WorldWideScience

Sample records for water-gas shift reaction

  1. Density functional theory study on water-gas-shift reaction over molybdenum disulfide

    DEFF Research Database (Denmark)

    Shi, X. R.; Wang, Shengguang; Hu, J.

    2009-01-01

    Density functional theory calculations have been carried out to investigate the adsorption of reaction intermediates appearing during water-gas-shift reaction at the sulfur covered MoS2 (1 0 0)surfaces, Mo-termination with 37.5% S coverage and S-termination with 50% S coverage using periodic slabs....... The pathway for water-gas-shift reaction on both terminations has been carefully studied where the most favorable reaction path precedes the redox mechanism, namely the reaction takes place as follows: CO + H2O --> CO + OH + H --> CO + O + 2H --> CO2 + H-2. The most likely reaction candidates for the formate...

  2. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  3. Enhancement of water-gas shift reaction efficiency: catalysts and the catalyst bed arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Baronskaya, Natal' ya A; Minyukova, Tat' yana P; Khassin, Aleksandr A; Yurieva, Tamara M; Parmon, Valentin N [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2010-12-29

    The results of studies devoted to the search for catalysts of water-gas shift (WGS) reaction that are highly active in a wide temperature interval are generalized. New compositions based on traditional and alternative, as regards the chemical composition, catalysts of high- and low-temperature WGS reaction are considered in detail. The single-stage arrangement of WGS reaction ensuring small temperature gradients in the radial direction of the catalyst bed are discussed.

  4. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  5. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

    2008-03-07

    Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

  6. Electrochemical Synthesis of Mo2C Catalytical Coatings for the Water-Gas Shift Reaction

    Science.gov (United States)

    Kuznetsov, Sergey A.; Dubrovskiy, Anton R.; Rebrov, Evgeny V.; Schouten, Jaap C.

    2007-11-01

    The electroreduction of CO32- ions on a molybdenum cathode in a NaCl-KCl-Li2CO3 melt was studied by cyclic voltammetry. The electrochemical synthesis of Mo2C on molybdenum substrates has been performed at 1123 K for 7 h with a cathodic current density of 5 mA cm-2. If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo2C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo2C phase.

  7. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    Science.gov (United States)

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  8. Reverse water gas shift reaction over Co-precipitated Ni-CeO2 catalysts

    Institute of Scientific and Technical Information of China (English)

    WANG Luhui; ZHANG Shaoxing; LIU Yuan

    2008-01-01

    The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activity, selectivity, and stability for RWGS reaction. Characterizations of the catalyst samples were conducted by XRD and TPR. The results indicated that, in Ni-CeO2 catalysts, there were three kinds of nickel, nickel ions in ceria lattice, highly dispersed NiO and bulk NiO. Oxygen vacancies were formed in CeO2 lattice due to the incorporation of Ni2+ ions into ceria lattice. Oxygen vacancies formed in ceda lattice and highly dispersed Ni were key active components for RWGS, and bulk Ni was key active component for methanation of CO2.

  9. Harnessing the Power of the Water-Gas Shift Reaction for Organic Synthesis.

    Science.gov (United States)

    Ambrosi, Andrea; Denmark, Scott E

    2016-09-26

    Since its original discovery over a century ago, the water-gas shift reaction (WGSR) has played a crucial role in industrial chemistry, providing a source of H2 to feed fundamental industrial transformations such as the Haber-Bosch synthesis of ammonia. Although the production of hydrogen remains nowadays the major application of the WGSR, the advent of homogeneous catalysis in the 1970s marked the beginning of a synergy between WGSR and organic chemistry. Thus, the reducing power provided by the CO/H2 O couple has been exploited in the synthesis of fine chemicals; not only hydrogenation-type reactions, but also catalytic processes that require a reductive step for the turnover of the catalytic cycle. Despite the potential and unique features of the WGSR, its applications in organic synthesis remain largely underdeveloped. The topic will be critically reviewed herein, with the expectation that an increased awareness may stimulate new, creative work in the area.

  10. Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Upadhye, AA; Ro, I; Zeng, X; Kim, HJ; Tejedor, I; Anderson, MA; Dumesic, JA; Huber, GW

    2015-01-01

    We show that localized surface plasmon resonance (LSPR) can enhance the catalytic activities of different oxide-supported Au catalysts for the reverse water gas shift (RWGS) reaction. Oxide-supported Au catalysts showed 30 to 1300% higher activity for RWGS under visible light compared to dark conditions. Au/TiO2 catalyst prepared by the deposition-precipitation (DP) method with 3.5 nm average Au particle size showed the highest activity for the RWGS reaction. Visible light is converted into chemical energy for this reaction with up to a 5% overall efficiency. A shift in the apparent activation energy (from 47 kJ mol(-1) in dark to 35 kJ mol(-1) in light) and apparent reaction order with respect to CO2 (from 0.5 in dark to 1.0 in light) occurs due to the LSPR. Our kinetic results indicate that the LSPR increases the rate of either the hydroxyl hydrogenation or carboxyl decomposition more than any other steps in the reaction network.

  11. Theoretical study of water-gas shift reaction on the silver nanocluster

    Science.gov (United States)

    Arab, Ali; Sharafie, Darioush; Fazli, Mostafa

    2017-10-01

    The kinetics of water gas shift reaction (WGSR) on the silver nanocluster was investigated using density functional theory according to the carboxyl associative mechanism. The hybrid B3PW91 functional along with the 6-31+G* and LANL2DZ basis sets were used throughout the calculations. It was observed that CO and H2O molecules adsorb physically on the Ag5 cluster without energy barrier as the initial steps of WGSR. The next three steps including H2Oads dissociation, carboxyl (OCOHads) formation, and CO2(ads) formation were accompanied by activation barrier. Transition states, as well as energy profiles of these three steps, were determined and analyzed. Our results revealed that the carboxyl and CO2(ads) formation were fast steps whereas H2Oads dissociation was the slowest step of WGSR.

  12. Study of activity and effectiveness factor of noble metal catalysts for water-gas shift reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sungkwang; Bae, Joongmyeon [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea); Kim, Kihyun [POSCO 1, Goedong-dong, Nam-gu, Pohang, Gyeongbuk 790-785 (Korea)

    2009-01-15

    Platinum on ceria-zirconia (CZO) catalysts for the water-gas shift (WGS) reaction were prepared with various platinum loadings. In addition, the activity of Pt/CZO catalysts was tested preliminarily at gas hourly space velocity (GHSV) of 5000 h{sup -1}. Activity tests were also conducted at GHSV of 200,000 h{sup -1} with limited conversions, and activation energies and pre-exponential factors for rate equations were obtained by fitting the data. The effectiveness factors were estimated on the basis of the intra-particle mass transfer. Moreover, with this estimation, an attempt was made to calculate the utilization of the Pt loading with an eggshell morphology. (author)

  13. A mini review on the chemistry and catalysis of the water gas shift reaction

    CERN Document Server

    Zhao, Zhun

    2014-01-01

    Water gas shift (WGS) reaction is a chemical reaction in which carbon monoxide reacts with water vapor to form carbon dioxide and hydrogen. It is an important reaction industrially used in conjunction with steam reforming of hydrocarbons for the production of high purity hydrogen. Grenoble et al examined the roles of both active metals and metal oxide support on the kinetics of the WGS reaction. They found out that the turn over numbers of various Al2O3 supported transition metals decreased in the trend of Cu, Re, Co, Ru, Ni, Pt, Os, Au, Fe, Pd, Rh, and Ir, which corresponds nicely to the observed volcano shaped correlation between catalytic activities and respective CO adsorption heat. This is a strong indication that CO gets activated on the metal surface during the reaction and different metals have different activation energies. The authors also observed that the turn over number of Pt/Al2O3 was one order of magnitude higher than that of Pt/SiO2, indicating a strong support effect, which the authors ascri...

  14. Water gas shift reaction over Cu catalyst supported by mixed oxide materials for fuel cell application

    Directory of Open Access Journals (Sweden)

    Tepamatr Pannipa

    2016-01-01

    Full Text Available The water gas shift activities of Cu on ceria and Gd doped ceria have been studied for the further enhancement of hydrogen purity [1] after the steam reforming of ethanol. The catalytic properties of commercial catalysts were also studied to compare with the as-prepared catalysts. Copper-containing cerium oxide materials are shown in this work to be suitable for the high temperature. Copper-ceria is a stable high-temperature shift catalyst, unlike iron-chrome catalysts that deactivate severely in CO2-rich gases. We found that 5%Cu/10%GDC(D has much higher activity than other copper ceria based catalysts. The finely dispersed CuO species is favorable to the higher activity, which explained the activity enhancement of this catalyst. The kinetics of the WGS reaction over Cu catalysts supported by mixed oxide materials were measured in the temperature range 200-400 °C. An independence of the CO conversion rate on CO2 and H2 was found.

  15. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Paul K.T. Liu

    2001-10-16

    This technical report summarizes our activities conducted in Yr II. In Yr I we successfully demonstrated the feasibility of preparing the hydrogen selective SiC membrane with a chemical vapor deposition (CVD) technique. In addition, a SiC macroporous membrane was fabricated as a substrate candidate for the proposed SiC membrane. In Yr II we have focused on the development of a microporous SiC membrane as an intermediate layer between the substrate and the final membrane layer prepared from CVD. Powders and supported thin silicon carbide films (membranes) were prepared by a sol-gel technique using silica sol precursors as the source of silicon, and phenolic resin as the source of carbon. The powders and films were prepared by the carbothermal reduction reaction between the silica and the carbon source. The XRD analysis indicates that the powders and films consist of SiC, while the surface area measurement indicates that they contain micropores. SEM and AFM studies of the same films also validate this observation. The powders and membranes were also stable under different corrosive and harsh environments. The effects of these different treatments on the internal surface area, pore size distribution, and transport properties, were studied for both the powders and the membranes using the aforementioned techniques and XPS. Finally the SiC membrane materials are shown to have satisfactory hydrothermal stability for the proposed application. In Yr III, we will focus on the demonstration of the potential benefit using the SiC membrane developed from Yr I and II for the water-gas-shift (WGS) reaction.

  16. Synthesis of Dimethyl Ether from CO Hydrogenation: a Thermodynamic Analysis of the Influence of Water Gas Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Guangxin Jia; Yisheng Tan; Yizhuo Han

    2005-01-01

    Three reactions involved in dimethyl ether (DME) synthesis from CO hydrogenation: methanol synthesis reaction (MSR), methanol dehydration reaction (MDR) and water gas shift reaction (WGSR) are studied by thermodynamic calculation. For demonstrating this process in detail, three models, MSR,MSR+MDR, MSR+MDR+WGSR, are used. Their basic characteristics can be obtained by varying widely the ratios of H2 to CO in the feed (no CO2). Through thermodynamic analysis a chemical synergic effect obviously exists in the second and third models. By comparison between two models it is found that WGSR plays a special role in dimethyl ether synthesis. It is possible for the two models to shift one to the other by regulating CO2 concentration in feed. For Model 2, the selectivity for DME in oxygenates (DME+methanol) does not change with the ratio of H2 to CO.

  17. Influence of the monoclinic and tetragonal zirconia phases on the water gas shift reaction. A theoretical study.

    Science.gov (United States)

    Cerón, María Luisa; Herrera, Barbara; Araya, Paulo; Gracia, Francisco; Toro-Labbé, Alejandro

    2013-07-01

    We present a theoretical study of the water gas shift reaction taking place on zirconia surfaces modeled by monoclinic and tetragonal clusters. In order to understand the charge transfer between the active species, in this work we analyze the influence of the geometry of monoclinic and tetragonal zirconia using reactivity descriptors such as electronic chemical potential (μ), charge transfer (ΔN) and molecular hardness (η). We have found that the most preferred surface is tetragonal zirconia (tZrO2) indicating also that low charge transfer systems will generate less stable intermediates, that will allow to facilitate desorption process.

  18. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  19. Structure Sensitivity of the Low-temperature Water-gas Shift Reaction on Cu–CeO2 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Si, R.; Zhang, L.; Raitano, J.; Yi, N.; Chan, S.-W.; Flytzani-Stephanopoulos, M.

    2012-01-17

    We have investigated the structure sensitivity of the water-gas shift (WGS) reaction on Cu-CeO{sub 2} catalysts prepared at the nanoscale by different techniques. On the surface of ceria, different CuO{sub x} structures exist. We show here that only the strongly bound Cu-[O{sub x}]-Ce species, probably associated with the surface oxygen vacancies of ceria, are active for catalyzing the low-temperature WGS reaction. Weakly bound CuO{sub x} clusters and CuO nanoparticles are spectator species in the reaction. Isolated Cu{sup 2+} ions doping the ceria surface are not active themselves, but they are important in that they create oxygen vacancies and can be used as a reservoir of copper to replenish surface Cu removed by leaching or sintering. Accordingly, synthesis techniques such as coprecipitation that allow for extensive solubility of Cu in ceria should be preferred over impregnation, deposition-precipitation, ion exchange or another two-step method whereby the copper precursor is added to already made ceria nanocrystals. For the synthesis of different structures, we have used two methods: a homogeneous coprecipitation (CP), involving hexamethylenetetramine as the precipitating agent and the pH buffer; and a deposition-precipitation (DP) technique. In the latter case, the ceria supports were first synthesized at the nanoscale with different shapes (rods, cubes) to investigate any potential shape effect on the reaction. Cu-CeO{sub 2} catalysts with different copper contents up to ca. 20 at.% were prepared. An indirect shape effect of CeO{sub 2}, manifested by the propensity to form oxygen vacancies and strongly bind copper in the active form, was established; i.e. the water-gas shift reaction is not structure-sensitive. The apparent activation energy of the reaction on all samples was similar, 50 {+-} 10 kJ/mol, in a product-free (2% CO-10% H{sub 2}O) gas mixture.

  20. Three-dimensionally ordered macro-porous Pt/TiO2 catalyst used for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    Hao Liang; Yuan Zhang; Yuan Liu

    2008-01-01

    Three-dimensionally ordered macro-porous (3DOM) Pt/TiO2 catalysts were prepared by template and impregna-tion methods, and the resultant samples were characterized by using TG-DTA, XRD, SEM, TEM, and TPR techniques. The catalytic performance for water-gas shift (WGS) reaction was tested, and the influences of some conditions, such as reduction temperature of catalysts, the amount of Pt loadings and space velocity on catalytic performance were investigated. It was shown that Pt particles were homogeneously dispersed on 3DOM TiO2. The reduction of TiO2 surface was important for the catalyticperformance. The activity test results showed that the 3DOM Pt/TiO2 catalysts exhibited very good catalytic performance for WGS reaction even at high space velocity, which was owing to the better mass transfer of 3DOM porous structure besides the high intrinsic activity of Pt/TiO2.

  1. High temperature water gas shift reaction over Fe-Cr-Cu nanocatalyst fabricated by a novel method

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Seyed Mahdi; Salehirad, Alireza [Iranian Research Organization for Science and Technology (IROST), Tehran (Iran, Islamic Republic of)

    2016-02-15

    Fe-Cr-Cu nanocatalyst was synthesized through an inorganic-precursor thermolysis approach and exploited for high temperature water gas shift reaction. The results demonstrated that the method used for the nanocatalyst fabrication led to smaller crystallite size (32.9 nm) and higher BET surface area (127.3m{sup 2}/g) compared to those of a reference sample (65.5 nm, 78.6m{sup 2}/g) prepared by co-precipitation conventional method. Furthermore, the obtained data for catalytic activity showed that the catalyst prepared via inorganic precursor has better activity than the reference sample in all studied temperatures (350-500 .deg. C) and also exhibited higher catalytic activity than a commercial Fe-Cr- Cu catalyst in higher temperatures (more than 450 .deg. C).

  2. Water-gas shift reaction on CuO-ZnO catalysts: I. Structure and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Kalchev, M.G.; Andreev, A.A. [Institute of Catalysis, Sofia (Bulgaria); Zotov, N.S. [Institute of Applied Mineralogy, Sofia (Bulgaria)

    1995-11-01

    The physicochemical properties of CuO-ZnO samples with different CuO contents were investgated by a complex of physical methods: DSC, XPS, EPR, TPR, and XRD. The samples containing {approximately}25 wt % CuO exhibited a maximum catalytic activity in the water-gas shift reaction. The catalytic activity was attributed to copper ions aggregated on the highly dispersed and defective CuO surface and to an anion-modified ZnO surface. Aggregates of copper ions, formed on metal species and probably modified with hydroxyl and carbonate groups, were shown to play a decisive role in the catalytic activity of the samples containing more than 15 wt % CuO.

  3. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. During Year I, we have successfully fabricated SiC macro porous membranes via extrusion of commercially available SiC powder, which were then deposited with thin, micro-porous (6 to 40{angstrom} in pore size) films via sol-gel technique as intermediate layers. Finally, an SiC hydrogen selective thin film was deposited on this substrate via our CVD/I technique. The composite membrane thus prepared demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers. Building upon the positive progress made in the Year I preliminary study, we will conduct an optimization study in Year II to develop an optimized H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment.

  4. SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Paul K.T. Liu

    2003-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the

  5. Role of Re in Pt–Re/TiO2 catalyst for water gas shift reaction: A mechanistic and kinetic study

    NARCIS (Netherlands)

    Azzam, K.G.; Babich, I.V.; Seshan, K.; Lefferts, L.

    2008-01-01

    Transient kinetic studies and in situ FTIR spectroscopy were used to follow the reaction sequences that occur during water gas shift (WGS) reaction over Pt–Re/TiO2 catalyst. Results pointed to contributions of an associative formate route with redox regeneration and two classical redox routes involv

  6. Nano-Scale Au Supported on Carbon Materials for the Low Temperature Water Gas Shift (WGS Reaction

    Directory of Open Access Journals (Sweden)

    Paula Sánchez

    2011-12-01

    Full Text Available Au-based catalysts supported on carbon materials with different structures such as graphite (G and fishbone type carbon nanofibers (CNF-F were prepared using two different methods (impregnation and gold-sol to be tested in the water gas shift (WGS reaction. Atomic absorption spectrometry, transmission electron microscopy (TEM, temperature-programmed oxidation (TPO, X-ray diffraction (XRD, Raman spectroscopy, elemental analyses (CNH, N2 adsorption-desorption analysis, temperature-programmed reduction (TPR and temperature-programmed decomposition were employed to characterize both the supports and catalysts. Both the crystalline nature of the carbon supports and the method of gold incorporation had a strong influence on the way in which Au particles were deposited on the carbon surface. The higher crystallinity and the smaller and well dispersed Au particle size were, the higher activity of the catalysts in the WGS reaction was noted. Finally, catalytic activity showed an important dependence on the reaction temperature and steam-to-CO molar ratio.

  7. Raney copper catalysts for the water-gas shift reaction - II. Initial catalyst optimisation

    CSIR Research Space (South Africa)

    Mellor, JR

    1997-12-23

    Full Text Available -Zn-A1 catalyst. During the controlled passivation Table 2 Crystalline phase of alloys B, C and D and their product Raney copper catalysts before and after reaction Alloy Precursor alloy phases Cat. phases before reaction a Cat. phases after reaction a... L; dry gas composition=10% CO/90% N2; CO : H20=I : 22.5; catalyst volume=2i0.1 ml): (O)=Cat. A Cu(69.3)Zn(6.9)Al( 19.5); (~)=cat. B Cu(73.6)Zn(10.9)AI(14.8); (W1)=cat. C Cu(72.4)Zn(13.3)Al(12.9); ({))=cat. D Cu(61.5)Zn(15.1)AI(19.1). It can...

  8. Effect of yttrium addition on water-gas shift reaction over CuO/CeO2 catalysts

    Institute of Scientific and Technical Information of China (English)

    SHE Yusheng; LI Lei; ZHAN Yingying; LIN Xingyi; ZHENG Qi; WEI Kemei

    2009-01-01

    This paper presented a study on the role of yttrium addition to CuO/CeO2 catalyst for water-gas shift reaction. A single-step co-precipitation method was used for preparation of a series of yttrium doped CuO/CeO2 catalysts with yttrium content in the range of 0-5wt.%. Properties of the obtained samples were characterized and analyzed by X-ray diffraction (XRD), Raman spectroscopy, H2-TPR, cyclic voltammetry (CV) and the BET method. The results revealed that catalytic activity was increased with the yttrium content at first, but then decreased with the further increase of yttrium content. Herein, CuO/CeO2 catalyst doped with 2wt.% of yttrium showed the highest catalytic activity (CO conversion reaches 93.4% at 250℃) and thermal stability for WGS reaction. The catalytic activity was correlated with the surface area, the area of peak y of H2-TPR profile (I.e., the reduction of surface copper oxide (crystalline forms) interacted with surface oxygen vacancies on ceria), and the area of peak C2 and A1 (Cu0→Cu2+ in cyclic voltammetry process), respectively. Besides, Raman spectra provided evidences for a synergistic Cu-Ovacancy interaction, and it was indicated that doping yttrium may facilitate the formation of oxygen vacancies on ceria.

  9. Effect of doping rare earth oxide on performance of copper-manganese catalysts for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    何润霞; 姜浩强; 武芳; 智科端; 王娜; 周晨亮; 刘全生

    2014-01-01

    Rare earth-doped copper-manganese mixed oxide catalysts were prepared by coprecipitation and mechanical mixing using copper sulfate, manganese sulfate, and rare-earth oxides REO (REO indicates La2O3, CeO2, Y2O3, or Pr6O11) as raw materials. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed reduc-tion of oxidized surfaces (s-TPR), and temperature-programmed desorption (TPD). Catalytic activities were tested for a water-gas shift reaction. Doping rare earth oxides did not alter the crystal structure of the original copper-manganese mixed oxides but changed the interplanar spacing, adsorption performance and reaction performance. Doping with La2O3 enhanced the activity and stability of Cu-Mn mixed oxides because of high copper distribution and fine reduction. Doping with CeO2 and Y2O3 also decreased the reduc-tion temperatures of the samples to different degrees while improving the dispersion of Cu on the surface, thus, catalytic activity was better than that of undoped Cu-Mn sample. The Pr6O11-doped sample was difficult to reduce, the dispersion of surface coppers was lowered, resulting in poor activity.

  10. Potassium-decorated active carbon supported Co-Mo-based catalyst for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    Yixin Lian; RuiFen Xiao; Weiping Fang; Yiquan Yang

    2011-01-01

    The effect of potassium-decoration was studied on the activity of water-gas shift(WGS)reaction over the Co-Mo-based catalysts supported on active carbon(AC),which was prepared by incipient wetness co-impregnation method.The decoration of potassium on active carbon in advance enhances the activities of the CoMo-K/AC catalysts for WGS reaction.Highest activity(about 92% conversion)was obtained at250 ℃ for the catalyst with an optimum K2O/AC weight ratio in the range from 0.12 to 0.15.The catalysts were characterized by TPR and EPR,and the results show that activated carbon decorated with potassium makes Co-Mo species highly dispersed,and thus easily reduced and sulfurized.XRD results show that an appropriate content of potassium-decoration on active carbon supports may favors the formation of highly dispersed Co9Ss-type structures which are situated on the edge or a site in contact with MoS2,K-Mo-O-S,Mo-S-K phase.Those active species are responsible for the high activity of CoMo-K/AC catalysts.

  11. Hydrogen production by the high temperature combination of the water gas shift and CO{sub 2} absorption reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bretado, M.A.E.; Vigil, M.D.D.; Gutierrez, J.S.; Ortiz, A.L.; Collins-Martinez, V. [Centro de Investigacion en Materiales Avanzados, Chihuahua, Chih (Mexico). Dept. de Quimica de Materiales

    2009-01-15

    Hydrogen is an important raw material for the chemical and petroleum industry. An important research field has surfaced, dealing with the production of high purity hydrogen for power generation purposes through fuel cells. Industrial technologies for hydrogen production are based on the use of fossil fuels, with catalytic steam methane reforming being the most important process together with partial oxidation of hydrocarbons and the integrated combined coal gasification cycle. Hydrogen production through the water gas shift (WGS) reaction requires two consecutive catalytic steps followed by carbon dioxide (CO{sub 2}) separation. However, combination of the WGS reaction and CO{sub 2} capture by a solid absorbent opens the opportunity to produce high purity hydrogen in one single step called absorption enhanced WGS or AEWGS. In theory, this process would not require a catalyst. This paper presented an experimental study of AEWGS using a quartz-made fixed bed reactor. The CO{sub 2} absorbents tested in this study were calcined dolomite, (CaOMgO) and sodium zirconate (Na{sub 2}ZrO{sub 3}). The paper described the experimental study, with particular reference to the thermodynamic analysis that determined the equilibrium conditions of the systems CO/H{sub 2}O (WGS) and CO/absorbent/H{sub 2} (AEWGS); synthesis and characterization; and the fixed bed reaction system. Results were determined by X-ray diffraction, BET surface area and crystallite size, and reaction evaluation. It was concluded that at reaction conditions, dolomite can efficiently remove CO{sub 2} at partial pressures three times lower than with the use of Na{sub 2}ZrO{sub 3} as absorbent. 24 refs., 1 tab., 6 figs.

  12. A Novelγ-Alumina Supported Fe-Mo Bimetallic Catalyst for Reverse Water Gas Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Abolfazl Gharibi Kharaji; Ahmad Shariati; Mohammad Ali Takassi

    2013-01-01

    In reverse water gas shift (RWGS) reaction CO2 is converted to CO which in turn can be used to pro-duce beneficial chemicals such as methanol. In the present study, Mo/Al2O3, Fe/Al2O3 and Fe-Mo/Al2O3 catalysts were synthesised using impregnation method. The structures of catalysts were studied using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, inductively coupled plasma atomic emission spectrometer (ICP-AES), temperature programmed reduction (H2-TPR), CO chemisorption, energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) techniques. Kinetic properties of all catalysts were investigated in a batch re-actor for RWGS reaction. The results indicated that Mo existence in structure of Fe-Mo/Al2O3 catalyst enhances its activity as compared to Fe/Al2O3. This enhancement is probably due to better Fe dispersion and smaller particle size of Fe species. Stability test of Fe-Mo/Al2O3 catalyst was carried out in a fixed bed reactor and a high CO yield for 60 h of time on stream was demonstrated. Fe2(MoO4)3 phase was found in the structures of fresh and used catalysts. TPR results also indicate that Fe2(MoO4)3 phase has low reducibility, therefore the Fe2(MoO4)3 phase significantly inhibits the reduction of the remaining Fe oxides in the catalyst, resulted in high stability of Fe-Mo/Al2O3 catalyst. Overall, this study introduces Fe-Mo/Al2O3 as a novel catalyst with high CO yield, almost no by-products and fairly stable for RWGS reaction.

  13. Morphology-Dependent Properties of Cu/CeO2 Catalysts for the Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Zhibo Ren

    2017-02-01

    Full Text Available CeO2 nanooctahedrons, nanorods, and nanocubes were prepared by the hydrothermal method and were then used as supports of Cu-based catalysts for the water-gas shift (WGS reaction. The chemical and physical properties of these catalysts were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption/desorption, UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS, hydrogen temperature-programmed reduction (H2-TPR and in situ diffuse reflectance infra-red fourier transform spectroscopy (DRIFTS techniques. Characterization results indicate that the morphology of the CeO2 supports, originating from the selective exposure of different crystal planes, has a distinct impact on the dispersion of Cu and the catalytic properties. The nanooctahedron CeO2 catalyst (Cu-CeO2-O showed the best dispersion of Cu, the largest amount of moderate copper oxide, and the strongest Cu-support interaction. Consequently, the Cu-CeO2-O catalyst exhibited the highest CO conversion at the temperature range of 150–250 °C when compared with the nanocube and nanorod Cu-CeO2 catalysts. The optimized Cu content of the Cu-CeO2-O catalysts is 10 wt % and the CO conversion reaches 91.3% at 300 °C. A distinctive profile assigned to the evolution of different types of carbonate species was observed in the 1000–1800 cm−1 region of the in situ DRIFTS spectra and a particular type of carbonate species was identified as a potential key reaction intermediate at low temperature.

  14. Water-Gas Shift and CO Methanation Reactions over Ni-CeO2(111) Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    S Senanayake; J Evans; S Agnoli; L Barrio; T Chen; J Hrbek; J Rodriguez

    2011-12-31

    X-ray and ultraviolet photoelectron spectroscopies were used to study the interaction of Ni atoms with CeO{sub 2}(111) surfaces. Upon adsorption on CeO{sub 2}(111) at 300 K, nickel remains in a metallic state. Heating to elevated temperatures (500-800 K) leads to partial reduction of the ceria substrate with the formation of Ni{sup 2+} species that exists as NiO and/or Ce{sub 1-x}Ni{sub x}O{sub 2-y}. Interactions of nickel with the oxide substrate significantly reduce the density of occupied Ni 3d states near the Fermi level. The results of core-level photoemission and near-edge X-ray absorption fine structure point to weakly bound CO species on CeO{sub 2}(111) which are clearly distinguishable from the formation of chemisorbed carbonates. In the presence of Ni, a stronger interaction is observed with chemisorption of CO on the admetal. When the Ni is in contact with Ce{sup +3} cations, CO dissociates on the surface at 300 K forming NiC{sub x} compounds that may be involved in the formation of CH{sub 4} at higher temperatures. At medium and large Ni coverages (>0.3 ML), the Ni/CeO{sub 2}(111) surfaces are able to catalyze the production of methane from CO and H{sub 2}, with an activity slightly higher than that of Ni(100) or Ni(111). On the other hand, at small coverages of Ni (<0.3 ML), the Ni/CeO{sub 2}(111) surfaces exhibit a very low activity for CO methanation but are very good catalysts for the water-gas shift reaction.

  15. Probing the Reaction Intermediates for the Water-Gas Shift over Inverse CeOx/Au(111) Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.A.; Senanayake, S.D.; Stacchiola, D.; Evans, J.; Estrella, M.; Barrio-Pliego, L.; Pérez, M.; Hrbek, J.

    2010-05-04

    The water-gas shift (WGS) is an important reaction for the production of molecular H{sub 2} from CO and H{sub 2}O. An inverse CeO{sub x}/Au(1 1 1) catalyst exhibits a very good WGS activity, better than that of copper surfaces or Cu nanoparticles dispersed on a ZnO(0 0 0 {bar 1}) substrate which model current WGS industrial catalysts. In this work we report on intermediates likely to arise during the CO + H{sub 2}O reaction over CeO{sub x}/Au(1 1 1) using soft X-ray photoemission (sXPS) and near-edge X-ray absorption fine structure (NEXAFS). Several potential intermediates including formates (HCOO), carbonates (CO{sub 3}) and carboxylates (HOCO) are considered. Adsorption of HCOOH and CO{sub 2} is used to create both HCOO and CO{sub 3} on the CeO{sub x}/Au(1 1 1) surface, respectively. HCOO appears to have greater stability with desorption temperatures up to 600 K while CO{sub 3} only survives on the surface up to 300 K. On the CeO{sub x}/Au(1 1 1) catalysts, the presence of Ce{sup 3+} leads to the dissociation of H{sub 2}O to give OH groups. We demonstrate experimentally that the OH species are stable on the surface up to 600 K and interact with CO to yield weakly bound intermediates. When there is an abundance of Ce{sup 4+}, the OH concentration is diminished and the likely intermediates are carbonates. As the surface defects are increased and the Ce{sup 3+}/Ce{sup 4+} ratio grows, the OH concentration also grows and both carbonate and formate species are observed on the surface after dosing CO to H{sub 2}O/CeO{sub x}/Au(1 1 1). The addition of ceria nanoparticles to Au(1 1 1) is essential to generate an active WGS catalyst and to increase the production and stability of key reaction intermediates (OH, HCOO and CO{sub 3}).

  16. CO2 SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS-SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO2

    Energy Technology Data Exchange (ETDEWEB)

    Paul K.T. Liu

    2005-07-15

    A high temperature membrane reactor (MR) has been developed to enhance the water-gas-shift (WGS) reaction efficiency with concomitant CO{sub 2} removal for sequestration. This improved WGS-MR with CO{sub 2} recovery capability is ideally suitable for integration into the Integrated Gasification Combined-Cycle (IGCC) power generation system. Two different CO{sub 2}-affinity materials were selected in this study. The Mg-Al-CO{sub 3}-layered double hydroxide (LDH) was investigated as an adsorbent or a membrane for CO{sub 2} separation. The adsorption isotherm and intraparticle diffusivity for the LDH-based adsorbent were experimentally determined, and suitable for low temperature shift (LTS) of WGS. The LDH-based membranes were synthesized using our commercial ceramic membranes as substrate. These experimental membranes were characterized comprehensively in terms of their morphology, and CO{sub 2} permeance and selectivity to demonstrate the technical feasibility. In parallel, an alternative material-base membrane, carbonaceous membrane developed by us, was characterized, which also demonstrated enhanced CO{sub 2} selectivity at the LTS-WGS condition. With optimization on membrane defect reduction, these two types of membrane could be used commercially as CO{sub 2}-affinity membranes for the proposed application. Based upon the unique CO{sub 2} affinity of the LDHs at the LTS/WGS environment, we developed an innovative membrane reactor, Hybrid Adsorption and Membrane Reactor (HAMR), to achieve {approx}100% CO conversion, produce a high purity hydrogen product and deliver a concentrated CO{sub 2} stream for disposal. A mathematical model was developed to simulate this unique one -step process. Finally a benchtop reactor was employed to generate experimental data, which were consistent with the prediction from the HAMR mathematical model. In summary, the project objective, enhancing WGS efficiency for hydrogen production with concomitant CO{sub 2} removal for

  17. The effect of preparation factors on the structural and catalytic properties of mesoporous nanocrystalline iron-based catalysts for high temperature water gas shift reaction

    Energy Technology Data Exchange (ETDEWEB)

    Meshkani, Fereshteh; Rezaei, Mehran [University of Kashan, Kashan (Iran, Islamic Republic of)

    2015-07-15

    A systematic study was done on the effect of preparation factors on the structural and catalytic properties of mesoporous nanocrystalline iron-based catalysts in high temperature water gas shift reaction. The catalysts were prepared by coprecipitation method, and the effect of the main preparation factors (pH, refluxing temperature, refluxing time, concentration of the precursors solution) was studied. The catalysts were characterized by powder X-ray diffraction (XRD), N{sub 2} adsorption (BET), Temperature programmed reduction (TPR), transmission and scanning electron microscopies (TEM, SEM) techniques. The results revealed that the preparation factors affected the textural and catalytic properties of the Fe-Cr-Cu catalyst. The results showed that the prepared catalyst with the highest activity showed higher specific surface area compared to commercial catalyst and consequently exhibited higher activity in high temperature water gas shift reaction. The TEM analysis showed a nanostructure for this sample with crystallite size less than 20 nm.

  18. Supported Copper, Nickel and Copper-Nickel Nanoparticle Catalysts for Low Temperature Water-Gas-Shift Reaction

    Science.gov (United States)

    Lin, Jiann-Horng

    Hydrogen is being considered worldwide as a future replacement for gasoline, diesel fuel, natural gas in both the transportation and non-transportation sectors. Hydrogen is a versatile energy carrier that can be produced from a variety of widely available primary energy sources, including coal, natural gas, biomass, solar, wind, and nuclear power. Coal, the most abundant fossil fuel on the planet, is being looked at as the possible future major source of H2, due to the development of the integrated gasification combined cycle (IGCC) and integrated gasification fuel cell technologies (IGFC). The gasification of coal produces syngas consisting of predominately carbon monoxide and hydrogen with some remaining hydrocarbons, carbon dioxide and water. Then, the water-gas shift reaction is used to convert CO to CO2 and additional hydrogen. The present work describes the synthesis of model Cu, Ni and Cu-Ni catalysts prepared from metal colloids, and compares their behavior in the WGS reaction to that of traditional impregnation catalysts. Initially, we systematically explored the performance of traditional Cu, Ni and Cu-Ni WGS catalysts made by impregnation methods. Various bimetallic Cu-Ni catalysts were prepared by supported impregnation and compared to monometallic Cu and Ni catalysts. The presence of Cu in bimetallic catalysts suppressed undesirable methanation side reaction, while the Ni component was important for high WGS activity. Colloidal Cu, Ni and Cu-Ni alloy nanoparticles obtained by chemical reduction were deposited onto alumina to prepare supported catalysts. The resulting Cu and Ni nanoparticle catalysts were found to be 2.5 times more active in the WGS reaction per unit mass of active metal as compared to catalysts prepared by the conventional impregnation technique. The powder XRD and HAADF-STEM provided evidence supporting the formation of Cu-Ni particles containing the Cu core and Cu-Ni alloy shell. The XPS data indicated surface segregation of Cu in

  19. Synthesis of Fe{sub 3}O{sub 4}-based catalysts for the high-temperature water gas shift reaction

    Energy Technology Data Exchange (ETDEWEB)

    Martos, C.; Dufour, J.; Ruiz, A. [Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2009-05-15

    The water gas shift reaction is an essential process to adjust the CO/H{sub 2} ratio in the industrial production of hydrogen. FeCr catalysts have been widely used in this reaction at high temperature but have environmental and safety concerns related to chromium content. In this work, the replacement of chromium by molybdenum in magnetite-based catalysts is studied. The materials were prepared by oxidation-precipitation and wet impregnation and they were characterized using X-ray powder diffraction, X-ray fluorescence, transmission electron microscopy, and temperature programmed reduction. Specific surface areas of samples were also measured. The results obtained indicate that molybdenum increases thermal stability of the magnetite active phase and prevents metallic iron formation during the reaction. The oxidation-precipitation method allows obtaining the material directly in the active phase and molybdenum is incorporated into magnetite lattice. (author)

  20. Effects of CeO2 on structure and properties of Ni-Mn-K/bauxite catalysts for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    JIANG Lilong; YE Binghuo; WEI Kemei

    2008-01-01

    Multiple-metal catalysts (Ni-Mn-Ce-K/bauxite) for Water-Gas Shift (WGS) reaction were prepared by impregnation, and the catalytic structure and properties were investigated by N2 physical, XRD, H2-TPR, and CO-TPD. The results indicated that the addition of 7.5% CeO2 improved the activity of the WGS reaction obviously, and also increased the specific surface area and pore volume of the catalysts. The addition of CeO2 decreases the reduction temperature, enhanced the adsorption and activation of H2O, and improved the adsorption content of CO. Besides, active sites were not changed and the number of active sites on catalysts did not increase obviously.

  1. Computation and comparison of Pd-based membrane reactor performances for water gas shift reaction and isotope swamping in view of highly tritiated water decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati, RM (Italy); Rizzello, Claudio [Tesi Sas, Via Bolzano 28, Roma (Italy); Tosti, Silvano [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: • A dedicated detritiation process for highly tritiated water (HTW) has to be identified. • Water gas shift and isotopic swamping via Pd–Ag membrane reactor are possible processes. • A parametric analysis through two simulation codes is performed. • A comparison in terms of the decontamination factor is provided. -- Abstract: In a D–T fusion machine, due to the possible reaction between tritium and oxygen, some potential sources of highly tritiated water (HTW) can be identified. Therefore, a dedicated detritiation process has to be assessed either for economic and safety reasons. In this view, the use of a Pd-based membrane reactor performing isotopic exchange reactions can be considered since hydrogen isotopes exclusively permeate the Pd–Ag membrane and their exchange over the catalyst realizes the water detritiation. In this activity, the treatment of highly tritiated water, generated by an ITER-like machine (i.e. 2 kg of stoichiometric HTO containing up to 300 g of tritium), via a Pd-membrane reactor is studied in terms of decontamination capability. Especially, a parametric analysis of two processes (water gas shift and isotopic swamping) performed in a Pd-based membrane reactor is carried out by using two mathematical models previously developed and experimentally verified. Particularly, the effect of the reactor temperature, the membrane thickness, the reaction pressure and the protium sweep flow-rate is investigated. Moreover, a comparison in terms of the decontamination factor and the number of reactors necessary to detritiate the HTW are provided. Generally, the results reveal a higher decontamination capability of the WGS reaction respect with the IS (maximum DF values of about 120 and 1.6 in the case of WGS and IS, respectively). However some drawbacks, mainly related with the formation of tritiated species, can occur by performing the WGS.

  2. Synthesis of CuNi/C and CuNi/γ-Al2O3 Catalysts for the Reverse Water Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Maxime Lortie

    2015-01-01

    Full Text Available A new polyol synthesis method is described in which CuNi nanoparticles of different Cu/Ni atomic ratios were supported on both carbon and gamma-alumina and compared with Pt catalysts using the reverse water gas shift, RWGS, reaction. All catalysts were highly selective for CO formation. The concentration of CH4 was less than the detection limit. Cu was the most abundant metal on the CuNi alloy surfaces, as determined by X-ray photoelectron spectroscopy, XPS, measurements. Only one CuNi alloy catalyst, Cu50Ni50/C, appeared to be as thermally stable as the Pt/C catalysts. After three temperature cycles, from 400 to 700°C, the CO yield at 700°C obtained using the Cu50Ni50/C catalyst was comparable to that obtained using a Pt/C catalyst.

  3. Performance Comparison of Two Newly Developed Bimetallic (X-Mo/Al2O3, X=Fe or Co) Catalysts for Reverse Water Gas Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Abolfazl Gharibi Kharaji; Ahmad Shariati

    2016-01-01

    The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al2O3, was com-pared for reverse water gas shift (RWGS) reaction. The structures of the precursor and the catalysts were studied using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, inductively coupled plasma-atomic emission spec-trometry (ICP-AES), CO chemisorption, temperature programmed reduction of hydrogen (H2-TPR) and scanning electron microscopy (SEM) techniques. The activity of Fe-Mo and Co-Mo catalysts was compared in a ifxed bed reactor at different temperatures. It is shown that the Co-Mo catalyst has higher CO2 conversion at all temperature level. The time-on-stream (TOS) analysis of the activity of catalysts for the RWGS reaction was carried out over a continuous period of 60 h for both catalysts. The Fe-Mo/Al2O3 catalyst exhibits good stability within a period of 60 h, however, the Co-Mo/Al2O3 is gradually deactivated after 50 h of reaction time. Existence of Fe2(MoO4)3 phase in Fe-Mo/Al2O3 catalyst makes this catalyst more stable for RWGS reaction.

  4. Water-gas shift reaction on metal nanoclusters encapsulated in mesoporous ceria studied with ambient-pressure X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Wen, Cun; Zhu, Yuan; Ye, Yingchun; Zhang, Shiran; Cheng, Fang; Liu, Yi; Wang, Paul; Tao, Franklin Feng

    2012-10-23

    Metal nanoclusters (Au, Pt, Pd, Cu) encapsulated in channels of mesoporous ceria (mp-CeO(2)) were synthesized. The activation energies of water-gas shift (WGS) reaction performed at oxide-metal interfaces of metal nanoclusters encapsulated in mp-CeO(2) (M@mp-CeO(2)) are lower than those of metal nanoclusters impregnated on ceria nanorods (M/rod-CeO(2)). In situ studies using ambient-pressure XPS (AP-XPS) suggested that the surface chemistry of the internal concave surface of CeO(2) pores of M@mp-CeO(2) is different from that of external surfaces of CeO(2) of M/rod-CeO(2) under reaction conditions. AP-XPS identified the metallic state of the metal nanoclusters of these WGS catalysts (M@mp-CeO(2) and M/rod-CeO(2)) under a WGS reaction condition. The lower activation energy of M@mp-CeO(2) in contrast to M/rod-CeO(2) is related to the different surface chemistry of the two types of CeO(2) under the same reaction condition.

  5. Effects of ZrO2 Content on Structure and Performance of Cu/CeO2-ZrO2 Catalysts for Water-Gas Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Cu/CeO2-ZrO2 catalysts for water-gas shift (WGS) reaction were prepared with co-precipitation method, and the influence of ZrO2 content on the catalytic structure and properties was investigated by the techniques of N2 physical adsorption analysis, XRD and H2-TPR. The results indicate that the BET surface areas of the catalysts are increased in varying degrees due to the presence of ZrO2. With increasing ZrO2 content, the pore size distribution is centered on 1.9 nm. ZrO2can efficiently restrain the growth of Cu crystal particles. The appropriate amount of ZrO2 in the Cu/CeO2 catalysts can help the catalyst keep better copper dispersion in the WGS reaction, which can lead to both higher catalytic activity and better thermal stability. When ZrO2 content is 10% (atom fraction), Cu/CeO2-ZrO2 catalyst reaches a CO conversion rate of 73.7 % at the reaction temperature of 200 ℃.

  6. Magnetic Ni-Co alloys induced by water gas shift reaction, Ni-Co oxides by CO oxidation and their supercapacitor applications

    Science.gov (United States)

    Lee, Seungwon; Kang, Jung-Soo; Leung, Kam Tong; Kim, Seog K.; Sohn, Youngku

    2016-11-01

    Ni-Co alloys and oxides have attracted considerable attention in diverse fields, such as magnetic materials, energy storage and environmental/energy producing catalysts. Herein, the formation of magnetic Ni-Co alloys was induced by the water-gas shift reaction (WGSR) and the oxides were prepared by post-annealing and a CO oxidation reaction. The materials were characterized using a range of techniques. The annealed and post-CO oxidation Ni and Co-rich samples showed the crystal structures of NiCo2O4(Co3O4)/NiO and NiCo2O4/Co3O4, respectively. The Ni-Co oxides showed better supercapacitor performance than the corresponding Ni-Co alloys. The Co-rich samples exhibited better supercapacitor performance and CO oxidation activity than the Ni-rich sample. In addition, the Co-rich alloy showed a magnetization of 114 emu/g, which was approximately 2× larger than that of the Ni-rich alloy. The WGS reaction and the wide application tests are useful for designing new materials applicable to a wide range of areas.

  7. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  8. Zirconia modified monolithic macroporous Pt/CeO2/Al2O3 catalyst used for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    LIANG Hao; YUAN Honggang; WEI Feng; ZHANG Xiwen; LIU Yuan

    2011-01-01

    Monolithic macroporous Pt/CeO2/Al2O3 and zirconia modified Pt/f eO2/Al2O3 catalysts Were prepared by using concentrated emulsions synthesis route.The catalytic performances over the platinum-based catalysts were investigated by water-gas shift (WGS) reaction in a wide temperature range (180-300 ℃).The samples were characterized with thermogravimetry (TG),X-ray diffraction (XRD),scanning electron microscopy (SEM),high resolution transmission electron microscopy (HRTEM) and temperature programmed reduction (TPR) techniques as well.The SEM and HRTEM results indicated that the monoliths possessed macroporosity,in size of 5-50 μm,and platinum particles were homogeneously dispersed on macroporous materials.XRD and TPR results showed that the interaction between ceria and zirconia oxide was formed and the addition of zirconia could promote the reducibility of platinum oxide on the interface of ceria and zirconia particles,which led to an improvement of catalytic activity in WGS reaction.The results indicated that zirconia modified monolithic macroporous Pt/CeO2/Al2O3 could be fabricated in small size (from millimeter lever to centimeter) and had good reaction activity,which was a potential new route for miniaturization of the WGS reactor.

  9. Ceria modified three-dimensionally ordered macro-porous Pt/TiO2 catalysts for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    LIANG Hao; ZHANG Yuan; LIU Yuan

    2009-01-01

    Three-dimensionally ordered macro-porous(3DOM) TiO2 and ceria-modified 3DOM TiO2 supported platinum catalysts were pre-pared with template and impregnation methods, and the resultant samples were characterized by scanning electron microscopy(SEM), X-ray dif-fractometer(XRD), high-resolution transmission electron microscopy(HRTEM) and texture programmed reduction(TPR) techniques. The catalytic performances over the platinum-based catalysts were investigated for water-gas shift (WGS) reaction in a wide temperature range macro-porous catalyst, owing to the macro-porous structure favoring mass uansfer. Addition of ceria into 3DOM Pt/TiO2 led to improvement of catalytic activity. TPR and HRTEM results showed that the interaction existed between ceria and titanium oxide and addition of ceria promoted the reducibility of platinum oxide and TiO2 on the interface of platinum and TiO2 particles, which contributed to high activity of the ceria modi-fied catalysts. The results indicated that ceria-modified 3DOM Pt/TiO2 was a promising candidate of fuel cell oriented WGS catalyst.

  10. La2-xCexCu1-yZnyO4 perovskites for high temperature water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    S.S.Maluf; E.M. Assaf

    2009-01-01

    The performance of La2-xCexCu1-yZnyO4 perovskites as catalysts for the high temperature water-gas shift reaction (HT-WGSR) was inves-tigated. The catalysts were characterized by EDS, XRD, BET surface area, TPR, and XANES. The results showed that all the perovskites exhibited the La2CuO4 orthorhombic structure, so the Pechini method is suitable for the preparation of pure perovskite. However, the La1.90Ce0.10CuO4 perovskite alone, when calcined at 350/700℃, also showed a (La0.935Ce0.065)2CuO4 perovskite with tetragonal struc-ture, which produced a surface area higher than the other perovskites. The perovskites that exhibited the best catalytic performance were those calcined at 350/700 ℃ and, among these, La1.90Ce0.10CuO4 was outstanding, probably because of the high surface area associated with the presence of the (La0.935Ce0.065) 2CuO4 perovskite with tetragonal structure and orthorhombic La2CuO4 phase.

  11. CO{sub 2} SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS-SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paul K. T. Liu

    2005-01-31

    Our CO{sub 2}-affinity material synthesis activities thus far have offered two base materials suitable for hydrogen production via low temperature water gas shift reaction (LTS-WGS) with concomitant removal of CO{sub 2} for sequestration. They include (i) a nanoporous CO{sub 2}-affinity membrane and (ii) a hydrotalcite based CO-affinity adsorbent. These two materials offer a commercially viable opportunity for implementing an innovative process concept termed the hybrid adsorbent-membrane reactor (HAMR) for LTS-WGS, proposed by us in a previous quarterly report. A complete mathematical model has been developed in this quarter to describe the HAMR system, which offers process flexibility to incorporate both catalysts and adsorbents in the reactor as well as permeate sides. In comparison with the preliminary mathematical model we reported previously, this improved model incorporates ''time'' as an independent variable to realistically simulate the unsteady state nature of the adsorptive portion of the process. In the next quarterly report, we will complete the simulation to demonstrate the potential benefit of the proposed process based upon the performance parameters experimentally obtained from the CO{sub 2}-affinity adsorbent and membrane developed from this project.

  12. Water-gas shift reaction over gold nanoparticles dispersed on nanostructured CeOx-TiO2(110) surfaces: Effects of high ceria coverage

    Science.gov (United States)

    Grinter, D. C.; Park, J. B.; Agnoli, S.; Evans, J.; Hrbek, J.; Stacchiola, D. J.; Senanayake, S. D.; Rodriguez, J. A.

    2016-08-01

    Scanning tunnelling microscopy has been used to study the morphology of an overlayer of ceria in contact with a TiO2(110) substrate. Two types of domains were observed after ceria deposition. An ordered ceria film covered half of the surface and high-resolution imaging suggested a near-c(6 × 2) relationship to the underlying TiO2(110)-(1 × 1). The other half of the surface comprised CeOx nanoparticles and reconstructed TiOx supported on TiO2(110)-(1 × 1). Exposure to a small amount of gold resulted in the formation of isolated gold atoms and small clusters on the ordered ceria film and TiO2(110)-(1 × 1) areas, which exhibited significant sintering at 500 K and showed strong interaction between the sintered gold clusters and the domain boundaries of the ceria film. The Au/CeOx/TiO2(110) model system proved to be a good catalyst for the water-gas shift (WGS) exhibiting much higher turnover frequencies (TOFs) than Cu(111) and Pt(111) benchmarks, or the individual Au/TiO2(110) and Au/CeO2(111) systems. For Au/CeOx/TiO2(110) catalysts, there was a decrease in catalytic activity with increasing ceria coverage that correlates with a reduction in the concentration of Ce3 + formed during WGS reaction conditions.

  13. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P.; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G.; Kazantzis, Nikolaos K.; Ma, Yi Hua

    2016-01-01

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H2 to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields. PMID:27657143

  14. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Directory of Open Access Journals (Sweden)

    Bernardo Castro-Dominguez

    2016-09-01

    Full Text Available Palladium-based catalytic membrane reactors (CMRs effectively remove H2 to induce higher conversions in methane steam reforming (MSR and water-gas-shift reactions (WGS. Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i a conventional packed bed reactor packed (PBR for MSR, (ii a PBR with five layers of two catalysts in series and (iii a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields.

  15. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-05-13

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  16. 催化水煤气变换反应的计算模拟进展%Progress of theoretical simulation of catalytic water-gas-shift reaction

    Institute of Scientific and Technical Information of China (English)

    陈玉; 张福丽; 姚辉超; 刘植昌; 崔佳; 徐春明

    2012-01-01

    The progress of theoretical simulation of catalytic water-gas-shift(WGS) reaction is reviewed,by focusing on the reaction mechanism.As to traditional Cu-Zn-,Fe-Cr-,and Co-Mo-based heterogeneous catalysts,carboxyl and redox mechanisms dominate.Promoters and supports also affect the entire reaction process,and may take part in the reaction process directly.Improved or novel catalysts,such as gold or gold-loaded catalyst have also been explored theoretically,and there is also no end to apprehending respective catalytic reaction mechanism.For those homogeneous catalytic reactions like WGS catalyzed by carbonyls of iron group,the understanding of the reaction mechanism is getting deeper.Theoretical studies are expected to expand from those simple model systems to more complex and real WGS model systems.Theoretical studies will show their advantages,such as convenience and low cost,in comparison with experimental investigation,and also provide successful examples for the design of catalysts.%综述了对具有广泛工业应用的水煤气变换(WGS)反应进行理论模拟所取得的进展,重点讨论反应机理方面获得的成果。对于传统的铜锌、铁铬和钴钼等非均相催化剂而言,羧基机理和氧化还原机理占统治地位,而助剂和载体对反应机理也有影响,有时甚至直接参与反应过程。对改进型、新型催化剂如金或负载金等催化WGS反应机理的认识过程尚未结束。对铁族羰基络合均相催化WGS反应机理的理解逐步深入。理论模拟研究将从少数简单的WGS模型体系扩展到更多复杂的真实体系;在预言新的催化体系反应机理上,与实验研究相比,有望体现出费用低和非常便利的优势,并能为催化剂的设计提供理论依据和成功案例。

  17. Pre-Reduction of Au/Iron Oxide Catalyst for Low-Temperature Water-Gas Shift Reaction Below 150 °C

    Directory of Open Access Journals (Sweden)

    Takashi Fukuda

    2011-12-01

    Full Text Available Low-temperature water-gas shift reaction (WGS using gold catalyst is expected to be an attractive technique to realize an efficient on-site hydrogen production process. In this paper, Au/Fe3O4 catalysts for promoting the WGS below 150 °C were developed by a preliminary reduction of Au/iron oxide (Fe3+ catalyst utilizing high reactivity of Au nano-particles. The reduction was conducted under a CO, H2, or CO/H2O stream at either 140 or 200 °C, and the effect of reduction conditions on the characteristics of the Au/Fe3O4 catalyst and on the catalytic activity in WGS at 80 °C was investigated. The reaction progress during the pre-reduction treatment was qualitatively analyzed, and it was found that the iron oxide in Au/Fe2O3 calcined at 200 °C was easily reduced to Fe3O4 phase in all reduction conditions. The reduction conditions affected the characteristics of both Au and iron oxide, but all of the reduced catalysts had small Fe3O4 particles of less than 20 nm with Au particles on the surface. The surface area and content of cationic Au were high in the order of CO, H2, CO/H2O, and 140, 200 °C. In the WGS test at 80 °C using the developed catalysts, the activities of the catalysts pre-reduced by CO at 140 or 200 °C and by H2 at 140 °C were very high with 100% CO conversion even at such a low temperature. These results indicated that factors such as higher surface area, crystallized Fe3O4, and cationic Au content contributed to the catalytic activity.

  18. Renewable synthesis-gas-production. Do hydrocarbons in the reactant flow of the reverse water-gas shift reaction cause coke formation?

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In a two-step synthetic fuel production process based on carbon dioxide and renewable hydrogen, the best possible selectivity towards liquid hydrocarbons (Hc) shall be implemented. The process consists of a combination of the Reverse Water-Gas Shift reaction and the Fischer-Tropsch synthesis. To achieve this goal, gaseous short-chained Hc from the FTS reactor are recycled in the RWGS unit. In this paper, challenges coming up with the implementation of a recycle loop are discussed. First of all, it has to be examined whether Hc are converted under conditions present in the RWGS reactor. The coking caused by the recycle of Hc is regarded, including thermal coking in the heating zone of the reactor and catalytic coking in the catalyst bed. Coking of course is unwanted, as it deactivates the catalyst. The scope of this work is to find out to which extent and under which conditions gaseous Hc can be recycled. Therefore, experiments were carried out in both, a quartz glass reactor using a commercial Ni-catalyst at ambient pressure and in a pressurized steel reactor (without catalyst) to examine coking during the thermal decomposition of Hc. The catalytic experiments at atmospheric pressure showed that a recycle of CH{sub 4} did not cause coking up to a ratio of CH{sub 4}/CO{sub 2} below one. For these conditions, long term stability was proved. The reaction rates of the CH{sub 4} conversion were below those of the RWGS reaction. However, replacing CH{sub 4} by C{sub 3}H{sub 8} leads to thermal and catalytic coking. Catalytic coking hits the maximum level at about 700 C and decreases for higher temperatures and, thus is not regarded as a problem for the RWGS reactor. In contrast to that, thermal coking raises with higher temperatures, but it can be supressed efficiently with additional injection of H{sub 2}O, which of course shifts the equilibrium towards the undesired reactant side. (orig.)

  19. Simulation of Water Gas Shift Zeolite Membrane Reactor

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Rizki, Z.; Zunita, Megawati; Dharmawijaya, P. T.

    2017-07-01

    The search of alternative energy sources keeps growing from time to time. Various alternatives have been introduced to reduce the use of fossil fuel, including hydrogen. Many pathways can be used to produce hydrogen. Among all of those, the Water Gas Shift (WGS) reaction is the most common pathway to produce high purity hydrogen. The WGS technique faces a downstream processing challenge due to the removal hydrogen from the product stream itself since it contains a mixture of hydrogen, carbon dioxide and also the excess reactants. An integrated process using zeolite membrane reactor has been introduced to improve the performance of the process by selectively separate the hydrogen whilst boosting the conversion. Furthermore, the zeolite membrane reactor can be further improved via optimizing the process condition. This paper discusses the simulation of Zeolite Membrane Water Gas Shift Reactor (ZMWGSR) with variation of process condition to achieve an optimum performance. The simulation can be simulated into two consecutive mechanisms, the reaction prior to the permeation of gases through the zeolite membrane. This paper is focused on the optimization of the process parameters (e.g. temperature, initial concentration) and also membrane properties (e.g. pore size) to achieve an optimum product specification (concentration, purity).

  20. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, L.; Kubacka, A; Zhou, G; Estrella, M; Martinez-Arias, A; Hanson, J; Fernandez-Garcia, M; Rodriguez, J

    2010-01-01

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni-O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate-carbonate route is operative for the production of hydrogen.

  1. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.A.; Barrio, L.; Kubacka, A.; Zhou, G.; Estrella, M.; Mart& #305; nez-Arias, A.; Hanson, J.C.; Fernandez-Garc& #305; a, M.

    2010-07-29

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni?O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate?carbonate route is operative for the production of hydrogen.

  2. Effect of precipitants on Ni-CeO2 catalysts prepared by a co-precipitation method for the reverse water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    王路辉; 刘辉; 刘源; 陈英; 杨淑清

    2013-01-01

    A series of Ni-CeO2 catalysts were prepared by co-precipitation method with Na2CO3, NaOH, and mixed precipitant (Na2CO3:NaOH;1:1 ratio) as precipitant, respectively. The effect of the precipitants on the catalytic performance, physical and chemical properties of Ni-CeO2 catalysts was investigated with the aid of X-ray diffraction (XRD), Brumauer-Emmett-Teller method (BET), Fou-rier-transform infrared spectroscopy (FT-IR), thermogravimetry (TG), and H2-TPR characterizations. The Ni-CeO2 catalysts were exam-ined with respect to their catalytic performance for the reverse water-gas shift reaction, and their catalytic activities were ranked as:Ni-CeO2-CP (Na2CO3:NaOH=1:1)>Ni-CeO2-CP(Na2CO3)>Ni-CeO2-CP(NaOH). Correlating to the characteristic results, it was found that the catalyst prepared by co-precipitation with mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant had the most amount of oxygen vacancies accompanied with highly dispersed Ni particles, which made the corresponding Ni-CeO2-CP(Na2CO3:NaOH=1:1) catalyst exhibit the highest catalytic activity. While the precipitant of Na2CO3 or NaOH resulted in less or no oxygen vacancies in Ni-CeO2 catalysts. As a result, Ni-CeO2-CP(Na2CO3) and Ni-CeO2-CP(NaOH) catalysts presented poor catalytic performance.

  3. High-Temperature Water-Gas Shift Membrane Reactor Study

    Energy Technology Data Exchange (ETDEWEB)

    Ciocco, M.V.; Iyoha, O.; Enick, R.M.; Killmeyer, R.P.

    2007-06-01

    NETL’s Office of Research and Development is exploring the integration of membrane reactors into coal gasification plants as a way of increasing efficiency and reducing costs. Water-Gas Shift Reaction experiments were conducted in membrane reactors at conditions similar to those encountered at the outlet of a coal gasifier. The changes in reactant conversion and product selectivity due to the removal of hydrogen via the membrane reactor were quantified. Research was conducted to determine the influence of residence time and H2S on CO conversion in both Pd and Pd80wt%Cu membrane reactors. Effects of the hydrogen sulfide-to-hydrogen ratio on palladium and a palladium-copper alloy at high-temperature were also investigated. These results were compared to thermodynamic calculations for the stability of palladium sulfides.

  4. Stabilization and regeneration of CeO{sub 2} and CeO{sub 2}/ZrO{sub 2} based Pt catalyst for the water gas shift reaction

    Energy Technology Data Exchange (ETDEWEB)

    Haggblad, R.M.S.; Hulteberg, P.C.; Brandin, J.G.M. [Catator AB, Lund (Sweden)

    2005-07-01

    In this study a water gas shift catalyst consisting of a cerium oxide (CeO{sub 2}) based carrier and a platinum (Pt)-metal active phase was investigated. Issues concerning the stabilization and regeneration of CeO{sub 2} and CeO{sub 2} and zirconium oxide (ZrO{sub 2}) subject to high initial deactivation were presented. The influence of reaction gas species on catalyst deactivation were investigated by hydrogen (H{sub 2}) Temperature Programmed Reduction (TPR). It was noted that the activity measurements enabled different promoters, which will require further investigation. The catalysts were characterized by BET and carbon monoxide-TPR. Deactivated catalyst activity was restored by using various regeneration methods. Of the selected carriers, the CeO{sub 2}-ZrO{sub 2} based Pt catalyst showed the highest resilience to deactivation. Tungsten and rhenium were the best promoters when the catalyst was subject to deactivation. Experiments with H{sub 2}-TPR indicated a rapid initial change in the platinum oxides concentration and composition. The carbon monoxide (CO)-TPR was then used to draw conclusions about the various regeneration effects of water and oxygen on the catalyst. Dominant mechanisms were dependent on the catalyst and the reaction gas composition. It was concluded that it is possible to stabilize the ceria-based water gas shift catalyst by promotion, but primarily by doping. Addition of zirconia to the carrier has an effect on catalyst stability, and future research should be focused in this area. Results of the CO-TPR performed on the regenerated catalysts indicated that steam does not affect the Pt oxides but has a regenerative effect. It was suggested that experiments with regeneration by both steam and oxygen simultaneously may result in more complete regeneration of the catalyst. It was determined that deactivation of the catalyst does not originate from a single mechanism. The results indicated that no other species present has any higher

  5. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  6. Unraveling the Active Site in Copper-ceria Systems for the Water Gas Shift Reaction: In-situ Characterization of an Inverse Powder CeO2-x/CuO-Cu Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.A.; Barrio, L.; Estrella, M.; Zhou, G.; Wen, W.; Hanson, J.C.; Hungría, A.B.; Hornés, A.; Fernández-García, M.; Arturo Martínez-Arias, A.

    2010-03-04

    An inverse powder system composed of CeO{sub 2} nanoparticles dispersed over a CuO-Cu matrix is proposed as a novel catalyst for the water-gas shift reaction. This inverse CeO{sub 2}/CuO-Cu catalyst exhibits a higher activity than standard Cu/CeO{sub 2} catalysts. In situ synchrotron characterization techniques were employed to follow the structural changes of CeO{sub 2}/CuO-Cu under reaction conditions. Time-resolved X-ray diffraction experiments showed the transformation of CuO to metallic Cu via a Cu{sub 2}O intermediate. Short-order structural changes were followed by pair distribution function analysis and corroborated the results obtained by diffraction. Moreover, X-ray absorption spectroscopy also revealed oxidation state changes from Cu{sup 2+} to Cu{sup 0} and the partial reduction of CeOx nanoparticles. The activity data obtained by mass spectrometry revealed that hydrogen production starts once the copper has been fully reduced. The strong interaction of ceria and copper boosted the catalytic performance of the sample. The inverse catalyst was active at low temperatures, stable to several reaction runs and to redox cycles. These characteristics are highly valuable for mobile fuel cell applications. The active phases of the inverse CeO{sub 2}/CuO-Cu catalyst are partially reduced ceria nanoparticles strongly interacting with metallic copper. The nature and structure of the ceria nanoparticles are of critical importance because they are involved in processes related to water dissociation over the catalyst surface.

  7. Unraveling the Active Site in Copper-Ceria Systems for the Water-Gas Shift Reaction: In Situ Characterization of an Inverse Powder CeO2-x/CuO-Cu Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, L.; Estrella, M; Zhou, G; Wen, W; Hanson, J; Hungria, A; Hornes, A; Fernandez-Garcia, M; Martinez-Arias, A; Rodriguez, J

    2010-01-01

    An inverse powder system composed of CeO{sub 2} nanoparticles dispersed over a CuO-Cu matrix is proposed as a novel catalyst for the water-gas shift reaction. This inverse CeO{sub 2}/CuO-Cu catalyst exhibits a higher activity than standard Cu/CeO{sub 2} catalysts. In situ synchrotron characterization techniques were employed to follow the structural changes of CeO{sub 2}/CuO-Cu under reaction conditions. Time-resolved X-ray diffraction experiments showed the transformation of CuO to metallic Cu via a Cu{sub 2}O intermediate. Short-order structural changes were followed by pair distribution function analysis and corroborated the results obtained by diffraction. Moreover, X-ray absorption spectroscopy also revealed oxidation state changes from Cu{sup 2+} to Cu{sup 0} and the partial reduction of CeO{sub x} nanoparticles. The activity data obtained by mass spectrometry revealed that hydrogen production starts once the copper has been fully reduced. The strong interaction of ceria and copper boosted the catalytic performance of the sample. The inverse catalyst was active at low temperatures, stable to several reaction runs and to redox cycles. These characteristics are highly valuable for mobile fuel cell applications. The active phases of the inverse CeO{sub 2}/CuO-Cu catalyst are partially reduced ceria nanoparticles strongly interacting with metallic copper. The nature and structure of the ceria nanoparticles are of critical importance because they are involved in processes related to water dissociation over the catalyst surface.

  8. Ru4+ ion in CeO2 (Ce0.95Ru0.05O2−): A non-deactivating, non-platinum catalyst for water gas shift reaction

    Indian Academy of Sciences (India)

    Preetam Singh; N Mahadevaiah; Sanjit K Parida; M S Hegde

    2011-09-01

    Hydrogen is a clean energy carrier and highest energy density fuel. Water gas shift (WGS) reaction is an important reaction to generate hydrogen from steam reforming of CO. A new WGS catalyst, Ce1−RuO2− (0 ≤ ≤ 0.1) was prepared by hydrothermal method using melamine as a complexing agent. The Catalyst does not require any pre-treatment. Among the several compositions prepared and tested, Ce0.95Ru0.05O2− (5% Ru4+ ion substituted in CeO2) showed very high WGS activity in terms of high conversion rate (20.5 mol.g-1.s-1 at 275°C) and low activation energy (12.1 kcal/mol). Over 99% conversion of CO to CO2 by H2O is observed with 100% H2 selectivity at ≥ 275°C. In presence of externally fed CO2 and H2 also, complete conversion of CO to CO2 was observed with 100% H2 selectivity in the temperature range of 305-385°C. Catalyst does not deactivate in long duration on/off WGS reaction cycle due to absence of surface carbon and carbonate formation and sintering of Ru. Due to highly acidic nature of Ru4+ ion, surface carbonate formation is also inhibited. Sintering of noble metal (Ru) is avoided in this catalyst because Ru remains in Ru4+ ionic state in the Ce1−RuO2− catalyst.

  9. Development of Novel Water-Gas Shift Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W. S. Winston

    2004-12-29

    This report summarizes the objectives, technical barrier, approach, and accomplishments for the development of a novel water-gas-shift (WGS) membrane reactor for hydrogen enhancement and CO reduction. We have synthesized novel CO{sub 2}-selective membranes with high CO{sub 2} permeabilities and high CO{sub 2}/H{sub 2} and CO{sub 2}/CO selectivities by incorporating amino groups in polymer networks. We have also developed a one-dimensional non-isothermal model for the countercurrent WGS membrane reactor. The modeling results have shown that H{sub 2} enhancement (>99.6% H{sub 2} for the steam reforming of methane and >54% H{sub 2} for the autothermal reforming of gasoline with air on a dry basis) via CO{sub 2} removal and CO reduction to 10 ppm or lower are achievable for synthesis gases. With this model, we have elucidated the effects of system parameters, including CO{sub 2}/H{sub 2} selectivity, CO{sub 2} permeability, sweep/feed flow rate ratio, feed temperature, sweep temperature, feed pressure, catalyst activity, and feed CO concentration, on the membrane reactor performance. Based on the modeling study using the membrane data obtained, we showed the feasibility of achieving H{sub 2} enhancement via CO{sub 2} removal, CO reduction to {le} 10 ppm, and high H{sub 2} recovery. Using the membrane synthesized, we have obtained <10 ppm CO in the H{sub 2} product in WGS membrane reactor experiments. From the experiments, we verified the model developed. In addition, we removed CO{sub 2} from a syngas containing 17% CO{sub 2} to about 30 ppm. The CO{sub 2} removal data agreed well with the model developed. The syngas with about 0.1% CO{sub 2} and 1% CO was processed to convert the carbon oxides to methane via methanation to obtain <5 ppm CO in the H{sub 2} product.

  10. WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R.F. Lund

    2002-08-02

    The kinetics of water-gas shift were studied over ferrochrome catalysts under conditions with high carbon dioxide partial pressures, such as would be expected in a membrane reactor. The catalyst activity is inhibited by increasing carbon dioxide partial pressure. A microkinetic model of the reaction kinetics was developed. The model indicated that catalyst performance could be improved by decreasing the strength of surface oxygen bonds. Literature data indicated that adding either ceria or copper to the catalyst as a promoter might impart this desired effect. Ceria-promoted ferrochrome catalysts did not perform any better than unpromoted catalyst at the conditions tested, but copper-promoted ferrochrome catalysts did offer an improvement over the base ferrochrome material. A different class of water-gas shift catalyst, sulfided CoMo/Al{sub 2}O{sub 3} is not affected by carbon dioxide and may be a good alternative to the ferrochrome system, provided other constraints, notably the requisite sulfur level and maximum temperature, are not too limiting. A model was developed for an adiabatic, high-temperature water-gas shift membrane reactor. Simulation results indicate that an excess of steam in the feed (three moles of water per mole of CO) is beneficial even in a membrane reactor as it reduces the rate of adiabatic temperature rise. The simulations also indicate that much greater improvement can be attained by improving the catalyst as opposed to improving the membrane. Further, eliminating the inhibition by carbon dioxide will have a greater impact than will increasing the catalyst activity (assuming inhibition is still operative). Follow-up research into the use of sulfide catalysts with continued kinetic and reactor modeling is suggested.

  11. Water-gas shift on gold catalysts: catalyst systems and fundamental studies.

    Science.gov (United States)

    Tao, Franklin Feng; Ma, Zhen

    2013-10-07

    Since the pioneering finding by Haruta et al. that small gold nanoparticles on reducible supports can be highly active for low-temperature CO oxidation, the synthesis, characterization, and application of supported gold catalysts have attracted much attention. The water-gas shift reaction (WGSR: CO + H2O = CO2 + H2) is important for removing CO and upgrading the purity of H2 for fuel cell applications, ammonia synthesis, and selective hydrogenation processes. In recent years, much attention has been paid to exploration the possibility of using supported gold nanocatalysts for WGSR and understanding the fundamental aspects related to catalyst deactivation mechanisms, nature of active sites, and reaction mechanisms. Here we summarize recent advances in the development of supported gold catalysts for this reaction and fundamental insights that can be gained, and furnish our assessment on the status of research progress.

  12. Qualification of the ALKASORB sorbent for the sorption-enhanced water-gas shift process

    Energy Technology Data Exchange (ETDEWEB)

    Van Selow, E.R.; Cobden, P.D.; Dijk, Van H.A.J.; Walspurger, S.; Verbraeken, P.A.; Jansen, D.

    2013-07-01

    For the sorption-enhanced water-gas shift (SEWGS) process, a new sorbent material has been qualified in a reactor of 2 m length under conditions close to industrial designs. The sorbent ALKASORB is a potassium-carbonate promoted hydrotalcite-based compound. ALKASORB is shown to have many favourable properties in comparison to the reference sorbent, in particular with respect to mechanical stability. The cyclic capacity of the new compound is substantially higher than the cyclic capacity of the reference sorbent, and it allows a reduction of the steam requirement of 50%. The sorbent has demonstrated catalytic activity for the water-gas shift reaction that is sufficient to omit a separate catalyst. It is demonstrated that the sorbent remains chemically and mechanically stable during operation of at least 2000 adsorption-desorption cycles, even in the presence of H2S in the feed. H2S is shown not to influence CO2 adsorption capacity and is co-captured with the CO2. In contrast to the reference material that showed mechanical degradation during extended adsorption-desorption cycles, the new material is stable and allows to obtain carbon capture levels exceeding 95% more efficiently and more economically since the required size of the vessels will be smaller.

  13. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

    1990-01-01

    A Co/MgO/SiO[sub 2] Fischer-Tropsch catalyst was operated simultaneously with a Cu/ZnO/Al[sub 2]O[sub 3] water-gas-shift catalyst in a slurry reactor for over 400 hours. The process conditions were held constant at a temperature of 240[degrees]C, a pressure of 0.79 MPa, and a 1.1 H[sub 2]/CO feed of 0.065 Nl/min-g.cat. The Fischer-Tropsch activity remained constant at the level predicted by the operation of the Co/MgO/SiO[sub 2] catalyst alone. The water-gas-shift reaction was near equilibrium. The hydrocarbon product distribution of the combined catalyst system was stable and matched that of the CO/MgO/SiO[sub 2] operating alone under similar conditions. The combined catalyst system exhibited a high selectivity to n-alkanes. Neither catalysts's operation appeared to have a detrimental effect on that of the other, showing promise for future option.

  14. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long

  15. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long

  16. Operation, Modeling and Analysis of the Reverse Water Gas Shift Process

    Science.gov (United States)

    Whitlow, Jonathan E.

    2001-01-01

    The Reverse Water Gas Shift process is a candidate technology for water and oxygen production on Mars under the In-Situ Propellant Production project. This report focuses on the operation and analysis of the Reverse Water Gas Shift (RWGS) process, which has been constructed at Kennedy Space Center. A summary of results from the initial operation of the RWGS, process along with an analysis of these results is included in this report. In addition an evaluation of a material balance model developed from the work performed previously under the summer program is included along with recommendations for further experimental work.

  17. Hydrogen production by absorption enhanced water gas shift (AEWGS)

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo Bretado, Miguel A. [Facultad de Ciencias Quimicas, Universidad Juarez del Estado de Durango, Ave. Veterinaria s/n, Circuito Universitario, Durango 34120 (Mexico); Departamento de Quimica de Materiales, Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120, Chihuahua, Chih. 31109 (Mexico); Delgado Vigil, Manuel D.; Gutierrez, Jesus Salinas; Lopez Ortiz, Alejandro; Collins-Martinez, Virginia [Departamento de Quimica de Materiales, Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120, Chihuahua, Chih. 31109 (Mexico)

    2010-11-15

    AEWGS is a reaction that combines the WGS reaction and CO{sub 2} capture by a solid absorbent to produce high purity H{sub 2} from synthesis gas in one single step at 600-800 C. This reactor system, if homogeneous, would not require a catalyst. However, previous research on this concept was not conclusive, since a steel reactor was used and reactor walls were suspected to act as catalyst. Therefore, there is a need to address this issue and to select and evaluate suitable CO{sub 2} absorbents for this concept. AEWGS was studied using a quartz-made fixed-bed reactor at; SV = 3000 h{sup -1}, feed; 5% CO, 15% H{sub 2}O, balance He-N{sub 2} at 600 C, 1 atm. CO{sub 2} absorbents tested were CaO*MgO, and Na{sub 2}ZrO{sub 3}. Empty quartz-reactor tests leaded to conclude that a catalyst is needed for the WGS at temperatures of interest. A 97% H{sub 2} product was obtained with calcined dolomite suggesting this last to act as a WGS catalyst. (author)

  18. Single-stage temperature-controllable water gas shift reactor with catalytic nickel plates

    Science.gov (United States)

    Park, Jin-Woo; Lee, Sung-Wook; Lee, Chun-Boo; Park, Jong-Soo; Lee, Dong-Wook; Kim, Sung-Hyun; Kim, Sung-Soo; Ryi, Shin-Kun

    2014-02-01

    In this study, a microstructured reactor with catalytic nickel plates is newly designed and developed for proper heat management in an exothermic water gas shift WGS reaction. The reactor is designed to increase the reactor capacity simply by numbering-up a set of a catalyst layers and heat exchanger layers. The WGS reactor is built up with two sets of a catalyst layers and heat exchanger layers. The performance of the reactor is verified by WGS testing with the variation of the furnace temperatures, gas hourly space velocity (GHSV) and coolant (N2) flow rate. At a GHSV of 10,000 h-1, CO conversion reaches the equilibrium value with a CH4 selectivity of ≤0.5% at the furnace temperature of ≥375 °C. At high GHSV (40,000 h-1), CO conversion decreases considerably because of the heat from the exothermic WGS reaction at a large reactants mass. By increasing the coolant flow rate, the heat from the WGS reaction is properly managed, leading an increase of the CO conversion to the equilibrium value at GHSV of 40,000 h-1.

  19. Influence of Gas Components on the Formation of Carbonyl Sulfide over Water-Gas Shift Catalyst B303Q

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Water-gas shift reaction catalyst at lower temperature (200-400 ℃) may improve the conversion of carbon monoxide. But carbonyl sulfide was found to be present over the sulfided cobaltmolybdenum/alumina catalyst for water-gas shift reaction. The influences of temperature, space velocity,and gas components on the formation of carbonyl sulfide over sulfided cobalt-molybdenum/alumina catalyst B303Q at 200-400 ℃ were studied in a tubular fixed-bed quartz-glass reactor under simulated water-gas shift conditions. The experimental results showed that the yield of carbonyl sulfide over B303Q catalyst reached a maximum at 220 ℃ with the increase in temperature, sharply decreased with the increase in space velocity and the content of water vapor, increased with the increase in the content of carbon monoxide and carbon dioxide, and its yield increased and then reached a stable value with the increase in the content of hydrogen and hydrogen sulfide. The formation mechanism of carbonyl sulfide over B303Q catalyst at 200-400 ℃ was discussed on the basis of how these factors influence the formation of COS. The yield of carbonyl sulfide over B303Q catalyst at 200-400 ℃ was the combined result of two reactions, that is, COS was first produced by the reaction of carbon monoxide with hydrogen sulfide,and then the as-produced COS was converted to hydrogen sulfide and carbon dioxide by hydrolysis. The mechanism of COS formation is assumed as follows: sulfur atoms in the Co9Ss-MoS2/Al2O3 crystal lattice were easily removed and formed carbonyl sulfide with CO, and then hydrogen sulfide in the water-gas shift gas reacted with the crystal lattice oxygen atoms in CoO-MoO3/Al2O3 to form Co9Ss-MoS2/Al2O3.This mechanism for the formation of COS over water-gas shift catalyst B303Q is in accordance with the Mars-Van Krevelen's redox mechanism over metal sulfide.

  20. Simulation and control of water-gas shift packed bed reactor with inter-stage cooling

    Science.gov (United States)

    Saw, S. Z.; Nandong, J.

    2016-03-01

    Water-Gas Shift Reaction (WGSR) has become one of the well-known pathways for H2 production in industries. The issue with WGSR is that it is kinetically favored at high temperatures but thermodynamically favored at low temperatures, thus requiring careful consideration in the control design in order to ensure that the temperature used does not deactivate the catalyst. This paper studies the effect of a reactor arrangement with an inter-stage cooling implemented in the packed bed reactor to look at its effect on outlet temperature. A mathematical model is developed based on one-dimensional heat and mass transfers which incorporate the intra-particle effects. It is shown that the placement of the inter-stage cooling and the outlet temperature exiting the inter-stage cooling have strong influence on the reaction conversion. Several control strategies are explored for the process. It is shown that a feedback- feedforward control strategy using Multi-scale Control (MSC) is effective to regulate the reactor temperature profile which is critical to maintaining the catalysts activity.

  1. 净化黄磷尾气中铁基高温水汽变换催化剂中毒机理%Poisoning Mechanism of Iron-Based High Temperature Catalyst in Water-Gas Shift Reaction of Purified Yellow Phosphorous

    Institute of Scientific and Technical Information of China (English)

    田森林; 杨玲菲; 宁平

    2011-01-01

    根据非均相反应体系的热力学有关理论,分析了高温水汽变换温度范围(623~803 K)内B112型铁基水汽变换催化剂在净化黄磷尾气气氛下受磷化氢、砷化氢、氟化氢和硫化氢作用而中毒可能发生的化学反应及产物,讨论了铁基高温变换催化剂的中毒机理.结果表明:磷酸盐、砷酸盐、硫酸盐、单质硫和积炭主要造成催化剂的暂时性中毒;磷铁化合物、砷铁化合物、氟铁化合物和硫铁化合物主要造成催化剂的永久性中毒.在一氧化碳变换气氛下,氮气不参与中毒反应,一氧化碳、二氧化碳、水蒸气和氧气都参与催化剂毒物与活性组分间的中毒反应,从而为催化剂中毒提供了条件,其中氧气会明显加快催化剂中毒.由热力学分析催化剂的中毒程度由强至弱为PH3,H2S,AsH3,HF.%The possible chemical reactions and products in the process of the iron-based high temperature water-gas shift catalyst B112 poisoned by PH3, AsH3, HF and H2S in the water-gas shift reaction of purified yellow phosphorous at 623-803 K was analyzed by the thermodynamics of heterogeneous reactions and the poisoning mechanisms were discussed. The results showed that the phosphate, arsenate, sulfate, sulfur and carbon deposit led to the catalyst temporary poisoning, FeP, FeP2, Fe2P, Fe3P, FeAs, FeAs2, FeF3, FeF2, Fe2S3, FeS2, Fe7Sg and FeS led to the catalyst permanent poisoning. In the water-gas shift process, N2 did not participate in toxic reactions, while CO, CO2, H2O and O2 participated poisoning reactions and provided conditions for catalyst poisoning, especially, O2 could speed up the catalyst poisoning. Based on the thermodynamic analysis, the toxicities for the water-gas shift catalyst from strong to weak was as follows:PH3, H2S, AsH3, HF.

  2. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  3. Model-Based Design of Energy Efficient Palladium Membrane Water Gas Shift Fuel Processors for PEM Fuel Cell Power Plants

    Science.gov (United States)

    Gummalla, Mallika; Vanderspurt, Thomas Henry; Emerson, Sean; She, Ying; Dardas, Zissis; Olsommer, Benoît

    An integrated, palladium alloy membrane Water-Gas Shift (WGS) reactor can significantly reduce the size, cost and complexity of a fuel processor for a Polymer Electrolyte Membrane fuel cell power system.

  4. Preparation and characterization of Cu-Ce-La mixed oxide as water-gas shift catalyst for fuel cells application

    Institute of Scientific and Technical Information of China (English)

    ZHI Keduan; LIU Quansheng; ZHAO Ruigang; HE Runxia; ZHANG Lifeng

    2008-01-01

    Cu-Ce-La mixed oxides were prepared by three precipitation methods (coprecipitation, homogeneous precipitation, and deposition precipitation) with variable precipitators and characterized using X-ray diffraction, BET, temperature-programmed reduction, and catalytic reaction for the water-gas shift. The Cu-Ce-La mixed oxide prepared by coprecipitation method with NaOH as precipitator presented the highest activity and thermal stability. Copper ion substituted quadrevalent ceria entered CeO2 (111) framework was in favor of activity and thermal stability of catalyst. The crystallinity of fresh catalysts increased with the reduction process. La3+ or Ce4+ substituted copper ion entered the CeO2 framework during reduction process. The coexistence of surface copper oxide (crystalline) and pure bulk crystalline copper oxide both contributed to the high activity and thermal stability of Cu-Ce-La mixes oxide catalyst.

  5. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  6. Production of hydrogen using the combination of water-gas shift and carbonatation reaction of a CO{sub 2} absorbent; Produccion de hidrogeno mediante la combinacion de las reacciones de desplazamiento de agua y carbonatacion de un absorbente de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo-Bretado, M. A.; Ponce-Pena, P. [Facultad de Ciencias Quimicas, UJED, Durango, Durango (Mexico)]. E-mail: miguel.escobedo@ujed.mx; Delgado-Vigil, M. D.; Salinas-Gutierrez, J. M.; Lopez Ortiz, A.; Collins-Martinez, V.H. [Centro de Investigacion en Materiales Avanzados, S.C., Chihuahua, Chihuahua (Mexico)

    2009-09-15

    The production of hydrogen by the water-gas shift (WGS) normally requires multiple catalytic reactions followed by the separation of CO{sub 2} to obtain highly pure H{sub 2}. Nevertheless, using the combination of the WGS reaction and the solid-gas reaction between CO{sub 2} and an absorbent, the production of H{sub 2} and the separation of CO{sub 2} can be accomplished in a single step AEWGS (Absorption Enhanced Water Gas Shift). This combination of reactions was studied at the laboratory scale using a quartz fixed-bed reactor. The absorbents tested were calcined dolomite (CaO*MgO) and sodium zirconate (Na{sub 2}ZrO{sub 3}) in catalyst/absorbent mixtures (cat/abs) with weight ratios of 1/1, 1/2 and 2/1, using a high-temperature catalyst from the WGS reaction, synthesized in the laboratory (Fe-Cr). All the tests used 3cm{sup 3} of cat/abs, composed of 5% CO, 15% H{sub 2}O, 10.5% He and 69.5% N{sub 2}, with a spatial velocity (SV) of 1500h-1, 600 degrees Celsius and atmospheric pressure. The catalyst presented 100% conversion of CO to CO{sub 2}, maintaining its surface area after the reaction (12 m{sup 2}/g). The results with a dry base using the cat/abs mixture of 1/2 and CaO*MgO generated 95% H{sub 2} with 5% CO-free CO{sub 2}, while with Na{sub 2}ZrO{sub 3}, the maximum concentration of H{sub 2} was 70%, with 29% CO{sub 2} and 1% of CO without reacting. The results using only CaO*MgO (as a bifunctional material) presented a maximum H{sub 2} concentration of 96% and a minimum of 4% CO{sub 2}, as well as 7% CO without reaction, which was attributed to kinetic effects. [Spanish] La produccion de hidrogeno mediante la reaccion de desplazamiento de agua WGS (Water Gas Shift), normalmente requiere de multiples reacciones cataliticas seguidas por la separacion de CO{sub 2} para obtener H{sub 2} de alta pureza. Sin embargo mediante la combinacion de la reaccion WGS con la reaccion solido-gas entre el CO{sub 2} y un absorbente provee la oportunidad de producir H2 y

  7. Effect of promoters on Cr/SiO2 catalysts for coupling of reversed water-gas shift reaction with dehydrogenation of ethane to ethene%逆水煤气变换耦合乙烷脱氢反应中助剂对Cr/SiO2催化剂性能的影响

    Institute of Scientific and Technical Information of China (English)

    葛欣

    2013-01-01

    The coupling reaction of ethane dehydrogenation with reversed water-gas shift reaction over Cr/SiO2 catalysts was studied. The Cr/SiO2 catalyst promoted by Mn oxide has already been found to be active and selective in the reaction at around 740 ℃, with the selectivity to ethylene of about 99.7% at 47.7% ethane conversion. XPS results showed that Cr6+, Cr3+ and Mn4+ occupied on the surface of the catalysts. The addition of Mn benefited the redox cycle between reactants and catalyst and enhanced reaction activity.%分别制备了以Mn、Ce、Cu、Zn、K等为助剂的Cr/SiO2催化剂,考察了助剂在逆水煤气变换耦合乙烷脱氢制乙烯反应中对Cr/SiO2催化剂反应性能的影响.结果表明,高温下Mn的加入有利于催化活性的提高,Cr-Mn/SiO2催化剂显示了较好的催化活性.在740℃、n(CO2)/n(C2H6)=7的条件下,乙烷转化率为47%,乙烯选择性为99%.XRD、XPS、UV-DRS和TPR技术的表征表明催化剂表面存在Cr3+、Cr6+、Mn4+物种,Mn的加入使得催化剂还原性能增强,有助于反应过程中氧化还原循环的进行,提高了反应活性.

  8. In-situ Characterization of Water-Gas Shift Catalysts using Time-Resolved X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.; Hanson, J; Wen, W; Wang, X; Brito, J; Martnez-Arias, A; Fernandez-Garca, M

    2009-01-01

    Time-resolved X-ray diffraction (XRD) has emerged as a powerful technique for studying the behavior of heterogeneous catalysts (metal oxides, sulfides, carbides, phosphides, zeolites, etc.) in-situ during reaction conditions. The technique can identify the active phase of a heterogeneous catalyst and how its structure changes after interacting with the reactants and products (80 K < T < 1200 K; P < 50 atm). In this article, we review a series of recent works that use in-situ time-resolved XRD for studying the water-gas shift reaction (WGS, CO + H2O ? H2 + CO2) over several mixed-metal oxides: CuMoO4, NiMoO4, Ce1-xCuxO2-d and CuFe2O4. Under reaction conditions the oxides undergo partial reduction. Neutral Cu0 (i.e. no Cu1+ or Cu2+ cations) and Ni0 are the active species in the catalysts, but interactions with the oxide support are necessary in order to obtain high catalytic activity. These studies illustrate the important role played by O vacancies in the mechanism for the WGS. In the case of Ce1-xCuxO2-d, Rietveld refinement shows expansions/contractions in the oxide lattice which track steps within the WGS process: CO(gas) + O(oxi) ? CO2(gas) + O(vac); H2O(gas) + O(vac) ? O(oxi) + H2(gas).

  9. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and validat

  10. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and

  11. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and validat

  12. Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production

    Science.gov (United States)

    Whitlow, Jonathan E.

    2000-01-01

    This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.

  13. Support effects and catalytic trends for water gas shift activity of transition metals

    DEFF Research Database (Denmark)

    Boisen, Astrid; Janssens, T.V.W.; Schumacher, Nana Maria Pii

    2010-01-01

    Water gas shift activity measurements for 12 transition metals (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Re, Ir, Pt, Au) supported on inert MgAl2O4 and Ce0.75Zr0.25O2 are presented, to elucidate the influence of the active metal and the support. The activity is related to the adsorption energy of molecular...... CO and atomic oxygen on the metal; the latter is a good measure for the reactivity of the metal towards H2O. Generally, the activity of the catalysts with the Ce0.75Zr0.25O2 support is higher, compared to the corresponding MgAl2O4-supported catalysts. Exceptions are Cu and Au, which have a higher...... around −2.5 eV. No clear correlation exists with the adsorption energy of CO. In contrast, the activity for the Ce0.75Zr0.25O2 support increases with increasing adsorption strength for CO, and based on a relatively low activity of Cu the activity does not seem to depend on the adsorption energy of oxygen...

  14. LYAPUNOV-Based Sensor Failure Detection and Recovery for the Reverse Water Gas Shift Process

    Science.gov (United States)

    Haralambous, Michael G.

    2002-01-01

    Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in t e m of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.

  15. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  16. LYAPUNOV-Based Sensor Failure Detection and Recovery for the Reverse Water Gas Shift Process

    Science.gov (United States)

    Haralambous, Michael G.

    2002-01-01

    Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in t e m of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.

  17. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    Science.gov (United States)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  18. Kinetic and spectroscopic study of catalysts for water-gas shift and nitrogen oxide removal

    Science.gov (United States)

    Kispersky, Vincent Frederick

    Hy variants modeled on Cu. The redox nature of the Cu active site was further investigated in a follow up study isolating the reducing portion of the SCR by removing O 2 from the reaction feed. Cutting off O2 drove the catalyst into a highly reduced state dominated by Cu(I) while removing a reductant drove the Cu into the fully oxidized state. Our research shows that not only is redox a vital part of the SCR reaction on Cu/zeolites, but that the oxidation state of the active site is highly sensitive to the gas environment. The water-gas shift (WGS) reaction is an industrially important step in H2 generation from steam reforming. I have had the opportunity to contribute to a number of studies in WGS by studying the catalysts in FTIR. We studied numerous catalytic formulations including Fe promoted Pd/Al 2O3 and Au/TiO2. We found that the Fe promoted the WGS rate of the catalyst by a factor of 160 compared to the Fe free Pd/Al 2O3. The reduced Fe promoter efficiently split H2O, typically the role performed by reducible supports, and the nearby noble metal particles provided spillover H2 to maintain the reduced Fe phase necessary to split H2O. Our study of Au/TiO2 involved the development of a modified operando transmission IR cell with ultra-low dead volume allowing for fast switching isotope experiments over the catalyst. The isotope switching experiments showed that only CO adsorbed on Au0 sites was an active surface intermediate at 120°C. Counting the amount of active surface Au atoms for the reaction ruled out the Au particle surface and perimeter atoms as the dominant active sites and confirmed our previous finding that the active site was composed mostly of low coordinated corner Au atoms.

  19. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  20. A General Overview of Scientific Production in China, Japan and Korea of the Water-Gas Shift (WGS Process

    Directory of Open Access Journals (Sweden)

    Edoardo Magnone

    2012-11-01

    Full Text Available In today’s economy, one of the most important national indicators of economic growth performance is the country’s ability to produce new technology—and use it responsibly and efficiently—for environmental protection or energy conservation, production and consumption in agreement with international standards. The purpose of this study is to identify the Research and Development (R&D capability in the area of environmentally friendly technologies in China, Japan and Korea over the last twenty years. As the field is very wide, Water-Gas Shift (WGS reaction technologies were taken as a case study for the purpose of this article. During 1990–2011 a total of 788 papers in the field of WGS technologies were published by scientists in China, Japan and Korea. China was the top producing country with 394 papers (50% followed by Japan with 250 papers (32%, and Korea with 144 papers (18%. The growth of the literature in the field was found to be exponential in nature for China. The R&D capabilities were found to correlate directly with the Gross Domestic Expenditures on R&D (GERD, Researchers in Full-time equivalents (FTE, and other economic parameters.

  1. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, July 1, 1990--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

    1990-12-31

    A Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst was operated simultaneously with a Cu/ZnO/Al{sub 2}O{sub 3} water-gas-shift catalyst in a slurry reactor for over 400 hours. The process conditions were held constant at a temperature of 240{degrees}C, a pressure of 0.79 MPa, and a 1.1 H{sub 2}/CO feed of 0.065 Nl/min-g.cat. The Fischer-Tropsch activity remained constant at the level predicted by the operation of the Co/MgO/SiO{sub 2} catalyst alone. The water-gas-shift reaction was near equilibrium. The hydrocarbon product distribution of the combined catalyst system was stable and matched that of the CO/MgO/SiO{sub 2} operating alone under similar conditions. The combined catalyst system exhibited a high selectivity to n-alkanes. Neither catalysts`s operation appeared to have a detrimental effect on that of the other, showing promise for future option.

  2. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  3. Preparation and High-Temperature Water-Gas Shift Catalytic Features of La1-xCexFeO3 Perovskite

    Institute of Scientific and Technical Information of China (English)

    马红钦; 朱慧铭; 谭欣; 张继炎; 张鎏

    2004-01-01

    Based on water-gas shift reaction mechanism and perovskite compounds characteristics, La1-xCexFeO3 (.K) perovskite were designed and prepared as shift catalysts. DTA and XRD results reveal that La1-xCexFeO3 can be formed at 730~760 ℃ by mechanic-mix thermal decomposition method. Activity and heat-resisting tests show that La1-xCexFeO3 (.K) possess high thermal stability if x is less than or equals to 0.5. But when x is greater than 0.5, La1-xCexFeO3 (.K) will be converted into ceria and magnetite partially or completely under shift reaction conditions. In the case of x=0.5, the conversion of CO is about 68% at 530 ℃. Potassium can greatly improve the low temperature activity, but slightly reduces the high temperature activity, and has little impact on the thermal stability. La0.5Ce0.5FeO3 (.K) is a promising chromium-free high temperature shift catalyst.

  4. The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT

    DEFF Research Database (Denmark)

    Rasmussen, Dominik Bjørn; Janssens, Ton V.W.; Temel, Burcin;

    2012-01-01

    ) species are investigated in relevant synthesis gas compositions. The CuCO and Cu2HCOO species are identified to be predominant for metal transport on Cu particles, which may contribute to sintering of Cu by particle migration and coalescence. Furthermore, transport of Cu on ZnO is found mostly to occur......Catalysts based on copper, such as the Cu/ZnO/Al2O3 system are widely used for industrial scale methanol synthesis and the low temperature water gas shift reaction. A common characteristic of these catalysts is that they deactivate quite rapidly during operation and therefore understanding...... through CuCO species, which indicates that CuCO is an important species for Ostwald ripening in a Cu/ZnO catalyst. These results provide atomistic perspective on the diffusion of the species that may contribute to catalyst sintering, therefore lending a valuable foundation for future investigations...

  5. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  6. Preparation and Water-Gas Shift Catalytic Activities of the Perovskite Type Complex Oxide La1-x CexFeO3

    Institute of Scientific and Technical Information of China (English)

    马红钦; 谭欣; 朱慧铭; 张继炎; 张鎏

    2003-01-01

    The perovskite type rare-earth iron complex (REIC) oxide La1-xCexFeO3 is designed and prepared as water-gas shift catalyst. Activity evaluation and heat-resisting test show that the perovskite type compounds La1-xCexFeO3 (· K) has a good thermal stability if x is less than or equal to 0. 5. But when x is greater than 0. 5, La1-x Cex FeO3 ( · K) will turn out to be ceria and magnetite partially or completely at high temperature in the shift reaction atmosphere. In the case of x = 0. 5, the conversion of carbon monoxide is about 68% at 530℃. Potassium can greatly improve the low temperature activity, but slightly lower the high temperature activity,and has little impact on the thermal stability. La0.5 Ce0.5 FeO3 ( · K) is a promising chromium-free high-temperature shift catalyst.

  7. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, New York (United States); Miller, Scott [General Electric Global Research, Niskayuna, New York (United States); Ku, Anthony [General Electric Global Research, Niskayuna, New York (United States); Polishchuk, Kimberly [General Electric Global Research, Niskayuna, New York (United States); Narang, Kristi [General Electric Global Research, Niskayuna, New York (United States); Singh, Surinder [General Electric Global Research, Niskayuna, New York (United States); Wei, Wei [General Electric Global Research, Niskayuna, New York (United States); Shisler, Roger [General Electric Global Research, Niskayuna, New York (United States); Wickersham, Paul [General Electric Global Research, Niskayuna, New York (United States); McEvoy, Kevin [General Electric Global Research, Niskayuna, New York (United States); Alberts, William [General Electric Global Research, Niskayuna, New York (United States); Howson, Paul [General Electric Global Research, Niskayuna, New York (United States); Barton, Thomas [Western Research inst., Laramie, WY (United States); Sethi, Vijay [Western Research inst., Laramie, WY (United States)

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200°C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (α = 7-9) and H2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  8. The production of hydrogen through the use of a 77 wt% Pd 23 wt% Ag membrane water gas shift reactor

    Directory of Open Access Journals (Sweden)

    Liberty N. Baloyi

    2016-12-01

    Full Text Available Hydrogen as an energy carrier has the potential to decarbonize the energy sector. This work presents the application of a palladium-silver (Pd–Ag membrane-based reactor. The membrane reactor which is made from Pd–Ag film supported by porous stainless steel (PSS is evaluated for the production of hydrogen and the potential replacement of the current two-stage Water-Gas Shift (WGS reaction by a single stage reaction. The permeability of a 20 μm Pd–Ag membrane reactor was examined at 320 °C, 380 °C and 430 °C. The effect of continuous hydrogen exposure on the Pd–Ag membrane at high temperature and low temperature was examined to investigate the thermal stability and durability of the membrane. During continuous operation to determine thermal stability, the membrane reactor exhibited stable hydrogen permeation at 320 °C for 120 h and unstable hydrogen permeation at 430 °C was observed. For the WGS reaction, the reactor was loaded with Ferrochrome catalyst. The membrane showed the ability to produce high purity hydrogen, with a CO conversion and an H2 recovery of 84% and 88%, respectively. The membrane suffered from hydrogen embrittlement due to desorption and adsorption of hydrogen on the membrane surface. SEM analysis revealed cracks that occurred on the surface of the membrane after hydrogen exposure. XRD analysis revealed lattice expansion after hydrogen loading which suggests the occurrence of phase change from α-phase to the more brittle β-phase.

  9. In Situ Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Estrella, M.; Barrio, L; Zhou, G; Wang, X; Wang, Q; Wen, W; Hanson, J; Frenkel, A; Rodriguez, J

    2009-01-01

    Mixtures of copper and iron oxides are used as industrial catalysts for the water-gas shift (WGS, CO + H2O f H2 + CO2). In-situ time-resolved X-ray diffraction, X-ray absorption fine structure, and atomic pair distribution function analysis were used to study the reduction of CuFe2O4 with CO and the behavior of CuFe2O4 and Cu/Fe2O3 catalysts under WGS reaction conditions. MetalToxygenTmetal interactions enhance the stability of Cu 2+ and Fe 3+ in the CuFe2O4 lattice, and the mixed-metal oxide is much more difficult to reduce than CuO or Fe2O3. Furthermore, after heating mixtures of CuFe2O4/CuO in the presence of CO or CO/H2O, the cations of CuO migrate into octahedral sites of the CuFe2O4 lattice at temperatures (200-250 C) in which CuO is not stable. Above 250 C, copper leaves the oxide, the occupancy of the octahedral sites in CuFe2O4 decreases, and diffraction lines for metallic Cu appear. From 350 to 450 C, there is a massive reduction of CuFe2O4 with the formation of metallic Cu and Fe3O4. At this point, the sample becomes catalytically active for the production of H2 from the reaction of H2O with CO. Neutral Cu 0 (i.e., no Cu 1+ or Cu 2+ cations) is the active species in the catalysts, but interactions with the oxide support cannot be neglected. These studies illustrate the importance of in situ characterization when dealing with mixed-metal oxide WGS catalysts.

  10. In-situ Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez,J.A.; Estrella, M.; Barrio, L.; Zhou, G.; Wang, X.; Wang, Q.; Wen, W.; Hanson, J.C.; Frenkel, A.

    2009-08-13

    Mixtures of copper and iron oxides are used as industrial catalysts for the water-gas shift (WGS, CO + H2O → H2 + CO2). In-situ time-resolved X-ray diffraction, X-ray absorption fine structure, and atomic pair distribution function analysis were used to study the reduction of CuFe2O4 with CO and the behavior of CuFe2O4 and Cu/Fe2O3 catalysts under WGS reaction conditions. Metal↔oxygen↔metal interactions enhance the stability of Cu2+ and Fe3+ in the CuFe2O4 lattice, and the mixed-metal oxide is much more difficult to reduce than CuO or Fe2O3. Furthermore, after heating mixtures of CuFe2O4/CuO in the presence of CO or CO/H2O, the cations of CuO migrate into octahedral sites of the CuFe2O4 lattice at temperatures (200-250 oC) in which CuO is not stable. Above 250 oC, copper leaves the oxide, the occupancy of the octahedral sites in CuFe2O4 decreases, and diffraction lines for metallic Cu appear. From 350 to 450 oC, there is a massive reduction of CuFe2O4 with the formation of metallic Cu and Fe3O4. At this point, the sample becomes catalytically active for the production of H2 from the reaction of H2O with CO. Neutral Cu0 (i.e. no Cu+1 or Cu+2 cations) is the active species in the catalysts, but interactions with the oxide support are necessary in order to obtain high catalytic activity. These studies illustrate the importance of in-situ characterization when dealing with mixed-metal oxide WGS catalysts.

  11. Magnetic susceptibility as a direct measure of oxidation state in LiFePO4 batteries and cyclic water gas shift reactors.

    Science.gov (United States)

    Kadyk, Thomas; Eikerling, Michael

    2015-08-14

    The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.

  12. Raney copper catalysts for the water-gas shift reaction: I. Preparation, activity and stability

    CSIR Research Space (South Africa)

    Mellor, JR

    1997-12-23

    Full Text Available at the stated conditions compared favourably to the co-precipitated and industrial catalyst alternatives due to a similar active phase composition and high metallic copper surface areas. Raney copper catalyst deactivation in a poison-free environment...

  13. Water Gas Shift Reaction with A Single Stage Low Temperature Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ciora, Richard J [Media and Process Technology Inc., Pittsburgh, PA (United States); Liu, Paul KT [Media and Process Technology Inc., Pittsburgh, PA (United States)

    2013-12-31

    Palladium membrane and Palladium membrane reactor were developed under this project for hydrogen separation and purification for fuel cell applications. A full-scale membrane reactor was designed, constructed and evaluated for the reformate produced from a commercial scale methanol reformer. In addition, the Pd membrane and module developed from this project was successfully evaluated in the field for hydrogen purification for commercial fuel cell applications.

  14. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    Investigation of fuels containing sulfur impurities is important regarding durability of solid oxide fuel cells (SOFC) because they are present in various potential fuels for SOFC applications. The effect of H2S in the ppm range on the performance of state-of-the-art anode supported SOFC at 850...... and 750°C is evaluated in either hydrogen/steam or hydrogen/steam/CO fuel. It was found that the poisoning effect is more severe in H2/H2O/CO vs. H2/H2O fuel. Only ∼8 ppm H2S can be allowed in the CO containing fuel without risking damage to the anode, whereas 90 ppm (or even more) is possible in H2/H2O...

  15. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  16. Testing of hydrotalcite based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, H.A.J.; Walspurger, S.; Cobden, P.D.; Van den Brink, R.W. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2011-03-15

    The feasibility of the sorption enhanced water gas shift (SEWGS) process under sour conditions is shown. The sour-SEWGS process constitutes a second generation pre-combustion carbon capture technology for the application in an IGCC. As a first critical step, the suitability of a K2CO3 promoted hydrotalcite-based CO2 sorbent is demonstrated by means of adsorption and regeneration experiments in the presence of 2000 ppm H2S. In multiple cycle experiments at 400C and 5 bar, the sorbent displays reversible co-adsorption of CO2 and H2S. The CO2 sorption capacity is not significantly affected compared to sulphur-free conditions. A mechanistic model assuming two different sites for H2S interaction explains qualitatively the interactions of CO2 and H2S with the sorbent. On the type A sites, CO2 and H2S display competitive sorption where CO2 is favoured. The type B sites only allow H2S uptake and may involve the formation of metal sulphides. This material behaviour means that the sour-SEWGS process likely eliminates CO2 and H2S simultaneously from the syngas and that an almost CO2 and H2S-free H2 stream and a CO2 + H2S stream can be produced.

  17. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  18. Rapid Hydrogen Shift Reactions in Acyl Peroxy Radicals

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg

    2017-01-01

    -shift reactions are much faster than the reactions with NO and HO2 under most atmospheric conditions and must be included in the atmospheric models when hydroperoxy acyl peroxy radicals are oxidized. Finally, we have observed that H-shift reactions in a pentane acyl peroxy radical (C5-AOO) is fast (>1 s–1...

  19. Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst.

    Science.gov (United States)

    Dai, Xiao Ping; Wu, Qiong; Li, Ran Jia; Yu, Chang Chun; Hao, Zheng Ping

    2006-12-28

    A redox cycle process, in which CH4 and air are periodically brought into contact with a solid oxide packed in a fixed-bed reactor, combined with the water-gas shift (WGS) reaction, is proposed for hydrogen production. The sole oxidant for partial oxidation of methane (POM) is found to be lattice oxygen instead of gaseous oxygen. A perovskite-type LaFeO3 oxide was prepared by a sol-gel method and employed as an oxygen storage material in this process. The results indicate that, under appropriate reaction conditions, methane can be oxidized to CO and H2 by the lattice oxygen of LaFeO3 perovskite oxide with a selectivity higher than 95% and the consumed lattice oxygen can be replenished in a reoxidation procedure by a redox operation. It is suggested that the POM to H2/CO by using the lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable. The LaFeO3 perovskite oxide maintained relatively high catalytic activity and structural stability, while the carbonaceous deposits, which come from the dissociation of CH4 in the pulse reaction, occurred due to the low migration rate of lattice oxygen from the bulk toward the surface. A new dissociation-oxidation mechanism for this POM without gaseous oxygen is proposed based on the transient responses of the products checked at different surface states via both pulse reaction and switch reaction over the LaFeO3 catalyst. In the absence of gaseous-phase oxygen, the rate-determining step of methane conversion is the migration rate of lattice oxygen, but the process can be carried out in optimized cycles. The product distribution for POM over LaFeO3 catalyst in the absence of gaseous oxygen was determined by the concentration of surface oxygen, which is relevant with the migration rate of lattice oxygen from the bulk toward the surface. This process of hydrogen production via selective oxidation of methane by lattice oxygen is better in avoiding the deep oxidation (to CO2) and

  20. The Role of the Coprecipitation Sequence of Salt Precursors on the Genesis of Cu-ZnO-Al2O3 Catalysts: Synthesis, Characterization and Activity for Low Temperature Shift Reaction

    Directory of Open Access Journals (Sweden)

    R.T. Figueiredo

    1998-06-01

    Full Text Available Cu-ZnO-Al2O3 catalysts for the low-temperature water-gas shift reaction were prepared using methods of direct and reverse coprecipitation. The catalysts obtained were characterized by DRX, TPR, XPS, N2O chemisorption, Hg-Porosimetry and BET surface area. It was observed that the precipitation sequence of the precursors led to significant differences in values of copper dispersion and consequently in the activity of the catalyst for the water-gas shift reaction.

  1. Investigation of the Reverse Water Gas Shift Reaction for Production of Oxygen From Mars Atmospheric Carbon Dioxide

    Science.gov (United States)

    Meyer, Tom; Zubrin, Robert

    1997-01-01

    The first phase of the research includes a comprehensive analytical study examining the potential applications for engineering subsystems and mission strategies made possible by such RWGS based subsystems, and will include an actual experimental demonstration and performance characterization of a full-scale brassboard RWGS working unit. By the time of this presentation the laboratory demonstration unit will not yet be operational but we will present the results of our analytical studies to date and plans for the ongoing work.

  2. Investigation of the Reverse Water Gas Shift Reaction for Production of Oxygen From Mars Atmospheric Carbon Dioxide

    Science.gov (United States)

    Meyer, Tom; Zubrin, Robert

    1997-01-01

    The first phase of the research includes a comprehensive analytical study examining the potential applications for engineering subsystems and mission strategies made possible by such RWGS based subsystems, and will include an actual experimental demonstration and performance characterization of a full-scale brassboard RWGS working unit. By the time of this presentation the laboratory demonstration unit will not yet be operational but we will present the results of our analytical studies to date and plans for the ongoing work.

  3. Noble metal ions incorporated in lattice points of perovskites - water gas shift activity of BaCe1-xPtxO3-d

    Science.gov (United States)

    Jijil, C. P.; Rajarajan, A. K.; Devi, R. Nandini

    2012-06-01

    Recently precious metals supported on oxides were reported to be very promising catalysts for the lower-temperature WGS reaction. Here we report the synthesis of platinum doped barium cerate and its use as catalysts for WGS reaction. It has been found that maximum CO conversion was obtained at 3500C which enhanced after the first cycle. XPS analysis shows that after the first cycle more ionic Platinum species are present on the surface of the catalyst. Neutron diffraction at room temperature shows that the oxygen vacancies are in the O2 position and increases with increasing Pt substitution.

  4. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H

  5. Effect of shift working on reaction time in hospital employees.

    Science.gov (United States)

    Namita; Ranjan, Din Prakash; Shenvi, Dhangauri N

    2010-01-01

    Visual and Auditory reaction time (VRT, ART) were studied in 286 hospital employees during day duty and night duty in the age group of 20 to 60 years to find out the effect of shift working on reaction time in hospital employees. Subjects were presented with two visual stimuli i.e. red and green light and two auditory stimuli, i.e., high pitch and low pitch sound stimuli. The significance of difference of VRT and ART during day duty and night duty was studied with the use of standard error of difference between two means. The statistical difference was determined by 'z' test. VRT during day duty (231.60 +/- 30.93) were less than VRT during night duty (234.98 +/- 32.27) and ART during day duty (224.69 +/- 46.95) were also less than ART during night duty (228.74 +/- 47.01). Our results indicate that reaction time is more during night duty as compared to day duty but the difference is not significant. It may be because of hospital employees get adapted to reduced sleep after working continuously in the shift system.

  6. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

    2009-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

  7. Reform of Energy Saving Technology for Sulfur Resistant Shift Conversion with Low Water-Gas Ratio%耐硫变换低水气比节能技术改造

    Institute of Scientific and Technical Information of China (English)

    张绍延

    2012-01-01

    Type QDB catalyst is used for the reform of energy saving technology with low water-gas ratio, thereby solving the problems of high CO content in the feed gas leading to methanation side reaction and deactivation of the catalyst due to high temperature in the catalyst bed. After the reform the unit runs smoothly, the comprehensive energy consumption for a ton of ammonia lowers by 4.775 GJ, steam consumption falls by 1. 17 t, and so the energy saving effect is remarkable.%应用QDB系列催化剂进行低水气比变换节能技术改造,解决了由于原料气中CO含量高引起的甲烷化副反应和催化剂床层温度高而使催化剂失活快等问题.改造后,装置运行平稳,吨氨综合能耗下降4.775GJ、蒸汽消耗降低1.17t,节能效果显著.

  8. Application of Enzyme Coupling Reactions to Shift Thermodynamically Limited Biocatalytic Reactions

    DEFF Research Database (Denmark)

    Abu, Rohana; Woodley, John M.

    2015-01-01

    shift the equilibrium of otherwise thermodynamically unfavourable reactions to give a higher conversion of the target product. By coupling an energetically unfavourable reaction with a more favourable one, the multi-enzyme cascade mimics the approach taken in nature in metabolic pathways. Nevertheless......, it can be challenging to combine several engineered enzymes in vitro for the conversion of non-natural substrates. In this mini-review we focus on enzyme coupling reactions as a tool to alleviate thermodynamic constraints in synthetically useful biocatalytic reactions. The implications of thermodynamic...... parameters such as the equilibrium constant on the multienzyme cascades and the conventional methods of equilibrium shifting are also discussed in addition to methods used to estimate such values....

  9. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

    2010-09-30

    The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

  10. Tissue reactions to abutment shift: an experimental study in dogs.

    Science.gov (United States)

    Abrahamsson, Ingemar; Berglundh, Tord; Sekino, Satoshi; Lindhe, Jan

    2003-01-01

    Standard protocols for the clinical use of dental implants often include the placement of healing abutments prior to standard or custom-made abutments. The tissue response to a single shift from a healing abutment to a permanent abutment has not been studied. The aim of the present experiment was to study tissue reactions that may occur following the removal of a healing abutment and the placement of a permanent abutment. In six beagle dogs, all mandibular premolars were extracted. Three months later three fixtures of the Astra Tech Implants Dental System (Astra Tech AB, Mölndal, Sweden) were installed in each edentulous premolar region. An additional 3 months later, the first abutment connection was performed. In two sites on each side of the mandible, healing abutments were placed; in the remaining site, a Uni-abutment (Astra Tech AB) was used. The two healing abutments were removed 2 weeks later, and one Uni-abutment and one prepable abutment were placed. A plaque-control period was initiated, and 6 months later block biopsies were obtained. The biopsies were prepared for histometric and morphometric examination. Radiographs were obtained at fixture placement, 2 weeks after the first abutment connection, and 6 months later. The length of the barrier epithelium, the height of the connective tissue attachment, and the level of the marginal bone did not differ between the three abutment groups. The major part of the radiographic bone loss during the experiment took place prior to or immediately after abutment connection; only small bone level alterations occurred during the subsequent 6-month period. The shift from a healing abutment to a permanent abutment resulted in the establishment of a transmucosal attachment, the dimension and quality of which did not differ from those of the mucosal barrier formed to a permanent abutment placed during a second-stage surgery.

  11. Effect of the kind of fuel in the synthesis of the catalyzer NiFe{sub 2}O{sub 4} to displacement reaction of water gas (WGRS); Efeito do tipo de combustivel na sintese do catalisador NiFe{sub 2}O{sub 4} para reacao de deslocamento do gas agua (WGRS)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, P.T.A.; Barros, B.S.; Costa, A.C.F.M.; Gama, L. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais], e-mail: anacristina@dema.ufcg.edu.br; Jesus, A.A.; Andrade, H.M.C. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2006-07-01

    This work has as objective synthesizes and to characterize the NiFe{sub 2}O{sub 4} catalyst by combustion reaction using different fuels: urea and glycine seeking your application in the water gas shift reaction (WGSR), promoting the purification of the methane for the elimination of the carbon monoxide. The powders were prepared in agreement with the chemistry of the propellants using as recipient a vitreous silica crucible; the maximum temperature and the medium time of flame were verified. The powders were characterized by X-ray diffraction (DRX), Scanning electronic microscopy and catalytic tests. The results show that the catalysts presented inverse spinel structure as majority phase for the two types of fuels. However, it was observed that using the urea, there was the presence of a second phase of NiO and when the glycine was used, there was the presence of lines of Ni. The catalyst NiFe{sub 2}O{sub 4} using urea as fuel, presented better catalytic acting. (author)

  12. Cortisol, reaction time test and health among offshore shift workers

    DEFF Research Database (Denmark)

    Harris, Anette; Waage, Siri; Ursin, Holger

    2010-01-01

    The stress hormone cortisol shows a pronounced endogenous diurnal rhythm, which is affected by the sleep/wake cycle, meals and activity. Shift work and especially night work disrupts the sleep/wake cycle and causes a desynchronization of the natural biological rhythms. Therefore, different shift...

  13. Flame Synthesis of Nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O Catalysts for the Water-Gas Shift (WGS) Reaction

    Science.gov (United States)

    2009-11-04

    by the flame synthesis method using cerium acetate dissolved in a mixture of acetic acid, 2-butanol, and isooctane (40). In this process, the...below 10 nm are formed via precursor evaporation, ceria nucleation, and sintering of the particles. The use of isooctane in this process increased the

  14. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    Science.gov (United States)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  15. Probing the Reaction Intermediates for the Water–gas Shift over Inverse CeOx / Au(1 1 1) Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Senanayake, S.; Stacchiola, D; Evans, J; Estrella, M; Barrio, L; Perez, M; Hrbek, J; Rodriguez, J

    2010-01-01

    The water-gas shift (WGS) is an important reaction for the production of molecular H{sub 2} from CO and H{sub 2}O. An inverse CeO{sub x}/Au(1 1 1) catalyst exhibits a very good WGS activity, better than that of copper surfaces or Cu nanoparticles dispersed on a ZnO(0 0 0 {bar 1}) substrate which model current WGS industrial catalysts. In this work we report on intermediates likely to arise during the CO + H{sub 2}O reaction over CeO{sub x}/Au(1 1 1) using soft X-ray photoemission (sXPS) and near-edge X-ray absorption fine structure (NEXAFS). Several potential intermediates including formates (HCOO), carbonates (CO{sub 3}) and carboxylates (HOCO) are considered. Adsorption of HCOOH and CO{sub 2} is used to create both HCOO and CO{sub 3} on the CeO{sub x}/Au(1 1 1) surface, respectively. HCOO appears to have greater stability with desorption temperatures up to 600 K while CO{sub 3} only survives on the surface up to 300 K. On the CeO{sub x}/Au(1 1 1) catalysts, the presence of Ce{sup 3+} leads to the dissociation of H{sub 2}O to give OH groups. We demonstrate experimentally that the OH species are stable on the surface up to 600 K and interact with CO to yield weakly bound intermediates. When there is an abundance of Ce{sup 4+}, the OH concentration is diminished and the likely intermediates are carbonates. As the surface defects are increased and the Ce{sup 3+}/Ce{sup 4+} ratio grows, the OH concentration also grows and both carbonate and formate species are observed on the surface after dosing CO to H{sub 2}O/CeO{sub x}/Au(1 1 1). The addition of ceria nanoparticles to Au(1 1 1) is essential to generate an active WGS catalyst and to increase the production and stability of key reaction intermediates (OH, HCOO and CO{sub 3}).

  16. Electronic shift register memory based on molecular electron-transfer reactions

    Science.gov (United States)

    Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.

    1989-01-01

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.

  17. Catalysis by Single Atoms: Water Gas Shift and Ethylene Hydrogenation

    Science.gov (United States)

    2009-04-20

    This adsorbed oxygen reacts with methane leading to combustion or partial oxidation to syngas at lower temperatures than in the existing commercial...600 Energy (eV) 28 To test the accuracy of reported ZrB2 atomic composition, we analyzed a hot-pressed ZrB2 sample supplied by Ceradyne. Fig. 26(a...specimens. 50um Electron Imaae 1 (a) (b) Figure 26. Analysis of boron-enriched ZrB2 sample supplied by Ceradyne: (a) SEM image (b) EDS counts (c

  18. Optimisation of Shift Reactor Operating Conditions to Maximise Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J. M.; Marano, M.; Ruiz, E.

    2011-07-28

    This report compiles the results of the work conducted by CIEMAT for Task 6.5 Shift reaction of the FLEXGAS project Near Zero Emission Advanced Fluidized Bed Gasification, which has been carried out with financial support from the Research Fund for Coal and Steel, RFCR-CT-2007-00005. The activity of an iron-chromium-based catalyst for the water gas shift reaction is studied. Results about WGS experiments conducted by CIEMAT on laboratory scale under different operating conditions are presented. The influence on the activity of the catalyst of main operating parameters- temperature, pressure, excess steam, and space velocity and gas composition - is evaluated and discussed. (Author) 19 refs.

  19. Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts

    OpenAIRE

    Karla Herrera Delgado; Lubow Maier; Steffen Tischer; Alexander Zellner; Henning Stotz; Olaf Deutschmann

    2015-01-01

    An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shift reaction and carbon formation via Boudouard reaction are included. The mechanism is implemented i...

  20. Difunctionalization of Alkenes via the Visible-Light-Induced Trifluoromethylarylation/1,4-Aryl Shift/Desulfonylation Cascade Reactions.

    Science.gov (United States)

    Zheng, Lewei; Yang, Chao; Xu, ZhaoZhong; Gao, Fei; Xia, Wujiong

    2015-06-05

    A novel visible-light-induced trifluoromethylarylation/1,4-aryl shift/desulfonylation cascade reaction using CF3SO2Cl as CF3 source was described. The protocol provides an efficient approach for the synthesis of α-aryl-β-trifluoromethyl amides and/or CF3-containing oxindoles as well as the isoquinolinediones under benign conditions.

  1. Cycloaddition Reaction of Vinylphenylfurans and Dimethyl Acetylenedicarboxylate to [8 + 2] Isomers via Tandem [4 + 2]/Diradical Alkene-Alkene Coupling/[1,3]-H Shift Reactions: Experimental Exploration and DFT Understanding of Reaction Mechanisms.

    Science.gov (United States)

    Chen, Kai; Wu, Feng; Ye, Lijuan; Tian, Zi-You; Yu, Zhi-Xiang; Zhu, Shifa

    2016-09-16

    An experimental test of designed [8 + 2] reaction of vinylphenylfuran and dimethyl acetylenedicarboxylate (DMAD) has been carried out, showing that the reaction gave unexpected addition products under different conditions. When the reaction was conducted under thermal conditions in toluene, expoxyphenanthrene, which was named as a [8 + 2] isomer, was generated. The scope of this reaction has been investigated in the present study. In addition, experiments and DFT calculations have been conducted to investigate how the reaction between vinylphenylfuran and DMAD took place. Surprisingly, the reaction did not involve the expected [8 + 2] intermediate, o-quinodimethane. Instead, the reaction starts from intermolecular Diels-Alder reactions between DMAD and the furan moiety of vinylphenylfuran, followed by unexpected intramolecular alkene-alkene coupling. This step generates a diradical species, which then undergoes [1,3]-H shift to give the experimentally observed expoxyphenanthrene. DFT calculations revealed that, the [8 + 2] cycloadduct cannot be obtained because the [1,5]-H shift process from the [1,5]-vinyl shift intermediate is disfavored kinetically compared to the [1,3]-H shift to the [8 + 2] isomer.

  2. Features of the reaction of heterocyclic analogs of chalcone with lanthanide shift reagents

    Energy Technology Data Exchange (ETDEWEB)

    Turov, A.V.; Khilya, V.P. [Taras Shevchenko Kiev Univ. (Russian Federation)

    1994-10-01

    The PMR spectra of heterocyclic analogs of 2-hydroxychalcone containing thiazole, benzofuran, triazole, imidazole, benzodioxane, or pyridine rings in the presence of lanthanide shift reagents are studied. It is found that the most effective reagent for modifying the spectra of these compounds is Yb(fod)3. The broadening of the spectra of 2-hydroxy chalcones in the presence of lanthanide shift reagents is explained by the dynamic effects of complex formation. An example is given of the determination of the conformation of molecules of 2-hydroxychalcone by the simultaneous use of lanthanide shift reagents and the homonuclear Overhauser effect. 9 refs., 1 fig., 1 tab.

  3. Kinetic analysis of the phenyl-shift reaction in $\\beta$-O-4 lignin model compounds: A computational study.

    Energy Technology Data Exchange (ETDEWEB)

    Beste, Ariana [ORNL; Buchanan III, A C [ORNL

    2011-01-01

    The phenyl-shift reaction in $\\beta$-phenethyl phenyl ether ($\\beta - \\rm PhCH_2CH_2OPh$, $\\beta$-PPE) is an integral step in the pyrolysis of PPE, which is a model compound for the $\\beta$-O-4 linkage in lignin. We investigated the influence of natural occurring substituents (hydroxy, methoxy) on the reaction rate by calculating relative rate constant using density functional theory in combination with transition state theory, including anharmonic correction for low-frequency modes. The phenyl-shift reaction proceeds through an intermediate and the overall rate constants were computed invoking the steady-state approximation (its validity was confirmed). Substituents on the phenethyl group have only little influence on the rate constants. If a methoxy substituent is located in para position of the phenyl ring adjacent to the ether oxygen, the energies of the intermediate and second transition state are lowered, but the overall rate constant is not significantly altered. This is a consequence of the dominating first transition from pre-complex to intermediate in the overall rate constant. {\\it O}- and di-{\\it o}-methoxy substituents accelerate the phenyl-migration rate compared to $\\beta$-PPE.

  4. Microcalorimetric Adsorption of Alumina Oxide Catalysts for Combination of Ethylbenzene dehydrogenation and carbon Dioxide Shift-reaction

    Institute of Scientific and Technical Information of China (English)

    GE Xin; SHEN Jian-yi

    2004-01-01

    Styrene (STY) is now produced industrially in fairly large quantities by the dehydrogenation of ethylbenzene (EB) using promoted iron oxide catalyst with superheated steam.In this case, small amount of carbon dioxide formed as a by-product was known to inhibit the catalytic activity of commercial catalyst. Recently, there have been some reports which carbon dioxide showed positive effects to promote catalytic activities on the reaction over several catalysts.In this study, we attempted to combine the dehydrogenation of EB to STY with the carbon dioxide shift-reaction. The combine reaction (EB + CO2 → STY + H2O + CO) can be considered as one of the ways of using CO2 resources and can yield simultaneously STY and Carbon oxide.Alumina oxide catalysts such as Al2O3, Na2O/Al2O3 and K2O/Al2O3 were prepared by the usual impregnation method with an aqueous solution of NaNO3 and KNO3, and then calcined at 650℃ for 5 h in a stream of air. The reaction condition is 600℃, flow of CO2 38ml/mon and space velocity (EB) 1.28h-1.

  5. Effect of Addition Sequence during Neutralization and Precipitation on Iron-based Catalysts for High Temperature Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Zhu Jianhua; Mou Zhanjun

    2007-01-01

    The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated. XRD,BET and particle size distribution (PSD) were used to characterize the prepared catalysts. It was found that the catalyst crystals were all γ-Fe2O3,and the intermediate of the catalyst after aging was Fe3O4. The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process. The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts.

  6. Lamb shift in radical-ion pairs produces a singlet-triplet energy splitting in photosynthetic reaction centers

    OpenAIRE

    Vitalis, K. M.; Kominis, I. K.

    2013-01-01

    Radical-ion pairs, fundamental for understanding photosynthesis and the avian magnetic compass, were recently shown to be biological open quantum systems. We here show that the coupling of the radical-pair's spin degrees of freedom to its decohering vibrational reservoir leads to a shift of the radical-pair's magnetic energy levels. The Lamb shift Hamiltonian is diagonal in the singlet-triplet basis, and results in a singlet-triplet energy splitting physically indistinguishable from an exchan...

  7. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Manos Mavrikakis

    2008-08-31

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentially stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.

  8. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yates, I.C.; Satterfield, C.N.

    1989-01-01

    The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240[degrees]C, 0.5 to 1.5 MPa, H[sub 2]/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R[sub H[sub 2+Co

  9. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order.

  10. The Effect of Rain on Air-Water Gas Exchange

    Science.gov (United States)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  11. SurfKin: an ab initio kinetic code for modeling surface reactions.

    Science.gov (United States)

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-05

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts.

  12. Preparation of neuroprotective condensed 1,4-benzoxazepines by regio- and diastereoselective domino Knoevenagel–[1,5]-hydride shift cyclization reaction

    Directory of Open Access Journals (Sweden)

    László Tóth

    2014-11-01

    Full Text Available Condensed O,N-heterocycles containing tetrahydro-1,4-benzoxazepine and tetrahydroquinoline moieties were prepared by a regio- and diastereoselective domino Knoevenagel–[1,5]-hydride shift cyclization reaction of a 4-aryl-2-phenyl-1,4-benzoxazepine derivative obtained from flavanone. The relative configuration of products were determined by the correlation of 3JH,H coupling data with the geometry of major conformers accessed by DFT conformational analysis. Separated enantiomers of the products were characterized by HPLC-ECD data, which allowed their configurational assignment on the basis of TDDFT-ECD calculation of the solution conformers. Two compounds showed neuroprotective activities against hydrogen peroxide (H2O2 or β-amyloid25–35 (Aβ25–35-induced cellular injuries in human neuroblastoma SH-SY5Y cells in the range of those of positive controls.

  13. Preparation of neuroprotective condensed 1,4-benzoxazepines by regio- and diastereoselective domino Knoevenagel-[1,5]-hydride shift cyclization reaction.

    Science.gov (United States)

    Tóth, László; Fu, Yan; Zhang, Hai Yan; Mándi, Attila; Kövér, Katalin E; Illyés, Tünde-Zita; Kiss-Szikszai, Attila; Balogh, Balázs; Kurtán, Tibor; Antus, Sándor; Mátyus, Péter

    2014-01-01

    Condensed O,N-heterocycles containing tetrahydro-1,4-benzoxazepine and tetrahydroquinoline moieties were prepared by a regio- and diastereoselective domino Knoevenagel-[1,5]-hydride shift cyclization reaction of a 4-aryl-2-phenyl-1,4-benzoxazepine derivative obtained from flavanone. The relative configuration of products were determined by the correlation of (3) J H,H coupling data with the geometry of major conformers accessed by DFT conformational analysis. Separated enantiomers of the products were characterized by HPLC-ECD data, which allowed their configurational assignment on the basis of TDDFT-ECD calculation of the solution conformers. Two compounds showed neuroprotective activities against hydrogen peroxide (H2O2) or β-amyloid25-35 (Aβ25-35)-induced cellular injuries in human neuroblastoma SH-SY5Y cells in the range of those of positive controls.

  14. Genotyping of intron 22 inversion of factor VIII gene for diagnosis of hemophilia A by inverse-shifting polymerase chain reaction and capillary electrophoresis.

    Science.gov (United States)

    Pan, Tzu-Yu; Wang, Chun-Chi; Shih, Chi-Jen; Wu, Hui-Fen; Chiou, Shyh-Shin; Wu, Shou-Mei

    2014-09-01

    This is the first capillary electrophoresis (CE) analysis for diagnosis of hemophilia A (HA). The intron 22 inversion of factor VIII gene (F8) causes 40-50 % of severe bleeding disorder of HA in all human populations. Consequently, identification of the disease-causing mutations is becoming increasingly important for accurate genetic counseling and prenatal diagnosis. In this study, the key steps of inverse-shifting polymerase chain reaction (IS-PCR) and of short-end injection capillary electrophoresis were used for more specific and rapid genotyping of intron 22 inversion of F8. In IS-PCR, three specific primers were used to amplify 512-bp amplicon for wild type and 584-bp amplicon for patients with intron 22 inversion. The capillary gel electrophoresis (CGE) system was performed using 1× Tris-borate-EDTA (TBE) buffer containing 0.3 % (w/v) polyethylene oxide (PEO). The PCR amplicons were electrokinetically injected at 10 kV for 10 s at a temperature of 25 °C. The optimal short-end injection CGE was applied to detect the F8 gene of HA patients and carriers within 5 min. Intron 22 inversion was indeed found on some HA patients (13/35, 37.1 %). All genotyping results showed good agreement with DNA sequencing method and long-distance polymerase chain reaction (LD-PCR). The IS-PCR combined with short-end injection CGE method was feasible and efficient for intron 22 inversion screening of F8 in the HA populations.

  15. Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Karla Herrera Delgado

    2015-05-01

    Full Text Available An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shift reaction and carbon formation via Boudouard reaction are included. The mechanism is implemented in a one-dimensional flow field description of a fixed bed reactor. The model is evaluated by comparison of numerical simulations with data derived from isothermal experiments in a flow reactor over a powdered nickel-based catalyst using varying inlet gas compositions and operating temperatures. Furthermore, the influence of hydrogen and water as co-feed on methane dry reforming with CO2 is also investigated.

  16. Mechanism and kinetics of the production of hydroxymethyl hydroperoxide in ethene/ozone/water gas-phase system

    Institute of Scientific and Technical Information of China (English)

    QI Bin; CHAO YuTao; CHEN ZhongMing

    2007-01-01

    The mechanism and kinetics of the production of hydroxymethyl hydroperoxide (HMHP) in ethene/ozone/water gas-phase system were investigated at room temperature (298±2 K) and atmospheric pressure (1×105 Pa). The reactants were monitored in situ by long path FTIR spectroscopy. Peroxides were measured by an HPLC post-column fluorescence technique after sampling with a cold trap. The rate constants (k3) of reaction CH2O2+H2O→HMHP (R3) determined by fitting model calculations to experi mental data range from (1.6-6.0)×10-17 cma. Molecule-1. S-1. Moreover, a theoretical study of reaction (R3) was performed using density functional theory at QCISD(T)/6-311+(2d,2p)//B3LYP/6-311+G(2d,2p) level of theory. Based on the calculation of the reaction potential energy surface and intrinsic reaction coordinates, the classic transitional state theory (TST) derived k3 (kTST), canonical variational transition state theory (CVT) derivedk3 (kCVT), and the corrected kcvT with small-curvature tunneling (kCVT/SCT)were calculated using Polyrate Version 8.02 program to be 2.47×10-17, 2.47×10-17 and 5.22×10-17cm3. Molecule-1· s-1, respectively, generally in agreement with those fitted by the model.

  17. The effectiveness of healthy meals at work on reaction time, mood and dietary intake: a randomised cross-over study in daytime and shift workers at an university hospital

    DEFF Research Database (Denmark)

    Leedo, Eva; Beck, Anne Marie; Astrup, Arne

    2017-01-01

    assistants, including sixteen working on shifts, were recruited. The participants received a self-selected keyhole-labelled (Nordic nutrition label) lunch, snack and bottled water during each shift throughout the intervention period. Reaction time (Go/No-Go test), mood-related scores (POMS) and dietary...... intake were assessed at run-in, and at the end of the intervention and the control periods. The intake of fat (P=0·030) and PUFA (P=0·003) was lower, and the intake of carbohydrate (P=0·008), dietary fibre (P=0·031) and water (P

  18. Separation of intron 22 inversion type 1 and 2 of hemophilia A by modified inverse-shifting polymerase chain reaction and capillary gel electrophoresis.

    Science.gov (United States)

    Pan, Tzu-Yu; Chiou, Shyh-Shin; Wang, Chun-Chi; Wu, Shou-Mei

    2014-12-01

    An inverse-shifting polymerase chain reaction (IS-PCR) combined with short-end capillary gel electrophoresis (CGE) was developed for genotyping of intron 22 inversion Type 1 (Inv22-1) and Type 2 (Inv22-2) of hemophilia A (HA). Severe HA cases are affected by intron 22 inversion around 45-50%. Inv22-1 has higher frequency than Inv22-2. The aim of this study is to distinguish them by genotyping. In order to improve Inv22 genotyping efficiency, five primers were designed and applied to differentiate the wild type, Inv22-1, Inv22-2 and carrier. Three amplicons of 405, 457 and 512 bp were recognized for wild type; 333, 457 and 584 bp for Inv22-1; 385, 405 and 584 bp for Inv22-2. The Inv22-1 carrier has 5 amplicons including 333, 405, 457, 512, 584 bp and Inv22-2 carrier is differentiated by 385, 405, 457, 512 and 584 bp. The amplicons between Inv22-1 and Inv22-2 carriers are only different in 333 bp for Inv22-1 carrier and 385 bp for Inv22-2 carrier. Capillary gel electrophoresis (CGE) was used for separation within 5 min. The separation voltage was set at 8 kV (cathode at detector), and the temperature was kept at 25°C. The sieving matrix was 89 mM Tris, 89 mM boric acid, 2mM EDTA containing 0.4% (w/v) HPMC and 1 μM of YO-PRO(®)-1 Iodide. Total of 50 HA patients (including 35 non-Inv22, 14 Inv22-1, and one Inv22-2 patients) and 7 HA carriers were diagnosed in the application. Seven random samples (5 patients and 2 carriers) were subjected to comparison and gave identical results of DNA sequencing and this modified IS-PCR.

  19. KINETIC UNDERSTANDING OF THE SYNGAS-TO-DME REACTION SYSTEM AND ITS IMPLICATIONS TO PROCESS AND ECONOMICS

    Energy Technology Data Exchange (ETDEWEB)

    Xiang-Dong Peng

    2002-12-01

    In a single-step synthesis gas-to-dimethyl ether process, synthesis gas (or syngas, a mixture of H{sub 2} and CO) is converted into dimethyl ether (DME) in a single reactor. The three reactions involved in this process, methanol synthesis, methanol dehydration and water gas shift, form an interesting reaction network. The interplay among these three reactions results in excellent syngas conversion or reactor productivity. A fundamental understanding of this interplay helps to explain many experimental and simulation observations, to identify optimal reaction conditions, and to provide guidelines for process development. The higher syngas conversion or reactor productivity in the syngas-to-DME reaction system, compared to that in the syngas-to-methanol reaction system, is referred to as chemical synergy. This synergy exhibits a strong dependence on the composition of the reactor feed. To demonstrate the extent of this dependence, simulations with adjusted activity for each reaction were performed to reveal the relative rate of each reaction. The results show that the water gas shift reaction is the most rapid, being practically controlled by the equilibrium. Both methanol synthesis and methanol dehydration reactions are kinetically controlled. The kinetics of the dehydration reactions is greater than that of the methanol synthesis reaction in the CO-rich regime. However, the rates of these two reactions come closer as the H{sub 2} concentration in the reactor feed increases. The role of the dehydration reaction is to remove the equilibrium barrier for the methanol synthesis reaction. The role of the water gas shift reaction is more complex; it helps the kinetics of methanol dehydration by keeping the water concentration low, which in turn enhances methanol synthesis. It also readjusts the H{sub 2}:CO ratio in the reactor as the reactions proceed. In the CO-rich regime, the water gas shift reaction supplements the limiting reactant, H{sub 2}, by reacting water with

  20. The production of hydrogen through the use of a 77 wt% Pd 23 wt% Ag membrane water gas shift reactor

    CSIR Research Space (South Africa)

    Baloyi, Liberty N

    2016-12-01

    Full Text Available Hydrogen as an energy carrier has the potential to decarbonize the energy sector. This work presents the application of a palladium-silver (Pd–Ag) membrane-based reactor. The membrane reactor which is made from Pd–Ag film supported by porous...

  1. Mechanism and kinetics of the production of hydroxymethyl hydroperoxide in ethene/ozone/water gas-phase system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The mechanism and kinetics of the production of hydroxymethyl hydroperoxide (HMHP) in ethene/ ozone/water gas-phase system were investigated at room temperature (298±2 K) and atmospheric pressure (1×105 Pa). The reactants were monitored in situ by long path FTIR spectroscopy. Peroxides were measured by an HPLC post-column fluorescence technique after sampling with a cold trap. The rate constants (k3) of reaction CH2O2+H2O→HMHP (R3) determined by fitting model calculations to ex-perimental data range from (1.6―6.0)×10?17 cm3·molecule?1·s?1. Moreover, a theoretical study of reac-tion (R3) was performed using density functional theory at QCISD(T)/6-311+(2d,2p)//B3LYP/6-311+G(2d, 2p) level of theory. Based on the calculation of the reaction potential energy surface and intrinsic reac-tion coordinates, the classic transitional state theory (TST) derived k3 (kTST), canonical variational tran-sition state theory (CVT) derived k3 (kCVT), and the corrected kCVT with small-curvature tunneling (kCVT/SCT) were calculated using Polyrate Version 8.02 program to be 2.47×10-17, 2.47×10-17 and 5.22×10-17 cm3·molecule-1·s-1, respectively, generally in agreement with those fitted by the model.

  2. EFFECT OF SURFACTANT ON TWO-PHASE FLOW PATTERNS OF WATER-GAS IN CAPILLARY TUBES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Flow patterns of liquid-gas two-phase flow were experimentally investigated. The experiments were carried out in both vertical and horizontal capillary tubes having inner diameters of 1.60 mm. The working liquid was the mixture of water and Sodium Dodecyl Benzoyl Sulfate (SDBS). The working gas was Nitrogen. For the water/SDBS mixture-gas flow in the vertical capillary tube, flow-pattern transitions occurred at lower flow velocities than those for the water-gas flow in the same tube. For the water/SDBS mixture-gas flow in the horizontal capillary tube, surface tension had little effect on the bubbly-intermittent transition and had only slight effect on the plug-slug and slug-annular transitions. However, surface tension had significant effect on the wavy stratified flow regime. The wavy stratified flow regime of water/SDBS mixture-gas flow expanded compared with that of water-gas.

  3. Experimental study of flow patterns and pressure drops of heavy oil-water-gas vertical flow

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-mao; ZHONG Hai-quan; LI Ying-chuan; LIU Zhong-neng; WANG Qi

    2014-01-01

    A stainless steel apparatus of 18.5 m high and 0.05 m in inner diameter is developed, with the heavy oil from Lukeqin Xinjiang oil field as the test medium, to carry out the orthogonal experiments for the interactions between heavy oil-water and heavy oil-water-gas. With the aid of observation windows, the pressure drop signal can be collected and the general multiple flow patterns of heavy oil-water-gas can be observed, including the bubble, slug, churn and annular ones. Compared with the conventional oil, the bubble flows are identified in three specific flow patterns which are the dispersed bubble (DB), the bubble gas-bubble heavy oil go(B-B), and the bubble gas-intermittent heavy oilgo(B-I). The slug flows are identified in two specific flow patterns which are the intermittent gas-bubble heavy oilgo(I-B)and the intermittent gas-intermittent heavy oilgo(I-I). Compared with the observa- tions in the heavy oil-water experiment, it is found that the conventional models can not accurately predict the pressure gradient. And it is not water but heavy oil and water mixed phase that is in contact with the tube wall. So, based on the principle of the energy con- servation and the kinematic wave theory, a new method is proposed to calculate the frictional pressure gradient. Furthermore, with the new friction gradient calculation method and a due consideration of the flow characteristics of the heavy oil-water-gas high speed flow, a new model is built to predict the heavy oil-water-gas pressure gradient. The predictions are compared with the experiment data and the field data. The accuracy of the predictions shows the rationality and the applicability of the new model.

  4. Shifting Attention

    Science.gov (United States)

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  5. Shifting Attention

    Science.gov (United States)

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  6. Tough Shift

    DEFF Research Database (Denmark)

    Brewer, Robert S.; Verdezoto, Nervo; Holst, Thomas;

    2015-01-01

    in a student dormitory and found that players did not shift their electricity use, because they were unwilling to change their schedules and found it easier to focus on reducing electricity use. Based on our findings, we discuss the implications for encouraging shifting, and also the challenges of integrating...

  7. Unusual Intramolecular Hydrogen Transfer in 3,5-Di(triphenylethylenyl) BODIPY Synthesis and 1,2-Migratory Shift in Subsequent Scholl Type Reaction

    KAUST Repository

    Chua, Ming Hui

    2015-08-17

    The straightforward synthesis of 3,5-di(triphenylethylenyl) BODIPYs 1–3 from the condensation of 2-(triphenylethylenyl) pyrrole with aryl aldehydes are surprisingly found to produce side products that are hydrogenated at one of the two triphenylethylene substituents. It was also observed that the subsequent Scholl type reaction of 1 resulted in a “1,2-migratory shift” of one triphenylethylene substituent in addition to a ring closing reaction. Preliminary investigations, including DFT calculations and isolation of intermediates, were conducted to study these unusual observations on BODIPY chemistry.

  8. Prediction of natural gas hydrate formation region in wellbore during deep- water gas well testing

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-yuan; SUN Bao-jiang; WANG Xue-rui; ZHANG Zhen-nan

    2014-01-01

    Wellbore temperature field equations are established with considerations of the enthalpy changes of the natural gas during the deep-water gas well testing. A prediction method for the natural gas hydrate formation region during the deep-water gas well testing is proposed, which combines the wellbore temperature field equations, the phase equilibrium conditions of the natural gas hydrate formation and the calculation methods for the pressure field. Through the sensitivity analysis of the parameters that affect the hydrate formation region, it can be concluded that during the deep-water gas well testing, with the reduction of the gas production rate and the decrease of the geothermal gradient, along with the increase of the depth of water, the hydrate formation region in the wellbore enlarges, the hydrate formation regions differ with different component contents of natural gases, as compared with the pure methane gas, with the increase of ethane and propane, the hydrate formation region expands, the admixture of inhibitors, the type and the concentrations of which can be optimized through the method proposed in the paper, will reduce the hydrate formation region, the throttling effect will lead to the abrupt changes of temperature and pressure, which results in a variation of the hydrate formation region, if the throttling occurs in the shallow part of the wellbore, the temperature will drop too much, which enlarges the hydrate formation region, otherwise, if the throttling occurs in the deep part of the wellbore, the hydrate formation region will be reduced due to the decrease of the pressure.

  9. A model to assess the feasibility of shifting reaction equilibrium by acetone removal in the transamination of ketones using 2‐propylamine

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Bach, Christian; Woodley, John

    2014-01-01

    removal was then coupled to a simple model for biocatalyst kinetics and also for loss of substrate ketone by evaporation. The three models were used to simulate the effects of varying the critical process parameters and reaction equilibrium constants (K eq) as well as different substrate ketone...

  10. Solvent-dependent reactions for the synthesis of β-keto-benzo-δ-sultone scaffolds via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences.

    Science.gov (United States)

    Ghandi, Mehdi; Bozcheloei, Abolfazl Hasani; Nazari, Seyed Hadi; Sadeghzadeh, Masoud

    2011-12-16

    We have developed a solvent-dependent method for the synthesis of novel benzo-δ-sultone scaffolds. A variety of benzylbenzo[e][1,2]oxathiin-4(3H)-one-2,2-dioxides were obtained in high yields in DMF using a one-pot, DBU-catalyzed condensation of 2-hydroxybenzaldehydes with a number of (E)-2-phenylethenesulfonyl chlorides. On the other hand, the initially prepared 2-formylphenyl-(E)-2-phenylethenesulfonate derivatives underwent DBU-catalyzed reactions to a series of 3-[methoxy(phenyl)methyl]benzo[e][1,2]oxathiine-2,2-dioxides in moderate to good yields in MeOH. These reactions presumably proceed via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences, respectively.

  11. Bridging silyl groups in sigma-bond metathesis and [1, 2] shifts. An experimental and computational study of the reaction between cerium metallocenes and MeOSiMe3

    Energy Technology Data Exchange (ETDEWEB)

    Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile; Andersen, Richard

    2010-04-21

    The reaction of Cp'2CeH (Cp' = 1,2,4-(Me3C)3C5H2 ) with MeOSiMe3 gives Cp'2CeOMe and HSiMe3 and the reaction of the metallacycle, Cp'[(Me3C)2C5H2C(Me) 2CH2]Ce, with MeOSiMe3 yields Cp'2CeOCH2SiMe3, formed from hypothetical Cp'2CeCH2OSiMe3 by a [1, 2] shift also known as a silyl-Wittig rearrangement. Although both cerium products are alkoxides, they are formed by different pathways. DFT calculations on the reaction of the model metallocene, Cp2CeH, and MeOSiMe3 show that the lowest energy pathway is a H for OMe exchange at Ce that occurs by way of a sigma-bond metathesis transition state as SiMe3 exchanges partners. The formation of Cp2CeOCH2SiMe3 occurs by way of a low activation barrier [1, 2]shift of the SiMe3 group in Cp2CeCH2OSiMe3. Calculations on a model metallacycle, Cp[C5H4C(Me)2CH2]Ce, show that the metallacycle favors CH bond activation over sigma-bond metathesis involving the transfer of the SiMe3 group in good agreement with experiment. The sigma-bond metathesis involving the transfer of SiMe3 and the [1, 2]shift of SiMe3 reactions have in common a pentacoordinate silicon at the transition states. A molecular orbital analysis illustrates the connection between these two Si-O bond cleavage reactions and traces the reason why they occur for a silyl but not for an alkyl group to the difference in energy required to form a pentacoordinate silicon or carbon atom in the transition state. This difference clearly distinguishes a silyl from an alkyl group as shown in the study of"Pyrolysis of Tetramethylsilane Yielding Free d-orbitals by Seyferth and Pudvin in ChemTech 1981, 11, 230-233".

  12. Bridging silyl groups in sigma-bond metathesis and [1, 2] shifts. An experimental and computational study of the reaction between cerium metallocenes and MeOSiMe3

    Energy Technology Data Exchange (ETDEWEB)

    Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile; Andersen, Richard

    2010-04-21

    The reaction of Cp'2CeH (Cp' = 1,2,4-(Me3C)3C5H2 ) with MeOSiMe3 gives Cp'2CeOMe and HSiMe3 and the reaction of the metallacycle, Cp'[(Me3C)2C5H2C(Me) 2CH2]Ce, with MeOSiMe3 yields Cp'2CeOCH2SiMe3, formed from hypothetical Cp'2CeCH2OSiMe3 by a [1, 2] shift also known as a silyl-Wittig rearrangement. Although both cerium products are alkoxides, they are formed by different pathways. DFT calculations on the reaction of the model metallocene, Cp2CeH, and MeOSiMe3 show that the lowest energy pathway is a H for OMe exchange at Ce that occurs by way of a sigma-bond metathesis transition state as SiMe3 exchanges partners. The formation of Cp2CeOCH2SiMe3 occurs by way of a low activation barrier [1, 2]shift of the SiMe3 group in Cp2CeCH2OSiMe3. Calculations on a model metallacycle, Cp[C5H4C(Me)2CH2]Ce, show that the metallacycle favors CH bond activation over sigma-bond metathesis involving the transfer of the SiMe3 group in good agreement with experiment. The sigma-bond metathesis involving the transfer of SiMe3 and the [1, 2]shift of SiMe3 reactions have in common a pentacoordinate silicon at the transition states. A molecular orbital analysis illustrates the connection between these two Si-O bond cleavage reactions and traces the reason why they occur for a silyl but not for an alkyl group to the difference in energy required to form a pentacoordinate silicon or carbon atom in the transition state. This difference clearly distinguishes a silyl from an alkyl group as shown in the study of"Pyrolysis of Tetramethylsilane Yielding Free d-orbitals by Seyferth and Pudvin in ChemTech 1981, 11, 230-233".

  13. Metallic oxides supported in CeO{sub 2} and CeO{sub 2}-La{sub 2} O{sub 3} for low temperature shift reaction; Oxidos metalicos suportados em CeO{sub 2} e CeO{sub 2}-La{sub 2} O{sub 3} para reacao shift a baixa temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Maluf, Silvia Salua; Assaf, Elisabete Moreira [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: sil_maluf@iqsc.usp.br

    2008-07-01

    This work studied copper and zinc oxides supported in CeO{sub 2} and CeO{sub 2}/La{sub 2}O{sub 3}. The catalytic tests for low temperature shift reaction, carried out for samples, showed the Cu-Ce catalyst presents the highest value of CO conversion (50%) and after the Cu-Ce-La catalysts (30%). The other catalysts showed CO conversion in range of 15%. This behavior is related with surface area, and also with the amount of Cu in the surface of samples (author)

  14. Effect of support on the crystalline structure, the acid-base properties and activity of iron based systems in the CO + H{sub 2}O reaction; Influence du support sur la structure cristalline, les proprietes acido-basiques et l'activite des systemes a base de fer en reaction CO + H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Bouarab, R. [Ecole nationale Polytechnique, Dept. des Sciences Fondamentales, Alger (Algeria); Bouarab, R.; Boudjemaa, A.; Trari, M. [Faculte de Chimie, USTHB, Lab. C. G. N. et L. S. V. E. R., Alger (Algeria); Bennici, S.; Auroux, A. [Institut de Recherches sur la Catalyse et l' Environnement de Lyon, UMR 5256, CNRS-UCB Lyon1, 69 - Villeurbanne (France)

    2009-03-15

    The water gas shift reaction was studied in the temperature range of 350-450 C over iron based catalysts exempt of Cr{sub 2}O{sub 3}. The basic properties and CO conversion of these catalysts are given in the following sequence: Fe{sub 3}O{sub 4}/MgO {>=} Fe{sub 3}O{sub 4}/TiO{sub 2} {>=} Fe{sub 3}O{sub 4} {>=} Fe{sub 3}O{sub 4}/SiO{sub 2}. The basic catalysts are consequently more active than acid ones. On the other hand, the DRX results showed a strong crystalline fraction of MgO in the Fe{sub 3}O{sub 4}/MgO catalyst calcined at 400 C. Hence, Fe{sub 3}O{sub 4}/MgO generates an MgO reservoir able to feed the catalyst surface with formate species during the water gas shift reaction. (authors)

  15. Power Shift

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ "We are entering a new era of world history: the end of Western domination and the arrival of the Asian century. The question is: will Washington wake up to this reality?" This is the central premise of Kishore Mahbubani's provocative new book The New Asian Hemisphere: The Irresistible Shift of Global Power to the East.

  16. The reaction of European lobster larvae (Homarus gammarus) to different quality food: effects of ontogenetic shifts and pre-feeding history.

    Science.gov (United States)

    Schoo, Katherina L; Aberle, Nicole; Malzahn, Arne M; Schmalenbach, Isabel; Boersma, Maarten

    2014-02-01

    Young larval stages of many organisms represent bottlenecks in the life-history of many species. The high mortality commonly observed in, for example, decapod larvae has often been linked to poor nutrition, with most studies focussing on food quantity. Here, we focus instead on the effects of quality and have investigated its effects on the nutritional condition of lobster larvae. We established a tri-trophic food chain consisting of the cryptophyte Rhodomonas salina, the calanoid copepod Acartia tonsa and larvae of the European lobster Homarus gammarus. In a set of experiments, we manipulated the C:N:P stoichiometry of the primary producers, and accordingly those of the primary consumer. In a first experiment, R. salina was grown under N- and P-limitation and the nutrient content of the algae was manipulated by addition of the limiting nutrient to create a food quality gradient. In a second experiment, the effect on lobster larvae of long- and short-term exposure to food of varying quality during ontogenetic development was investigated. The condition of the lobster larvae was negatively affected even by subtle N- and P-nutrient limitations of the algae. Furthermore, younger lobster larvae were more vulnerable to nutrient limitation than older ones, suggesting an ontogenetic shift in the capacity of lobster larvae to cope with low quality food. The results presented here might have substantial consequences for the survival of lobster larvae in the field, as, in the light of future climate change and re-oligotrophication of the North Sea, lobster larvae might face marked changes in temperature and nutrient conditions, thus significantly altering their condition and growth.

  17. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems

    Science.gov (United States)

    Zappa, Christopher J.; McGillis, Wade R.; Raymond, Peter A.; Edson, James B.; Hintsa, Eric J.; Zemmelink, Hendrik J.; Dacey, John W. H.; Ho, David T.

    2007-05-01

    Air-water gas transfer influences CO2 and other climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer is not well known. Widely used models of gas exchange rates are based on empirical relationships linked to wind speed, even though physical processes other than wind are known to play important roles. Here the first field investigations are described supporting a new mechanistic model based on surface water turbulence that predicts gas exchange for a range of aquatic and marine processes. Findings indicate that the gas transfer rate varies linearly with the turbulent dissipation rate to the ${^1}\\!/{_4 power in a range of systems with different types of forcing - in the coastal ocean, in a macro-tidal river estuary, in a large tidal freshwater river, and in a model (i.e., artificial) ocean. These results have important implications for understanding carbon cycling.

  18. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  19. First principles (DFT) characterization of Rh(I) /dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid.

    Science.gov (United States)

    Kantchev, Eric Assen B; Pangestu, Surya R; Zhou, Feng; Sullivan, Michael B; Su, Hai-Bin

    2014-11-17

    The C-H activation in the tandem, "merry-go-round", [(dppp)Rh]-catalyzed (dppp=1,3-bis(diphenylphosphino)propane), four-fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)H oxidative addition to square-pyramidal Rh(III) -H species, which in turn undergoes a C(aryl)-H reductive elimination. Our DFT calculations confirm the Rh(I) /Rh(III) mechanism. At the IEFPCM(toluene, 373.15 K)/PBE0/DGDZVP level of theory, the oxidative addition barrier was calculated to be 12.9 kcal mol(-1) , and that of reductive elimination was 5.0 kcal mol(-1) . The observed selectivity of the reaction correlates well with the relative energy barriers of the cycle steps. The higher barrier (20.9 kcal mol(-1) ) for norbornyl-Rh protonation ensures that the reaction is steered towards the 1,4-shift (total barrier of 16.3 kcal mol(-1) ), acting as an equilibration shuttle. The carborhodation (13.2 kcal mol(-1) ) proceeds through a lower barrier than the protonation (16.7 kcal mol(-1) ) of the rearranged aryl-Rh species in the absence of o- or m-substituents, ensuring multiple carborhodations take place. However, for 2,5-dimethylphenyl, which was used as a model substrate, the barrier for carborhodation is increased to 19.4 kcal mol(-1) , explaining the observed termination of the reaction at 1,2,3,4-tetra(exo-norborn-2-yl)benzene. Finally, calculations with (Z)-2-butene gave a carborhodation barrier of 20.2 kcal mol(-1) , suggesting that carborhodation of non-strained, open-chain substrates would be disfavored relative to protonation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Existence for a global pressure formulation of water-gas flow in porous media

    Directory of Open Access Journals (Sweden)

    Brahim Amaziane

    2012-06-01

    Full Text Available We consider a model of water-gas flow in porous media with an incompressible water phase and a compressible gas phase. Such models appear in gas migration through engineered and geological barriers for a deep repository for radioactive waste. The main feature of this model is the introduction of a new global pressure and it is fully equivalent to the original equations. The system is written in a fractional flow formulation as a degenerate parabolic system with the global pressure and the saturation potential as the main unknowns. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. Under some realistic assumptions on the data, including unbounded capillary pressure function and non-homogeneous boundary conditions, we prove the existence of weak solutions of the system. Furthermore, it is shown that the weak solution has certain desired properties, such as positivity of the saturation. The result is proved with the help of an appropriate regularization and a time discretization of the coupled system. We use suitable test functions to obtain a priori estimates and a compactness result in order to pass to the limit in nonlinear terms.

  1. Advances in interaction mechanism of water (gas) on clay minerals in China

    Institute of Scientific and Technical Information of China (English)

    He Manchao; Sun Xiaoming; Zhao Jian

    2014-01-01

    Dealing with large-scale deformations in soft-rock tunnels is a very important issue in soft-rock tunnel engineering. The mechanism of this large-scale deformation is closely related to the physical and chem-ical properties of soft rock, interaction between soft rock and water, and interaction between soft rock and gas contained in soft rock. In order to gain a better predictive understanding of the governing prin-ciples associated with this phenomenon, we used experimental and theoretical methods to study the effects of point defect on physical and chemical properties of soft rock and mechanism of interaction between water (gas) and soft rock. Firstly, we calculated the impurity formation energies and transition energy levels of defects by using the first-principle calculation, the results showed the microscopic mech-anism of defects substitution in kaolinite and effects of defects on the structure of kaolinite. Moreover, comparing the experimental and theoretical results, we found the mechanism of interaction between water and soft rock. The results show that water is one of the most important factors which can induce various kinds of geological disasters. At last, the interaction between soft rock and surrounding gas as CO2, CH4 and CO is disused, the influence of surrounding gas on soft rock should not be ignored.

  2. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  3. Synthesis NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} catalyst by the combustion reaction to their use in the shift reaction (WGSR); Sintese do catalisador de NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} por reacao de combustao visando sua utilizacao na reacao de shift (WGSR)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, P.T.A.; Costa, A.C.F.M.; Neiva, L.S.; Gama, L. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais; Argolo, F.; Andrade, H.M.C. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2009-07-01

    This work aims at the synthesis of catalyst NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} by combustion reaction using urea as fuel, to evaluate its performance in the production of hydrogen by the reaction of displacement of water vapor (WGSR). The initial composition of the solution was based on valencia total oxidizing and reducing reagents based on the concepts of the chemistry of propellants, using container as a crucible of glassy silica. The resulting powder was characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption isotherms (BET), scanning electronic microscope and catalytic tests. The DRX results reveal the presents majoritary phase NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} spinel, the catalyst presents surface area 28 m{sup 2}/g and isotherms type III. Higher conversion CO/CO{sub 2} of 75% CO conversion observed at 500 deg C and catalytic activity of 43 mmolg{sup -1}.h{sup -1} at 450 deg C. (author)

  4. Sorption enhanced reaction process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, S.; Anand, M.; Carvill, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1995-09-01

    Sorption Enhanced Reaction (SER) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process, the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The consequences of SER are: (1) reformation reaction at a significantly lower temperature (300-500{degrees}C) than conventional SMR (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (2) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 99+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (3) downstream hydrogen purification step is either eliminated or significantly reduced in size. The early focus of the program will be on the identification of an adsorbent/chemisorbent for CO{sub 2} and on the demonstration of the SER concept for SMR in our state-of-the-art bench scale process. In the latter stages, a pilot plant will be built to scale-up the technology and to develop engineering data. The program has just been initiated and no significant results for SMR will be reported. However, results demonstrating the basic principles and process schemes of SER technology will be presented for reverse water gas shift reaction as the model reaction. If successful, this technology will be commercialized by Air Products and Chemicals, Inc. (APCI) and used in its existing hydrogen business. APCI is the world leader in merchant hydrogen production for a wide range of industrial applications.

  5. Methanol synthesis via CO₂ hydrogenation over a Au/ZnO catalyst: an isotope labelling study on the role of CO in the reaction process.

    Science.gov (United States)

    Hartadi, Yeusy; Widmann, Daniel; Behm, R Jürgen

    2016-04-28

    Methanol synthesis for chemical energy storage, via hydrogenation of CO2 with H2 produced by renewable energies, is usually accompanied by the undesired formation of CO via the reverse water-gas shift reaction. Aiming at a better mechanistic understanding of methanol formation from CO2/H2 on highly selective supported Au/ZnO catalysts we have investigated the role of CO in the reaction process using isotope labelling experiments. Using (13)C-labelled CO2, we found for reaction at 5 bar and 240 °C that (i) the methanol formation rate is significantly higher in CO2-containing gas mixtures than in a CO2-free mixture and (ii) in mixtures containing both CO2 and CO methanol formation from CO increases with the CO content up to 1% CO, and then remains at 20% of the total methanol formation up to a CO2/CO ratio of 1/1, making CO2 the preferred carbon source in these mixtures. A shift in the preferred carbon source for MeOH from CO2 towards CO is observed with increasing reaction temperatures between 240 °C and 300 °C. At even higher temperatures CO is expected to become the dominant carbon source. The consequences of these findings for the application of Au/ZnO catalysts for chemical storage of renewable energies are discussed.

  6. Characterization of Ni and W co-loaded SBA-15 catalyst and its hydrogen production catalytic ability on ethanol steam reforming reaction

    Science.gov (United States)

    Kim, Dongjin; Kwak, Byeong Sub; Min, Bong-Ki; Kang, Misook

    2015-03-01

    This study evaluated the application of advanced bimetallic catalytic species of Ni and W to effectively produce hydrogen gases from ethanol steam reforming. The highest reactivity was achieved using the Ni0.95W0.05/SBA-15 catalyst. The maximum H2 production and ethanol conversion of 90% and 85%, respectively, were obtained for 0.4 g catalyst at 600 °C after 10 h with a EtOH:H2O ratio of 1:3 and a gas hourly space velocity of 6000 h-1. This highlights a synergy between the Ni and W loading on SBA-15 during ethanol steam reforming that occurs through the inhibition of Ni particle agglomeration and consequent decrease in catalytic deactivation. Additionally, the supplied W ingredients promoted CO2 selectivity, which was generated from the CO-water gas shift reaction.

  7. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, October 1, 1989--December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Yates, I.C.; Satterfield, C.N.

    1989-12-31

    The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240{degrees}C, 0.5 to 1.5 MPa, H{sub 2}/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R{sub H{sub 2+Co}} = (a P{sub CO}P{sub H{sub 2}})/(1 + b P{sub CO}){sup 2}. The apparent activation energy was 93 to 95 kJ/mol. Data from previous studies on cobalt-based Fischer-Tropsch catalysts are also well correlated with this rate expression.

  8. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  9. Compressive Shift Retrieval

    Science.gov (United States)

    Ohlsson, Henrik; Eldar, Yonina C.; Yang, Allen Y.; Sastry, S. Shankar

    2014-08-01

    The classical shift retrieval problem considers two signals in vector form that are related by a shift. The problem is of great importance in many applications and is typically solved by maximizing the cross-correlation between the two signals. Inspired by compressive sensing, in this paper, we seek to estimate the shift directly from compressed signals. We show that under certain conditions, the shift can be recovered using fewer samples and less computation compared to the classical setup. Of particular interest is shift estimation from Fourier coefficients. We show that under rather mild conditions only one Fourier coefficient suffices to recover the true shift.

  10. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    Science.gov (United States)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  11. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    Science.gov (United States)

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  12. Catalytic and DRIFTS study of the WGS reaction on Pt-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Vignatti, Ch.; Avila, M.S.; Apesteguia, C.R.; Garetto, T.F. [Catalysis Science and Engineering Research Group (GICIC), Instituto de Investigaciones en Catalisis y Petroquimica - INCAPE - (UNL-CONICET), Santiago del Estero 2654, 3000 Santa Fe (Argentina)

    2010-07-15

    The water-gas shift (WGS) activity of Pt/SiO{sub 2}, Pt/CeO{sub 2} and Pt/TiO{sub 2} catalysts was studied by in-situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS). Samples contained a similar amount of Pt, between 0.34 and 0.50%, and were characterized by employing a variety of physical and spectroscopic techniques. The catalyst activities were evaluated through both CO conversion versus temperature and CO conversion versus time tests. The DRIFTS spectra were obtained on stream during the WGS reaction at increasing temperatures, from 303 to 573 K. Reduced ceria was the only active support and promoted the WGS reaction on surface bridging OH groups that react with CO to form formate intermediates. Pt/SiO{sub 2} was more active than CeO{sub 2} and catalyzed the WGS reaction through a monofunctional redox mechanism on metallic Pt sites. The CO conversion turnover rate was more than one order of magnitude greater on Pt/CeO{sub 2} than on Pt/SiO{sub 2} showing that the reaction proceeds faster via a bifunctional metal-support mechanism. Platinum on Pt/CeO{sub 2} increased the concentration of OH groups by increasing the ceria reduction extent and also provided a faster pathway for the formation of formate intermediates in comparison to CeO{sub 2} support. Pt/TiO{sub 2} catalysts were clearly more active than Pt/CeO{sub 2}. The WGS reaction on Pt/TiO{sub 2} was catalyzed via a bifunctional metal-support mechanism, probably involving the activation of CO and water on the metal and the support, respectively. The role of platinum on Pt/TiO{sub 2} was critical for promoting the reduction of Ti{sup 4+} ions to Ti{sup 3+} which creates oxygen vacancies in the support to efficiently activate water. (author)

  13. Catalytic behavior of metal catalysts in high-temperature RWGS reaction: In-situ FT-IR experiments and first-principles calculations

    Science.gov (United States)

    Choi, Sungjun; Sang, Byoung-In; Hong, Jongsup; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Kim, Hyoungchul

    2017-01-01

    High-temperature chemical reactions are ubiquitous in (electro) chemical applications designed to meet the growing demands of environmental and energy protection. However, the fundamental understanding and optimization of such reactions are great challenges because they are hampered by the spontaneous, dynamic, and high-temperature conditions. Here, we investigated the roles of metal catalysts (Pd, Ni, Cu, and Ag) in the high-temperature reverse water-gas shift (RWGS) reaction using in-situ surface analyses and density functional theory (DFT) calculations. Catalysts were prepared by the deposition-precipitation method with urea hydrolysis and freeze-drying. Most metals show a maximum catalytic activity during the RWGS reaction (reaching the thermodynamic conversion limit) with formate groups as an intermediate adsorbed species, while Ag metal has limited activity with the carbonate species on its surface. According to DFT calculations, such carbonate groups result from the suppressed dissociation and adsorption of hydrogen on the Ag surface, which is in good agreement with the experimental RWGS results.

  14. An investigation of Water-gas interface migration of the upper Paleozoic gas pool of the Ordos Basin using reservoir fluid inclusion information

    Institute of Scientific and Technical Information of China (English)

    MI Jingkui; XIAO Xianming; LIU Dehan; LI Xianqing; SHEN Jiagui

    2004-01-01

    There is a particular characteristic in the for-mation of the Upper Paleozoic gas pool in the Ordos Basin that is its water-gas interface migrated regional during geological history.However,there has been lack of detailed research on this paper,the formation time of hte fluid inclusions formed in the water-gas transition zone of the gas pool was deduced using their trapping temperatures and combining of the burial with geothermal history of the basin.On the basis of this,the isochrone of water-gas interface migration for the gas pool was mapped .The result shows that the gas pool began to form around the yanan Area at about 165Ma,and then developed and enlarged toward the north direction.The gas pool finally formed at about 129 Ma.Since the basin uplifted from the late Cretaceous and gas supply decreased,the water-gas interface of the gas pool migratec back to the present position.

  15. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    Science.gov (United States)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  16. Implementing OpenShift

    CERN Document Server

    Miller, Adam

    2013-01-01

    A standard tutorial-based approach to using OpenShift and deploying custom or pre-built web applications to the OpenShift Online cloud.This book is for software developers and DevOps alike who are interested in learning how to use the OpenShift Platform-as-a-Service for developing and deploying applications, how the environment works on the back end, and how to deploy their very own open source Platform-as-a-Service based on the upstream OpenShift Origin project.

  17. Quantized beam shifts

    CERN Document Server

    Kort-Kamp, W J M; Dalvit, D A R

    2015-01-01

    We predict quantized Imbert-Fedorov, Goos-H\\"anchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant $\\alpha$, while the Goos- H\\"anchen ones in multiples of $\\alpha^2$. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  18. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  19. OpenShift cookbook

    CERN Document Server

    Gulati, Shekhar

    2014-01-01

    If you are a web application developer who wants to use the OpenShift platform to host your next big idea but are looking for guidance on how to achieve this, then this book is the first step you need to take. This is a very accessible cookbook where no previous knowledge of OpenShift is needed.

  20. Shifting employment revisited

    NARCIS (Netherlands)

    Cremers, Jan; Gramuglia, Alessia

    2014-01-01

    The CLR-network examined in 2006 the phenomenon of undeclared labour, with specific regard to the construction sector. The resulting study, Shifting Employment: undeclared labour in construction (Shifting-study hereafter), gave evidence that this is an area particularly affected by undeclared activi

  1. Making Shifts toward Proficiency

    Science.gov (United States)

    McGatha, Maggie B.; Bay-Williams, Jennifer M.

    2013-01-01

    The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…

  2. Shifted Independent Component Analysis

    DEFF Research Database (Denmark)

    Mørup, Morten; Madsen, Kristoffer Hougaard; Hansen, Lars Kai

    2007-01-01

    Delayed mixing is a problem of theoretical interest and practical importance, e.g., in speech processing, bio-medical signal analysis and financial data modelling. Most previous analyses have been based on models with integer shifts, i.e., shifts by a number of samples, and have often been carrie...

  3. Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Ibrahim Abdul Mutalib

    2010-08-01

    Full Text Available Due to energy and environmental issues, hydrogen has become a more attractive clean fuel. Furthermore, there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production, i.e. gasification, is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification, methanation, Boudouard, methane reforming, water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier, is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature, steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced, product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K, steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition, at sorbent/biomass ratio of 1.52, purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.

  4. Thermochemical properties, DeltafH degrees (298), S degrees (298), and Cp degrees (T), for n-butyl and n-pentyl hydroperoxides and the alkyl and peroxy radicals, transition states, and kinetics for intramolecular hydrogen shift reactions of the peroxy radicals.

    Science.gov (United States)

    Zhu, Li; Bozzelli, Joseph W; Kardos, Lisa M

    2007-07-19

    Alkyl radicals in atmospheric and combustion environments undergo a rapid association with molecular oxygen (3O2) to form an alkyl peroxy radical (ROO*). One important reaction of these peroxy radicals is the intramolecular H-shift (intramolecular abstraction) to form a hydroperoxide alkyl radical (R'*COOH), where the hydroperoxide alkyl radical may undergo chemical activation reaction with O2 and result in chain branching at moderate to low temperatures. The thermochemistry and trends in kinetic parameters for the hydrogen shift reactions from each carbon (4-8-member-ring TST's) in n-butyl and n-pentyl peroxy radicals (CCCCOO* and CCCCCOO*) are analyzed using density functional and ab initio calculation methods. Thermochemical properties, DeltafH degrees (298 K), C-H bond energies, S degrees (298 K), and Cp degrees (T) of saturated linear C4 and C5 aliphatic peroxides (ROOH), as well as the corresponding hydroperoxide alkyl radicals (R'*COOH), are determined. DeltafH degrees (298 K) are obtained from isodesmic reactions and the total energies of the CBS-QB3 and B3LYP computational methods. Contributions to the entropy and the heat capacity from translation, vibration, and external rotation are calculated using the rigid-rotor-harmonic-oscillator approximation based on the CBS-QB3 frequencies and structures. The results indicate that pre-exponential factors, A(T), decrease with the increase of the ring size (4-8-member-ring TS, H-atom included). The DeltaH for 4-, 5-, 6-, and 7-member rings in n-butyl (and n-pentyl) peroxy are 40.8 (40.8), 31.4 (31.5), 20.5 (20.0), 22.6-p (19.4) kcal mol(-1), respectively. The DeltaH for the 8-member ring in n-pentylperoxy is 23.8-p kcal mol(-1), All abstractions are from secondary (-CH2-) groups except those marked (-p), which are from primary sites. Enthalpy and barrier values from the B3LYP/6-311++G(2d,p) and BHandHLYP/6-311G(d,p) methods are compared with CBS-QB3 results. The B3LYP results show good agreement with the higher

  5. Energy phase shift as mechanism for catalysis

    KAUST Repository

    Beke-Somfai, Tamás

    2012-05-01

    Catalysts are agents that by binding reactant molecules lower the energy barriers to chemical reaction. After reaction the catalyst is regenerated, its unbinding energy recruited from the environment, which is associated with an inevitable loss of energy. We show that combining several catalytic sites to become energetically and temporally phase-shifted relative to each other provides a possibility to sustain the overall reaction by internal \\'energy recycling\\', bypassing the need for thermal activation, and in principle allowing the system to work adiabatically. Using an analytical model for superimposed, phase-shifted potentials of F 1-ATP synthase provides a description integrating main characteristics of this rotary enzyme complex. © 2012 Elsevier B.V. All rights reserved.

  6. Shift Verification and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Tara M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Evans, Thomas M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davidson, Gregory G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Seth R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-07

    This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over a burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.

  7. Shift Verification and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Tara M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Evans, Thomas M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davidson, Gregory G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Seth R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-07

    This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of LightWater Reactors (CASL). Fivemain types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over a burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.

  8. Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy

    CERN Document Server

    Cheema, M Imran; Hayat, Ahmad A; Peter, Yves-Alain; Armani, Andrea M; Kirk, Andrew G

    2012-01-01

    Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biological events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the applicatio...

  9. Protein Chemical Shift Prediction

    CERN Document Server

    Larsen, Anders S

    2014-01-01

    The protein chemical shifts holds a large amount of information about the 3-dimensional structure of the protein. A number of chemical shift predictors based on the relationship between structures resolved with X-ray crystallography and the corresponding experimental chemical shifts have been developed. These empirical predictors are very accurate on X-ray structures but tends to be insensitive to small structural changes. To overcome this limitation it has been suggested to make chemical shift predictors based on quantum mechanical(QM) calculations. In this thesis the development of the QM derived chemical shift predictor Procs14 is presented. Procs14 is based on 2.35 million density functional theory(DFT) calculations on tripeptides and contains corrections for hydrogen bonding, ring current and the effect of the previous and following residue. Procs14 is capable at performing predictions for the 13CA, 13CB, 13CO, 15NH, 1HN and 1HA backbone atoms. In order to benchmark Procs14, a number of QM NMR calculatio...

  10. Design of a Molecular Memory Device: The Electron Transfer Shift Register Memory

    Science.gov (United States)

    Beratan, D.

    1993-01-01

    A molecular shift register memory at the molecular level is described. The memory elements consist of molecules can exit in either an oxidized or reduced state and the bits are shifted between the cells with photoinduced electron transfer reactions.

  11. A Shift of Power

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Administrative reforms are shifting prefecture government powers to the county level in an effort to boost local economies on July 8, the government of China’s southernmost Hainan Province announced that it was to hand over 177 of its administrative powers to county-level governments. The move practically dismantled the powers of the

  12. Ethanol steam reforming over Rh/Ce{sub x}Zr{sub 1-x}O{sub 2} catalysts. Impact of the CO-CO{sub 2}-CH{sub 4} interconversion reactions on the H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Birot, Anne; Epron, Florence; Duprez, Daniel [Laboratoire de Catalyse en Chimie Organique (LACCO), UMR 6503 CNRS and University of Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France); Descorme, Claude [IRCELYON, UMR 5256 CNRS/Universite Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2008-02-21

    Ce{sub x}Zr{sub 1-x}O{sub 2} mixed oxide-supported 1 wt.% Rh catalysts were prepared by wet impregnation using Rh nitrate as a precursor and calcined at 900 C. They were characterized by BET surface area, XRD, CO{sub 2} chemisorption and H{sub 2} chemisorption at -85 C and tested in the ethanol steam reforming at 600 C under atmospheric pressure, with water to ethanol molar ratio equal to 4, without carrier gas. The best performances, i.e. the highest hydrogen yield and the lowest coke deposition, were obtained over Rh/Ce{sub 0.5}Zr{sub 0.5}O{sub 2}, i.e. 3.63 mol H{sub 2}/mol{sub ethanol}. This catalyst was subsequently evaluated under various reaction conditions. Whatever the temperature and the water to ethanol ratio, the ethanol steam reforming yielded a large amount of methane, which tends to reduce the H{sub 2} production. To elucidate the origin of the methane production, CO/CO{sub 2}/CH{sub 4} interconversion reactions were studied. It was shown that such catalyst favours the formation of methane via CO hydrogenation. The direct hydrogenation of CO{sub 2} was not observed. In parallel, the catalyst was active in the reverse water gas shift (RWGS) reaction between CO{sub 2} and H{sub 2}, leading CO and H{sub 2}O. (author)

  13. Biological conversion of synthesis gas culture development

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

    1992-03-01

    Research continues on the conversion of synthesis by shift reactions involving bacteria. Topics discussed here include: biological water gas shift, sulfur gas utilization, experimental screening procedures, water gas shift studies, H{sub 2}S removal studies, COS degradation by selected CO-utilizing bacteria, and indirect COS utilization by Chlorobia. (VC)

  14. On the Lamb shift

    Energy Technology Data Exchange (ETDEWEB)

    Villarroel, D. [Av. Tobalaba 3696, Puente Alto, Santiago, Metropolitana (Chile)

    2008-02-15

    The Lamb shift is calculated, in an approximate way, considering the hydrogen atom as an isolated physical system; the quantized radiation field does not play any role in the present approach. Our formalism is based on the generalization of the Dirac wave equation that incorporates the effects of the electron self-fields directly into it. Both the physical picture as well as the mathematical formalism have their roots in the classical theory of the electron. (author)

  15. The phase-shift method for determining Langmuir and Temkin adsorption isotherms of over-potentially deposited hydrogen for the cathodic H{sub 2} evolution reaction at the poly-Pt/H{sub 2}SO{sub 4} aqueous electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jang H.; Jeon, Sang K.; Kim, Nam Y. [Department of Electronic Engineering, Kwangwoon University, Seoul 139-701 (Korea); Chun, Jin Y. [School of Chemical Engineering, Seoul National University, Seoul 151-744 (Korea)

    2005-11-01

    A linear relationship between the behavior (-f vs. E) of the phase shift (0{sup |}=<-f=<90{sup |}) for the optimum intermediate frequency and that ({theta} vs. E) of the fractional surface coverage (1>={theta}>=0) of over-potentially deposited hydrogen (OPD H) for the cathodic H{sub 2} evolution reaction (HER), i.e., the phase-shift method, at the poly-Pt/0.5M H{sub 2}SO{sub 4} aqueous electrolyte interface has been verified using cyclic voltammetric, differential pulse voltammetric, and ac impedance techniques. The phase-shift method for determining the suitable adsorption isotherm (Langmuir, Frumkin, Temkin) of OPD H for the cathodic HER at the interface also has been proposed. At the poly-Pt/0.5M H{sub 2}SO{sub 4} aqueous electrolyte interface, the Langmuir adsorption isotherm ({theta} vs. E) of OPD H, the equilibrium constant (K=1.3x10{sup -4}) for OPD H and the standard free energy ({delta}G{sub ads}{sup 0}=22.2kJ/mol) of OPD H are determined using the phase-shift method. At the same interface, the Temkin adsorption isotherm ({theta} vs. E) of OPD H, the equilibrium constant (1.3x10{sup -3}>=K>=1.3x10{sup -5} with {theta}, i.e., 0=<{theta}=<1) for OPD H, and the standard free energy (16.5=<{delta}G{sub {theta}}{sup 0}=<27.9kJ/mol with {theta}, i.e., 0=<{theta}=<1) of OPD H are also determined using the phase-shift method. At the intermediate values of {theta}, i.e., 0.2<{theta}<0.8, the Langmuir and Temkin adsorption isotherms of OPD H for the cathodic HER at the interface are converted to each other. The equilibrium constant (K{sub 0}) for the Temkin adsorption isotherm ({theta} vs. E) is ca. 10 times greater than that (K) for the corresponding Langmuir adsorption isotherm ({theta} vs. E). The interaction parameter (g) for the Temkin adsorption isotherm ({theta} vs. E) is ca. 4.6 greater than that (g) for the corresponding Langmuir adsorption isotherm ({theta} vs. E). These numbers (10 times and 4.6) can be taken as constant conversion factors between the

  16. The shifting beverage landscape.

    Science.gov (United States)

    Storey, Maureen

    2010-04-26

    STOREY, M.L. The shifting beverage landscape. PHYSIOL BEHAV, 2010. - Simultaneous lifestyle changes have occurred in the last few decades, creating an imbalance in energy intake and energy expenditure that has led to overweight and obesity. Trends in the food supply show that total daily calories available per capita increased 28% since 1970. Total energy intake among men and women has also increased dramatically since that time. Some have suggested that intake of beverages has had a disproportional impact on obesity. Data collected by the Beverage Marketing Corporation between 1988-2008 demonstrate that, in reality, fewer calories per ounce are being produced by the beverage industry. Moreover, data from the National Cancer Institute show that soft drink intake represents 5.5% of daily calories. Data from NHANES 1999-2003 vs. 2003-06 may demonstrate a shift in beverage consumption for age/gender groups, ages 6 to>60years. The beverages provided in schools have significantly changed since 2006 when the beverage industry implemented School Beverage Guidelines. This voluntary action has removed full-calorie soft drinks from participating schools across the country. This shift to lower-calorie and smaller-portion beverages in school has led to a significant decrease in total beverage calories in schools. These data support the concept that to prevent and treat obesity, public health efforts should focus on energy balance and that a narrow focus on sweetened beverages is unlikely to have any meaningful impact on this complex problem. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Catastrophic shifts in ecosystems

    Science.gov (United States)

    Scheffer, Marten; Carpenter, Steve; Foley, Jonathan A.; Folke, Carl; Walker, Brian

    2001-10-01

    All ecosystems are exposed to gradual changes in climate, nutrient loading, habitat fragmentation or biotic exploitation. Nature is usually assumed to respond to gradual change in a smooth way. However, studies on lakes, coral reefs, oceans, forests and arid lands have shown that smooth change can be interrupted by sudden drastic switches to a contrasting state. Although diverse events can trigger such shifts, recent studies show that a loss of resilience usually paves the way for a switch to an alternative state. This suggests that strategies for sustainable management of such ecosystems should focus on maintaining resilience.

  18. Repetition and Translation Shifts

    Directory of Open Access Journals (Sweden)

    Simon Zupan

    2006-06-01

    Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.

  19. [Shifting path of industrial pollution gravity centers and its driving mechanism in Pan-Yangtze River Delta].

    Science.gov (United States)

    Zhao, Hai-Xia; Jiang, Xiao-Wei; Cui, Jian-Xin

    2014-11-01

    Shifting path of industrial pollution gravity centers is the response of environmental special formation during the industry transfer process, in order to prove the responding of industrial pollution gravity centers to industry transfer in economically developed areas, this paper calculates the gravity centers of industrial wastewater, gas and solid patterns and reveals the shifting path and its driving mechanism, using the data of industrial pollution in the Pan-Yangtze River Delta from 2000 to 2010. The results show that the gravity center of the industrial waste in Pan-Yangtze River Delta shifts for sure in the last 10 years, and gravity center of solid waste shifts the maximum distance within the three wastes, which was 180.18 km, and shifting distances for waste gas and waste water were 109.51 km and 85.92 km respectively. Moreover, the gravity center of the industrial waste in Pan-Yangtze River Delta shifts westwards, and gravity centers of waste water, gas and solid shift for 0.40 degrees, 0.17 degrees and 0.03 degrees respectively. The shifting of industrial pollution gravity centers is driven by many factors. The rapid development of the heavy industry in Anhui and Jiangxi provinces results in the westward shifting of the pollutions. The optimization and adjustment of industrial structures in Yangtze River Delta region benefit to alleviating industrial pollution, and high-polluting industries shifted to Anhui and Jiangxi provinces promotes pollution gravity center shifting to west. While the development of massive clean enterprise, strong environmental management efforts and better environmental monitoring system slow the shifting trend of industrial pollution to the east in Yangtze River Delta. The study of industrial pollution gravity shift and its driving mechanism provides a new angle of view to analyze the relationship between economic development and environmental pollution, and also provides academic basis for synthetical management and control of

  20. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    Science.gov (United States)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  1. In situ Characterization of Pt Catalysts Supported on Ceria Modified TiO(2) for the WGS reaction: Influence of Ceria Loading

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez J. A.; Barrio, L.; Zhou, G.; Gonzalez, I.D.; Estrella, M.; Hanson, J.; Navarro, R.M.; Fierro, J.L.G.

    2012-01-01

    This work analyzes the influence of cerium content (6-15 wt%) on a TiO{sub 2} support over the structure and water gas shift (WGS) activity of Pt catalysts. The structural properties of these Pt/Ce-TiO{sub 2} catalysts were characterized by XRD, TEM and XANES. Physicochemical characterization of the catalysts showed differences in the structure and dispersion of Ce entities on the support with Ce loading. For the samples with low ceria content (6 wt%), cerium is deposited on the support in the form of CeO{sub x} clusters in a highly dispersed state in close interaction with the Ti atoms. The formation of CeO{sub x} clusters at low Ce-loading on the support facilitates the dispersion of small particles of Pt and improves the reducibility of ceria component at low temperatures. The changes in platinum dispersion and support reducibility with Ce-loading on the TiO{sub 2} support lead to significant differences in the WGS activity. Pt supported on the sample with lower Ce content (6 wt%) shows better activity than those corresponding to catalysts with higher Ce content (15 wt%). Activity measurements coupled with catalysts characterization suggest that the improvement in the reducibility of the support with lower Ce content was associated with the presence of CeO{sub x} clusters of high reducibility that improve the chemical activity of the oxide-metal interfaces at which the WGS reaction takes place.

  2. Lamb Shift for static atoms outside a Schwarzschild black hole

    CERN Document Server

    Zhou, Wenting

    2010-01-01

    We study, by separately calculating the contributions of vacuum fluctuations and radiation reaction to the atomic energy level shift, the Lamb shift of a static two-level atom interacting with real massless scalar fields in the Boulware, Unruh and Hartle-Hawking vacuums outside a Schwarzschild black hole. We find that in the Boulware vacuum, the Lamb shift gets a correction arising as a result of the backscattering of vacuum field modes off the space-time curvature, which is reminiscent of the correction to the Lamb shift induced by the presence of cavities. However, when the Unruh and Hartle-Hawking vacua are concerned, our results show that the Lamb shift behaves as if the atom were irradiated by a thermal radiation or immersed in a thermal bath at the Hawking temperature, depending on whether the scalar field is in the Unruh or the Hartle-Hawking vacuum. Remarkably, the thermal radiation is always backscattered by the space-time geometry.

  3. Reaction Graph

    Institute of Scientific and Technical Information of China (English)

    傅育熙

    1998-01-01

    The paper proposes reaction graphs as graphical representations of computational objects.A reaction graph is a directed graph with all its arrows and some of its nodes labeled.Computations are modled by graph rewriting of a simple nature.The basic rewriting rules embody the essence of both the communications among processes and cut-eliminations in proofs.Calculi of graphs are ideentified to give a formal and algebraic account of reaction graphs in the spirit of process algebra.With the help of the calculi,it is demonstrated that reaction graphs capture many interesting aspects of computations.

  4. Quantized beam shifts in graphene

    Energy Technology Data Exchange (ETDEWEB)

    de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  5. Beam shifts and distribution functions

    CERN Document Server

    Aiello, Andrea

    2011-01-01

    When a beam of light is reflected by a smooth surface its behavior deviates from geometrical optics predictions. Such deviations are quantified by the so-called spatial and angular Goos-Haenchen (GH) and Imbert-Fedorov (IF) shifts of the reflected beam. These shifts depend upon the shape of the incident beam, its polarization and on the material composition of the reflecting surface. In this article we suggest a novel approach that allows one to unambiguously isolate the beam-shape dependent aspects of GH and IF shifts. We show that this separation is possible as a result of some universal features of shifted distribution functions which are presented and discussed.

  6. Regime shifts in resource management

    NARCIS (Netherlands)

    de Zeeuw, A.J.

    2014-01-01

    Resource management has to take account of the possibility of tipping points and regime shifts in ecological systems that provide the resources. This article focuses on the typical model of regime shifts in the ecological literature and analyzes optimal management and common-property issues when tra

  7. Work shifts in Emergency Medicine

    Directory of Open Access Journals (Sweden)

    Roberto Recupero

    2007-06-01

    Full Text Available Emergency Medicine is known as a high stress specialty. The adverse effect of constantly rotating shifts is the single most important reason given for premature attrition from the field. In this work problems tied with night shift work will be taken into account and some solutions to reduce the impact of night work on the emergency physicians will be proposed.

  8. Metabolic impact of shift work.

    Science.gov (United States)

    Zimberg, Ioná Zalcman; Fernandes Junior, Silvio A; Crispim, Cibele Aparecida; Tufik, Sergio; de Mello, Marco Tulio

    2012-01-01

    In developing countries, shift work represents a considerable contingent workforce. Recently, studies have shown that overweight and obesity are more prevalent in shift workers than day workers. In addition, shift work has been associated with a higher propensity for the development of many metabolic disorders, such as insulin resistance, diabetes, dislipidemias and metabolic syndrome. Recent data have pointed that decrease of the sleep time, desynchronization of circadian rhythm and alteration of environmental aspects are the main factors related to such problems. Shortened or disturbed sleep is among the most common health-related effects of shift work. The plausible physiological and biological mechanisms are related to the activation of the autonomic nervous system, inflammation, changes in lipid and glucose metabolism, and related changes in the risk for atherosclerosis, metabolic syndrome, and type II diabetes. The present review will discuss the impact of shift work on obesity and metabolic disorders and how disruption of sleep and circadian misalignment may contribute to these metabolic dysfunctions.

  9. Water–gas shift catalyst development for energy efficient applications

    NARCIS (Netherlands)

    Hakeem, A.A.

    2014-01-01

    The water–gas shift (WGS) is a reversible, moderately exothermic reaction (1) and is used for the production of hydrogen from CO rich gas streams (synthesis gas). CO + H2O ⇆ CO2 + H2 ΔH°= –41 kJ mol−1 (1) This research has focused on the catalyst

  10. Explaining (Missing) Regulator Paradigm Shifts

    DEFF Research Database (Denmark)

    Wigger, Angela; Buch-Hansen, Hubert

    2014-01-01

    of competition regulation is heaving into sight. It sets out to explain this from the vantage point of a critical political economy perspective, which identifies the circumstances under which a crisis can result in a regulatory paradigm shift. Contrasting the current situation with the shift in EC/EU competition...... capitalism; the social power configuration underpinning the neoliberal order remains unaltered; no clear counter-project has surfaced; the European Commission has been (and remains) in a position to oppose radical changes; and finally, there are no signs of a wider paradigm shift in the EU's regulatory...

  11. 半水煤气脱硫技改运行总结%Sum-Up of Operation of Updated Technology for Desulfurization of Semi-Water Gas

    Institute of Scientific and Technical Information of China (English)

    曹学斌; 徐勤永

    2013-01-01

    A detailed description is given of the technological renovation of desulfurization of semi-water gas over the years and operation parameters,and an analysis is done of the existing problems.After the renovation the desulfurization efficiency reaches over 99.50%,after desulfurization the H2S mass concentration in the gas is essentially controlled at below 0.010 g/m3,the soda consumption per ton of ammonia decreases from 6.0 kg to about 2.5 kg,and the resistance in the system drops from 6.0 ~ 8.0 kPa to 1.8 ~ 2.1 kPa.%介绍了历年半水煤气脱硫技改的详细过程、运行参数,并对存在的问题进行了分析.改造后,脱硫效率达到99.50%以上,脱硫后气体中H2S质量浓度基本控制在0.010 g/m3以下,吨氨纯碱消耗由6.0 kg降至2.5 kg左右,系统阻力由6.0~8.0 kPa降至1.8~2.1kPa.

  12. VP Anaphors and Object Shift

    DEFF Research Database (Denmark)

    Ørsnes, Bjarne

    2013-01-01

    The article discusses the placement of the VP anaphor det ‘it’ as a complement of verbs selecting VP complements in Danish. With verbs that only allow a VP complement, the VP anaphor must be in SpecCP regardless of its information structure properties. If SpecCP is occupied by an operator, the an...... be in situ. The article argues that a shifted pronominal in Danish must be categorially licensed by the verb and extends this analysis to shifting locatives. An Optimality Theory analysis is proposed that accounts for the observed facts......., the anaphor can be in situ, but it cannot shift. With verbs that allow its VP complement to alternate with an NP complement, the VP anaphor can be in SpecCP, shifted or in situ according to the information structural properties of the anaphor. Only if SpecCP is occupied by an operator, must a topical anaphor...

  13. Shift Work: Improving Daytime Sleep

    Science.gov (United States)

    ... sleeping during the day. Do you have any sleep tips for shift workers? Answers from Timothy Morgenthaler, ... to be awake during the day and to sleep at night. Good daytime sleep is possible, though, ...

  14. [Analysis of relationship between shift-work and occupational stress among workers from different companies].

    Science.gov (United States)

    Gu, Guizhen; Yu, Shanfa; Zhou, Wenhui; Wu, Hui

    2016-01-01

    To investigate the relationship between work in shifts and occupational stress. A total of 5338 employees from 13 companies were investigated by cluster sampling, and occupational stress measuring tools, job content questionnaire, and effort-reward imbalance questionnaire were used to investigate occupational stress factors, stress reaction, and the condition of work in shifts. The employees who worked in shifts accounted for 46.6%. The condition of work in shifts varied significantly across different companies, employees with different individual features (including sex, job title, degree of education, age, working years, smoking, and drinking), and employees with different weekly working times(Pwork in shifts(Pwork in shifts, those who worked in shifts had significantly lower scores of technology utilization, work control level, psychological need, reward, social support, and job satisfaction(PWork in shifts can affect health status, and is associated with occupational stress.

  15. Goos-Hänchen shift.

    Science.gov (United States)

    Snyder, A W; Love, J D

    1976-01-01

    An extremely simple derivation of the Goos-Hänchen shift is presented for total internal reflection at a plane interface between two semiinfinite dielectric media, as well as for optical waveguides of plane arid circular cross section. The derivation is based on energy considerations, requires knowledge of Fresnel's equation only, and shows explicitly that the shift is due to the flow of energy across the dielectric boundary.

  16. Capture reactions

    NARCIS (Netherlands)

    Endt, P.M.

    1956-01-01

    Capture reactions will be considered here from the viewpoint of the nuclear spectroscopist. Especially important to him are the capture of neutrons, protons, and alpha particles, which may proceed through narrow resonances, offering a well defined initial state for the subsequent deexcitation proces

  17. Allergic Reactions

    Science.gov (United States)

    ... round, they may be caused by exposure to indoor allergens such as dust mites, indoor molds or pets. Urticaria, or hives, is characterized ... home. Video: What is an allergic reaction? » Utility navigation Donate Annual meeting Browse your conditions Check pollen ...

  18. Information storage at the molecular level - The design of a molecular shift register memory

    Science.gov (United States)

    Beratan, David N.; Onuchic, Jose Nelson; Hopfield, J. J.

    1989-01-01

    The control of electron transfer rates is discussed and a molecular shift register memory at the molecular level is described. The memory elements are made up of molecules which can exist in either an oxidized or reduced state and the bits can be shifted between the cells with photoinduced electron transfer reactions. The device integrates designed molecules onto a VLSI substrate. A control structure to modify the flow of information along a shift register is indicated schematically.

  19. The Modality Shift Experiment in Adults and Children with High Functioning Autism

    Science.gov (United States)

    Williams, Diane L.; Goldstein, Gerald; Minshew, Nancy J.

    2013-01-01

    This study used the modality shift experiment, a relatively simple reaction time measure to visual and auditory stimuli, to examine attentional shifting within and across modalities in 33 children and 42 adults with high-functioning autism as compared to matched numbers of age- and ability-matched typical controls. An exaggerated "modality shift…

  20. A molecular shift register based on electron transfer

    Science.gov (United States)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  1. A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence

    Directory of Open Access Journals (Sweden)

    Daniel Porfirio Luis

    2016-05-01

    Full Text Available Monte Carlo and molecular dynamics simulations were done with three recent water models TIP4P/2005 (Transferable Intermolecular Potential with 4 Points/2005, TIP4P/Ice (Transferable Intermolecular Potential with 4 Points/ Ice and TIP4Q (Transferable Intermolecular Potential with 4 charges combined with two models for methane: an all-atom one OPLS-AA (Optimal Parametrization for the Liquid State and a united-atom one (UA; a correction for the C–O interaction was applied to the latter and used in a third set of simulations. The models were validated by comparison to experimental values of the free energy of hydration at 280, 300, 330 and 370 K, all under a pressure of 1 bar, and to the experimental radial distribution functions at 277, 283 and 291 K, under a pressure of 145 bar. Regardless of the combination rules used for σC,O, good agreement was found, except when the correction to the UA model was applied. Thus, further simulations of the sI hydrate were performed with the united-atom model to compare the thermal expansivity to the experiment. A final set of simulations was done with the UA methane model and the three water models, to study the sI hydrate-liquid water-gas coexistence at 80, 230 and 400 bar. The melting temperatures were compared to the experimental values. The results show the need to perform simulations with various different models to attain a reliable and robust molecular image of the systems of interest.

  2. A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence

    Science.gov (United States)

    Luis, Daniel Porfirio; García-González, Alcione; Saint-Martin, Humberto

    2016-01-01

    Monte Carlo and molecular dynamics simulations were done with three recent water models TIP4P/2005 (Transferable Intermolecular Potential with 4 Points/2005), TIP4P/Ice (Transferable Intermolecular Potential with 4 Points/ Ice) and TIP4Q (Transferable Intermolecular Potential with 4 charges) combined with two models for methane: an all-atom one OPLS-AA (Optimal Parametrization for the Liquid State) and a united-atom one (UA); a correction for the C–O interaction was applied to the latter and used in a third set of simulations. The models were validated by comparison to experimental values of the free energy of hydration at 280, 300, 330 and 370 K, all under a pressure of 1 bar, and to the experimental radial distribution functions at 277, 283 and 291 K, under a pressure of 145 bar. Regardless of the combination rules used for σC,O, good agreement was found, except when the correction to the UA model was applied. Thus, further simulations of the sI hydrate were performed with the united-atom model to compare the thermal expansivity to the experiment. A final set of simulations was done with the UA methane model and the three water models, to study the sI hydrate-liquid water-gas coexistence at 80, 230 and 400 bar. The melting temperatures were compared to the experimental values. The results show the need to perform simulations with various different models to attain a reliable and robust molecular image of the systems of interest. PMID:27240339

  3. Inositol phosphates induce DAPI fluorescence shift.

    Science.gov (United States)

    Kolozsvari, Bernadett; Parisi, Federica; Saiardi, Adolfo

    2014-06-15

    The polymer inorganic polyP (polyphosphate) and inositol phosphates, such as IP6 (inositol hexakisphosphate; also known as phytic acid), share many biophysical features. These similarities must be attributed to the phosphate groups present in these molecules. Given the ability of polyP to modify the excitation-emission spectra of DAPI we decided to investigate whether inositol phosphates possess the same property. We discovered that DAPI-IP6 complexes emit at approximately 550 nm when excited with light of wavelength 410-420 nm. IP5 (inositol pentakisphosphate) is also able to induce a similar shift in DAPI fluorescence. Conversely, IP3 (inositol trisphosphate) and IP4 (inositol tetrakisphosphate) are unable to shift DAPI fluorescence. We have employed this newly discovered feature of DAPI to study the enzymatic activity of the inositol polyphosphate multikinase and to monitor phytase phosphatase reactions. Finally, we used DAPI-IP6 fluorescence to determine the amount of IP6 in plant seeds. Using an IP6 standard curve this straight-forward analysis revealed that among the samples tested, borlotti beans possess the highest level of IP6 (9.4 mg/g of dry mass), whereas the Indian urad bean the lowest (3.2 mg/g of dry mass). The newly identified fluorescence properties of the DAPI-IP5 and DAPI-IP6 complexes allow the levels and enzymatic conversion of these two important messengers to be rapidly and reliably monitored.

  4. Does the ARFIMA really shift?

    DEFF Research Database (Denmark)

    Monache, Davide Delle; Grassi, Stefano; Santucci de Magistris, Paolo

    Short memory models contaminated by level shifts have long-memory features similar to those associated to processes generated under fractional integration. In this paper, we propose a robust testing procedure, based on an encompassing parametric specification, that allows to disentangle the level...... the highest power compared to other existing tests for spurious long-memory. Finally, we illustrate the usefulness of the proposed approach on the daily series of bipower variation and share turnover and on the monthly inflation series of G7 countries....... shift term from the ARFIMA component. The estimation is carried out via a state-space methodology and it leads to a robust estimate of the fractional integration parameter also in presence of level shifts.The Monte Carlo simulations show that this approach produces unbiased estimates of the fractional...

  5. The AirWaterGas Teacher Professional Development Program: Lessons Learned by Pairing Scientists and Teachers to Develop Curriculum on Global Climate Change and Regional Unconventional Oil and Gas Development

    Science.gov (United States)

    Gardiner, L. S.; Hatheway, B.; Rogers, J. D.; Casey, J. G.; Lackey, G.; Birdsell, D.; Brown, K.; Polmear, M.; Capps, S.; Rosenblum, J.; Sitterley, K.; Hafich, K. A.; Hannigan, M.; Knight, D.

    2015-12-01

    The AirWaterGas Teacher Professional Development Program, run by the UCAR Center for Science Education, brought together scientists and secondary science teachers in a yearlong program culminating in the development of curriculum related to the impacts of unconventional oil and gas development. Graduate students and research scientists taught about their research area and its relationship to oil and gas throughout three online courses during the 2015-16 school year, during which teachers and scientists engaged in active online discussions. Topics covered included climate change, oil and gas infrastructure, air quality, water quality, public health, and practices and policies relating to oil and gas development. Building upon their initial online interactions and a face-to-face meeting in March, teachers were paired with appropriate AirWaterGas team members as science advisors during a month-long residency in Boulder, Colorado. During the residency, graduate student scientists provided resources and feedback as teachers developed curriculum projects in collaboration with each other and UCAR science educators. Additionally, teachers and AirWaterGas researchers shared experiences on an oil and gas well site tour, and a short course on drilling methods with a drilling rig simulator. Here, we share lessons learned from both sides of the aisle, including initial results from program assessment conducted with the participating teachers.

  6. Anthropometric changes and fluid shifts

    Science.gov (United States)

    Thornton, W. E.; Hoffler, G. W.; Rummel, J. A.

    1974-01-01

    Several observations of body size, shape, posture, and configuration were made to document changes resulting from direct effects of weightlessness during the Skylab 4 mission. After the crewmen were placed in orbit, a number of anatomical and anthropometric changes occurred including a straightening of the thoracolumbar spine, a general decrease in truncal girth, and an increase in height. By the time of the earliest in-flight measurement on mission day 3, all crewmen had lost more than two liters of extravascular fluid from the calf and thigh. The puffy facies, the bird legs effect, the engorgement of upper body veins, and the reduced volume of lower body veins were all documented with photographs. Center-of-mass measurements confirmed a fluid shift cephalad. This shift remained throughout the mission until recovery, when a sharp reversal occurred; a major portion of the reversal was completed in a few hours. The anatomical changes are of considerable scientific interest and of import to the human factors design engineer, but the shifts of blood and extravascular fluid are of more consequence. It is hypothesized that the driving force for the fluid shift is the intrinsic and unopposed lower limb elasticity that forces venous blood and then other fluid cephalad.

  7. Environmental Protection: a shifting focus

    NARCIS (Netherlands)

    Dr. ir. Jan Venselaar

    2004-01-01

    The last two decades have seen a fundamental change in the way chemistry handles environmental issues. A shift in focus has occurred from 'end-of-pipe' to prevention and process integration. Presently an even more fundamental change is brought about by the need for sustainable development. It is

  8. Wavelength-shifted Cherenkov radiators

    Science.gov (United States)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  9. The Shift Needed for Sustainability

    Science.gov (United States)

    Smith, Peter A. C.; Sharicz, Carol

    2011-01-01

    Purpose: The purpose of this action research is to begin to assess to what extent organizations have in practice begun to make the shift towards triple bottom line (TBL) sustainability. Design/methodology/approach: A definition of TBL sustainability is provided, and key elements of TBL sustainability considered necessary to success are identified…

  10. Crichton's phase-shift ambiguity

    NARCIS (Netherlands)

    Atkinson, D.; Johnson, P.W.; Mehta, N.; Roo, M. de

    1973-01-01

    A re-examination of the SPD phase-shift ambiguity is made with a view to understanding certain singular features of the elastic unitarity constraint. An explicit solution of Crichton's equations is presented, and certain features of this solution are displayed graphically. In particular, it is shown

  11. Size-Dependent Raman Shifts for nanocrystals.

    Science.gov (United States)

    Gao, Yukun; Zhao, Xinmei; Yin, Penggang; Gao, Faming

    2016-04-22

    Raman spectroscopy is a very sensitive tool for probing semiconductor nanocrystals. The underlying mechanism behind the size-dependent Raman shifts is still quite controversial. Here we offer a new theoretical method for the quantum confinement effects on the Raman spectra of semiconductor nanocrystals. We propose that the shift of Raman spectra in nanocrystals can result from two overlapping effects: the quantum effect shift and surface effect shift. The quantum effect shift is extracted from an extended Kubo formula, the surface effect shift is determined via the first principles calculations. Fairly good prediction of Raman shifts can be obtained without the use of any adjustable parameter. Closer analysis shows that the size-dependent Raman shifts in Si nanocrystals mainly result from the quantum effect shifts. For nanodiamond, the proportion of surface effect shift in Raman shift is up to about 40%. Such model can also provide a good baseline for using Raman spectroscopy as a tool to measure size.

  12. Hydrogen as clean fuel via continuous fermentation by anaerobic ...

    African Journals Online (AJOL)

    Administrator

    anaerobic photosynthetic bacterium catalyzed water gas shift reaction which was used in this research. The synthesis gas ... commercial technology for syngas was steam methane reforming, in ..... Innovations (MOSTI). The authors wish to ...

  13. Looping through the Lamb Shift

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A U

    2007-02-06

    Sometimes in science, a small measurement can have big ramifications. For a team of Livermore scientists, such was the case when they measured a small shift in the spectrum of extremely ionized atoms of uranium. The measurement involves the Lamb shift, a subtle change in the energy of an electron orbiting an atom's nucleus. The precision of the Livermore result was 10 times greater than that of existing measurements, making it the best measurement to date of a complicated correction to the simplest quantum description of how atoms behave. The measurement introduces a new realm in the search for deviations between the theory of quantum electrodynamics (QED), which is an extension of quantum mechanics, and the real world. Such deviations, if discovered, would have far-reaching consequences, indicating that QED is not a fundamental theory of nature.

  14. Lamb shift in muonic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Gorchtein, Mikhail; Vanderhaeghen, Marc [Institut für Kernphysik, Universität Mainz, 55128 Mainz (Germany); Carlson, Carl E. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187 (United States)

    2013-11-07

    We consider the two-photon exchange contribution to the 2P-2S Lamb shift in muonic deuterium in the framework of forward dispersion relations. The dispersion integrals are evaluated with minimal model dependence using experimental data on elastic deuteron form factors and inelastic electron-deuteron scattering, both in the quasielastic and hadronic range. The subtraction constant that is required to ensure convergence of the dispersion relation for the forward Compton amplitude T{sub 1} (ν,Q{sup 2}) is related to the deuteron magnetic polarizability β(Q{sup 2}) and represents the main source of uncertainty in our analysis. We obtain for the Lamb shift ΔE{sub 2P-2S} = 1.620±0.190 meV and discuss ways to further reduce this uncertainty.

  15. Anthropometric changes and fluid shifts

    Science.gov (United States)

    Thornton, W. E.; Hoffler, G. W.; Rummel, J. A.

    1977-01-01

    In an effort to obtain the most comprehensive and coherent picture of changes under weightlessness, a set of measurements on Skylab 2 was initiated and at every opportunity, additional studies were added. All pertinent information from ancillary sources were gleaned and collated. On Skylab 2, the initial anthropometric studies were scheduled in conjunction with muscle study. A single set of facial photographs was made in-flight. Additional measurements were made on Skylab 3, with photographs and truncal and limb girth measurements in-flight. Prior to Skylab 4, it was felt there was considerable evidence for large and rapid fluid shifts, so a series of in-flight volume and center of mass measurements and infrared photographs were scheduled to be conducted in the Skylab 4 mission. A number of changes were properly documented for the first time, most important of which were the fluid shifts. The following description of Skylab anthropometrics address work done on Skylab 4 primarily.

  16. Debt Shifting and Ownership Structure

    OpenAIRE

    Dirk Schindler; Guttorm Schjelderup

    2011-01-01

    Previous theoretical studies on the debt shifting behavior of multinationals have assumed affiliates of multinationals to be wholly owned. We develop a model that allows a multinational firm to determine both the leverage and ownership structure in affiliates endogenously. A main finding is that affiliates with minority owners have less debt than wholly owned affiliates and therefore a less tax efficient financing structure. This is due to an externality that arises endogenously in our model,...

  17. Lamb shift in muonic deuterium

    CERN Document Server

    Carboni, G

    1973-01-01

    The author has calculated the various contributions to 2s-2p splitting for muonic deuterium. An instantaneous potential is constructed between the muon and the nucleus. Except for the Coulomb potential, all the remaining terms are treated as a perturbation. The effects taken into account are fine structure, magnetic and electric hyperfine structure, muonic Lamb shift, vacuum polarisation, nuclear polarisation and nuclear size. (11 refs).

  18. Frequency shifts in gravitational resonance spectroscopy

    CERN Document Server

    Baeßler, S; Pignol, G; Protasov, K V; Rebreyend, D; Kupriyanova, E A; Voronin, A Yu

    2015-01-01

    Quantum states of ultracold neutrons in the gravitational field are to be characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts, which we call Stern-Gerlach shift, interference shift, and spectator state shift, appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments.

  19. Spallation reactions; Reactions de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Cugon, J.

    1996-12-31

    Spallation reactions dominate the interactions of hadrons with nuclei in the GeV range (from {approx} 0.1 to {approx} 10 GeV). They correspond to a sometimes important ejection of light particles leaving most of the time a residue of mass commensurate with the target mass. The main features of the experimental data are briefly reviewed. The most successful theoretical model, namely the intranuclear cascade + evaporation model, is presented. Its physical content, results and possible improvements are critically discussed. Alternative approaches are shortly reviewed. (author). 84 refs.

  20. Shift work and endocrine disorders.

    Science.gov (United States)

    Ulhôa, M A; Marqueze, E C; Burgos, L G A; Moreno, C R C

    2015-01-01

    The objective of this review was to investigate the impact of shift and night work on metabolic processes and the role of alterations in the sleep-wake cycle and feeding times and environmental changes in the occurrence of metabolic disorders. The literature review was performed by searching three electronic databases for relevant studies published in the last 10 years. The methodological quality of each study was assessed, and best-evidence synthesis was applied to draw conclusions. The literature has shown changes in concentrations of melatonin, cortisol, ghrelin, and leptin among shift workers. Melatonin has been implicated for its role in the synthesis and action of insulin. The action of this hormone also regulates the expression of transporter glucose type 4 or triggers phosphorylation of the insulin receptor. Therefore, a reduction in melatonin can be associated with an increase in insulin resistance and a propensity for the development of diabetes. Moreover, shift work can negatively affect sleep and contribute to sedentarism, unhealthy eating habits, and stress. Recent studies on metabolic processes have increasingly revealed their complexity. Physiological changes induced in workers who invert their activity-rest cycle to fulfill work hours include disruptions in metabolic processes.

  1. Shift Work and Endocrine Disorders

    Directory of Open Access Journals (Sweden)

    M. A. Ulhôa

    2015-01-01

    Full Text Available The objective of this review was to investigate the impact of shift and night work on metabolic processes and the role of alterations in the sleep-wake cycle and feeding times and environmental changes in the occurrence of metabolic disorders. The literature review was performed by searching three electronic databases for relevant studies published in the last 10 years. The methodological quality of each study was assessed, and best-evidence synthesis was applied to draw conclusions. The literature has shown changes in concentrations of melatonin, cortisol, ghrelin, and leptin among shift workers. Melatonin has been implicated for its role in the synthesis and action of insulin. The action of this hormone also regulates the expression of transporter glucose type 4 or triggers phosphorylation of the insulin receptor. Therefore, a reduction in melatonin can be associated with an increase in insulin resistance and a propensity for the development of diabetes. Moreover, shift work can negatively affect sleep and contribute to sedentarism, unhealthy eating habits, and stress. Recent studies on metabolic processes have increasingly revealed their complexity. Physiological changes induced in workers who invert their activity-rest cycle to fulfill work hours include disruptions in metabolic processes.

  2. Sectoral Shifts and Cyclical Fluctuations Sectoral Shifts and Cyclical Fluctuations

    Directory of Open Access Journals (Sweden)

    Richard Rogerson

    1991-03-01

    Full Text Available Sectoral Shifts and Cyclical Fluctuations This paper studies a two sector real business cycle model in which the sectors experience different trend rates of growth and labor mobility is costly. Predictions are derived concerning the correlation between sectoral reallocation of workers and the cycle. This correlation may be positive or negative depending upon whether the growing sector displays larger or smaller fluctuations than the shrinking sector. The post- World War II period has witnessed two major patterns of sectoral change in industrialized countries: movement out of agriculture and movement out of the industrial sector. The model's basic prediction is shown to be consistent with the observed pattern of reallocation.

  3. Geometric Baryogenesis from Shift Symmetry.

    Science.gov (United States)

    De Simone, Andrea; Kobayashi, Takeshi; Liberati, Stefano

    2017-03-31

    We present a new scenario for generating the baryon asymmetry of the Universe that is induced by a Nambu-Goldstone (NG) boson. The shift symmetry naturally controls the operators in the theory while allowing the NG boson to couple to the spacetime geometry as well as to the baryons. The cosmological background thus sources a coherent motion of the NG boson, which leads to baryogenesis. Good candidates of the baryon-generating NG boson are the QCD axion and axionlike fields. In these cases, the axion induces baryogenesis in the early Universe and can also serve as dark matter in the late Universe.

  4. Cortisol shifts financial risk preferences

    Science.gov (United States)

    Kandasamy, Narayanan; Hardy, Ben; Page, Lionel; Schaffner, Markus; Graggaber, Johann; Powlson, Andrew S.; Fletcher, Paul C.; Gurnell, Mark; Coates, John

    2014-01-01

    Risk taking is central to human activity. Consequently, it lies at the focal point of behavioral sciences such as neuroscience, economics, and finance. Many influential models from these sciences assume that financial risk preferences form a stable trait. Is this assumption justified and, if not, what causes the appetite for risk to fluctuate? We have previously found that traders experience a sustained increase in the stress hormone cortisol when the amount of uncertainty, in the form of market volatility, increases. Here we ask whether these elevated cortisol levels shift risk preferences. Using a double-blind, placebo-controlled, cross-over protocol we raised cortisol levels in volunteers over 8 d to the same extent previously observed in traders. We then tested for the utility and probability weighting functions underlying their risk taking and found that participants became more risk-averse. We also observed that the weighting of probabilities became more distorted among men relative to women. These results suggest that risk preferences are highly dynamic. Specifically, the stress response calibrates risk taking to our circumstances, reducing it in times of prolonged uncertainty, such as a financial crisis. Physiology-induced shifts in risk preferences may thus be an underappreciated cause of market instability. PMID:24550472

  5. Core shifts in blazar jets

    CERN Document Server

    Zdziarski, Andrzej A; Pjanka, Patryk; Tchekhovskoy, Alexander

    2014-01-01

    We study the effect of core shift in jets, which is the dependence of the position of the jet radio core on the frequency. We derive a new method to measure the jet magnetic field based on both the value of the shift and the observed flux, which compliments the standard method assuming equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, $\\simeq$0.1--0.2 divided by the bulk Lorentz factor, $\\Gamma_{\\rm j}$. Larger values, e.g., $1/\\Gamma_{\\rm j}$, would imply very strong departures from equipartition. A small jet opening angle implies in turn the magnetization parameter of $\\ll 1$. We determine the jet magnetic flux taking this effect into account. We find that the average jet magnetic flux is compatible with the model of jet formation due to black-hole spin energy extraction and accretion being magnetically arrested. We calculate the ...

  6. Sleep, sleepiness, fatigue, and performance of 12-hour-shift nurses.

    Science.gov (United States)

    Geiger-Brown, Jeanne; Rogers, Valerie E; Trinkoff, Alison M; Kane, Robert L; Bausell, R Barker; Scharf, Steven M

    2012-03-01

    Nurses working 12-h shifts complain of fatigue and insufficient/poor-quality sleep. Objectively measured sleep times have not been often reported. This study describes sleep, sleepiness, fatigue, and neurobehavioral performance over three consecutive 12-h (day and night) shifts for hospital registered nurses. Sleep (actigraphy), sleepiness (Karolinska Sleepiness Scale [KSS]), and vigilance (Performance Vigilance Task [PVT]), were measured serially in 80 registered nurses (RNs). Occupational fatigue (Occupational Fatigue Exhaustion Recovery Scale [OFER]) was assessed at baseline. Sleep was short (mean 5.5 h) between shifts, with little difference between day shift (5.7 h) and night shift (5.4 h). Sleepiness scores were low overall (3 on a 1-9 scale, with higher score indicating greater sleepiness), with 45% of nurses having high level of sleepiness (score  > 7) on at least one shift. Nurses were progressively sleepier each shift, and night nurses were sleepier toward the end of the shift compared to the beginning. There was extensive caffeine use, presumably to preserve or improve alertness. Fatigue was high in one-third of nurses, with intershift fatigue (not feeling recovered from previous shift at the start of the next shift) being most prominent. There were no statistically significant differences in mean reaction time between day/night shift, consecutive work shift, and time into shift. Lapsing was traitlike, with rare (39% of sample), moderate (53%), and frequent (8%) lapsers. Nurses accrue a considerable sleep debt while working successive 12-h shifts with accompanying fatigue and sleepiness. Certain nurses appear more vulnerable to sleep loss than others, as measured by attention lapses.

  7. Shift-invariant optical associative memories

    Energy Technology Data Exchange (ETDEWEB)

    Psaltis, D.; Hong, J.

    1987-01-01

    Shift invariance in the context of associative memories is discussed. Two optical systems that exhibit shift invariance are described in detail with attention given to the analysis of storage capacities. It is shown that full shift invariance cannot be achieved with systems that employ only linear interconnections to store the associations.

  8. Continuous-data FIFO bubble shift register

    Science.gov (United States)

    Chen, T. T.

    1977-01-01

    Simple loop first-in-first-out (FIFO) bubble memory shift register has continuous storage capability. Bubble shift register simplifies chip-control electronics by enabling all control functions to be alined at same bit. FIFO shift register is constructed from passive replicator and annihilator combinations.

  9. Uniqueness and Zeros of -Shift Difference Polynomials

    Indian Academy of Sciences (India)

    Kai Liu; Xin-Ling Liu; Ting-Bin Cao

    2011-08-01

    In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift difference polynomials that share a common value.

  10. Mathematical description of the nonlinear chemical reactions with oscillatory inflow to the reaction field

    Indian Academy of Sciences (India)

    Aldona Krupska

    2015-06-01

    In this paper the arduous attempt to find a mathematical solution for the nonlinear autocatalytic chemical processes with a time-varying and oscillating inflow of reactant to the reaction medium has been taken. Approximate analytical solution is proposed. Numerical solutions and analytical attempts to solve the non-linear differential equation indicates a phase shift between the oscillatory influx of intermediate reaction reagent to the medium of chemical reaction and the change of its concentration in this medium. Analytical solutions indicate that this shift may be associated with the reaction rate constants 1 and 2 and the relaxation time . The relationship between the phase shift and the oscillatory flow of reactant seems to be similar to that obtained in the case of linear chemical reactions, as described previously, however, the former is much more complex and different. In this paper, we would like to consider whether the effect of forced phase shift in the case of nonlinear and non-oscillatory chemical processes occurring particularly in the living systems have a practical application in laboratory.

  11. PARADIGM SHIFT IN ISLAMIC STUDIES

    Directory of Open Access Journals (Sweden)

    Editor Al-Jami'ah: Journal of Islamic Studies

    2008-08-01

    Full Text Available In the early 1990s, there was a heated debate among students ofIAIN (the State Institute for Islamic Studies Sunan KalijagaYogyakarta about the future of Islamic studies, focusing on the possibilityof incorporating Thomas Kuhn’s paradigm to the discourse ofIslamic studies. Kuhn explains in detail the rise and decline of scientificparadigm in his classic work, The Structure of Scientific Revolutions,firstly published in 1970. Paradigm is defined as a set of beliefs thatguides the researchers to address some important problems or issuesunder a certain theoretical framework and provides procedures how tosolve those problems. A paradigm shift is a process whereby a newway of perceiving the world comes into existence and is accepted byscholars in a given time. Kuhn proposed two conditions for paradigmshift; first, the presence of anomalies in ‘normal science’, and secondly,the presence of alternative paradigm.

  12. Superresolved phase-shifting Gabor holography by CCD shift

    Science.gov (United States)

    Micó, V.; Granero, L.; Zalevsky, Z.; García, J.

    2009-12-01

    Holography in the Gabor regime is restricted to weak diffraction assumptions. Otherwise, diffraction prevents an accurate recovery of the object's complex wavefront. We have recently proposed a modified Gabor-like setup to extend Gabor's concept to any sample provided that it be non-diffusive. However, the resolution of the final image becomes limited as a consequence of the additional elements considered in the proposed setup. In this paper we present an experimental approach to overcome such a limitation in which the former configuration is used while the CCD camera is shifted to different off-axis positions in order to generate a synthetic aperture. Thus, once the whole image set is recorded and digitally processed for each camera position, we merge the resulting band-pass images into one image by assembling a synthetic aperture. Finally, a superresolved image is recovered by Fourier transformation of the information contained in the generated synthetic aperture. Experimental results validate our concepts for a gain in resolution of close to 2.

  13. Dynamics and computation in functional shifts

    Science.gov (United States)

    Namikawa, Jun; Hashimoto, Takashi

    2004-07-01

    We introduce a new type of shift dynamics as an extended model of symbolic dynamics, and investigate the characteristics of shift spaces from the viewpoints of both dynamics and computation. This shift dynamics is called a functional shift, which is defined by a set of bi-infinite sequences of some functions on a set of symbols. To analyse the complexity of functional shifts, we measure them in terms of topological entropy, and locate their languages in the Chomsky hierarchy. Through this study, we argue that considering functional shifts from the viewpoints of both dynamics and computation gives us opposite results about the complexity of systems. We also describe a new class of shift spaces whose languages are not recursively enumerable.

  14. Benzothiadiazole oligoene fatty acids: fluorescent dyes with large Stokes shifts

    Directory of Open Access Journals (Sweden)

    Lukas J. Patalag

    2016-12-01

    Full Text Available Herein, we report on the synthesis and characterization of novel fluorescent fatty acids with large Stokes shifts. Three examples consisting of the same number of carbon atoms and thus of similar chain length are presented differing in their degree of unsaturation. As major fluorogenic contributor at the terminus benzo[c][1,2,5]thiadiazole was used. Respective syntheses based on Wittig reactions followed by iodine-mediated isomerization are presented. The absorption properties are modulated by the number of conjugated C=C double bonds of the oligoene chain ranging from one to three. Large Stokes shifts of about 4900–5700 cm−1 and fluorescence quantum yields of up to 0.44 were observed.

  15. A NEW ALGORITHM FOR ELIMINATING PHASE-SHIFT ERROR IN PHASE SHIFTING INTERFEROMETRY

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The effect of phase-shift error in phase shifting interferometry is investigated. A new algorithm with two sets of 4 samples for eliminating phase-shift error is presented. The computer simulation and experiment result show that the phase-shift offset should be π when the algorithm is used, and this algorithm has gotten better result than the original 4-sample algorithm.

  16. Interpreting lateral dynamic weight shifts using a simple inverted pendulum model.

    Science.gov (United States)

    Kennedy, Michael W; Bretl, Timothy; Schmiedeler, James P

    2014-01-01

    Seventy-five young, healthy adults completed a lateral weight-shifting activity in which each shifted his/her center of pressure (CoP) to visually displayed target locations with the aid of visual CoP feedback. Each subject's CoP data were modeled using a single-link inverted pendulum system with a spring-damper at the joint. This extends the simple inverted pendulum model of static balance in the sagittal plane to lateral weight-shifting balance. The model controlled pendulum angle using PD control and a ramp setpoint trajectory, and weight-shifting was characterized by both shift speed and a non-minimum phase (NMP) behavior metric. This NMP behavior metric examines the force magnitude at shift initiation and provides weight-shifting balance performance information that parallels the examination of peak ground reaction forces in gait analysis. Control parameters were optimized on a subject-by-subject basis to match balance metrics for modeled results to metric values calculated from experimental data. Overall, the model matches experimental data well (average percent error of 0.35% for shifting speed and 0.05% for NMP behavior). These results suggest that the single-link inverted pendulum model can be used effectively to capture lateral weight-shifting balance, as it has been shown to model static balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Shifting boundaries in professional care.

    Science.gov (United States)

    Hopkins, A; Solomon, J; Abelson, J

    1996-07-01

    The nature of the work undertaken by different health professionals and inter-professional boundaries are constantly shifting. The greater knowledge of users of health care, and the increasing technical and organizational complexity of modern medicine, have partly eroded the control of health professionals over the substance of their work. The definition of a field of work as lying within the province of any one profession is culturally rather than scientifically determined. It is evident that care of good quality should be delivered at the lowest possible cost. This might include delivery of care by a less trained person than heretofore, or by someone with limited but focused training. Sharing of skills is a more sensible subject for discussion than transfer of tasks. We review a number of studies which show the effectiveness of inter-professional substitution in various care settings, and also the effectiveness of substitution by those other than health professionals. The views of users of health services on inter-professional substitution need to be considered. Health professionals and others need to work together to devise innovative ways of delivering effective health care. The legal issues need clarification.

  18. Core shift effect in blazars

    Science.gov (United States)

    Agarwal, A.; Mohan, P.; Gupta, Alok C.; Mangalam, A.; Volvach, A. E.; Aller, M. F.; Aller, H. D.; Gu, M. F.; Lähteenmäki, A.; Tornikoski, M.; Volvach, L. N.

    2017-07-01

    We studied the pc-scale core shift effect using radio light curves for three blazars, S5 0716+714, 3C 279 and BL Lacertae, which were monitored at five frequencies (ν) between 4.8 and 36.8 GHz using the University of Michigan Radio Astronomical Observatory (UMRAO), the Crimean Astrophysical Observatory (CrAO) and Metsähovi Radio Observatory for over 40 yr. Flares were Gaussian fitted to derive time delays between observed frequencies for each flare (Δt), peak amplitude (A) and their half width. Using A ∝ να, we infer α in the range of -16.67-2.41 and using Δ t ∝ ν ^{1/k_r}, we infer kr ∼ 1, employed in the context of equipartition between magnetic and kinetic energy density for parameter estimation. From the estimated core position offset (Ωrν) and the core radius (rcore), we infer that opacity model may not be valid in all cases. The mean magnetic field strengths at 1 pc (B1) and at the core (Bcore) are in agreement with previous estimates. We apply the magnetically arrested disc model to estimate black hole spins in the range of 0.15-0.9 for these blazars, indicating that the model is consistent with expected accretion mode in such sources. The power-law-shaped power spectral density has slopes -1.3 to -2.3 and is interpreted in terms of multiple shocks or magnetic instabilities.

  19. Gaze shifts during dual-tasking stair descent

    OpenAIRE

    Miyasike-daSilva, Veronica; McIlroy, William E

    2016-01-01

    To investigate the role of vision in stair locomotion, young adults descended a seven-step staircase during unrestricted walking (CONTROL), and while performing a concurrent visual reaction time (RT) task displayed on a monitor. The monitor was located at either 3.5 m (HIGH) or 0.5 m (LOW) above ground level at the end of the stairway, which either restricted (HIGH) or facilitated (LOW) the view of the stairs in the lower field of view as participants walked downstairs. Downward gaze shifts (...

  20. Pneumatic, PLC Controlled, Automotive Gear Shifting Mechanism

    Directory of Open Access Journals (Sweden)

    Muntaser Momani

    2010-05-01

    Full Text Available In this study, a gear shifting mechanism was designed and applied to make the shifting process faster and less destructible for the driver. The new device must be reliable, has a small dimensions, low construction and maintenance cost. This paper aims to improve gear shifting process using devices as: a manual four speed gear box, four pneumatic double acting cylinders, four pneumatic two position five ways directional control valves, Programmable Logic Controller (PLC LOGO unit, an electrical motor, an electrical clutch, a belt, two pulleys, limit switches, push buttons, bulbs, a table (holder and power supply. According to suggested gear_ shifting method the driver can select the transmission gear ratio without moving his hands from the steering wheel by putting the gear shifting push buttons on the steering wheel. Using this method leaves to the driver the excitement of choosing the shifting moment.

  1. Empirical isotropic chemical shift surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Czinki, Eszter; Csaszar, Attila G. [Eoetvoes University, Laboratory of Molecular Spectroscopy, Institute of Chemistry (Hungary)], E-mail: csaszar@chem.elte.hu

    2007-08-15

    A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles {phi} and {psi} characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS({phi},{psi}) surfaces obtained for the model peptides For-(l-Ala){sub n}-NH{sub 2}, with n = 1, 3, and 5, resulted in so-called empirical ICS({phi},{psi}) surfaces for all major nuclei of the 20 naturally occurring {alpha}-amino acids. Out of the many empirical surfaces determined, it is the 13C{sup {alpha}} ICS({phi},{psi}) surface which seems to be most promising for identifying major secondary structure types, {alpha}-helix, {beta}-strand, left-handed helix ({alpha}{sub D}), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring {alpha}-amino acids. Two-dimensional empirical 13C{sup {alpha}}-{sup 1}H{sup {alpha}} ICS({phi},{psi}) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins.

  2. Catalysis of Photochemical Reactions.

    Science.gov (United States)

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  3. SHIFT: Shared Information Framework and Technology Concept

    Science.gov (United States)

    2009-02-01

    As a result, the information has often been unsystematically gathered, has often been insufficient to meet needs, and in some cases has even led to...unnecessary risk -taking and overlapping or counterproductive actions. SHIFT differs from most of the earlier initiatives because of its emphasis on a...idea is that the SHIFT community will constitute a self- correcting environment. The SHIFT philosophy holds that the risk of false information is

  4. Night shift work and modifiable lifestyle factors

    Directory of Open Access Journals (Sweden)

    Beata Pepłońska

    2014-10-01

    Full Text Available Objectives: Night shift work has been linked to some chronic diseases. Modification of lifestyle by night work may partially contribute to the development of these diseases, nevertheless, so far epidemiological evidence is limited. The aim of the study was to explore association between night shift work and lifestyle factors using data from a cross-sectional study among blue-collar workers employed in industrial plants in Łódź, Poland. Material and Methods: The anonymous questionnaire was self-administered among 605 employees (236 women and 369 men, aged 35 or more - 434 individuals currently wor­king night shifts. Distribution of the selected lifestyle related factors such as smoking, alcohol drinking, physical activity, body mass index (BMI, number of main meals and the hour of the last meal was compared between current, former, and never night shift workers. Adjusted ORs or predicted means were calculated, as a measure of the associations between night shift work and lifestyle factors, with age, marital status and education included in the models as covariates. Results: Recreational inactivity (defined here as less than one hour per week of recreational physical activity was associated with current night shift work when compared to never night shift workers (OR = 2.43, 95% CI: 1.13-5.22 among men. Alcohol abstinence and later time of the last meal was associated with night shift work among women. Statistically significant positive relationship between night shift work duration and BMI was observed among men (p = 0.029. Conclusions: This study confirms previous studies reporting lower exercising among night shift workers and tendency to increase body weight. This finding provides important public health implication for the prevention of chronic diseases among night shift workers. Initiatives promoting physical activity addressed in particular to the night shift workers are recommended.

  5. Shifting currents: Progress, setbacks, and shifts in policy and practice

    Science.gov (United States)

    ,; Dunning, Charles; Robertson, Dale

    2016-01-01

    clean water future. More than a decade has passed since our first statewide WOW conversation and the report that captured recommendations from its participants: Waters of Wisconsin: The Future of Our Aquatic Ecosystems and Resources. Drawing from a diverse and growing set of stakeholders from across the state, the Wisconsin Academy initiated a new conversation in 2012 (known as WOW II) to assess progress in regard to our 2003 recommendations. We also sought to review the status of waters in Wisconsin today. The result of this renewed conversation is Shifting Currents: Progress, Setbacks, and Shifts in Policy and Practice. The new report assesses progress in brief, and explores in greater depth the continuing and emerging challenges to water quality, supply, and aquatic ecosystems in Wisconsin.In this report, we first review the context and frameworks for public decision-making about water and then examine some of the root causes—or “drivers”—and ecological stressors that underlie many of the symptoms we see in the form of pollution or ecosystem degradation in Wisconsin. This is followed by a summary of current water issues, many of which had been identified in the 2003 report and remain relevant today. We examine progress since 2003 but also setbacks, and discuss issues that we are likely to continue to face in the coming decades, including controlling agricultural runoff, mitigating climate change and grappling with its effects on the state’s waters, protecting groundwater from bacterial contamination and other pollutants, and preventing groundwater depletion. We also attempt to anticipate issues on the horizon. We offer a deeper look at some particular challenges, such as phosphorus pollution and groundwater contamination. We then consider the current decision-making framework and how it is shaping our capacity to respond to water challenges in Wisconsin. Finally, we offer recommendations and identify opportunities to safeguard Wisconsin’s waters in the

  6. Unbounded subnormal weighted shifts on directed trees

    CERN Document Server

    Budzynski, Piotr; Jung, Il Bong; Stochel, Jan

    2011-01-01

    A new method of verifying the subnormality of unbounded Hilbert space operators based on an approximation technique is proposed. Diverse sufficient conditions for subnormality of unbounded weighted shifts on directed trees are established. An approach to this issue via consistent systems of probability measures is invented. The role played by determinate Stieltjes moment sequences is elucidated. Lambert's characterization of subnormality of bounded operators is shown to be valid for unbounded weighted shifts on directed trees that have sufficiently many quasi-analytic vectors, which is a new phenomenon in this area. The cases of classical weighted shifts and weighted shifts on leafless directed trees with one branching vertex are studied.

  7. Goos-Haenchen shift in complex crystals

    Energy Technology Data Exchange (ETDEWEB)

    Longhi, Stefano; Della Valle, Giuseppe; Staliunas, Kestutis [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Departament de Fisica i Enginyeria Nuclear, Instituci Catalana de Recerca i Estudis Avanats (ICREA), Universitat Politcnica de Catalunya, Colom 11, E-08222 Terrassa, Barcelona (Spain)

    2011-10-15

    The Goos-Haenchen (GH) effect for wave scattering from complex PT-symmetric periodic potentials (complex crystals) is theoretically investigated, with specific reference to optical GH shift in photonic crystal slabs with a sinusoidal periodic modulation of both real and imaginary parts of the dielectric constant. The analysis highlights some distinct and rather unique features as compared to the GH shift found in ordinary crystals. In particular, as opposed to GH shift in ordinary crystals, which is large at the band gap edges, in complex crystals the GH shift can be large inside the reflection (amplification) band and becomes extremely large as the PT symmetry-breaking threshold is approached.

  8. [Allergic reactions to transfusion].

    Science.gov (United States)

    Hergon, E; Paitre, M L; Coeffic, B; Piard, N; Bidet, J M

    1987-04-01

    Frequent allergic reactions following transfusion are observed. Usually, they are benign but sometimes we observe severe allergic reactions. Adverse reactions may be brought about by least two mechanisms. First, immediate-type hypersensibility reactions due to IgE. Secondly, anaphylactic-type reactions due to interaction between transfused IgA and class specific anti IgA in the recipient's plasma. They are characterized by their severest form (anaphylactic shock). The frequency of severe reactions following the transfusion blood plasma is very low. These transfusion reactions are complement-mediated and kinins-mediated. Prevention of allergic reactions is necessary among blood donors and recipients.

  9. In-line phase shift tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.; Donnelly, Edwin F. [Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232 (United States)

    2013-08-15

    Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS with a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.

  10. Study of a three-phase flow metering process for oil-water-gas flows; Etude d`un procede de mesure des debits d`un ecoulement triphasique de type eau-huile-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Ch.

    1996-11-01

    We propose a theoretical and experimental study of a three-phase flow metering process for oil-water-gas flows. The selected process is based on a combination of a mixer, a Venturi and ultrasonic methods. To perform an experimental validation of this process an instrumented set-up for three-phase air-oil-water flows has been designed, conceived and adjusted. An original theoretical model have been built to predict three-phase dispersed flows across a contraction. Once validated with two-phase air-water, oil-water and air-oil-water flows data, this model has been used to solve the Venturi metering problems. After a critical review of the available techniques, the ultrasonic propagation velocity has been selected to determine two-phase liquid-liquid flow composition. Two original models have been developed to describe the ultrasonic propagation with the dispersed phase fraction. The comparison with experimental data in oil-water flows show the superiority of one of the two models, the scattering model. For the void fraction determination in air-water flows, the work of Bensler (1990) based on the ultrasonic attenuation measurement has been extended to take into account the multiple scattering effects. Finally these techniques have been combined to determine the different flow rates in air-water, oil-water flows. For two-phase air-water and oil-water flows the problem is solved and the flow rates are measured with a very good accuracy ({+-} 3%). The results quality obtained with three-phase oil-water-gas flows and the secure theoretical bases allowing their interpretation give us the opportunity to strongly recommend the development of an industrial prototype based on the process we studied. (author) 183 refs.

  11. Effects of extended work shifts and shift work on patient safety, productivity, and employee health.

    Science.gov (United States)

    Keller, Simone M

    2009-12-01

    It is estimated 1.3 million health care errors occur each year and of those errors 48,000 to 98,000 result in the deaths of patients (Barger et al., 2006). Errors occur for a variety of reasons, including the effects of extended work hours and shift work. The need for around-the-clock staff coverage has resulted in creative ways to maintain quality patient care, keep health care errors or adverse events to a minimum, and still meet the needs of the organization. One way organizations have attempted to alleviate staff shortages is to create extended work shifts. Instead of the standard 8-hour shift, workers are now working 10, 12, 16, or more hours to provide continuous patient care. Although literature does support these staffing patterns, it cannot be denied that shifts beyond the traditional 8 hours increase staff fatigue, health care errors, and adverse events and outcomes and decrease alertness and productivity. This article includes a review of current literature on shift work, the definition of shift work, error rates and adverse outcomes related to shift work, health effects on shift workers, shift work effects on older workers, recommended optimal shift length, positive and negative effects of shift work on the shift worker, hazards associated with driving after extended shifts, and implications for occupational health nurses.

  12. Mechanism of 1,2-shift through p -complex transition state

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A systematic calculation of the potential curves or surfaces for 1,2-shift has been realized by using MNDO or other models in MOPAC programs. By referring to the previous authors' viewpoints, the 1,2-shift can be divided into two categories. 1,2-electron-deficient shift is that the electronic configuration of the atom which accepts the migrating group is a cation or an electron- deficient atom, and 1,2-anion shift is the one that the accepted atom of the migration group is a negative ion. In terms of the experimental facts and the calculation of the potential surfaces, in electron-deficient shift such as Beckmann or Baeyer-Villiger rearrangement, the migration occurs through a transition complex formed between the p -bond and the cation or electron-deficient migrating group, but in anion shift such as Wittig or Stevens rearrangement, the electron pair in p -orbit excites at first to p * orbit, and then the migration occurs through the new formed complex between the anion migration group and the vacant p orbit. The above mechanisms explain reasonably the intramolecular properties, the configuration retentions of the migration group, and the corresponding migratory aptitudes of the two type 1,2-shifts. The partial and less important free radical reaction of 1,2-anion shift has been explained by the p -complex mechanism too.

  13. Effects of Shift Work on Cognitive Performance, Sleep Quality, and Sleepiness among Petrochemical Control Room Operators.

    Science.gov (United States)

    Kazemi, Reza; Haidarimoghadam, Rashid; Motamedzadeh, Majid; Golmohamadi, Rostam; Soltanian, Alireza; Zoghipaydar, Mohamad Reza

    2016-02-03

    Shift work is associated with both sleepiness and reduced performance. The aim of this study was to examine cognitive performance, sleepiness, and sleep quality among petrochemical control room shift workers. Sixty shift workers participated in this study. Cognitive performance was evaluated using a number of objective tests, including continuous performance test, n-back test, and simple reaction time test; sleepiness was measured using the subjective Karolinska Sleepiness Scale (KSS); and sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) questionnaire. ANCOVA, t-test, and repeated-measures ANOVA were applied for statistical analyses, and the significance level was set at p sleep quality on both day and night shifts, and there were significant differences between the day and night shifts in terms of subjective sleep quality and quantity (p sleep, induced cognitive performance decline at the end of both day and night shifts, and increased sleepiness in night shift. It, thus, seems necessary to take ergonomic measures such as planning for more appropriate shift work and reducing working hours.

  14. Language Shift in a Singapore Family.

    Science.gov (United States)

    Gupta, Anthea Fraser; Yeok, Siew Pui

    1995-01-01

    Discusses the major language shift in Singapore from the familial use of varieties of Chinese other than Mandarin towards the languages of education, English and Mandarin. An ethnographic study is presented of a Singaporean Chinese family that has moved from Cantonese to English, and the underlying pressures leading to this shift are examined. (19…

  15. On the calculation of Mossbauer isomer shift

    NARCIS (Netherlands)

    Filatov, Michael

    2007-01-01

    A quantum chemical computational scheme for the calculation of isomer shift in Mossbauer spectroscopy is suggested. Within the described scheme, the isomer shift is treated as a derivative of the total electronic energy with respect to the radius of a finite nucleus. The explicit use of a finite nuc

  16. Lamb Shift in Nonrelativistic Quantum Electrodynamics.

    Science.gov (United States)

    Grotch, Howard

    1981-01-01

    The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)

  17. Pole Inflation - Shift Symmetry and Universal Corrections

    NARCIS (Netherlands)

    Broy, Benedict J.; Galante, Mario; Roest, Diederik; Westphal, Alexander

    2015-01-01

    An appealing explanation for the Planck data is provided by inflationary models with a singular non-canonical kinetic term: a Laurent expansion of the kinetic function translates into a potential with a nearly shift-symmetric plateau in canonical fields. The shift symmetry can be broken at large

  18. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.

    2013-01-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a ti

  19. Characteristics of Menstrual Cycle in Shift Workers

    Science.gov (United States)

    Attarchi, Mirsaeed; Darkhi, Hamidreza; Kashanian, Maryam; khodarahmian, Mahshad; Dolati, Mandana; Ghaffari, Mostafa; Mirzamohammadi, Elham; Mohammadi, Saber

    2013-01-01

    Background: In this study, the characteristics of menstrual cycle in shift workers employed in the pharmaceutical industry are investigated. Method: This study was conducted in a pharmaceutical industrial complex in Tehran in 2012. 406 female workers in packaging units were studied on the menstrual cycle characteristics. The studied workers were divided into two groups of shift workers and non-shift workers and were compared in terms of the frequency of menstrual disorder (short-term cycle, long-term cycle, irregular cycle and bleeding during menstrual cycle) as well as hormonal values (FSH, LH, TSH, and Prolactin). Results: The odds ratio (OR) for menstrual disorder in the shift workers was 5.54 (95% CI=2.78-11.02) compared to the non-shift workers. The mean difference of hormonal values (except prolactin) between shift workers and non-shift workers was not significant (P> 0.05). Conclusion: This study suggests that shift work may disrupt the menstrual cycle. PMID:23618486

  20. Social Change and Language Shift: South Africa.

    Science.gov (United States)

    Kamwangamalu, Nkonko M.

    2003-01-01

    Examines language shift from majority African languages, such as Sotho, Xhosa, and Zulu to English in South Africa. Examines the extent to which sociopolitical changes that have taken place in South Africa have impacted everyday linguistic interaction and have contributed to language shift from the indigenous African language to English,…

  1. Machiavellianism, Discussion Time, and Group Shift

    Science.gov (United States)

    Lamm, Helmut; Myers, David G.

    1976-01-01

    Social-emotional and rational-cognitive explanations of group risky shift on choice dilemmas (hypothetical life situations) were evaluated by comparing shift in groups of low Mach (emotional) and high Mach (non-emotional) subjects. Effects of Machiavellian beliefs on social functioning are examined. Group composition was not observed to affect…

  2. Gain Shift Corrections at Chi-Nu

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Tristan Brooks [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Massachusetts, Lowell, MA (United States). Dept. of Physics and Applied Physics; Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-30

    Ambient conditions have the potential to cause changes in liquid scintillator detector gain that vary with time and temperature. These gain shifts can lead to poor resolution in both energy as well as pulse shape discrimination. In order to correct for these shifts in the Chi-Nu high energy array, a laser system has been developed for calibration of the pulse height signals.

  3. Set Shifting Among Adolescents with Anorexia Nervosa

    Science.gov (United States)

    Fitzpatrick, Kathleen Kara; Darcy, Alison; Colborn, Danielle; Gudorf, Caroline; Lock, James

    2012-01-01

    Objective Set shifting difficulties are documented for adults with anorexia nervosa (AN). However, AN typically onsets in adolescents and it is unclear if set-shifting difficulties are a result of chronic AN or present earlier in its course. This study examined whether adolescents with short duration AN demonstrated set shifting difficulties compared to healthy controls (HC). Method Data on set shifting collected from the Delis-Kaplan Executive Functioning System (DKEFS) and Wisconsin Card Sort Task (WCST) as well as eating psychopathology were collected from 32 adolescent inpatients with AN and compared to those from 22 HCs. Results There were no differences in set-shifting in adolescents with AN compared to HCs on most measures. Conclusion The findings suggest that set-shifting difficulties in AN may be a consequence of AN. Future studies should explore set-shifting difficulties in a larger sample of adolescents with the AN to determine if there is sub-set of adolescents with these difficulties and determine any relationship of set-shifting to the development of a chronic from of AN. PMID:22692985

  4. Hippocampal theta frequency shifts and operant behaviour

    NARCIS (Netherlands)

    Lopes da Silva, F.H.; Kamp, A.

    1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and

  5. Total Antioxidant Capacity and Malondialdehyde in Depressive Rotational Shift Workers

    Directory of Open Access Journals (Sweden)

    Farahnaz Khajehnasiri

    2013-01-01

    Full Text Available Shift work is associated with sleep deprivation, occupational stress, and increased risk of depression. Depressed patients show increased oxidative stress. During excessive oxidative stress, Malondialdehyde (MDA increases and total antioxidant capacity (TAC decreases in body. This cross-sectional study was conducted to determine the serum level of TAC and MDA among depressed rotational shift workers in Shahid Tondooyan Tehran Oil Refinery. 21-item Beck Depression Inventory was used to measure depression level. The level of TAC and MDA was measured by 8 mL fasting blood sample. MDA was determined by thiobarbituric acid reaction. Serum total antioxidants were measured using the ABTS. Results of this study showed that TAC mean and standard deviation concentration was 2.451 (±0.536 mg/dL and MDA was 3.725 (±1.098 mic·mol/L, and mean and standard deviation of depression score and BMI were 14.07 (±3.84 and 24.92 (±3.65 kg/m2, respectively. Depression score had a positive correlation with rotational shift work experience and work experience (r=0.218 and r=0.212, respectively, (P<0.05.

  6. Carboxylate shifts steer interquinone electron transfer in photosynthesis.

    Science.gov (United States)

    Chernev, Petko; Zaharieva, Ivelina; Dau, Holger; Haumann, Michael

    2011-02-18

    Understanding the mechanisms of electron transfer (ET) in photosynthetic reaction centers (RCs) may inspire novel catalysts for sunlight-driven fuel production. The electron exit pathway of type II RCs comprises two quinone molecules working in series and in between a non-heme iron atom with a carboxyl ligand (bicarbonate in photosystem II (PSII), glutamate in bacterial RCs). For decades, the functional role of the iron has remained enigmatic. We tracked the iron site using microsecond-resolution x-ray absorption spectroscopy after laser-flash excitation of PSII. After formation of the reduced primary quinone, Q(A)(-), the x-ray spectral changes revealed a transition (t½ ≈ 150 μs) from a bidentate to a monodentate coordination of the bicarbonate at the Fe(II) (carboxylate shift), which reverted concomitantly with the slower ET to the secondary quinone Q(B). A redox change of the iron during the ET was excluded. Density-functional theory calculations corroborated the carboxylate shift both in PSII and bacterial RCs and disclosed underlying changes in electronic configuration. We propose that the iron-carboxyl complex facilitates the first interquinone ET by optimizing charge distribution and hydrogen bonding within the Q(A)FeQ(B) triad for high yield Q(B) reduction. Formation of a specific priming intermediate by nuclear rearrangements, setting the stage for subsequent ET, may be a common motif in reactions of biological redox cofactors.

  7. Does workplace health promotion reach shift workers?

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Kirsten; Garde, Anne Helene; Clausen, Thomas;

    2015-01-01

    OBJECTIVES: One reason for health disparities between shift and day workers may be that workplace health promotion does not reach shift workers to the same extent as it reaches day workers. This study aimed to investigate the association between shift work and the availability of and participation...... in workplace health promotion. METHODS: We used cross-sectional questionnaire data from a large representative sample of all employed people in Denmark. We obtained information on the availability of and participation in six types of workplace health promotion. We also obtained information on working hours, ie......). RESULTS: In the general working population, fixed evening and fixed night workers, and employees working variable shifts including night work reported a higher availability of health promotion, while employees working variable shifts without night work reported a lower availability of health promotion...

  8. Design principles for shift current photovoltaics.

    Science.gov (United States)

    Cook, Ashley M; M Fregoso, Benjamin; de Juan, Fernando; Coh, Sinisa; Moore, Joel E

    2017-01-25

    While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W(-1). Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.

  9. Quality of life in shift work syndrome.

    Science.gov (United States)

    Puca, F M; Perrucci, S; Prudenzano, M P; Savarese, M; Misceo, S; Perilli, S; Palumbo, M; Libro, G; Genco, S

    1996-01-01

    Air Force radar controllers represent an excellent example of night shift workers, as they are obliged to demonstrate perfect alertness during working hours. We set out: a) to assess the quality of life in these shift workers; b) to identify those with shift work syndrome and c) to evaluate the possible effects of triazolam both on their quality of life and sleep. The results reveal an impairment of the quality of life in shift workers, independently of the presence of a circadian rhythm sleep disorder. Quality of life was more severely impaired in subjects with circadian rhythm sleep disorder. Hypnotic therapy brought about an improvement both in the sleep disorder and in the quality of life of subjects affected by shift work syndrome. Selective alertness tests failed to demonstrate any "sedative carry-over" in the treated patients.

  10. World Manufacturing Industry: Structural and Spatial Shifts

    Directory of Open Access Journals (Sweden)

    IRINA RODIONOVA

    2012-01-01

    Full Text Available The article estimates countries’ and regions’ posit ions on the world ranking hierarchy in the manufacturing industry. The research is focusing on the characteristic of structural and spatial shift s of the world manufacturing industry. These trends have led to the restructuring of the world economy and main shifts in the manufacturing locations both at regional and global levels occurred. Developing countries have got a great chance to become active players in the world economy. Structural shifts occ ur suddenly both in manufacturing location and in the industrial composition in the recent decades. There have been shifts in the HT-industry compositi on. The shift to developing Asian countries is reve aled.

  11. Design principles for shift current photovoltaics

    Science.gov (United States)

    Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando; Coh, Sinisa; Moore, Joel E.

    2017-01-01

    While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W-1. Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.

  12. Thermonuclear reactions with magnetical confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinkau, K.; Schumacher, U.

    1982-09-01

    As the result of intensive research activities in the plasma physics one can expect that in future an independent burning plasma can be produced. The focal point of fusion research then will crescent shift on the answer of the question whether the technological development the design of a commercial working energy systems allows. The authors report on thermonuclear devices, plasma confinement, plasma heating, thermonuclear reactions and safety.

  13. Working the Night Shift: The Impact of Compensating Wages and Local Economic Conditions on Shift Choice

    Directory of Open Access Journals (Sweden)

    Colene Trent

    2014-01-01

    Full Text Available The theory of compensating differentials asserts that night shift workers should receive compensating wage differentials due to undesirable work conditions. In weak local economies, workers may have difficulty finding jobs; thus, these workers might be more likely to accept night shift work and be less concerned with the size of the compensating differential for night shifts. Using CPS data from 2001, this paper employs maximum likelihood estimation of an endogenous switching regression model to analyze wages of day and night shift workers and shift choice. The findings indicate the presence of selection bias, thus emphasizing the importance of correcting for self-selection into night shifts. The average of the estimated wage differentials for night shift work is negative for the overall sample, with differentials varying by worker characteristics. The shift differential is found to be a statistically significant predictor of shift choice, indicating that shift premiums play an important role in motivating individuals to select night shift work. Using two measures of local economic conditions and a new method of analyzing interaction effects in the context of an endogenous switching regression model, this paper finds limited evidence that weak local economic conditions lessen the impact of compensating differentials on shift choice.

  14. Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth

    Science.gov (United States)

    Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda

    2017-04-01

    Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.

  15. Visual sensitivities tuned by heterochronic shifts in opsin gene expression

    Directory of Open Access Journals (Sweden)

    McFarland William N

    2008-05-01

    Full Text Available Abstract Background Cichlid fishes have radiated into hundreds of species in the Great Lakes of Africa. Brightly colored males display on leks and vie to be chosen by females as mates. Strong discrimination by females causes differential male mating success, rapid evolution of male color patterns and, possibly, speciation. In addition to differences in color pattern, Lake Malawi cichlids also show some of the largest known shifts in visual sensitivity among closely related species. These shifts result from modulated expression of seven cone opsin genes. However, the mechanisms for this modulated expression are unknown. Results In this work, we ask whether these differences might result from changes in developmental patterning of cone opsin genes. To test this, we compared the developmental pattern of cone opsin gene expression of the Nile tilapia, Oreochromis niloticus, with that of several cichlid species from Lake Malawi. In tilapia, quantitative polymerase chain reaction showed that opsin gene expression changes dynamically from a larval gene set through a juvenile set to a final adult set. In contrast, Lake Malawi species showed one of two developmental patterns. In some species, the expressed gene set changes slowly, either retaining the larval pattern or progressing only from larval to juvenile gene sets (neoteny. In the other species, the same genes are expressed in both larvae and adults but correspond to the tilapia adult genes (direct development. Conclusion Differences in visual sensitivities among species of Lake Malawi cichlids arise through heterochronic shifts relative to the ontogenetic pattern of the tilapia outgroup. Heterochrony has previously been shown to be a powerful mechanism for change in morphological evolution. We found that altering developmental expression patterns is also an important mechanism for altering sensory systems. These resulting sensory shifts will have major impacts on visual communication and could help

  16. Visual sensitivities tuned by heterochronic shifts in opsin gene expression

    Science.gov (United States)

    Carleton, Karen L; Spady, Tyrone C; Streelman, J Todd; Kidd, Michael R; McFarland, William N; Loew, Ellis R

    2008-01-01

    Background Cichlid fishes have radiated into hundreds of species in the Great Lakes of Africa. Brightly colored males display on leks and vie to be chosen by females as mates. Strong discrimination by females causes differential male mating success, rapid evolution of male color patterns and, possibly, speciation. In addition to differences in color pattern, Lake Malawi cichlids also show some of the largest known shifts in visual sensitivity among closely related species. These shifts result from modulated expression of seven cone opsin genes. However, the mechanisms for this modulated expression are unknown. Results In this work, we ask whether these differences might result from changes in developmental patterning of cone opsin genes. To test this, we compared the developmental pattern of cone opsin gene expression of the Nile tilapia, Oreochromis niloticus, with that of several cichlid species from Lake Malawi. In tilapia, quantitative polymerase chain reaction showed that opsin gene expression changes dynamically from a larval gene set through a juvenile set to a final adult set. In contrast, Lake Malawi species showed one of two developmental patterns. In some species, the expressed gene set changes slowly, either retaining the larval pattern or progressing only from larval to juvenile gene sets (neoteny). In the other species, the same genes are expressed in both larvae and adults but correspond to the tilapia adult genes (direct development). Conclusion Differences in visual sensitivities among species of Lake Malawi cichlids arise through heterochronic shifts relative to the ontogenetic pattern of the tilapia outgroup. Heterochrony has previously been shown to be a powerful mechanism for change in morphological evolution. We found that altering developmental expression patterns is also an important mechanism for altering sensory systems. These resulting sensory shifts will have major impacts on visual communication and could help drive cichlid speciation

  17. Scalar Field Theories with Polynomial Shift Symmetries

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2014-01-01

    We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree $P$ in spatial coordinates. These "polynomial shift symmetries" in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree $P$, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree $P$? To answer this (essen...

  18. Shift in Food Intake and Changes in Metabolic Regulation and Gene Expression during Simulated Night-Shift Work: A Rat Model

    Directory of Open Access Journals (Sweden)

    Andrea Rørvik Marti

    2016-11-01

    Full Text Available Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10 or active (ZT14-22 phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR. Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery.

  19. Early detection of ecosystem regime shifts

    DEFF Research Database (Denmark)

    Lindegren, Martin; Dakos, Vasilis; Groeger, Joachim P.;

    2012-01-01

    methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face......Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited...

  20. Forecasting interest rates with shifting endpoints

    DEFF Research Database (Denmark)

    Van Dijk, Dick; Koopman, Siem Jan; Wel, Michel van der

    2014-01-01

    We consider forecasting the term structure of interest rates with the assumption that factors driving the yield curve are stationary around a slowly time-varying mean or ‘shifting endpoint’. The shifting endpoints are captured using either (i) time series methods (exponential smoothing) or (ii......) long-range survey forecasts of either interest rates or inflation and output growth, or (iii) exponentially smoothed realizations of these macro variables. Allowing for shifting endpoints in yield curve factors provides substantial and significant gains in out-of-sample predictive accuracy, relative...... to stationary and random walk benchmarks. Forecast improvements are largest for long-maturity interest rates and for long-horizon forecasts....

  1. Limits to superweak amplification of beam shifts

    CERN Document Server

    Götte, Jörg B

    2013-01-01

    The magnitudes of beam shifts (Goos-H\\"anchen and Imbert-Fedorov, spatial and angular) are greatly enhanced when a reflected light beam is postselected by an analyzer, by analogy with superweak measurements in quantum theory. Particularly strong enhancements can be expected close to angles at which no light is transmitted for a fixed initial and final polarizations. We derive a formula for the angular and spatial shifts at such angles (which includes the Brewster angle), and we show that their maximum size is limited by higher-order terms from the reflection coefficients occurring in the Artmann shift formula.

  2. Competition for FDI and Profit Shifting

    DEFF Research Database (Denmark)

    Ma, Jie; Raimondos-Møller, Pascalis

    When countries compete for the location of a new multinational plant they need to be aware of the profit shifting opportunities this new plant creates for the global multinational firm. By modelling explicitly the multinational’s intra-firm transactions, we show that the home market advantage...... that large countries have due to their size will be counteracted by such profit shifting opportunities. As a result of this, large countries will not be able to capitalize on their size and sustain high corporate taxes. We show that, on the basis of these profit shifting opportunities, a small country can...

  3. Search for Higgs shifts in white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Onofrio, Roberto [Dipartimento di Fisica e Astronomia " Galileo Galilei," Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Wegner, Gary A., E-mail: onofrior@gmail.com, E-mail: gary.a.wegner@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2014-08-20

    We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from high-energy physics or table-top experiments.

  4. Phase shifting in the spatial frequency domain

    Science.gov (United States)

    Yazdani, Roghayeh; Petsch, Sebastian; Fallah, Hamidreza; Hajimahmoodzadeh, Morteza; Zappe, Hans

    2016-03-01

    We present a simple mathematical method for phase shifting that overcomes some phase shift errors and limitations of commonly used methods. The method is used to generate a sequence of phase-shifted interferograms from a single interferogram. The generated interferograms are employed to reconstruct the wavefront aberrations, as an application. The approach yields results with only very small deviations compared to both simulated wavefront aberrations, including the first 25 Zernike polynomials (0.05%) and those measured with a Shack-Hartmann sensor (0.5%).

  5. Giant Compton Shifts in Hyperbolic Metamaterial

    CERN Document Server

    Iorsh, Ivan; Ginzburg, Pavel; Belov, Pavel; Kivshar, Yuri

    2014-01-01

    We study the Compton scattering of light by free electrons inside a hyperbolic medium. We demonstrate that the unconventional dispersion and local density of states of the electromagnetic modes in such media can lead to a giant Compton shift and dramatic enhancement of the scattering cross section. We develop an universal approach for the study of coupled multi-photon processes in nanostructured media and derive the spectral intensity function of the scattered radiation for realistic metamaterial structures. We predict the Compton shift of the order of a few meVs for the infrared spectrum that is at least one order of magnitude larger than the Compton shift in any other system.

  6. Scandinavian Object Shift and Optimality Theory

    DEFF Research Database (Denmark)

    Engels, Eva; Vikner, Sten

    This study presents an account of object shift, a word order phenomenon found in most of the Scandinavian languages where an object occurs unexpectedly to the left and not to the right of a sentential adverbial. The book examines object shift across many of the Scandinavian languages and dialects...... for the variation as well as the interaction of object shift with other syntactic constructions such as verb second, other verb movements, double object constructions, particle verbs and causative verbs. The book moves on to investigate the interaction with remnant VP-topicalisation in great detail. With new...

  7. Adaptation to shift work: physiologically based modeling of the effects of lighting and shifts' start time.

    Science.gov (United States)

    Postnova, Svetlana; Robinson, Peter A; Postnov, Dmitry D

    2013-01-01

    Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers' sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8) in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers' adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21:00 instead of 00:00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters.

  8. Adaptation to shift work: physiologically based modeling of the effects of lighting and shifts' start time.

    Directory of Open Access Journals (Sweden)

    Svetlana Postnova

    Full Text Available Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers' sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8 in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers' adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21:00 instead of 00:00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters.

  9. The Lamb shift in de Sitter spacetime

    CERN Document Server

    Zhou, Wenting

    2010-01-01

    We study the Lamb shift of both freely-falling and static two-level atoms in interaction with quantized conformally coupled massless scalar fields in the de Sitter-invariant vacuum. We find that the Lamb shifts of both freely-falling and static atoms are in structural similarity to that of an inertial atom immersed in a thermal bath in a Minkowski spacetime. For the freely-falling atom, the Lamb shift gets a correction as if it was immersed in a thermal bath at the Gibbons-Hawking temperature, thus revealing clearly the intrinsic thermal nature of de Sitter spacetime. For the static atom, the Lamb shift is affected by a combination of the effect of the intrinsic thermal nature of de Sitter spacetime and the Unruh effect associated with the inherent acceleration of the atom.

  10. Trends in adsorbate induced core level shifts

    Science.gov (United States)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  11. Job Strain in Shift and Daytime Workers.

    Science.gov (United States)

    Knutsson; Nilsson

    1997-07-01

    Cross-sectional questionnaire data were used to compare the levels of job strain in shift and daytime workers. Job strain was measured according to Karasek's Demands/Discretion model. Four occupational groups were included: drivers, industrial workers, policemen/watchmen, and cooks. The study subjects were a random sample of 508 daytime workers and 418 shift workers. Job demand did not differentiate between shift and daytime workers, comparing groups broken down by gender and by occupation. The daytime workers reported higher levels of job strain than the shift workers, and women experienced a higher level of job strain than did men. Multiple linear regression analysis showed that only occupational group and gender predicted job strain level. Shiftwork was not significantly associated with job strain in the regression model.

  12. Regime shifts in models of dryland vegetation

    CERN Document Server

    Zelnik, Yuval R; Yizhaq, Hezi; Bel, Golan; Meron, Ehud

    2013-01-01

    Drylands are pattern-forming systems showing self-organized vegetation patchiness, multiplicity of stable states and fronts separating domains of alternative stable states. Pattern dynamics, induced by droughts or disturbances, can result in desertification shifts from patterned vegetation to bare soil. Pattern-formation theory suggests various scenarios for such dynamics; an abrupt global shift involving a fast collapse to bare soil, a gradual global shift involving the expansion and coalescence of bare-soil domains, and an incipient shift to a hybrid state consisting of stationary bare-soil domains in an otherwise periodic pattern. Using models of dryland vegetation we address the question which of these scenarios can be realized. We found that the models can be split into two groups: models that exhibit multiplicity of periodic-pattern and bare-soil states, and models that exhibit, in addition, multiplicity of hybrid states. Furthermore, in all models we could not identify parameter regimes in which bare-s...

  13. Postural Stability is Altered by Blood Shift

    Science.gov (United States)

    Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.

    2008-06-01

    Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.

  14. Scandinavian Object Shift and Optimality Theory

    DEFF Research Database (Denmark)

    Engels, Eva; Vikner, Sten

    This study presents an account of object shift, a word order phenomenon found in most of the Scandinavian languages where an object occurs unexpectedly to the left and not to the right of a sentential adverbial. The book examines object shift across many of the Scandinavian languages and dialects......, and analyses the variation, for example whether object shift is optional or obligatory, whether it applies only to pronouns or other objects as well, and whether it applies to adverbials. The authors show that optimality theory, traditionally used in phonology, is a useful framework for accounting...... for the variation as well as the interaction of object shift with other syntactic constructions such as verb second, other verb movements, double object constructions, particle verbs and causative verbs. The book moves on to investigate the interaction with remnant VP-topicalisation in great detail. With new...

  15. [Sleep disorders among physicians on shift work].

    Science.gov (United States)

    Schlafer, O; Wenzel, V; Högl, B

    2014-11-01

    Sleep disorders in physicians who perform shift work can result in increased risks of health problems that negatively impact performance and patient safety. Even those who cope well with shift work are likely to suffer from sleep disorders. The aim of this manuscript is to discuss possible causes, contributing factors and consequences of sleep disorders in physicians and to identify measures that can improve adaptation to shift work and treatment strategies for shift work-associated sleep disorders. The risk factors that influence the development of sleep disorders in physicians are numerous and include genetic factors (15 % of the population), age (> 50 years), undiagnosed sleep apnea,, alcohol abuse as well as multiple stress factors inherent in clinical duties (including shift work), research, teaching and family obligations. Several studies have reported an increased risk for medical errors in sleep-deprived physicians. Shift workers have an increased risk for psychiatric and cardiovascular diseases and shift work may also be a contributing factor to cancer. A relationship has been reported not only with sleep deprivation and changes in food intake but also with diabetes mellitus, obesity, hypertension and coronary heart disease. Nicotine and alcohol consumption are more frequent among shift workers. Increased sickness and accident rates among physicians when commuting (especially after night shifts) have a socioeconomic impact. In order to reduce fatigue and to improve performance, short naps during shiftwork or naps plus caffeine, have been proposed as coping strategies; however, napping during adverse circadian phases is less effective, if not impossible when unable to fall asleep. Bright and blue light supports alertness during a night shift. After shiftwork, direct sunlight exposure to the retina can be avoided by using dark sunglasses or glasses with orange lenses for commuting home. The home environment for daytime sleeping after a night shift should be

  16. Hydrogen isotope effect on the Dimits shift

    Science.gov (United States)

    Itoh, S.-I.; Itoh, K.

    2016-10-01

    The hydrogen isotope effect on the Dimits shift in drift wave turbulence (Dimits et al 2000 Phys. Plasmas 7 969) is discussed using the theory of zonal flows, in which the nonlinear damping rate of zonal flows is taken into account. The up-shift of the critical linear growth rate of the drift waves, above which drift wave fluctuations develop, is investigated. The dependence on the mass number of the hydrogen isotope is discussed.

  17. Analytic matrix elements with shifted correlated Gaussians

    DEFF Research Database (Denmark)

    Fedorov, D. V.

    2017-01-01

    Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....

  18. Uniqueness from locality and BCFW shifts

    OpenAIRE

    Rodina, Laurentiu

    2016-01-01

    We introduce a BCFW shift which can be used to recursively build the full Yang-Mills amplitude as a function of polarization vectors. Furthermore, in line with the recent results of arXiv:1612.02797, we conjecture that the Yang-Mills scattering amplitude is uniquely fixed by locality and demanding the usual asymptotic behavior under a sufficient number of shifts. Unitarity therefore emerges from locality and constructability. We prove this statement at the leading order in the soft expansion.

  19. Research on Habitat Shift Promoting Species Diversification

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    PNAS published on August 15,2011 the article "Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification" by Professor Shuqiang Li of Institute of Zoology,CAS,together with Slovenian cooperators. Current theory predicts that a shift to a new habitat would increase the rate of diversification;while as lineages evolve into multiple species,intensified competition would decrease the rate of diversification.

  20. Optical Doppler shift with structured light

    OpenAIRE

    2011-01-01

    When a light beam with a transverse spatially varying phase is considered for optical remote sensing, in addition to the usual longitudinal Doppler frequency shift of the returned signal induced by the motion of the scatter along the beam axis, a new transversal Doppler shift appears associated to the motion of the scatterer in the plane perpendicular to the beam axis. We discuss here how this new effect can be used to enhance the current capabilities of optical measurement system...

  1. Sign (di)Lemma for Dimension Shifting

    Indian Academy of Sciences (India)

    Nitin Nitsure

    2009-04-01

    There is a surprising occurrence of some minus signs in the isomorphisms produced in the well-known technique of dimension shifting in calculating derived functors in homological algebra. We explicitly determine these signs. Getting these signs right is important in order to avoid basic contradictions. We illustrate the result – which we call as the sign lemma for dimension shifting – by some de Rham cohomology and Chern class considerations for compact Riemann surfaces.

  2. Metrology on phase-shift masks

    Science.gov (United States)

    Roeth, Klaus-Dieter; Maurer, Wilhelm; Blaesing-Bangert, Carola

    1992-06-01

    In the evaluation of new manufacturing processes, metrology is a key function, beginning with the first step of process development through the final step of everyday mass production at the fabrication floor level. RIM-type phase shift masks are expected to be the first application of phase shift masks in high volume production, since they provide improved lithography process capability at the expense of only moderate complexity in their manufacturing. Measurements of critical dimension (CD) and pattern position (overlay) on experimental rim-type and chromeless phase shift masks are reported. Pattern placement (registration) was measured using the Leitz LMS 2000. The overall design and important components were already described. The pattern placement of the RIM type phase shift structures on the photomask described above was determined within a tolerance of 25 nm (3s); nominal accuracy was within 45 nm (3s). On the chromeless phase shift mask the measurement results were easily obtained using a wafer intensity algorithm available with the system. The measurement uncertainties were less than 25 nm and 50 nm for precision and nominal accuracy respectively. The measurement results from the Leitz CD 200 using transmitted light were: a CD- distribution of 135 nm (3s) on a typical 6 micrometers structure all over the mask; the 0.9 micrometers RIM structure had a distribution of 43 nm (3s). Typical long term precision performance values for the CD 200 on both chrome and phase shift structures have been less than 15 nm.

  3. Double Pion Production Reactions

    CERN Document Server

    Oset, E; Cano, F; Hernández, E; Kamalov, S S; Nacher, J C; Tejedor, J A G

    1999-01-01

    We report on reactions producing two pions induced by real and virtual photons or nucleons. The role of different resonances in these reactions is emphasized. Novel results on coherent two pion photoproduction in nuclei are also reported.

  4. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  5. Microscale Thermite Reactions.

    Science.gov (United States)

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  6. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald

    2013-01-01

    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  7. Reaction systems with precipitation

    Directory of Open Access Journals (Sweden)

    Marek Rogalski

    2015-04-01

    Full Text Available This article proposes expanding Reaction Systems of Ehrenfeucht and Rozenberg by incorporating precipitation reactions into it. This improves the computing power of Reaction Systems by allowing us to implement a stack. This addition enables us to implement a Deterministic Pushdown Automaton.

  8. Phase shifts extraction based on time-domain orthogonal character of phase-shifting interferograms

    Science.gov (United States)

    Shou, Junwei; Zhong, Liyun; Zhou, Yunfei; Tian, Jindong; Lu, Xiaoxu

    2017-01-01

    Based on the time-domain orthogonal character of different pixel intensity variation of phase-shifting interferograms, a novel non-iterative algorithm is proposed to achieve the phase shifts in random phase-shifting interferometry. Due to there is no requirement for the fringe number of phase-shifting interferograms, the proposed algorithm can work well even in the case that the fringe number of interferogram is less than one, which is a difficult problem in interferometry. Moreover, only two one-dimensional vectors, achieved from the average intensity of several pixels of interferogram, are enough to perform the phase shifts extraction, the proposed algorithm reveals rapid processing speed. Specially, compared with the conventional phase shifts extraction algorithms, the proposed algorithm does not need to perform the pixel-pixel calculation or the iterative calculation, so its processing speed is greatly improved. Both the simulation and the experiment demonstrate the outstanding performance of the proposed algorithm.

  9. Shift work and circadian dysregulation of reproduction

    Directory of Open Access Journals (Sweden)

    Karen L. Gamble

    2013-08-01

    Full Text Available Health impairments, including reproductive issues, are associated with working nights or rotating shifts. For example, shift work has been associated with an increased risk of irregular menstrual cycles, endometriosis, infertility, miscarriage, low birth weight or pre-term delivery, and reduced incidence of breastfeeding. Based on what is known about circadian regulation of endocrine rhythms in rodents (and much less in humans, the circadian clock is an integral regulatory part of the reproductive system. When this 24-h program is disordered by environmental perturbation (such as shift work or genetic alterations, the endocrine system can be impaired. The purpose of this review is to explore the hypothesis that misalignment of reproductive hormones with the environmental light-dark cycle and/or sleep wake rhythms can disrupt menstrual cycles, pregnancy, and parturition. We highlight the role of the circadian clock in regulating human reproductive physiology and shift work-induced pathology within each step of the reproductive axis while exploring potential mechanisms from the animal model literature. In addition to documenting the reproductive hazards of shift work, we also point out important gaps in our knowledge as critical areas for future investigation. For example, future studies should examine whether forced desynchronization disrupts gonadotropin secretion rhythms and whether there are sleep/wake schedules that are better or worse for the adaptation of the reproductive system to shift work. These studies are necessary in order to define not only whether or not shift-work induced circadian misalignment impairs reproductive capacity, but also to identify strategies for the future that can minimize this desynchronization.

  10. Expert system application for prioritizing preventive actions for shift work: shift expert.

    Science.gov (United States)

    Esen, Hatice; Hatipoğlu, Tuğçen; Cihan, Ahmet; Fiğlali, Nilgün

    2017-09-19

    Shift patterns, work hours, work arrangements and worker motivations have increasingly become key factors for job performance. The main objective of this article is to design an expert system that identifies the negative effects of shift work and prioritizes mitigation efforts according to their importance in preventing these negative effects. The proposed expert system will be referred to as the shift expert. A thorough literature review is conducted to determine the effects of shift work on workers. Our work indicates that shift work is linked to demographic variables, sleepiness and fatigue, health and well-being, and social and domestic conditions. These parameters constitute the sections of a questionnaire designed to focus on 26 important issues related to shift work. The shift expert is then constructed to provide prevention advice at the individual and organizational levels, and it prioritizes this advice using a fuzzy analytic hierarchy process model, which considers comparison matrices provided by users during the prioritization process. An empirical study of 61 workers working on three rotating shifts is performed. After administering the questionnaires, the collected data are analyzed statistically, and then the shift expert produces individual and organizational recommendations for these workers.

  11. Influences on Dietary Choices during Day versus Night Shift in Shift Workers: A Mixed Methods Study

    Directory of Open Access Journals (Sweden)

    Emily K. Bonnell

    2017-02-01

    Full Text Available Shift work is associated with diet-related chronic conditions such as obesity and cardiovascular disease. This study aimed to explore factors influencing food choice and dietary intake in shift workers. A fixed mixed method study design was undertaken on a convenience sample of firefighters who continually work a rotating roster. Six focus groups (n = 41 were conducted to establish factors affecting dietary intake whilst at work. Dietary intake was assessed using repeated 24 h dietary recalls (n = 19. Interviews were audio recorded, transcribed verbatim, and interpreted using thematic analysis. Dietary data were entered into FoodWorks and analysed using Wilcoxon signed-rank test; p < 0.05 was considered significant. Thematic analysis highlighted four key themes influencing dietary intake: shift schedule; attitudes and decisions of co-workers; time and accessibility; and knowledge of the relationship between food and health. Participants reported consuming more discretionary foods and limited availability of healthy food choices on night shift. Energy intakes (kJ/day did not differ between days that included a day or night shift but greater energy density (EDenergy, kJ/g/day of the diet was observed on night shift compared with day shift. This study has identified a number of dietary-specific shift-related factors that may contribute to an increase in unhealthy behaviours in a shift-working population. Given the increased risk of developing chronic diseases, organisational change to support workers in this environment is warranted.

  12. An Efficient Variant of the Restarted Shifted GMRES Method for Solving Shifted Linear Systems

    Institute of Scientific and Technical Information of China (English)

    Akira IMAKURA; Tomohiro SOGABE; Shaoliang ZHANG

    2013-01-01

    We investigate the restart of the Restarted Shifted GMRES method for solving shifted linear systems.Recently the variant of the GMRES(m) method with the unfixed update has been proposed to improve the convergence of the GMRES(m) method for solving linear systems,and shown to have an efficient convergence property.In this paper,by applying the unfixed update to the Restarted Shifted GMRES method,we propose a variant of the Restarted Shifted GMRES method.We show a potentiality for efficient convergence within the variant by some numerical results.

  13. Modelling a Nurse Shift Schedule with Multiple Preference Ranks for Shifts and Days-Off

    Directory of Open Access Journals (Sweden)

    Chun-Cheng Lin

    2014-01-01

    Full Text Available When it comes to nurse shift schedules, it is found that the nursing staff have diverse preferences about shift rotations and days-off. The previous studies only focused on the most preferred work shift and the number of satisfactory days-off of the schedule at the current schedule period but had few discussions on the previous schedule periods and other preference levels for shifts and days-off, which may affect fairness of shift schedules. As a result, this paper proposes a nurse scheduling model based upon integer programming that takes into account constraints of the schedule, different preference ranks towards each shift, and the historical data of previous schedule periods to maximize the satisfaction of all the nursing staff's preferences about the shift schedule. The main contribution of the proposed model is that we consider that the nursing staff’s satisfaction level is affected by multiple preference ranks and their priority ordering to be scheduled, so that the quality of the generated shift schedule is more reasonable. Numerical results show that the planned shifts and days-off are fair and successfully meet the preferences of all the nursing staff.

  14. Phase shifting interferometry from two normalized interferograms with random tilt phase-shift.

    Science.gov (United States)

    Liu, Fengwei; Wu, Yongqian; Wu, Fan

    2015-07-27

    We propose a novel phase shifting interferometry from two normalized interferograms with random tilt phase-shift. The determination of tilt phase-shift is performed by extracting the tilted phase-shift plane from the phase difference of two normalized interferograms, and with the calculated tilt phase-shift value the phase distribution can be retrieved from the two normalized frames. By analyzing the distribution of phase difference and utilizing special points fitting method, the tilted phase-shift plane is extracted in three different cases, which relate to different magnitudes of tilts. Proposed method has been applied to simulations and experiments successfully and the satisfactory results manifest that proposed method is of high accuracy and high speed compared with the three step iterative method. Additionally, both open and closed fringe can be analyzed with proposed method. What's more, it cannot only eliminate the small tilt-shift error caused by slight vibration in phase-shifting interferometry, but also detect the large tilt phase-shift in phase-tilting interferometry. Thus, it will relaxes the requirements on the accuracy of phase shifter, and the costly phase shifter may even be useless by applying proposed method in high amplitude vibrated circumstance to achieve high-precision analysis.

  15. Lighting the Landscape: Molecular Events Under Dynamic Stark Shifts

    CERN Document Server

    Chang, Bo Y; Shin, Seokmin

    2016-01-01

    A new perspective on how to manipulate molecules by means of very strong laser pulses is emerging with insights from the so-called light-induced potentials, which are the adiabatic potential energy surfaces of molecules severely distorted by the effect of the strong field. Different effects appear depending on how the laser frequency is tuned, to a certain electronic transition, creating light-induced avoided crossings, or very off-resonant, generating Stark shifts. In the former case it is possible to induce dramatic changes in the geometry and redistribution of charges in the molecule while the lasers are acting and to fully control photodissociation reactions as well as other photochemical processes. Several theoretical proposals taken from the work of the authors are reviewed and analyzed showing the unique features that the strong-laser chemistry opens to control the transient properties and the dynamics of molecules.

  16. Eikonal phase shift analyses of carbon-carbon scattering

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.

    1983-01-01

    A high-energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series is used in determining eikonal phase shifts for carbon-carbon scattering at 204.2, 242.7, and 288.6 MeV. The double-folding potentials are derived by folding the energy-dependent free nucleon-nucleon interaction with densities for the projectile and target; these latter are obtained by unfolding the finite nucleon charge density from harmonic-well carbon charge distributions. The charge parameters for these distributions are taken from the results of electron scattering experiments. Predictions are made for total, reaction, and elastic differential cross sections using standard partial wave analysis for the scattering of identical particles and are then compared with recent experimental results. Excellent agreement is obtained despite the absence of arbitrarily adjusted parameters in the theory.

  17. Chemical shift prediction for denatured proteins

    Energy Technology Data Exchange (ETDEWEB)

    Prestegard, James H., E-mail: jpresteg@ccrc.uga.edu; Sahu, Sarata C.; Nkari, Wendy K.; Morris, Laura C.; Live, David; Gruta, Christian

    2013-02-15

    While chemical shift prediction has played an important role in aspects of protein NMR that include identification of secondary structure, generation of torsion angle constraints for structure determination, and assignment of resonances in spectra of intrinsically disordered proteins, interest has arisen more recently in using it in alternate assignment strategies for crosspeaks in {sup 1}H-{sup 15}N HSQC spectra of sparsely labeled proteins. One such approach involves correlation of crosspeaks in the spectrum of the native protein with those observed in the spectrum of the denatured protein, followed by assignment of the peaks in the latter spectrum. As in the case of disordered proteins, predicted chemical shifts can aid in these assignments. Some previously developed empirical formulas for chemical shift prediction have depended on basis data sets of 20 pentapeptides. In each case the central residue was varied among the 20 amino common acids, with the flanking residues held constant throughout the given series. However, previous choices of solvent conditions and flanking residues make the parameters in these formulas less than ideal for general application to denatured proteins. Here, we report {sup 1}H and {sup 15}N shifts for a set of alanine based pentapeptides under the low pH urea denaturing conditions that are more appropriate for sparse label assignments. New parameters have been derived and a Perl script was created to facilitate comparison with other parameter sets. A small, but significant, improvement in shift predictions for denatured ubiquitin is demonstrated.

  18. Written Language Shift among Norwegian Youth

    Directory of Open Access Journals (Sweden)

    Kamil ÖZERK

    2013-07-01

    Full Text Available In Norway there are two written Norwegian languages, Bokmål and Nynorsk. Of these two written languages Bokmål is being used by the majority of the people, and Bokmål has the highest prestige in the society. This article is about the shift of written language from Nynorsk to Bokmål among young people in a traditional Nynorsk district in the country. Drawing on empirical data we conclude that many adolescents are experiencing written language shift. We discuss various reasons for this phenomenon in the linguistic landscape of Norway. In our discussions we emphasize the importance of the school with regard to language maintenance and language revitalization. We call for a new language policy in the educational system that can prevent language shift. Having several dialects and two officially written forms of Norwegian in the country, creates a special linguistic landscape in Norway. Despite the fact that the Norwegian language situation is in several ways unique, it’s done very little research on how the existing policy works in practice. Our research reveals that the existing language policy and practice in the school system is not powerful enough to prevent language shift and language decay among the youngsters. The school system functions like a fabric for language shift.

  19. Choice Shift in Opinion Network Dynamics

    Science.gov (United States)

    Gabbay, Michael

    Choice shift is a phenomenon associated with small group dynamics whereby group discussion causes group members to shift their opinions in a more extreme direction so that the mean post-discussion opinion exceeds the mean pre-discussion opinion. Also known as group polarization, choice shift is a robust experimental phenomenon and has been well-studied within social psychology. In opinion network models, shifts toward extremism are typically produced by the presence of stubborn agents at the extremes of the opinion axis, whose opinions are much more resistant to change than moderate agents. However, we present a model in which choice shift can arise without the assumption of stubborn agents; the model evolves member opinions and uncertainties using coupled nonlinear differential equations. In addition, we briefly describe the results of a recent experiment conducted involving online group discussion concerning the outcome of National Football League games are described. The model predictions concerning the effects of network structure, disagreement level, and team choice (favorite or underdog) are in accord with the experimental results. This research was funded by the Office of Naval Research and the Defense Threat Reduction Agency.

  20. Lamb Shift in Radical-Ion Pairs is Physically Equivalent to a Spin-Exchange Interaction

    CERN Document Server

    Vitalis, K M

    2013-01-01

    Radical-ion pairs, fundamental for understanding photosynthesis and the avian magnetic compass, were recently shown to be biological open quantum systems. We here show that the coupling of the radical-pair's spin degrees of freedom to its decohering vibrational reservoir leads to a shift of the radical-pair's magnetic energy levels. The Lamb shift Hamiltonian is diagonal in the singlet-triplet basis, and results in a singlet-triplet energy splitting physically indistinguishable from an exchange interaction. This could have profound implications for understanding photosynthetic reaction centers.

  1. Computational study of hydrogen shifts and ring-opening mechanisms in α-pinene ozonolysis products

    DEFF Research Database (Denmark)

    Kurtén, Theo; Rissanen, Matti P.; Mackeprang, Kasper

    2015-01-01

    , sterically unhindered) H-shifts of all four peroxy radicals formed in the ozonolysis of α-pinene using density functional (ωB97XD) and coupled cluster [CCSD(T)-F12] theory. In contrast to the related but chemically simpler cyclohexene ozonolysis system, none of the calculated H-shifts have rate constants...... products in the α-pinene ozonolysis system, additional ring-opening reaction mechanisms breaking the cyclobutyl ring are therefore needed. We further investigate possible uni- and bimolecular pathways for opening the cyclobutyl ring in the α-pinene ozonolysis system....

  2. Transition Mean Values of Shifted Convolution Sums

    CERN Document Server

    Petrow, Ian

    2011-01-01

    Let f be a classical holomorphic cusp form for SL_2(Z) of weight k which is a normalized eigenfunction for the Hecke algebra, and let \\lambda(n) be its eigenvalues. In this paper we study "shifted convolution sums" of the eigenvalues \\lambda(n) after averaging over many shifts h and obtain asymptotic estimates. The result is somewhat surprising: one encounters a transition region depending on the ratio of the square of the length of the average over h to the length of the shifted convolution sum. The phenomenon is similar to that encountered by Conrey, Farmer and Soundararajan in their 2000 paper Transition Mean Values of Real Characters, and the connection of both results to Eisenstein series and multiple Dirichlet series is discussed.

  3. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes...... chemical shifts. The method is benchmarked on folding simulations of five small proteins. In four cases the resulting structures are in excellent agreement with experimental data, the fifth case fail likely due to inaccuracies in the energy function. For the Chymotrypsin Inhibitor protein, a structure...... is determined using only chemical shifts recorded and assigned through automated processes. The CARMSD to the experimental X-ray for this structure is 1.1. Å. Additionally, the method is combined with very sparse NOE-restraints and evolutionary distance restraints and tested on several protein structures >100...

  4. The affective shift model of work engagement.

    Science.gov (United States)

    Bledow, Ronald; Schmitt, Antje; Frese, Michael; Kühnel, Jana

    2011-11-01

    On the basis of self-regulation theories, the authors develop an affective shift model of work engagement according to which work engagement emerges from the dynamic interplay of positive and negative affect. The affective shift model posits that negative affect is positively related to work engagement if negative affect is followed by positive affect. The authors applied experience sampling methodology to test the model. Data on affective events, mood, and work engagement was collected twice a day over 9 working days among 55 software developers. In support of the affective shift model, negative mood and negative events experienced in the morning of a working day were positively related to work engagement in the afternoon if positive mood in the time interval between morning and afternoon was high. Individual differences in positive affectivity moderated within-person relationships. The authors discuss how work engagement can be fostered through affect regulation.

  5. Special offer for early shift takers!

    CERN Multimedia

    Muriel

    Peter Jenni, spokesperson of the ATLAS collaboration, just made the following announcement. "Despite the few problems that we are encountering, which of course are unavoidable in such a large project, I am very pleased with the way the ATLAS experiment is taking shape. With the imminence of data taking, I would like to make a special gesture as a thank you to all of you who are working so hard for ATLAS to meet its many deadlines. The first 100 ATLAS members who will sign up for shifts will receive twice the standard OTSMOU credit." You can sign up for shifts as of April 1st by sending an e-mail to Atlas.Shifts@cern.ch.

  6. Do working environment interventions reach shift workers?

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Kirsten; Jørgensen, Marie Birk; Garde, Anne Helene

    2016-01-01

    workers were less likely to be reached by workplace interventions. For example, night workers less frequently reported that they had got more flexibility (OR 0.5; 95 % CI 0.3-0.7) or that they had participated in improvements of the working procedures (OR 0.6; 95 % CI 0.5-0.8). Quality of leadership......PURPOSE: Shift workers are exposed to more physical and psychosocial stressors in the working environment as compared to day workers. Despite the need for targeted prevention, it is likely that workplace interventions less frequently reach shift workers. The aim was therefore to investigate whether...... the reach of workplace interventions varied between shift workers and day workers and whether such differences could be explained by the quality of leadership exhibited at different times of the day. METHODS: We used questionnaire data from 5361 female care workers in the Danish eldercare sector...

  7. Shift Work, Chronotype, and Melatonin Patterns among Female Hospital Employees on Day and Night Shifts.

    Science.gov (United States)

    Leung, Michael; Tranmer, Joan; Hung, Eleanor; Korsiak, Jill; Day, Andrew G; Aronson, Kristan J

    2016-05-01

    Shift work-related carcinogenesis is hypothesized to be mediated by melatonin; however, few studies have considered the potential effect modification of this underlying pathway by chronotype or specific aspects of shift work such as the number of consecutive nights in a rotation. In this study, we examined melatonin patterns in relation to shift status, stratified by chronotype and number of consecutive night shifts, and cumulative lifetime exposure to shift work. Melatonin patterns of 261 female personnel (147 fixed-day and 114 on rotations, including nights) at Kingston General Hospital were analyzed using cosinor analysis. Urine samples were collected from all voids over a 48-hour specimen collection period for measurement of 6-sulfatoxymelatonin concentrations using the Buhlmann ELISA Kit. Chronotypes were assessed using mid-sleep time (MSF) derived from the Munich Chronotype Questionnaire (MCTQ). Sociodemographic, health, and occupational information were collected by questionnaire. Rotational shift nurses working nights had a lower mesor and an earlier time of peak melatonin production compared to day-only workers. More pronounced differences in mesor and acrophase were seen among later chronotypes, and shift workers working ≥3 consecutive nights. Among nurses, cumulative shift work was associated with a reduction in mesor. These results suggest that evening-types and/or shift workers working ≥3 consecutive nights are more susceptible to adverse light-at-night effects, whereas long-term shift work may also chronically reduce melatonin levels. Cumulative and current exposure to shift work, including nights, affects level and timing of melatonin production, which may be related to carcinogenesis and cancer risk. Cancer Epidemiol Biomarkers Prev; 25(5); 830-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Understanding and diagnosing shift work disorder.

    Science.gov (United States)

    Thorpy, Michael

    2011-09-01

    A significant proportion of the workforce in industrialized countries (16%) are employed as shift workers. These workers may be susceptible to shift work disorder (SWD), a circadian rhythm sleep disorder, particularly those who work at night or on early-morning shifts. Shift work disorder remains an underdiagnosed and undertreated problem among this population. Patients with SWD have difficulty initiating sleep and waking up. Often, these patients have excessive sleepiness during their work shift. Shift work disorder has been associated with decreased productivity, impaired safety, diminished quality of life, and adverse effects on health. Several tools have been validated to assess excessive daytime sleepiness and are often used to assess excessive nighttime sleepiness, such as that experienced in patients with SWD, including the Epworth Sleepiness Scale and the Multiple Sleep Latency Test. The criteria for diagnosing SWD as established by the American Academy of Sleep Medicine (AASM) and published in the International Classification of Sleep Disorders-Second Edition (ICSD-2) were most recently updated in 2005 and thus do not contain newer agents approved for use in patients with SWD. The symptoms of SWD can be treated using behavioral, prescription, and nonprescription therapies. Current treatment guidelines suggest nonpharmacologic interventions, such as exercise and exposure to light. In addition, medications that contain melatonin or caffeine may have clinical benefits in some patients with SWD. However, modafinil and armodafinil are approved by the US Food and Drug Administration to improve wakefulness in patients with excessive sleepiness associated with SWD, and recent data suggest a clinical benefit. The use of these therapies can significantly improve sleep, performance, and quality of life for patients with SWD.

  9. Lamb shift of Unruh detector levels

    Energy Technology Data Exchange (ETDEWEB)

    Garbrecht, Bjoern [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Prokopec, Tomislav [Institute for Theoretical Physics (ITF) and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands)

    2006-06-07

    We argue that the energy levels of an Unruh detector experience an effect similar to the Lamb shift in quantum electrodynamics. As a consequence, the spectrum of energy levels in a curved background is different from that in flat space. As examples, we consider a detector in an expanding universe and in Rindler space, and for the latter case we suggest a new expression for the local virtual energy density seen by an accelerated observer. In the ultraviolet domain, that is when the space between the energy levels is larger than the Hubble rate or the acceleration of the detector, the Lamb shift quantitatively dominates over the thermal response rate.

  10. Beta-shifts, their languages and computability

    DEFF Research Database (Denmark)

    Simonsen, Jakob Grue

    2011-01-01

    they give into the dynamics of the underlying system. We prove that the language of the ß-shift is recursive iff ß is a computable real number. That fact yields a precise characterization of the reals: The real numbers ß for which we can compute arbitrarily good approximations—hence in particular...... the numbers for which we can compute their expansion to some base—are precisely those for which there exists a program that decides for any finite sequence of digits whether the sequence occurs as a subword of some element of the ß-shift. While the “only if” part of the proof of the above result...

  11. Computing partial-shift respirator use periods

    Energy Technology Data Exchange (ETDEWEB)

    Shotwell, H.P.; Caporossi, J.C.

    1983-02-01

    Airborne contaminant concentrations cannot always be reduced to desired levels even after the installation of feasible engineering controls. The industrial hygienist may have to recommend full-shift or partial-shift use of appropriate respirators to reduce exposures. The method described allows a recommendation to be made of the minimum period of time an exposed employee needs to use a repirator in order to reach the desired exposure level. The procedure is based on the calculation of time-weighted averages, using the upper confidence levels of air sampling data, and the respirator protection factors.

  12. Lamb shift in the muonic deuterium atom

    Energy Technology Data Exchange (ETDEWEB)

    Krutov, A. A.; Martynenko, A. P. [Samara State University, Pavlov street 1, 443011, Samara (Russian Federation); Samara State University, Pavlov Street 1, 443011, Samara, Russia and Samara State Aerospace University named after academician S.P. Korolyov, Moskovskoye Shosse 34, 443086, Samara (Russian Federation)

    2011-11-15

    We present an investigation of the Lamb shift (2P{sub 1/2}-2S{sub 1/2}) in the muonic deuterium ({mu}D) atom using the three-dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear-structure, and recoil effects are calculated with the account of contributions of orders {alpha}{sup 3}, {alpha}{sup 4}, {alpha}{sup 5}, and {alpha}{sup 6}. The results are compared with earlier performed calculations. The obtained numerical value of the Lamb shift at 202.4139 meV can be considered a reliable estimate for comparison with forthcoming experimental data.

  13. Lamb Shift of Unruh Detector Levels

    CERN Document Server

    Garbrecht, B; Garbrecht, Bjorn; Prokopec, Tomislav

    2006-01-01

    We argue that the energy levels of an Unruh detector experience an effect similar to the Lamb shift in Quantum Electrodynamics. As a consequence, the spectrum of energy levels in a curved background is different from that in flat space. As examples, we consider a detector in an expanding Universe and in Rindler space, and for the latter case we suggest a new expression for the local virtual energy density seen by an accelerated observer. In the ultraviolet domain, that is when the space between the energy levels is larger than the Hubble rate or the acceleration of the detector, the Lamb shift quantitatively dominates over the thermal response rate.

  14. Lamb shift in muonic helium ion

    CERN Document Server

    Martynenko, A P

    2006-01-01

    The Lamb shift (2P_{1/2}-2S_{1/2}) in the muonic helium ion (mu ^4_2He)^+ is calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. Special attention is given to corrections of the electron vacuum polarization, the nuclear structure and recoil effects. The obtained numerical value of the Lamb shift 1381.716 meV can be considered as a reliable estimate for the comparison with experimental data.

  15. Lamb shift in muonic deuterium atom

    CERN Document Server

    Krutov, A A

    2011-01-01

    We present new investigation of the Lamb shift (2P_{1/2}-2S_{1/2}) in the muonic deuterium (mu d) atom using the three-dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear structure and recoil effects are calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. The results are compared with earlier performed calculations. The obtained numerical value of the Lamb shift 202.3616 meV can be considered as a reliable estimate for the comparison with forthcoming experimental data.

  16. Lambda shifted photonic crystal cavity laser

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    2010-01-01

    We propose and demonstrate an alternative type of photonic crystal laser design that shifts all the holes in the lattice by a fixed fraction of the targeted emission wavelength. The structures are realized in InGaAsP =1.15 with InGaAsP quantum wells =1.52 as gain material. Cavities with shifts of 1....../4 and 3/4 of the emission wavelength were fabricated and characterized. Measurements show threshold behavior for several modes at room temperature. Both structures are simulated using a finite difference time domain method to identify the resonances in the spectra and calculate the mode volume...

  17. Sleep, immunity and shift workers: A review

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Oliveira de Almeida

    2016-07-01

    Full Text Available To date, shift workers represent between 15% and 25% of the modern day workforce. Work time poses a great challenge to workers as it requires that they balance productivity and sleep time between shifts. As a result, these workers experience chronic sleep deprivation with increased fatigue and drowsiness due to this sleep deprivation. The impact of this kind of work on the immune system is not yet known. We conducted a literature review with the aim of evaluating articles on this specific type of work's effects on sleep and immunity.

  18. Mean Shift Registration Algorithm for Dissimilar Sensors

    Institute of Scientific and Technical Information of China (English)

    QI Yong-qing; JING Zhong-liang; HU Shi-qiang; ZHAO Hai-tao

    2009-01-01

    The mean shift registration (MSR) algorithm is proposed to accurately estimate the biases for multiple dissimilar sensors. The new algorithm is a batch optimization procedure. The maximum likelihood estimator is used to estimate the target states, and then the mean shift algorithm is implemented to estimate the sensor biases. Monte Carlo simulations show that the MSR algorithm has significant improvement in performance with reducing the standard deviation and mean of sensor biased estimation error compared with the maximum likelihood registration algorithm. The quantitative analysis and the qualitative analysis show that the MSR algorithm has less computation than the maximum likelihood registration method.

  19. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes...... chemical shifts. The method is benchmarked on folding simulations of five small proteins. In four cases the resulting structures are in excellent agreement with experimental data, the fifth case fail likely due to inaccuracies in the energy function. For the Chymotrypsin Inhibitor protein, a structure...

  20. Optical Doppler shift with structured light.

    Science.gov (United States)

    Belmonte, Aniceto; Torres, Juan P

    2011-11-15

    When a light beam with a transverse spatially varying phase is considered for optical remote sensing, in addition to the usual longitudinal Doppler frequency shift of the returned signal induced by the motion of the scatter along the beam axis, a new transversal Doppler shift appears associated to the motion of the scatterer in the plane perpendicular to the beam axis. We discuss here how this new effect can be used to enhance the current capabilities of optical measurement systems, adding the capacity to detect more complex movements of scatters.

  1. Shift Work Disorder and Mental and Physical Effects of Shift Work

    Directory of Open Access Journals (Sweden)

    Pinar Guzel Ozdemir

    2018-03-01

    Full Text Available With the growing prevalence of shift work all over the the world, the relationship between the daily lives of irregular lifestyles and rhythms is being investigated for those working as shift workers and their families. The effect of shift work on physical and mental health is a very important field of research in recent years. The onset and persistence of medical complications in shift workers includes impaired synchronization between work schedule rhythms and circadian clock. In this context, studies have been carried out showing the increased risk of sleep-wake disorders, gastrointestinal problems, and cardiovascular diseases. There is little information about the actual frequency, effect on health and treatment of shift work disorder, known as circadian rhythm sleep disorder. Shift work disorder includes insomnia and/or excessive sleepiness related with the work schedule. The aim of this rewiev, mentioning about the physical and mental effects of shift work, and to provide information about the diagnosis, clinic and treatment methods of shift-work disorder.

  2. Global Hemispheric Temperature Trends and Co–Shifting: A Shifting Mean Vector Autoregressive Analysis

    DEFF Research Database (Denmark)

    Holt, Matthew T.; Teräsvirta, Timo

    Shift methodology. Full information maximum likelihood (FIML) estimates of a bivariate system of temperature equations are then obtained. The system is then used to perform formal tests of co-system in the hemispheric series. The results show there is evidence of co-shifting in the temperature data, most notably...

  3. Computational Methods to Predict the Regioselectivity of Electrophilic Aromatic Substitution Reactions of Heteroaromatic Systems

    DEFF Research Database (Denmark)

    Kruszyk, Monika; Jessing, Mikkel; Kristensen, Jesper L;

    2016-01-01

    The validity of calculated NMR shifts to predict the outcome of electrophilic aromatic substitution reactions on different heterocyclic compounds has been examined. Based on an analysis of >130 literature examples it was found that the lowest calculated 13C and/or 1H chemical shift of a heterocyc...

  4. Noncanonical Reactions of Flavoenzymes

    Directory of Open Access Journals (Sweden)

    Pablo Sobrado

    2012-11-01

    Full Text Available Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a “molecular scaffold” in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  5. Comparative Study Between Ethylbenzene Disproportionation Reaction and its Ethylation Reaction with Ethanol over ZSM-5

    KAUST Repository

    Tukur, N. M.

    2009-06-23

    Ethylation of ethylbenzene with ethanol has been studied over ZSM-5 catalyst in a riser simulator that mimics the operation of a fluidized-bed reactor. The feed molar ratio of ethylbenzene:ethanol is 1:1. The study was carried out at 350, 400, 450, and 500°C for reaction times of 3, 5, 7, 10, 13, and 15 s. Comparisons are made between the results of the ethylbenzene ethylation reaction with that of ethylbenzene disproportionation reaction earlier reported. The effect of reaction conditions on ethylbenzene reactivity, p-diethylbenzene selectivity, total diethylbenzene (DEB) isomers selectivity, p-DEB-to-m-DEB ratio, benzene-to-DEB molar ratio, and benzene selectivity, are reported. Benzene selectivity is about 10 times more in the EB disproportion reaction as compared to its ethylation reaction with ethanol at 350°C. In addition, the results showed a p-DEB/m-DEB ratio for the EB ethylation reaction varying between 1.2-1.7, which is greater than the equilibrium values. Increase in temperature shifts the alkylation/dealkylation equilibrium towards dealkylation, thereby decreasing conversion and selectivity to DEB. © Springer Science+Business Media, LLC 2009.

  6. Reaction kinetics of polybutylene terephthalate polycondensation reaction

    NARCIS (Netherlands)

    Darda, P. J.; Hogendoorn, J. A.; Versteeg, G. F.; Souren, F.

    2005-01-01

    The kinetics of the forward polycondensation reaction of polybutylene terephthalate (PBT) has been investigated using thermogravimetric analysis (TGA). PBT - prepolymer with an initial degree of polymerization of 5.5 was used as starting material. The PBT prepolymer was prepared from dimethyl tereph

  7. Does exposure to UV radiation induce a shift to a Th-2-like immune reaction?

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, S.E. [Texas Univ., Houston, TX (United States). Dept. of Immunology

    1996-08-01

    In addition to being the primary cause of skin cancer, UV radiation is immune suppressive and there appears to be a link between the ability of UV to suppress the immune response and induce skin cancer. Cytokines made by UV-irradiated keratinocytes play an essential role in activating immune suppression. In particular, we have found that keratinocyte-derived interleukin (IL)-10 is responsible for the systemic impairment of antigen presenting cell function and the UV-induced suppression of delayed-type hypersenstivity (DTH). Antigen presentation by splenic adherent cells isolated from UV-irradiated mice to T helper-1 type T (Th1) cells is suppressed, whereas antigen presentation to T helper-2 type T (Th2) cells is enhanced. The enhanced antigen presentation to Th2 cells and the impaired presentation to Th1 cells can be reversed in vivo by injecting the UV-irradiated mice with monoclonal anti-IL-10 antibody. Furthermore, immune suppression can be transferred from UV-irradiated mice to normal recipients by adoptive transfer of T cells. Injecting the recipient mice with anti-IL-4 or anti-IL-10 prevents the transfer of immune suppression, suggesting the suppressor cells are Th2 cells. In addition, injecting UV-irradiated mice with IL-12, a cytokine that has been shown to be the primary inducer of Th1 cells, and one that prevents the differentiation of Th2 cells in vivo, reverses UV-induced immune suppression. These findings support the hypothesis that UV exposure activates IL-10 secretion, which depresses the function of Th1 cells, while enhancing the activity of Th2 cells. (Author).

  8. Transfusion reaction - hemolytic

    Science.gov (United States)

    ... of allergic transfusion reactions that do not cause hemolysis. ... transfusion, the transfusion must be stopped right away. Blood samples from the recipient (person getting the transfusion) and ...

  9. Desosamine in multicomponent reactions

    NARCIS (Netherlands)

    Achatz, Sepp; Dömling, Alexander

    2006-01-01

    Desosamine occurring ubiquitously in natural products is introduced into isocyanide based multicomponent reaction chemistry. Corresponding products are of potential interest for the design of novel antibiotics. © 2006.

  10. Metal-mullite reactions

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Labs., Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)

    1993-11-01

    Mullite was reacted with pure Al and with Ti or Zr dissolved in Ag-Cu eutectic alloys at 1100 C in Ar. Analysis of the Ti and Zr-containing specimens showed reaction zones with compositions of Ti{sub 50}Cu{sub 3O}O{sub 20} and ZrO{sub 2}, respectively. The Al-mullite specimen showed much more extensive penetration into the ceramic and a more diffuse reaction zone than the other two systems. Al{sub 2}O{sub 3} and Si were the main reaction products for Al-mullite reaction.

  11. Reactions at Solid Surfaces

    CERN Document Server

    Ertl, Gerhard

    2009-01-01

    Expanding on the ideas first presented in Gerhard Ertl's acclaimed Baker Lectures at Cornell University, Reactions at Solid Surfaces comprises an authoritative, self-contained, book-length introduction to surface reactions for both professional chemists and students alike. Outlining our present understanding of the fundamental processes underlying reactions at solid surfaces, the book provides the reader with a complete view of how chemistry works at surfaces, and how to understand and probe the dynamics of surface reactions. Comparing traditional surface probes with more modern ones, and brin

  12. Desosamine in multicomponent reactions

    NARCIS (Netherlands)

    Achatz, Sepp; Dömling, Alexander

    2006-01-01

    Desosamine occurring ubiquitously in natural products is introduced into isocyanide based multicomponent reaction chemistry. Corresponding products are of potential interest for the design of novel antibiotics. © 2006.

  13. Comparison of sleep disturbances in shift workers and people working with a fixed shift

    Directory of Open Access Journals (Sweden)

    Zohreh Yazdi

    2013-11-01

    Full Text Available Background: Different types of sleep disturbances can have a serious negative effect on a person’s ability, function and overall well-being. One of the most important issues that can result in sleep disturbances are occupational causes, the most important among them is shift work. The objective of this study was to compare the prevalence of sleep disturbances between shift work and non-shift workers. Material and Methods: This study was designed as a case-control study in 196 shift workers and 204 non-shift workers in a textile factory. The data were collected by using a comprehensive questionnaire including Pittsburg Sleep Quality Index questionnaire, Berlin Questionnaire, Epworth Sleepiness Scale, Insomnia Severity Index and Restless Leg Syndrome Questionnaire. Data analyses were carried out using the SPSS software version 13 by student's t-test, Chi square and multiple logistic regressions. Results: The duration of night sleep in shift workers was less than day workers (p<0.001. Prevalence of poor sleep quality and insomnia were higher in shift workers significantly than non shift workers (p<0.001, OR=2.3 95% CI: 1.7-2.9. The most prevalent type of insomnia was problems in initiating sleep (P=0.022, OR=2.2 95% CI: 1.5-3.2. There was no difference in the prevalence of excessive day-time sleepiness, restless leg syndrome, snoring, obstructive sleep apnea and different types of parasomnias between two groups. Conclusion: Reduced length of sleep and higher prevalence of poor sleep quality and insomnia in shift workers emphasizes the importance of serious attention to sleep disorders in shift workers.

  14. Shifting Context: A Better Approach to Training?

    Science.gov (United States)

    Lefkoe, Morty

    1985-01-01

    Context shifting is an approach to training that aims to transform the participants' point of view, allowing them to create a new context in which to perform their jobs, a new way of defining their roles that motivates them to exhibit skills and use information. (SK)

  15. Adding a complex shift to HVPT

    Energy Technology Data Exchange (ETDEWEB)

    Killingbeck, John P [Observatoire de Besancon-Institut UTINAM, CNRS UMR 6213, Universite de Franche-Comte, 41 bis Avenue de l' Observatoire BP1615, 25010 Besancon cedex (France) and Centre for Mathematics, Loten Building, University of Hull, Hull HU6 7RX (United Kingdom)

    2009-03-20

    A complex coordinate shift is incorporated in renormalized hypervirial perturbation theory. Test calculations on harmonic oscillators with cubic perturbations show that the resulting method produces accurate numerical results for the real energies of PT symmetric Hamiltonians with complex potentials and for the complex resonance energies of Hamiltonians with real potentials.

  16. Shifting Human Performance Technology to Management.

    Science.gov (United States)

    King, Stephen B.

    1998-01-01

    Describes the benefits and potential drawbacks of transferring HPT (human performance technology) skills from outside consultants to managers within organizations. Discusses HPT competence and control over work environment, the role of traditional HPT experts after the shift, and three approaches to implementing the change. (PEN)

  17. Implications of Shifting Technology in Education

    Science.gov (United States)

    Holland, Janet; Holland, John

    2014-01-01

    This article examines the implications of shifting technology trends by looking at what we've lost or are losing, where we are, and where we need to go for making the needed transitions in knowledge and skills. Areas of growth within new media and the tech industry are good indicators of our growing interests in mobility, improved quality,…

  18. Ambiguity Produces Attention Shifts in Category Learning

    Science.gov (United States)

    Vadillo, Miguel A.; Orgaz, Cristina; Luque, David; Nelson, James Byron

    2016-01-01

    It has been suggested that people and nonhuman animals protect their knowledge from interference by shifting attention toward the context when presented with information that contradicts their previous beliefs. Despite that suggestion, no studies have directly measured changes in attention while participants are exposed to an interference…

  19. Discrete ambiguities in phase-shift analysis

    NARCIS (Netherlands)

    Heemskerk, A.C.; Kok, L.P.; Roo, M. de

    1975-01-01

    In two practical examples (α-3He and α-α scattering) we investigate to what extent the elastic amplitude above the first inelastic threshold, determined from phase-shift analysis, is subject to ambiguity. We find that it is extremely difficult to determine the correct physical amplitude uniquely.

  20. Reducibility of Covers of AFT shifts

    DEFF Research Database (Denmark)

    Bates, Teresa; Eilers, Søren; Pask, David

    2011-01-01

    In this paper we show that the reducibility structure of several covers of sofic shifts is a flow invariant. In addition, we prove that for an irreducible subshift of almost finite type the left Krieger cover and the past set cover are reducible. We provide an example which shows that there are n...

  1. Lamb Shift in Light Muonic Atoms - Revisited

    CERN Document Server

    Borie, E

    2011-01-01

    In connection with recent and proposed experiments, and new theoretical results, my previous calculations of the Lamb shift in muonic hydrogen will be reviewed and compared with other work. In addition, numerical results for muonic deuterium and helium will be presented.

  2. Robust balance shift control with posture optimization

    NARCIS (Netherlands)

    Kavafoglu, Z.; Kavafoglu, Ersan; Egges, J.

    2015-01-01

    In this paper we present a control framework which creates robust and natural balance shifting behaviours during standing. Given high-level features such as the position of the center of mass projection and the foot configurations, a kinematic posture satisfying these features is synthesized using o

  3. NEG-shift, Licensing, and Repair Strategies

    DEFF Research Database (Denmark)

    Christensen, Ken Ramshøj

    2008-01-01

    I entertain the idea that the cross-linguistic variation in the licensing of NEG-shift, the movement of negative objects to spec-NegP, can be accounted for by a few representational constraints that are not directly related to case licensing or feature checking, and which potentially conflict wit...

  4. Forecasting Interest Rates with Shifting Endpoints

    NARCIS (Netherlands)

    D.J.C. van Dijk (Dick); S.J. Koopman (Siem Jan); M. van der Wel (Michel); J.H. Wright (Jonathan)

    2012-01-01

    textabstractMany economic studies on inflation forecasting have found favorable results when inflation is modeled as a stationary process around a slowly time-varying trend. In contrast, the existing studies on interest rate forecasting either treat yields as being stationary, without any shifting e

  5. Hippocampal frequency shifts in different behavioural situations

    NARCIS (Netherlands)

    Kamp, A.; Lopes da Silva, F.H.; Storm van Leeuwen, W.

    1971-01-01

    Electrical activity of the dog's hippocampus was recorded in (a) an operant behaviour situation, and (b) a field situation by a radio-telemetering system. The dominant frequency of the theta rhythm shifted consistently from 4–5 c/sec to 6–7 c/sec when a dog (a) withdrew from a pedal after being rewa

  6. Call for Policy Shift to Happiness

    NARCIS (Netherlands)

    J.C. Ott (Jan Cornelis)

    2006-01-01

    textabstractRichard Layard is an economist and an expert in unemployment and inequality. He worked for the British government as an economic advisor and in 2000 he became a member of the House of Lords. His ambition is to shift the direction of public policy away from crude economic goals like wealt

  7. Hispanics Find Jobs that Shift Migration

    Science.gov (United States)

    Gilroy, Marilyn

    2007-01-01

    Economic opportunity, the force that has driven population shifts for years, is changing the face of migration as Hispanics move into parts of the nation beyond border states and traditional ports of entry. North Carolina, Tennessee, Georgia, and Indiana are experiencing a steady growth in Hispanic population. In addition, West Virginia, Ohio, and…

  8. Haptics in computer music : a paradigm shift

    CERN Document Server

    Castagné, Nicolas; Florens, Jean-Loup; Luciani, Annie

    2010-01-01

    With an historical point of view combined with a bibliographic overview, the article discusses the idea that haptic force feedback transducers correspond with a paradigm shift in our real-time tools for creating music. So doing, il shows that computer music may be regarded as a major field of research and application for haptics.

  9. On the frequency shift of gravitational waves

    CERN Document Server

    De Sousa, C M G

    2002-01-01

    Considering plane gravitational waves propagating through flat spacetime, it is shown that curvatures experienced both in the starting point and during their arrival at the earth can cause a considerable shift in the frequencies as measured by earth and space-based detectors.

  10. Using LEADS to shift to high performance.

    Science.gov (United States)

    Fenwick, Shauna; Hagge, Erna

    2016-03-01

    Health systems across Canada are tasked to measure results of all their strategic initiatives. Included in most strategic plans is leadership development. How to measure leadership effectiveness in relation to organizational objectives is key in determining organizational effectiveness. The following findings offer considerations for a 21(st)-century approach to shifting to high-performance systems.

  11. Mean Shift Detection for State Space Models

    NARCIS (Netherlands)

    Kuhn, J.; Mandjes, M.; Taimre, T.; Weber, T.; McPhee, M.J.; Anderssen, R.S.

    2015-01-01

    In this paper we develop and validate a procedure for testing against a shift in mean in the observations and hidden state sequence of state space models with Gaussian noise. State space models are popular for modelling stochastic networks as they allow to take into account that observations of the

  12. Average sampling theorems for shift invariant subspaces

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The sampling theorem is one of the most powerful results in signal analysis. In this paper, we study the average sampling on shift invariant subspaces, e.g. wavelet subspaces. We show that if a subspace satisfies certain conditions, then every function in the subspace is uniquely determined and can be reconstructed by its local averages near certain sampling points. Examples are given.

  13. Shift dynamics of capillary self-alignment

    NARCIS (Netherlands)

    Arutinov, G.; Mastrangeli, M.; Smits, E.C.P.; Heck, G.V.; Schoo, H.F.M.; Toonder, J.J.M. den; Dietzel, A.H.

    2014-01-01

    This paper describes the dynamics of capillary self-alignment of components with initial shift offsets from matching receptor sites. The analysis of the full uniaxial self-alignment dynamics of foil-based mesoscopic dies from pre-alignment to final settling evidenced three distinct, sequential regim

  14. Competition for FDI and Profit Shifting

    DEFF Research Database (Denmark)

    Ma, Jie; Raimondos-Møller, Pascalis

    When countries compete for the location of a new multinational plant they need to be aware of the profit shifting opportunities this new plant creates for the global multinational firm. By modelling explicitly the multinational’s intra-firm transactions, we show that the home market advantage tha...

  15. Tilts and Ionic Shifts in Rhombohedral Perovskites

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    We make a comparative analysis of rhombohedral perovskites (ABO3) with/without oxygen rotations and ionic shifts, within the framework of a generalised effective field approach. We analyse available data on LaAlO3 and LiTaO3 and new data on Zr-rich PZT, examples of three different ways of structural

  16. Shifted Non-negative Matrix Factorization

    DEFF Research Database (Denmark)

    Mørup, Morten; Madsen, Kristoffer Hougaard; Hansen, Lars Kai

    2007-01-01

    where a shift in onset of frequency profile can be induced by the Doppler effect. However, the model is also relevant for biomedical data analysis where the sources are given by compound intensities over time and the onset of the profiles have different delays to the sensors. A simple algorithm based...

  17. Atomic clocks with suppressed blackbody radiation shift

    CERN Document Server

    Yudin, V I; Okhapkin, M V; Bagayev, S N; Tamm, Chr; Peik, E; Huntemann, N; Mehlstaubler, T E; Riehle, F

    2011-01-01

    We develop a nonstandard concept of atomic clocks where the blackbody radiation shift (BBRS) and its temperature fluctuations can be dramatically suppressed (by one to three orders of magnitude) independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies $\

  18. Unraveling the Shift to the Entrepreneurial Economy

    NARCIS (Netherlands)

    D.B. Audretsch (David); A.R. Thurik (Roy)

    2010-01-01

    textabstractA recent literature has emerged providing compelling evidence that a major shift in the organization of the developed economies has been taking place: away from what has been characterized as the managed economy towards the entrepreneurial economy. In particular, the empirical evidence p

  19. Call for Policy Shift to Happiness

    NARCIS (Netherlands)

    J.C. Ott (Jan Cornelis)

    2006-01-01

    textabstractRichard Layard is an economist and an expert in unemployment and inequality. He worked for the British government as an economic advisor and in 2000 he became a member of the House of Lords. His ambition is to shift the direction of public policy away from crude economic goals like

  20. Doppler Shift Compensation Schemes in VANETs

    Directory of Open Access Journals (Sweden)

    F. Nyongesa

    2015-01-01

    Full Text Available Over the last decade vehicle-to-vehicle (V2V communication has received a lot of attention as it is a crucial issue in intravehicle communication as well as in Intelligent Transportation System (ITS. In ITS the focus is placed on integration of communication between mobile and fixed infrastructure to execute road safety as well as nonsafety information dissemination. The safety application such as emergence alerts lays emphasis on low-latency packet delivery rate (PDR, whereas multimedia and infotainment call for high data rates at low bit error rate (BER. The nonsafety information includes multimedia streaming for traffic information and infotainment applications such as playing audio content, utilizing navigation for driving, and accessing Internet. A lot of vehicular ad hoc network (VANET research has focused on specific areas including channel multiplexing, antenna diversity, and Doppler shift compensation schemes in an attempt to optimize BER performance. Despite this effort few surveys have been conducted to highlight the state-of-the-art collection on Doppler shift compensation schemes. Driven by this cause we survey some of the recent research activities in Doppler shift compensation schemes and highlight challenges and solutions as a stock-taking exercise. Moreover, we present open issues to be further investigated in order to address the challenges of Doppler shift in VANETs.

  1. Core level shifts of intercalated graphene

    Science.gov (United States)

    Schröder, Ulrike A.; Petrović, Marin; Gerber, Timm; Martínez-Galera, Antonio J.; Grånäs, Elin; Arman, Mohammad A.; Herbig, Charlotte; Schnadt, Joachim; Kralj, Marko; Knudsen, Jan; Michely, Thomas

    2017-03-01

    Through intercalation of metals and gases the Dirac cone of graphene on Ir(111) can be shifted with respect to the Fermi level without becoming destroyed by strong hybridization. Here, we use x-ray photoelectron spectroscopy to measure the C 1s core level shift (CLS) of graphene in contact with a number of structurally well-defined intercalation layers (O, H, Eu, and Cs). By analysis of our own and additional literature data for decoupled graphene, the C 1s CLS is found to be a non-monotonic function of the doping level. For small doping levels the shifts are well described by a rigid band model. However, at larger doping levels, a second effect comes into play which is proportional to the transferred charge and counteracts the rigid band shift. Moreover, not only the position, but also the C 1s peak shape displays a unique evolution as a function of doping level. Our conclusions are supported by intercalation experiments with Li, with which, due to the absence of phase separation, the doping level of graphene can be continuously tuned.

  2. NEG-shift, Licensing, and Repair Strategies

    DEFF Research Database (Denmark)

    Christensen, Ken Ramshøj

    2008-01-01

    I entertain the idea that the cross-linguistic variation in the licensing of NEG-shift, the movement of negative objects to spec-NegP, can be accounted for by a few representational constraints that are not directly related to case licensing or feature checking, and which potentially conflict wit...

  3. Early dynamics of the semantic priming shift

    Science.gov (United States)

    Lavigne, Frédéric; Chanquoy, Lucile; Dumercy, Laurent; Vitu, Françoise

    2013-01-01

    Semantic processing of sequences of words requires the cognitive system to keep several word meanings simultaneously activated in working memory with limited capacity. The real- time updating of the sequence of word meanings relies on dynamic changes in the associates to the words that are activated. Protocols involving two sequential primes report a semantic priming shift from larger priming of associates to the first prime to larger priming of associates to the second prime, in a range of long SOAs (stimulus-onset asynchronies) between the second prime and the target. However, the possibility for an early semantic priming shift is still to be tested, and its dynamics as a function of association strength remain unknown. Three multiple priming experiments are proposed that cross-manipulate association strength between each of two successive primes and a target, for different values of short SOAs and prime durations. Results show an early priming shift ranging from priming of associates to the first prime only to priming of strong associates to the first prime and all of the associates to the second prime. We investigated the neural basis of the early priming shift by using a network model of spike frequency adaptive cortical neurons (e.g., Deco & Rolls, 2005), able to code different association strengths between the primes and the target. The cortical network model provides a description of the early dynamics of the priming shift in terms of pro-active and retro-active interferences within populations of excitatory neurons regulated by fast and unselective inhibitory feedback. PMID:23717346

  4. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  5. Methane storage in dry water gas hydrates.

    Science.gov (United States)

    Wang, Weixing; Bray, Christopher L; Adams, Dave J; Cooper, Andrew I

    2008-09-03

    Dry water stores 175 v(STP)/v methane at 2.7 MPa and 273.2 K in a hydrate form which is close to the Department of Energy volumetric target for methane storage. Dry water is a silica-stabilized free-flowing powder (95% wt water), and fast methane uptakes were observed (90% saturation uptake in 160 min with no mixing) as a result of the relatively large surface-to-volume ratio of this material.

  6. Classical toy models for the monopole shift and the quadrupole shift.

    Science.gov (United States)

    Rose, Katrin; Cottenier, Stefaan

    2012-08-28

    The penetration of s- and p(1/2)-electrons into the atomic nucleus leads to a variety of observable effects. The presence of s-electrons inside the nucleus gives rise to the isotope shift in atomic spectroscopy, and to the isomer shift in Mössbauer spectroscopy. Both well-known phenomena are manifestations of the more general monopole shift. In a recent paper (Koch et al., Phys. Rev. A, 2010, 81, 032507), we discussed the existence of the formally analogous quadrupole shift: a tensor correction to the electric quadrupole interaction due to the penetration of relativistic p(1/2)-electrons into the nucleus. The quadrupole shift is predicted to be observable by high-accuracy molecular spectroscopy on a set of 4 molecules (the quadrupole anomaly). The simple physics behind all these related phenomena is easily obscured by an elaborate mathematical formalism that is required for their derivation: a multipole expansion in combination with perturbation theory, invoking quantum physics and ideally relativity. In the present paper, we take a totally different approach. We consider three classical 'toy models' that can be solved by elementary calculus, and that nevertheless contain all essential physics of the monopole and quadrupole shifts. We hope that this intuitive (yet exact) analysis will increase the understanding about multipole shift phenomena in a broader community.

  7. First-principles calculation of core-level binding energy shift in surface chemical processes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Combined with third generation synchrotron radiation light sources, X-ray photoelectron spectroscopy (XPS) with higher energy resolution, brilliance, enhanced surface sensitivity and photoemission cross section in real time found extensive applications in solid-gas interface chemistry. This paper reports the calculation of the core-level binding energy shifts (CLS) using the first-principles density functional theory. The interplay between the CLS calculations and XPS measurements to uncover the structures, adsorption sites and chemical reactions in complex surface chemical processes are highlight. Its application on clean low index (111) and vicinal transition metal surfaces, molecular adsorption in terms of sites and configuration, and reaction kinetics are domonstrated.

  8. Moving attention - Evidence for time-invariant shifts of visual selective attention

    Science.gov (United States)

    Remington, R.; Pierce, L.

    1984-01-01

    Two experiments measured the time to shift spatial selective attention across the visual field to targets 2 or 10 deg from central fixation. A central arrow cued the most likely target location. The direction of attention was inferred from reaction times to expected, unexpected, and neutral locations. The development of a spatial attentional set with time was examined by presenting target probes at varying times after the cue. There were no effects of distance on the time course of the attentional set. Reaction times for far locations were slower than for near, but the effects of attention were evident by 150 msec in both cases. Spatial attention does not shift with a characteristic, fixed velocity. Rather, velocity is proportional to distance, resulting in a movement time that is invariant over the distances tested.

  9. Fluorogenic organocatalytic reactions

    NARCIS (Netherlands)

    Raeisolsadati Oskouei, M.

    2017-01-01

    In this thesis, we introduce fluorescence spectroscopy as a new tool to gain insight into the interactions between the substrates and catalyst during organocatalytic reactions. The ultimate goal is to resolve the kinetics of the binding and reaction steps and obtain detailed understanding of the

  10. Chemical burn or reaction

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000059.htm Chemical burn or reaction To use the sharing features on this page, please enable JavaScript. Chemicals that touch skin can lead to a reaction on the skin, throughout the body, or both. ...

  11. Reactions to Attitudinal Deviancy.

    Science.gov (United States)

    Levine, John M.; Allen, Vernon L.

    This paper presents a critical review of empirical and theoretical treatments of group reaction to attitudinal deviancy. Inspired by Festinger's (1950) ideas on resolution of attitudinal discrepancies in groups, Schachter (1951) conducted an experiment that has greatly influenced subsequent research and theory concerning reaction to attitudinal…

  12. Allergic reactions to vaccines.

    Science.gov (United States)

    Wood, Robert A

    2013-09-01

    Anaphylactic reactions to vaccines are rare but do occur, and have been reported for nearly every vaccine. And while the reaction rate per each dose of vaccine is low, this is a common clinical question due in large part to the enormous numbers of vaccines administered. Reactions are most often due to vaccine constituents rather than the microbial components of the vaccine, but in many instances, the specific ingredient triggering the reaction cannot be definitively identified. Evaluation of patients with suspected vaccine reactions should begin by determining whether the symptoms and timing of the reaction were consistent with a true allergic reaction, followed by an assessment to determine whether the patient needs further doses of the vaccine in question, or similar vaccines, in the future. Skin and serologic testing to vaccines and vaccine constituents can then be performed to further assess the potential cause of the reaction and to develop a plan for future immunizations. Specific guidelines for the administration of influenza vaccines to egg allergic patients have been revised to allow virtually all patients to receive this vaccine in a straightforward manner. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Personality factors related to shift work tolerance in two- and three-shift workers.

    Science.gov (United States)

    Natvik, Sylvia; Bjorvatn, Bjørn; Moen, Bente Elisabeth; Magerøy, Nils; Sivertsen, Børge; Pallesen, Ståle

    2011-07-01

    This study aimed to investigate whether different personality variables were associated with shift work tolerance, and whether these potential associations were moderated by various types of shift work. The sample comprised 1505 nurses who worked either two or three rotating shifts. Personality traits were measured in terms of morningness, flexibility, languidity and hardiness. Morningness reflects the tendency to be alert relatively early in the morning and sleepy relatively early in the evening. Flexibility denotes the ability to both work and sleep at odd times of the day, while languidity concerns the tendency to become tired/sleepy when cutting down on sleep. Hardiness relates to resilience to stressful life events. The dependent variables in this study comprised of measures of insomnia, sleepiness, depression and anxiety. Hierarchical regression analyses, which controlled for demographic variables and work load, revealed that Morningness was significantly and negatively related to insomnia. The Morningness by Shift type interaction was overall significant for depressive symptoms. Morningness was near significantly associated with lower levels of depressive symptoms in three-shift workers, but unrelated to depressive symptoms in two-shift workers. Flexibility was associated with higher levels of depressive symptoms. Flexibility by Shift type interaction was significant for insomnia, indicating that flexibility was negatively associated with insomnia for three-shift workers and unrelated with insomnia for two-shift workers. Languidity was associated with higher levels of sleepiness, depressive and anxiety symptoms. Hardiness was associated with lower levels of all four dependent variables. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Chemical reaction and separation method

    NARCIS (Netherlands)

    Jansen, J.C.; Kapteijn, F.; Strous, S.A.

    2005-01-01

    The invention is directed to process for performing a chemical reaction in a reaction mixture, which reaction produces water as by-product, wherein the reaction mixture is in contact with a hydroxy sodalite membrane, through which water produced during the reaction is removed from the reaction mixtu

  15. Operation summary of QDB-03 type sulfur tolerant shift catalys%QDB-03型耐硫变换催化剂运行总结

    Institute of Scientific and Technical Information of China (English)

    娄伦武; 胡云凯

    2014-01-01

    简述了QDB-03是一种以镁铝尖晶石为载体,不含碱金属助剂的催化剂,在高压、高空速和高水/气的条件下使用时,具有较好的活性和结构稳定性。并结合QDB-03型耐硫变换催化剂的运行数据,从几个方面分析了第一变换炉出口CO含量上升较快的原因以及催化剂运行过程中所采取的措施。%The paper briefly introduces QDB-03 is a kind of catalyst with magnesium aluminate spinel as a carrier, without alkalis auxiliaries, while under high-pressure, high-altitude and high-speed water/gas ratio conditions, there is good activity and stable structure. It also combines operating data of QDB-03 sulfur tolerant shift catalyst, it analyzes reasons of content of CO rising fast at the first temperature shift furnace outlet, and adopting measures in catalyst operation process.

  16. CO2 as Both a Selective Agent and Reaction Media in Palladium-Catalyzed Reductive Ullmann-Type Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Heng李金恒; XIE Ye-Xiang谢叶香

    2004-01-01

    Carbon dioxide as both a selective agent and reaction media in the palladium-catalyzed Ullmann-type coupling has been described. The results showed that aryl chlorides could be easily activated in the presence of carbon dioxide and the chemoselectivity shifted toward the palladium-catalyzed Ullmann-type coupling reaction. In liquid carbon dioxide, homocoupling reactions of aryl halides, including less reactive aryl chlorides, were carried out smoothly in moderate to good yields using Pd/C, zinc, and H2O as the catalytic system at room temperature.

  17. Topiramate-induced bilateral acute angle closure glaucoma and myopic shift

    Directory of Open Access Journals (Sweden)

    Rajnish Raj

    2014-06-01

    Full Text Available Topiramate (TPM shows idiosyncratic adverse reaction of peripheral ciliochoroidal effusion leading to acute angle closure glaucoma (AACG, which should be diagnosed and managed at the earliest to prevent irreversible visual loss. We report, a case of TPM-induced bilateral AACG and myopic shift, which was reversed by omitting TPM and administering antiglaucoma medications. [Int J Basic Clin Pharmacol 2014; 3(3.000: 562-565

  18. Shape-shifting colloids via stimulated dewetting

    Science.gov (United States)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  19. A New Relation between Lamb Shift Energies

    CERN Document Server

    Kubo, Hiroaki; Kanda, Naohiro; Kato, Hiroshi; Munakata, Yasunori; Oshima, Sachiko; Tsuda, Kazuhiro

    2010-01-01

    We derive a new relation between the observed Lamb shift energies of hydrogen and muonium atoms. The relation is based on the non-relativistic description of the Lamb shift, and the proper treatment of the reduced mass of electron and target particles (proton and muon) leads to the new formula which is expressed as $\\displaystyle{{\\Delta E^{(H)}_{2s_{1/2}}\\over \\Delta E^{(\\mu)}_{2s_{1/2}}} =({1+{m_e\\over m_\\mu}\\over 1+{m_e\\over M_p}})^3}$. This relation achieves an excellent agreement with experiment and presents an important QED test free from the cutoff momentum $\\Lambda$.

  20. Eliminating light shifts for single atom trapping

    Science.gov (United States)

    Hutzler, Nicholas R.; Liu, Lee R.; Yu, Yichao; Ni, Kang-Kuen

    2017-02-01

    Microscopically controlled neutral atoms in optical tweezers and lattices have led to exciting advances in the study of quantum information and quantum many-body systems. The light shifts of atomic levels from the trapping potential in these systems can result in detrimental effects such as fluctuating dipole force heating, inhomogeneous detunings, and inhibition of laser cooling, which limits the atomic species that can be manipulated. In particular, these light shifts can be large enough to prevent loading into optical tweezers directly from a magneto-optical trap. We implement a general solution to these limitations by loading, as well as cooling and imaging the atoms with temporally alternating beams, and present an analysis of the role of heating and required cooling for single atom tweezer loading. Because this technique does not depend on any specific spectral properties, it should enable the optical tweezer platform to be extended to nearly any atomic or molecular species that can be laser cooled and optically trapped.

  1. Phase-Shifting Zernike Interferometer Wavefront Sensor

    Science.gov (United States)

    Wallace, J. Kent; Rao, Shanti; Jensen-Clemb, Rebecca M.; Serabyn, Gene

    2011-01-01

    The canonical Zernike phase-contrast technique1,2,3,4 transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/D) of the PSF which is intermediate between the input and output planes. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective. Second, the phase shift in the central core of the PSF is dynamic and or arbitrary size. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument

  2. Is the Lamb shift chemically significant?

    Science.gov (United States)

    Dyall, Kenneth G.; Bauschlicher, Charles W., Jr.; Schwenke, David W.; Pyykko, Pekka; Arnold, James (Technical Monitor)

    2001-01-01

    The contribution of the Lamb shift to the atomization energies of some prototype molecules, BF3, AlF3, and GaF3, is estimated by a perturbation procedure. It is found to be in the range of 3-5% of the one-electron scalar relativistic contribution to the atomization energy. The maximum absolute value is 0.2 kcal/mol for GaF3. These sample calculations indicate that the Lamb shift is probably small enough to be neglected for energetics of molecules containing light atoms if the target accuracy is 1 kcal/mol, but for higher accuracy calculations and for molecules containing heavy elements it must be considered.

  3. A new look at shifting regret

    CERN Document Server

    Cesa-Bianchi, Nicolò; Lugosi, Gabor; Stoltz, Gilles

    2012-01-01

    We investigate extensions of well-known online learning algorithms such as fixed-share of Herbster and Warmuth (1998) or the methods proposed by Bousquet and Warmuth (2002). These algorithms use weight sharing schemes to perform as well as the best sequence of experts with a limited number of changes. Here we show, with a common, general, and simpler analysis, that weight sharing in fact achieves much more than what it was designed for. We use it to simultaneously prove new shifting regret bounds for online convex optimization on the simplex in terms of the total variation distance as well as new bounds for the related setting of adaptive regret. Finally, we exhibit the first logarithmic shifting bounds for exp-concave loss functions on the simplex.

  4. Bethe logarithm and QED shift for lithium.

    Science.gov (United States)

    Yan, Zong-Chao; Drake, G W F

    2003-09-12

    A novel finite basis set method is used to calculate the Bethe logarithm for the ground 2 (2)S(1/2) and excited 3 (2)S(1/2) states of lithium. The basis sets are constructed to span a huge range of distance scales within a single calculation, leading to well-converged values for the Bethe logarithm. The results are used to calculate an accurate value for the complete quantum electrodynamic energy shift up to order alpha(3) Ry. The calculated 3 (2)S(1/2)-2 (2)S(1/2) transition frequency for 7Li is 27 206.092 6(9) cm(-1), and the ionization potential for the 2 (2)S(1/2) state is 43 487.158 3(6) cm(-1). The 7Li-6Li isotope shift is also considered, and all the results compared with experiment.

  5. Pole Inflation - Shift Symmetry and Universal Corrections

    CERN Document Server

    Broy, Benedict J; Roest, Diederik; Westphal, Alexander

    2015-01-01

    An appealing explanation for the Planck data is provided by inflationary models with a non-canonical kinetic term: a Laurent expansion of the kinetic function translates into a potential with a nearly shift-symmetric plateau in canonical fields. The shift symmetry can be broken at large field values by including higher-order poles. We show that the resulting corrections to the inflationary dynamics and predictions are universal at lowest order, and can induce power loss at large angular scales. At lowest order there are no corrections from a pole of one order higher; this is referred to as extended no-scale in string theory and we explain why this is a general phenomenon. Finally, we outline which other corrections may arise as string loop corrections.

  6. Radiation reaction in quantum field theory

    Science.gov (United States)

    Higuchi, Atsushi

    2002-11-01

    We investigate radiation-reaction effects for a charged scalar particle accelerated by an external potential realized as a space-dependent mass term in quantum electrodynamics. In particular, we calculate the position shift of the final-state wave packet of the charged particle due to radiation at lowest order in the fine structure constant α and in the small ħ approximation. We show that it disagrees with the result obtained using the Lorentz-Dirac formula for the radiation-reaction force, and that it agrees with the classical theory if one assumes that the particle loses its energy to radiation at each moment of time according to the Larmor formula in the static frame of the potential. However, the discrepancy is much smaller than the Compton wavelength of the particle. We also point out that the electromagnetic correction to the potential has no classical limit.

  7. Shifting entanglement from states to observables

    Energy Technology Data Exchange (ETDEWEB)

    Ranade, Kedar [Institut fuer Quantenphysik, Universitaet Ulm, 89069 Ulm (Germany); Harshman, Nathan [Department of Physics, American University, Washington DC (United States); Institut fuer Quantenphysik, Universitaet Ulm, 89069 Ulm (Germany)

    2011-07-01

    We illustrate that for any pure state on a finite-dimensional Hilbert space we can construct observables that induce a tensor product structure such that the amount of entanglement of the state may take arbitrary values. In particular, we provide an example of how to construct observables on a d-dimensional system such that an arbitrary known pure state can be treated as maximally entangled. In effect, we show how entanglement properties can be shifted from states to observables.

  8. Multidimensional dynamical systems accepting the normal shift

    CERN Document Server

    Boldin, A Y

    1994-01-01

    The dynamical systems of the form \\ddot\\bold r=\\bold F (\\bold r,\\dot\\bold r) in \\Bbb R^n accepting the normal shift are considered. The concept of weak normality for them is introduced. The partial differential equations for the force field \\bold F(\\bold r,\\dot\\bold r) of the dynamical systems with weak and complete normality are derived.

  9. Tip shift in the zero inertia powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Serrarens, A.F.A.; Vroemen, B.G.; Veldpaus, F.E.; Veenhuizen, P.A.

    2002-07-01

    For any transmission type the vehicle's responsiveness during large and/or fast engine speed shifts may appear reluctant or even counteractive. This is caused by unwanted inertial torques stemming from accelerating or decelerating the rotating elements within the engine and transmission. Reminiscent of comparable behaviour seen in aircraft jet-propulsion, this phenomenon is also referred to as 'jet-start'. To overcome this behaviour, a CVT powertrain is augmented with a powersplitting planetary gear stage and compact steel flywheel. The new transmission-coded zero inertia (ZI) powertrain-seamlessly combines two contradictive features: the driveability in terms of the pedal-to-wheel response is greatly improved and a large leap towards optimal fuel economy can be made. The latter is achieved by cruising the vehicle at extremely low engine speeds owing to the large ratio-coverage of the CVT. As for the driveability, the flywheel acts as a peak shaver. During engine speed shifts it delivers power at (semi-) pedal kick down (downshift) and absorbs kinetic energy of the engine sided powertrain elements at pedal back-out (upshift). In this paper, the behaviour of the ZI system is evaluated in 'tip-shift' mode. In field experiments the tip-shift in a VW Bora test vehicle with ZI powertrain is compared with a commercially available Mini One with CVT. A test panel of 10 people drove the vehicles, executed predefined tasks and evaluated their findings. The results of these experiments are also reported in this paper. (orig.)

  10. Exploring Insight: Focus on Shifts of Attention

    Science.gov (United States)

    Palatnik, Alik; Koichu, Boris

    2015-01-01

    The paper presents and analyses a sequence of events that preceded an insight solution to a challenging problem in the context of numerical sequences. A three­week long solution process by a pair of ninth­-grade students is analysed by means of the theory of shifts of attention. The goal for this article is to reveal the potential of this theory…

  11. Shifts in Color Discrimination during Early Pregnancy

    OpenAIRE

    Levente L. Orbán; Farhad N. Dastur

    2012-01-01

    The present study explores two hypotheses: a) women during early pregnancy should experience increased color discrimination ability, and b) women during early pregnancy should experience shifts in subjective preference away from images of foods that appear either unripe or spoiled. Both of these hypotheses derive from an adaptive view of pregnancy sickness that proposes the function of pregnancy sickness is to decrease the likelihood of ingestion of foods with toxins or teratogens. Changes to...

  12. Collisionally induced atomic clock shifts and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Band, Y. B.; Osherov, I. [Departments of Chemistry and Electro-Optics and the Ilse Katz Center for Nano-Science, Ben-Gurion University, Beer-Sheva 84105 (Israel)

    2011-07-15

    We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Numerical results for a finite-temperature {sup 87}Sr {sup 1}S{sub 0} (F=9/2) atomic clock in a magic wavelength optical lattice are presented.

  13. Base Erosion, Profit Shifting and Developing Countries

    OpenAIRE

    Ernesto Crivelli; Ruud A. de Mooij; Michael Keen

    2015-01-01

    International corporate tax issues are prominent in public debate, notably with the G20-OECD project addressing Base Erosion and Profit Shifting (‘BEPS’). But while there is considerable empirical evidence for advanced countries on the cross-country fiscal externalities at the heart of these issues, there is almost none for developing countries. This paper uses panel data for 173 countries over 33 years to explore their magnitude and nature, focusing particularly on developing countries a...

  14. Shift sampling theory of Fourier transform computation

    Institute of Scientific and Technical Information of China (English)

    柴玉璞

    1997-01-01

    The DFT transform us extended to DFTξη transform and the relationship between FT and DFTξη is given by the Fourier transform discretization theorem. Based on the theorem, the DFTξη algorithm-error equation (DFTξη A-E equation) is established, and the minimization property of discrete effect and the oscillation property of truncation effect are demonstrated. All these construct the shift sampling theory——a new theory about Fourier transform computation.

  15. Written Language Shift among Norwegian Youth

    Science.gov (United States)

    Özerk, Kamil; Todal, Jon

    2013-01-01

    In Norway there are two written Norwegian languages, Bokmâl and Nynorsk. Of these two written languages Bokmâl is being used by the majority of the people, and Bokmâl has the highest prestige in the society. This article is about the shift of written language from Nynorsk to Bokmâl among young people in a traditional Nynorsk district in the…

  16. Sampled phase-shift fiber Bragg gratings

    Institute of Scientific and Technical Information of China (English)

    Xu Wang(王旭); Chongxiu Yu(余重秀); Zhihui Yu(于志辉); Qiang Wu(吴强)

    2004-01-01

    A phase-shift fiber Bragg grating (FBG) with sampling is proposed to generate a multi-channel bandpass filter in the background of multi-channel stopbands. The sampled noire fiber gratings are analyzed by Fourier transform theory first, and then simulation and experiment are performed, the results show that transmission peaks are opened in every reflective channel, the spectrum shape of every channel is identical.It can be used to fabricate multi-wavelength distributed feedback (DFB) fiber laser.

  17. Base Erosion, Profit Shifting and Developing Countries

    OpenAIRE

    Ernesto Crivelli; De Mooij, Ruud A.; Michael Keen

    2015-01-01

    International corporate tax issues are prominent in public debate, notably with the G20-OECD project addressing Base Erosion and Profit Shifting (‘BEPS’). But while there is considerable empirical evidence for advanced countries on the cross-country fiscal externalities at the heart of these issues, there is almost none for developing countries. This paper uses panel data for 173 countries over 33 years to explore their magnitude and nature, focusing particularly on developing countries a...

  18. A FLEXIBLE PRECONDITIONED ARNOLDI METHOD FOR SHIFTED LINEAR SYSTEMS'

    Institute of Scientific and Technical Information of China (English)

    G.-D.Gu; X.-L.Zhou; Lei Lin

    2007-01-01

    We are interested in the numerical solution of the large nonsymmetric shifted linear system,(A+αI)x=b,for many different values of the shift α in a wide range.We apply the Saad's flexible preconditioning technique[14]to the solution of the shifted systems.Such flexible preconditioning with a few parameters could probably cover all the shifted systems with the shift in a wide range.Numerical experiments report the effectiveness of our approach on some problems.

  19. Probing New Physics with Isotope Shift Spectroscopy

    CERN Document Server

    Delaunay, Cédric

    2016-01-01

    We investigate the potential to probe physics beyond the Standard Model with isotope shift measurements of optical atomic clock transitions. We first derive the reach for generic new physics above the GeV scale at the effective field theory level, as well as estimate the limits on possible new spin-independent forces mediated by sub-GeV states coupled to electrons and neutrons. We also study the weak force and show that isotope shifts could provide strong constraints on the $Z^0$ couplings to valence quarks, which complement precision observables at LEP and atomic parity violation experiments. Finally, motivated by recent experimental hints of a new 750 GeV resonance in diphotons, we also consider the potential to probe its parity-preserving couplings to electrons, quarks and gluons with this method. In particular, combining the diphoton signal with indirect constraints from $g_e-2$ and isotope shifts in Ytterbium allows to probe the resonance coupling to electrons with unprecedented precision.

  20. Thermal field theories and shifted boundary conditions

    CERN Document Server

    Giusti, Leonardo

    2013-01-01

    The analytic continuation to an imaginary velocity of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. The Poincare' invariance underlying a relativistic theory implies a dependence of the free-energy on the compact length L_0 and the shift xi only through the combination beta=L_0(1+xi^2)^(1/2). This in turn implies that the energy and the momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward identities among the correlators of the energy-momentum tensor. The latter have interesting applications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare parameters the shifted boundary conditions also provide a simple method to vary the temperature in much smaller steps than with the standard procedur...

  1. Michelson interferometer based spatial phase shift shearography.

    Science.gov (United States)

    Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu

    2013-06-10

    This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

  2. Bashful Ballerina: Southward shifted Heliospheric Current Sheet

    Science.gov (United States)

    Mursula, K.; Hiltula, T.

    It is known since long (Rosenberg and Coleman, 1969) that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.

  3. The shifting demographic landscape of pandemic influenza.

    Directory of Open Access Journals (Sweden)

    Shweta Bansal

    Full Text Available As Pandemic (H1N1 2009 influenza spreads around the globe, it strikes school-age children more often than adults. Although there is some evidence of pre-existing immunity among older adults, this alone may not explain the significant gap in age-specific infection rates.Based on a retrospective analysis of pandemic strains of influenza from the last century, we show that school-age children typically experience the highest attack rates in primarily naive populations, with the burden shifting to adults during the subsequent season. Using a parsimonious network-based mathematical model which incorporates the changing distribution of contacts in the susceptible population, we demonstrate that new pandemic strains of influenza are expected to shift the epidemiological landscape in exactly this way.Our analysis provides a simple demographic explanation for the age bias observed for H1N1/09 attack rates, and suggests that this bias may shift in coming months. These results have significant implications for the allocation of public health resources for H1N1/09 and future influenza pandemics.

  4. On BCFW shifts of integrands and integrals

    Science.gov (United States)

    Boels, Rutger

    2010-11-01

    In this article a first step is made towards the extension of Britto-Cachazo-Feng-Witten (BCFW) tree level on-shell recursion relations to integrands and integrals of scattering amplitudes to arbitrary loop order. Surprisingly, it is shown that the large BCFW shift limit of the integrands has the same structure as the corresponding tree level amplitude in any minimally coupled Yang-Mills theory in four or more dimensions. This implies that these integrands can be reconstructed from a subset of their `single cuts'. The main tool is powercounting Feynman graphs in a special lightcone gauge choice employed earlier at tree level by Arkani-Hamed and Kaplan. The relation between shifts of integrands and shifts of its integrals is investigated explicitly at one loop. Two particular sources of discrepancy between the integral and integrand are identified related to UV and IR divergences. This is cross-checked with known results for helicity equal amplitudes at one loop. The nature of the on-shell residue at each of the single-cut singularities of the integrand is commented upon. Several natural conjectures and opportunities for further research present themselves.

  5. Set shifting training with categorization tasks.

    Directory of Open Access Journals (Sweden)

    Anna Soveri

    Full Text Available The very few cognitive training studies targeting an important executive function, set shifting, have reported performance improvements that also generalized to untrained tasks. The present randomized controlled trial extends set shifting training research by comparing previously used cued training with uncued training. A computerized adaptation of the Wisconsin Card Sorting Test was utilized as the training task in a pretest-posttest experimental design involving three groups of university students. One group received uncued training (n = 14, another received cued training (n = 14 and the control group (n = 14 only participated in pre- and posttests. The uncued training group showed posttraining performance increases on their training task, but neither training group showed statistically significant transfer effects. Nevertheless, comparison of effect sizes for transfer effects indicated that our results did not differ significantly from the previous studies. Our results suggest that the cognitive effects of computerized set shifting training are mostly task-specific, and would preclude any robust generalization effects with this training.

  6. Energy efficiency improvement by gear shifting optimization

    Directory of Open Access Journals (Sweden)

    Blagojevic Ivan A.

    2013-01-01

    Full Text Available Many studies have proved that elements of driver’s behavior related to gear selection have considerable influence on the fuel consumption. Optimal gear shifting is a complex task, especially for inexperienced drivers. This paper presents an implemented idea for gear shifting optimization with the aim of fuel consumption minimization with more efficient engine working regimes. Optimized gear shifting enables the best possible relation between vehicle motion regimes and engine working regimes. New theoretical-experimental approach has been developed using On-Board Diagnostic technology which so far has not been used for this purpose. The matrix of driving modes according to which tests were performed is obtained and special data acquisition system and analysis process have been developed. Functional relations between experimental test modes and adequate engine working parameters have been obtained and all necessary operations have been conducted to enable their use as inputs for the designed algorithm. The created Model has been tested in real exploitation conditions on passenger car with Otto fuel injection engine and On-Board Diagnostic connection without any changes on it. The conducted tests have shown that the presented Model has significantly positive effects on fuel consumption which is an important ecological aspect. Further development and testing of the Model allows implementation in wide range of motor vehicles with various types of internal combustion engines.

  7. On a Paradigm Shift in Disaster Science

    Science.gov (United States)

    Ismail-Zadeh, A.; Cutter, S. L.; Takeuchi, K.; Paton, D.

    2016-12-01

    Despite major advancements in knowledge on disaster risks and disasters caused by natural hazards, the number and severity of disasters is increasing. Convolving natural, engineering, social and behavioral sciences and practices with policymaking into co-designed and co-productive work should significantly reduce disaster risks caused by natural hazards. To this end, a fundamental change in scientific approaches to disaster risk reduction is needed by shifting the current emphasis on individual hazard and risk assessment dominant in the geoscientific community to a trans-disciplinary system analysis with action-oriented research on disaster risk reduction co-produced with other stakeholders, including policymakers. This paradigm shift will allow for acquisition of useful knowledge and for immediate application of scientific achievements to knowledge- and evidence-based policy and decision making for disaster risk reduction. The need for the paradigm shift is more critical now than ever before because of the human-induced changes resulting in increasing vulnerability and exposure of society to disaster risk and the need for cross-cutting actions in policy and practice related to climate change and sustainability.

  8. Reweighted ℓ1 referenceless PRF shift thermometry.

    Science.gov (United States)

    Grissom, William A; Lustig, Michael; Holbrook, Andrew B; Rieke, Viola; Pauly, John M; Butts-Pauly, Kim

    2010-10-01

    Temperature estimation in proton resonance frequency (PRF) shift MR thermometry requires a reference, or pretreatment, phase image that is subtracted from image phase during thermal treatment to yield a phase difference image proportional to temperature change. Referenceless thermometry methods derive a reference phase image from the treatment image itself by assuming that in the absence of a hot spot, the image phase can be accurately represented in a smooth (usually low order polynomial) basis. By masking the hot spot out of a least squares (ℓ(2)) regression, the reference phase image's coefficients on the polynomial basis are estimated and a reference image is derived by evaluating the polynomial inside the hot spot area. Referenceless methods are therefore insensitive to motion and bulk main field shifts, however, currently these methods require user interaction or sophisticated tracking to ensure that the hot spot is masked out of the polynomial regression. This article introduces an approach to reference PRF shift thermometry that uses reweighted ℓ(1) regression, a form of robust regression, to obtain background phase coefficients without hot spot tracking and masking. The method is compared to conventional referenceless thermometry, and demonstrated experimentally in monitoring HIFU heating in a phantom and canine prostate, as well as in a healthy human liver.

  9. Speech level shift in Japanese and Slovene

    Directory of Open Access Journals (Sweden)

    Jasmina BAJRAMI

    2016-12-01

    Full Text Available In verbal communication, we always aim to establish and maintain harmonious relations with others. Proper use of expressions and the choice of the way we speak are closely connected with politeness. In Japanese speech level is a level of formality or politeness in conversation, which is expressed by the use of linguistic forms (formal vs. informal within and at the end of an utterance and the use of honorific expressions. In Slovene the level of formality or politeness in conversation is mainly expressed by the use of formal language and general colloquial language. Speech level shift is a shift from one speech level to another – e.g. from a formal style to an informal, etc. According to previous research, these shifts express speaker's psychological distance and a change of attitude towards a hearer. In this paper I will first briefly present the theoretical framework of politeness and an outline of speech levels in Japanese and Slovene. I will then present the data and the method used in this study. Finally, I will present and discuss the results of the analysis of both Japanese and Slovene conversation.

  10. Fundamental studies of retrograde reactions in direct liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Solomon, P.R.; Kroo, E.; Charpenay, S.; Bassilakis, R.

    1991-12-17

    The overall objective of the program was to improve the understanding of retrograde reactions and their dependencies on coal rank and structure, and/or coal modifications and reaction conditions. Because retrograde reactions are competitive with bond breaking reactions, an understanding of both is required to shift the competition in favor of the latter. Related objectives were to clarify the conflicting observations reported in literature on such major topics as the role of oxygen groups in retrograde reactions and to provide a bridge from very fundamental studies on pure compounds to phenomenological studies on actual coal. This information was integrated into the FG-DVC model, which was improved and extended to the liquefaction context.

  11. The Reaction Wheel Pendulum

    CERN Document Server

    Block, Daniel J; Spong, Mark W

    2007-01-01

    This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, t

  12. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  13. Absolute surface metrology with a phase-shifting interferometer for incommensurate transverse spatial shifts.

    Science.gov (United States)

    Bloemhof, E E

    2014-02-10

    We consider the detailed implementation and practical utility of a novel absolute optical metrology scheme recently proposed for use with a phase-shifting interferometer (PSI). This scheme extracts absolute phase differences between points on the surface of the optic under test by differencing phase maps made with slightly different transverse spatial shifts of that optic. These absolute phase (or height) differences, which for single-pixel shifts are automatically obtained in the well-known Hudgin geometry, yield the underlying absolute surface map by standard wavefront reconstruction techniques. The PSI by itself maps surface height only relative to that of a separate reference optic known or assumed to be flat. In practice, even relatively high-quality (and expensive) transmission flats or spheres used to reference a PSI are flat or spherical only to a few dozen nanometers peak to valley (P-V) over typical 4 in. apertures. The new technique for removing the effects of the reference surface is in principle accurate as well as simple, and may represent a significant advance in optical metrology. Here it is shown that transverse shifts need not match the pixel size; somewhat counterintuitively, the single-pixel spatial resolution of the PSI is retained even when transverse shifts are much coarser. Practical considerations for shifts not necessarily commensurate with pixel size, and broader applications, are discussed.

  14. Iron-catalyzed Rearrangements and Cycloaddition Reactions of 2H-Chromenes

    Science.gov (United States)

    Luan, Yi; Sun, Huan

    2014-01-01

    Iron(III) salts catalyse the tandem rearrangement/hetero-Diels—Alder reaction of 2H-chromenes to yield tetrahydrochromeno heterocycles. The process can occur as a homodimerization and cycloaddition process using electron rich dienophiles. Deuterium labeling and mechanistic studies revealed a hydride shift and ortho-quinone methide cycloaddition reaction pathway. PMID:22098535

  15. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    Nozzle reaction and hose tension are analyzed using conservation of fluid momentum and assuming steady, inviscid flow and a flexible hose in frictionless contact with the ground. An expression that is independent of the bend angle is derived for the hose tension. If this tension is exceeded owing...... to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  16. Oral Hypersensitivity Reactions

    Science.gov (United States)

    ... food, food additives, drugs, oral hygiene products, and dental materials. Q: Are there any specific foods that are ... dental treatment trigger a hypersensitivity reaction? A: Some dental materials used by the dentist can cause a hypersensitivity ...

  17. Response reactions: equilibrium coupling.

    Science.gov (United States)

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle.

  18. Autocatalysis in reaction networks.

    Science.gov (United States)

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons.

  19. Translated chemical reaction networks.

    Science.gov (United States)

    Johnston, Matthew D

    2014-05-01

    Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network's capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.

  20. Ofloxacin induced hypersensitivity reaction

    Directory of Open Access Journals (Sweden)

    Hari Babu Ramineni

    2015-01-01

    Full Text Available Ofloxacin is a commonly used antimicrobial agent to combat various infections. The adverse profile of quinolones includes gastrointestinal symptoms, which are the most frequent, neuropsychiatric symptoms, hematologic abnormalities are less common. We report a rare case of ofloxacin induced hypersensitivity reaction in a 57 year old female patient with complaints of rashes over the axilla, upper limb and back, abdomen, thorax associated with exfoliation of skin all over the axilla associated with severe itching. Based on history and clinical examination patient was diagnosed as ofloxacin induced hypersensitivity reaction and was successfully treated with antihistamines and corticosteroids. Pharmacovigilance should be a part of patient care in order to reduce occurrence of adverse drug reaction and also encourage practitioners in reporting so as to gather more and more data regarding adverse drug reactions. [Int J Res Med Sci 2015; 3(1.000: 349-351

  1. Chemisorption And Precipitation Reactions

    Science.gov (United States)

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  2. Adverse reactions to sulfites

    Science.gov (United States)

    Yang, William H.; Purchase, Emerson C.R.

    1985-01-01

    Sulfites are widely used as preservatives in the food and pharmaceutical industries. In the United States more than 250 cases of sulfite-related adverse reactions, including anaphylactic shock, asthmatic attacks, urticaria and angioedema, nausea, abdominal pain and diarrhea, seizures and death, have been reported, including 6 deaths allegedly associated with restaurant food containing sulfites. In Canada 10 sulfite-related adverse reactions have been documented, and 1 death suspected to be sulfite-related has occurred. The exact mechanism of sulfite-induced reactions is unknown. Practising physicians should be aware of the clinical manifestations of sulfite-related adverse reactions as well as which foods and pharmaceuticals contain sulfites. Cases should be reported to health officials and proper advice given to the victims to prevent further exposure to sulfites. The food industry, including beer and wine manufacturers, and the pharmaceutical industry should consider using alternative preservatives. In the interim, they should list any sulfites in their products. PMID:4052897

  3. Allergic reactions in anaesthesia

    DEFF Research Database (Denmark)

    Krøigaard, M; Garvey, L H; Menné, T;

    2005-01-01

    BACKGROUND: The aim of this retrospective survey of possible allergic reactions during anaesthesia was to investigate whether the cause suspected by anaesthetists involved corresponded with the cause found on subsequent investigation in the Danish Anaesthesia Allergy Centre (DAAC). METHODS: Case...... notes and anaesthetic charts from 111 reactions in 107 patients investigated in the DAAC were scrutinized for either suspicions of or warnings against specific substances stated to be the cause of the supposed allergic reaction. RESULTS: In 67 cases, one or more substances were suspected. In 49...... match, the right substance being suspected, but investigations showed an additional allergen or several substances, including the right substance being suspected. CONCLUSIONS: An informed guess is not a reliable way of determining the cause of a supposed allergic reaction during anaesthesia and may put...

  4. Gaze shifts during dual-tasking stair descent.

    Science.gov (United States)

    Miyasike-daSilva, Veronica; McIlroy, William E

    2016-11-01

    To investigate the role of vision in stair locomotion, young adults descended a seven-step staircase during unrestricted walking (CONTROL), and while performing a concurrent visual reaction time (RT) task displayed on a monitor. The monitor was located at either 3.5 m (HIGH) or 0.5 m (LOW) above ground level at the end of the stairway, which either restricted (HIGH) or facilitated (LOW) the view of the stairs in the lower field of view as participants walked downstairs. Downward gaze shifts (recorded with an eye tracker) and gait speed were significantly reduced in HIGH and LOW compared with CONTROL. Gaze and locomotor behaviour were not different between HIGH and LOW. However, inter-individual variability increased in HIGH, in which participants combined different response characteristics including slower walking, handrail use, downward gaze, and/or increasing RTs. The fastest RTs occurred in the midsteps (non-transition steps). While gait and visual task performance were not statistically different prior to the top and bottom transition steps, gaze behaviour and RT were more variable prior to transition steps in HIGH. This study demonstrated that, in the presence of a visual task, people do not look down as often when walking downstairs and require minimum adjustments provided that the view of the stairs is available in the lower field of view. The middle of the stairs seems to require less from executive function, whereas visual attention appears a requirement to detect the last transition via gaze shifts or peripheral vision.

  5. Pterandra pyroidea: a case of pollination shift within neotropical Malpighiaceae.

    Science.gov (United States)

    Cappellari, Simone C; Haleem, Muhammad A; Marsaioli, Anita J; Tidon, Rosana; Simpson, Beryl B

    2011-06-01

    Most Neotropical species of Malpighiaceae produce floral fatty oils in calyx glands to attract pollinating oil-collecting bees, which depend on this resource for reproduction. This specialized type of pollination system tends to be lost in members of the family that occur outside the geographic distribution (e.g. Africa) of Neotropical oil-collecting bees. This study focused on the pollination ecology, chemical ecology and reproductive biology of an oil flower species, Pterandra pyroidea (Malpighiaceae) from the Brazilian Cerrado. Populations of this species consist of plants with oil-secreting (glandular) flowers, plants with non-oil-secreting flowers (eglandular) or a mix of both plant types. This study specifically aims to clarify the role of eglandular morphs in this species. Data on pollinators were recorded by in situ observations. Breeding system experiments were conducted by isolating inflorescences and by enzymatic reactions. Floral resources, pollen and floral oils offered by this species were analysed by staining and a combination of various spectroscopic methods. Eglandular flowers of P. pyroidea do not act as mimics of their oil-producing conspecifics to attract pollinators. Instead, both oil-producing and oil-free flowers depend on pollen-collecting bees for reproduction, and their main pollinators are bumble-bees. Floral oils produced by glandular flowers are less complex than those described in closely related genera. Eglandular flowers represent a shift in the pollination system in which oil is being lost and pollen is becoming the main reward of P. pyroidea flowers. Pollination shifts of this kind have hitherto not been demonstrated empirically within Neotropical Malpighiaceae and this species exhibits an unusual transition from a specialized towards a generalized pollination system in an area considered the hotspot of oil-collecting bee diversity in the Neotropics. Transitions of this type provide an opportunity to study ongoing evolutionary

  6. Pterandra pyroidea: a case of pollination shift within Neotropical Malpighiaceae

    Science.gov (United States)

    Cappellari, Simone C.; Haleem, Muhammad A.; Marsaioli, Anita J.; Tidon, Rosana; Simpson, Beryl B.

    2011-01-01

    Background and Aims Most Neotropical species of Malpighiaceae produce floral fatty oils in calyx glands to attract pollinating oil-collecting bees, which depend on this resource for reproduction. This specialized type of pollination system tends to be lost in members of the family that occur outside the geographic distribution (e.g. Africa) of Neotropical oil-collecting bees. This study focused on the pollination ecology, chemical ecology and reproductive biology of an oil flower species, Pterandra pyroidea (Malpighiaceae) from the Brazilian Cerrado. Populations of this species consist of plants with oil-secreting (glandular) flowers, plants with non-oil-secreting flowers (eglandular) or a mix of both plant types. This study specifically aims to clarify the role of eglandular morphs in this species. Methods Data on pollinators were recorded by in situ observations. Breeding system experiments were conducted by isolating inflorescences and by enzymatic reactions. Floral resources, pollen and floral oils offered by this species were analysed by staining and a combination of various spectroscopic methods. Key Results Eglandular flowers of P. pyroidea do not act as mimics of their oil-producing conspecifics to attract pollinators. Instead, both oil-producing and oil-free flowers depend on pollen-collecting bees for reproduction, and their main pollinators are bumble-bees. Floral oils produced by glandular flowers are less complex than those described in closely related genera. Conclusions Eglandular flowers represent a shift in the pollination system in which oil is being lost and pollen is becoming the main reward of P. pyroidea flowers. Pollination shifts of this kind have hitherto not been demonstrated empirically within Neotropical Malpighiaceae and this species exhibits an unusual transition from a specialized towards a generalized pollination system in an area considered the hotspot of oil-collecting bee diversity in the Neotropics. Transitions of this type

  7. Oxygen evolution reaction catalysis

    Science.gov (United States)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  8. Meson production in + reactions

    Indian Academy of Sciences (India)

    H Machner; M Betigeri; J Bojowald; A Budzanowski; A Chatterjee; J Ernst; L Freindl; D Frekers; W Garske; K Grewer; A Hamacher; J Ilieva; L Jarczyk; K Kilian; S Kliczewski; W Klimala; D Kolev; T Kutsarova; J Lieb; H Machner; A Magiera; H Nann; L Pentchev; H S Plendl; D Protić; B Razen; P Von Rossen; B J Roy; R Siudak; J Smyrski; R V Srikantiah; A Strzałkowski; R Tsenov; K Zwoll

    2001-08-01

    Total and differential cross sections for the reactions $p+d → 3He + 0 with = ; and + → 3H + + were measured with the GEM detector at COSY for beam momenta between threshold and the maximum of the corresponding baryon resonance. For both reactions a strong forward–backward asymmetry was found. The data were compared with model calculations. The aspect of isospin symmetry breaking is studied.

  9. Adverse reactions to sulfites

    OpenAIRE

    Yang, William H; Purchase, Emerson C.R.

    1985-01-01

    Sulfites are widely used as preservatives in the food and pharmaceutical industries. In the United States more than 250 cases of sulfite-related adverse reactions, including anaphylactic shock, asthmatic attacks, urticaria and angioedema, nausea, abdominal pain and diarrhea, seizures and death, have been reported, including 6 deaths allegedly associated with restaurant food containing sulfites. In Canada 10 sulfite-related adverse reactions have been documented, and 1 death suspected to be su...

  10. 固体氧化物电解池H2O-C02共电解制取烃类燃料反应特性研究%Reaction Characteristics of Hydrocarbon Production by H20-C02 Co-electrolysis in Solid Oxide Electrolysis Cells

    Institute of Scientific and Technical Information of China (English)

    匡佳雯; 史翊翔; 蔡宁生; 王洪建; 李汶颖

    2012-01-01

    Co-electrolysis of H20-CO2 in solid oxide electrolysis cells is one of the efficient ways to reduce CO2 emission and to store renewable power. H20-CO2 co-electrolysis performance in a solid oxide electrolysis button cell was tested. Methane composition was discovered in the reduction product gas. The results indicate that the electrochemical performance of H20-CO2 coelectrolysis reaction is between those of steam electrolysis and CO2 electrolysis, and CO is primarily produced via reverse water gas shift reaction. The concentration of methane in reduction product can be raised by increasing operating voltage or increasing CO2 concentration in inlet gas. Different with direct H2-CO methanation, little H2 can be found in H20-CO2 coelectrolysis product. A reaction pathway of CH4 production via in-situ H20-CO2 electrochemical conversion on the Ni catalyst surface is proposed.%固体氧化物电解池(solidoxideelectrolysiscells,SOEC、共电解H2O-C02是减少C02排放和进行可再生能源转化储存的潜在有效途径之一。该文开展了SOEC共电解H2O-CO2实验研究,在产物中发现甲烷气体生成。不同原料气配比条件下的共电解实验结果表明,SOEC共电解H2O-CO2电化学性能介于电解水蒸气和电解C02之间。增加工作电压和反应气体中C02的分压有利于提高产物中CH4的浓度,逆向水气变换反应是CO生成的主要途径。与H2-CO在SOEC阴极的反应产物组成相比,H2O-C02共电解产物中H2浓度非常低,据此推测产物CH4主要由H20和C02在Ni催化剂表面原位电化学转化生成。

  11. Effect of Short Range Ordering Reaction and Ordering Treatment on Microstructure in 316L Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, SungSoo; Kang, Suk Hoon; Kim, Young Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    The short range ordering (SRO) reaction is investigated in 316L stainless steel through differential scanning calorimeter (DSC) using thermo-mechanically treated specimens. It is interpreted that the exothermic reaction and the endothermic reaction during DSC analysis are due to the ordering and disordering, respectively. The activation energy for the exothermic reaction is determined to be 234 kJ/mol. This suggests that the exothermic reaction is governed by substitutional diffusion. It supports that the nature of the exothermic reaction is the SRO reaction. The cold work affects the kinetics of SRO significantly and shifts the SRO region from 500-570 ℃ to 200-600 ℃. The exothermic energy due to the SRO reaction increases with the amount of cold work. The fact that the SRO is an unavoidable reaction below 570 ℃ is very important.

  12. Characteristics on Hydro-mechanical Transmission in Power Shift Process

    Institute of Scientific and Technical Information of China (English)

    HU Jibin; WEI Chao; YUAN Shihua; JING Chongbo

    2009-01-01

    To improve the vehicular power and acceleration performance and reduce the shift impact, the study of the characteristics on power shift is necessary. Based on the flexible hydraulic unit of hydro-mechanical transmission, this paper explores the feasibility of shift without power interruption. With the four models concerning displacement ratio, rotational speed, rotational torque and power at ideal shift point, the characteristics on power shift in different running conditions are analyzed, and the rules of power shift are revealed.The theoretical analysis and test results show that the hydro-mechanical transmission can shift without power interruption in different running conditions. Furthermore, there exists an ideal shift point in theory, at which point the cycle power in hydro-mechanical transmission can't be generated, and the impact on the system can be reduced to the minimum. However, if before or after this ideal shift point, a cycle power can be generated.

  13. Pressure Shift and Gravitational RedShift of Balmer Lines in White Dwarfs: Rediscussion

    Science.gov (United States)

    Halenka, Jacek; Olchawa, Wieslaw; Madej, Jerzy; Grabowski, Boleslaw

    2015-08-01

    The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of Hα and Hβ Balmer lines in spectra of DA white dwarfs (WDs), have been examined in detail as masking effects in measurements of the gravitational redshift in WDs. The results are compared with our earlier ones from a quarter of a century ago. In these earlier papers, the standard, symmetrical Stark line profiles, as a dominant constituent of the Balmer line profiles but shifted as a whole by the PS effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark line profiles (especially of Hβ) are inherently asymmetrical and shifted due to the effects of strong inhomogeneity of the perturbing fields in plasma. To calculate the Stark line profiles in successive layers of the WD atmosphere we used the modified Full Computer Simulation Method, able to take adequately into account the complexity of local elementary quantum processes in plasma. In the case of the Hα line, the present value of Stark-induced shift of the synthetic Hα line profile is about half the previous one and it is negligible in comparison with the gravitational redshift. In the case of the Hβ line, the present value of Stark-induced shift of the synthetic Hβ line profile is about twice the previous one. The source of this extra shift is the asymmetry of Hβ peaks. In memory of Jan Jerzy Kubikowski (1927-1968)—one of the pioneers of plasma in astrophysics.

  14. Ecohydrology by thinking outside the bog: Shifting paradigms in an era of shifting peatland ecosystems

    Science.gov (United States)

    Waddington, James; Moore, Paul

    2016-04-01

    Large shifts in vegetation distributions are occurring worldwide and at unprecedented rates. The most extreme of these regime shifts are expected to occur at ecosystem boundaries of both semi-arid and semi-humid landscapes. Despite extensive hydrological research on the interactions between water and semi-arid ecosystems, research in peatlands on the wet end of ecosystem continuum has been "bogged down" (pun fully intended) by the traditional conceptual models (paradigms?) of peatland hydrology and ecology. The consequences of this "thinking" are large given that northern peatlands provide important global and regional ecosystem services (carbon storage, water storage, and biodiversity). This is especially true because peatlands face increases in the severity, areal extent, and frequency of climate-mediated (e.g., wildfire, drought) and land-use change (e.g., drainage, flooding, and mining) disturbances placing the future security of these critical ecosystem services in doubt. We use the word doubt because while numerical modelling studies predict peatland regime shifts and the demise of global peat stocks, there is growing evidence that peatlands are self-regulating ecosystems dominated by negative ecohydrological feedbacks that stabilize the aforementioned ecosystem services through high ecosystem resilience to disturbance. This raises several important hydrological questions? "Is there field evidence of peatland regime shifts? If so, what are the potential impacts of these shifts on water resources and watershed management? If not, are researchers actually looking in the right places (or times)? In this presentation we explore the need for a "thinking outside the bog" in order to understand the ecohydrological consequences of transformative landscape change caused by peatland regime shifts. With reference to over two decades of field research, recent advances with our Peatland Hydrological Impacts model and recent research examining primary peat formation, we

  15. Nitrogen doping of CVD multiwalled carbon nanotubes: Observation of a large g-factor shift

    Energy Technology Data Exchange (ETDEWEB)

    Mhlanga, Sabelo D., E-mail: Sabelo.Mhlanga@wits.ac.za [Molecular Sciences Institute, School of Chemistry and the DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Private Bag 3, Wits, 2050 Johannesburg (South Africa); Nxumalo, Edward N.; Coville, Neil J. [Molecular Sciences Institute, School of Chemistry and the DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Private Bag 3, Wits, 2050 Johannesburg (South Africa); Srinivasu, Vallabhapurapu V., E-mail: vallavs@unisa.ac.za [Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003 (South Africa)

    2011-11-01

    Highlights: {yields} High quality nitrogen doped multiwalled carbon nanotubes were synthesized using the floating catalyst CVD method. {yields} Systematic ESR measurements of the carbon products produced, in the temperature range of 293-400 K showed line widths that were in general very large {approx} kOe. {yields} A large g-factor shift in samples of N-CNTs from that of the free electron g-factor was observed. Further, the shift increased with increasing temperature. The large g shift has been analysed in terms of Elliott-Wagoner and Bottleneck models. {yields} The temperature dependence of the g shift in the N-CNT samples rules out the Elliott-Wagoner type spin-orbit coupling scenario. {yields} The large g shift and temperature dependence can be qualitatively explained in terms of Bottleneck model. - Abstract: Nitrogen doped multi-walled carbon nanotubes (N-CNTs) and undoped multi-walled carbon nanotubes (MWCNTs) were synthesized by a chemical vapour deposition (CVD) floating catalyst method. The N-CNTs were synthesized by the decomposition of a ferrocene/N-source/toluene (N-source = triethylamine, dimethylamine, acetonitrile) mixture at 900 deg. C. The undoped MWCNTs were synthesized using a ferrocene-toluene mixture without a nitrogen source under similar reaction conditions. The structure of the N-CNTs and MWCNTs was ascertained using HRTEM, SEM and Raman spectroscopy. Systematic ESR measurements of the carbon products produced, in the temperature range of 293-400 K showed line widths that were in general very large {approx} kOe. Most importantly, a large g-factor shift in samples of N-CNTs from that of the free electron g-factor was observed. Further, the shift increased with increasing temperature. The large g shift has been analysed in terms of Elliott-Wagoner and Bottleneck models. The temperature dependence of the g shift in the N-CNT samples rules out the Elliott-Wagoner type spin-orbit coupling scenario. The large g shift and temperature dependence can

  16. A Zero-Dimensional Model of a 2nd Generation Planar SOFC Using Calibrated Parameters

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank

    2006-01-01

    This paper presents a zero-dimensional mathematical model of a planar 2nd generation co-flow SOFC developed for simulation of power systems. The model accounts for the electrochemical oxidation of hydrogen as well as the methane reforming reaction and the water-gas shift reaction. An important part...

  17. Green binary and phase shifting mask

    Science.gov (United States)

    Shy, S. L.; Hong, Chao-Sin; Wu, Cheng-San; Chen, S. J.; Wu, Hung-Yu; Ting, Yung-Chiang

    2009-12-01

    SixNy/Ni thin film green mask blanks were developed , and are now going to be used to replace general chromium film used for binary mask as well as to replace molydium silicide embedded material for AttPSM for I-line (365 nm), KrF (248 nm), ArF (193 nm) and Contact/Proximity lithography. A bilayer structure of a 1 nm thick opaque, conductive nickel layer and a SixNy layer is proposed for binary and phase-shifting mask. With the good controlling of plasma CVD of SixNy under silane (50 sccm), ammonia (5 sccm) and nitrogen (100 sccm), the pressure is 250 mTorr. and RF frequency 13.56 MHz and power 50 W. SixNy has enough deposition latitude to meet the requirements as an embedded layer for required phase shift 180 degree, and the T% in 193, 248 and 365 nm can be adjusted between 2% to 20% for binary and phase shifting mask usage. Ni can be deposited by E-gun, its sheet resistance Rs is less than 1.435 kΩ/square. Jeol e-beam system and I-line stepper are used to evaluate these thin film green mask blanks, feature size less than 200 nm half pitch pattern and 0.558 μm pitch contact hole can be printed. Transmission spectrums of various thickness of SixNy film are inspected by using UV spectrometer and FTIR. Optical constants of the SixNy film are measured by n & k meter and surface roughness is inspected by using Atomic Force Microscope (AFM).

  18. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  19. Goos-Hänchen shifts in harmonic generation from metals.

    Science.gov (United States)

    Yallapragada, V J; Gopal, Achanta Venu; Agarwal, G S

    2013-05-06

    We present the first calculation of the Goos-Hänchen shifts in the context of the nonlinear generation of fields. We specifically concentrate on shifts of second harmonic generated at metallic surfaces. At metallic surfaces the second harmonic primarily arises from discontinuities of the field at surfaces which not only result in large harmonic generation but also in significant Goos-Hänchen shifts of the generated second harmonic. Our results can be extended to other shifts like angular shifts and Fedorov-Imbert shifts.

  20. What is the preferred number of consecutive night shifts?

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Kirsten; Jensen, Marie Aarrebo; Hansen, Åse Marie

    2016-01-01

    Among police officers in Denmark, we studied (i) how many consecutive night shifts participants preferred at baseline; (ii) preferences regarding three intervention conditions (two, four, and seven consecutive night shifts followed by the same number of days off/day shifts: '2 + 2', '4 + 4', '7 + 7...... work. The participants' preferences are likely to be influenced by their previous shift work experience. Practitioner Summary: We investigated police officers' preferences regarding the number of consecutive night shifts. The majority preferred four consecutive night shifts. Those who preferred...