis when polyphenylalanine blocks were incorporated into polylactide.

  4. Tuning of Block Copolymer Membrane Morphology through Water Induced Phase Inversion Technique

    KAUST Repository

    Madhavan, Poornima

    2016-06-01

    Isoporous membranes are attractive for the regulation and detection of transport at the molecular level. A well-defined asymmetric membranes from diblock copolymers with an ordered nanoporous membrane morphologies were fabricated by the combination of block copolymer self-assembly and non-solvent-induced phase separation (NIPS) technique. This is a straightforward and fast one step procedure to develop integrally anisotropic (“asymmetric”) membranes having isoporous top selective layer. Membranes prepared via this method exhibit an anisotropic cross section with a thin separation layer supported from underneath a macroporous support. These membrane poses cylindrical pore structure with ordered nanopores across the entire membrane surfaces with pore size in the range from 20 to 40 nm. Tuning the pore morphology of the block copolymer membranes before and after fabrication are of great interest. In this thesis, we first investigated the pore morphology tuning of asymmetric block copolymer membrane by complexing with small organic molecules. We found that the occurrence of hydrogen-bond formation between PS-b-P4VP block copolymer and –OH/ –COOH functionalized organic molecules significantly tunes the pore morphology of asymmetric nanoporous membranes. In addition, we studied the complexation behavior of ionic liquids with PS-b-P4VP block copolymer in solutions and investigated their effect on final membrane morphology during the non-solvent induced phase separation process. We found that non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ionic liquids led to a lamella-structured membrane. Secondly, we demonstrated the catalytic activity of the gold nanoparticle-enhanced hollow fiber membranes by the reduction of nitrophenol. Also, we systematically investigated the pore morphology of isoporous PS-b-P4VP using 3D imaging technique. Thirdly, we developed well-distributed silver nanoparticles on the

  5. Fabrication of biomolecule copolymer hybrid nanovesicles as energy conversion systems

    Science.gov (United States)

    Ho, Dean; Chu, Benjamin; Lee, Hyeseung; Brooks, Evan K.; Kuo, Karen; Montemagno, Carlo D.

    2005-12-01

    This work demonstrates the integration of the energy-transducing proteins bacteriorhodopsin (BR) from Halobacterium halobium and cytochrome c oxidase (COX) from Rhodobacter sphaeroides into block copolymeric vesicles towards the demonstration of coupled protein functionality. An ABA triblock copolymer-based biomimetic membrane possessing UV-curable acrylate endgroups was synthesized to serve as a robust matrix for protein reconstitution. BR-functionalized polymers were shown to generate light-driven transmembrane pH gradients while pH gradient-induced electron release was observed from COX-functionalized polymers. Cooperative behaviour observed from composite membrane functionalized by both proteins revealed the generation of microamp-range currents with no applied voltage. As such, it has been shown that the fruition of technologies based upon bio-functionalizing abiotic materials may contribute to the realization of high power density devices inspired by nature.

  6. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  7. Chain exchange in block copolymer micelles

    Science.gov (United States)

    Lu, Jie; Bates, Frank; Lodge, Timothy

    2014-03-01

    Block copolymer micelles are aggregates formed by self-assembly of amphiphilic copolymers dispersed in a selective solvent, driven by unfavorable interactions between the solvent and the core-forming block. Due to the relatively long chains being subject to additional thermodynamic and dynamic constraints (e.g., entanglements, crystallinity, vitrification), block copolymer micelles exhibit significantly slower equilibration kinetics than small molecule surfactants. As a result, details of the mechanism(s) of equilibration in block copolymer micelles remain unclear. This present works focuses on the chain exchange kinetics of poly(styrene-b-ethylenepropylene) block copolymers in squalane (C30H62) using time-resolved small angle neutron scattering (TR-SANS). A mixture of h-squalane and d-squalane is chosen so that it contrast matches a mixed 50/50 h/d polystyrene micelle core. When the temperature is appropriate and isotopically labeled chains undergo mixing, the mean core contrast with respect to the solvent decreases, and the scattering intensity is therefore reduced. This strategy allows direct probing of chain exchange rate from the time dependent scattering intensity I(q, t).

  8. Thermoreversible copolymer gels for extracellular matrix.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  9. Charge Transport in Conjugated Block Copolymers

    Science.gov (United States)

    Smith, Brandon; Le, Thinh; Lee, Youngmin; Gomez, Enrique

    Interest in conjugated block copolymers for high performance organic photovoltaic applications has increased considerably in recent years. Polymer/fullerene mixtures for conventional bulk heterojunction devices, such as P3HT:PCBM, are severely limited in control over interfaces and domain length scales. In contrast, microphase separated block copolymers self-assemble to form lamellar morphologies with alternating electron donor and acceptor domains, thereby maximizing electronic coupling and local order at interfaces. Efficiencies as high as 3% have been reported in solar cells for one block copolymer, P3HT-PFTBT, but the details concerning charge transport within copolymers have not been explored. To fill this gap, we probed the transport characteristics with thin-film transistors. Excellent charge mobility values for electron transport have been observed on aluminum source and drain contacts in a bottom gate, bottom contact transistor configuration. Evidence of high mobility in ordered PFTBT phases has also been obtained following thermal annealing. The insights gleaned from our investigation serve as useful guideposts, revealing the significance of the interplay between charge mobility, interfacial order, and optimal domain size in organic block copolymer semiconductors.

  10. SCATTERING BY CYCLIC POLYMERS AND COPOLYMERS AT LARGE SCATTERING VECTORS

    NARCIS (Netherlands)

    KOSMAS, M; BENOIT, H; HADZIIOANNOU, G

    1994-01-01

    General formulae allowing the evaluation of the form factors of cyclic block copolymers are established and graphs for cyclic copolymers of the form (A-B)(N) are shown. When N is large, the linear and the cyclic copolymer have the same behaviour. It is possible to extend at large angle an analytical

  11. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  12. 21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dimethylamine-epichlorohydrin copolymer. 173.60... HUMAN CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.60 Dimethylamine-epichlorohydrin copolymer. Dimethylamine-epichlorohydrin copolymer (CAS Reg. No. 25988-97-0) may be safely used in...

  13. SCATTERING BY CYCLIC POLYMERS AND COPOLYMERS AT LARGE SCATTERING VECTORS

    NARCIS (Netherlands)

    KOSMAS, M; BENOIT, H; HADZIIOANNOU, G

    1994-01-01

    General formulae allowing the evaluation of the form factors of cyclic block copolymers are established and graphs for cyclic copolymers of the form (A-B)(N) are shown. When N is large, the linear and the cyclic copolymer have the same behaviour. It is possible to extend at large angle an analytical

  14. Adsorption of graft copolymers onto silica and titania.

    NARCIS (Netherlands)

    Bijsterbosch, H.D.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The adsorption of graft copolymers of poly(acrylamide) (PAAm, backbone) and poly(ethylene oxide) (PEO, side chains) from aqueous solution onto silica and titania was studied with reflectometry. Two high-molar-mass copolymers were used with different PEO graft densities (10 and 18% w/w PEO in copolym

  15. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  16. Poly(dimethylsiloxane)-poly(ethyleneoxide)-heparin block copolymers. I. Synthesis and characterization

    NARCIS (Netherlands)

    Grainger, D.W.; Kim, S.W.; Feijen, J.

    1988-01-01

    Amphiphilic block copolymers containing poly(dimethylsiloxane), poly(ethylene oxide), and heparin (PDMS-PEO-Hep) have been prepared via a series of coupling reactions using functionalized prepolymers, diisocyanates, and derivatized heparins. All intermediate steps of the synthesis yield quantifiable

  17. Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors

    NARCIS (Netherlands)

    Voet, V.S.D.; Tichelaar, M.; Tanase, S.; Mittelmeijer-Hazeleger, M.C.; ten Brinke, G.; Loos, K.

    2013-01-01

    The fabrication of nanoporous poly(vinylidene fluoride) (PVDF) and PVDF/nickel nanocomposites from semicrystalline block copolymer precursors is reported. Polystyrene-block-poly(vinylidene fluoride)-block-polystyrene (PS-b-PVDF-b-PS) is prepared through functional benzoyl peroxide initiated polymeri

  18. Preparation of ethylene vinylalcohol copolymer membranes suitable for ligand coupling in affinity separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Sager, W.F.C.; Mulder, M.H.V.; Wessling, Matthias

    2002-01-01

    Hydrophilic microfiltration membranes with functional groups that can be used as coupling sites for ligands are of central interest in affinity separation, especially in view of biomedical applications. In this study, we employed ethylene vinyl alcohol copolymer (EVAL) to prepare macrovoid-free open

  19. Mesoscopic dynamics of copolymer melts : From density dynamics to external potential dynamics using nonlocal kinetic coupling

    NARCIS (Netherlands)

    Maurits, N.M; Fraaije, J.G E M

    1997-01-01

    In this paper we apply nonlocal kinetic coupling to the dynamic mean-field density functional method, which is derived from generalized time-dependent Ginzburg-Landau theory. The method is applied to the mesoscopic dynamics of copolymer melts, which was previously simulated using a local coupling ap

  20. DNA Block Copolymer Doing It All : From Selection to Self-Assembly of Semiconducting Carbon Nanotubes

    NARCIS (Netherlands)

    Kwak, Minseok; Gao, Jia; Prusty, Deepak K.; Musser, Andrew J.; Markov, Vladimir A.; Tombros, Nikolaos; Stuart, Marc C.A.; Browne, Wesley R.; Boekema, Egbert J.; Brinke, Gerrit ten; Jonkman, Harry T.; Wees, Bart J. van; Loi, Maria A.; Herrmann, Andreas

    2011-01-01

    A potentially scalable self-assembly method for single-walled carbon nanotubes (SWNTs) involves the use of amphiphilic DNA block copolymers. One such hybrid is able to cover the entire area of solution-based SWNT technologies, from selective dispersion to nondestructive functionalization to high-yie

  1. Mesoscopic dynamics of copolymer melts : From density dynamics to external potential dynamics using nonlocal kinetic coupling

    NARCIS (Netherlands)

    Maurits, NM; Fraaije, JGEM

    1997-01-01

    In this paper we apply nonlocal kinetic coupling to the dynamic mean-field density functional method, which is derived from generalized time-dependent Ginzburg-Landau theory. The method is applied to the mesoscopic dynamics of copolymer melts, which was previously simulated using a local coupling ap

  2. Poly(dimethylsiloxane)-poly(ethyleneoxide)-heparin block copolymers. I. Synthesis and characterization

    NARCIS (Netherlands)

    Grainger, D.W.; Kim, S.W.; Feijen, Jan

    1988-01-01

    Amphiphilic block copolymers containing poly(dimethylsiloxane), poly(ethylene oxide), and heparin (PDMS-PEO-Hep) have been prepared via a series of coupling reactions using functionalized prepolymers, diisocyanates, and derivatized heparins. All intermediate steps of the synthesis yield quantifiable

  3. Copolymers of various architectures containing ethylene and 5-norbornen-2-yl derivatives

    Science.gov (United States)

    Diamanti, Steve Jon

    Polyolefins are a class of materials with enormous economic impact. Tailoring of polyolefin bulk properties by synthetic control is a major focus of many industrial and academic research groups. Polar functionalities within the hydrophobic polyolefin backbone can change important properties, such as, toughness, adhesion, solvent resistance, blend compatibility with other functional polymers, and rheological properties. Functional polyolefin materials with block or graft architectures are the most desirable structures as the pure polyolefin block maintains its intrinsic properties. Our initial work elucidated a neutral nickel based catalyst system capable of catalyzing the "quasi-living" homopolymerization of ethylene and the "quasi-living" copolymerization of ethylene with 5-norbornen-2-yl acetate (NBA), a polar comonomer. Through testing the effect of several reaction variables on the copolymerization of ethylene with NBA it was found that changing ethylene pressure causes a large change in the content of NBA in the copolymer chain. This change in NBA content, in turn, drastically affects the physical and thermal properties of these polymers. Understanding the impact of such reaction variables on copolymer properties made it possible to design more sophisticated architectures. This catalytic system has since been used to synthesize block copolymers and tapered block copolymers of ethylene and NBA. Block copolymers of ethylene and NBA have been synthesized by a method utilizing ethylene pressure variation to create two distinct copolymeric blocks that are able to order into microphase-separated structures. The block structure of these materials has been proven by 1H-NMR spectroscopy, thermal analysis, GPC, AFM, and TEM. The synthesis, characterization, and bulk and thermal properties of tapered block copolymers containing ethylene and NBA, has also been performed. The final structure of the tapered block polymer is a polar amorphous chain (rich in NBA) on one

  4. Synthesis of amphiphilic diblock copolymer for surface modification of Ethylene-Norbornene copolymers

    DEFF Research Database (Denmark)

    Levinsen, Simon; Svendsen, Winnie Edith; Horsewell, Andy

    2014-01-01

    -norbornene copolymer TOPAS. Through matching of the radius of gyration for the model polymer and TOPAS the miscibility was achieved. The poly(ethylene-1-butene) polymer was synthesized from a hydrogenated anionic polymerized polybutadiene polymer. As hydrophilic block poly(ethylene oxide) was subsequently added also...... consisting of a bulk material compatible block and a hydrophilic block. To utilize the possibility of incorporating diblock copolymers into ethylenenorbornene copolymers, we have in this work developed a model poly(ethylene-1-butene) polymer compatible with the commercial available ethylene...

  5. Dynamics of Block Copolymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  6. Substrate tolerant direct block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2016-01-01

    Block copolymer (BC) self-assembly constitutes a powerful platform for nanolithography. However, there is a need for a general approach to BC lithography that critically considers all the steps from substrate preparation to the final pattern transfer. We present a procedure that significantly...... simplifies the main stream BC lithography process, showing a broad substrate tolerance and allowing for efficient pattern transfer over wafer scale. PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are directly applied on substrates including polymers, silicon and graphene. A single oxygen...

  7. Polaronic Tunnelling in Organic Triblock Copolymers

    Institute of Scientific and Technical Information of China (English)

    LIU De-Sheng; ZHANG Da-Cheng; XIE Shi-Jie; MEI Liang-Mo

    2005-01-01

    @@ Polaron tunnelling is studied in xPA/nPPP/xPA (PA for polyacetylene and PPP poly (p-phenylene)) triblock copolymer, which has a well-barrier-well structure. An extended tight-binding Hamiltonian including external electric field is adopted. Without electric field, the injected electrons would not extend over the whole copolymer chain but instead be confined in the segments of PA. This is different from the behaviour of the traditional semiconductors. It is found that the polaron can transfer to the potential barrier-PPP segment when the applied electric field reaches a certain value. The critical polaron tunnelling electric fields depend upon the lengths of PPP segments.

  8. Co-polymer Films for Sensors

    Science.gov (United States)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  9. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  10. Analytical strategy for the molecular weight determination of random copolymers of poly(methyl methacrylate) and poly(methacrylic acid).

    Science.gov (United States)

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2010-06-01

    Molecular weight characterization of random amphiphilic copolymers currently represents an analytical challenge. In particular, molecules composed of methacrylic acid (MAA) and methyl methacrylate (MMA) as the repeat units raise issues in commonly used techniques. The present study shows that when random copolymers cannot be properly ionized by MALDI, and hence detected and measured in MS, one possible analytical strategy is to transform them into homopolymers, which are more amenable to this ionization technique. Then, by combining the molecular weight of the so-obtained homopolymers, as measured by MS, with the relative molar proportion of the MMA and MMA units, as given by (1)H NMR spectrum, one can straightforwardly estimate the molecular weight of the initial copolymer. A methylation reaction was performed to transform MAA-MMA copolymer samples into PMMA homopolymers, using trimethylsilyldiazomethane as a derivatization agent. Weight average molecular weight (M(w)) parameters of the MAA-MMA copolymers could then be derived from M(w) values obtained for the methylated MAA-MMA molecules by MALDI, which were also validated by pulsed gradient spin echo (PGSE) NMR. An alkene function in one of the studied copolymer end-groups was also shown to react with the methylation agent, giving rise to MMA-like polymeric by-products characterized by tandem mass spectrometry and which could be avoided by adjusting the amount of the trimethylsilyldiazomethane in the reaction medium.

  11. Influence of Architecture, Concentration, and Thermal History on the Poling of Nonlinear Optical Chromophores in Block Copolymer Domains

    Energy Technology Data Exchange (ETDEWEB)

    Leolukman, Melvina; Paoprasert, Peerasak; Wang, Yao; Makhija, Varun; McGee, David J.; Gopalan, Padma (UW)

    2008-10-02

    Factors affecting the electric-field-induced poling of nonlinear optical chromophores in block copolymer domains were investigated by encapsulating the chromophores in a linear-diblock copolymer [poly(styrene-b-4-vinylpyridine)] and linear-dendritic (poly(methyl methacrylate)-dendron) block copolymer via hydrogen bonding. Temperature-dependent Fourier transform infrared spectroscopy and morphology evaluation by X-ray scattering and transmission electron microscopy were used with in situ second harmonic generation to correlate domain architectures, processing conditions such as thermal history, and chromophore concentrations with poling efficiency. Poling of chromophores encapsulated in the minority domain (spheres or cylinders) of a linear-diblock copolymer was inhibited by the increasing chromophore concentration within the domain and the chemical nature of the majority domain. Chromophore encapsulation in the majority domain produced the most favorable conditions for poling as measured by in situ second harmonic generation. Thermal annealing of the linear-diblock copolymer/chromophore composites resulted in chromophore aggregation with a corresponding decrease in nonlinear optical activity. The linear-dendron/chromophore system presented the most effective architecture for spatially dispersing chromophores. These findings suggest that while well-ordered phase-separated systems such as block copolymers enhance chromophore isolation over homopolymer systems, a more effective approach is to explore polymer chains end functionalized with chromophores.

  12. Electrochemical and spectroscopic characterization of poly (bithiophene + 2-methylfuran) copolymer

    Science.gov (United States)

    Lamiri, Leila; Nessark, Belkacem; Habelhames, Farid; Sibous, Lakhdar

    2017-09-01

    In this work, Poly(bithiophene + 2-methylfuran) copolymer was successfully synthetized by an electrochemical polymerization of two monomers, bithiophene and 2-methylfuran in acetonitrile containing lithium perchlorate. The obtained copolymer was characterized via cyclic voltammetry, impedance spectroscopy, UV-visible, scanning electron microscope, conductivity and photocurrent measurements. The cyclic voltammetry study showed two redox couples characteristic of Poly (bithiophene + 2-methylfuran) copolymer. The impedance spectroscopy study revealed that the resistance of the copolymer film increases with the addition of 2-methylfuran. The photocurrent measurement showed good photoelectrochemical properties, making this copolymer an ideal candidate for photovoltaic cell applications.

  13. Drug governs the morphology of polyalkylated block copolymer aggregates.

    Science.gov (United States)

    Le Dévédec, F; Her, S; Vogtt, K; Won, A; Li, X; Beaucage, G; Yip, C; Allen, C

    2017-02-16

    Polyalkylated copolymers based on mPEG-b-(AGE-C6,12 or 18)25 have been used to formulate clinically relevant concentrations of doxorubicin (DOX) and the impact of drug incorporation on copolymer aggregation behaviour was examined. The copolymer aggregates were analyzed by various microscopy techniques (TEM, cryo-TEM and AFM) and scattering methods (SANS, DLS). In the absence of the drug, the copolymers formed largely non-spherical aggregates (i.e. cylinders, vesicles). Drug incorporation during copolymer aggregate formation directed the formation of only spherical aggregates. As well, the nature of the core-forming block was found to influence drug release and cytotoxicity of the formulations.

  14. Tough Block Copolymer Organogels and Elastomers as Short Fiber Composites

    Science.gov (United States)

    Kramer, Edward J.

    2012-02-01

    The origins of the exceptional toughness and elastomeric properties of gels and elastomers from block copolymers with semicrystalline syndiotactic polypropylene blocks will be discussed. Using synchrotron X-radiation small angle (SAXS) and wide angle X-ray scattering (WAXS) experiments were simultaneously performed during step cycle tensile deformation of these elastomers and gels. From these results the toughness can be attributed to the formation, orientation and elongation of the crystalline fibrils along the tensile direction. The true stress and true strain ɛH during each cycle were recorded, including the true strain at zero load ɛH,p after each cycle that resulted from the plastic deformation of the sPP crystals in the gel or elastomer. The initial Young's modulus Einit and maximum tangent modulus Emax in each cycle undergo dramatic changes as a function of ɛH,p, with Einit decreasing for ɛH,p 100 to 1000 at the highest maximum (nominal) strain. Based on SAXS patterns from the deformed and relaxed gels, as well as on previous results on deformation of semicrystalline random copolymers by Strobl and coworkers, we propose that the initial decrease in Einit and increase in Emax with ɛH,p are due to a breakup of the network of the original sPP crystal lamellae and the conversion of the sPP lamellae into fibrils whose aspect ratio increases with further plastic deformation, respectively. The gel elastic properties can be understood quantitatively as those of a short fiber composite with a highly deformable matrix. At zero stress the random copolymer midblock chains that connect the fibrils cause these to make all angles to the tensile axis (low Einit), while at the maximum strain the stiff, crystalline sPP fibrils align with the tensile axis producing a strong, relatively stiff gel. The evolution of the crystalline structure during deformation is confirmed by WAXS and FTIR measurements.

  15. Nylon-3 copolymers that generate cell-adhesive surfaces identified by library screening.

    Science.gov (United States)

    Lee, Myung-Ryul; Stahl, Shannon S; Gellman, Samuel H; Masters, Kristyn S

    2009-11-25

    Polymers in the nylon-3 family contain subunits derived from beta-amino acids, which are linked to one another via amide bonds. Thus, the nylon-3 backbone is homologous to the alpha-amino acid-based backbone of proteins. This molecular-level homology suggests that nylon-3 materials might be intrinsically protein-mimetic. The experiments described here explore this prospect in the context of cell adhesion, with tissue engineering as a long-range goal. We have evaluated a small library of sequence-random nylon-3 copolymers for the ability to render surfaces attractive to NIH 3T3 fibroblast adhesion and spreading. Library screening was accomplished in a high-throughput, parallel mode via attachment of the copolymers in a two-dimensional array to a modified glass surface. Significant variations in fibroblast adhesion and spreading were observed as a function of nylon-3 subunit identity and proportion. Several of the nylon-3 copolymers supported cell adhesion and morphology that was comparable, or even superior, to that achieved on positive control substrates such as tissue culture polystyrene and collagen-coated glass. Moreover, studies conducted under serum-free conditions demonstrated that specific nylon-3 derivatives supported cell adhesion independently of serum protein adsorption. Although cell adhesion was diminished in the absence of serum, particular copolymers demonstrated an ability to support substantially greater cell adhesion than any of the other conditions, including the positive controls. The nylon-3 copolymers that were most effective at promoting adhesion to a modified glass surface proved also to be effective at promoting adhesion when attached to a PEG-based hydrogel, demonstrating the potential for these copolymers to be used in tissue engineering applications.

  16. In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers

    Directory of Open Access Journals (Sweden)

    Li D

    2012-05-01

    Full Text Available Di Li,1,2,* Jian Xun Ding,1,3,* Zhao Hui Tang,1 Hai Sun,1 Xiu Li Zhuang,1 Jing Zhe Xu,2 Xue Si Chen1 1Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 2Department of Chemistry, Yanbian University, Yanji, 3Graduate University of Chinese Academy of Sciences, Beijing, China *These authors contributed equally to this workAbstract: Four monomethoxy poly(ethylene glycol-poly(L-lactide-co-glycolide2 (mPEG-P(LA-co-GA2 copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with double hydroxyl functionalized mPEG (mPEG-(OH2 as macroinitiator and stannous octoate as catalyst. The copolymers self-assembled into nanoscale micellar/vesicular aggregations in phosphate buffer at pH 7.4. Doxorubicin (DOX, an anthracycline anticancer drug, was loaded into the micellar/vesicular nanoparticles, yielding micellar/vesicular nanomedicines. The in vitro release behaviors could be adjusted by content of hydrophobic polyester and pH of the release medium. In vitro cell experiments showed that the intracellular DOX release could be adjusted by content of P(LA-co-GA, and the nanomedicines displayed effective proliferation inhibition against Henrietta Lacks’s cells with different culture times. Hemolysis tests indicated that the copolymers were hemocompatible, and the presence of copolymers could reduce the hemolysis ratio of DOX significantly. These results suggested that the novel anticancer nanomedicines based on DOX and amphiphilic Y-shaped copolymers were attractive candidates as tumor tissular and intracellular targeting drug delivery systems in vivo, with enhanced stability during circulation and accelerated drug release at the target sites.Keywords: amphiphilic Y-shaped copolymer, anticancer nanomedicine, cellular proliferation inhibition, doxorubicin

  17. PEGYLATED SINGLE-WALLED CARBON NANOTUBES WITH GELABLE BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Cheng Zhang; Wen Zhu; Lei Gao; Yong-ming Chen

    2011-01-01

    Functional amphiphilic block copolymer poly(ethylene glycol)-block-poly[(3-(triethoxysilyl)propyl methacrylate)-co-(1-pyrene-methyl) methacrylate], PEG113-b-P(TEPM26-co-PyMMA4),was synthesized via atom transfer radical polymerization (ATRP) initiated by monomethoxy capped poly(ethylene glycol) bromoisobutyrate.This polymer exhibited strong ability to disperse and exfoliate single-walled carbon nanotubes (SWNTs) in different solvents due to the adhesion of pyrene units to surface of SWNTs.In aqueous solution,the PTEPM segments that were located on the nanotube surfaces with the pyrene units could be gelated and,as a result,the silica oxide networks with PEG coronas were formed on the surface of nanotubes,which ensured the composites with a good dispersibility and stability.Furthermore,functional silane coupling agents,3-mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane,were introduced during dispersion of SWNTs using the block copolymers.They were co-gelated with PTEPM segments,and the -SH and -NH2 functionalitieswere introduced into the silica oxide coats respectively.

  18. Block Copolymers of Ethylene Oxide and Styrene Oxide.New Copolymer Surfactants(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Zhuo Yang; David Attwood; Colin Booth

    2003-01-01

    @@ 3.2. Association Number Figure 5 shows the dependence of the weight-average association number (Nw,measured by static light scattering, solution temperature 30 °C) on hydrophobe block length for ES and ESEblock copolymers.

  19. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  20. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions† †Electronic supplementary information (ESI) available: GPC chromatograms, additional transmission electron micrographs, digital photographs, visible absorption spectra and laser diffraction data, further optical and fluorescence micrographs. See DOI: 10.1039/c6nr03856e Click here for additional data file.

    Science.gov (United States)

    Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.

    2016-01-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56–poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA–PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20–100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56–poly(benzyl methacrylate)300 [PGMA56–PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56–PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39–poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39–PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to

  1. Nylon 46-polytetramethylene oxide segmented block copolymers

    NARCIS (Netherlands)

    Gaymans, R.J.; Schwering, P.; Haan, de J.L.

    1989-01-01

    Block copolymers were synthesized from amine-terminated polytetramethylene oxide (PMTO) (Mw 800 and 1130) and polyamide 4,6 salt. First prepolymers were prepared at 200–210°C in the presence of a solvent (pyrrolidone). The prepolymers were postcondensed at 255°C (where possible in the solid state) t

  2. Shear instability of a gyroid diblock copolymer

    DEFF Research Database (Denmark)

    Eskimergen, Rüya; Mortensen, Kell; Vigild, Martin Etchells

    2005-01-01

    -induced destabilization is discussed in relation to analogous observations on shear-induced order-to-order and disorder-to-order transitions observed in related block copolymer systems and in microemulsions. It is discussed whether these phenomena originate in shear-reduced fluctuations or shear-induced dislocations....

  3. CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES

    NARCIS (Netherlands)

    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G

    1995-01-01

    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  4. Gyroid Membranes made from Nanoporous Blck Copolymers

    DEFF Research Database (Denmark)

    Szewczykowski, Piotr Plzemystaw; Vigild, Martin Etchells; Ndoni, Sokol;

    2007-01-01

    of the membrane and its nanoporosity is e.g. obtained by cross-linking the majority blocks and selectively etching the minority blocks. Here we report on ultrafiltration membranes prepared from a 1,2-polybutadiene-b-polydimethylsiloxane diblock copolymer with gyroid structure. Different experimental methods...

  5. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    in 't Veld, P.J.A.; in 't Veld, Peter J.A.; Shen, Zheng-Rong; Shen, Z.; Takens, Gijsbert A.J.; Takens, G.A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min

  6. Helical Ordering in Chiral Block Copolymers

    Science.gov (United States)

    Zhao, Wei; Hong, Sung Woo; Chen, Dian; Grason, Gregory; Russell, Thomas

    2012-02-01

    Introducing molecular chirality into the segments of block copolymers can influence the nature of the resultant morphology. Such an effect was found for poly(styrene-b-L-lactide) (PS-b-PLLA) diblock copolymers where hexagonally packed PLLA helical microdomains (H* phase) form in a PS matrix. However, molecular ordering of PLLA within the helical microdomains and the transfer of chirality from the segmental level to the mesoscale is still not well understood. We developed a field theoretic model to describe the interactions between segments of chiral blocks, which have the tendency to form a ``cholesteric'' texture. Based on the model, we calculated the bulk morphologies of chiral AB diblock copolymers using self-consistent field theory (SCFT). Experiments show that the H* phase only forms when microphase separation between PS and PLLA block happens first and crystallization of PLLA block is suppressed or happens within confined microdomain. Hence, crystalline ordering is not necessary for H* phase formation. The SCFT offers the chance to explore the range of thermodynamic stability of helical structures in the phase diagram of chiral block copolymer melts, by tuning parameters not only like the block segregation strength and composition, but also new parameters such as the ratio between preferred helical pitch to the radius of gyration and the Frank elastic constant for inter-segment distortions.

  7. CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES

    NARCIS (Netherlands)

    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G

    1995-01-01

    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  8. Chiral Block Copolymer Structures for Metamaterial Applications

    Science.gov (United States)

    2015-01-27

    MONITOR’S REPORT NUMBER(S) AOARD-114078 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A: Approved for public release. Distribtion is...researchers focused o synthesis and processing, morphology and physical characterization of chiral block copolymer (BCP) materials. Such materials a...developed a platform process technology that can fabricate novel netwo morphologies from initial bicontinuous cubic phases through supergroup/subgroup

  9. LEDs based on conjugated PPV block copolymers

    NARCIS (Netherlands)

    Brouwer, H.J.; Hilberer, A.; Krasnikov, V.V.; Werts, M.; Wildeman, J.; Hadziioannou, G.

    1997-01-01

    A way to control the bandgap in semi-conducting polymers is by preparing polymers with a partially conjugated backbone. In our laboratory, three conjugated copolymers containing PPV trimers as light emitting chromophores have been synthesized, which emit in the blue, green and orange wavelength regi

  10. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    Veld, in 't Peter J.A.; Shen, Zheng-Rong; Takens, Gijsbert A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min u

  11. BODIPY-Based Donor-Acceptor Pi-Conjugated Alternating Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Popere, Bhooshan C.; Della Pelle, Andrea M.; Thayumanavan, S.

    2011-06-28

    Four novel π-conjugated copolymers incorporating 4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) core as the “donor” and quinoxaline (Qx), 2,1,3-benzothiadiazole (BzT), N,N'-di(2'-ethyl)hexyl-3,4,7,8-naphthalenetetracarboxylic diimide (NDI), and N,N'-di(2'-ethyl)hexyl-3,4,9,10-perylene tetracarboxylic diimide (PDI) as acceptors were designed and synthesized via Sonogashira polymerization. The polymers were characterized by ¹H NMR spectroscopy, gel permeation chromatography (GPC), UV–vis absorption spectroscopy, and cyclic voltammetry. Density functional theory (DFT) calculations were performed on polymer repeat units, and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were estimated from the optimized geometry using B3LYP functional and 6-311g(d,p) basis set. Copolymers with Qx and BzT possessed HOMO and LUMO energy levels comparable to those of BODIPY homopolymer, while PDI stabilized both HOMO and LUMO levels. Semiconductor behavior of these polymers was estimated in organic thin-film transistors (OTFT). While the homopolymer, Qx, and BzT-based copolymers showed only p-type semiconductor behavior, copolymers with PDI and NDI showed only n-type behavior.

  12. Study of crystalline morphology and phase structure in poly(styrene-b-ethylene oxide-b-styrene) triblock copolymers bu solid state RMN spin diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Gerson L., E-mail: gerson.mantovani@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas; Bonk, Fabio A. [Universidade Estadual de Campinas (IQ/UNICAMP) SP (Brazil). Inst. de Quimica; Caldarelli, Stefano Caldarelli [Aix-Marseille Universite ISm2, Site de Saint Jerome, Marseille (France); Phan, Trang; Bertin, Denis [Universite de Provence, Site de Saint Jerome, Marseille (France); Azevedo, Eduardo R. de; Bonagamba, Tito J. [Universidade de Sao Paulo (IF/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2009-07-01

    The phase structure and crystalline morphology of a series of polystyrene-b-polyethylene oxide-b-polystyrene (PS-b- PEO-b-PS) triblock copolymers, with different compositions and molecular weights, has been studied by solid-state NMR. WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene oxide (PEO) blocks at room temperature as a function of the copolymer composition. {sup 1}H NMR spin diffusion analyses provided an estimation of the size of the dispersed phases of the nano structured copolymers. (author)

  13. Effect of Surfactants on Association Characteristics of Di- and Triblock Copolymers of Oxyethylene and Oxybutylene in Aqueous Solutions: Dilute Solution Phase Diagrams, SANS, and Viscosity Measurements at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Sanjay H. Punjabi

    2011-01-01

    Full Text Available The interactions in poly(oxyethylene (E – poly(oxybutylene (B of EB or EBE type block copolymers-sodium dodoecyl sulfate (SDS or dodecyltrimethylammonium bromide (DTAB and/or t-octylphenoxy polyethoxyethanol, (TX-100 have been monitored as a function of surfactant concentration and temperature. The addition of ionic surfactants to copolymer micellar solutions in general induced not only shape transition from spherical to prolate ellipsoids at 30∘C in the copolymer micelles but also destabilize them and even suppress the micelle formation at high surfactant loading. DTAB destabilizes the copolymer micelles more than SDS. TX-100, being nonionic, however, forms stable mixed micelles. The block copolymer-surfactant complexes are hydrophilic in nature and are characterized by high turbid and cloud points. Triblock copolymer micelles got easily destabilized than the diblock copolymer ones, indicating the importance of the interaction between the hydrophilic E chains and surfactants. The effects of destabilization of the copolymer micelles are more dominating than the micellar growth at elevated temperatures, which is otherwise predominant in case of copolymer micelles alone.

  14. Transport of Water in Semicrystalline Block Copolymer Membranes

    Science.gov (United States)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  15. DEFORMATION OF COPOLYMER MICELLES INDUCED BY AMPHIPHILIC DIMER PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Xiao-chun Qin; Chun-lai Ren

    2012-01-01

    Combining self-consistent-field theory and density-functional theory,we systematically study the deformation of copolymer micelles induced by the presence of amphiphilic dimer particles.Due to the amphiphilic nature,dimer particles tend to accumulate onto the interface of the copolymer micelle.With increasing concentration of the symmetric dimer particles,which are made of two identical spherical particles,the micelle deforms from the initial sphere to ellipse,dumbbell,and finally separates into two micelles.Furthermore,asymmetric dimer particles,composed by two particles with different sizes,are considered to investigate the influence of geometry of dimer particles on the deformation of the micelle.It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle.The present study on the deformation of micelles is useful to understand the possible shape variation in the course of cell division/fusion.

  16. Monte Carlo Simulation for the Adsorption of Symmetric Triblock Copolymers

    Institute of Scientific and Technical Information of China (English)

    彭昌军; 李健康; 刘洪来; 胡英

    2004-01-01

    The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy,bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented.The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increhses as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.

  17. Non-liftoff block copolymer nanolithography of magnetic nanodot arrays

    Science.gov (United States)

    Baruth, A.; Rodwogin, M. D.; Shankar, A.; Torija, M. A.; Erickson, M. J.; Hillmyer, M. A.; Leighton, C.

    2011-03-01

    Nanolithographic techniques based on self-assembled block copolymer templates offer exceptional potential for fabrication of large-area nanostructure arrays from a wide variety of functional materials. Despite significant progress with control of the template ordering, and development of pattern transfer schemes, significant issues exist with common techniques such as lift-off and etching. Here, we demonstrate successful execution of a nanolithographic process based on climate-controlled solvent annealing of easily degradable cylinder-forming poly(styrene- b -lactide) block copolymer films that avoids both lift-off and the most challenging aspects of etching. Essentially, we use an overfill/planarize/etch-back ``Damascene-type'' process, exploiting the large Ar ion beam etch rate contrast between polystyrene and typical metals. The process is demonstrated via formation of a large-area array of 12 nm thick, 25 +/- 3 nm diameter Ni 80 Fe 20 nanodots (~ 0.4 x 1012 dots/ in 2) with hexagonally-close-packed local order. Extensive microscopy, magnetometry, and electrical measurements provide detailed characterization of the pattern formation and fidelity. We argue that this generic approach can be applied to a wide variety of materials and is scalable to even smaller feature sizes. Funded by NSF MRSEC.

  18. Mesoscopic Simulations of Adsorption and Association of PEO-PPO-PEO Triblock Copolymers on a Hydrophobic Surface: From Mushroom Hemisphere to Rectangle Brush.

    Science.gov (United States)

    Song, Xianyu; Zhao, Shuangliang; Fang, Shenwen; Ma, Yongzhang; Duan, Ming

    2016-11-08

    The dissipative particle dynamics (DPD) method is used to investigate the adsorption behavior of PEO-PPO-PEO triblock copolymers at the liquid/solid interface. The effect of molecular architecture on the self-assembled monolayer adsorption of PEO-PPO-PEO triblock copolymers on hydrophobic surfaces is elucidated by the adsorption process, film properties, and adsorption morphologies. The adsorption thicknesses on hydrophobic surfaces and the diffusion coefficient as well as the aggregation number of Pluronic copolymers in aqueous solution observed in our simulations agree well with previous experimental and numerical observations. The radial distribution function revealed that the ability of self-assembly on hydrophobic surfaces is P123 > P84 > L64 > P105 > F127, which increased with the EO ratio of the Pluronic copolymers. Moreover, the shape parameter and the degree of anisotropy increase with increasing molecular weight and mole ratio of PO of the Pluronic copolymers. Depending on the conformation of different Pluronic copolymers, the morphology transition of three regimes on hydrophobic surfaces is present: mushroom or hemisphere, progressively semiellipsoid, and rectangle brush regimes induced by decreasing molecular weight and mole ratio of EO of Pluronic copolymers.

  19. IMMOBILIZATION OF LIPASE FROM PORCINE PANCREAS ON POLY (METHYL ACRYLATE)COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    XuHuixian; LiMinqin; 等

    1994-01-01

    A series of poly(methyl acrylate) copolymers of different pore structures were synthesized and functionalized by polyethylene polyamine.The lipase from porcine pancreas was adsorbed on these polymer carriers. It was found that the proe structure and functional group were basic factors which affected the activity of immobilized lipase,The optimal conditions for adsorbing lipase were studied and the effects of pH,ionic strength and temperature on the immobilized lipase were compared with those on the dissolved lipase.

  20. Nanoassemblies of Tissue-Reactive, Polyoxazoline Graft-Copolymers Restore the Lubrication Properties of Degraded Cartilage.

    Science.gov (United States)

    Morgese, Giulia; Cavalli, Emma; Müller, Mischa; Zenobi-Wong, Marcy; Benetti, Edmondo M

    2017-03-13

    Osteoarthritis leads to an alteration in the composition of the synovial fluid, which is associated with an increase in friction and the progressive and irreversible destruction of the articular cartilage. In order to tackle this degenerative disease, there has been a growing interest in the medical field to establish effective, long-term treatments to restore cartilage lubrication after damage. Here we develop a series of graft-copolymers capable of assembling selectively on the degraded cartilage, resurfacing it, and restoring the lubricating properties of the native tissue. These comprise a polyglutamic acid backbone (PGA) coupled to brush-forming, poly-2-methyl-2-oxazoline (PMOXA) side chains, which provide biopassivity and lubricity to the surface, and to aldehyde-bearing tissue-reactive groups, for the anchoring on the degenerated cartilage via Schiff bases. Optimization of the graft-copolymer architecture (i.e., density and length of side chains and amount of tissue-reactive functions) allowed a uniform passivation of the degraded cartilage surface. Graft-copolymer-treated cartilage showed very low coefficients of friction within synovial fluid, reestablishing and in some cases improving the lubricating properties of the natural cartilage. Due to these distinctive properties and their high biocompatibility and stability under physiological conditions, cartilage-reactive graft-copolymers emerge as promising injectable formulations to slow down the progression of cartilage degradation, which characterizes the early stages of osteoarthritis.

  1. Synthesis,characterization and applications of vinylsilafluorene copolymers:New host materials for electroluminescent devices

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Vinylsilafluorene(VSiF) was successfully synthesized and copolymerized with vinylcarbazole and methyl methacrylate via free radical copolymerization for the first time.The synthesis,photophysical properties,computational modeling studies,and organic light-emitting devices of the VSiF copolymers were presented.The good coordinated photoluminescent(PL) spectra with the absorption of blue light-emitting materials and the high energy band-gap of the VSiF copolymers were observed.Higher triplet band gap(3Eg) to host the blue phosphorescent emitters and better HOMO and LUMO than PVK for electron and hole injection and transportation of the VSiF model compounds were revealed by density functional theory(DFT) calculations.The preliminary device results in applications of these copolymers as host materials for green phosphorescent emitters demonstrate the copolymers of VSiF and vinylcarbazole have comparable device performance of polyvinylcarazole(PVK),suggesting a bright future of VSiF as building blocks for host materials.

  2. Designing novel copolymers of donor-acceptor polymers using an artificial intelligence method

    Science.gov (United States)

    Kapoor, Vinita; Bakhshi, A. K.

    2013-08-01

    Using the ab initio Hartree-Fock crystal orbital results of three donor-acceptor polymers, PFUCO ([A]x), PSIFCO ([B]x) and PSIFCH ([C]x), the electronic properties of their novel quasi-one-dimensional copolymers (AmBn)x and (AmCn)x were investigated using an artificial intelligence technique, the genetic algorithm, in combination with negative factor counting and inverse iteration method. The repeat units in PFUCO consist of bifuran bridged by electron accepting groups Y (>Cdbnd O); while in PSIFCO and PSIFCH, the repeat units consist of bicyclopentadifluorosilole bridged by electron accepting groups Y (Y is >Cdbnd O in PSIFCO, and >Cdbnd CH2 in PSIFCH). The trends in the electronic properties of the copolymers (AmBn)x and (AmCn)x as a function of block sizes m and n, and arrangement of units (periodic and random) in the copolymer chain are also discussed. The results obtained are important guidelines for molecular designing of copolymers with tailor-made conduction properties.

  3. SYNTHESIS AND PROPERTIES OF ANILINE AND o-AMINOBENZENESULFONIC ACID COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    Jun-hua Fan; Mei-xiang Wan; Dao-ben Zhu

    1999-01-01

    Poly(aniline-co-o-aminobenzenesulfonic acid) (PAOABSA) as a water soluble conducting polymer was synthesized by chemical polymerization. The productivity and the room-temperature conductivity of the copolymer were measured as a function of the reaction conditions, such as reaction temperature, the ratio of oxidant to monomer and the degree of sulfonation defined as the ratio of sulfur to nitrogen atoms(S/N). The main results obtained are summarized as follows: (1) lower reaction temperature (at about 0℃) is favorable for the enhancement of the room-temperature conductivity of the copolymer; (2) higher content of oxidant is unfavorable for increasing the room-temperature conductivity of the copolymer; (3) both productivity and room-temperature conductivity of the copolymer decrease with increase of the degree of sulfonation which was always lower than 0.5 even an excess of o-aminobenzenesulfonic acid was added, probably because the reactivity ratio of aniline (γ1=2.99 ± 0.05) is much higher than that of o-aminobenzenesulfonic acid (γ2 = 0.06± 0.02) estimated by using Fineman-Ross method and least square method.

  4. Dissipative Particle Dynamics Simulation of Onion Phase in Star-block Copolymer

    Institute of Scientific and Technical Information of China (English)

    WU Shao-gui; DU Ting-ting

    2013-01-01

    A dissipative particle dynamics simulation technique was used to investigate the effect of molecular architecture of star-block copolymer on the patterned structure in a nanodroplet.With increasing the ratio of solvophilic to block length to solvophobic block length(RH/T),solvophobic sphere,ordered hexagonal phase,onion phase,perforated onion phase and flocculent phase are formed,respectively.Since onion phase has potential application in controlled drug release,it has received wide attention experimentally and theoretically.Our simulation indicates onion phase forms at a certain RH/T(close to but less than 1).A star-block copolymer molecule has two conformations in onion phase:either fully located in a shell or shared by two neighboring shells.Central structure affects onion's final shape.The molecular number of the copolymer in each shell is a quadratic function of the shell's radius.The arm number of star-block copolymer has little influence on onion's structure,but slightly affects the solvent content.Additionally,we studied the influence of arm length on onion's structure.

  5. Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating

    Science.gov (United States)

    Qin, Xiaoshuai; Li, Yancai; Zhou, Fang; Ren, Lixia; Zhao, Yunhui; Yuan, Xiaoyan

    2015-02-01

    Block copolymers PDMS-b-PDMAEMA were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization involving N,N-dimethylaminoethyl methacrylate (DMAEMA) by using poly(dimethylsiloxane) (PDMS) macro-chain transfer agent. And, the tertiary amino groups in PDMAEMA were quaternized with n-octyliodide to provide quaternary ammonium salts (QPDMAEMA). The well-defined copolymers generated composition variation and morphology evolvement on film surfaces, which were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. The results indicated that the enrichment of QPDMAEMA brought about lower elemental ratios of Si/N on the film surfaces. The surface morphologies evolved with the variations of QPDMAEMA content, and the variation trend of film roughness was exactly opposite to that of water contact angle hysteresis. With regard to structure-antimicrobial relationships, the copolymer films had more evident antimicrobial activity against Gram-positive, Bacillus subtilis, and the surfaces with heterogeneous morphology and higher N+ content presented better antimicrobial activity. The functionalized copolymers based PDMS and quaternary ammonium salts materials have the potential applications as antimicrobial coatings.

  6. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.

    Science.gov (United States)

    Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger

    2016-05-01

    Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand."

  7. Dynamics of Sulfonated Polystyrene Copolymers and Ionomers using Broadband Dielectric Spectroscopy

    Science.gov (United States)

    Atorngitjawat, Pornpen; Runt, James

    2006-03-01

    The dynamics of sulfonated polystyrene (SPS) copolymers in acid and neutralized forms were investigated using broadband dielectric relaxation spectroscopy. SPS copolymers were synthesized by sulfonation of a monodisperse polystyrene to 1 and 7 mol %. Neutralization was achieved by exchanging the protons of the acid functionality with Na, Cs and Zn cations. Multiple relaxation processes were observed above the glass transition temperature of the neutralized and unneutralized materials. For the unneutralized copolymers, a `chemical relaxation' was observed at temperatures above the segmental process, arising from the presence of hydrogen bonding. For the ionomers, a Maxwell-Wagner-Sillars process was observed due to the presence of ionic clusters. The `chemical relaxation' followed Arrhenius behavior and its relaxation strength decreased significantly with increasing temperature. The relaxation times of the MWS process of all ionomers followed a VFT form. A local relaxation in the glassy state was observed for unneutalized copolymers and ionomers neutralized with monovalent cations, while it was suppressed for ionomers neutralized with divalent cations.

  8. Flash NanoPrecipitation of organic actives via confined micromixing and block copolymer stabilization

    Science.gov (United States)

    Johnson, Brian K.

    This dissertation provides a method and the understanding required to produce nanoparticles of organic actives using Flash NanoPrecipitation . The process comprises mixing a solvent phase containing molecularly dissolved amphiphilic block copolymer and an organic active with an anti-solvent. One block of the copolymer precipitates to alter the nucleation and growth of the organic active while the other remains in solution for particle stabilization. A custom built confined impinging jets (CIJ) mixer provides optimum micromixing at the laboratory or full scale within milliseconds. Comparison to other reactor designs is provided. The resulting nanoparticles have functional surfaces tailored to meet the needs of pharmaceutical or specialty chemical formulations. Example beta-carotene nanoparticles with a polyethylene oxide surface are produced at high concentration, high yield, low stabilizer content, and a size suitable for sterile filtration or larger. The technical challenges in nanoparticle production are explained via the characteristic times for mixing, copolymer aggregation, and organic active particle formation. The time for Flash NanoPrecipitation is shown to depend strongly on the time for copolymer aggregation, and control of the organic nucleation versus growth is critical to achieve nanoparticles. Mixing operating lines explain the impact of solubility differences between the colloidal stabilizer and the organic active as function of mixing rate. Techniques to measure the solubility of the copolymer and DeltaG° , DeltaH°, and DeltaS° of micellization are demonstrated. An analytical CIJ mixer is developed by quantifying the characteristic time and physical mechanism of mixing. The methodology described to find an absolute mixing lifetime is also applied to a vortex mixer at a spectrum of flow ratios away from one. Dimensional analysis using the process Damkohler number, defined as the ratio of the mixing to the process time, is applied to precipitation

  9. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, December 22, 1993--March 21, 1994

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1994-06-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery. This report summarizes technical progress for the following tasks: advanced copolymer synthesis; and characterization of molecular structure of copolymers.

  10. COMPOSITIONAL HETEROGENEITY OF ETHYLENE OXIDE-BUTYLENE TEREPHTHALATE SEGMENTED COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    De-zhu Ma; Dong-sheng Li; Ming-chuan Zhao; Mo-zhen Wang; Ran Ye; Xiao-lie Luo

    1999-01-01

    A series of ethylene oxide-butylene terephthalate (EOBT) segmented copolymers with different soft segment length and hard segment content were synthesized. The compositional heterogeneity was studied by solvent extraction. The results show that the compositional heterogeneity increases when soft segment length and hard segment content increase. The compositional heterogeneity is also reflected in the crystallization behavior and morphology of soft and hard segment in EOBT segmented copolymer. The more compositional heterogeneous the EOBT segmented copolymer is, the more different the morphology and the crystallization behavior between separated fractions. Compared with ethylene oxide-ethylene terephthalate (EOET) segmented copolymer, compositional heterogeneity in EOBT segmented copolymer is weaker. But the compositional heterogeneity in EOBT segmented copolymer with long soft segment and high hard segment content is still obvious.

  11. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms.

    Science.gov (United States)

    Kulkarni, Bhagyashree; Surnar, Bapurao; Jayakannan, Manickam

    2016-03-14

    Multipurpose polymer nanoscaffolds for cellular imaging and delivery of anticancer drug are urgently required for the cancer therapy. The present investigation reports a new polymer drug delivery concept based on biodegradable polycaprolactone (PCL) and highly luminescent π-conjugated fluorophore as dual functional nanocarrier for cellular imaging and delivery vehicles for anticancer drug to cancer cells. To accomplish this goal, a new substituted caprolactone monomer was designed, and it was subjected to ring opening polymerization using a blue luminescent bishydroxyloligo-phenylenevinylene (OPV) fluorophore as an initiator. A series of A-B-A triblock copolymer building blocks with a fixed OPV π-core and variable chain biodegradable PCL arm length were tailor-made. These triblocks self-assembled in organic solvents to produce well-defined helical nanofibers, whereas in water they produced spherical nanoparticles (size ∼150 nm) with blue luminescence. The hydrophobic pocket of the polymer nanoparticle was found to be an efficient host for loading water insoluble anticancer drug such as doxorubicin (DOX). The photophysical studies revealed that there was no cross-talking between the OPV and DOX chromophores, and their optical purity was retained in the nanoparticle assembly for cellular imaging. In vitro studies revealed that the biodegradable PCL arm was susceptible to enzymatic cleavage at the intracellular lysosomal esterase under physiological conditions to release the loaded drugs. The nascent nanoparticles were found to be nontoxic to cancer cells, whereas the DOX-loaded nanoparticles accomplished more than 80% killing in HeLa cells. Confocal microscopic analysis confirmed the cell penetrating ability of the blue luminescent polymer nanoparticles and their accumulation preferably in the cytoplasm. The DOX loaded red luminescent polymer nanoparticles were also taken up by the cells, and the drug was found to be accumulated at the perinuclear environment

  12. Imide/Arylene Ether Copolymers Containing Phosphine Oxide

    Science.gov (United States)

    Jensen, Brian J.; Partos, Richard D.

    1993-01-01

    Phosphine oxide groups react with oxygen to form protective phosphate surface layers. Series of imide/arylene ether block copolymers containing phosphine oxide units in backbone synthesized and characterized. In comparison with commercial polyimide, these copolymers display better resistance to etching by oxygen plasma. Tensile strengths and tensile moduli greater than those of polyarylene ether homopolymer. Combination of properties makes copolymers attractive for films, coatings, adhesives, and composite matrices where resistance to atomic oxygen needed.

  13. Development of a High-Frequency Multilayer Copolymer Acoustic Projector

    Science.gov (United States)

    1994-03-31

    Vinylidene Fluoride/Trifluoroethylene Copolymers in Relation to Their Structures," Japanese Journal of Applied Physics , vol. 103, 1987, p. 554. 4. R. AI... Journal of Applied Physics , vol. 21, 1982, p. L455. 17. K. Rittenmyer, *Report on the Electromechanical Evaluation of PVDF Copolymer Materials," U. S...Ohigashi and K. Koga, "Ferroelectric Copolymers of Vinylidene Fluoride and Trifluoroethylene with a Large Electromechanical Coupling Factor,* Japanese

  14. Mechanism of Molecular Exchange in Copolymer Micelles

    Science.gov (United States)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2010-03-01

    Compared to thermodynamic structure, much less has been known about the kinetics of block copolymer micelles which should underlay the attainment of thermodynamic equilibrium. In this presentation, molecular exchange between spherical micelles formed by isotopically labeled diblock copolymers was investigated using time-resolved small-angle neutron scattering. Two pairs of structurally matched poly(styrene-b-ethylene-alt-propylene) (PS-PEP) were synthesized and dispersed in isotopic mixture of squalane, highly selective to PEP block. Each pair includes polymers with fully deuterated (dPS-PEP) and a normal (hPS-PEP) PS blocks. Temperature dependence of the micelle exchange rate R(t) is consistent with melt dynamics for the core polymer. Furthermore, R(t) is significantly sensitive to the core block length N due to the thermodynamic penalty associated with ejecting a core block into the solvent. This hypersensitivity, combined with modest polydispersity in N, leads to an approximately logarithmic decay in R(t).

  15. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  16. Rapid ordering of block copolymer thin films

    Science.gov (United States)

    Majewski, Pawel W.; Yager, Kevin G.

    2016-10-01

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.

  17. Formation of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  18. Photothermal degradation of ethylene/vinylacetate copolymer

    Science.gov (United States)

    Liang, R. H.; Chung, S.; Clayton, A.; Di Stefano, S.; Oda, K.; Hong, S. D.; Gupta, A.

    1983-01-01

    Photothermal degradation studies were conducted on a 'stabilized' formulation of ethylene/vinyl acetate copolymer (EVA) in the temperature range 25-105 C under three different oxygen environments (in open air, with limited access to O2, and in a dark closed stagnant oven). These studies were performed in order to evaluate the utility of EVA as an encapsulation material for photovoltaic modules. Results showed that at low temperature (25 C), slow photooxidation of the polymer occurred via electronic energy transfer involving the UV absorber incorporated in the polymer. However, no changes in the physical properties of the bulk polymer were detected up to 1500 hours of irradiation. At elevated temperatures, leaching and evaporation of the additives occurred, which ultimately resulted in the chemical crosslinking of the copolymer and the formation of volatile photoproducts such as acetic acid.

  19. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  20. Parallel Computing Properties of Tail Copolymer Chain

    Directory of Open Access Journals (Sweden)

    Hong Li

    2013-08-01

    Full Text Available The properties of a AB diblock copolymer chain are calculated by Monte Carlo methods. Monomer A contacting to the surface has an adsorption energy E=-1 and monomer B E= 0. The polymer chain is simulated by self-avoiding walk in simple cubic lattice. The adsorption properties and the conformation properties of the polymer chain are computed by using message passing interface (MPI. The speedup is close to linear speedup by parallel computing independent samples.    

  1. Nanostructured Block Copolymer Coatings for Biofouling Inhibition

    Science.gov (United States)

    2015-06-30

    biofouling program contractors. 15. SUBJECT TERMS antifouling; coatings; block copolymers; IR nanoscale imaging ; biocides 16. SECURITY CLASSIFICATION OF...diagnostics and drug delivery. In our scanned probe microscopy studies on collaborator coatings and marine organisms, we have provided teamwork . We have...Studies of Organisms on model fouiants: • H. elegans studies 3. Testing of other contractor materials 4. Imaging technology. We applied our organic

  2. Comparing the morphology and phase diagram of H-shaped ABC block copolymers and linear ABC block copolymers.

    Science.gov (United States)

    Ye, Xianggui; Yu, Xifei; Sun, Zhaoyan; An, Lijia

    2006-06-22

    By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymers, we have investigated the morphology of H-shaped ABC block copolymers (A2BC2) and compared them with those of the linear ABC block copolymers. By changing the ratios of the volume fractions of two A arms and two C arms, one can obtain block copolymers with different architectures ranging from linear block copolymer to H-shaped block copolymer. By systematically varying the volume fractions of block A, B, and C, the triangle phase diagrams of the H-shaped ABC block copolymer with equal interactions among the three species are constructed. In this study, we find four different morphologies (lamellar phase (LAM), hexagonal lattice phase (HEX), core-shell hexagonal lattice phase (CSH), and two interpenetrating tetragonal lattice (TET2)). Furthermore, the order-order transitions driven by architectural change are discussed.

  3. Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers.

    Science.gov (United States)

    Dohm, Michelle T; Mowery, Brendan P; Czyzewski, Ann M; Stahl, Shannon S; Gellman, Samuel H; Barron, Annelise E

    2010-06-16

    Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of beta-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers, inspired by the post-translational modifications found in SP-C, affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers.

  4. Synthesis of biodegradable amphiphilic Y-shaped block co-polymers via ring-opening polymerization for drug delivery.

    Science.gov (United States)

    Jia, Lin; Yan, Lifeng; Li, Yang

    2011-01-01

    A series of novel Y-shaped biodegradable block co-polymers of poly(ε-caprolactone) (PCL) and poly(ethyl ethylene phosphate) (PEEP) (PCL-(PEEP)2) were synthesized via ring-opening polymerization (ROP) of EEP with bis-hydroxy-functional ROP initiator (init-PCL-(OH)2). The init-PCL-(OH)2 was synthesized by ROP of CL using 4-hydroxybutyl acrylate (HBA) as initiator and L-tartaric acid as catalyst in bulk, and subsequently the resulting vinyl-terminated PCL was end-capped by acetyl chloride, followed by Michael addition using excess diethanolamine. The Y-shaped co-polymers and their intermediates were characterized by (1)H-, (13)C-, (31)P-NMR, FT-IR and gel-permeation chromatography. The results indicated that the molecular weight of the Y-shaped co-polymers increased with the increasing of the molar ratios of EEP to init-PCL-(OH)2 in the feed, while the PCL chain length was kept constant. The amphiphilic block co-polymers could self-assemble into micelles in aqueous solution, which was demonstrated by dynamic light scattering, (1)H-NMR and atomic force microscopy. A study of controlled release of indomethacin indicated that the amphiphilic block co-polymers could potentially provide novel vehicles for drug delivery.

  5. Directed Self-assembly of Block Copolymer with Sub-15 nm Domain Spacing Using Nanoimprinted Photoresist Templates

    Science.gov (United States)

    Sun, Zhiwei; Chen, Zhenbin; Zhang, Wenxu; Coughlin, E. Bryan; Xiao, Shuaigang; Russell, Thomas

    There has been increasing interest in preparing block copolymer thin films with ultra-small domain spacings for use as etching masks for ultra-high resolution nanolithography. One method to prepare block copolymer materials with small feature sizes is salt doping, increasing the Flory-Huggins interaction and allowing microphase separation to be maintained at lower molecular weights. Lamellae-forming P2VP- b-PS- b-P2VP block copolymer with various molecular weight was synthesized using RAFT polymerization with a dual functional chain transfer agent. Copper (II) Chloride or Gold (III) chloride was found to be selectively associated with P2VP block and increase the unfavorable interactions between PS and P2VP blocks, driving the disordered block copolymer into the ordered state. A 14 nm lamellar spacing of P2VP- b-PS- b-P2VP thin film was prepared using copper (II) Chloride doping after acetone vapor annealing on neutral brushes. Metallic nano-wire arrays were prepared after selective infiltration of platinum salt into the P2VP domain and oxygen plasma treatment. The directed self-assembly of salt doped P2VP- b-PS- b-P2VP triblock copolymer having long-rang lateral order on nanoimprinted photoresist templates with shallow trenches was also studied.

  6. Thermoresponsive gelling behavior of concentrated alumina suspensions containing poly(acrylic acid) and PEO-PPO-PEO copolymer.

    Science.gov (United States)

    Kondo, Akira; Xu, Hui; Abe, Hiroya; Naito, Makio

    2012-05-01

    Thermoresponsive gelling behavior of concentrated alumina suspensions with poly(acrylic acid) (PAA) and triblock copolymer (PEO(101)-PPO(56)-PEO(101), Pluronic F127) was investigated as a function of PAA concentration (0.4-1.2 mass%) for ceramic solid free forming. The copolymer species assemble into micelles at temperatures above 15°C, yielding aqueous physical gel. In this study, the concentrated alumina aqueous suspensions (φ=35 vol%) were first prepared using the anionic dispersant of PAA, and then the copolymer species (10 mass%) were dissolved at a cooled temperature at 10°C. The addition of the copolymer species had a negligible influence on the adsorption state of PAA onto the alumina surfaces. The PAA concentration needed for the saturation adsorption on the alumina surfaces was ~0.6 mass%. When the PAA concentration was this value or slightly less, the suspension became gel state at 30°C from low viscous state at 10°C. The thermally induced alumina gel had excellent viscoelastic properties, and thereby the three dimensional periodic ceramic structures were successfully fabricated by a direct colloidal printing method that using the gels as "solid" inks at the room temperature. On the other hand, when it exceeded the saturation adsorption limit, the gelling behavior was not observed, indicating that the non-adsorbing PAA species may partly suppress the micellization of the copolymer on the heating.

  7. Overcoming interfacial affinity issues in natural fiber reinforced polylactide biocomposites by surface adsorption of amphiphilic block copolymers.

    Science.gov (United States)

    Magniez, Kevin; Voda, Andreea S; Kafi, Abdullah A; Fichini, Audrey; Guo, Qipeng; Fox, Bronwyn L

    2013-01-23

    This work demonstrates that the interfacial properties in a natural fiber reinforced polylactide bio-composite can be tailored through surface adsorption of amphiphilic and biodegradable poly (ethylene glycol)-b-poly(l-lactide) (PEG-PLLA) block copolymers. The deposition from solvent solution of PEG-PLLA copolymers onto the fibrous substrate induced distinct mechanisms of molecular organization at the cellulosic interface, which are correlated to the hydrophobic/hydrophilic ratios and the type of solvent used. The findings of the study evidenced that the performance of the corresponding biocomposites with polylactide were effectively enhanced by using these copolymers as interfacial coupling agents. During the fabrication stage, diffusion of the polylactide in the melt induced a change in the environment surrounding block copolymers which became hydrophobic. It is proposed that molecular reorganization of the block copolymers at the interface occurred, which favored the interactions with both the hydrophilic fibers and hydrophobic polylactide matrix. The strong interactions such as intra- and intermolecular hydrogen bonds formed across the fiber-matrix interface can be accounted for the enhancement in properties displayed by the biocomposites. Although the results reported here are confined, this concept is unique as it shows that by tuning the amphiphilicity and the type of building blocks, it is possible to control the surface properties of the substrate by self-assembly and disassembly of the amphiphiles for functional materials.

  8. Design, syntheses, and properties of tunable, dual-stimuli (temperature and pH) responsive copolymers

    Science.gov (United States)

    Manokruang, Kiattikhun

    Stimuli responsive polymers are of great interest in biorelated applications ranging from actuators, microfluidics, delivery systems and tissue scaffolds. The specifications of an appropriate polymer system that shows a response to one or more external stimuli vary from application to application, depending on desired functionality. In most cases, the response to an environmental change is desired to be sharp and fast, such as for microfluidics and actuators, while the stability of the collapsed structure is also typically required, such as in tissue scaffolds and in stimulated delivery systems. In addition, the onset of the stimulus response varies depending on application. Thus, a general design strategy for polymer systems to meet specific applications' needs can be a big challenge. This dissertation describes the design, syntheses, and aqueous phase behavior of two polymer classes that show a sharp solution phase transition in different manners: The first polymer class is in the form of a segmented/blocky copolymer and its solution phase separation is designed to occur via micellization, while the second polymer class is designed as an alternating copolymer and it exhibits a first order LCST phase behavior. Copolymers of methyl methacrylate (MMA) and methacrylic acid (MAA), poly(MMA-co-MAA)s, were prepared to have a segmented blocky comonomer distribution along the chain backbone, with sequences composed predominantly of MMA or MAA units. Turbidity (cloud point) measurements were employed to investigate the phase behavior of these copolymers in aqueous solution. The solutions showed sharp solubility transitions upon pH change, and the pH-onsets of the copolymers' transition showed a systematic dependence on the copolymers' MAA content and an almost-linear dependence on the polymer concentration. A strong hysteresis was observed when lowering versus increasing pH, indicating a stable collapsed structure. Dynamic light scattering demonstrated almost monodispersed

  9. Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.

    Science.gov (United States)

    Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy

    2016-07-11

    Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials.

  10. Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Graham B.; Rolczynski, Brian S.; Linkin, Alexander; McGillicuddy, Ryan D.; Engel, Gregory S., E-mail: gsengel@uchicago.edu [Department of Chemistry, The James Franck Institute, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Lundin, Pamela M. [Department of Chemical Engineering, Stanford University, Stauffer III, 381 North-South Mall, Stanford, California 94305 (United States); A. R. Smith Department of Chemistry, Appalachian State University, 417 CAP Building, 525 Rivers Street, Boone, North Carolina 28608 (United States); Bao, Zhenan [Department of Chemical Engineering, Stanford University, Stauffer III, 381 North-South Mall, Stanford, California 94305 (United States)

    2014-01-21

    We present the synthesis and characterization of a benzodithiophene/thiophene alternating copolymer decorated with rigid, singly branched pendant side chains. We characterize exciton migration and recombination dynamics in these molecules in tetrahydrofuran solution, using a combination of static and time-resolved spectroscopies. As control experiments, we also measure electronic relaxation dynamics in isolated molecular analogues of both the side chain and polymer moieties. We employ semi-empirical and time-dependent density functional theory calculations to show that photoexcitation of the decorated copolymer using 395 nm laser pulses results in excited states primarily localized on the pendant side chains. We use ultrafast transient absorption spectroscopy to show that excitations are transferred to the polymer backbone faster than the instrumental response function, ∼250 fs.

  11. Synthesis of poly[methyl(3,3,3-trinuoropropyl)siloxane]b-poly(ethylene oxide)block copolymers

    Institute of Scientific and Technical Information of China (English)

    Xiao-li ZHAN; Bi CHEN; Qing-hua ZHANG; Ling-min YI; Bo JIANG; Feng-qiu CHEN

    2008-01-01

    A series of new amphiphilic poly[methyl(3,3,3-trifluoropropyl)siloxane]-b -poly(ethylene oxide)(PMTFPS-b-PEO)diblock copolymers with different ratios of hydrophobic segment to hydrophilic segment were prepared by coupling reactions of end-functional PMTFPS and PEO homopolymers.Copolymers were shown to be well defined and narrow molecular weight distribution(MWD)(1.07~1.3)by characterizations such as gel permeation chromatography(GPC)and 1H-nudear magnetic resonance(1H-NMR).

  12. Mussel-inspired protein-repelling ambivalent block copolymers: controlled synthesis and characterization

    OpenAIRE

    Patil, Nagaraj; Falentin-Daudré, Céline; Jérôme, Christine; Detrembleur, Christophe

    2015-01-01

    This paper describes the reversible addition–fragmentation chain transfer (RAFT) polymerization of mussel-inspired acetonide-protected dopamine (meth)acrylamide monomers (ADA and ADMA) and its implementation to the synthesis of innovative ambivalent block copolymers. They consist of a hydro- phobic poly((meth)acrylamide) block functionalized by catechols and a hydrophilic segment of a poly- ((meth)acrylate) bearing pendent PEG chains. For the first time, a series of well-defined P(PEGAm-b-ADA...

  13. Synthesis and characterization of alternating fluorene–thiophene copolymers bearing ethylene glycol side-chains

    OpenAIRE

    Ziegler, Elisabeth; Pein, Andreas; Fischereder, Achim; Trimmel, Gregor

    2011-01-01

    Abstract New alternating fluorene–thiophene copolymers are introduced bearing polar ethylene glycol-carboxylate functionalities on the thiophene ring to achieve enhanced solubility in polar solvents. Suzuki polycondensation was applied to synthesize a set of three polymers with differing lengths of the ethylene glycol side-chains. The polymers are thermally stable up to temperatures of 300 °C. Solutions of the polymers in CHCl3 show an absorption maximum at approximately 397 nm and a luminesc...

  14. Effect of trifluoroethylene monomers on molecular conformation of poly (vinylidene fluoride-trifluoroethylene) copolymer

    Institute of Scientific and Technical Information of China (English)

    Li Ji-Chao; Wang Chun-Lei; Zhong Wei-Lie

    2004-01-01

    Hartree-Fock and density functional theory (DFT) methods were employed to study poly (vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)] molecular chains with different VDF contents. The dependence of dipole moment of P(VDF-TrFE) chains on VDF content obtained from our calculation is in good agreement with the experiment. The TrFE monomer plays an important role in introducing the gauche bond into copolymer chains. A possible mechanism was interpreted.

  15. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  16. Small angle neutron scattering study of complex coacervate micelles and hydrogels formed from ionic diblock and triblock copolymers.

    Science.gov (United States)

    Krogstad, Daniel V; Choi, Soo-Hyung; Lynd, Nathaniel A; Audus, Debra J; Perry, Sarah L; Gopez, Jeffrey D; Hawker, Craig J; Kramer, Edward J; Tirrell, Matthew V

    2014-11-13

    A complex coacervate is a fluid phase that results from the electrostatic interactions between two oppositely charged macromolecules. The nature of the coacervate core structure of hydrogels and micelles formed from complexation between pairs of diblock or triblock copolymers containing oppositely charged end-blocks as a function of polymer and salt concentration was investigated. Both ABA triblock copolymers of poly[(allyl glycidyl ether)-b-(ethylene oxide)-b-(allyl glycidyl ether)] and analogous poly[(allyl glycidyl ether)-b-(ethylene oxide)] diblock copolymers, which were synthesized to be nearly one-half of the symmetrical triblock copolymers, were studied. The poly(allyl glycidyl ether) blocks were functionalized with either guanidinium or sulfonate groups via postpolymerization modification. Mixing of oppositely charged block copolymers resulted in the formation of nanometer-scale coacervate domains. Small angle neutron scattering (SANS) experiments were used to investigate the size and spacing of the coacervate domains. The SANS patterns were fit using a previously vetted, detailed model consisting of polydisperse core-shell micelles with a randomly distributed sphere or body-centered cubic (BCC) structure factor. For increasing polymer concentration, the size of the coacervate domains remained constant while the spatial extent of the poly(ethylene oxide) (PEO) corona decreased. However, increasing salt concentration resulted in a decrease in both the coacervate domain size and the corona size due to a combination of the electrostatic interactions being screened and the shrinkage of the neutral PEO blocks. Additionally, for the triblock copolymers that formed BCC ordered domains, the water content in the coacervate domains was calculated to increase from approximately 16.8% to 27.5% as the polymer concentration decreased from 20 to 15 wt %.

  17. Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks

    KAUST Repository

    Hur, Kahyun

    2011-10-17

    Metamaterials are engineered artificial materials that offer new functionalities such as super-resolution imaging and cloaking. Calculations of the photonic properties of three-dimensionally isotropic metamaterials with cubic double gyroid and alternating gyroid morphologies from block copolymer self-assembly are presented.

  18. The Structure of Water in PEO-Based Segmented Block Copolymers and its Effect on Transition Temperatures

    NARCIS (Netherlands)

    Husken, Debby; Gaymans, Reinoud J.

    2008-01-01

    The effect of water on block copolymers that contain hydrophilic PEO flexible segments is studied. The polyether phase consisted of either PEO or mixtures of PEO and hydrophobic PTMO, monodisperse crystallisable T6T6T was used as hard segments. Water absorption as a function of relative humidity and

  19. Morphological studies on block copolymer modified PA 6 blends

    Science.gov (United States)

    Poindl, M.; Bonten, C.

    2014-05-01

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  20. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  1. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310...

  2. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which...

  3. From Block Copolymers to Nano-porous Materials

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Ndoni, Sokol; Berg, Rolf Henrik

    2003-01-01

    Quantitative etching of the polydimethylsiloxane block in a series of polystyrene-polydimethylsiloxane (PS-PDMS) block copolymers is reported. Reacting the block copolymer with anhydrous hydrogen fluoride (HF) renders a nanoporous material with the remaining PS maintaining the original morphology...

  4. Alternation and tunable composition in hydrogen bonded supramolecular copolymers.

    Science.gov (United States)

    Felder, Thorsten; de Greef, Tom F A; Nieuwenhuizen, Marko M L; Sijbesma, Rint P

    2014-03-07

    Sequence control in supramolecular copolymers is limited by the selectivity of the associating monomer end groups. Here we introduce the use of monomers with aminopyrimidinone and aminohydroxynaphthyridine quadruple hydrogen bonding end groups, which both homodimerize, but form even stronger heterodimers. These features allow the formation of supramolecular copolymers with a tunable composition and a preference for alternating sequences.

  5. Hierarchical structure formation in supramolecular comb-shaped block copolymers

    NARCIS (Netherlands)

    Hofman, Anton; ten Brinke, Gerrit; Loos, Katja

    2016-01-01

    Block copolymers are known to spontaneously form ordered structures at the nano-to mesoscale. Although the number of different morphologies is rather limited in diblock copolymer systems, their phase behavior becomes increasingly more complex with each additional building block. Synthesis of such al

  6. Microphase separation of diblock copolymers with amphiphilic segment

    NARCIS (Netherlands)

    Kriksin, Yury A.; Khalatur, Pavel G.; Erukhimovich, Igor Ya.; ten Brinke, Gerrit; Khokhlov, Alexei R.

    2009-01-01

    We present a statistical mechanical approach for predicting the self-assembled morphologies of amphiphilic diblock copolymers in the melt. We introduce two conformationally asymmetric linear copolymer models with a local structural asymmetry, one of a "comb-tail'' type and another that we call "cont

  7. Self-assembled materials from thermosensitive and biohybrid block copolymers

    NARCIS (Netherlands)

    de Graaf, A.J.

    2012-01-01

    In this research, several block copolymers were synthesized and characterized with regard to possible pharmaceutical applications. All block copolymers were thermosensitive and self-assembled at 37 °C into structures like micelles and hydrogels, which can be used for innovative drug delivery purpose

  8. Morphological studies on block copolymer modified PA 6 blends

    Energy Technology Data Exchange (ETDEWEB)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  9. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  10. Protective effects of nonionic tri-block copolymers on bile acid-mediated epithelial barrier disruption.

    Energy Technology Data Exchange (ETDEWEB)

    Edelstein, A.; Fink, D.; Musch, M.; Valuckaite, V.; Zabornia, O.; Grubjesic, S.; Firestone, M. A.; Matthews, J. B.; Alverdy, J. C. (Materials Science Division); (Univ. of Chicago)

    2011-11-01

    Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia.

  11. Shielding of quantum dots using diblock copolymers: implementing copper catalyzed click chemistry to fluorescent quantum dots

    Science.gov (United States)

    Merkl, Jan-Philip; Ostermann, Johannes; Schmidtke, Christian; Kloust, Hauke; Eggers, Robin; Feld, Artur; Wolter, Christopher; Kreuziger, Anna-Marlena; Flessau, Sandra; Mattoussi, Hedi; Weller, Horst

    2014-03-01

    We describe the design and optimization of an amphiphilic diblock copolymer and its use to provide surface functionalization of colloidal semiconductor nanoparticles (quantum dots, QDs). This polymer coating promotes hydrophilicity of the nanocrystals while providing numerous functional groups ideally suited for biofunctionalization of the QDs using copper-catalyzed azide alkyne Husigen 1,3-cyloaddition (i.e., cupper catalyzed "click" reaction). Copper ions are known to quench the fluorescence of QDs in solution. Thus effective shielding of the nanocrystal surface is essential to apply copper-catalyzed reactions to luminescent QDs without drastically quenching their emission. We have applied a strategy based on micellar encapsulation within poly(isoprene-block- ethylene oxide) diblock-copolymers (PI-b-PEO), where three critical factors promote and control the effectiveness of the shielding of copper ion penetration: 1) The excess of PI-b-PEO, 2) the size of PI-b-PEO and 3) insertion of an additional PS-shell grown via seeded emulsion polymerization (EP) reaction. Due to the amphiphilic character of the block-copolymer, this approach provides a shielding layer surrounding the particles, preventing metal ions from reaching the QD surfaces and maintaining high photoluminescence. The effective shielding allowed the use of copper-catalyzed azide-alkyne 1,3-cycloaddition (CuAAC) to hydrophilic and highly fluorescent QDs, opening up great possibilities for the bio functionalization of QDs.

  12. Synthesis of comb-like copolymers from renewable resources: Itaconic anhydride, stearyl methacrylate and lactic acid

    Science.gov (United States)

    Shang, Shurui

    The synthesis and properties of comb-like copolymers and ionomers derived from renewable resources: itaconic anhydride (ITA), stearyl methacrylate (SM) and lactic acid (LA) are described. The copolymers based on ITA and SM (ITA-SM) were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The crystalline side-chains suppressed molecular motion of the main-chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > the melting point (Tm). The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased. The ITA moiety along the main chain of the copolymers was neutralized with metal acetates to produce Na-, Ca- and Zn- random ionomers with comb-like architectures. In general, the incorporation of the ionic groups increased the Tg and suppressed the crystallinity of the side-chain packing. Ionomers with high SM side-chain density had two competing driving forces for self-assembled nano-phase separation: ionic aggregation and side-chain crystalline packing. Upon neutralization, a morphological transition from semi-crystalline lamella to spherical ionic aggregation was observed by small angle X-ray scattering (SAXS) analysis and transmission electron microscopy (TEM). Thermomechanical analysis revealed an increasing resistance to penetration deformation with an increasing degree of neutralization and an apparent rubbery plateau was observed above Tg. A controlled transesterification of PLA in glassware was an effective way to prepare a methacrylate functionalized PLA macromonomer with controlled molecular weight, which was used to synthesize a variety of copolymers. The copolymerization of this functionalized PLA macromonomer with ITA totally suppressed the side-chain crystallinity for the PLA chain

  13. Structure and Mechanical Properties of Ethylene-butene Copolymers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The crystallinity of ethylene-butene copolymers prepared by copolymerization of ethylene and butene in the presence of a new highly active catalyst was studied by means of DSC, WAXD and DMA. The results show that the melting temperature, the crystallinity and the crystallite size decreased with increasing the content of butene in the copolymers. The copolymers have a high degree of branching, the butene segments are mainly in the amorphous regions of the copolymers, while the polyethylene sequence forms crystal phase acting as crosslinking bondage between the molecules at room temperature. The ethylene-butene copolymers have a low modulus, a low stress and a high strain analogous to the stress-strain behavior of non-cross thermoplastic elastomer.

  14. Multicompartment Micelles From π-Shaped ABC Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    XIA Jun; ZHONG Chong-Li

    2007-01-01

    Dissipative particle dynamics simulations were performed on the morphology and structure of multicompartment micelles formed from n-shaped ABC block copolymers in water. The influences of chain architectures were studied in a systematic way, and a rich variety of morphologies were observed, such as spherical, wormlike,X-shaped, Y-shaped, ribbon-like, layered rod-like, layered disk-like, as well as network morphologies. The simulations show that the distance between the two grafts plays an important role in control of the morphology. Since π-shaped ABC block copolymers can be reduced to linear ABC and star ABC block copolymers, they are good model copolymers for studying the self-assembly of complex block copolymers into micelles. The knowledge obtained in this work as well as the new morphologies identified provide useful information for future rational design and synthesis of novel multicompartment micelles.

  15. PREPARATION AND SURFACE PROPERTIES OF ACRYLIC COPOLYMERS CONTAINING FLUORINATED MONOMERS

    Institute of Scientific and Technical Information of China (English)

    Tai-jiang Gui; Hao Wei; Ying Zhao; Xiu-lin Wang; Du-jin Wang; Duan-fu Xu

    2006-01-01

    A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The surface property of the copolymer films was subsequently characterized. The contact angle measurements and energy dispersive analysis of X-ray (EDAX) show that the length and content ofperfluoroalkyl side chains in the copolymers are crucial for the preparation of the film with low surface energy. At a given content of fluorinated monomers in the copolymers, the longer the perfluoroalkyl side chain, the larger the water contact angle of the copolymer films will be. On the other hand, the higher the content of fluorinated monomers, the lower the surface energy is. The water contact angle increases with the increase of the fluorinated monomer content and reaches a plateau at 3 wt% of fluorinated monomer content.

  16. Nanopatterned block copolymers for use as vascular biomaterials

    Science.gov (United States)

    Silverstein, Joshua S.

    Manipulation of surface topography or chemistry has been a growing trend in efforts to enhance the properties of medical devices. Understanding the interactions of biomolecules with nanoengineered surfaces is vital to assess the safety and efficacy of devices that incorporate these structures. In this dissertation, a model block copolymer (BCP) system based on poly(styrene)-block-poly(1,2-butadiene) was systematically modified using photochemical thiol-ene chemistry. Poly(1,2-butadiene) molecular weight and thiol-ene ratios were systematically varied based on a model monomer, boc-cysteamine, to determine the efficiency of the reaction. The results demonstrate the polydispersity index of modified BCPs significantly increased when low thiol-ene ratios were employed and sometimes induced gelation of the reacted polymers. Using a tenfold excess of thiol, functionalizations between 60-90% were obtained for an acid, amine, amide, and a pharmaceutical with a pendant thiol. Calorimetry showed a 30-60 °C increase in the glass transition temperature of the daughter polymers. Subsequently, films were cast from solvents found suitable to forming self-assembled BCP thin films. The synthetic and processing approach allows for the formation of nanopatterned block copolymer films with controlled chemistries from a single source material. The BCPs were further characterized using water contact angle measurements and atomic force microscopy in liquid. Significantly decreased contact angles were caused by selective swelling of charged BCP domains. Protein (fibrinogen, albumin, cytochrome C, immunoglobulin G) adsorption experiments were conducted under static and dynamic conditions with a quartz crystal microbalance with dissipation. The results indicate that nanopatterned chemistry and experimental conditions strongly impact adsorption dynamics. Adsorption behavior was dependent both on protein structure and the characteristics of the surface. Depending on the structural stability

  17. Ionization of amphiphilic acidic block copolymers.

    Science.gov (United States)

    Colombani, Olivier; Lejeune, Elise; Charbonneau, Céline; Chassenieux, Christophe; Nicolai, Taco

    2012-06-28

    The ionization behavior of an amphiphilic diblock copolymer poly(n-butyl acrylate(50%)-stat-acrylic acid(50%))(100)-block-poly(acrylic acid)(100) (P(nBA(50%)-stat-AA(50%))(100)-b-PAA(100), DH50) and of its equivalent triblock copolymer P(nBA(50%)-stat-AA(50%))(100)-b-PAA(200)-b-P(nBA(50%)-stat-AA(50%))(100) (TH50) were studied by potentiometric titration either in pure water or in 0.5 M NaCl. These polymers consist of a hydrophilic acidic block (PAA) connected to a hydrophobic block, P(nBA(50%)-stat-AA(50%))(100), whose hydrophobic character has been mitigated by copolymerization with hydrophilic units. We show that all AA units, even those in the hydrophobic block could be ionized. However, the AA units within the hydrophobic block were less acidic than those in the hydrophilic block, resulting in the preferential ionization of the latter block. The preferential ionization of PAA over that of P(nBA(50%)-stat-AA(50%))(100) was stronger at higher ionic strength. Remarkably, the covalent bonds between the PAA and P(nBA(50%)-stat-AA(50%))(100) blocks in the diblock or the triblock did not affect the ionization of each block, although the self-association of the block copolymers into spherical aggregates modified the environment of the PAA blocks compared to when PAA was molecularly dispersed.

  18. Preparation of Impact and Weather Resistant Copolymer

    Institute of Scientific and Technical Information of China (English)

    LIANG Tao

    2001-01-01

    @@ Synthesis method of the resin is that crosslinked polybutyl acrylate latex is used as base latex. Styrene (St) and acrylonitrile (AN) are grafted onto polybutyl acrylate latex particle and turn into core-shell copolymer. The resin is a good resin's impact modifier. There are study of influence regularity about additive emulsifier, initiator, monomer concentration, the ratio of St to AN, chain transfer to graft polymerization. A kind of core-shell resin used as impact modifier is obtained. (A) Preparation of Crosslinked Butyl Acrylate Rubber Latex

  19. Preparation of Impact and Weather Resistant Copolymer

    Institute of Scientific and Technical Information of China (English)

    LIANG; Tao

    2001-01-01

    Synthesis method of the resin is that crosslinked polybutyl acrylate latex is used as base latex. Styrene (St) and acrylonitrile (AN) are grafted onto polybutyl acrylate latex particle and turn into core-shell copolymer. The resin is a good resin's impact modifier. There are study of influence regularity about additive emulsifier, initiator, monomer concentration, the ratio of St to AN, chain transfer to graft polymerization. A kind of core-shell resin used as impact modifier is obtained. (A) Preparation of Crosslinked Butyl Acrylate Rubber Latex  ……

  20. Small domain-size multiblock copolymer electrolytes

    Science.gov (United States)

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  1. Small domain-size multiblock copolymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  2. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2... accordance with the following prescribed conditions: (a) Ethylene-vinyl acetate-vinyl alcohol copolymers...

  3. Advanced analytical methods for the structure elucidation of polystyrene-b-poly(n-butyl acrylate) block copolymers prepared by reverse iodine transfer polymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Trevor Gavin; Pfukwa, Helen; Pasch, Harald, E-mail: hpasch@sun.ac.za

    2015-09-10

    Reverse iodine transfer polymerisation (RITP) is a living radical polymerisation technique that has shown to be feasible in synthesising segmented styrene-acrylate copolymers. Polymers synthesised via RITP are typically only described regarding their bulk properties using nuclear magnetic resonance spectroscopy and size exclusion chromatography. To fully understand the complex composition of the polymerisation products and the RITP reaction mechanism, however, it is necessary to use a combination of advanced analytical methods. In the present RITP procedure, polystyrene was synthesised first and then used as a macroinitiator to synthesise polystyrene-block-poly(n-butyl acrylate) (PS-b-PBA) block copolymers. For the first time, these PS-b-PBA block copolymers were analysed by a combination of SEC, in situ{sup 1}H NMR and HPLC. {sup 1}H NMR was used to determine the copolymer composition and the end group functionality of the samples, while SEC and HPLC were used to confirm the formation of block copolymers. Detailed information on the living character of the RITP process was obtained. - Highlights: • Comprehensive analysis of novel block copolymers. • Polymers were prepared for the first time by reverse iodine transfer polymerisation. • Combination of SEC, NMR, kinetic NMR, HPLC and comprehensive 2D-HPLC was used. • Detailed information about complex molecular composition and polymerisation kinetics was obtained.

  4. Control of the PEO chain conformation on nanoparticles by adsorption of PEO-block-poly(L-lysine) copolymers and its significance on colloidal stability and protein repellency.

    Science.gov (United States)

    Louguet, Stéphanie; Kumar, Anitha C; Guidolin, Nicolas; Sigaud, Gilles; Duguet, Etienne; Lecommandoux, Sébastien; Schatz, Christophe

    2011-11-01

    The physical adsorption of PEO(n)-b-PLL(m) copolymers onto silica nanoparticles and the related properties of poly(ethylene oxide) (PEO)-coated particles were studied as a function of the block copolymer composition. Copolymers adopt an anchor-buoy conformation at the particle surface owing to a preferential affinity of poly(L-lysine) (PLL) blocks with the silica surface over PEO blocks when a large excess of copolymer is used. The interdistance between PEO chains at particle surface is highly dependent on the size of PLL segments; a dense brush of PEO is obtained for short PLL blocks (DP = 10), whereas PEO chains adopt a so-called interacting "mushroom" conformation for large PLL blocks (DP = 270). The size of the PEO blocks does not really influence the copolymer surface density, but it has a strong effect on the PEO layer thickness as expected. Salt and protein stability studies led to similar conclusions about the effectiveness of a PEO layer with a dense brush conformation to prevent colloidal aggregation and protein adsorption. Besides, a minimal PEO length is required to get full stabilization properties; as a matter of fact, both PEO(45)-b-PLL(10) and PEO(113)-b-PLL(10) give rise to a PEO brush conformation but only the latter copolymer efficiently stabilizes the particles in the presence of salt or proteins.

  5. Preparation of shell cross-linked nano-objects from hybrid-peptide block copolymers.

    Science.gov (United States)

    Rodríguez-Hernández, Juan; Babin, Jérôme; Zappone, Bruno; Lecommandoux, Sébastien

    2005-01-01

    Supramolecular structures formed by self-assembly of diblock copolymers in solution are stable over restricted environmental conditions: concentration, temperature, pH, or ion strength among others. To enlarge their domain of application, it appears necessary to develop stabilization strategies. We report here different strategies to stabilize the shell of micelles formed by self-assembly of amphiphilic polydiene-b-polypeptide diblock copolymers. For this purpose, covalent bonds can be formed between either amine or carboxylic acid groups distributed along the soluble peptide block and a cross-linking agent that contains respectively aldehyde or amine functions. Shell stabilization affords systems with unique properties that combine three main advantages: shape persistence, control of the porosity, and stimuli-responsive behavior. The covalent capture of such macromolecular objects has been studied by light scattering, AFM, and conductimetry measurements.

  6. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles

    Science.gov (United States)

    Shi, Yunzhou; Kim, Sungwon; Huff, Terry B.; Borgens, Richard B.; Park, Kinam; Shi, Riyi; Cheng, Ji-Xin

    2010-01-01

    Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(D,L-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

  7. Synthesis and characterization of GAP/BAMO copolymers applied at high energetic composite propellants

    Directory of Open Access Journals (Sweden)

    Paul Bernt Kempa

    2010-09-01

    Full Text Available The main objective of these studies was the synthesis and characterization of new energetic binders and their use in some propellant formulations. Following the working plan elaborated, the synthesis and characterization of the following compounds has been done successfully:• GAP;• energetic Monomer BAMO;• energetic Binders;• copolymer GAP/PolyBAMO.The scale up for the synthesis of copolymer GAP/PolyBAMO and PolyBAMO using GAP as initiator has been done and they were fully characterized by IR, (¹H, ¹³C NMR-spectroscopy, GPC, elemental analysis, OH-functionality, differential scanning calorimetry (DSC and sensitivity tests (friction, impact. For this two scale up synthesis some propellant formulations were carried out and the results of mechanical and burning properties have been compared with GAP propellants.

  8. Periodic nanoscale patterning of polyelectrolytes over square centimeter areas using block copolymer templates.

    Science.gov (United States)

    Oded, Meirav; Kelly, Stephen T; Gilles, Mary K; Müller, Axel H E; Shenhar, Roy

    2016-05-18

    Nano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. Here, we present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm(2)-scale areas. Chemically modified block copolymer thin films featuring alternating charged and neutral domains are used as patterned substrates for electrostatic self-assembly. In-depth characterization of the deposition process using spectroscopy and microscopy techniques, including the state-of-the-art scanning transmission X-ray microscopy (STXM), reveals both the selective deposition of the polyelectrolyte on the charged copolymer domains as well as gradual changes in the film topography that arise from further penetration of the solvent molecules and possibly also the polyelectrolyte into these domains. Our results demonstrate the feasibility of creating nano-patterned polyelectrolyte layers, which opens up new opportunities for structured functional coating fabrication.

  9. Disk-cylinder and disk-sphere nanoparticles via a block copolymer blend solution construction.

    Science.gov (United States)

    Zhu, Jiahua; Zhang, Shiyi; Zhang, Ke; Wang, Xiaojun; Mays, Jimmy W; Wooley, Karen L; Pochan, Darrin J

    2013-01-01

    Researchers strive to produce nanoparticles with complexity in composition and structure. Although traditional spherical, cylindrical and membranous, or planar, nanostructures are ubiquitous, scientists seek more complicated geometries for potential functionality. Here we report the simple solution construction of multigeometry nanoparticles, disk-sphere and disk-cylinder, through a straightforward, molecular-level, blending strategy with binary mixtures of block copolymers. The multigeometry nanoparticles contain disk geometry in the core with either spherical patches along the disk periphery in the case of disk-sphere particles or cylindrical edges and handles in the case of the disk-cylinder particles. The portions of different geometry in the same nanoparticles contain different core block chemistry, thus also defining multicompartments in the nanoparticles. Although the block copolymers chosen for the blends are important for the definition of the final hybrid particles, the control of the kinetic pathway of assembly is critical for successful multigeometry particle construction.

  10. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles.

    Science.gov (United States)

    Shi, Yunzhou; Kim, Sungwon; Huff, Terry B; Borgens, Richard B; Park, Kinam; Shi, Riyi; Cheng, Ji-Xin

    2010-01-01

    Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(d,l-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

  11. Molecular transport into and out of ionic-liquid filled block copolymer vesicles in water

    Science.gov (United States)

    Lodge, Timothy; Yao, Letitia; So, Soonyong

    We have developed a method to prepare stable, size-controlled block copolymer vesicles that contain ionic liquid in the interior, but that are dispersed in water. Such nanoemulsions are of interest as nanoreactors, because the mass transfer and cost limitations of ionic liquids are circumvented. However, a crucial question is whether target molecules (e . g ., reagents and products) can enter and leave the vesicles, respectively, on a useful time scale (i . e ., seconds or shorter). In this talk we will briefly describe methods to prepare such vesicles with narrow size distributions, using poly(styrene)-block-poly(ethylene oxide) and poly(butadiene)-block-poly(ethylene oxide) copolymers of various compositions. We will then present results of pulsed-field gradient NMR measurements of probe diffusion that yield independent measurements of the entry and escape rates for selected small molecules, as a function of membrane thickness and temperature.

  12. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    Science.gov (United States)

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  13. Radiation preparation of PVA/CMC copolymers and their application in removal of dyes

    Energy Technology Data Exchange (ETDEWEB)

    Taleb, Manal F. Abou, E-mail: abutalib_m@yahoo.com [National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, P.O. Box 29, Cairo 11371 (Egypt); El-Mohdy, H. L. Abd; El-Rehim, H. A. Abd [National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, P.O. Box 29, Cairo 11371 (Egypt)

    2009-08-30

    Copolymer hydrogels composed of poly(vinyl alcohol) (PVA) and carboxymethyl cellulose (CMC) was prepared by using electron beam irradiation as crosslinking agent. The copolymers were characterized by FTIR and the physical properties such as gelation. The thermal behavior and swelling properties of the prepared hydrogels were investigated as a function of PVA/CMC composition. The factors effecting adsorption capacity of acid, reactive and direct dyes onto PVA/CMC hydrogel, such as CMC content, pH value of the dye solution, initial concentration and adsorption temperature for dyes were investigated. Thermodynamic study indicated that the values the negative values of {Delta}H suggested that the adsorption process is exothermic. The value of {Delta}H (38.81 kJ/mol) suggested that the electrostatic interaction is the dominant mechanism for the adsorption of dyes on hydrogel.

  14. Effects of Substrate Interactions on Out-of-Plane Order in Thin Films of Lamellar Copolymers

    Science.gov (United States)

    Mitra, Indranil; Mahadevapuram, Nikhila; Bozhchenko, Alona; Strzalka, Joseph; Stein, Gila E.

    2014-03-01

    Block copolymer (BCP) thin films are widely studied and applied for low cost, large area nanopatterning of semiconductor devices and has a very low tolerance for both in-plane or out of plane defects. Here we study, defects in lamellar diblock copolymers as a function of film thickness and the types of interactions at the substrate interface. Thin films of poly (styrene-b-methyl methacrylate) (PS-PMMA) with equilibrium periodicity 46nm were prepared and annealed on silicon substrates that were functionalized with a random copolymer P(s-r-MMA) brush. The resulting structures were evaluated with optical, scanning force and, scanning electron microscopy, along with grazing-incidence small-angle X-ray scattering (GISAXS). The in-plane correlation length (OCL) increased with brush grafting density, and increased with distance from the substrate interface. Out-of-plane order improved with brush grafting density, but thick films always contain a high density of misoriented domains. Based on these findings, we propose that (1) substrate pinning either induces or traps the mis-oriented domains, and (2) out-of-plane orientation defects are difficult to remove, from a thick film, because the energetic penalty for bending a ``tall'' domain is very low. Funding from NHARP and the Department of Chemical and Biomolecular Engineering, University of Houston.

  15. SELF ASSEMBLY OF ABC TRIBLOCK COPOLYMER THIN FILMS ON A BRUSH-COATED SUBSTRATE

    Institute of Scientific and Technical Information of China (English)

    Zhi-bin Jiang; Rong Wang; Gi Xue

    2009-01-01

    Self assemblies of ABC triblock copolymer thin films on a densely brush-coated substrate were investigated by using the self-consistent field theory. The middle block B and the coated polymer form one phase and the alternating phase A and phase C occur when the film is very thin either for the neutral or selective hard surface (which is opposite to the brush-coated substrate). The lamellar phase is stable on the hard surface when it is neutral and interestingly, the short block tends to stay on this hard surface. The rippled structure forms when the cylindrical phase exists near the surface between grafted polymers and ABC block copolymers. Due to the existence of the hydrophilic brush-coated surface serving as a soft surface of the film, the energy fluctuation existing in the film confined by two hard surfaces disappears. The results are helpful for designing the nanopattern of the film and realizing the functional thin film, such as adding the functional short block A to the BC diblock copolymer.

  16. Emerging interface dipole versus screening effect in copolymer/metal nano-layered systems

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, V., E-mail: v.torrisi@unict.it [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania (Italy); Ruffino, F. [Dipartimento di Fisica ed Astronomia-Università di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy); Liscio, A. [Istituto per la Sintesi e la Fotoreattività CNR, via Gobetti 101, 40129, Bologna (Italy); Grimaldi, M.G. [Dipartimento di Fisica ed Astronomia-Università di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy); Marletta, G. [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania (Italy)

    2015-12-30

    Graphical abstract: - Highlights: • Gold/copolymer multilayered thin films are prepared. • Mapping of the multilayers surface potential are performed by Kelvin Probe Force Microscopy. • Surface potential is controlled by the thickness and the surface coverage of the gold layer. • The work function of the gold layer is influenced by the underlying copolymer layer. - Abstract: Despite to the importance on the charge carrier injection and transport at organic/metal interface, there is yet an incomplete estimation of the various contribution to the overall dipole. This work shows how the mapping of the surface potential performed by Kelvin Probe Force Microscopy (KPFM) allows the direct observation of the interface dipole within an organic/metal multilayered structure. Moreover, we show how the sub-surface sensitivity of the KPFM depends on the thickness and surface coverage of the metallic layer. This paper proposes a way to control the surface potential of the exposed layer of an hybrid layered system by controlling the interface dipole at the organic/metal interface as a function of the nanometer scale thickness and the surface coverage of the metallic layer. We obtained a layered system constituted by repeated sequence of a copolymer film, poly(n-butylacrylate)-b-polyacrilic acid, and Au layer. We compared the results obtained by means of scanning probe microscopy technique with the results of the KPFM technique, that allows us to obtain high-contrast images of the underlying layer of copolymer behind a typical threshold, on the nanoscale, of the thickness of the metal layer. We considered the effect of the morphology of the gold layer on the covered area at different thicknesses by using the scanning electron microscopy technique. This finding represents a step forward towards the using of dynamic atomic force microscopy based characterization to explore the electrical properties of the sub-surface states of layered nanohybrid, that is a critical point for

  17. Tuning the Optoelectronic Properties of Vinylene-Linked Donor−Acceptor Copolymers for Organic Photovoltaics

    KAUST Repository

    Ko, Sangwon

    2010-08-24

    Five new donor-acceptor copolymers containing the electron acceptor benzothiadiazole (BTZ) linked to the electron donors fluorene (FL) or cyclopentadithiophene (CPDT) via vinylene units were synthesized to study polymer structure-property relationships in organic photovoltaic devices. Both alternating (P) and random copolymers (P1-P4) were prepared via Suzuki and Stille polycondensations, respectively. The cyclopentadithiophene copolymers (P2 and P4) have smaller electrochemical band gaps (1.79 and 1.64 eV) compared to the fluorene-containing copolymers (2.08 and 1.95 eV for P1 and P3). However, the presence of CPDT raises the electrochemical HOMO energy levels (-4.83 and-4.91 eV for P2 and P4) compared to the FL copolymers (-5.06 and-5.15 eV for P1 and P3) leading to small open circuit voltages (Voc) in solar cells. The primary solution and thin-film UV-vis absorption peaks of P3 and P4, which do not contain alkylated thiophenes appended to the BTZ unit, are at lower energy and have larger absorption coefficients than their P1 and P2 counterparts. Detailed theoretical analyses of the geometric structure, electronic structure, and excited-state vertical transitions using density functional theory provide direct insight into the interplay between the structural modifications and resulting electronic and optical changes. A high molecular weight (Mn = 25 kg/mol) polymer with a large degree of polymerization (DPn = 21) was easily achieved for the random copolymer P1, leading to thin films with both a larger absorption coefficient and a larger hole mobility compared to the analogous alternating polymer P (Mn = 22 kg/mol, DPn = 18). An improved short circuit current and a power conversion efficiency up to 1.42% (Jsc = 5.82 mA/cm2, Voc = 0.765 V, and FF = 0.32) were achieved in bulk heterojunction solar cells based on P1. © 2010 American Chemical Society.

  18. Controlling Structure in Sulfonated Block Copolymer Membranes

    Science.gov (United States)

    Truong, Phuc; Stein, Gila; Strzalka, Joe

    2015-03-01

    In many ionic block copolymer systems, the strong incompatibility between ionic and non-ionic segments will trap non-equilibrium structures in the film, making it difficult to engineer the optimal domain sizes and transport pathways. The goal of this work is to establish a framework for controlling the solid-state structure of sulfonated pentablock copolymer membranes. They have ABCBA block sequence, where A is poly(t-butyl styrene), B is poly(hydrogenated isoprene), and C is poly(styrene sulfonate). To process into films, the polymer is dissolved in toluene/n-propanol solvent mixtures, where the solvent proportions and the polymer loading were both varied. Solution-state structure was measured with small angle X-ray scattering (SAXS). We detected micelles with radii that depend on the solvent composition and polymer loading. Film structure was measured with grazing-incidence SAXS, which shows (i) domain periodicity is constant throughout film thickness; (ii) domain periodicity depends on solvent composition and polymer loading, and approximately matches the micelle radii in solutions. The solid-state packing is consistent with a hard sphere structure factor. Results suggest that solid-state structure can be tuned by manipulating the solution-state self-assembly.

  19. MOLECULAR DESIGN SYNTHESIS AND PROPERTIES OF SIX KINDS OF MULTIPHASE (STYRENE-ETHYLENE OXIDE) COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    XIE Hongquan; ZHOU Peiguang; SUN Wenbo; XIA Jun; LIU Jin; XIE Dong

    1991-01-01

    @@ Multiphase copolymers of styrene (S) and ethylene oxide (EO) are amphiphilic,because of the hydrophobic and amorphous polystyrene (PS) segments and the hydrophilic and crystalline polyoxyethylene (PEO). They have many uses including polymeric surfactants, electrostatic charge reducers, compatibilizer in polymer blending, phase transfer catalysts or solid polymer electrolytes. These copolymers include different types of block copolymers, graft copolymers and star-shaped block copolymers.

  20. Complexation-tailored morphology of asymmetric block copolymer membranes

    KAUST Repository

    Madhavan, Poornima

    2013-08-14

    Hydrogen-bond formation between polystyrene-b-poly (4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) and -OH/-COOH functionalized organic molecules was used to tune morphology of asymmetric nanoporous membranes prepared by simultaneous self-assembly and nonsolvent induced phase separation. The morphologies were characterized by field emmision scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Hydrogen bonds were confirmed by infrared (IR), and the results were correlated to rheology characterization. The OH-functionalized organic molecules direct the morphology into hexagonal order. COOH-functionalized molecules led to both lamellar and hexagonal structures. Micelle formation in solutions and their sizes were determined using dynamic light scattering (DLS) measurements and water fluxes of 600-3200 L/m 2·h·bar were obtained. The pore size of the plain BCP membrane was smaller than with additives. The following series of additives led to pores with hexagonal order with increasing pore size: terephthalic acid (COOH-bifunctionalized) < rutin (OH-multifunctionalized) < 9-anthracenemethanol (OH-monofunctionalized) < 3,5-dihydroxybenzyl alcohol (OH-trifunctionalized). © 2013 American Chemical Society.

  1. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    Science.gov (United States)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; Sweat, Daniel P.; Wang, Xudong; Gopalan, Padma

    2016-06-01

    In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and

  2. Self-assembled antimicrobial and biocompatible copolymer films on titanium.

    Science.gov (United States)

    Pfaffenroth, Cornelia; Winkel, Andreas; Dempwolf, Wibke; Gamble, Lara J; Castner, David G; Stiesch, Meike; Menzel, Henning

    2011-11-10

    Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate self-assemble to form ultrathin layers on titanium surfaces that show antimicrobial activity, and biocompatibility. The copolymer layers are characterized by contact angle measurements, ellipsometry and XPS. Antibacterial activity is assessed by investigation of adherence of S. mutans. Biocompatibility is rated based on human gingival fibroblast adhesion and proliferation. By balancing the opposing effects of the chemical composition on biocompatibility and antimicrobial activity, copolymer coatings are fabricated that are able to inhibit the growth of S. mutans on the surface but still show attachment of gingival fibroblasts, and therefore might prevent biofilm formation on implants.

  3. Synthesis and properties of polystyrene/polydimethylsiloxane graft copolymers

    Institute of Scientific and Technical Information of China (English)

    Wu Ningjing; Huang Likan; Zheng Anna

    2006-01-01

    Polystyrene-graft-polydimethylsiloxane (PS-g-PDMS) copolymers with different PDMS content were synthesized by the radical bulk copolymerization of PDMS macromonomer and styrene.The copolymers were characterized by Fourier transform infrared (FT-IR),1H-nuclear magnetic resonance (NMR),thermogravimetric analysis (TGA),dynamic mechanical analysis (DMA),transmission electron microscopy (TEM) and the mechanical properties of the copolymers were also carried out.It was indicated that the notched impact strength and elongation at break of the polymers increased with the increase of PDMS content.The thermal stability of PS-g-PDMS is better than that of PS.

  4. Verapamil hydrochloride release characteristics from new copolymer zwitterionic matrix tablets.

    Science.gov (United States)

    Kostova, Bistra; Kamenska, Elena; Ivanov, Ivo; Momekov, George; Rachev, Dimitar; Georgiev, George

    2008-01-01

    The aim of this study was to synthesize stable copolymer (vinyl acetate-co-3-dimethyl[methacryloyloxyethyl] ammonium propane sulfinate) zwitterionic latex with different compositions for the first time by emulsifier-free emulsion copolymerization. Throughout the course of the study, a proposal was made for the explanation of the relationship between the "overshooting" phenomenon (a swelling kinetics with a maximum) and the specific self-association of the zwitterionic copolymers. The zwitterionic monomer unit mole fraction, pH, and ionic strength effects on this relationship, on the swelling kinetics of the zwitterionic copolymers, and on the sustained verapamil hydrochloride release from the model tablets were established by the study's authors.

  5. STUDY ON SOLID STATE POLYCONDENSATION OF POLYETHYLENE TEREPHTHALATE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    WU Rongrui; DENG Yuan; HUANG Guanbao; DENG Jianyuan; LI Huiping

    1994-01-01

    The kinetic data of solid state polycondensation of PET and its copolymers are determined.It is shown that the reaction rate of copolycondensation is higher than that of PET polycondensation, and increases with the comonomers content. But the reaction rate of copolycondensation in melt state of this kind of copolymers is lower than that of PET. It is considered that the chemical reactivity of comonomer is the main factor which affect the polycondensation in melt state,whereas the aggregative structure of the polymer is the main factor in solid state. The crystallinity and crystallite size of the copolymers have been measured by X-ray method.

  6. Directed self assembly of block copolymers using chemical patterns with sidewall guiding lines, backfilled with random copolymer brushes.

    Science.gov (United States)

    Pandav, Gunja; Durand, William J; Ellison, Christopher J; Willson, C Grant; Ganesan, Venkat

    2015-12-21

    Recently, alignment of block copolymer domains has been achieved using a topographically patterned substrate with a sidewall preferential to one of the blocks. This strategy has been suggested as an option to overcome the patterning resolution challenges facing chemoepitaxy strategies, which utilize chemical stripes with a width of about half the period of block copolymer to orient the equilibrium morphologies. In this work, single chain in mean field simulation methodology was used to study the self assembly of symmetric block copolymers on topographically patterned substrates with sidewall interactions. Random copolymer brushes grafted to the background region (space between patterns) were modeled explicitly. The effects of changes in pattern width, film thicknesses and strength of sidewall interaction on the resulting morphologies were examined and the conditions which led to perpendicular morphologies required for lithographic applications were identified. A number of density multiplication schemes were studied in order to gauge the efficiency with which the sidewall pattern can guide the self assembly of block copolymers. The results indicate that such a patterning technique can potentially utilize pattern widths of the order of one-two times the period of block copolymer and still be able to guide ordering of the block copolymer domains up to 8X density multiplication.

  7. Shear induced order in SEP diblock copolymer micelles: multiple BCC slip systems

    Science.gov (United States)

    Torija, Maria A.; Choi, Soohyung; Bates, Frank S.; Lodge, Timothy P.

    2010-03-01

    Poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers are solvated by squalane leading to glassy poly(styrene) domains dispersed in a viscoelastic medium. For diblocks containing less than about 50% by weight poly(styrene) and at SEP concentrations greater than 6 w. % these mixtures self-assemble into glassy spherical microdomains that order on a body centered cubic (BCC) lattice. We have investigated how polycrystalline configurations respond to large amplitude oscillatory shear as a function of shear rate, strain amplitude and block copolymer composition. Structure was characterized by small-angle X-ray scattering measurements while simultaneously deforming the mixtures with an in-situ rheometer. All three slip systems associated with plastic deformation in BCC metals110,211,321, were identified with the x-ray beam oriented perpendicular to the shear plane. Higher shear rates and larger strain amplitudes produced more slip within the 211 system. These results represent one of the most comprehensive assessments of BCC structure in solvated copolymers and will be discussed within the context of the associated linear viscoelastic behavior.

  8. Incorporation of Amphipathic Diblock Copolymer in Lipid Bilayer for Improving pH Responsiveness

    Directory of Open Access Journals (Sweden)

    Tian Xia

    2016-01-01

    Full Text Available Diblock copolymers (mPEG-b-PDPA, which were designed to possess pH-sensitivity as well as amphipathy, were used as an intelligent lock in the liposomal membrane. The so-called pH-sensitive liposomes were prepared by simple mixing of the synthesized mPEG-b-PDPA with phospholipids and cholesterol. Fluorescence polarization at pH 7.4 showed that the membrane stability of the hybrid liposome was significantly increased compared with the pure liposome. Therefore, in the neutral environment, the leakage of doxorubicin (DOX was inhibited. However, when pH decreased to 6.0, DOX release rate increased by 60% due to the escape of copolymer. The effects of the membrane composition and the PDPA segment length on bilayer membrane functions were investigated. These results revealed that the synthesized copolymers increased the difference in DOX cumulative release between pH 7.4 and 6.0, that is, improved the pH-controllability of the drug release from hybrid liposomes.

  9. Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement

    Science.gov (United States)

    Lee, Jae Won; Cho, Hye Jin; Chun, Jinsung; Kim, Kyeong Nam; Kim, Seongsu; Ahn, Chang Won; Kim, Ill Won; Kim, Ju-Young; Kim, Sang-Woo; Yang, Changduk; Baik, Jeong Min

    2017-01-01

    A robust nanogenerator based on poly(tert-butyl acrylate) (PtBA)–grafted polyvinylidene difluoride (PVDF) copolymers via dielectric constant control through an atom-transfer radical polymerization technique, which can markedly increase the output power, is demonstrated. The copolymer is mainly composed of α phases with enhanced dipole moments due to the π-bonding and polar characteristics of the ester functional groups in the PtBA, resulting in the increase of dielectric constant values by approximately twice, supported by Kelvin probe force microscopy measurements. This increase in the dielectric constant significantly increased the density of the charges that can be accumulated on the copolymer during physical contact. The nanogenerator generates output signals of 105 V and 25 μA/cm2, a 20-fold enhancement in output power, compared to pristine PVDF–based nanogenerator after tuning the surface potential using a poling method. The markedly enhanced output performance is quite stable and reliable in harsh mechanical environments due to the high flexibility of the films. On the basis of these results, a much faster charging characteristic is demonstrated in this study. PMID:28560339

  10. Coil fraction-dependent phase behaviour of a model globular protein–polymer diblock copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Carla S. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Olsen, Bradley D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-01-01

    The self-assembly of the model globular protein–polymer block copolymer mCherry-b-poly(N-isopropyl acrylamide) is explored across a range of polymer coil fractions from 0.21 to 0.82 to produce a phase diagram for these materials as a function of molecular composition. Overall, four types of morphologies were observed: hexagonally packed cylinders, perforated lamellae, lamellae, and disordered nanostructures. Across all coil fractions and morphologies, a lyotropic re-entrant order–disorder transition in water was observed, with disordered structures below 30 wt% and above 70 wt% and well-ordered morphologies at intermediate concentrations. Solid state samples prepared by solvent evaporation show moderately ordered structures similar to those observed in 60 wt% solutions, suggesting that bulk structures result from kinetic trapping of morphologies which appear at lower concentrations. While highly ordered cylindrical nanostructures are observed around a bioconjugate polymer volume fraction of 0.3 and well-ordered lamellae are seen near a volume fraction of 0.6, materials at lower or higher coil fractions become increasingly disordered. Notable differences between the phase behaviour of globular protein–polymer block copolymers and coil–coil diblock copolymers include the lack of spherical nanostructures at either high or low polymer coil fractions as well as shifted phase boundaries between morphologies which result in an asymmetric phase diagram.

  11. Self-assembly of metal--polymer analogues of amphiphilic triblock copolymers

    Science.gov (United States)

    Nie, Zhihong; Fava, Daniele; Kumacheva, Eugenia; Zou, Shan; Walker, Gilbert; Rubinstein, Michael

    2008-03-01

    We proposed a block copolymer approach to the self-assembly of inorganic nanrods terminated with polymer molecules at both ends. We organized metal nanorods in structures with varying geometries by using a striking analogy between amphiphilic ABA triblock copolymers and the hydrophilic nanorods tetheredwith hydrophobic polymer chains at both ends. The self-assembly was tunable and reversible and it was achieved solely by changing the solvent quality for the constituent blocks. The distance between adjacent nanorods along chains can be tuned by varying the composition of mixture solvents or the molecular weight of polymer blocks, which allows us precisely control the plasmonic band of self-assembled structures. A systematic study of the self-assembly as a function of solvent composition and the molecular weight of the polymer blocks allowed us to construct a diagram that maps the assembled structures. This approach provides a new route to the organization of anisotropic nanoparticles by using the strategies that are established for the self-assembly of block copolymers.

  12. Amphiphilic Fluorinated Block Copolymer Synthesized by RAFT Polymerization for Graphene Dispersions

    Directory of Open Access Journals (Sweden)

    Hyang Moo Lee

    2016-03-01

    Full Text Available Despite the superior properties of graphene, the strong π–π interactions among pristine graphenes yielding massive aggregation impede industrial applications. For non-covalent functionalization of highly-ordered pyrolytic graphite (HOPG, poly(2,2,2-trifluoroethyl methacrylate-block-poly(4-vinyl pyridine (PTFEMA-b-PVP block copolymers were prepared by reversible addition-fragmentation chain transfer (RAFT polymerization and used as polymeric dispersants in liquid phase exfoliation assisted by ultrasonication. The HOPG graphene concentrations were found to be 0.260–0.385 mg/mL in methanolic graphene dispersions stabilized with 10 wt % (relative to HOPG PTFEMA-b-PVP block copolymers after one week. Raman and atomic force microscopy (AFM analyses revealed that HOPG could not be completely exfoliated during the sonication. However, on-line turbidity results confirmed that the dispersion stability of HOPG in the presence of the block copolymer lasted for one week and that longer PTFEMA and PVP blocks led to better graphene dispersibility. Force–distance (F–d analyses of AFM showed that PVP block is a good graphene-philic block while PTFEMA is methanol-philic.

  13. Subchronic toxicity of polyethylene glycol-g-polyvinyl alcohol grafted copolymer.

    Science.gov (United States)

    Heuschmid, Franziska F; Schuster, Paul; Lauer, Birthe; Buesen, Roland; Mellert, Werner; Groeters, Sibylle; van Ravenzwaay, Bennard

    2013-07-01

    The safety of polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was evaluated in a 13-week oral toxicity study in rats and in a 9-month oral toxicity study in dogs. Wistar rats were administered 600, 3000, or 15,000 ppm PEG-PVA grafted copolymer in their drinking water whereas beagle dogs were fed 3000, 10,000, or 30,000 ppm PEG-PVA grafted copolymer in the diet. There were no mortalities, no adverse clinical signs, no toxicologically adverse effects on body weight or body weight gain, feed consumption, hematological, clinical chemistry or urinary parameters, or histopathology in either species. In rats, no treatment-related effects were observed in the functional observational battery (FOB) or related measurements of motor activity. Increased water consumption observed in rats at the highest dose was the only test substance-induced effect noted. The no-observed-adverse-effect level (NOAEL) was the highest concentration tested in both species: 15,000 ppm in rats (corresponding to a daily intake of 1611 mg/kg bw for males and 2191 mg/kg bw for females) and 30,000 ppm in dogs (corresponding to a mean daily intake of 783 mg/kg bw for males and 811 mg/kg bw for females).

  14. Construction of hydroxypropyl-β-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel

    Science.gov (United States)

    Miao, Qinghua; Li, Suping; Han, Siyuan; Wang, Zhi; Wu, Yan; Nie, Guangjun

    2012-08-01

    A novel amphiphilic copolymer with p-maleimidophenyl isocyanate-hydroxypropyl-β-cyclodextrin-polylactide-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine to generate copolymer nanoparticles (NPs) has been designed. In order to develop an active targeting system, integrin αvβ3-specific targeting peptide cyclo(Arg-Gly-Asp-D-Phe-Cys), cRGD, was conjugated to the surface of NPs (NPs-RGD). These NPs were used to encapsulate anti-tumor drug, paclitaxel. The resulting NPs exhibited high drug-loading capacity and controlled drug release in vitro at acidic pH. In vitro cytotoxicity assay demonstrates that paclitaxel-loaded NPs-RGD significantly inhibited B16 tumor cell (high αvβ3) proliferation relative to free paclitaxel and paclitaxel-loaded NPs at high concentrations. Paclitaxel-loaded NPs-RGD localized mainly in lysosomes in B16 cells as revealed by confocal microscopy. These results suggest a novel strategy for fabrication—functionalizing hydroxypropyl-β-cyclodextrin copolymer nanoparticles for targeting delivery of paclitaxel to integrin αvβ3-rich tumor cells. These nanocarriers can be readily extended to couple other bioactive molecules for active targeting and delivery of various chemotherapeutic drugs.

  15. Construction of hydroxypropyl-{beta}-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Miao Qinghua; Li Suping; Han Siyuan [National Center for Nanoscience and Technology of China, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (China); Wang Zhi, E-mail: wangzhi@jlu.edu.cn [Jilin University, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education (China); Wu Yan, E-mail: wuy@nanoctr.cn; Nie Guangjun, E-mail: niegj@nanoctr.cn [National Center for Nanoscience and Technology of China, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (China)

    2012-08-15

    A novel amphiphilic copolymer with p-maleimidophenyl isocyanate-hydroxypropyl-{beta}-cyclodextrin-polylactide-1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine to generate copolymer nanoparticles (NPs) has been designed. In order to develop an active targeting system, integrin {alpha}{sub v}{beta}{sub 3}-specific targeting peptide cyclo(Arg-Gly-Asp-D-Phe-Cys), cRGD, was conjugated to the surface of NPs (NPs-RGD). These NPs were used to encapsulate anti-tumor drug, paclitaxel. The resulting NPs exhibited high drug-loading capacity and controlled drug release in vitro at acidic pH. In vitro cytotoxicity assay demonstrates that paclitaxel-loaded NPs-RGD significantly inhibited B16 tumor cell (high {alpha}{sub v}{beta}{sub 3}) proliferation relative to free paclitaxel and paclitaxel-loaded NPs at high concentrations. Paclitaxel-loaded NPs-RGD localized mainly in lysosomes in B16 cells as revealed by confocal microscopy. These results suggest a novel strategy for fabrication-functionalizing hydroxypropyl-{beta}-cyclodextrin copolymer nanoparticles for targeting delivery of paclitaxel to integrin {alpha}{sub v}{beta}{sub 3}-rich tumor cells. These nanocarriers can be readily extended to couple other bioactive molecules for active targeting and delivery of various chemotherapeutic drugs.

  16. Poly(butylene cyclohexanedicarboxylate/diglycolate random copolymers reinforced with SWCNTs for multifunctional conductive biopolymer composites

    Directory of Open Access Journals (Sweden)

    E. Fortunati

    2016-02-01

    Full Text Available The objective of this work was to develop a versatile strategy for preparing multifunctional composite films with tunable properties. Novel conductive composites based on the combination of single walled carbon nanotubes (SWCNTs and biodegradable poly(butylene cyclohexanedicarboxylate/diglycolate random copolymers (P(BCEmBDGn are here presented. In particular, synthesized PBCE homopolymer and two copolymers containing different amounts of ether–oxygen containing co-units, P(BCE90BDG10 and P(BCE70BDG30, have been considered as matrices of SWCNTs based composites. The effect of incorporation of different amounts of SWCNTs (0.1–0.5–0.75–1 wt% on morphological, thermal, mechanical and electrical properties was deeply investigated. The morphology of the fracture surfaces is affected by the SWCNT presence, while the increase in the SWCNT content does not provide significant microstructure modifications. The thermal properties underlined that nanotubes can act as nucleating agents, favouring the polymer crystallization process. The mechanical behavior demonstrated that the introduction of carbon nanotubes both in the case of PBCE homopolymer and in random copolymers based formulations exerted a reinforcing effect. All composites exhibit high electrical conductivity in comparison to the neat polymers. This work demonstrates that this combinatorial approach can be used to develop materials with tunable and advanced functional properties.

  17. Hierarchical self-assembly of spider silk-like block copolymers

    Science.gov (United States)

    Krishnaji, Sreevidhya; Huang, Wenwen; Cebe, Peggy; Kaplan, David

    2011-03-01

    Block copolymers provide an attractive venue to study well-defined nano-structures that self-assemble to generate functionalized nano- and mesoporous materials. In the present study, a novel family of spider silk-like block copolymers was designed, bioengineered and characterized to study the impact of sequence chemistry, secondary structure and block length on assembled morphology. Genetic variants of native spider dragline silk (major ampullate spidroin I, Nephila clavipes) were used as polymer building blocks. Characterization by FTIR revealed increased ?-sheet content with increasing hydrophobic A blocks; SEM revealed spheres, rod-like structures, bowl-shaped and giant compound micelles. Langmuir Blodgett monolayers were prepared at the air-water interface at different surface pressures and monolayer films analyzed by AFM revealed oblate to prolate structures. Circular micelles, rod-like, densely packed circular structures were observed for HBA6 at increasing surface pressure. Exploiting hierarchical assembly provide a promising approach to rationale designs of protein block copolymer systems, allowing comparison to traditional synthetic systems.

  18. Hydrogen-bond interaction assisted branched copolymer HILIC material for separation and N-glycopeptides enrichment.

    Science.gov (United States)

    Shao, Wenya; Liu, Jianxi; Yang, Kaiguang; Liang, Yu; Weng, Yejing; Li, Senwu; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-09-01

    Hydrophilic interaction chromatography (HILIC) has attracted increasing attention in recent years due to its efficient application in the separation of polar compounds and the enrichment of glycopeptides. However, HILIC materials are still of weak hydrophilicity and thereby present weak retention and selectivity. In this work, branched copolymer modified hydrophilic material Sil@Poly(THMA-co-MBAAm), with high hydrophilicity and unique "claw-like" polyhydric groups, were prepared by "grafting from" thiol-ene click reaction. Due to the abundant functional groups provided by branched copolymer, the material showed excellent retention for nucleosides, necleobases, acidic compounds, sugars and peptides. Furthermore, Sil@Poly(THMA-co-MBAAm) was also applied for the N-glycosylation sites profiling towards the digests of the mouse brain, and 1997N-glycosylated peptides were identified, corresponding to 686 glycoprotein groups. Due to the assisted hydrogen-bond interaction, the selectivity for glycopeptide enrichment in the real sample reached 94.6%, which was the highest as far as we know. All these results indicated that such hydrogen-bond interaction assisted branched copolymer HILIC material possessed great potential for the separation and large scale glycoproteomics analysis.

  19. Sequential Block Copolymer Self-Assemblies Controlled by Metal-Ligand Stoichiometry.

    Science.gov (United States)

    Yin, Liyuan; Wu, Hongwei; Zhu, Mingjie; Zou, Qi; Yan, Qiang; Zhu, Liangliang

    2016-06-28

    While numerous efforts have been devoted to developing easy-to-use probes based on block copolymers for detecting analytes due to their advantages in the fields of self-assembly and sensing, a progressive response on block copolymers in response to a continuing chemical event is not readily achievable. Herein, we report the self-assembly of a 4-piperazinyl-1,8-naphthalimide based functional block copolymer (PS-b-PN), whose self-assembly and photophysics can be controlled by the stoichiometry-dependent metal-ligand interaction upon the side chain. The work takes advantages of (1) stoichiometry-controlled coordination-structural transformation of the piperazinyl moiety on PS-b-PN toward Fe(3+) ions, thereby resulting in a shrinkage-expansion conversion of the self-assembled nanostructures in solution as well as in thin film, and (2) stoichiometry-controlled competition between photoinduced electron transfer and spin-orbital coupling process upon naphthalimide fluorophore leading to a boost-decline emission change of the system. Except Fe(3+) ions, such a stoichiometry-dependent returnable property cannot be observed in the presence of other transition ions. The strategy for realizing the dual-channel sequential response on the basis of the progressively alterable nanomorphologies and emissions might provide deeper insights for the further development of advanced polymeric sensors.

  20. Polyaspartamide-Polylactide Graft Copolymers with Tunable Properties for the Realization of Fluorescent Nanoparticles for Imaging.

    Science.gov (United States)

    Craparo, Emanuela Fabiola; Porsio, Barbara; Mauro, Nicolò; Giammona, Gaetano; Cavallaro, Gennara

    2015-08-01

    Here, the synthesis and the characterization of novel amphiphilic graft copolymers with tunable properties, useful in obtaining polymeric fluorescent nanoparticles for application in imaging, are described. These copolymers are obtained by chemical conjugation of rhodamine B (RhB) moieties, polylactic acid (PLA), and O-(2-aminoethyl)-O'-methyl poly(ethylene glycol) (PEG) on α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA). In particular, PHEA is first functionalized with RhB to obtain PHEA-RhB with a derivatization degree in RhB (DDRhB ) equal to 0.55 mol%. By varying the reaction conditions, different amounts of PLA are grafted on PHEA-RhB to obtain PHEA-RhB-PLA with DDPLA equal to 1.9, 4.0, and 6.2 mol%. Then, PEG chains are grafted on PHEA-RhB-PLA derivatives to obtain PHEA-RhB-PLA-PEG graft copolymers. The preparation of polymeric fluorescent nanoparticles with tunable properties and spherical shape is described by using PHEA-RhB-PLA-PEG with DD in PLA and PEG equal to 4.0 and 4.9 mol%, by following easily scaling up processes, such as emulsion-solvent evaporation and high pressure homogenization (HPH)-solvent evaporation techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    Science.gov (United States)

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors.

  2. Study of polystyrene-poly(ethylene oxide) diblock copolymer monolayers as barriers to protein adsorption

    Science.gov (United States)

    Jogikalmath, Gangadhar

    Protein adsorption resistant surfaces find use in many biomedical applications, such as catheters, dialysis devices and biosensors that involve blood contacting surfaces. To ensure long-term functioning of a device in an environment containing protein, there is a need to produce homogeneous surfaces that are resistant to protein adsorption. A polymer brush covered surface, produced by either physical adsorption or chemical grafting of hydrophilic polymers to surfaces, is one of the approaches used in creating such surfaces. High grafting densities needed to make an effective barrier are usually not realized in chemical grafting/adsorption from solution, due to self-exclusion of surface grafted molecules. In this dissertation polymer brush surfaces formed by chemically grafted PEO molecules and transferred monolayers of PS-b-PEO diblock copolymers are investigated using atomic force microscopy (AFM), surface plasmon resonance (SPR) and surface pressure measurement techniques. An AFM adhesion mapping technique was used to evaluate the surface heterogeneity of chemically modified PEO and transferred diblock copolymer monolayer surfaces. The behavior of PS-b-PEO molecules at the air-water interface was studied using Langmuir trough. The stability of transferred diblock copolymer monolayers was investigated using AFM. Using SPR, protein adsorption to the diblock copolymer layers was investigated as a function of protein size (using HSA and ferritin) as a function of grafting density of PEO in the monolayer. It was seen that a lower density of the PS-b-PEO monolayer was sufficient to prevent ferritin adsorption (larger protein) while a higher density brush layer was required to achieve complete prevention of HSA adsorption to the surface. The effect of mobility of the polymer brush layer on protein adsorption prevention was analyzed using SPR and surface pressure measurements. It was seen that the copolymer monolayer (at the air-buffer interface) rearranged itself to

  3. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers.

    Science.gov (United States)

    Tang, Ping; Qiu, Feng; Zhang, Hongdong; Yang, Yuliang

    2004-03-01

    Using a real space implementation of the self-consistent field theory for the polymeric system, we explore microphases of ABC linear triblock copolymers. For the sake of numerical tractability, the calculation is carried out in a two-dimensional (2D) space. Seven microphases are found to be stable for the ABC triblock copolymer in 2D, which include lamellae, hexagonal lattice, core-shell hexagonal lattice, tetragonal lattice, lamellae with beads inside, lamellae with beads at the interface, and hexagonal phase with beads at the interface. By systematically varying the composition, triangle phase diagrams are constructed for four classes of typical triblock polymers in terms of the relative strengths of the interaction energies between different species. In general, when both volume fractions and interaction energies of the three species are comparable, lamellar phases are found to be the most stable. While one of the volume fractions is large, core-shell hexagonal or tetragonal phases can be formed, depending on which of the blocks dominates. Furthermore, more complex morphologies, such as lamellae with beads inside, lamellae with beads at the interface, and hexagonal phases with beads at the interface compete for stability with lamellae structures, as the interaction energies between distinct blocks become asymmetric. Our study provides guidance for the design of microstructures in complex block copolymers.

  4. Copolymers based on N-acryloyl-L-leucine and urea methacrylate with pyridine moieties

    Directory of Open Access Journals (Sweden)

    Buruiana Emil C.

    2016-01-01

    Full Text Available By using free radical polymerization of (N-methacryloyloxyethyl-N′-4-picolyl-urea (MAcPU and N-acryloyl-L-leucine (AcLeu, an optically active copolymer, poly[(N-methacryloyloxyethyl-N′-4-picolyl-urea-co-N-acryloyl-L-leucine], MAcPU-co-AcLeu (1.86:1 molar ratio was prepared and subsequently functionalized at the pyridine-N with (1R/S-(−/+-10-camphorsulfonic acid (R/S-CSA and at carboxyl group with (R-(+-α-ethylbenzylamine (R-EBA or trans-4-stilbene methanol (t-StM. The structures, chemical composition and chiroptical activity of the monomers and the copolymers were characterized by spectral analysis (FTIR, 1H (13C-NMR, 1H,1H-COSY, UV/vis, thermal methods (TGA, DSC, fluorescence spectroscopy, gel permeation chromatography and specific rotation measurements. Influence of the optical activity of monomer and modifier on modified copolymers suggested a good correlation between the experimental data obtained (23[α]589=+12.5° for AcLeu and MAcPU-co-AcLeu, 23[α]589=0°+27.5° for (MAcPU-co-AcLeu-R/S-CSA, 23[α]589=+25° for (MAcPU-co-AcLeu-R-EBA, and 23[α]589 = 0° for (MAcPU-co-AcLeu-St. In addition, the photobehavior of the stilbene copolymer (MAcPU-co-AcLeu-St in film was investigated by UV-vis spectroscopy. The fluorescence quenching of the stilbene species in the presence of aliphatic/aromatic amine in DMF solution was evaluated, more efficiently being 4,4′−dipyridyl (detection limit: 7.2 x 10-6 mol/L.

  5. Effects of functionalization of PLGA-[Asp-PEG]n copolymer surfaces with Arg-Gly-Asp peptides, hydroxyapatite nanoparticles, and BMP-2-derived peptides on cell behavior in vitro.

    Science.gov (United States)

    Pan, Haitao; Zheng, Qixin; Yang, Shuhua; Guo, Xiaodong

    2014-12-01

    Functionalization of polymer surfaces has been recognized as a valuable tool to improve their properties that significantly influence cellular behaviors, such as adhesion, proliferation, migration, and differentiation. In stem cell-mediated bone tissue engineering, surface multifunctionalization of polymeric scaffolds with cell-adhesive, osteoconductive, and osteoinductive biomolecules is a critical strategy to improve such properties. However, the traditional surface modification techniques such as physical deposition/adsorption, chemical modification, grafting, and plasma techniques have great limitations for immobilization of multiple bioactive molecules due to multistep procedures. Recently, a universal technique based on mussel-inspired self-polymerization of dopamine is developed for multifunctional coatings in a simple way. In our study, we used this newly developed technique to incorporate three biomolecules, cell adhesion-promoting (K)16 GRGDSPC peptides, osteoconductive hydroxyapatite (HAp) nanoparticles, and osteoinductive bone morphogenetic protein-2-derived P24 peptides, to functionalize poly(lactide-co-glycolide) (PLGA)-[Asp-PEG]n scaffolds, and the effects on biological behaviors of co-cultured rabbit-derived bone marrow stromal cells in vitro were investigated. The results showed (K)16 GRGDSPC, HAp, and P24 could be immobilized onto the scaffolds through predeposition of polydopamine (pDA) ad-layer, and the surface-modified scaffolds were noncytotoxic as well as the virgin scaffold. The pDA-assisted codeposition of (K)16 GRGDSPC, HAp, and P24 on the scaffold surfaces significantly promoted cell adhesion, proliferation, osteodifferentiation, and mineralization in vitro with synergistic effects. Taken together, the functionalized PLGA-[Asp-PEG]n polymeric scaffolds achieved significantly elevated affinity, osteoconductive and osteoinductive ability, and may be a potentially promising bone graft substitute for bone repair. © 2014 Wiley Periodicals

  6. Amphiphilic copolymers for fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    Polydimethylsiloxane (PDMS) resins are extensively used as binder in fouling-release coatings due to the low critical surface energy and low elastic modulus of PDMS. These properties result in poor adhesion of the fouling organisms, which are therefore detached by hydrodynamic forces during...... navigation [1,2,3]. Other compounds are usually mixed together with the binder (e.g. silica and pigments) in order to improve the mechanical, thixotropic and visual properties of the coatings. It has ben shown, however, that these ingredients have a negative effect on the fouling-release properties...... of the coatings [1,2,4]. Together with the PDMS-system, non-reactive polymers have been used to improve the fouling-release properties of the coatings. Initially, hydrophobic siloxane-based polymers were used, which aimed to increase the hydrophobicity of the PDMS surface [5,6]. However, copolymers comprising...

  7. Concentration Dependent Structure of Block Copolymer Solutions

    Science.gov (United States)

    Choi, Soohyung; Bates, Frank S.; Lodge, Timothy P.

    2015-03-01

    Addition of solvent molecules into block copolymer can induce additional interactions between the solvent and both blocks, and therefore expands the range of accessible self-assembled morphologies. In particular, the distribution of solvent molecules plays a key role in determining the microstructure and its characteristic domain spacing. In this study, concentration dependent structures formed by poly(styrene-b-ethylene-alt-propylene) (PS-PEP) solution in squalane are investigated using small-angle X-ray scattering. This reveals that squalane is essentially completely segregated into the PEP domains. In addition, the conformation of the PS block changes from stretched to nearly fully relaxed (i.e., Gaussian conformation) as amounts of squalane increases. NRF

  8. Stress relaxation experiments on a lamellar polystyrene-polyisoprene diblock copolymer melt

    DEFF Research Database (Denmark)

    Holmqvist, P.; Castelletto, V.; Hamley, I.W.;

    2001-01-01

    via dynamic light scattering experiments. The slowest relaxation process may be related to the shear-induced orientation of the lamellae. It is shown that time-strain separability G(t, gamma)= G(t)h(gamma) can be applied, and the damping function h(gamma) is consistent with a strongly strain......The non-linear rheology of the lamellar phase of a polystyrene-polyisoprene diblock copolymer is studied by oscillatory shear experiments. The relaxation of the shear modulus, G(t, gamma) is studied as a function of strain amplitude, gamma, up to large amplitude strains, gamma = 100%. The decay...

  9. Effects of Laser-Induced Heating on the Photoinduced Birefringence in Azobenzene-Side-Chain Copolymer

    Institute of Scientific and Technical Information of China (English)

    杨军; 明海; 章江英; 王沛; 郎建英; 鲁拥华; 刘剑; 张其锦

    2003-01-01

    The photoinduced birefringence was observed in the polymer poly[2-(4-(4-cyanophenyl) diazenyl phenyloxy) ethoxyl methacrylatel with a cw 532nm laser. The azobenzene polymer character has been studied under the conditions of various illuminating time and light intensities. By analysing the processes of reorientation, the effect of laser-induced heating has been introduced to the buildup of photoinduced birefringence in azobenzene-side-chain copolymer. The curves for the buildup of birefringence were fitted with a modified function, i.e., biexponential curves and Gaussian curves. The relationship among all the parameters has also been presented. With the modified fitting function, we obtain a better fitting result.

  10. Using click chemistry to modify block copolymers and their morphologies

    Science.gov (United States)

    Wollbold, Johannes

    Microphase separated block copolymers (BCPs) are emerging as promising templates and scaffolds for the fabrication of nanostructured materials. To achieve the desired nanostructures, it is necessary to establish convenient approaches to control the morphology of BCPs. It remains challenging to induce morphological transitions of BCPs via external fields. Click chemistry, especially alkyne/azide click chemistry, has been widely used to synthesize novel functionalized materials. Here, we demonstrate that alkyne/azide click chemistry can be used as an efficient approach to chemically modify BCPs and therefore induce morphological transitions. Alkyne-functionalized diblock copolymers (di-BCPs) poly(ethylene oxide)- block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) have been successfully synthesized. When the di-BCP is blended with an azide additive Rhodamine B azide and annealed at elevated temperatures, click reaction occurs between the two components. With the Rhodamine B structure attached to the polymer backbone, the di-BCP shows dramatic change in the interactions between the two blocks and the volume fraction of each block. As a result, morphological transitions, such as disorder-to-order transitions (DOTs) and order-to-order transitions (OOTs), are observed. The reaction kinetics and morphology evolution during the click chemistry induced DOTs have been investigated by in-situ and ex-situ characterizations, and fast kinetics properties are observed. Microphase separated morphologies after the DOTs or OOTs are dictated by the composition of neat di-BCPs and the mole ratio between the alkyne and azide groups. The DOTs of PEO-b-P(nBMA-r-PgMA) di-BCPs induced by alkyne/azide click chemistry have also been achieved in thin film geometries, with comparable kinetics to bulk samples. The orientation of the microdomains is dependent on the grafting density of Rhodamine B structure as well as film thickness. At higher grafting densities

  11. Nanopatterned articles produced using surface-reconstructed block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  12. Preparation and modification of itaconic anhydride–methyl methacrylate copolymers

    Directory of Open Access Journals (Sweden)

    MILOS B. MILOVANOVIC

    2007-12-01

    Full Text Available The free radical copolymerisation of itaconic anhydride and methyl methacrylate in solution was studied at 60 °C. The copolymer composition was determined by 1H-NMR spectroscopy and the obtained monomer reactivity ratios were calculated, rITA = 1.35±0.11; rMMA = 0.22±0.22 (by the Fineman–Ross method and rITA = 1.27±0.38; rMMA = 0.10±0.05 (by the Mayo–Lewis method. The synthesised copolymers were modified by reaction with di-n-butyl amine. The copolymer composition after amidation was determined by elemental analysis via the nitrogen content. Amidation of the anhydride units in the copolymers with di-n-butyl amine resulted in complete conversion to itaconamic acid.

  13. Synthesis of CO2 Copolymer Based Polyurethane Foams

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    CO2-copolymer based polyurethane foams were synthesized and characterized in this paper. The foams were found to have higher strength and lower heat of combustion than the conventional polyether polyurethane foams. They may find wide applications in many fields.

  14. Composition fluctuations in homopolymer blends and diblock copolymers

    DEFF Research Database (Denmark)

    Frielinghaus, H.; Mortensen, K.; Almdal, K.

    2000-01-01

    The thermal composition fluctuations of a deuterogenous polystyrene/polyethyleneoxide (dPS/PEO) homopolymer blend and corresponding diblock copolymer have been investigated by small angle neutron scattering (SANS). The measured susceptibilities could be described by theories, which take strong...

  15. Controlled Synthesis of Fluorinated Copolymers with Pendant Sulfonates

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2008-01-01

    Novel fluorinated copolymers of different architectures and bearing sulfopropyl groups were synthesized by atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers and two modification reactions performed on the polymer chain - demethylation followed by sulfopropylation. As a ...

  16. HPMA and HEMA copolymer bead interactions with eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Cristina D. Vianna-Soares

    2004-09-01

    Full Text Available Two different hydrophilic acrylate beads were prepared via aqueous suspension polymerization. Beads produced of a hydroxypropyl methacrylate (HPMA and ethyleneglycol methacrylate (EDMA copolymer were obtained using a polyvinyl alcohol suspending medium. Copolymers of 2hydroxyethyl methacrylate (HEMA, methyl methacrylate (MMA and ethyleneglycol methacrylate (EDMA beads were obtained using magnesium hydroxide as the suspending agent. Following characterization by scanning electron microscopy (SEM, nitrogen sorption analysis (NSA and mercury intrusion porosimetry (MIP, the beads were cultured with monkey fibroblasts (COS7 to evaluate their ability to support cell growth, attachment and adhesion. Cell growth behavior onto small HPMA/EDMA copolymer beads and large HEMA/MMA/EDMA copolymer beads is evaluated regarding their hidrophilicity/hidrophobicity and surface roughness.

  17. Synthesis of Polyacrylate/Polysiloxane Copolymer and Its Damping Performance

    Institute of Scientific and Technical Information of China (English)

    夏宇正; 石淑先; 焦书科; 李素青

    2003-01-01

    The copolymer of polyacrylate/polysiloxane for vibration damping materials was synthesized through emulsion polymerization. The effects of the amount of methyl methacrylate (MMA),polysiloxane containing vinyl, initiator and emulsifier on the conversion, stability of polyacrylate/polysiloxane emulsion were discussed when the emulsion was prepared by pre-emulsifying half continuous method. The graft copolymer has good vibration damping performance. The widest glass transition region of the copolymer spans 100℃, and the highest value of tanδ reached 2.0. The glass transition of the samples was examined by dynamic mechanical analysis (DMA). The vibration damping performance of the graft copolymer was affected by the amount of poly-vinyl dimethylsiloxane (PVMS).

  18. Thermal analytical study of polyamide copolymer/Surlyn Ionomers Blends

    Energy Technology Data Exchange (ETDEWEB)

    Qin, C.; Ding, Y.P. [Baxter Healthcare Corp., Round Lake, IL (United States)

    1993-12-31

    Thermal analytical technique was used as a screening method to study polyamide(Nylon)/ethylene-co-methacrylic acid copolymer-based ionomer(Surlyn)blends. The retardation of crystallization process from molten state of Nylon-12 by the existence of the ionomer was observed, but the crystallization of Nylon-12 can not be thwarted even at high concentration of ionomers. Zinc ionomers shows stronger effect than sodium ionomers. A Nylon copolymer, polyamide-6,6-co-polyamide-6,10, was used to blend with different ionomers and the crystallization process from molten state of Nylon copolymer could be thwarted at high concentration of zinc ionomer even at very cooling rate. Interesting cold crystallization behavior of polyamide copolymer was observed during second DSC heating cycle in the temperature range of the melting process of ionomer.

  19. BARRIER PROPERTY AND STRUCTURE OF ACRYLONITRILE/ACRYLIC COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    YANG Zhenghua; LI Yuesheng

    1997-01-01

    A series of acrylonitrile (AN) copolymers with methyl acrylate (MA) or ethyl acrylate (EA) as comonomer (5-23 wt%) was prepared by free-radical copolymerization. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at 1.0 MPa and at 30 ℃, and those to water vapor also measured at 100% relative humidity and at 30 ℃. All the AN/acrylic copolymers are semicrystalline. As the acrylate content increase, the permeability coefficients of the copolymers to oxygen and carbon dioxide are increased progressively, but those to water vapor are decreased progressively. The gas permeability coefficients of the polymers were correlated with free-volume fractions or the ratio of free volume to cohesive energy.

  20. Nanopatterned articles produced using reconstructed block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.; Park, Soojin; Wang; , Jia-Yu; Kim, Bokyung

    2017-05-02

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  1. Opto-electronic devices from block copolymers and their oligomers.

    NARCIS (Netherlands)

    Hadziioannou, G

    1997-01-01

    This paper presents research activities towards the development of polymer materials and devices for optoelectronics, An approach to controlling the conjugation length and transferring the luminescence properties of organic molecules to polymers through black copolymers containing well-defined conju

  2. Thermal Stability of Poly (acrylonitrile-methyl acrylate) Copolymers

    Institute of Scientific and Technical Information of China (English)

    HAN Na; ZHANG Xing-xiang; WANG Xue-chen

    2008-01-01

    Poly (acrylonitrile-methyl acrylate) copolymer was synthesized by water depositing polymerization and has a typical feed ratio of 85/15. And then 1 - 3 wt% lauryl alcohol maleic anhydride (LAM) was adopted as stabilizer to mix with the acrylonitrile based copolymer. The mixtures were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (1H NMR ), Gel Permeation Chromatography ( GPC ), Differential Scanning Calorimetry (DSC), optic microscope and Ubbelohde viscosimetryr etc. The melting point (Tm) and glass transition temperature (Tg) of the 85/15 AN/MA copolymer mixed with LAM all decrease with the increase of stabilizer content. The lowest Tg and Tm were 116.1 ℃ and 209. 1℃ respectively at the heating rate of 100℃/min when the content of LAM is 2 wt%. The 85°/15 AN/MA copolymer mixed with 1 - 3 w t% LAM possess good thermal stability up to 30 min at 220 ℃.

  3. Fluctuations, conformational asymmetry and block copolymer phase behaviour

    DEFF Research Database (Denmark)

    Bates, F.S.; Schulz, M.F.; Khandpur, A.K.;

    1994-01-01

    Phase behaviour near the order-disorder transition (ODT) of 58 model hydrocarbon diblock copolymers, representing four different systems, is summarized. Six distinct ordered-state microstructures are reported, including hexagonally modulated lamellae (HML), hexagonally perforated layers (HPL) and...

  4. Grafting of diethyl maleate and maleic anhydride onto styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS)

    NARCIS (Netherlands)

    Picchioni, F.; Ghetti, S.; Passaglia, E.; Ruggeri, G.

    2000-01-01

    In this paper a study of the bulk functionalization of styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS) with diethyl maleate (DEM) or maleic anhydride (MAH) and dicumyl peroxide (DCP) as initiator in a Brabender mixer is described. The determination of the functionalization degre

  5. Multicompartmental Microcapsules from Star Copolymer Micelles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  6. Self-Assembled Antimicrobial and biocompatible copolymer films on Titanium

    OpenAIRE

    2011-01-01

    Biofilm formation on biomedical devices such as dental implants can result in serious infections and finally in device failure. Polymer coatings which provide antimicrobial action to surfaces without compromising the compatibility with human tissue are of great interest. Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate are interesting candidates in this respect. These copolymers form ultrathin polycationic layers on titanium surfaces. As the cop...

  7. SYNTHESIS OF A NEW SILICONE-CONTAINING BISMALEIMIDE COPOLYMER RESIN

    Institute of Scientific and Technical Information of China (English)

    KUANG Wenfeng; CAI Xingxian; JIANG Luxia

    1997-01-01

    A copolymer of bismaleimide-diallylbisphenol A-diphenylsilandiol was synthesized and the copolymerization was studied by using N-phenylmaleimide, bisphenol A and diphenylsilandiol as model compounds. The copolymer could be well cured around 200 ℃, and the cured resins had good thermal stability. In the range of 170-210 ℃, a higher curing temperature was favorable to obtain more thermal stable resin by reducing the content of diphenylsilandiol cyclo-homopolymer in resin which would spoil its thermal stability.

  8. Thin Film Assembly of Spider Silk-like Block Copolymers

    Science.gov (United States)

    2011-01-01

    Film Assembly of Spider Silk -like Block Copolymers Sreevidhya T. Krishnaji,†,‡ Wenwen Huang,§ Olena Rabotyagova,†,‡ Eugenia Kharlampieva, ) Ikjun Choi...Received November 26, 2010 We report the self-assembly of monolayers of spider silk -like block copolymers. Langmuir isotherms were obtained for a series of...bioengineered variants of the spider silks , and stable monolayers were generated. Langmuir-Blodgett films were prepared by transferring the monolayers

  9. Synthesis and characterization of HPMA copolymer-5-FU conjugates

    Institute of Scientific and Technical Information of China (English)

    Fang Yuan; Fu Chen; Qing Yu Xiang; Xuan Qin; Zhi Rong Zhang; Yuan Huang

    2008-01-01

    N-(2-Hydroxypropyl)methacrylamide copolymer-5-fluorouracil (PHPMA-FU)conjugates were synthesized by a novel and simplified synthetic mute,and characterized by UV,FTIR and HPLC analyses.The conjugated content of 5-fluorouracil (5-FU)was 3.41 ± 0.07 wt%.The stabilities of PHPMA-FU conjugates under different conditions were studied.The results showed that HPMA copolymer was a potential carrier for tumor-targeting delivery of 5-FU.

  10. Effect of Grafting Density of Random Copolymer Brushes on Perpendicular Alignment in PS-b-PMMA Thin Films

    KAUST Repository

    Lee, Wooseop

    2017-07-18

    We modulated the grafting density (σ) of a random copolymer brush of poly(styrene-r-methyl methacrylate) on substrates to probe its effect on the formation of perpendicularly aligned lamellae of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA). Supported by coarse-grained simulation results, we hypothesized that an increase in σ will allow us to systematically tune the block copolymer interfacial interactions with the substrates from being preferential to one of the blocks to being neutral toward both blocks and will thereby facilitate enhanced regimes of perpendicularly aligned lamellae. We verified such a hypothesis by using a simple grafting-to approach to modify the substrates and characterized the thickness window for perpendicular lamellae as a function of brush thickness (or σ) on the grafted substrates using scanning force microscopy (SFM) images and grazing incidence small-angle X-ray scattering (GISAXS) measurements. The experimental results validated our hypothesis and suggested that the σ of random copolymer brushes can be used as an additional versatile parameter to modulate the interfacial interactions and the resulting alignment of block copolymer films.

  11. Synthesis and Performance of an Acrylamide Copolymer Containing Nano-SiO2 as Enhanced Oil Recovery Chemical

    Directory of Open Access Journals (Sweden)

    Zhongbin Ye

    2013-01-01

    Full Text Available A novel copolymer containing nano-SiO2 was synthesized by free radical polymerization using acrylamide (AM, acrylic acid (AA, and nano-SiO2 functional monomer (NSFM as raw materials under mild conditions. The AM/AA/NSFM copolymer was characterized by infrared (IR spectroscopy, 1H NMR spectroscopy, elemental analysis, and scanning electron microscope (SEM. It was found that the AM/AA/NSFM copolymer exhibited higher viscosity than the AM/AA copolymer at 500 s−1 shear rate (18.6 mPa·s versus 8.7 mPa·s. It was also found that AM/AA/NSFM could achieve up to 43.7% viscosity retention rate at 95°C. Mobility control results indicated that AM/AA/NSFM could establish much higher resistance factor (RF and residual resistance factor (RRF than AM/AA under the same conditions (RF: 16.52 versus 12.17, RRF: 3.63 versus 2.59. At last, the enhanced oil recovery (EOR of AM/AA/NSFM was up to 20.10% by core flooding experiments at 65°C.

  12. Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Cleemann, Lars Nilausen

    2012-01-01

    Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para-phenylene and ......Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para......-phenylene and flexible aryl sulfone linkages in the macromolecular structures resulted in high molecular weight copolymers with good solubility. The chemical stability towards radical oxidation was improved for SO2PBI and its copolymer membranes due to the electron-withdrawing sulfone functional groups. Upon acid doping...

  13. 功能化PVAm-g-PSt微球的制备及其对Pb2+的吸附研究%Preparation of Functionalized PVAm-g-PSt Copolymer Microspheres and Its Absorption for Pb2+Ion

    Institute of Scientific and Technical Information of China (English)

    李艳秋; 李培培; 丁月; 徐云慧

    2015-01-01

    Poly( N-vinylacetamide) ( PNVA) macromonomers with a vinyl benzyl group at the end of the polymer chains were synthesized by free radical polymerization and end capping reaction. Poly ( N-vinylacrylamide ) -graft-polystyrene ( PNVA-g-PSt ) microsphere was prepared by dispersion copolymerization. Poly ( vinylamine ) grafted polystyrene ( PVAm-g-PSt) microsphere could be prepared by hydrolysis of PNVA-g-PSt microsphere, and condensed with the functional compound contained carboxyl group such as carboxyazo-p-CH3. The adsorption mechanism, absorption kinetic equation and pH influence of the functionalized microsphere for Pb2+ ion were studied. At lower ion concentration, Pb2+ could be taken off completely.%通过链转移自由基聚合和端基置换反应得到苯乙烯封端的具有亲水基团的大分子单体聚N-乙烯基乙酰胺( PNVA),与疏水性苯乙烯进行分散共聚,制备出具有核壳结构的聚乙烯酰胺接枝聚苯乙烯( PNVA-g-PSt)纳米微球,在酸性条件下使其水解得到聚乙烯胺接枝聚苯乙烯( PVAm-g-PSt)微球,与对甲基偶氮羧反应,得到表面带有功能基的PVAm-g-PSt微球,并考察功能化聚合物微球对Pb2+的吸附动力学、吸附机理,探讨pH值对吸附效果的影响,同时发现在较低浓度范围内,对Pb2+的吸附率可达100%。

  14. DNA Island Formation on Binary Block Copolymer Vesicles.

    Science.gov (United States)

    Luo, Qingjie; Shi, Zheng; Zhang, Yitao; Chen, Xi-Jun; Han, Seo-Yeon; Baumgart, Tobias; Chenoweth, David M; Park, So-Jung

    2016-08-17

    Here, we report DNA-induced polymer segregation and DNA island formation in binary block copolymer assemblies. A DNA diblock copolymer of polymethyl acrylate-block-DNA (PMA-b-DNA) and a triblock copolymer of poly(butadiene)-block-poly(ethylene oxide)-block-DNA (PBD-b-PEO-b-DNA) were synthesized, and each was coassembled with a prototypical amphiphilic polymer of poly(butadiene)-block-poly(ethylene oxide) (PBD-b-PEO). The binary self-assembly of PMA-b-DNA and PBD-b-PEO resulted in giant polymersomes with DNA uniformly distributed in the hydrophilic PEO shell. When giant polymersomes were connected through specific DNA interactions, DNA block copolymers migrated to the junction area, forming DNA islands within polymersomes. These results indicate that DNA hybridization can induce effective lateral polymer segregation in mixed polymer assemblies. The polymer segregation and local DNA enrichment have important implications in DNA melting properties, as mixed block copolymer assemblies with low DNA block copolymer contents can still exhibit useful DNA melting properties that are characteristic of DNA nanostructures with high DNA density.

  15. MALDI-ToF Analysis of Model Copolymer Blends

    Science.gov (United States)

    Pan, David; Arnould, Mark

    2008-03-01

    MALDI-ToF mass spectrometry was used to determine the composition of a low MW styrene (S) / n-butyl acrylate (nBA) copolymer. Bernoullian chain statistics were used to predict the copolymer distribution and confirm that MALDI-ToF detects the correct composition. The copolymer was blended with a low MW polystyrene homopolymer having the same end group as the copolymer at several levels to determine if MALDI-ToF could be used to calculate the amount of homopolymer by subtracting homopolymer peak areas. It is found that, while MALDI-ToF can be used to monitor the amount of homopolymer blended into the copolymer, the observed increase is always greater than the actual amount added, e.g. up to 13% error. This could be due to the fact that the homopolymer ionizes more efficiently than the low MW copolymer. A model to improve the accuracy of the calculated amount of homopolymer in the blend is discussed.

  16. Field-theoretic simulations of random copolymers with structural rigidity.

    Science.gov (United States)

    Mao, Shifan; MacPherson, Quinn; Qin, Jian; Spakowitz, Andrew J

    2017-04-12

    Copolymers play an important role in a range of soft-materials applications and biological phenomena. Prevalent works on block copolymer phase behavior use flexible chain models and incorporate interactions using a mean-field approximation. However, when phase separation takes place on length scales comparable to a few monomers, the structural rigidity of the monomers becomes important. In addition, concentration fluctuations become significant at short length scales, rendering the mean-field approximation invalid. In this work, we use simulation to address the role of finite monomer rigidity and concentration fluctuations in microphase segregation of random copolymers. Using a field-theoretic Monte-Carlo simulation of semiflexible polymers with random chemical sequences, we generate phase diagrams for random copolymers. We find that the melt morphology of random copolymers strongly depends on chain flexibility and chemical sequence correlation. Chemically anti-correlated copolymers undergo first-order phase transitions to local lamellar structures. With increasing degree of chemical correlation, this first-order phase transition is softened, and melts form microphases with irregular shaped domains. Our simulations in the homogeneous phase exhibit agreement with the density-density correlation from mean-field theory. However, conditions near a phase transition result in deviations between simulation and mean-field theory for the density-density correlation and the critical wavemode. Chain rigidity and sequence randomness lead to frustration in the segregated phase, introducing heterogeneity in the resulting morphologies.

  17. Thermoresponsive Poly(2-Oxazoline) Molecular Brushes by Living Ionic Polymerization: Modulation of the Cloud Point by Random and Block Copolymer Pendant Chains

    KAUST Repository

    Zhang, Ning

    2012-08-10

    Molecular brushes (MBs) of poly(2-oxazoline)s were prepared by living anionic polymerization of 2-isopropenyl-2-oxazoline to form the backbone and living cationic ring-opening polymerization of 2-n-propyl-2-oxazoline and 2-methyl-2-oxazoline to form random and block copolymers. Their aqueous solutions displayed a distinct thermoresponsive behavior as a function of the side-chain composition and sequence. The cloud point (CP) of MBs with random copolymer side chains is a linear function of the hydrophilic monomer content and can be modulated in a wide range. For MBs with block copolymer side chains, it was found that the block sequence had a strong and surprising effect on the CP. While MBs with a distal hydrophobic block had a CP at 70 °C, MBs with hydrophilic outer blocks already precipitated at 32 °C. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Self-doped anthranilic acid-pyrrole copolymer/gold electrodes for selective preconcentration and determination of Cu(I) by differential pulse anodic stripping voltammetry.

    Science.gov (United States)

    Nateghi, M R; Fallahian, M H

    2007-05-01

    Electropolymerization of anthranilic acid/pyrrole (AA/PY) at solid substrate electrodes (platinum, gold, and glassy carbon) gave stable and water-insoluble films under a wide range of pH. Combining high conductivity of the polypyrrole (PPY) and pH independence of the electrochemical activity of the self-doped carboxylic acid-substituted polyaniline allows us to prepare an improved functionalized PPY-modified electrode to collect and measure Cu(I) species. The differential pulse stripping analysis of the copper ions using a polyanthranilic acid-co-polypyrrole (PAA/PPY)-modified electrode consisted of three steps: accumulation, electrochemical reduction to the elemental copper and stripping step. Factors affecting these steps, including electropolymerization conditions, accumulation and stripping medium, reduction potential, reduction time and accumulation time, were systematically investigated. A detection limit of 5.3 x 10(-9) M Cu(I) was achieved for a 7.0 min accumulation. For 12 determinations of Cu(I) at concentrations of 1.0 x 10(-8) M, an RSD of 3.5% was obtained. The log I(p) was found to vary linearly with log[Cu(I)] in the concentration range from 7.0 x 10(-9) to 1.0 x 10(-5) M.

  19. Influence of copolymer composition on the transport properties of conducting copolymers: poly(aniline-co-o-anisidine)

    Indian Academy of Sciences (India)

    S S Umare; A D Borkar; M C Gupta

    2002-06-01

    The effect of different compositions of monomers on the transport properties of copolymers by various techniques such as optical, electrical and magnetic has been investigated and compared with the homopolymers. The UV-visible absorption spectra show a hypsochromic shift with an increase in the o-anisidine content in copolymers indicating a decrease in the extent for conjugation (i.e. an increase in the bandgap). From temperature dependence of electrical conductivity the transport parameters such as charge localization length and average hopping distance are calculated and also the effect of the monomeric composition on the coherence length has been discussed. The magnetic studies show the paramagnetic and diamagnetic nature of homopolymers and copolymers. The X-ray diffraction pattern indicates that the copolymers are of amorphous nature.

  20. SYNTHESIS OF pH-RESPONSIVE AMPHIPHILIC DIBLOCK COPOLYMERS CONTAINING POLYISOBUTYLENE via OXYANION-INITIATED POLYMERIZATION AND THEIR MULTIPLE SELF-ASSEMBLY MORPHOLOGIES

    Institute of Scientific and Technical Information of China (English)

    Huai-chao Wang; Ming-zu Zhang; Pei-hong Ni; Jin-lin He; Ying Hao; Yi-xian Wu

    2013-01-01

    Two pH-responsive amphiphilic diblock copolymers,namely polyisobutylene-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PIB-b-PDMAEMA) and polyisobutylene-block-poly(metharylic acid) (PIB-b-PMAA),were synthesized via oxyanion-initiated polymerization,and their multiple self-assembly behaviors have been studied.An exo-o1efin-terminated highly reactive polyisobutylene (HRPIB) was first changed to hydroxyl-terminated PIB (PIB-OH) via hydroboration-oxidation of C=C double bond in the chain end,and then reacted with KH to yield a potassium alcoholate of PIB (PIB-O-K+).PIB-O-K+ was immediately used as a macroinitiator to polymerize DMAEMA monomer,resulting in a cationic diblock copolymer PIB-b-PDMAEMA.With the similar synthesis procedure,the anionic diblock copolymer PIB-b-PMAA could be prepared via a combination of oxyanion-initiated polymerization of tert-butyl methacrylate (tBMA) and subsequent hydrolysis of tert-butyl ester groups in PtBMA block.The functional PIB and block copolymers have been fully characterized by 1H-NMR,FT-IR spectroscopy,and gel permeation chromatography (GPC).These samples allowed us to systematically investigate the effects of block composition on the pH responsivity and various self-assembled morphologies of the copolymers in THF/water mixed solvent.Transmission electron microscopy (TEM) images revealed that these diblock copolymers containing small amount of original PIB without exo-olefin-terminated group are able to self-assemble into micelles,vesicles with different particle sizes and cylindrical aggregates,depending on various factors including block copolymer composition,solvent polarity and pH value.

  1. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.; Hong, Sung Woo; Lee, Dong Hyun; Park, Soojin; Xu, Ting

    2017-08-01

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  2. Aqueous self-assembly of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles.

    Science.gov (United States)

    Qi, Wei; Ghoroghchian, P Peter; Li, Guizhi; Hammer, Daniel A; Therien, Michael J

    2013-11-21

    Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant

  3. Real-time monitoring of the penetration of amphiphilic acrylate copolymer in leather using a fluorescent copolymer as tracer.

    Science.gov (United States)

    Du, Jin-Xia; Shi, Lu; Peng, Bi-Yu

    2015-12-01

    A fluorescent tracer, poly (acrylic-co-stearyl acrylate-co-3-acryloyl fluorescein) [poly (AA-co-SA-co-Ac-Flu)], used for real-time monitoring the penetration of amphiphilic acrylate copolymer, poly (acrylic-co-stearyl acrylate) [poly (AA-co-SA)], in leather was synthesized by radical polymerization of acrylic, stearyl acrylate and fluorescent monomer, 3-acryloyl fluorescein (Ac-Flu). The structure, molecular weight, introduced fluorescent group content and fluorescent characteristics of the fluorescent tracer and target copolymer, amphiphilic acrylate copolymer, were also characterized. The results show that the tracer presents the similar structural characteristics to the target and enough fluorescence intensity with 1.68 wt % of the fluorescent monomer introduced amount. The vertical section of the leather treated with the target copolymer mixing with 7% of the tracer exhibits evident fluorescence, and the change of fluorescence intensity along with the vertical section with treating time increasing can reflect the penetration depth of the target copolymer. The introduction of the fluorescent group in polymer structure through copolymerization with a limited amount of fluorescent monomer, Ac-Flu, is an effective way to make a tracer to monitor the penetration of the target in leather, which provides a new thought for the penetration research of syntans such as vinyl copolymer materials in leather manufacture.

  4. Dynamics of Chain Exchange in Block Copolymer Micelles

    Science.gov (United States)

    Lodge, Timothy

    Block copolymer micelles are rarely at equilibrium. The primary reason is the large number of repeat units in the insoluble block, Ncore, which makes the thermodynamic penalty for extracting a single chain (``unimer exchange'') substantial. As a consequence, the critical micelle concentration (CMC) is rarely accessed experimentally; however, in the proximity of a critical micelle temperature (CMT), equilibration is possible. We have been using time-resolved small angle neutron scattering (TR-SANS) to obtain a detailed picture of the mechanisms and time scales for chain exchange, at or near equilibrium. Our model system is poly(styrene)-block-poly(ethylene-alt-propylene)) (PS-PEP), in the PEP-selective solvent squalane (C30H62) . Equivalent micelles with either normal (hPS) or perdeuterated (dPS) cores are initially mixed in a blend of isotopically substituted squalane, designed to contrast-match a 50:50 hPS:dPS core. Samples are then annealed at a target temperature, and chain exchange is revealed quantitatively by the temporal decay in scattered intensity. The rate of exchange as function of concentration, temperature, Ncore, Ncorona, and chain architecture (diblock versus triblock) will be discussed.

  5. Directed Nanorod Assembly Using Block Copolymer-Based Supramolecules

    Science.gov (United States)

    Thorkelsson, Kari; Mastroianni, Alexander; Ercius, Peter; Xu, Ting

    2013-03-01

    Nanorods display many unique electrical, mechanical, and optical properties unavailable in traditional bulk materials, and are attractive building blocks toward functional materials. The collective properties of anisotropic building blocks often depend strongly on their spatial arrangements, interparticle ordering, and macroscopic alignment. We have systematically investigated the phase behavior of nanocomposites composed of nanorods and block copolymer (BCP)-based supramolecules forming spherical, cylindrical and lamellar morphologies. Initial exploration showed that the nanorods can be readily dispersed in polymeric matrix and the overall morphology of nanorod-containing supramolecular nanocomposite depends on the nanorod-polymer interactions, inter-rod interactions and entropy associated with polymer chain deformation. The energetic contributions from the components of the system can be tailored to disperse nanorods with control over inter-rod ordering and the alignment of nanorods within BCP microdomains. By varying the supramolecular morphology and composition, arrays, sheets, and interconnected networks of nanorods are demonstrated that may prove useful for fabrication of optically and electrically active nanodevices.

  6. Direct Nanorod Assembly Using Block Copolymer-Based Supramolecules

    Science.gov (United States)

    Thorkelsson, Kari; Mastroianni, Alexander; Ercius, Peter; Xu, Ting

    2012-02-01

    One-dimensional nanomaterials with high aspect ratios, such as nanorods, exhibit unique and useful anisotropic optical, magnetic, and electrical properties. The collective properties of 1-D nanomaterials depend on their spatial arrangements, interparticle ordering, and macroscopic alignment. Developing routes to control their organization with high precision is critical to generate functional materials. We have investigated the co-assemblies of nanorods and block copolymer (BCP)-based supramolecules that self-assemble into spherical, lamellar and cylindrical morphologies. By varying energetic contributions from the rod-rod interactions and the deformation of the supramolecule, a wide library of nanorod assemblies including highly aligned arrays, continuous networks, and clusters can be readily accessed. Since macroscopic alignment of BCP microdomains can be obtained by application of external fields, present studies open up a new route to manipulate macroscopic alignments of nanorods. Fundamentally, these studies have demonstrated that in these blends, the energetic contributions from the polymer chain deformation and rod-rod interactions are comparable and can be tailored to disperse nanorods with control over inter-rod ordering and their relative alignment.

  7. Adsorption of comb copolymers on weakly attractive solid surfaces

    Science.gov (United States)

    Striolo, A.; Jayaraman, A.; Genzer, J.; Hall, C. K.

    2005-08-01

    In this work continuum and lattice Monte Carlo simulation methods are used to study the adsorption of linear and comb polymers on flat surfaces. Selected polymer segments, located at the tips of the side chains in comb polymers or equally spaced along the linear polymers, are attracted to each other and to the surface via square-well potentials. The rest of the polymer segments are modeled as tangent hard spheres in the continuum model and as self-avoiding random walks in the lattice model. Results are presented in terms of segment-density profiles, distribution functions, and radii of gyration of the adsorbed polymers. At infinite dilution the presence of short side chains promotes the adsorption of polymers favoring both a decrease in the depletion-layer thickness and a spreading of the polymer molecule on the surface. The presence of long side chains favors the adsorption of polymers on the surface, but does not permit the spreading of the polymers. At finite concentration linear polymers and comb polymers with long side chains readily adsorb on the solid surface, while comb polymers with short side chains are unlikely to adsorb. The simple models of comb copolymers with short side chains used here show properties similar to those of associating polymers and of globular proteins in aqueous solutions, and can be used as a first approximation to investigate the mechanism of adsorption of proteins onto hydrophobic surfaces.

  8. Melt-processable hydrophobic acrylonitrile-based copolymer systems with adjustable elastic properties designed for biomedical applications.

    Science.gov (United States)

    Cui, J; Trescher, K; Kratz, K; Jung, F; Hiebl, B; Lendlein, A

    2010-01-01

    (AN-co-nBA) biomaterials were sterilized with ethylene oxide and tested for cytotoxicity in direct contact tests with L929 cells according to the EN DIN ISO standard 10993-5. All tested samples exhibited non-toxic effects on the functional integrity of the cell membrane and the mitochondrial activity. However, the morphology of the cells on the samples was different from that observed on polystyrene as control, indicating slightly cytotoxic effects according to the evaluation guide of the US Pharmacopeial Convention. Thus, the melt-processable, hydrophobic P(AN-co-nBA) copolymers with adjustable mechanical properties are promising candidates for in vitro investigations of tissue growth kinetics.

  9. An asymmetric A-B-A' metallo-supramolecular triblock copolymer linked by Ni(2+)-bis-terpyridine complexes at one junction.

    Science.gov (United States)

    Li, Haixia; Wei, Wei; Xiong, Huiming

    2016-02-01

    A metallo-supramolecular triblock copolymer polystyrene-b-polyisoprene-[Ni(2+)]-polystyrene (SI-[Ni(2+)]-S') has been efficiently prepared using a one-pot, two-step procedure, where the blocks are held by bis-terpyridine complexes at the junction of SI-S'. This specific metallo-supramolecular chemistry is demonstrated to be a robust approach to potentially broaden the diversity of block copolymers. The location of the metal-ligand complexes has a profound influence on the phase separation of the triblock copolymer in the bulk, which results in a distinctive phase segregation between the end blocks and leads to an unexpected asymmetry of the triblock copolymer. The metal-ligand complexes are found to be preferentially located on the adjacent spherical domain and form a core-shell structure. The resulting multiphase material exhibits distinct elastomeric properties with significant toughness and creep recovery behavior. This type of triblock copolymer is anticipated to be a novel class of hybrid thermo-plastic elastomeric material with wide tunability and functionality.

  10. Regulatory functions of hapten-reactive helper and suppressor T lymphocytes. II. Selective inactivation of hapten-reactive suppressor T cells by hapten-nonimmunogenic copolymers of D-amino acids, and its application to the study of suppressor T-cell effect on helper T-cell development

    Science.gov (United States)

    Hamaoka, T; Yoshizawa, M; Yamamoto, H; Kuroki, M; Kitagawa, M

    1977-01-01

    An experimental condition was established in vivo for selectively eliminating hapten-reactive suppressor T-cell activity generated in mice primed with a para-azobenzoate (PAB)-mouse gamma globulin (MGG)-conjugate and treated with PAB-nonimmunogenic copolymer of D-amino acids (D- glutamic acid and D-lysine; D-GL). The elimination of suppressor T-cell activity with PAB-D-GL treatment from the mixed populations of hapten- reactive suppressor and helper T cells substantially increased apparent helper T-cell activity. Moreover, the inhibition of PAB-reactive suppressor T-cell generation by the pretreatment with PAB-D-GL before the PAB-MGG-priming increased the development of PAB-reactive helper T-cell activity. The analysis of hapten-specificity of helper T cells revealed that the reactivity of helper cells developed in the absence of suppressor T cells was more specific for primed PAB-determinants and their cross-reactivities to structurally related determinants such as meta-azobenzoate (MAB) significantly decreased, as compared with the helper T-cell population developed in the presence of suppressor T lymphocytes. In addition, those helper T cells generated in the absence of suppressor T cells were highly susceptible to tolerogenesis by PAB-D- GL. Similarly, the elimination of suppressor T lymphocytes also enhanced helper T-cell activity in a polyclonal fashion in the T-T cell interactions between benzylpenicilloyl (BPO)-reactive T cells and PAB- reactive T cells after immunization of mice with BPO-MGG-PAB. Thus inhibition of BPO-reactive suppressor T-cell development by the BPO-v-GL- pretreatment resulted in augmented generation of PAB-reactive helper T cells with higher susceptibility of tolerogenesis to PAB-D-GL. Thus, these results support the notion that suppressor T cells eventually suppress helper T-cell activity and indicate that the function of suppressor T cells related to helper T-cell development is to inhibit the increase in the specificity and apparent

  11. Encapsulation of Curcumin in Diblock Copolymer Micelles for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Alizadeh

    2015-01-01

    Full Text Available Application of nanoparticles has recently promising results for water insoluble agents like curcumin. In this study, we synthesized polymeric nanoparticle-curcumin (PNPC and then showed its efficiency, drug loading, stability, and safety. Therapeutic effects of PNPC were also assessed on two cell lines and in an animal model of breast cancer. PNPC remarkably suppressed mammary and hepatocellular carcinoma cells proliferation (P<0.05. Under the dosing procedure, PNPC was safe at 31.25 mg/kg and lower doses. Higher doses demonstrated minimal hepatocellular and renal toxicity in paraclinical and histopathological examinations. Tumor take rate in PNPC-treated group was 37.5% compared with 87.5% in control (P<0.05. Average tumor size and weight were significantly lower in PNPC group than control (P<0.05. PNPC increased proapoptotic Bax protein expression (P<0.05. Antiapoptotic Bcl-2 protein expression, however, was lower in PNPC-treated animals than the control ones (P<0.05. In addition, proliferative and angiogenic parameters were statistically decreased in PNPC-treated animals (P<0.05. These results highlight the suppressing role for PNPC in in vitro and in vivo tumor growth models. Our findings provide credible evidence for superior biocompatibility of the polymeric nanocarrier in pharmacological arena together with an excellent tumor-suppressing response.

  12. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter.

    Science.gov (United States)

    Hu, Hanqiong; Gopinadhan, Manesh; Osuji, Chinedum O

    2014-06-14

    Self-assembly of soft materials is broadly considered an attractive means of generating nanoscale structures and patterns over large areas. However, the spontaneous formation of equilibrium nanostructures in response to temperature and concentration changes, for example, must be guided to yield the long-range order and orientation required for utility in a given scenario. In this review we examine directed self-assembly (DSA) of block copolymers (BCPs) as canonical examples of nanostructured soft matter systems which are additionally compelling for creating functional materials and devices. We survey well established and newly emerging DSA methods from a tutorial perspective. Special emphasis is given to exploring underlying physical phenomena, identifying prototypical BCPs that are compatible with different DSA techniques, describing experimental methods and highlighting the attractive functional properties of block copolymers overall. Finally we offer a brief perspective on some unresolved issues and future opportunities in this field.

  13. Potential for polyhydroxyalkanoates and policaprolactone copolymer use as tissue-engineered scaffolds in cardiovascular surgery

    Directory of Open Access Journals (Sweden)

    L. V. Antonova

    2012-01-01

    Full Text Available The absence of reliably functioning small-diameter vascular grafts for coronary artery bypass graft surgery remains one of the most important issues of cardiovascular surgery. Tissue-engineered grafts have to be characterized by highly hemocompatible, biomechanical and biocompatible properties, be quickly biodegradable and have non-toxic degradation products. This article presents polyhydroxyalkanoate and policaprolactone main characteristics and evaluates their potential use as polymers for producing vascular grafts. Biocompatibility, good physical and mechanical properties of these polymers and their better performance in copolymer scaffolds were demonstrated.

  14. In-situ polymerized PLOT columns III: divinylbenzene copolymers and dimethacrylate homopolymers

    Science.gov (United States)

    Shen, T. C.; Fong, M. M.

    1994-01-01

    Studies of divinylbenzene copolymers and dimethacrylate homopolymers indicate that the polymer pore size controls the separation of water and ammonia on porous-layer-open-tubular (PLOT) columns. To a lesser degree, the polarity of the polymers also affects the separation of a water-ammonia gas mixture. Our results demonstrate that the pore size can be regulated by controlling the cross-linking density or the chain length between the cross-linking functional groups. An optimum pore size will provide the best separation of water and ammonia.

  15. Monte Carlo simulations of the phase separation of a copolymer blend in a thin film

    KAUST Repository

    Wang, Zhexiao

    2014-12-11

    Monte Carlo simulations were carried out to study the phase separation of a copolymer blend comprising an alternating copolymer and/or block copolymer in a thin film, and a phase diagram was constructed with a series of composed recipes. The effects of composition and segregation strength on phase separation were discussed in detail. The chain conformation of the block copolymer and alternating copolymer were investigated with changes of the segregation strength. Our simulations revealed that the segment distribution along the copolymer chain and the segregation strength between coarse-grained beads are two important parameters controlling phase separation and chain conformation in thin films of a copolymer blend. A well-controlled phase separation in the copolymer blend can be used to fabricate novel nanostructures.

  16. Molecular Exchange in Ordered Diblock Copolymer Micelles

    Science.gov (United States)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2011-03-01

    Previously, molecular exchange between spherical micelles in dilute solution (1 vol% polymer) was investigated using time-resolved small-angle neutron scattering (TR-SANS). As the concentration of spherical micelles formed by the diblock copolymers increases, the micelles begin to overlap and eventually pack onto body-centered cubic (BCC) lattice. In this study, concentrated, ordered micelles (15 vol% polymers) prepared by dispersing isotopically labeled poly(styrene- b -ethylene-alt-propylene) in an isotopic squalane mixture was investigated to understand the micellar concentration dependence of the molecular exchange. Perfectly random mixing of isotopically labeled micelles on the BCC lattice was confirmed by SANS patterns where the interparticle contribution vanishes, resulting in an intensity that directly relates to the exchange kinetics. The measured molecular exchange process for the concentrated, ordered system is qualitatively consistent with the previous observations, but the rate is more than an order of magnitude slower than that for the dilute, disordered system. Infineum(IPrime), MRSEC(NSF), NIST.

  17. Morphologies of A_2B Simple Graft Copolymer Blends: Copolymer/Copolymer and Copolymer/Homopolymer Systems to Further Elucidate the Stability of Simple Graft Phase Behavior

    Science.gov (United States)

    Lee, Chin; Pochan, Darrin; Gido, Samuel P.; Pispas, Stergios; Mays, Jimmy; Tan, Nora Beck; Trevino, Samuel

    1997-03-01

    The morphological behavior of two series of binary blends of A_2B simple graft block copolymers (A is polyisoprene and B is polystyrene) was characterized via transmission electron microscopy (TEM) and small-angle neutron scattering (SANS). Binary blends of A_2B samples with other A_2B samples of similar relative volume fractions were composed to map out the volume fraction window of stability of the randomly oriented worm phase, or ROW. This novel equilibrium phase behavior was found to occur in a neat A_2B sample with a B volume fraction of 0.81. At this unique composition the single B graft chain first becomes large enough to force the two A chains to the concave side of the AB interface in the microphase separated state. Another set of binary blends of A_2B samples was composed with the respective homopolymers in order to more rigorously determine the phase boundaries relative to volume fraction of the respective microphase separated morphologies in the A_2B systems.

  18. Tunable Morphologies from Charged Block Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Monojoy [ORNL; Sumpter, Bobby G [ORNL; Mays, Jimmy [ORNL; Messman, Jamie M [ORNL

    2010-01-01

    The bulk morphologies formed by a new class of charged block copolymers, 75 vol % fluorinated polyisoprene (FPI) 25 vol% sulfonated polystyrene (PSS) with 50% sulfonation, are characterized, and the fundamental underlying forces that promote the self-assembly processes are elucidated. The results show how the bulk morphologies are substantially different from their uncharged diblock counterparts (PS-PI) and also how morphology can be tuned with volume fraction of the charged block and the casting solvent. A physical understanding based on the underlying strong electrostatic interactions between the charged block and counterions is obtained using Monte Carlo (MC) and Molecular Dynamics (MD) simulations. The 75/25 FPI-PSS shows hexagonal morphologies with the minority blocks (PSS) forming the continuous phase due to charge percolation and the FPI blocks arranged in hexagonal cylinders. Some long-range order can be sustained even if lipophobicity is increased (addition of water), albeit with lower dimensional structures. However, thermal annealing provides sufficient energy to disrupt the percolated charges and promotes aggregation of ionic sites which leads to a disordered system. Diverse and atypical morphologies are readily accessible by simply changing the number distribution of the charges on PSS block.

  19. DNA Block Copolymers : Functional Materials for Nanoscience and Biomedicine

    NARCIS (Netherlands)

    Schnitzler, Tobias; Herrmann, Andreas

    2012-01-01

    We live in a world full of synthetic materials, and the development of new technologies builds on the design and synthesis of new chemical structures, such as polymers. Synthetic macromolecules have changed the world and currently play a major role in all aspects of daily life. Due to their tailorab

  20. DNA Block Copolymers : Functional Materials for Nanoscience and Biomedicine

    NARCIS (Netherlands)

    Schnitzler, Tobias; Herrmann, Andreas

    2012-01-01

    We live in a world full of synthetic materials, and the development of new technologies builds on the design and synthesis of new chemical structures, such as polymers. Synthetic macromolecules have changed the world and currently play a major role in all aspects of daily life. Due to their